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cial mobility), three types of behavior of the coalescence time are identified: the linear slow, the dimpled
and the multiple-rim drainage regimes. In the first two regions the coalescence time decreases with the
approach velocity, eventually passes through a minimum and starts to increase in the third region. The
slope in the linear region and the critical velocities separating the regimes are used to quantify the be-
havior, and given as functions of the Hamaker constant and the viscosity ratio. The results are shown to

be in good agreement with several recent experimental studies in the literature.

© 2019 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Coalescence of fluid particles plays an important role in wide
variety of phenomena including natural ones such as the forma-
tion of the rain droplets, as well as several processes in chemical
and biochemical industries such as food and beverage production
or petroleum refining, where multiphase flows are frequently en-
countered. In these industries, chemical and biochemical reactors,
fermentation units, boiling and condensation equipment, and sep-
arators are widely employed; the performance and the efficiency
of which strongly depend on the characteristics of the dispersed
flow within them, i.e., the spatial distribution of the fluid particles
in the continuous phase and their size. Therefore, it is crucial to
understand the nature of fluid particle coalescence (and breakage)
on the scale of the equipment of interest, in which a large number
of fluid particles interact at the same time enabling coalescence
and breakage to occur simultaneously within the unit. That, how-
ever, first requires the understanding of the phenomena on a more
fundamental level: the single events of coalescence of two fluid
particles, and the breakage of a single particle. In this work, we fo-
cus only on the coalescence of two fluid particles, particularly on
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the effect of the relative approach velocity of the particles on the
coalescence time.

There has been huge interest and effort in gaining better
comprehension of coalescence and its effects on multiphase en-
gineering units for decades, which seemingly resulted in some
conflicting observations and conclusions. One earlier example of
these contradictions might be seen as in between Shinnar and
Church (1960), Shinnar (1961) and Howarth (1964). The former
claims that immediate coalescence of two fluid particles rarely oc-
curs, but instead the particles rather cohere first entrapping a thin
film of continuous phase in between. Whereas, the latter supports
the idea of a critical approach velocity, after which immediate
coalescence prevails and before which the probability of coales-
cence is very low. As reviewed by Liao and Lucas (2010), these two
proposals lay the foundation for two distinct modeling approaches,
the film drainage models and the energy models, respectively. On
the other hand, another critical approach velocity is observed by
Lehr et al. (2002), after which the collision of the fluid particles
result in bouncing instead of coalescence and before which coa-
lescence is rapid. Liao and Lucas (2010) adds Lehr et al. (2002)’s
model next to the film drainage and energy models as a third
branch. Theoretical estimates that are on the same order of mag-
nitude as Lehr et al. (2002)’s measurement for the critical velocity,
are given in the theoretical work of Chesters and Hofman (1982) by
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Nomenclature

Vapp Relative approach velocity of the fluid particles

tc Coalescence time

Ac Coalescence efficiency

tdrainage Drainage time

teontact Contact time

A Dispersed to continuous phase viscosity ratio

a Reduced particle radius

a,ay Fluid particle radii

ho Minimum initial film thickness

WL Dispersed phase viscosity

e Continuous phase viscosity

R{,R; Fluid particle radii

Vi, Vo Approach velocities of the particles

r Radial distance in the film

z Axial distance in the film

t Time

h Thickness of the thin film

a Width of the thin film

Ry Equivalent particle radius

h Characteristic measure of film thickness

r Characteristic measure of film width

£1,€2,€ Length scale ratios

p Excess pressure in the film

vr r-component of the continuous phase velocity

vz z-component of the continuous phase velocity

Vg Dispersed phase velocity field

Pd Dispersed phase pressure

U Tangential velocity of the interface

T4 Particle side tangential stress evaluated at the in-
terface

A Hamaker constant

o Surface tension

Too A large radial distance

1 Boundary Integral Method integrand

0 Integral variable in radial axis

% Azimuth angle

A¥ Dispersed to continuous phase viscosity ratio
multiplied by e

A* Dimensionless Hamaker constant

Ca Capillary number

U Tangential velocity of the interface multiplied by
A*

t Characteristic time scale

Yi-Y, Transformed variables employed in spectral ele-
ment based solvers

1) A small arbitrary number

R Radial distance in the polar coordinate system
used for singularity treatment

© Azimuth angle in the polar coordinate system
used for singularity treatment

[A] Integration matrix used for the Boundary Integral
equation

Vdimp Critical approach velocity separating the linear
and the dimpled drainage regimes

Vinuie Critical approach velocity separating the dimpled
and the multiple-rim drainage regimes

oy Averaged Boundary Integral Method integrand

E Trapezoidal area under Zt, between [r —§, 1 + §]

Z Integration kernel

% Arbitrary scalar quantity

1 v in Chebyshev pseudospectrum

N Number of collocation points minus one

T Matrix relating a quantity and its counterpart on
the Chebyshev pseudospectrum based on Cheby-
shev polynomials

b Numerical integration vector

[B] Numerical integration matrix

[C1]1—=[C3] Integration matrices employed to compute [A]

considering the changes in the kinetic and the surface energies
of the particles, and by Kirkpatrick and Lockett (1974) via a
film drainage model. Although these studies aim to explain the
phenomenon based on different arguments, they are not entirely
conflicting, but rather might represent different regions of the
particle approach velocity spectrum. Yaminsky et al. (2010) iden-
tifies three distinct regimes of coalescence in their experiments
with air bubbles in water: at very low approach velocities (smaller
than 1 pm/s), the thin film in between bubbles appears to be
stable in finite time, at intermediate velocities (upto 150 pm/s)
coalescence occurs in the range of 10-100 s with visible dimpling
of the interface, and finally at large velocities (much larger than
150 um/s) almost immediate coalescence is observed with very
little hydrodynamic resistance from the film and no observable
dimpling. They associate these three regions with DLVO stability
meaning that the stability stems from the electrical forces acting
between charged interfaces, viscous film drainage in which the
film flattens and dimples, and inertial film drainage where coales-
cence occurs before the deformation of the particles, respectively.
Horn et al. (2011) discusses several works from the literature
(Chesters and Hofman, 1982; Klaseboer et al, 2000; Yaminsky
et al, 2010; Del Castillo et al., 2011) to end up with a single
chart of different possible regimes of coalescence as a function of
the bubble approach speed and the NaCl concentration in their
Figs. 2 and 3. From their map, it is evident that in the limit of zero
NaCl concentration, as the approach speed (or the kinetic collision
energy) increases sequential regimes of

1. DLVO stability for very low velocity collisions, where no coales-
cence is possible in finite time;

2. Film drainage governed by viscous effects for collisions with
higher velocity, where time of coalescence might be as large
as 100 s;

3. Inertia governed rapid film drainage for energetic collisions,
where coalescence is virtually immediate;

4, Bouncing regime for even more energetic collisions, where co-
alescence does not occur;

are expected. However, they do not provide information on how
the coalescence time changes within these individual regimes.
Orvalho et al. (2015) observes a power-law type relation between
the coalescence time, t;, and the relative approach velocity, Vapp,
in their experiments with air bubbles and liquids of different
viscosities. They propose that t. is a linear function of Va;,%ss. On
the other hand, Del Castillo et al. (2011) observes similar trends
in their experiments with air bubbles in pure water, with the
additional observation of a minimum in Vg versus t. as the
approach velocity further increases.

