
June 2009
Mazen Malek Shiaa, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

Composing end-user services

Jens Einar Heide Vaskinn

Problem Description
The task is to develop a simple-to-use infrastructure for end-user service composition. Services
that we are focusing on are the services aimed for all kinds of end-users who are in the city.
Example services can be: appointment organizer, personal manager, calendar, parking assistant,
reservation service, shopping helper, traveller agent, notification handler, etc. Such services can
be composed to provide an added-value service to tourists in the city, patients looking for doctors,
youngsters going out to sport events, club searchers, shopping planners, car drivers, etc. The
vision is that ordinary people can easily compose a set of available services and run them on their
handheld devices while they are on the run.
The student will first investigate the possibilities for exploiting existing service composition
mechanisms and adapt them to the specific requirements for end-users. Second, a set of simple
service composition scenarios will be worked out and specified. Third, the student will design a
prototype for composition using either a graphical editor or a programming interface. Last, the
student will select certain scenarios for execution in real execution environment on end-user
devices – here we will use the infrastructure of Wireless Trondheim in the down town area.

Assignment given: 15. January 2009
Supervisor: Mazen Malek Shiaa, ITEM

Abstract

Service composition is currently a very hot topic in the Service Oriented Computing

area. End-user programming is one aspect of this. This thesis proposes one such end-

user programming environment for telecom services where a user can create, edit and

set up a self defined behaviours when e.g. receiving calls or sms. The environment

consists of services which can be used to program the desired behaviour. Some useful

service is defined and a xml representation of them has been worked out.

The thesis takes a scenario based approach to this and uses different real life composition

scenarios to shed light on several aspects of the programming interface and service

composition e.g. creating compositions, combining compositions and constraints.

iii

Preface

This master thesis is written at the Department of Telematics at the Norwegian Univer-

sity of Science and Technology (NTNU) in the spring semester of 2009. The master

thesis is submitted as a fulfilment of the graduation requirements of my Master degree

in Communication Technology.

I would like the opportunity to thank my supervisor for giving me good advice and

pushing me forwards.

I would also like to thank my mother and father for helping me keep the motivation to

finish and for proofreading during the final week.

A great thank you also goes to my fiancée for holding out through my frustration, mood

swings and inability to take part in social activities in the final period. Supporting me,

and keeping my spirits up. I could not have done this without you.

v

Contents

Abstract iii

Preface v

Table of contents vii

List of tables ix

List of figures x

1. Introduction 1

1.1. Motivation . 1

1.2. Problem to be solved . 1

1.3. Project Outline . 2

2. Background 3

2.1. End-User Service Composition . 3

2.2. Service Oriented Architecture . 3

2.2.1. What is a service? . 3

2.2.2. Basic SOA . 4

2.3. Service composition . 5

2.4. What is End-User Programming . 7

2.5. End-User Programming Approaches 8

2.5.1. General Purpose Programming Languages 8

2.5.2. Scripting . 9

2.5.3. Macro Recording . 9

2.5.4. Programming by Example . 9

2.5.5. Visual Programming . 9

3. End-User Service Composition 11

3.1. Problem Description . 11

3.2. Related/Existing Approaches . 11

3.2.1. Spread Sheet . 11

3.3. Selected Approach . 12

3.4. Method . 12

4. Implementation 13

4.1. Example services . 13

4.1.1. Size of services . 13

vii

4.1.2. Services that are not necessary building blocks in the behaviour

designer . 13

4.1.3. Trigger Services . 14

4.1.4. Filter Services . 16

4.1.5. Function adding services . 19

4.1.6. Logging services . 23

4.2. Use case scenarios . 25

4.2.1. Trekking expedition . 25

4.2.2. Family call . 28

4.2.3. Roaming Cut-off . 29

4.2.4. Automatic chat initiation . 31

4.2.5. Parental Care . 32

4.2.6. Follow Me . 34

4.2.7. Prioritized Queues . 36

4.3. Service Compositions . 37

4.3.1. Do not disturb . 37

4.3.2. Roaming Cut-Off . 39

4.3.3. Battery saving mode – Expedition mode 39

4.3.4. Family call . 40

4.3.5. Famous person . 41

4.3.6. Parental – block incoming – outgoing 42

4.4. Service Composition Interface . 42

4.4.1. Viewpoint of the proposed designer 42

4.4.2. Service representation in the designer 43

4.4.3. How to create a composition 43

4.4.4. Composition Logic . 44

4.4.5. Composition Constraints . 45

4.4.6. Dividing the services into groups to reason on them 46

4.4.7. Enabling advanced features 50

4.5. XML representation of the services . 50

4.5.1. Generic Level . 50

4.5.2. Easy Designer Level . 53

4.6. Results Summary . 53

5. Discussion 55

5.1. Accomplishments . 55

5.2. Scope of the thesis . 56

5.3. Future Development . 56

6. Conclusion 59

References 60

A. XML Representation Tables 63

A.1. XML Services . 63

A.2. XML Service Entries . 68

viii

List of Tables

4.1. Filter Criteria Groups . 48

4.2. Prioritizing Compositions . 49

A.1. Voice-Mail Service Attributes . 63

A.2. SMS Service Attributes . 63

A.3. E-Mail Service Attributes . 64

A.4. Chat Service Attributes . 64

A.5. Voice-Message Service Attributes . 64

A.6. Transfer Call Service Attributes . 64

A.7. Activity Handler Service Attributes 65

A.8. Periodic Tasks Service Attributes . 65

A.9. Caller Analyser Service Attributes . 65

A.10.Time Filter Service Attributes . 65

A.11.Roaming Handler Service Attributes 65

A.12.Location Finder Service Attributes . 65

A.13.Blacklist Service Attributes . 66

A.14.Whitelist Service Attributes . 66

A.15.Signal Strength Service Attributes . 66

A.16.Text Filter Service Attributes . 66

A.17.Caller Choice Service Attributes . 66

A.18.Callee Choice Service Attributes . 66

A.19.Follow Me Service Attributes . 67

A.20.Hunt Group Service Attributes . 67

A.21.Queue Service Attributes . 67

A.22.HourDayEntry Attributes . 68

A.23.ScreenEntry Attributes . 68

A.24.NumberEntry Attributes . 68

A.25.ActivityEntry Attributes . 69

A.26.PeriodicEntry Attributes . 69

A.27.textEntry Attributes . 69

A.28.menuEntry Attributes . 69

A.29.QueueSequenceEntry Attributes . 69

ix

List of Figures

2.1. Basic Service Oriented Architecture 4

2.2. The Service Oriented Architecture Model 4

4.1. Battery Saving . 27

4.2. Family Care . 27

4.3. Roaming Cutoff . 30

4.4. Automatic Chat Initiation . 30

4.5. Parental Care . 33

4.6. Basic Queue Composition . 37

4.7. Queues With Priority . 38

4.8. Flow of the composition process . 43

4.9. Composition user interface . 44

4.10. Component XML representation . 51

4.11. Component Entry . 51

4.12. Simple Voicemail example . 51

4.13. Voicemail and notification composition example 52

4.14. Blacklist xml example . 52

4.15. Trekking Expedition (Battery Savings) Composition XML example . . 52

xi

1. Introduction

1.1. Motivation

From the plain old telephone service until to today there has been an enormous develop-

ment in available services. The most important being that one now is available 24 hours

a day and one can expect to be called by mostly anyone at any time and at any place.

Being so available can often be more annoying than it is practical. One may often want

to add restrictions to which calls are accepted at certain times and maybe also treat the

calls from various sources differently.

On the other side, now it is not uncommon to have 2 or 3 mobile phones with a stationary

work phone and home phone on top of that. How should a caller know which phone

number to try at the different times of day. Surely it is okay that there is some people

that only know one specific number, but there is some people that you would want to

reach you any where you are. Would it not be easier for your child to only remember

one number? Or even better for the little child that has just got his first phone, that any

number dialled goes to one of the family members?

1.2. Problem to be solved

Early on in the thesis period it was decided to alter the direction of the project text a

bit. Gintel has a complete interface for composing Telecom related services for enter-

prises. This application (called Easy Designer) was created with technical persons and

application experts in mind, not for end-users in other words. From this it was decided

to also have a scenario driven approach that was generic enough, however linked to the

specific service composition platform used in Telecommunication networks (an exist-

ing execution environment in a real telcom operator’s network). With the Easy designer

in mind a new application directed at end-user composing of the telecom services was

proposed. So a new task was agreed upon: Develop a equivalent solution for end-users.

Enabling the end-users to set up their telecom services in their one time at their based

on their own preferences.

1

1.3. Project Outline

This thesis report is organized into 7 parts. Chapter 1: Introduction, presents the moti-

vation and the problem to be solved. Chapter 2: Background, describes the core tech-

nologies that this thesis builds on. Chapter 3: End-User service composition, narrows

down the problem to a set of tasks, an approach for the thesis is chosen and a method of

execution is presented. Chapter 4: Implementation, presents the results and the work

that has been executed. Chapter 5: Discussion, a discussion of the accomplishments

and the scope of the thesis and also some future development is suggested. Chapter 6:

Conclusion of the thesis. Appendix: The resulting XML representations for all the ser-

vices is moved here from the XML representation section to make the implementation

chapter a bit cleaner.

2

2. Background

2.1. End-User Service Composition

Finding related background material directly related to end-user service composition

has not been easy as most of the existing service compositions solutions are aimed for

supporting professional developers, with solutions such as automated service compo-

sition, model-driven service composition [BOP], Semantic-Web-enabled composition

[RKM], QoS-aware service composition [MS], and businessdriven automated composi-

tion [OYP].Combining Service oriented architecture and service composition combined

and end-user programming serves well as backgroung information. The service oriented

architecture and service composition covers the technological aspect and end-user pro-

gramming covers the usability for the end-user.

2.2. Service Oriented Architecture

Service Oriented Architecture is the next wave of application development. There is no

widely agreed upon definition of Service Oriented Architecture (SOA). This is probably

because SOA is much more of a mind set, development philosophy and an architecture,

than it is any concrete and definite. But it is agreed upon that it is an architecture that

relies on service-orientation as its fundamental design principle. Service Oriented Ar-

chitecture is an adaptable, flexible style of architecture, that provides the foundation for

shorter time-to-market and reduced costs and risks in development and maintenance.

2.2.1. What is a service?

A service is a functionality provided by a service provider to a service user. A service

user could be a human end-user an other service or a type of software component. Ser-

vices are network addressable software components. Services that are addressed in this

report will be mainly related to the Telco and the Web-based services, such as online

stock quote, weather information, calendar, Instant Messaging, audio conference, etc. In

this context, services should have well-defined description and semantics. Description

could be a WSDL interface and semantics could be captured in an ontology like de-

scription such as OWL-S. In an environment implementing SOA independent services

can be accessed without knowledge of their underlying implementation [CHT].

3

2.2.2. Basic SOA

SOA in its most basic form consists of a collection of services provided by a service

provider, and a client, or service consumer, making use of these services. Figure 2.1

illustrates a basic service oriented architecture. On the left we have a Service Consumer

sending a service request to a Service Provider on the right. The Service Provider returns

a service response to the Service Consumer.

Figure 2.1.: Basic Service Oriented Architecture

These two components alone is not sufficient for SOA as a distributed software model.

According to IBM, SOA is comprised of three participants and three fundamental oper-

ations, regardless of its implementation [B]. These are shown in figure 2.2.

Figure 2.2.: The Service Oriented Architecture Model

Service Provider:

The service provider makes the service available with it’s Service Contract and publish

it on the Service Broker. A Service Provider is a network node that provides a service

interface for a software asset that manages a specific set of tasks. A service provider

node can represent the services of a business entity or it can simply represent the service

interface for a reusable subsystem.

4

Service Broker

The Service Consumer find the compatible Service and its Service Contract using the

Service Broker. The Service Broker is a Network node that acts as a repository (“yellow

pages”) for interfaces that are published by service providers. A business entity or an

independent operator can represent a service broker.

Service Requester

The Service Requester and the Service Provider interact after the consumer has found

an adequate service and its Service Provider. The Service Requester, or Service Con-

sumer, is a Network node that discovers and invokes other software services to provide

a business solution. Service Requester nodes will often represent a business applica-

tion component that performs remote procedure calls to a distributed object, the service

provider. In some cases, the provider node may reside locally within an intranet or in

other cases it could reside remotely over the Internet. The conceptual nature of SOA

leaves the networking, transport protocol, and security details to the specific implemen-

tation.

2.3. Service composition

Service composition is currently one of the most hyped and addressed issues in the

Service Oriented Computing area. Service composition, in this context, is the combina-

tion of existing services to provide an enriched, valueadded composite service with an

overall functionality.

Services used in a composition can both come from different providers and different

domains. To be able to use such services in a composition there are some preconditions

that needs to be filled:

• The services needs to have their interfaces exposed and have operations that can

be invoked remotely

• The services needs to be published and discoverable from a service repository

• They need to be described in a formal language.

The formal description of a service component is often annotated semantically and re-

flect their intentions and semantics. These semantics are captured using ontology.

There are several approaches to servicecomposition. Some of them use the principles

of ServiceOriented Computing (SOC), while others are based on Artificial Intelligence

(AI). Many approaches use semantic web services, by which web services are annotated

with semantics, such as service description, provider details, service operations details,

service intentions, service parameters, etc. Annotations follow formal terminologies,

which are called ontology. In [M] they identify five different approaches for service

5

composition. These classifications is widely recognized in the research area (It is used

in [DS] and [UK] for instance). These will be discussed briefly in the text below.:

• Natural language based composition

• Goal-based composition

• Choreography-based composition

• Functional level composition (FLC)

• Aggregation of non-functional properties

The natural language approach allows the service consumer to specify its service request

in an informal way, i.e. in natural language. A formal specification is then derived from

this request and can be used as an input to the composition engine. The core idea is to

match fragments of the natural language request to semantics known to the composition

engine, ontology elements and service descriptions.

The objective of the goal-based approach is to provided a composite service based on a

request expressed in a certain format. This request includes a description by goals, i.e.

the effects of the service in the “real world”. An example for a goal could be “book a

flight" or “send a message". This approach uses the description of the goals in different

steps. At the service discovery and selection time, potential services are selected based

on the goals they achieve. At the composition step, services are assembled together

based on the semantics which includes the goals.

Choreography-based composition evaluates if a composite service matches a standard

workflow from a problem domain, a choreography. The worklow can be seen as a

composite service because it is a set of relations service provider/consumer. The flow

of services can be described in a BPEL flow.

The focus of FLC is on selecting a set of web services that, combined in a suitable way,

are able to perform a service composition request, i.e. an abstract service described

by its Inputs, Outputs, Preconditions and Effects. Since web service discovery and

FLC are very close processes, they are usually combined together to find a chain of

suitable services. The service composition request defines the overall functionality that

the composed service should implement.

The aggregation of non-functional service properties checks that a given composite ser-

vice matches the non-functional properties specified in the service request. Addition-

ally, the analysis of these properties allows to establish a ranking of different composite

services. Such properties can be cost, response time or reliability.

The service composition process is triggered by a service need. When a service is

needed1, a service requester specifies a service request containing the desired proper-

ties of the service. The service requester sends the service request to a repository that

contains descriptions issued by service providers of the services they provide. A search

is then executed to discover a service with the desired properties in the repository. If a

1Needed can here mean both needed at design time and needed to use at run time

6

service with the desired properties could not be discovered, some algorithm is executed

that will construct a service composition automatically.

2.4. What is End-User Programming

End-User programming is closely related to End-User service composition. Both sub-

jects wants to achieve the same goal. Let the user create an application or service spe-

cially for his or her needs.

Most people experience computers as end-users of packaged programs. Unfortunately

the writers of these programs can’t know the details of the job you are trying to do.

Trying to meet the needs of diverse users, they bloat their programs with hundreds of

features most people never use. Life (and programs) would be much simpler if each

user could add the functions she wanted.

End-User Programming is a subset of the term programming. Programming is the pro-

cess of writing, testing, debugging/troubleshooting, and maintaining the source code of

computer programs. What most people associate with programming is the writing of

source code in a programming language. The code may be a modification of an existing

source or something completely new. The purpose of programming is to create a pro-

gram that exhibits a certain desired behaviour (customization). The process of writing

source code often requires expertise in many different subjects, including knowledge of

the application domain, specialized algorithms and formal logic. End-User program-

ming differ from programming in that it is simplified and specialized for a specific

domain so that a person with less knowledge in programming languages and techniques

can effectively achieve his or her desired results. But how much can one simplify and

limit the possibilities before it is just altering options and settings. [N] addresses this:

“The objective of programming is to create an application that serves some function for

the user. From the end user’s point of view, the particular behaviour involved is not

important, so long as application development is easy and relative rapid. In this respect,

we can include automatic programming system, programming by example systems, and

form-filling dialogues in which applications can be customized.”

In traditional object-oriented software development where professional programmers

are put on the task much of the focus is on developing the collaboration among the

classes, organizing class hierarchies, and implementing the classes. The focus of end-

user programming environments is often more directed at the instances: creating object

instances and setting their properties, and defining the special cases of behaviour. The

added behaviour may affect only a single object, or in some cases a group of objects.

Providing a end-user programmable interface is not trivial. The programs must be de-

signed to to accept user-written components in appropriate places. There must be a way

to store and manage them. Most important, since most users do not have the time or

inclination to learn the tools and skills of a professional programmer, reasonable com-

promises are required. The expressiveness and generality of full-fledged programming

languages are traded for usability by a variety of metaphors and tricks. Programming

7

can be done much more easily within the metaphor – a desktop with file cabinets and

wastebaskets; a formula of spreadsheet locations or mathematical symbols; a sequence

of GUI actions; a circuit diagram; an application-specific language – than with conven-

tional programming.

Because the appropriate metaphors, with their capabilities and limitations, differ widely

depending on the users and their purposes, there is no one method of end-user program-

ming. Instead there is a variety of techniques, such as Programming by Demonstra-

tion, visual programming, and many domain-specific languages and formalisms. Ideally

there is a smooth progression from simple but limited metaphors, to more complex and

powerful techniques as the user-programmer advances.

2.5. End-User Programming Approaches

In this section a series of different End-User Programming approaches is described.

Some of which has to some degree been an inspiration to the environment developed.

2.5.1. General Purpose Programming Languages

This is the earliest form of attempted end-user programming approaches. There have

been many attempts to create such languages but most of them has failed to be useful

as a end-user programming tool. Common for most of these is that they tent to be

to complicated for a normal person and better suited for programmers and developers.

Well known examples of this is Visual Basic, SmallTalk [S1] and ToonTalk [K].

Smalltalk was one of the first systems to pioneer the WIMP (Windows, Icons, Menus

and Pointers) interface. Compared to conventional programming languages such as C

or Pascal, Smalltalk has an unusual syntax. Objects are employed to represent every-

thing in Smalltalk, including all the conventional data types that may be found in any

programming language: such as integers, Booleans, floating-point numbers, characters,

strings, arrays. In addition to this, objects are used to represent display items such as

menus, windows and even the compiler itself. Smalltalk is therefore described as a uni-

formly object-oriented language. Smalltalk language was developed at the Xerox Palo

Alto Research Center in 1970s, the programming environment greatly influenced the

development of Apple Macintosh and Microsoft Windows.

ToonTalk [MKK] is a child-oriented programming language whose environment is an

animated virtual world, with objects that children can pick up and use as in a game,

such as birds, trucks, and robots, providing direct child-oriented metaphors for pro-

gramming constructs. Actions performed by a programmer’s avatar with these objects

are both code and coding. ToonTalk is a powerful system, not just a “toy” system: it is

based upon concurrent constraint programming languages, and programs written in lan-

guages such as Flat Guarded Horn Clauses and Flat Concurrent Prolog can be straight-

forwardly constructed in ToonTalk. However, there is not a specification of ToonTalk,

8

for ready implementation in other environments. They propose that the ToonTalk lan-

guage lies not in the animations displayed by the current environment, but on the actions

performed by the programmer with virtual world objects. They present a description and

analysis of the methods the ToonTalk language provides to programmers for expressing

programs.

2.5.2. Scripting

A lot of programs has included some sort of scripting possibilities. Scripting languages

is supposed to be easier to learn than general programming languages. These languages

tend to be less rigid and more domain specific. Being simpler scripting languages usu-

ally have some limitations compared to general purpose languages. With the growth of

the internet scripting languages like JavaScript and VBScript are used in the web pages

and and interpreted by the client’s browser.

2.5.3. Macro Recording

The idea of macro recording is that the user can record a series of events done during

a task and simply replay the recording. Enabling the user to do repetitive tasks much

faster. The problem with macros is that they are usually to specific. So when the user

wants to modify a value in some way the macro just replaces the value with the same as

in the recording. The macros are recorded as scripts, so if the user wants to modify the

macro he or she has to understand that scripting language [RP].