In the film drainage models, once the fluid particles are brought
into contact by the external flow, three consecutive steps are pro-
posed (Shinnar and Church, 1960)

« A thin film of the continuous phase is entrapped in between
two colliding particles,

+ The film drains until its thickness reaches a critical value,

» The film ruptures and coalescence occurs upon reaching the
critical thickness.
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If the particles are allowed to be in contact by the external flow
for sufficiently long time, such that the time required for the film
to drain until the critical thickness is reached, is smaller than the
duration of the interaction between the particles, coalescence oc-
curs. Based on the film drainage approach, Coulaloglou (1975) gives
a statistical formula for the coalescence efficiency, A., using two
characteristic time scales, the drainage and the contact times, as

ti s
)‘-c _ exp(— dramage) (1)

Leontact

which is frequently employed to estimate coalescence behavior in
the scale of the multi-phase equipment such as chemical reac-
tors and separators. The model is restricted to 'gentle’ collisions, in
which the particles are significantly larger than the radius affected
by the collision (or in other words, the width of the emerging thin
film) (Chesters, 1991). The energy models, on the other hand, con-
sider more 'energetic’ collisions and relates A, to the kinetic colli-
sion energy and the interfacial energy of the fluid particle instead
of tdrainage and teontact-

To determine the drainage time, tyyingge, in Eq. (1), numerous
models with varying degree of complexity have been proposed in
the literature. These models are classified based on the deforma-
bility and the tangential mobility of the interfaces (Lee and Hodg-
son, 1968; Chesters, 1991; Liao and Lucas, 2010). The former clas-
sification differentiates between the models for the rigid spheri-
cal fluid particles and the ones for the particles with deformable
interfaces, which are capable of modeling the experimentally ob-
served dimple formation during the film drainage. In addition to
the formation of the dimple, the pimpling, wimpling and rippling
of the interface are also possible (Chan et al., 2011). The pimple
and the wimple refer to the emergence of an additional rim at
the interface, and of a local maximum between the rim and the
center of the interface, respectively. Whereas, the development of
multiple additional maxima and minima at the interface is termed
as rippling. Next, by following Chesters (1991) and Liao and Lu-
cas (2010), the deformable class can be further divided into three
subgroups based on the interfacial mobility, as immobile, partially
mobile and fully mobile models. Immobile models correspond to
the interfaces with zero tangential velocity, which might stem from
very high dispersed phase viscosity and/or interfacial tension gra-
dients emerging due to presence of impurities and surfactants (Lee
and Hodgson, 1968; Chesters, 1991). In that case, the drainage of
the film is governed by viscous forces within the film (resulting in
a parabolic velocity profile) and not coupled to the velocity field
of the dispersed phase (Liao and Lucas, 2010; Chan et al., 2011).
Partially mobile and fully mobile names, on the other hand, are
used for the cases where the contribution of the tangential veloc-
ity of the interfaces on the film drainage are non-negligible. This
non-negligible tangential velocity of the mobile interfaces yields a
plug flow-like contribution to the velocity of the film. According
to Chesters (1991), for the fully mobile interfaces, the tangential
stress at the interface is effectively zero and the drainage is gov-
erned either by the deformation or acceleration, respectively cor-
responding to the viscous and the inertial film drainage regimes.
Whereas in the partially mobile interface case the tangential stress
at the interface is non-zero and the drainage is controlled by the
dispersed phase viscosity. Based on scaling arguments on the thin
film in between the fluid particles, Davis et al. (1989) argues that
if the dispersed to continuous phase viscosity ratio, A, is much
greater than ,/a/hg, where a = angz is the reduced particle ra-
dius, a; and a, are particle radii, and hg is the minimum initial
thickness of the film, the fluid particles act as rigid particles, if
A << y/a/hg the interfaces of the particles are fully mobile, and

if A and \/a/hg are on comparable magnitudes, the interfaces are
partially mobile.

Modeling of the interface as a mobile one, regardless of its
deformability, requires the coupling of the flow fields inside the
fluid particle and within the film. Davis et al. (1989) employs
the Boundary Integral theory to determine the tangential veloc-
ity of the interface, which, then, enables the coupling of two ve-
locity fields through the no-slip condition at the interface, with-
out requiring the computation of the velocity profile inside the
fluid particle. This approximation lowers the computational ef-
forts significantly and later adapted by many others (Yiantsios
and Davis, 1990; 1991; Abid and Chesters, 1994; Saboni et al.,
1995; Klaseboer et al., 2000; Bazhlekov et al., 2000). Yiantsios and
Davis (1990) concludes that a dimple is always formed during
bouyancy-driven interactions between a fluid particle and a sur-
face regardless of the viscosity ratio. In their following work
(Yiantsios and Davis, 1991), they extend their work to the interac-
tions between two fluid particles, in the limits of very small and
very large interfacial mobilities, and reveal that without the at-
tractive van der Waals forces the coalescence is not possible for
deformable interfaces in finite time. They also identify two differ-
ent rupturing types, the nose and the rim ruptures, which are ob-
served at strong and weak van der Waals forces, respectively. In
the nose rupture, the van der Waals forces become significant be-
fore dimpling occurs resulting in rupture at the center of the inter-
face, whereas the relatively weaker van der Waals forces allow the
capillary forces to act first, resulting in formation of a dimple and
a rim away from the axis of symmetry. In that case, the rupture
starts from the rim earning the name the rim rupture. Abid and
Chesters (1994) and Saboni et al. (1995) study centerline collisions
of droplets in the presence of van der Waals forces, assuming a
constant approach velocity and a constant droplet interaction force,
respectively. They determine the critical film rupture thickness as
a function of the Hamaker constant. In their models, the drop vis-
cosity determines the rate of drainage, meaning that the velocity
profiles are approximated as plug flows, by neglecting the viscous
effects within the film. Klaseboer et al. (2000) compare their ex-
perimental results obtained for the coalescence of various liquid-
liquid couples to outcomes of two theoretical models, in which the
interfaces are deformable and the droplets have a constant rela-
tive approach velocity. They conclude that the tangentially immo-
bile interface model, where the velocity in the film is parabolic,
fits their experimental data more accurately in comparison to the
mobile interface model, where they assume a plug-like flow within
the film. They suspect that the possibility of very small amount of
surfactants being present in the experiments might be responsible
for the immobilization of the interface. Bazhlekov et al. (2000) in-
vestigate the effect of the viscosity ratio on the film drainage by
considering either constant approach velocity or constant interac-
tion force collisions of two fluid particles. Their model takes both
the parabolic and plug-like contributions to the film flow into ac-
count, thereby closing the gap between preexisting immobile and
mobile models in the literature. They present estimations for the
minimum film thickness as a function of time and viscosity ratio
in a compact form. However, in their expressions the effect of the
van der Waals forces is not considered.