2.5.4. Programming by Example

In programming by example the user creates one or more examples of what the program

is supposed to do. The program is then derived from the users demonstration. Program-

ming by example is very similar to macro recording, but was created to try to solve the

problem of the macro recording being to specific. In programming by example (or by

demonstration as it is also called) the system derives a generalisation of the problem

from one or more examples. AI techniques are often applied in this area, and most of

the research in on AI problems.

2.5.5. Visual Programming

Sanscript from Northwoods [S2]Software is a good example of this. Sanscript has an

programming environment based on dataflow. Programs are created by adding objects

to a visual function called a flowgram. Objects can be constants, control structures,

forms or functions from a component library. Each object has inputs and outputs. This

can be connected to other objects inputs and outputs. Prograph from Pictorius is another

9

example of an environment based on dataflow. Prograph is much the same as Sanscript,

but is more object oriented.

Lego MindStorms is a programming environment for programming Lego robots. A pro-

gram is created by placing program pieces into one or more sequences. Each sequence

will become a process. Each sequence can be connected to a triggering condition, for

instance that a touch sensor was pushed or a light sensor reached a threshold value.

Other program pieces are commands that control the speed and direction of connected

motors and timing. The system is however a closed world and is not created to be used

to any thing other than controlling Lego robots and such.

10

3. End-User Service Composition

3.1. Problem Description

Develop a infrastructure for end-user service composition. The service composing in-

frastructure should be directed at composing services for administering incoming and

outgoing calls, logging functions, SMS, instant messaging etc. Give the user near total

control over his telecom services through specifying behavioural responses to events in

communication, user activities and time. Explore existing approaches and use or adapt

them to fit the needs in this project. The application is to be used by end-users and hence

some considerations should be taken concerning that.

3.2. Related/Existing Approaches

3.2.1. Spread Sheet

A spreadsheet is a computing application that displays a rectangular table (or grid) of

information, consisting of text and numbers, where values sit in cells. Spreadsheets

allow defining the type of data for each cell (usually limited to texts and numbers)

and defining how different cells depend on each other. The relationships between cells

are defined through formulas. Users can interactively change the data and formulas

and immediately see the effects of their actions. When using spreadsheets as a service

composing tool one need a frame work around the spreadsheet to send requests and

retrieve results from various local and remote services. In [OG] they show a solution to

this and suggests tools to support different composition patterns and show how the style

of declarative dependencies of spreadsheets can facilitate service composition.

In [OG] they argue that the spreadsheet functions proved to be easy to understand for

most end users and powerful enough to enable usage of most of the complex services.

AMICO:CALC proved to be a very good tool for rapid prototyping as it allowed easy

and real-time service compositions and demonstrations by inexperienced developers and

end users.

With regard to performance, the spreadsheet environment introduces a delay that is a

consequence of calculating formulas and cell dependencies, as well as a communication

overhead between the middleware and the spreadsheet extension.

11

3.3. Selected Approach

[LHM] The complexity of specification and infrastructure is the main obstacle for end

users when using current professional composition technologies. It is thus necessary

to provide an end user oriented composition environment which makes them feel like

using desktop applications. The environment should be as simple as and as familiar as

possible, where the end-users will enjoy high usability and personality.

The spread sheet approach seemed quite interesting from a prototype point of view

enabling a quick way to test the proposed prototype, but from a end-user point of view

It could arguable be boring however simple it would be to use.

So the chosen approach was to use one or some of service composition approaches and

combine this with with one or some of the approaches to end-user programming. The

services composition approaches that looked interesting were:

The natural language based service composition, using this could in some way could

let the user specify the desired behaviour with simply typing sentences. Using the nat-

ural language approach would also impose using some goal based or semantic based

approach and or ACE [UK] and [M]. Using a natural language based approach would

however not give the use any real control over the created behaviour, which would be a

requirement of the problem description.

To give full control over how the service interact a choreography based approach would

be much more suited. Combining this with some of the key elements from visual pro-

gramming would give the use an interesting an easy to learn interface.

3.4. Method

Do a search for related/existing approaches to the problem. Study a existing service

composing application for composing Telecom services for enterprises developed by

Gintel. Create a sett of example services suitable for end-users to be used in the ser-

vices composing interface. Work out and specify a set of service composition scenarios.

Define a XML representation for the services and a way to represent compositions when

after they are designed.

12

4. Implementation

4.1. Example services

4.1.1. Size of services

One important issue is the size of the services and components in the user interface.

Large and composed services are often easier to use as one need less services to achieve

the results one wants. The user interface gets less cluttered and gives a better overview

of the resulting behaviour. Smaller components gives better re-usability and custumiz-

ability. A disadvantage of smaller components is that the complexity increases a more

components is needed for the same result. Smaller components also gives a lot more

possible end results and a more care is needed to ensure no conflicts, infinite loops and

other errors in the user-programmed result.

4.1.2. Services that are not necessary building blocks in the

behaviour designer

To be able to create a behaviour designer one need to have a foundation of working

services that the other services can depend on and be supported by. The following

subsections describe some of the important ones.

Calender

As the name states, this is a calender. It can be any calender or appointment handler that

has a interface compatible with the Activity handler. A calender services is necessary to

keep track of appointments and activities so that this can be utilized to provide a special

behaviour during such activities.

Directory Service

This is a service that enables uploading of files, saving settings. Also it would be ben-

eficial for the users to have the possibility to publish their designed behaviour with a

description and also have the possibility to download the designs of other users.

13

Help and Documentation

For the user to be able to understand the flow of the program and understand how to

create satisfactory behaviour there has to be a good documentation.

Composition Validity Checker

When the user is finished designing his behaviour, the validity of the composition needs

to be checked. This service goes through the designed composition and checks for

discrepancies. This should preferably be done automatically and incrementally when

the composition is designed so that the user can be notified of any conflicts at when

designing. A check should also be done right before deploying the designed behaviour

so the composition as a whole is checked.

4.1.3. Trigger Services

In this domain it is two main categories of events that can start a behaviour. As in

ordinary programming this is either a external or internal event. External events are

here interactions from either a caller or the callee. Caller events are incoming calls,

incoming messages, phone hang up, key presses (DTMF), and voice responses to a

voice recognition service. Callee events are reject call, answer call, disconnect call, key

presses (DTMF). It might not be all that naturally to think that disconnecting a call is

the start of a behaviour, it would be easier to think of it as the end of a behaviour (as it

of course can be). But it can also be used as a trigger or starting point. For example a

user wants a SMS or e-mail sent some were with call details after the phone is hung up.

Internal events are mostly timers or services used in combination with timed triggers.

This could be the start of an appointment/task or event in the calender or a periodic task

on for example a hourly or daily basis.

Activity Handler

Description

This service interacts with the calender. In this service one can define what behaviour

one wishes when participating in various activities. By default it should come with a set

of standard activities, but it should also have the possibility for the user to define his or

her own. For each type of activity one can attach a desired activity.

Settings and options

• Define the next service for each activity.

• Set up a connection to the calender in use.

14

Periodic Tasks

Description

This service lets the user trigger a behaviour on a timed basis. The behaviour can have

on periods and of periods and also have a interval between the triggers in the on pe-

riod.

Settings and options

• Active from day/time to day/time.

• Weekdays, times for each day.

• And an interval for the trigger.

• Define the service to be triggered.

SOS Short Codes

Description

SOS or call for help list. Intended to be used when there is a need for help, but not

necessary a need to call 113 or 911.

Settings and options

• Define the short code that triggers the behaviour.

• Define the call list and time-out before trying the next number on the list.

• Next service.

• Customizable short codes.

Custom Trigger

This service is a container for specialized features. This could allow an advanced user

to program and define a custom trigger for a behaviour. E.g. use the information from a

weather service so that you can trigger a behaviour for good weather.

Call Handling

This is a group of triggers that relates to the handling of calls. They do not have any

settings but the ability to define the next service.

Answer Call Connect a behaviour to when calls is answered.

Disconnect Add behaviour to when a call is ended.

15

Reject Call Start a behaviour to when calls are rejected.

No answer Start a behaviour to when calls go unanswered.

Outgoing Call Connect a behaviour to outgoing calls. (e.g. Blacklist)

Incoming SMS Start a behaviour when receiving an SMS.

Outgoing SMS Start a behaviour when sending an SMS.

4.1.4. Filter Services

Caller analyser

Description

Defines custom behaviour of the incoming calls or messages based on the number of

the caller. The user can define a list of numbers and assign a next service to those

numbers.

Settings and options

• Define next service for each number or assign a next service to a set of numbers.

• Next service if none of the numbers match.

Blacklist

Description

A list of caller-ids that are blocked. Originally intended to be used as a "‘spam"’ blocker.

Blocking telephone salesmen and other annoying callers. Normally 2 lists (incoming /

outgoing) would suffice, but it should be no problem defining several lists which can be

used and reused in the different instances of the blacklist services.

Settings and options

• Add, Edit and Remove numbers in the blacklist.

• Next service if blacklisted.

• Next service if not blacklisted.

16

White list

Description

A list of numbers that are important. VIP – list could be a other name of this service.

A number entered in this list is thought to be a important person, authority, relatives or

other persons that the subscriber wants to talk to or does not mind being disturbed by

at any given time. The white-list service is not much use by it self. To create a useful

composition one needs to combine white-list with at least one other service providing

some sort of blocking and the white-list functions as a bypass of this blocking. Normally

2 lists (incoming/outgoing) would suffice, but it should be no problem defining several

lists which can be used and reused in the different instances of the whitelist services.

Settings and options

• Add, Edit and Remove numbers in the whitelist.

• Next service if whitelisted.

• Next service if not whitelisted.

Location Finder

A service that finds the location of terminals. This could be the users location but also

the location of family members or persons that has accepted to be located by the user.

Settings and options

• Which terminal to locate.

• Possibility to match a location or to report the current location to the next service.

• What area or location should be accepted as a match and trigger a behaviour.

Time-filter

Description

This service enable behaviour to be enabled at certain times of the day/week/month/year.

Calender with activity handler can serve the same purpose, but this is a simpler version

that works on a regular basis.

Settings and options

• Define the time of day, days of week, months of the year for when the succeeding

behaviour is active.

• Define the next service if none of the time filters match.

17

Caller Choice

Description

Present a menu to the caller and let the caller choose what to do.

Settings and options

• Define a greeting message.

• Define the menu items.

• Define the voice message for each menu item.

Callee Choice

Description

Gives the callee a choice of what to do. This menu works in a similar manner as the

caller choice menu, except this menu is presented to the callee.

Settings and options

• Define a greeting message.

• Define the menu items.

• Define the voice message for each menu item.

Text filters/triggers

Description

This service scans through incoming text messages for defined text strings. Upon match

the programmer can define to trigger a behaviour.