Our models follow those of Bazhlekov et al. (2000)'s and
Klaseboer et al. (2000)’s, for the mobile and immobile interfaces,
respectively, with the addition of van der Waals effects. The ad-
dition of the van der Waals forces to the models makes the es-
timation of the coalescence time possible. Furthermore, we ren-
der our equations dimensionless following a different route to set
the relative approach velocity of the particles as a model parame-
ter, in order to investigate its effect on the coalescence time ex-
plicitly, together with the effects of the disperse to continuous
phase viscosity ratio and Hamaker constant. Although our mod-
els are similar to the preexisting ones in the literature, the ability
to show the individual effect of the approach velocity on the co-
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Fig. 1. Physical system.

alescence time directly, enables us to compare our theoretical re-
sults to the observations from numerous experimental works such
as those of Yaminsky et al. (2010), Del Castillo et al. (2011) and
Orvalho et al. (2015), in an efficient and clear manner, thereby al-
lowing us to illuminate some of the missing links between the the-
oretical and experimental works in the literature.

The article is outlined as follows: The physical configuration of
interest and the mathematical model is presented in Section 2.
The numerical procedure including the treatment of the singular-
ity inherent to the Boundary Integral Method is given in Section 3.
Section 4 presents the coalescence time and the time evolution of
the film thickness at different values of the physical parameters of
interest, and the comparison of the models’ outcome to the experi-
mental observations in the literature. Finally, the conclusions of the
work are summarized in Section 5.

2. Physical system and mathematical model

This work considers the axisymmetrical interactions between
two Newtonian fluid particles (either droplets or bubbles) of same
fluid approaching each other at a constant relative approach ve-
locity, Vgpp, along their centerlines, through a continuous medium
of a Newtonian fluid. The depiction of the physical system is pre-
sented in Fig. 1. The viscosities of the continuous and the dispersed
phases are denoted by . and ug4, respectively, and the fluid par-
ticles are allowed to be of different radii, R; and R,. The interfaces
between the dispersed and the continuous phases are immiscible,
deformable and characterized by a constant value of surface ten-
sion, o. As the fluid particles approach each other, they entrap a
thin film of the continuous phase in between them, which even-
tually starts to drain. The thickness of this emergent thin film, h,
is a function of the radial position r and the time t. It is possible
to identify three distinct lengths governing the film drainage phe-
nomenon: the particle radii R; and R,, the thickness of the film h(r,
t) and the width of the film a. Although the characteristic length
scales for the first two are straightforward, the width of the film
is not easy to measure. Therefore its magnitude will be related to
the length scales for the particle size and the film thickness later
on during the derivation of the model. Provided that the collision
is a gentle one, meaning that both particle radii are much larger
than the characteristic film width, the equivalent radius, defined
by

1 1/1 1
%2 w) @)

can be used as the length scale for both particles (Chesters, 1991).
Due to this approximation, the collision of unequal-sized particles
can be modeled as the collision of equal-sized ones, meaning that
symmetry around r axis is also introduced to the model in addi-
tion to the axisymmetry. This new symmetry creates four equiv-
alent quadrants, enabling us to seek for the solution only in one
of them. Here, only the solution in r>0, z>0 quadrant is sought,
where the interface position is given by z = h(r,t)/2. The gentle
collision resulting in emergence of a thin film suggests a relation
between the three length scales:

h<<d<< R, (3)

where h and d are measures of the thickness and the width of the
film, respectively. In the light of this argument on the length scales,
two dimensionless ratios are defined as

g:sl<<1, R£p:82<<‘l (4)
which further suggests that a small number € can be defined as

A 12
<Rp> =16 =€ (5)

Then, € can be utilized to relate the three distinct length scales in
the model as

h=eR, F= |Dd=eR, (6)
&2

where, 7 is employed in order to unify the order of magnitude dif-
ference between the length scales and hereafter, adopted as the
r-direction length scale instead of a.

2.1. Governing equations and boundary conditions

Based on the arguments in Section 2 (h << 7) the lubrication
theory is applicable within the film. Following the analysis of
Yiantsios and Davis (1990), as € = E/F << 1, the flow of the film is
governed by the simplified versions of the Navier-Stokes and the
continuity equations

op 0%, op
ar ~HeE 3770 ()
and
1
e 19 =0 (8)

0z ror
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Fig. 3. Fig. 4 of Klaseboer et al. (2000) reproduced for validation of the immobile solver. Thin film thickness as a function of r and t as A* — co. Here, to match
Klaseboer et al. (2000), t is shifted by —17 to set the onset of dimpling as t = 0. Profiles are obtained with A* =0, Vgpp =1, hgo =10 and ry, = 15.

where p is the excess pressure in the film, and, v, and v, are the
z and r components of the continuous phase velocity. The flow
within the particles, on the other hand, is approximated by the in-
compressible Stokes equations

waV3va = Vpy (9)
and
V. Vq = 0 (10)

where p; and v4q are the dispersed phase pressure and velocity
fields, respectively. The flows in both phases are coupled via a set
of boundary conditions valid at the interface, z = h(r,t)/2: the no-
slip condition, the kinematic condition, and the tangential and the
normal components of the stress balance given by

Ur|z=h/2 =U (11)
10h 10h
557 = Velzenz = 557 Vrlzon2 (12)

ovy
—Mec o= =T (13)
9z z=h/2
20 10 oh A
p:Rp_02r3r<rar>+6nh3 (14)

respectively. The kinematic condition, Eq. (12), appears due to the
continuity between the normal component of the velocity of the
thin film and the normal speed of the interface (given by %%).
Here, U is the tangential velocity of the interface, 7 is the particle-
side tangential stress evaluated at the interface, A is the Hamaker
constant, and the deviations in the particle-side pressure are ne-
glected in Eq. (14) due to the gentle collision assumption. Further-
more, it is assumed that at a large enough radial distance, at r,,
the shape of the interface and the approach velocity are unaffected
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by the collision. Then, the conditions,

dh
at
—

=T

pl,_,,=0 and = —Vapp (15)

hold. Eq. (15) form the set of boundary conditions for p and h
together with the symmetry conditions at r = 0. The initial film
thickness is taken as
2
h = heo + - (16)
Ry
to resemble the distance between two spherical fluid parti-
cles. To determine U, the boundary integral form of the Stokes
flow is used (reader may refer to Davis et al. (1989) and
Ladyzhenskaya (1969) for further information on the method.)