Settings and options

• Define text strings to search for and the next service to use if match is found.

• Define a next service if no match is found.

Define text strings to search for and the next service to use if match is found.

18

Roaming handler

This is a simple service that determines if the user is roaming or not and enables defining

special behaviour when roaming abroad. The roaming cut-off is much related to the

Location Finder 4.1.4 service but as this will be an often used special case of location

finder it is practical to have a separate service for this.

Settings and options

• Next service when roaming.

• Next service when not roaming.

Custom Filter

This service is a container for specialized features. This could allow an advanced user

to program and define a custom filter for a behaviour. E.g. use the information from a

weather service so that you can have one behaviour for good weather and one behaviour

for bad weather.

4.1.5. Function adding services

In this section services that enables some end functionality to the end-user will be de-

scribed.

Voice-mail

Description

As the name of the service states, this is a basic voice-mail. It consists of a voice-

message presented to the caller and a voice message recorder. By having it as a service

in the designer the user is able to set up the voice mail to his of her preferences and

also to set up other behaviour prior or after the voice-mail and hence enabling advanced

notification and different treatment of different numbers.

Settings and options

• Upload custom sound file as the voice message.

• Use text message as a parameter from previous services to synthesize a voice

message.

• Next service after the voice-mail session has finished no new message.

• Next service when new message in voice-mail.

19

SMS

Description

This is a simple service that sends a SMS. It can be used to notify the user of some event

or in any other situation the user finds it useful.

Settings and options

• Define a custom text message.

• Use a text message as a parameter from a previous services to compose a message.

• Define the next service after the SMS has been sent.

E-mail

Description

This is a simple service that sends a E-mail. It can be used to notify the user of some

event or in any other situation the user finds it useful.

Settings and options

• Define a custom text message and subject.

• Use a text message as a parameter from a previous services to compose a message

or the subject.

• Next service after the E-mail has been sent.

Collect and postpone

Description

This service collects and postpones messages. All incoming messages will be collected

and on a time specified by the user the messages will be sent to the receiving device.

To define a starting point for when to start collecting this service needs to be combined

with other services. Time filter of

Settings and options

• Set a time for when the messages will be forwarded with the ability to set up

recurring events.

• Next service after message has been collected.

• Next service after messages has been forwarded.

20

Chat

Description

This is a service that triggers a chat session between the subscriber and the caller. The

chat session can be on any chat client based on the users preferences and the capability

of the device used.

Settings and options

• Which type of chat client to use.

• Chat client specific settings.

• Next service when chat has started.

• Next service if chat initiation fail.

• Next service when chat ends.

Transfer Call

Description

This service gives the user the possibility to set up a transfer of the incoming call.

Settings and options

• Which caller id is shown to the new callee (caller or current callee).

• Next service after transfer is done.

Play voice message to caller

Description

A service that simply plays a sound message to the caller.

Combined with other services

the voice message service can play a message that is defined by the resulting outputs

from the preceding services. E. g. by combining the location finder and the voice

message, the voice message can describe the location found. The voice message service

therefore needs to able to process a text string as a representing the voice message. The

text is then translated using a synthesizer to a voice message.

21

Settings and options

• Define a sound file as the voice message.

• Define a text to be synthesized to a voice-message.

• Define which text string from the preceding services to be used as a sound mes-

sage.

Queueing

Description

A service for the busy user. This service gives the user the possibility of having and

managing calling queues. The incoming calls is placed in this queue and connected to

the user in turn.

Settings and options

• Define a waiting sound.

• Set how/if the user should be informed about queue position.

• Set the priority of this queue. This can be done by using the numbers from 0 to 7.

Where 0 is the highest priority.

• Next service after queuing.

Follow me

Description

A redirecting service. Redirects the call to one or several other numbers if no answer

for a given number of seconds. The call attempts can be done either in sequence or in

parallel.

Usage example

A person has several phones. A mobile phone, home phone, work phone. When there

is a incoming call to the home phone it rings. The call goes unanswered. After 20s the

call is redirected to the work-phone and after 20s more to the mobile phone. Or this can

be done in parallel if this is what the user wants.

Settings and options

• Define a list of call attempts.

• Each call attempt can contain one or more numbers to enable parallel calling.

• Define the time-out before going to the next attempt.

22

Department hunt

Description

Intended to be used at work when there is several people that can answer the same

questions. But could also be used in volunteer work or party planning or other situations

were a similar situation would arise

Settings and options

• Define list of colleagues.

• Option to enable load sharing.

Custom Effect

This service is a container for specialized features. This could allow an advanced user

to program and define a custom effect. E.g. post some text on a web page each time this

service is triggered. The idea of this service is that it can take some code in java or php

or other widespread programming language for maximum configurability to the user.

Call Handling

This is a group of services that relates to the handling of calls. They do not perform any

other task that What is described in the text. They also do not take any parameters or

have any settings to configure.

Connect Call this will forward the incoming call to the phone and make it ring.

Disconnect will disconnect the on going call phone.

Reject Call gives the caller the busy signal.

No answer gives the caller the impression that there is no answer.

4.1.6. Logging services

Logging services does not act as the other services. They does not need to be connected

to the composition to work. If logging is enabled, all the other service should add a

entry to the log describing the occurred event. All of the logging functions can then

later scan through the log to fetch the interesting entries and creates views of the log of

digests for the different time periods.

23

Periodic digest

Description

Can produce several different digests: Daily digest which shows a summery of the day,

weekly of the week and monthly of the month. All these services has much the same

settings and properties. They all have settings for the what to show and when and how

to publish the digest.

Settings and options

• What information to be collected and showed.

• Enable and disable buttons different categories of information.

• Define the time that one want the digest to be collected and presented.

• Define how to present the digest, E-mail, Web-page etc.

Logging functions

Description

Defines what to log and how one want the report to be. This is much the same as daily

and weekly digests, but is meant to treat all the information from start to for ever.

Settings and options

• What to log, how to display it.

Notification

Description

Defines a threshold of an event that creates an notification.

Settings and options

• The service to monitor

• The event of that service to monitor

• The threshold of to trigger notification

24

4.2. Use case scenarios

4.2.1. Trekking expedition

Summary

Battery saving while being available on the mobile phone. Created by combining black-

list, white-list, signal strength, menu and voice message.

Problem description

Create a composition that enables battery conservation.

Main actor(s)

User and potential callers

Activity scenario

A person is on a trekking expedition. Being away from charging possibilities he wants

to conserve the battery as much as possible while still being available on the phone.

Composition scenario

Press button for blacklist service. The dialogue for blacklist appear. The user adds

numbers to blacklist if needed. To select a behaviour for blacklisted number, block

call is selected from the drop-down list. For all other calls Signal Strength is selected

from a drop-down list. In the signal-strength Dialogue there is three drop-down lists:

One for low, one for medium and one for high signal strength. In low voice-message

is selected, in medium white-list is selected and in high connect is selected. Voice

message dialogue appears. A check box stating: use text message from previous service

to create voice message. The behaviour after voice message is chosen as Hang Up. In

the white-list dialogue a possibility to add numbers to the white-list is presented and

drop-down list for both white-listed and non white-listed is presented. In white-listed

connect is selected, in non white-listed voice-message is selected. In voice-message

dialogue the options available is use white-list message, use signal-strength message

and upload custom message. Use signal-strength is selected. The behaviour after voice

message is selected as Hang Up. A illustration of the composition can be seen in figure

4.1

25

Alternative stories

A person is fed up with bad reception and wants to only receive calls when in an area

with adequate signal.

Properties

Shows how a battery savings mode composition can be created.

26

Figure 4.1.: Battery Saving

Figure 4.2.: Family Care

27

4.2.2. Family call

Summary

Call screening and transfer of certain numbers.

Problem description

Creates a composition that transfers calls from certain numbers to other member of

family.

Main actor(s)

“Old person”, legal guardian.

Activity scenario

A demented elderly woman is no longer able to organize her financial situation. Her son

therefore wants all calls from the bank to go directly to him instead of his mother. He

has already got authorization to administer his mothers phone subscription.

Composition scenario

Select to administer other phone subscription, choose the number from list of numbers

of which one is authorized to administer. Press button for Caller-Analyser. Dialogue for

Caller-Analyser appears. The user chooses to create a new list. The user adds the prefix

of the banks number to the list of numbers he wants to transfer. To select behaviour for

the matched numbers, transfer call is selected from the drop-down list. In the transfer

call dialogue the desired number to transfer to is selected. He start by selecting family

call from the predefined compositions. He selects to administer his mothers phone from

the list of numbers available. He then adds the number prefix of the bank. A illustration

of the composition can be seen in figure 4.2.

Alternative stories

Parent wants to answer some of the incoming calls to their children.

Properties

Shows how some incoming calls can be transferred to a other user

28

4.2.3. Roaming Cut-off

Summary

Special call screening when roaming

Problem description

Creates a composition that automatically rejects some incoming calls. This

Main actor(s)

subscriber

Activity scenario

A person is on a trip abroad. Due to the added cost of receiving calls when roaming, he

wants to automatically filter some of the incoming calls. He already has enabled a black-

list that removes the normally annoying calls, but wants to be even more restrictive when

abroad.

Composition scenario

Press the button for Roaming Cut off. The Roaming Cut off dialogue appears. The check

box by “White-list bypass” is already checked by default so the user leaves that as it was.

Behaviour for other callers is chosen by a drop down list of available services. The user

chooses voice message from the drop down list. In voice-message dialogue the options

available is use roaming message and upload custom message. Use signal-strength is

selected. Behaviour after voice message is selected as Hang Up. A illustration of the

composition can be seen in figure 4.3.

Properties

Shows how a incoming call filter that activates automatically when going abroad.

29

Figure 4.3.: Roaming Cutoff

Figure 4.4.: Automatic Chat Initiation

30

4.2.4. Automatic chat initiation

Summary

A composition that enables semi-automatic chat initiation for some specific callers.

Problem description

Create a composition that enables chat initiation.

Main actor(s)

Subscriber and friends

Activity scenario

A student is in the middle of a lecture. Being in a lecture he can answer the phone,

but he wishes to be available and likes using chat clients. He wishes that when any of

his “chat” friends calls during a lecture, a chat is initiated between him and the calling

party. He chooses to have the call reject act as a trigger. In that way he can decide to

answer the phone, let the phone ring unanswered or press reject and start the chat.

Composition scenario

First the lecture schedule has to be entered in the calender in the same manner as in

any other calender program. In the composition designer press the button for Activity

Handler. In the activity handler one need to find the lecture activity or define it if it has

not been defined yet. Next one needs to define the next service for the lecture activity.

Here call reject handling is selected. In the call rejected handling dialogue initiate chat

is selected as behaviour. The initiate chat dialogue presents the settings and options

needed to set up the chat.

Properties

Use of the calender and activity handler to define a behaviour for a planned activity. Use

of call reject to trigger a chat session.

31

4.2.5. Parental Care

Summary

Parents are worried their child shirk school so they use the designer to get notified.

Problem description

Create a service that lets notifies the subscriber if their children shirk school.

Main actor(s)

Parents, Child

Activity scenario

Two parents has a teenager. They have lately grown suspicious of his lack of effort in

school and suspects him for shirking school and hanging out down town. They therefore

decide to keep an eye on him by tracking their sons mobile phone during school hours.

The parents has already gained authorisation from the phone company to track their

sons phone.

Composition scenario

Press the button for periodic tasks. This dialogue has settings and options for defining

when a trigger is sent. They enter the school hours and an interval of 60 minutes. In the

task to trigger they choose location finder. In the location finder dialogue there are three

drop down boxes and a location to match setting. One drop down box is for selecting

which mobile phone to track and the two other is to set the next service when location

match and miss for else. In the mobile they select their sons mobile. For location match

sms is selected and for location miss do nothing is selected. They set the location to

match as down town Trondheim. In the SMS dialogue they enter the both their numbers

and a custom text message. “Our son is down town during school hours”. A illustration

of the composition can be seen in figure 4.5

Properties

Uses the a periodic task to trigger a location find and send a SMS on location match.

32

Figure 4.5.: Parental Care

33

4.2.6. Follow Me

Summary

A person having several phones wants to have her phones ring in a certain pattern, some

of then simultaneously.

Problem description

Setting up a behaviour so that several phones will ring in a specified order.

Main actor(s)

Lisa, a person that has several phone subscriptions.

Activity scenario

Lisa has 4 phones. A IP-phone at the office, a work mobile phone, a private mobile

phone and a private IP-phone at home. She wants to be available at all times. Having so

many phones makes it difficult for friends, co-workers and others to know which phone

to call on. So when she receives a call she wants the phones to ring in a specific order

when there is no answer on the phone which number is called.

Composition scenario

First she selects the phone subscription to administer. She chooses her private mobile.

This defines which number triggers this behaviour, incoming calls on the other phones

will behave as normal. Select Follow Me. In the Follow me dialogue there is a time-out

value that defines how long before trying a other sett of numbers. There is also a list to

which one can add numbers and a time out value before going to the next on the list.

She first setts the time out value to zero as she wants her home phone and mobile to ring

at the same time. As the first on the list she puts her home phone and her mobile phone

and sets the time-out to 25 seconds. Second on the list she puts her ip-phone at work

and her work mobile.

Properties

Shows the use of the follow me service

34

More details

If she wanted the same behaviour on all her phones, then the behaviour has to be defined

for all of the phone numbers. The process to do this will be very similar and hence is

omitted.

35

4.2.7. Prioritized Queues

Summary

A busy person needs several queues and want the queues to have different priority.

Problem description

Setting up a composition for queuing incoming phone calls and with some callers get-

ting higher priority.

Main actor(s)

Arne, the subscriber. Calling persons and Calling VIPs.

Activity scenario

Arne is a busy person. He receives a lot of phone calls. The persons calling him is often

rejected because Arne is busy talking on the phone and the Call Waiting place is already

occupied. For Arne, some persons are more important than others, he therefore want

these persons to be prioritized when they call. Arne has already used the designer for

some time so he has the blacklist and a queue already working and now wants to add a

prioritized queue. Figure 4.6 shows the composition already created by Arne.

Composition scenario

First click on the whitelist service. In the whitelist service dialogue for the “default

next service” the blacklist service already applied is selected from the drop down box.

For the whitelisted next service queue is selected. In a the queue dialogue values for

queue length, queue time out, how to inform user can be set. For the next service when

first in line connect is selected. For the next service when kicked out voicemessage is

selected. When next is clicked in the queue dialogue it is detected that there is more

than one queue that go to the same component (connect call to the user). A queue

priority dialogue is presented. In this dialogue it is possible to define which queue has

the higher priority and how to distribute the servicing of the queues. A illustration of

the final composition with priority queues can be seen in figure 4.7

Properties

Queue priority, adding components to existing composition.

36

Figure 4.6.: Basic Queue Composition

4.3. Service Compositions

In this section some proposed services composition is defined. This could be used

alongside the services as a quick way to add a lot of behaviour. The service compositions

can also be used as examples of what is possible to create with the current services. The

settings and options when setting up a pre-made services composition will be much the

same as with the services, but in addition the user can be presented with the possibility to

select which services to use or be guided to which services they want to use by selecting

what type of behaviour they want. Each of the services selected should be pre set with

usable values, but by selecting advanced options the user should be able to customize

the settings of each service as when composing the services manually. For some of these

compositions added details for special cases can be found among the usecase scenarios

in Section 4.2.

4.3.1. Do not disturb

Description

A service composition that blocks unwanted phone calls, sms, mms and other things

that would disturb. Can be used in meetings and other any other situation that has a

certain duration where one does not want to be disturbed.

37

Figure 4.7.: Queues With Priority

Settings and options

The users can select a regular schedule or based on entries in a calender to activate the

behaviour. A possibility to enable or disable informing the callers of why they are being

blocked and also a possibility to inform the callers of the callee’s situation regardless of

them being blocked so they can decide not to disturb with unimportant matters. Here

properties of the Time-Filter or the Activity-Handler could be used to inform the caller

when the user will be available again. Enable or disable the whitelist to bypass the

blocking. Option to enable or disable postponing sms.

Services

• Time filter or activity handler to define a starting point, a end and eventually

recurrence of the behaviour.

• Voice-Message to inform the callers about why they are being blocked.

• Collect and postpone

• Whitelist to bypass the blocking

Grouping

Compositions, Practical, Telephony

38

4.3.2. Roaming Cut-Off

Description

When abroad and roaming, the serving distributor adds a additional cost for receiving

calls. Because of this some users would like to automatically reject some of the calls.

This service composition is meant to handle this. This is done by presenting a option to

inform the caller about your situation and the ability to use lists of numbers and or time

of day to block or let a call come through.

Settings and options

Option to enable or disable the whitelist bypass. Option to enable periodic digests and

voice-mail.

Services

• Roaming Handler

• Voice-Message

• Voice-Mail

• Whitelist

• Daily/Weekly/Monthly Digest

Grouping

Medium, Practical, Location, Telephony

4.3.3. Battery saving mode – Expedition mode

Description

A service composition to reduce the traffic to the phone. This is done by blocking

calls, informing the caller about your situation and when you will be available, enabling

«opening hours» and collecting information to a daily digest. Intended for use in situa-

tions when you have no possibility of charging your phone and are not that interested in

«chatting on the phone all the time». More details can be found in 4.2.1.

39

Settings and options

A list of times, from - to when one plan to be available. Daily digest - enable/disable.

Option for white list only. Define behaviour for the different signal levels. Define a

voice-message. Setting of how to handle calls that are blocked, send to voice mail, send

sms only log for daily digest or combinations.

Services

• Signal Strength

• Periodic Digest

• Blacklist

• Whitelist

• Voice-Mail

• Voice-Message

Grouping

Medium – Advanced, Practical, All

4.3.4. Family call

Description

A service for use in families with small children. The child can call the number of

any parent, if number is busy or no answer, the call is transferred to other parent/older

siblings etc.

Settings and options

Entering and editing the list of numbers to the parents. Time of no answer that before

next number is tried. Possibility to have either parallel calling or calling in sequence.

For young kids that just has got their first phone, there is an option to enable that any out-

going call goes to this call-ring Any number dialled (except 911, 112,113,110) goes to

the first parent on the list. When calling in parallel, an option to enable a do not worry»

SMS to the called numbers that did not answer if a connection of «some duration» is

made to any of the other numbers on the list.

40

Services

• Transfer call

• Hunt Group

• Follow Me

Grouping

Medium, Control, Telephony

4.3.5. Famous person

Description

A service composition that applies a lot of restrictions on the incoming calls. This

is intended to be used by public persons or persons that could receive way to many

incoming calls and sms. This service would function as a white list only. Only persons

on the white list would come through with calls and messages. All incoming traffic that

are blocked will be logged and viewable by daily/weekly digest and by logging.

Settings and options

Customizable greeting message. Intended to inform the user about why the call is

blocked. Disagree to blocking notification enable/disable. Enabling this will give the

blocked caller a possibility to notify that he or she feels that they know this person.

Possibility to set the handling of blocked calls send to voice-mail, store voice message

on daily digest etc.

Services

• Blacklist

• Whitelist

• Voice-Message

• Periodic Digest

• Caller Choice

• Logging

Grouping

Medium, Control/Practical, All

41

4.3.6. Parental – block incoming – outgoing

Description

Intended to be used by parents to restrict which numbers to receive calls from and call

to. Ability to use predefined lists of suspicious numbers.

Settings and options

Block all incoming, allow special numbers or allow all incoming, block certain numbers

Block all outgoing, allow certain numbers or allow all outgoing, block certain numbers

Option to define different behaviour for SMS/MMS and for voice calls. Possibility to

define custom behaviour when a call is blocked.

Services

• 2 x Blacklist (One for incoming and one for outgoing)

• 2 x Whitelist (One for incoming and one for outgoing)

• Send SMS

Grouping

Medium, Control, Telephony, IMS

4.4. Service Composition Interface

4.4.1. Viewpoint of the proposed designer

When creating a end-user programming interface, it is important that the interface is

intuitive. Hence in this thesis the viewpoint is of the incoming call/message and how

this call is routed between the services. Each behaviour in the designer has a starting

point. This starting point can be any of the triggering services the behaviour is then

routed and directed to the end services through the filter services. Some of the end-

services can also filter the behaviour of have additional behaviour succeeding it self.

42

4.4.2. Service representation in the designer

In the designer each service is represented by a icon that illustrates the service. Every

service and hence icon has a set of incoming connecting points and outgoing connecting

points. How many is defined by the type of service and the settings chosen inside the

service. A outgoing connection point is possible to connect to a incoming connection

point of a other service. None of the services in the example service set has the need (or

possibility) to connect to it self. One way arrows represent the directional connection

between the different services. Two services connected by an arrow indicates that the

first of those services has the second service as one of its possible next services.