Too
U= L/ I1(p,0) tydp (17)
Md Jo
where
p (" cos
1(p,0) = 7/ o (18)
2m Jo \/r2 4 p2 —2rpcosé

2.2. Dimensionless equations

By applying the transformations

. h = T =~ Urlhc = Uzlhc
h_esz’ "=@®, T es VT
~ Vapptte  ~ PRy . TRy, . teo
V = = — - — 1
wp =gy P=T =t 1Ry (19)
the Eqgs. (7)-(8) and (11)-(16) are rendered dimensionless as
0p 0%, ap
-r_ = =0 20
of 0972’ 07 (20)
v, 19 _.
5 + = 5=(0) =0 (21)
il 52 =0 22)
1 0h 10h
20 9F Z|Z=E/2 297 flz:ﬁ/z (23)
ov, .
_ &TZr =T (24)
7=h/2
" 19 (.00 A
p_2_2F8F<rF> ) (25)
dh .
Pli—z. =0, = = —A"Vapp (26)
h ) Py
and
‘fl = ‘fl()() + 2 (27)
where A* = —4__ and A* = £4¢. The non-dimensionalized nor-
67 €°Ry0 He

mal stress balance also requires a restriction on the magnitude of

the capillary number, Ca = @ ~ €4, as discussed for thin film

analyses in general by Oron et al. (1997). On the other hand, the

boundary integral equation, Eq. (17), becomes

<1 [T 1

U=— $,0) T dp = —
e /o (p.0)T4dp e

and substituting r =7 and p = § into Eq. (18) gives (5, 6). Here-

after, all equations are given in dimensionless form; therefore,

U (28)

tildes are omitted in the transformed variables. Solving Eq. (20),
and, applying Eq. (22) at z = h/2 together with the symmetry con-
dition at r axis, yields

2
vr=;?)l:(zz—<’21) )+u (29)

clearly indicating two distinct contributions to the radial velocity,
the parabolic flow driven by the pressure gradient inside the film
and the interfacially-driven plug flow. Then, the tangential compo-
nent of the stress balance, Eq. (24), becomes

hap
“2or M
Once v, is known, the z component of the film velocity, v, is de-
termined via Eq. (21). Finally, by substituting v, and v, (given by
Eq. (29) into Eq. (23), the thinning equation is found:

oh  1[A* 0 [ 0p,s 0, A

o = r|:128r<r8rh ) - 8r(rUh)] (31)
Despite the differences in the characteristic scales employed, the
equation is exactly the same as the Bazhlekov et al. (2000)’s thin-
ning equation, and reveals that the effects of the parabolic and the
plug flows in the film are weighted by the dispersed to the con-
tinuous phase viscosity ratio via A*. That brings out the classifica-
tion of the interfaces in terms of their mobility. At very high values
of A*, the interface attains infinitesimal values of U and becomes
tangentially immobile, whereas at low A* the thinning equation is
dominated by the plug flow’s contribution, earning the title of fully
mobile interface following Davis et al. (1989)'s description. In these
extreme cases, Eq. (31) can be simplified by only taking into ac-
count the dominant terms for the respective case and neglecting
the other. Then, for the immobile case

(30)

oh 1 9 ( dp,;

i 12r8r(r8rh ) 52)
and for the fully mobile case

dh 10, ~

o = _?E(rUh) (33)

can be used as the thinning equation. Notice that, in the immobile
case, A* is included in the time scale by setting f = ’:g’;", which
further implies that the right hand side of the velocity boundary
condition in Eq. (26) becomes —Vgpp. The thinning equation for
the fully mobile case, Eq. (33), can be obtained by setting A* =0
in Eq. (31). Therefore, the fully mobile case is referred to as the
A* =0 case, hereafter. However, this only implies that the first
term on the right hand side of Eq. (31) is negligible, and does not
suggest the physical value of A* to be actually zero. Additionally,
even though the name ‘the A* =0 case’ used for the fully mo-
bile case evokes the opposite, the A* appearing in the boundary
condition, Eq. (26), is not zero, but it is rather a small physical
value. On the other hand, at moderate values of A* (corresponds
to Davis et al. (1989)’s partially mobile interface), contributions of
both flows have non-negligible effects on thinning and Eq. (31) is
directly employed without any further simplifications. In all cases,
the thinning equation is coupled with Eq. (25), and except the im-
mobile case, Eqs. (28) and (30) are used to determine U.

3. Numerical procedure

For each one of the three mobility cases (the partially mobile,
the immobile and the fully mobile interfaces) given in Section 2.2,
a different solver is employed. However, these solvers share some
characteristics: In all cases, the corresponding thinning equation
(Egs. (31), (32) or (33)) is solved simultaneously with Eq. (25). The



S.C. Ozan and H.A. Jakobsen / International Journal of Multiphase Flow 119 (2019) 223-236 229

boundary conditions given in Eq. (26) hold together with the sym-
metry conditions for both h and p at r = 0. The spatial discretiza-
tion scheme is either a spectral one based on Chebyshev polyno-
mials, or consists of spectral elements, which are again based on
Chebyshev polynomials. The elements are used in some cases to
obtain higher spatial resolution without drastically increasing the
computational efforts. However, when spectral elements are used,
since Chebyshev polynomials are only ¢y continuous on the ele-
ment boundaries (Patera, 1984; Karniadakis and Sherwin, 2013),
the solver fails to give accurate results for differential equations
with order higher than one. Therefore, the second order differen-
tial equations, the thinning equation (one of Egs. (31)-(33)) and
Eq. (25), are converted into a set of four first order differential
equations in the spectral element solvers. The transformation is
done by setting Yy =h, Y, =31 Y3 =p Y,=32. In all solvers,
the second order backward differentiation is used to discretize the
time derivatives.