4.4.3. How to create a composition

To create a composition that gives the desired behaviour one first needs to identify which

components to use. Ideally this should be as easy as possible. At best one should be

able to type a sentence and the appropriate components should be selected for the user

and so the user would end up only having to fill out the details. How to achieve that

capacity is out of the scope of this thesis. The next best is to have intuitive names on the

services and components. The name should in a good way represent the capability and

possibilities of that service. The components should also be placed and organized in a

intuitive way.

When the user has decided upon a desired behaviour and has found some of the main

services needed for that behaviour the programming of that composition can begin. The

user first selects the main component or the one that he wishes to be first in the be-

haviour. When that service is selected a dialogue for that service should open. This

dialogue has options and settings for that service and also gives the user the possibility

to select which service or component should be executed after the current one. Some

service has multiple next services and hence creates branches of behaviour which de-

velops to a behaviour tree. Technically this can be done in many ways but intuitively

traversing the tree depth first would be best. When a end point of a branch is reached

and either terminating services or no new services is connected to that leaf node in the

branch, one would then go back one level and complete that branch. Figure 4.8 shows

this.

Figure 4.8.: Flow of the composition process

43

When the first behaviour tree is defined. The user can then later enter into each of the

services by clicking on their icons and edit and change the settings. When adding new

behaviour, the user can always attach this to the current behaviour by selecting the a

new service and in the dialogue of this service select one of the already used services as

a succeeding service. Or the user can enter a already used service and change or add a

new service to the already used one.

A side result of being able to go into the composition tree afterwards is that the user

can create the compositions in a second way: By selecting the services from the list of

services and using drag and drop onto the service composing area and then connecting

the services with arrows and or entering the services and specifying with service is next.

For the user that likes to be in total control, this would be the selected approach. Figure

4.9 shows an example of how the interface could be designed.

Figure 4.9.: Composition user interface

4.4.4. Composition Logic

Taking a given composition scenario where there exist several services (assuming these

services are generic enough, self-contained/atomic, composable, and may be presented

to/used by end-user in various compositions), a composition logic is both the struc-

tural and behavioural arrangement of these elements (i.e. the service components). In

other words, selecting service components, arranging them (for example defining the

sequence of invoking or executing them) will give a specific composition logic.

The following rules have been found necessary for the composition logic

• Order of the services determine the order they are executed when deployed. For

instance location finder and caller analyser. If caller analyser is first then the result

would be find location of user for some callers. If they were the other way around

the result a result could be find the location of user and when user is in some

locations check the number of the caller.

• Which other services they are connected to impacts the behaviour of the compo-

sition, but does not impact the decision making of the service, but can be used to

enhance the service.

44

• Where the service is placed in the designer does not influence the behaviour of

either the service or the composition, only how the services are connected to each

other.

• Only some of the services produce triggers that initiate a behaviour. Some ser-

vices route the behaviour, and some produces an end-result visible to the user.

Priority of services

The starting point before any services is deployed is the normal behaviour of any phone

or device. When applying the designed behaviour this changes only the minimum of

what one could expect. If it is not defined, then the behaviour is as normal. So when

applying a service that is active for a given time, at any other time the behaviour is as

normal. This can be used to when deciding upon which service has the higher priority.

If a service is in the same “conflict group” and they have overlapping filter criteria then

the one with the fewest entries is the most specialised one and hence should get the

highest priority. But never the less, if there is detected a conflict between two or more

services then the user should be informed an allowed to either give the services priority

or be able to create a other composition without this conflict.

4.4.5. Composition Constraints

Composition constraints mean that arranging certain service components in certain com-

position logic would impose certain conditions and thus requirements. For instance

using a service component that defines screening for black list and white list would

encounter that a number that exists in the white list must not be in the black list if, ar-

guably, the black list to be executed/checked before the white list. This situation does

not necessarily impose similar constrain if the sequence of executing these lists (black

and white) is done the other way around, i.e. white list first and then black list. Given a

list of service components, there must be defined a set of characteristics for each service

component that by combining it with another service component would provide all the

necessary information regarding any potential constraint. Similarly, consequences of

service composition of certain service components may be worked out. What are the

consequences of composing service 1 and service 2? What do we need to configure in

addition to the set of configurations for each service individually?

Constraints to prevent abuse

The end user programming environment gives the user a lot of possibilities. This could

potentially be exploited and used to abuse other people or create unnecessary load on

the system. Especially the periodic task service needs some restriction on how often a

periodic task can be sent. Take the case were there is no restriction on the interval. If

then 1000 users set the interval to 1 second and use this to check the location of their

mobile, this would create very much unneeded data traffic and system load. In this

45

application there is no need for intervals of less than 1 minute. Very seldom under 15

minutes as well so a lower limit some where between 1 and 15 minutes should suffice.

Similarly there needs to be some kind of restriction on which devices one could locate

with the location finder. The right measures need to be taken here so that one only can

find the location of devices that one has properly through the right channels achieved

authorisation to locate.

Constraints on reuse of services. Some of the service is designed to be used more than

once. But there should be some restrictions on how many of each service one could

deploy.

Constraints to the behaviour tree

No loops can bee allowed in any service tree. Allowing loops in a composition will

dramatically increase the difficulty of reasoning on the compositions. It will also induce

problems concerning performance and system load.

Constraints to prevent conflicts

Some combinations of the different services would create conflicts. This can arise be-

cause one could add many different compositions to the same triggering event. This can

be omitted if one restrict each triggering service to only be used once. Doing so would

prevent the user from defining two compositions that would be running in parallel and

causing unpredictable behaviour. One could think that sometimes a parallel behaviour

would be desirable, but to argue against this: All, but connecting a call, can be done in

a serial pattern and show no external difference from a parallel pattern. The connecting

of calls in parallel can be done with the hunt-group service and hence there should be

no need for parallel patterns.

To consider the case where the user creates a lot of different behaviour compositions

the resulting behaviour tree would then grow very wide. By allowing virtual parallel

behaviour this could be remedied. A virtual parallel behaviour would here mean allow-

ing parallel trees where there exists a clear definition of which tree to use. This more

closely discussed in 4.4.6.

4.4.6. Dividing the services into groups to reason on them

The services that is described in 4.1 all have some properties that can be used to reason

on. Firstly the services can be divided into four groups with regard to how they interact

with the other services. These groups are:

• Stand alone services

• Trigger services

46

• End-Behaviour services

• Filter Services

Stand alone services

Stand alone services is services that will work on their own. What is meant by this is that

they do not influence the other services, they never cause conflict with other services

and have no dependencies that could cause conflicts. Logging and daily, weekly or

monthly digests fit into this category. These services do not have to be a direct part of

the behaviour designer. They can be set up and administered with no regard to the rest

of the system. However the logging services may benefit of being aware of the active

behaviour as it can be logged and provide more details to the log.

Trigger services

Trigger services is services that trigger or start a behaviour. These services either pro-

duces a trigger by it self based on timers, or reacts on user interaction and external

events. Thus giving the user possibilities to start a behaviour at that event. Periodic

tasks, Answer Call and Reject Call are examples of this. These services can not directly

create conflicts with each other because the all work as a starting point of a behaviour.

If two behaviours were started at the same time this would still create no conflict as two

behaviour could run simultaneously.

End-behaviour services

End-behaviour is services that either produce the service that the user experiences or

ends a branch in the behaviour tree. Voice-mail, Connect Call, Reject Call and Send

SMS are good examples or end behaviour services. Most of these services can operate

in parallel or cope with parallel execution in an satisfactory manner and therefore does

not need to much consideration with regard to conflict. Even though they are called

end-behaviour services it does not mean that they have to stop the behaviour. Other

services can still be attached to these services. This will however not impact the

Filtering services

Filtering services is services that filter the behaviour. These services does one or more

checks on an value and decides which of the connected services should be used next.

They all have at least two possible outcomes. In the designer the can end up being con-

nected only to one other service when the second outcome is block or end behaviour.

These are the services that determine which end-behaviour is finally selected. The fil-

tering services can again be divided into several smaller groups. One way to do this is

to look at what the services use for filtering. Is it the caller id? Is it the time of day? Is

47

it the location of the callee? Below is a list of the filter criteria used in the the services

used in this thesis:

• Time

• Signal

• Activity

• Location

• Caller Number

• Incoming text

These filtering criteria can then be reduced to these groups (see table 4.1). These groups

can then be populated by the proposed services in the following manner (see table 4.1)

Group Services

Time Activity Handler, Time filter

Location Location finder, Roaming Handler, Signal Strength

Caller Number Caller Analyser, Black List, Whitelist

Other/Unrelated Incoming text

Table 4.1.: Filter Criteria Groups

Services that could fit into two or more groups: One could also let services be part

of two or more groups with out very severe consequenses. It will however add some

additional computations to check for conflicts. It was identified two ways to cope with

this. The first is to check all entries of that services in with regard to possible conflicts

from all the groups that it is a part of. For some services that is part of several groups it

is possible to reduce the number of groups it is part of. Activity Handler is an example

of this. An activity can be set as active either based on time or based on location and

could hence be in only one of those groups.

The Signal Strength service is placed in the location group because the signal strength

is strongly related to position. One can have the medium signal in many places, but if

one consider the scenario were the user arrives to his cabin. There the signal strength is

low. The user has created two sets of behaviour. One that activates when arriving at the

cabin and one that activates when having low signal. This would then create a conflict

of the two behaviour compositions that would need to be addressed. Hence the signal

strength service should be placed in the location group. Activity Handler is placed in

the time group as the activities is related to the calender, which is timebased.

Combining two compositions

When a user has created two compositions or if the user has his behaviour composition

and get a other behaviour composition from his employer then there is the issue of

combining these. This is not a trivial task and no ultimate solution exists. Consider the

case of combining the two compositions Battery Saving (Section 4.2.1 and figure 4.1)

and Roaming Cut-off (Section 4.2.3 and figure 4.3). It is many different ways these

48

compositions could be combined. There is several possible way to resolve this. The

first is to have the application identify the conflict notify the user about the conflict and

let him solve the conflict manually with no help. This would be the easy way out for

the application designer. How ever it is possible to aid the user a bit more without over

complicating things.

Composition priority table

For each composition a key service should be identified. This services can then serve

as an enabler or disabler of the whole behaviour in the composition. If we consider the

example described above: Signal Strength and Roaming Handler could be identified as

key services. The roaming handler has two possible outcomes: Either one is roaming

or one is not roaming. The signal strength services has three possible outcomes. low

signal, medium signal and high signal. From this one can create the following table

4.2 which tells what composition to use depending on the different outcomes. This

way of combining the compositions work very well for a few compositions, but when

the number of compositions grow larger the table grows larger and will soon become

unsuitable.