In mobile cases, computation of U is required via the Bound-
ary Integral equation, Eq. (28). However, the equation has an inher-
ent singularity at p =r and 6 = 0 as can be seen from Eqs. (17) to
(18). To the best of our knowledge, the works in the literature that
simulate similar thinning equations to ours, do not explicitly re-
veal their methods of coping with the singularity. Therefore, we
attempt to give some insight on our method in this section. First,
starting with Eq. (28), the integral defining U is divided into three
parts to isolate the singularity:

Too -8
U=f0 I(pﬁ)rddp:/o I(p,0) Tadp

r+8 o
+/ 1(0.0) 7, d,0+/ 1(0.0) 7, dp (34)
r—6 r+8

where § is a small arbitrary number. Here, the singularity is iso-
lated in the second term on the right hand side of Eq. (34), en-
abling efficient and accurate computation of the first and the last
terms. The kernels in these terms, I(p, 6), are merely geometric
functions, and as a result, computed only once at the beginning of
the computation. The singular integral, however, is treated further.
Following Section 8.2 of Scott et al. (2013), a coordinate transfor-
mation (sketched in Fig. 2) is applied to shift the singular point to
the origin of a polar coordinate system, from (p, 6) to (R, ¢) via

p —1 = Rsing, 6 = Rcosg (35)
As can be seen from Fig. 2, the transformation requires the inte-
gration domain to be handled in three separate parts. The singular
integral, then, is written in terms of the summation of these three
integrals as

r+8
/r—s I(p,0)Ta(p)dp
> Rk Pies1
= ; {fo /‘ﬂk I(R,¢)Td(R,<p)Rd¢dR} (36)

k=1

where

R, = ;8 L L — i tan*l ;8
k= | sing” cosg’ sing |’ L a )

(r + Rsing)cos(R cosp)
\/r2 +(r+ Rsin<p)2 —2r(r + Rsing)cos (R cosp)

I(R, ) = (37)

Next, by assuming 7, is constant in the & vicinity of r=p,
Eq. (34) turns out to be

R r—3 3 Re @i
U=/ I(p,@)rddp+rd2{/ / I(R,(p)Rd(de}
0 k=1 0 Pk

+ / 100, 0) 7y dp (38)
48

in which, now, the singular part of the integral is also given
as a purely geometrical function, that is computed only once
throughout the simulation. Finally, all the integrals, in Eq. (38), are
transformed into matrix form using quadrature rules, so that the
Boundary Integral equation can be written as

U =[Alr, (39)

where [A] is the integration matrix. Some key details in derivation
of [A] is provided in the Appendix A. The accuracy of the approxi-
mation might depend heavily on the value of the small parameter
& when it is selected poorly. In our simulations this value is taken
as low as 104 - 10-5, around which no further significant depen-
dence of U on the value of § is observed. For mobile cases (except
for A* = 0), first, the Eqs. (25) and (31) are solved simultaneously
at a given time step; then, through Egs. (30) and (39), 74 and U are
determined; and finally, U is fed to the next time step as an input.
Whereas, in the fully mobile case (A* = 0), Egs. (25), (30), (33) and
(39) are solved simultaneously to obtain a more stable numerical
scheme, which is found to be a must, especially in the early stages
of the simulation.

4. Results and discussion

Although the models in this work are not capable of rendering
the rupture of the interface, it is possible to foresee it by consider-
ing non-zero A* values. At a critical film thickness that depends on
the magnitude of A*, the attractive van der Waals forces become
much more influential than the resistance within the film. This re-
sults in very rapid thinning of the film, after which the rupture of
the interface is extremely likely. Since the time scale of the rupture
is much smaller than the time scale of the film drainage until the
critical rupture thickness is reached, the coalescence time is deter-
mined by approximating it as the drainage time, without actually
modeling the rupturing phenomenon itself. Due to this approach,
the value given as the dimensionless coalescence time, t, is the
simulation time between the beginning of the numerical simula-
tion and the time right before the rupture in the corresponding
simulation.

4.1. Immobile interfaces

In their Fig. 4, Klaseboer et al. (2000) presents the film thick-
ness profiles at different times obtained for their immobile model
with the constant approach velocity boundary condition. To vali-
date the immobile solver described in Section 3, their results are
reproduced by setting A* = 0 and Vgpp = 1, and given in Fig. 3. The
results of our immobile solver seem to be in perfect agreement
with those of Klaseboer et al. (2000)’s. For t> 0, the formation of
the dimple is clearly seen in Fig. 3. However, due to the absence
of the disjoining pressure (A* = 0), the rupture of the film is not
estimated.

Fig. 4 presents the coalescence time, t;, as a function of the
relative approach velocity for different non-zero values of A*.
For all the values of A* considered here, three distinct types of
drainage/coalescence behavior are observed. First, at very low
approach velocities, t. decreases with Vgpp following a power law
type relation, i.e., a linear relation between log(t;) and log(Vqpp).
An example of the ‘low velocity drainage’ can be seen in Fig. 5(a),
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Fig. 4. Coalescence time for immobile interfaces as a function of the relative ap-
proach velocity. Profiles are obtained with hgp = 10 and r,, = 15.

in which the time evolution of the film thickness for Vgp, = 0.003
and A* =10~* is shown. In that type of drainage, the attractive
van der Waals forces become significant before the capillary forces
act substantially, resulting in rupture at r =0, the center of the
fluid particle (nose rupture). The low velocity drainage behavior
continues until a critical velocity is reached. After this critical
velocity, the capillary forces become influential before the rupture

320 =
2| (€) V,p=0-09

0 1 2 3 4
r

occurs, and as a result, a dimple shape emerges. Hereafter, this
critical velocity is referred to as the dimpling velocity, Viimp.
The results indicate that Vg, increases as the attractive forces
gets stronger meaning that stronger capillary forces are required
for the dimple formation as A* increases. Fig. 5(b) reveals the
typical drainage process (obtained for Vgp, = 0.01 and A* = 10~4)
in this regime. Although, first two profiles are similar to the ones
observed in the low velocity drainage regime, in later stages of
the drainage (after t> 1040) the dimple becomes visible, and the
rupture occurs on the rim instead of the center (rim rupture).
In this regime, t; continues to decrease with increasing Vgpp, but
the decrease becomes less and less dramatical as Vg, increases,
and eventually, t. passes through a minimum. Right after the
minimum, further increase in the velocity brings out the third
regime, where multiple rim-like structures emerge before rupture
and t. increases with Vgyp. This second critical velocity is denoted
as V- Two examples of the time evolution of the film thick-
ness in the ‘multiple-rim’ regime are provided in Fig. 5(c) and
(d), which fall into the category of pimpling and rippling of the
interface, respectively. Here, the pimple refers to the emergence of
an additional local minimum such that the main rim is positioned
in between the center of the fluid particle and the new local min-
imum, whereas the term ripple is used when multiple additional
minima and maxima are encountered (Reader may refer to Section
3.1.2 of Chan et al. (2011) for more detail and visualization of the
interface shapes). The slope of log(Vapp) versus log(tc) in the first
region, and the critical velocities, Vyjy, and Vi, can be used to
identify each curve in Fig. 4. The corresponding values are deter-
mined as:  d(log(t:))/d(log(Vapp)) = [—0.994, —0.992, —0.988],
Vigimp =[0.2,0.05,0.01] and Vp,; =[0.9,0.3,0.09], for A*=

(b) Vv, =0.01

469
2| .
10 (d)Vapp 0.14
0 1 2 3 4 5 6
r

Fig. 5. Time evolution of the film thickness in different regimes: (a) the low velocity regime, the nose rupture, (b) the dimpled drainage regime, the rim rupture, (c) and (d)
the multiple rim regime (pimpling and rippling behaviors, respectively). Profiles are obtained with A* = 10~ hgy = 10 and r,, = 15.
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2

10

Fig. 6. Fig. 4 of Bazhlekov et al. (2000) reproduced for validation of the mobile solvers. Thin film thickness as a function of r and ¢t for (a) A* =0, (b) A* =10, (c) A* = 100

and (d) A* =1000. In all cases A* =0, A*Vgpp =1, hgp =2 and r, = 30.