Table 4.2.: Prioritizing Compositions

Outcomes Roaming Not Roaming

Low Signal Signal Strength Signal Strength

Med Signal Roaming Cut-off Signal Strength

High Signal Roaming Cut-off Signal Strength

Proposing composition combinations

When a conflict is detected, the user is presented with a set of possible combinations of

the services. The most likely first. Again considering the above example, the following

combinations of the compositions could be suggested:

1. Finding the first services in one of the compositions in the other composition.

Here we can find whitelist, so the whole roaming cut-off composition could be

placed after the whitelist in the battery saving composition.

2. For both compositions show possible combinations by connecting the other com-

position to the connect call parts of the composition.

3. Try to suggest a service that can be placed above both of the other service com-

position to bind the compositions together. In the used example here it could be

suggested to use the timefilter and other services that is not in use in any of the

compositions.

49

4.4.7. Enabling advanced features

If one just use the services as they are combining them together without passing any

parameters one would need a lot of services and often complicated services to get any

advanced features. But passing parameters will also complicate the services. A lot

of considerations needs to be made. For instance, how many parameters should the a

service accept and what parameters should be accepted. One way to simplify this is the

use of a billboard. Every service that has been used in the current behaviour branch can

post its outputs on the billboard. These outputs can be every thing or anything related to

the service. The succeeding services can then later go through this list and select the the

parameters needed to achieve the added functionality. Voice-message and voice-mail is

services that could be used in this manner. If one consider the location finder service.

Every time this service checks the location of a device it posts a text string describing the

which device is found on what location. Later in the same behaviour branch the voice-

message service is run. The user has defined this service to use the text parameter from

the location finder to create the voice-message. The voice-message service the searches

the billboard for the text from the location finder and uses it to create the sound message.

For this to work some effort has to be done on creating appropriate text strings for all

the services that can produce information possibly interesting to the user or caller.

4.5. XML representation of the services

There has been an early decision during the implementation study process of this mas-

ter thesis proposal to have a scenario driven approach that is generic enough, however

linked to a specific service composition platform that is used in Telecommunication net-

works (an existing execution environment in a real Telecom operator’s network). Based

on that it was decided to give two levels of abstraction. A Generic level and a platform

specific specification, Easy Designer level.

4.5.1. Generic Level

This specification is aimed as a implementation-neutral generic representation of the

service components and service compositions and their characteristics independently of

the platform that will be used to realize and execute them.

Generic term:

Component

elements is used to represent each service used. A component has the following manda-

tory attributes: Id of the component, Type of the component. To be able to connect the

services to each other every component also needs a attribute telling which component

is the next in this behaviour: nextId. This attribute can be omitted if this service is the

50

last in the behaviour branch. Some services depend on external services and therefore

could be prone to errors. These services need a nextIdIfError attribute as well. Type is

the type of the service, telling which of the services described in 4.1 is being used here.

Most of the services has one or more settings that need to be described. These settings

can be any thing from a link to a sound-file or a telephone number or phone id.

Hence the a component would look like figure 4.10:

<Component id="unique_id" type="example_service" [component specific attributes]>

Service Specific Content

</Component>

Figure 4.10.: Component XML representation

Each service has its own component type. The type of the component dictates which

attributes should be used. Below attributes for most of the services has been defined:

For many of the services it is sufficient with this element. But in some cases, especially

with the filter services there is a need for list of either numbers, times, locations, etc.

These can not be described by attributes in a proper manner. Entries can be used for

this. An entry has the following mandatory attributes: Type and Next Component Id.

The type tells how to interpret the entry and also dictates which attributes is needed.

Figure 4.11 shows a basic entry with what is common for all types of entries.

<Entry type="setting_type" [entry specific attributes] nextId=”next_component_id”/>

Figure 4.11.: Component Entry

XML example of a service: In the example here the voice mail service is used. The

voice-mail service has as described in "TODO ref Voice-mail service" the following

settings: Voice-message and how to notify about new message. Two versions of the

voice-mail services is shown here. The first is a standard voice-mail. The second uses a

uploaded file for the voice message and sends notification both to SMS and E-mail.

<Component id="0" type="voicemail" voiceMessageType="standard"/>

Figure 4.12.: Simple Voicemail example

To show how what a service with entries looks like as a whole an example of a Blacklist

service is shown here.

51

<Component id="1" type="voicemail" voiceMessageType="file" fileURL="location of

file" nextId="2"/>

<Component id="2" type="sendsms" textSource="textparam" textparam="1" />

Figure 4.13.: Voicemail and notification composition example

<Component Id="1" Type="BlackList" NextId="x" ScreenType="A-Number">

<Entry Type="ScreenEntry" Prefix="12345678" NextId="y">

<Entry Type="ScreenEntry" Prefix="12345678" NextId="y">

</Component>

Figure 4.14.: Blacklist xml example

XML example of a battery saving service compositions

Figure 4.15 shows an xml example of a battery savings service composition. This xml

is closely related to the composition created in the usecase scenario in 4.2.1.

<Service Name="TrekkingExpedition">

<Component Name="DailyDigest" Type="Logging" nextId="1">

<Entry Type="DailyDigest" ReportHour="21" ReportMin="0"/>

</Component>

<Component Id="1" Name="BlackList" Type="Screen" nextId="2">

<Entry Type="ScreenEntry" Prefix="12345678" NextCid="-1">

<Entry Type="ScreenEntry" Prefix="12345678" NextCid="-1">

</Component>

<Component Id="2" Name="SignalStrengthRouter" Type="Router" nextId="5" nex-

tIdLow="3" nextIdMed="4" nextIdHigh="5"/>

<Component Id="3" Name="BadSignalMessage" Type="Announcement" Brelease-

Call="True"/>

<Component Id="4" Name="Whitelist" Type="Screen" nextId="3" />

<Entry Type="ScreenEntry" Prefix="12345678" NextCid="5">

<Entry Type="ScreenEntry" Prefix="12345678" NextCid="5">

</Component>

<Component ID="5" Type="Termination" Number="12345678"/>

</Service>

Figure 4.15.: Trekking Expedition (Battery Savings) Composition XML example

52

4.5.2. Easy Designer Level

Basically this is a specific platform oriented specification, where both the objects and

their properties and attributes are tightly coupled to the given platform implementation.

This coupling is in terms of supported features, domain-specific properties, execution

environment characteristics, etc. In this level a bit more details is needed to fill the

requirements.

4.6. Results Summary

The following results have been produced: A number of different example services has

been defined with settings and options. Services to respond to event, services to filter

behaviour and services that produce some effect observable by the user. These services

was sorted and grouped with regard to their properties. From these services a set of

use-case scenarios and services compositions were created. In the use-case scenarios a

description of how the user would compose the desired behaviour was described. From

these use-cases and compositions a set of composition constraints were worked out. Two

ways for the user to compose the desired behaviour has been presented. A interface

layout and work flow for the composition interface has also been suggested. XML

representation of both the services and the service composition was worked out.

53

5. Discussion

5.1. Accomplishments

In process of developing the simple-to-use infrastructure for end-user service composi-

tion, several issues has arrived that needs to be discussed. A set of services has been

worked out. These services should cover a quite varied set of functions. The services

should be self contained and modular enough to be used in many different compositions.

Early in the project there was some discussion of how large (how comprehensive) the

services should be. On one side there was large services with lots of functionality and

settings and some of the earliest suggestions of services has quite complex behaviour.

This would have made it more difficult to reason on the services with regard to conflicts.

On the other side there was smaller services, more atomic and confined which ended up

being the chosen route. This was done primarily for the sake of configurability for the

end-user, as having many small services would give the user more choice. The cost of

this being that the composition trees would be larger and more complex. Looking back,

some of the services ended up being so small that they could look more like program-

ming blocks than like services. But still it can be argued that they are services based on

that they produce the service of e.g. checking for a number match.

For the flow of the application it was chosen to give the user two ways of creating a

composition. First the easy more wizard like way, where the user is guided through the

dialogues based on the choices made in the preceding dialogue. This was supposed to

be a easy compared combining the services manually. However this could arguably be a

bit disorienting for the user as the dialogues would some times jump to a other branch.

This could be remedied by showing a composition tree alongside the dialogue showing

where in the tree the user was currently. The other way of creating a composition was

to drag and drop the service onto the designer and connect the services with arrows to

define which service is connected to each other. This way of creating services gives the

user a better overview.

The use-case scenarios created followed a template from the ubiquity for all project.

These scenarios served as a good source for information and gave more insight into

what was needed of the service composition interface.

Some solutions for working out conflicts were also worked out. The validity of those

needs to be tested, but they should work as a first line of defence against conflicts. Some

of the suggestions made could be quite useful for the user when implemented.

55

No prototype was completely programmed and run. This could partly be because of the

chosen approach to create the prototype. Maybe if the spreadsheet approach were cho-

sen, then it probably would be much quicker to create a complete and finished prototype

and hence one would be able to run and test the compositions and use-cases created.

5.2. Scope of the thesis

The scope of the thesis was changes from the original thesis text early on. It was deemed

that the original text fitted well enough in some areas so it was kept. No new scope was

never clearly defined and written down. The thesis went from being composing end-

user services to end-user service composing. This made understanding the scope hard as

there was no accurate text to refer to. It is possible that this has influenced effectiveness

in the start period of the thesis.

The way this thesis turned out to be a more end-user service composition implicates

that there should have been some more end-user involvement. A user usability survey

could have provided many useful inputs. However through out the period of the thesis

my contact network was used to provide and influence what services to make and what

type of service compositions that were desirable. Some of the use-case scenarios came

directly from inspiration from conversation with friends and family.

There have been many lessons learned, especially with regard to keeping the motivation

up and how important it is to always have some progression. Looking back, the biggest

error was not having a accurately defined text for the thesis.

5.3. Future Development

For the end user programming interface to be useful it needs some more work in certain

areas. The services and application in this thesis is more a proof of concept so to create

a useful application there is still a lot of work that needs to be done. The user interface

needs to be programmed and polished.

Combining the service handler with a common language interpreter which can from a

simple sentence determine which services is most likely to be used. E.g. user states: “I

want to enable a queue for incoming calls.” From that sentence it should be possible

to determine that it would be smart to start designing the service composition with the

queue service or e.g. when if one writes the headword battery, then all services that in

some way could impact the power consumption would be displayed.

A user interface for mobile devices should be developed so that the end-users will be

able to change the behaviour on the go and or to manually e.g. update their activity to

activate a behaviour already developed.

Service-compositions that are commonly used can be integrated in the environment.