[10-2,1073,10~%], implying that, just as Vgpp does, Vi also
increases with increasing A*, whereas the slope decreases. The
analysis is carried out by assuming that the interface immobility
is due to the very high dispersed to continuous phase viscosity
ratio, however the applicability of the observations should be
independent of the source of the interfacial immobilization, as in
all types of immobilization the tangential velocity of the interface,
U, is zero.

4.2. Mobile interfaces

To validate the mobile solvers described in Section 3, the re-
sults of Bazhlekov et al. (2000) for the constant approach ve-
locity boundary condition are reproduced by setting A* =0 and
A*Vapp = 1. Fig. 6 corresponds to their Fig. 4 and presents the evo-
lution of the film thickness as a function of time and radial posi-
tion at different A*. For all values of A* presented in the Fig. 6 dim-
ple formation at the interface is observed. Although it is not pos-
sible to compare the numerical values for the film thickness di-
rectly, excellent visual agreement is observed for partially mo-
bile cases A* =10, A* =100 and A* = 1000. For A* = 0, however,
our solver does not produce the very sharp gradients shown by
Bazhlekov et al. (2000) at t = 96, although at the earlier times the
results seem to be in agreement. This discrepancy might appear
due to the different numerical techniques employed, i.e., finite dif-
ference in Bazhlekov et al. (2000) and spectral methods in this
work, or due to the differences in treatment of the boundary in-
tegral. Here, we cannot give any further discussion on the latter

possibility, since Bazhlekov et al. (2000) does not provide any de-
tailed information on their treatment.

As mentioned earlier in the end of Section 2.2, the A* =0
case refers to the fully mobile interfaces. In this case, the value
of A* is sufficiently small (yet non-zero) enough to render the
first term on the right hand side of Eq. (31) negligible, enabling
us to approximate the drainage via Eq. (33) by setting A* =0 in
Eq. (31). However, in the boundary condition, Eq. (26), A* is not
taken as zero, but rather as the small physical value itself, im-
plying that A*Vgpp #0. Then, a viscosity ratio sweep is carried out
to determine the A* value, below which the drainage can be ap-
proximated with the A* = 0 case. To carry out the viscosity ratio
sweep, first, the results for the very low viscosity ratio limit are
obtained by solving the A* =0 case for each value of the non-
dimensionalized Hamaker constant, A* =[10~2,10~3, 10~4]. Then,
starting with A* = 100, the viscosity ratio is lowered to one tenth
of its previous value, until the results visually converge to the re-
sults of A* = 0, i.e., the low viscosity ratio limit. For A* = 10~2 and
A* = 1073, this value is found as A* = 0.1, whereas for A* = 10~4,
A* =1 seems sufficiently close. For any phyiscal value of A* smaller
than each corresponding limit, the results from the A* = 0 case can
be used to estimate the drainage/coalescence behavior.

The left column of Fig. 7 reveals the behavior of t. as a function
of A*Vgpp, and the actual Vgpp dependence of t. is presented on the
right column by dividing each dataset by the corresponding value
of A*. On the right column, the A* = 0 results are not given, since
it implies a division by zero. However, the curves given on the
left column for A* =0 can be adjusted by dividing A*Vg,, by the
small physical value of A*. The only restriction is that this physical
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Fig. 7. Coalescence time for mobile interfaces as a function of A*Vg, on the left, (a) - (c), and as a function of Vg, on right, (d) - (f). Each curve corresponds to a different
A* value: solid line (A* = 0), stars (A* = 0.1), dashed line (A* = 1), dotted line (A* = 10), dashed-dotted line (A* = 100). All results are obtained with hgy = 2 and r., = 30.

value should be smaller than 0.1 for A* = 10-2 and A* = 10-3, and
smaller than 1 for A* = 10~* based on the insight obtained from
the viscosity ratio sweeps mentioned earlier in this section. This
implies that the changes in A* in that limit do not actually affect
the behavior of t. against Vgpp, but rather only shifts the values of
Vapp-

Similar to the mobile interfaces, three distinct types of behav-
ior are also observed for the immobile interfaces: the linear slow
drainage region for low velocities, the dimpled drainage region af-
ter Vyimp is achieved, and after passing a minimum the multiple-
rim region where t; begins to increase with Vgpp. The linear regime
has also been observed experimentally by Orvalho et al. (2015).
Furthermore, the regime implies that as Vgpp approaches zero, t¢
attains very large values. This observation coincides with the ex-

perimental results of Yaminsky et al. (2010), where they observe a
stable film in finite time in the very small Vgpp limit. Both the first
and second regimes, as well as the minimum point, have been ob-
served experimentally by Del Castillo et al. (2011). However, to the
best of our knowledge, an experimental work that could be used
to validate the multiple-rim region does not exist in the literature.
The right column of Fig. 7 shows that at a given value of Vgpp, tc is
larger for smaller A* as long as Vg, falls into the linear or the dim-
pled drainage regions for both values of A* compared, or in other
words as long as multiple-rims are not present in neither of the A*
values. On the other hand, as can be concluded from the presence
of intersecting curves in the multiple-rim regime (e.g. A* =1 and
A* =10 curves in Fig. 7 (f)), t; can be larger for higher A*. As an in-
crease in A* can be analyzed as a decrease in the continuous phase
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viscosity, higher film drainage rates (and as a results lower t.) for
higher A* are expected. This behavior is clearly observed for the
first two regions. However, the possible opposite trend in the third
region might be explained by the emergence of multiple-rims, as
the emergence of rims is shown to slow down the drainage and
consequently increase t.. In addition, Del Castillo et al. (2011) ob-
serves an almost constant t. after the minimum point instead of
the obvious increase in the present results, and does not report
any multiple-rim shape. This deficiency as Vgpp increases drasti-
cally may suggest that the drainage transforms into an inertial one
meaning that it is governed by the acceleration of the particles,
which is not adequately modeled by the drainage equations em-

ployed in this work, rather than being governed by the viscous ef-
fects in the film or the interfacial deformations.