This enables a one button setup instead of a series of clicks and setting entries. If the

56

application includes a uploading functionality and a “browse/search on-line services“

functionality the ease of use is increased considerably, while the time spent to create the

functionality wanted would be greatly reduced. This of course requires quite some users

and that they are willing to publish their compositions. The uploaded compositions will

of course have to be stripped of numbers and personal settings.

In the dialogue of all the services it is possible to define the next service. Some research

could be done on which services is most likely to be used together. This would be best

and most accurately done if one were to have a finished product and collected usage

data from that. This information could then be used to populate the list of the next

services.

A end-user survey should be carried out to ensure that the user interface and service

composition approach is understandable by the common user.

57

6. Conclusion

Through discussion with friends and contact network it has been clear that a service

like the one being developed here has been missed and desired. Even though there has

been no user survey, much of the work done here has been inspired by suggestions and

wishes from potential users.

A interface for end-user composition of telecom services has been worked out through a

series of use-cases. The established example services should cover a range of different

uses and can be used to create many different service compositions.

The interface created should be able to aid the users in creating a desired behaviour for

their telecom services. Giving the user full control and great customizability. The end-

users have not yet been taken into the loop so testing and usability surveys still needs to

be done.

The chosen approach for creating a prototype could possibly have inhibited the progress

on this field and choosing a “quick but ugly” approach could have resulted in some

testing and more concrete results.

Personally I see great potential in this application and would very much like to have one

as a part of my phone subscription. I hope the work on this application continues and

bears fruits.

59

Bibliography

[B] Joseph Bih, Service oriented architecture. a new Paradigm to Implement Dy-

namic E-Business Solutions, Ubiquity - and ACM IT magazine and forum

(2006).

[BOP] J. Yang Bart Orriens and M.P. Papazoglou, Model driven service composition,

ICSOC (2003).

[CHT] Channabasavaiah, Holley, and Tuggle, Migrating to a service-oriented archi-

tecture, IBM DeveloperWorks (2003).

[DS] Schreiner W Dustdar S., A survey on web services composition, Int. J. Web and

Grid Services 1 (2005).

[K] Ken Kahn, Toontalk - making programming child’s play [online], 2009, Avail-

able from: http://www.toontalk.com/English/infodesk.htm

[cited June 18, 2009].

[LHM] Xuanzhe Liu, Gang Huang, and Hong Mei, Towards end user service composi-

tion, COMPSAC ’07: Proceedings of the 31st Annual International Computer

Software and Applications Conference (Washington, DC, USA), IEEE Com-

puter Society, 2007, pp. 676–678.

[M] Alain Pastor Freddy Lécué Eduardo Silva Luís Ferreira Pires- Mariano Be-

launde Mazen Shiaa, Paolo Falcarin, Simplifying automatic service com-

position - enduser and service developer perspectives, IEEE TRANSAC-

TIONS ON SERVICES COMPUTING (2008), Yet to be published dec 2008.

[MKK] Leonel Morgado and Journal Ken Kahn, Towards a specification of the toontalk

language, Journal of Visual Languages and Computing (2007).

[MS] Michael E. Maximilien and Munindar P. Singh, Toward autonomic web ser-

vices trust and selection, ICSOC ’04: Proceedings of the 2nd international

conference on Service oriented computing (New York, NY, USA), ACM Press,

2004, pp. 212–221, Available from: http://dx.doi.org/10.1145/

1035167.1035198.

[N] Bonnie A. Nardi, A small matter of programming perspectives on end user

computer, The MIT Press (1993).

[OG] Zeljko Obrenovic’ and Dragan Gasevic, End-user service computing: Spread-

sheets as a service composition tool, IEEE Transactions on Services Comput-

ing 1 (2008), no. 4, 229–242.

61

[OYP] Bart Orriëns, Jian Yang, and Mike Papazoglou, A framework for business rule

driven web service composition, 2003, pp. 52–64, Available from: http://

www.springerlink.com/content/mplfeany3ea2uecw.

[RKM] Jinghai Rao, Peep Küngas, and Mihhail Matskin, Composition of semantic web

services using linear logic theorem proving, Inf. Syst. 31 (2006), no. 4, 340–

360.

[RP] Alexander Repenning and Corrina Perrone, Programming by analogous exam-

ples, Lieberman 2001a (2001).

[S1] Smalltalk.org, Smalltalk.org webpage [online], 2006, Available from: http:

//www.smalltalk.org/ [cited June 18, 2009].

[S2] Northwoods Software, Sanscript homepage [online], 2008, Available from:

http://www.sanscript.net/ [cited June 18, 2009].

[UK] Birgitta Knig-Ries Ulrich Kster, Mirco Stern, A classification of issues and

approaches in automatic service composition, First International Workshop

on Engineering Service Compositions (WESC05), Amsterdam, Netherlands

(2005).

62

A. XML Representation Tables

A.1. XML Services

Table A.1.: Voice-Mail Service Attributes

ComponentType voicemail

Entries None

voiceMessageType [none,standard,file,text,textparam]

fileURL location of file

text Text String

textParam Service Id of the succeeding service providing the text

String

nextId Service Id of the next service after the voice-mail session is

finished

Table A.2.: SMS Service Attributes

ComponentType sendSMS

Entries None

textSource [textparam,text]

textparam Service Id of the succeeding service providing the text String

text Text String

NextId Service Id of the next service after the SMS is sent

63

Table A.3.: E-Mail Service Attributes

ComponentType sendmail

Entries None

textSource [textparam,text]

textParam Service Id of the succeeding service providing the text String

text Text String

subjectSource [textparam,text]

subjectParam Service Id of the succeeding service providing the text String

subjectText Text String

emailadress name@server.com

nextId Service Id of the next service after the E-mail is sent

Table A.4.: Chat Service Attributes

ComponentType initchat

Entries None

chatClientType [MSN,Skype,etc.]

client specific settings Client specific settings

nextIdOnExit Service Id of the next service when the chat client exits

nextIdOnConnect Service Id of the next service after the chat client is initial-

ized

Table A.5.: Voice-Message Service Attributes

ComponentType voicemessage

Entries no

voiceMessageType [none,file,text,textparam]

fileURL location of file

text Text String

textParam Service Id of the succeeding service providing the text String

nextId Service Id of the next service after the voice-message is played

Table A.6.: Transfer Call Service Attributes

ComponentType transfer

Entries no

number Number to transfer to

nextId Service Id of the next service after the call is transferred

64

Table A.7.: Activity Handler Service Attributes

ComponentType activity

Entries activityEntry

nextId Service Id of the next service when no activities is active

Table A.8.: Periodic Tasks Service Attributes

ComponentType periodic

Entries periodicEntry

nextId Service Id of the next service when no periodic task is active

Table A.9.: Caller Analyser Service Attributes

ComponentType calleranalyser

Entries ScreenEntry

nextId Service Id of the next service when no number match found

Table A.10.: Time Filter Service Attributes

ComponentType timefilter

HourDayEntry HourDayEntry

nextId Service Id of the next service when no time match found

Table A.11.: Roaming Handler Service Attributes

ComponentType roamingfilter

Entries no

nextIdRoaming Service Id of the next service when roaming

nextId Service Id of the next service when not roaming

Table A.12.: Location Finder Service Attributes

ComponentType locationfinder

Entries locationEntry

method [match,report]

locationToMatch identifier of the location to match

65

Table A.13.: Blacklist Service Attributes

ComponentType blacklist

Entries NumberEntry

nextIdMatch Service Id of the next service for blacklisted numbers

nextId Service Id of the next service for other numbers

Table A.14.: Whitelist Service Attributes

ComponentType whitelist

Entries NumberEntry

nextIdMatch Service Id of the next service for whitelisted numbers

nextId Service Id of the next service for other numbers

Table A.15.: Signal Strength Service Attributes

ComponentType signal

Entries no

nextIdLow Service Id of the next service when low signal strength

nextIdMed Service Id of the next service when medium signal strength

nextIdHigh Service Id of the next service when high signal strength

Table A.16.: Text Filter Service Attributes

ComponentType textfilter

Entries textEntry

nextIdMatch Service Id of the next service when text is matched

Table A.17.: Caller Choice Service Attributes

ComponentType callerMenu

Entries menuEntry

reanouncetimeout Time in seconds before a re-announcement of the menu

timeout Timeout of the menu

nextId Service Id of the next service on timeout

Table A.18.: Callee Choice Service Attributes

ComponentType calleeMenu

Entries menuEntry

timeout Timeout of the menu

nextId Service Id of the next service on timeout

66

Table A.19.: Follow Me Service Attributes

ComponentType followme

Entries huntEntry

nextId Service Id of the next service after call is connected

Table A.20.: Hunt Group Service Attributes

ComponentType huntgroup

Entries numberEntry

enableLoadShare [True,False]

timeout Timeout in number of seconds

nextId Service Id of the next service after call is connected

Table A.21.: Queue Service Attributes

ComponentType QueueSequenceEntry

Entries no

MaxPositions How many positions is available in the queue

fileURL Location of the sound file with waiting music

QueuePriority [0,1,2,3,4,5,6,7]

nextIdQueueFull Service Id of the next service if the queue is full

nextIdYourTurn Service Id of the next service when call is to be served

nextIdEnterQueue Service Id of the next service when call enters queue

67

A.2. XML Service Entries

Table A.22.: HourDayEntry Attributes

DayOfWeek [0,1,2,3,4,5,6]

Duration The duration in number of minutes

StartHour The start hour

StartMin When to start in minutes past the start hour

NextId Service Id of the next service it time matches entry

Table A.23.: ScreenEntry Attributes

Number The number to match

NextId Service Id of the next service if number matches

Table A.24.: NumberEntry Attributes

Number The number to match

68

Table A.25.: ActivityEntry Attributes

ActivityIdentifier An identifier of the activity that is common with the

identifier used in the calender

NextId Service Id of the next service if this activity is in

progress

Table A.26.: PeriodicEntry Attributes

DayOfWeek [0,1,2,3,4,5,6]

Duration The duration in number of minutes

StartHour The start hour

StartMin When to start in minutes past the start hour

Interval The interval of the trigger in number of minutes between.

NextId Service Id of the next service for this periodic task

Table A.27.: textEntry Attributes

TextToMatch The text string to match

nextId Service Id of the next service if match found

Table A.28.: menuEntry Attributes

Digits The digits to select this menu entry

nextId Service Id of the next service if digits match

Table A.29.: QueueSequenceEntry Attributes

SeqNo SeqNo="When to present message"

Message Message="Message to present"

QueueNumber QueueNumber="True/False"

QueueTime QueueTime="True/False"

69

	Title Page
	Problem Description
	Master Thesis.pdf