In the first region, the slow drainage regime, the attractive van
der Waals forces are dominant compared to the capillary forces.
That results in no dimpling and the rupture is on the center of
the particle, i.e., the nose type rupture is observed. Here, log(t.)
is a linear function of log(Vapp). As can be seen from Fig. 8,
the slope of this linear relation, d(log(t.))/d(log(Vapp)), varies
with A* and A*. In the low viscosity ratio limit, i.e., A* =0 so-
lution, the respective slopes for A* =[10-2,10-3, 10~4] are deter-
mined as —0.853, —0.852 and —0.830, which show an exceptional
agreement with the experimentally determined value of —0.85 by
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Orvalho et al. (2015) in their experiments with bubbles in liquids
of different viscosities. On the other extreme, A* — oo, the val-
ues of the slopes seem to approach those obtained for the im-
mobile interfaces in Section 4.1, —0.994, —0.992 and —0.988 for
A* =[1072,1073, 10~%], respectively.

The dimpled drainage regime, follows the slow drainage region.
Here, with the help of the increasing Vgpp, the capillary forces
manage to act significantly before the coalescence, resulting in
dimpling of the interface. The interface ruptures at the rim instead
of at the center of the particle. The coalescence time still decreases
with Vgpp, but less dramatically compared to the first region, until
it eventually reaches to a minimum. This region is observed for
Vdimp < Vapp < Vmuie- The critical velocities, Vyim, and Vi, for dif-
ferent values of A* and A* are presented in Fig. 9, with the stars at
the right end standing for the immobile solver’s results, which can
be analyzed as the values for A* — co. As discussed for the immo-
bile interfaces, the critical velocities again decrease with decreas-
ing A*. Now, in addition, the effect of A* on Vyp, and Vi, are
revealed: in all cases, they decrease with increasing A* and eventu-
ally converge to the values obtained for immobile interfaces. Again,
the increase in A* can be interpreted as a decrease in the film
viscosity. As the film viscosity decreases, the film is expected to
show less resistance both to the drainage and to the emergence
of the rims on the interface. Therefore, for higher A*, lower ap-
proach velocities are expected to be required to overcome the re-
sistance from the film against the emergence of rims, which results
in lower critical velocities, Vg, and V. The critical velocities
for the A* =0 case are not given in Fig. 9, once again to avoid di-
vision by 0. However, the A*Vgp, values separating the regions are
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Fig. 10. Time evolution of the film thickness for (a) the pimple and (b) the wimple
interface shapes. All results are obtained with hpg =2 and r,, =30.

found to be A*Vjm, =[0.4,0.1,0.05] and A*Vp,;, = [17,25, 30] for
A* =[1072,1073,10%], respectively. In the limit of A* — 0, these
values can be converted into Vi, and Vi values by dividing
them by the physical value of A*.

Previously, for the immobile interfaces, the increase in t; in the
last region has been associated with the emergence of the addi-
tional rims at the interface. This observation still holds for all the
cases where A*#0. However, when A* =0 in the drainage equa-
tion, the interface begins to exhibit a wimple shape after Vi, is
achieved, instead of pimpling. Just like the pimple or the ripple
shapes, the wimple still leads to an increase in the surface area
and in t.. Fig. 10 (a) and (b) demonstrate pimpling and wimpling of
the interface, respectively. As can be seen in the case of the pim-
ple, a secondary local minimum appears after the rim and dh/dr
between the center and the rim is negative. On the other hand, in
the case of the wimple, a local maximum appears in between the
rim and the center, and dh/dr is positive between center and the
local maximum. In all cases where A* 0 given in this work, no
wimpled interface is observed. This observation implies that the
existence of the pressure gradient term in the drainage equation
Eq. (31), i.e., the parabolic component of the film velocity, favors
the pimpling or rippling of the interface and prohibits the emer-
gence of a wimple shape.

5. Conclusions

In this work, the effect of the relative approach velocity (Vgpp)
together with the effects of the dispersed to continuous phase vis-
cosity ratio (via A*) and the attractive Van der waals forces (via
A*) on the coalescence time of two fluid particles colliding along
their centerlines (t.), is investigated. Although models similar to
the ones used in the current work are present in the literature,
the preexisting ones fail to estimate the coalescence time since
they do not include the disjoining pressure in their models. Fur-
thermore, they fail to investigate the effect of the approach ve-
locity explicitly on the drainage rate and consequently on the co-
alescence time. The modifications on the models present in the
current study enable the investigation of t; as a function of Vg,
A* and A*, thereby matching some experimental observations such
as those of Yaminsky et al. (2010), Del Castillo et al. (2011) and
Orvalho et al. (2015).

The simulations indicate that regardless of the magnitudes of
the viscosity ratio and the attractive Van der Waals forces, three
distinct behaviors of drainage/coalescence are observed as Vgpp
changes. In other words, for all values of A* and A*, as Vgyp in-
creases the sequential regimes of the linear slow drainage, the
dimpled drainage and the multiple-rim drainage are observed. To
quantify the behavior of the coalescence time the critical veloc-
ities separating the regimes, Vg, and Vi, and the slope of
d(log(tc))/d(log(Vapp)) in the first region are computed. Vi, cor-
responds to Vgpp at which the interface dimples and the linear
trend between log(t) and log(Vapp) disappears, whereas Vyy; is
the value of Vg, at which multiple-rims begin to emerge and
t. obtains its minimum value. The slope of the linear region de-
creases with increasing A* for all values of A* including the im-
mobile interfaces where A* — oo. Similarly, for all values of A*, in-
creasing A* results in a decrease in the slope, which converges to
—0.99 and —0.85 in the limits of A* — oo and A* — 0, respectively.
The critical velocities, Vyim, and Vi, decrease with increasing A*
and decreasing A*, and eventually converge to the corresponding
values obtained via the immobile solver (A* — oo). The former be-
havior is associated to the lower resistance to the emergence of
rims on the interface at higher values of A*, i.e., smaller velocities
are sufficient to overcome the resistance in the film against the for-
mation of the rims. On the other hand, the latter is explained by
the requirement of the lower velocities for the capillary forces to
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dominate over the weaker attractive van der Waals forces, which
again favor the emergence of rims on the interface. Finally, in the
third region, the interface pimples first and ripples afterwards as
Vapp further increases when A* #0, whereas wimpling of the in-
terface is encountered instead of pimpling in the A* = 0 case. This
suggests that the presence of the parabolic contribution in the film
velocity favors the pimpling of the interface rather than wimpling.

The conclusions derived from the current work coincide with
a number of experimental observations present in the literature.
The trends observed in the linear and the dimpled regions, to-
gether with the presence of a minimum, qualitatively agree with
the results of Del Castillo et al. (2011) obtained in their experi-
ments with air bubbles in pure water. Moreover, in the limit of
Vapp — 0, the simulations suggest an infinite time is required for
coalescence to occur, which agree with the Yaminsky et al. (2010)’s
experimental observation. A quantitative agreement is also present
between the slopes of the first region obtained via the simula-
tions in the limit of very low viscosity ratios, i.e., A*— 0, and the
slope of the linear trend obtained by Orvalho et al. (2015) in their
experiments with air bubbles and liquids with various viscosities.
The experimental value determined by Orvalho et al. (2015) reads
d(log(tc))/d(log(Vapp)) = —0.85, whereas our simulations deter-
mines d(log(tc))/d(log(Vapp)) = [-0.853, —0852, —0.830] for A* =
[10-2,10-3,10~4]. The lack of experimental validation of the third
region present in our simulations may indicate our models’ low
accuracy in the high Vgpp limit due to additional physical mecha-
nisms missing in the models, which might be only non-negligible
for high Vgyp. For further quantitative comparison between t; val-
ues obtained in the present work and the ones reported in the ex-
perimental studies, the value of the small parameter, €, is needed.
The determination of € requires the knowledge of the particle size
and the initial separation distance, at which the fluid particles start
to interact, as it can be computed through Eq. (5). Unfortunately,
the experimental studies mentioned here do not provide clear in-
formation on the initial separation distance. Once € is known, the
values of Vgpp, A* and A* that coincide with the experimental pa-
rameters can be computed, and the corresponding t. can be read
from either Fig. 4 or Fig. 7. Finally, by employing the time scale
given in Eq. (19), the dimensionless t. value can be dimensional-
ized to reveal the actual time of coalescence.
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Appendix

First, the geometric function I(p, 6) given by Eq. (18) computed
using MATLAB’s built-in integration subroutines. In that step, the
value of I(p, 8) at the singular points, i.e., p =r, is approximated as
the average of I(p, 0) evaluated at p =r—§ and p =r + 6. The av-
eraged integrand is denoted as Iq(p, 6), hereafter. That enables the
computation of the non-singular integrals, the first and third ones
in Eq. (38), as a single continuous integral. However, this approach
results in a small region in between p =r -6 and p =+ §, which
is taken into account by both the new non-singular integral and
the singular integral in Eq. (38). Then, it is possible to rewrite
Eq. (38) as

N To 3 Re @k
0 =/ Iav(,o,H)rddp+TdZ{/ / I(R,ga)Rd(de}
0 k=1 /0 /o

+E(r) (40)

where E emerges due to the double-counting of the small region.
Once the integration with respect to 6 is carried out in Ig(p, 0),

the 6 dependence disappears and a kernel Z(r, p) that multiplies
the stress 7, appears. Then, Eq. (40) becomes

- Toc 3 Re @i
u(r) =/O Z(p.1) Tgdp+ 14 ) /0 / I(R, ¢)Rdg dR
k=1 P

+E@) (41)

Following Guo et al. (2013) the definite integration of a quantity v
can be carried out by using the collocation points (n) via

1 N
/ vdp = —
-1

20y,

> g (42)
even,n=0

where v and its counterpart in Chebyshev pseudospecturm, ¥, is

related via

Tlv=" (43)
and
B 2(-1)" 1
1 — _
(T )np = Nag, cos (np N) (44)

where ¢, =2forn=0orn=N, and ¢, =1for 1 <n <N —1. Here,
the integrand v corresponds to Z(p, r)ty for the first integral in
Eq. (41). Then, by substituting ¥ via Eq. (43)

! N2, No2(T )
[iro=- ¥ 2= ¥ Sy (453)
- even,n=0 even,n=0

is obtained, where T-! is known in matrix form as given
by Eq. (44). This further implies that the right hand side of
Eq. (45) can be rewritten as

N 2(T—1u)n

1
/_1vdp=— Z n -1

even,n=0

— by (46)

where b is a known row vector, which multiplies the column vec-
tor v to give the result of the integration. Finally, by mapping the
integration domain defined in [—1, 1] to the domain of interest [0,
Too)

/”ud,o:Bu (47)
0

relation is obtained. Here, b is scaled due to the mapping of the
integration domain. That operation corresponds to a single inte-
gration with respect to p at a given r. It is possible to compose a
matrix [B], which carries out the integration with respect to o for
all r. This approach is proven to be accurate by testing the matrix
against various analytically integrable functions. Then, Eq. (41) can
be written as

3 Ry
0@ =[B)Z(p,
) [1<pr>rd+rd;{/ofw

‘ﬂ<+1
IR, )R dg dR} +E(r)

(48)

in which the non-singular part of U is given in terms of an inte-
gration matrix [B] applying on Z(p, r)t4. Since Z(p, r) is known,
[C1(p, )] =[B]Z(p, ) is defined in order to write down the equa-
tion in a more compact form. Next, the integrals in the second
term of Eq. (41) are computed once again using the built-in inte-
gration functions of MATLAB and summed, yielding the multipliers
of 74 in that term, which is denoted as [C,]. Here, [C;] is a function
of p and r, but it is a diagonal matrix, since this part of the inte-
gral corresponds to the singular part, i.e., defined for p = r. Then,
Eq. (48) becomes

U(r) =[G (p,N)]tg + (G (p, 1)]Tg + E(r) (49)

After all the manipulations, only E(r) remains to be dealt with. This
area that has been taken into twice corresponds to the area of the
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trapezoidal area under Z(p, r)tq4 between p = [r - 8,1+ 8], which
has to be subtracted from U. The area of the trapezoid is given by

. [(Z(p, r).[d)|p=r+8 - (Z(p, T)Td)|p=r—5| 28
- 2

Since 8 is a very small number, t;(r —8) ~ t;(r) = ty(r +4) is a
valid approximation. Based on this approximation and since 74 is
always positive in the physical system of the interest, Eq. (50) can
be written as

_ |Z(I07 r)|p=r+6 ; Z(,O, r)lp:r—5| 28 7

Furthermore, due to the averaging procedure carried out in the
beginning of the treatment, Z(r —§,r) and Z(r +§,r) are known.
Then, the coinciding area for each point can be written as the
product of a diagonal matrix —[C3] and t,4 via Eq. (51). Since, the
area has to be subtracted [C3]T4 corresponds to E(r) of Eq. (49).
Then,

U =[Ci(p.N]tg +[Calp. N]tg + [G(p. Nt = [A(p, 1)]Tq
(52)

where [A] is the Boundary Integral integration matrix in Section 3.
Provided that the collocation points are fixed throughout the simu-
lation, [A] appears to be purely geometrical meaning that it is com-
puted only once at the beginning of the simulation. The decoupling
of [A] and 74, therefore, significantly lowers the computational ef-
fort. Expressing the Boundary Integral equation in matrix form also
proven to be useful as it enables the implicit implementation of
Eq. (28) to the solver via Eq. (39).

Area (50)

Area (51)
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