@ NTNU

Norwegian University of
Science and Technology

Fast Implementation of Two Hash
Algorithms on nVidia CUDA GPU

Gorka Lerchundi Osa

Master of Science in Communication Technology
Submission date: February 2009
Supervisor: Danilo Gligoroski, ITEM

Norwegian University of Science and Technology
Department of Telematics

Problem Description

For the time being, SHA-2 a trustworthy hash algorithm is being used over the net. But who could
assure that this is not going to do an unexpected turn with someone’s release of a breaking
algorithm which could put in risk the integrity of most of the trusted secure communications?

To avoid this, NIST (National Institute of Standards and Technology) has created "SHA-3 hash
competition™ in the same way as they done with AES encryption algorithm. When this competition
finishes it's quite sure that the most important feature of the outgoing algorithm will be how much
strong and hard-breaking it is. But how fast it is, is also important.

The task is about implementing a working version of Blue Midnight Wish algorithm (an algorithm
designed by professor Danilo Gligoroski from NTNU and Vlastimil Klima an independent
cryptographer from Czech Republic) presented at NIST competition into nVidia GPU to get as much
speedup as possible. The work can be divided in a theoretical and a practical part. First, study the
current and future possible parallel capable technologies. Secondly, implement a CUDA based
version and get results which will help to assure what can and what can't be done with these
technologies.

Assignment given: 23. September 2008
Supervisor: Danilo Gligoroski, ITEM

@NTNU

Det skapende universitet

FAST IMPLEMENTATION OF TWO HASH ALGORITHMS ON

NVIDIA CUDA GPU
Master Thesis
Student: Gorka Lertxundi Osa
Supervisor: Danilo Gligoroski
Institute: Institutt for telematikk

Faculty: Fakultet for Informasjonsteknologi, matematikk og elektroteknikk

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

1. Abstract

User needs increases as time passes. We started with computers like the size of
a room where the perforated plaques did the same function as the current
machine code object does and at present we are at a point where the number of
processors within our graphic device unit it’s not enough for our requirements.

A change in the evolution of computing is looming. We are in a transition
where the sequential computation is losing ground on the benefit of the
distributed. And not because of the birth of the new GPUs easily accessible this
trend is novel but long before it was used for projects like SETI@Home,
fightAIDS@Home, ClimatePrediction and there were shouting from the
rooftops about what was to come. Grid computing was its formal name. Until
now it was linked only to distributed systems over the network, but as this
technology evolves it will take different meaning.

nVidia with CUDA has been one of the first companies to make this kind of
software package noteworthy. Instead of being a proof of concept it’s a real
tool. Where the transition is expressed in greater magnitude in which the true
artist is the programmer who uses it and achieves performance increases.

As with many innovations, a community distributed worldwide has grown
behind this software package and each one doing its bit. It is noteworthy that
after CUDA release a lot of software developments grown like the cracking of
the hitherto insurmountable WPA.

With Sony-Toshiba-IBM (STI) alliance it could be said the same thing, it has a
great community and great software (IBM is the company in charge of
maintenance). Unlike nVidia is not as accessible as it is but IBM is powerful
enough to enter home made supercomputing market. In this case, after IBM
released the PS3 SDK, a notorious application was created using the benefits of
parallel computing named Folding@Home. Its purpose is to, inter alia, find the
cure for cancer.

To sum up, this is only the beginning, and in this thesis is sized up the
possibility of using this technology for accelerating cryptographic hash
algorithms. BLUE MIDNIGHT WIisH (The hash algorithm that is applied to the
surgery) is undergone to an environment change adapting it to a parallel
capable code for creating empirical measures that compare to the current
sequential implementations. It will answer questions that nowadays haven’t
been answered yet.

BLUE MIDNIGHT WISH is a candidate hash function for the next NIST standard
SHA-3, designed by professor Danilo Gligoroski from NTNU and Vlastimil
Klima - an independent cryptographer from Czech Republic.

Abstract—2

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

So far, from speed point of view BLUE MIDNIGHT WIsH is on the top of the charts
(generally on the second place - right behind EDON-R - another hash function
from professor Danilo Gligoroski).

One part of the work on this thesis was to investigate is it possible to achieve
faster speeds in processing of Blue Midnight Wish when the computations are
distributed among the cores in a CUDA device card. My numerous experiments
give a clear answer: NO. Although the answer is negative, it still has a
significant scientific value. The point is that my work acknowledges viewpoints
and standings of a part of the cryptographic community that is doubtful that
the cryptographic primitives will benefit when executed in parallel in many
cores in one CPU. Indeed, my experiments show that the communication costs
between cores in CUDA outweigh by big margin the computational costs done
inside one core (processor) unit.

Abstract—3

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

2. Index

1. ABSTRACT

2. INDEX 4
3. INTRODUCTION 6
3.1. GOAL 6
3.2. METHODOLOGY 6
3.3. ToOOLS 6
3.3.1. THESIS COMPUTER 6
3.3.1. PERSONAL COMPUTER 8
4. BACKGROUND 10
4.1. HETEROGENEOUS VS. HOMOGENEOUS MULTI-CORE 11
4.2. THE OPTIONS 12
4.21. NVIDIA - CUDA 13
4.2.2. AMD ATI FUSION — ATI STREAM COMPUTING 14
4.2.3. KHRONOS GROUP - OPENCL 16
4.2.4. STANFORD UNIVERSITY - BROOKGPU 19
4.2.5. INTEL - ‘CT’ LARRABEE 21
4.2.6. IBM - CELLBE 25
5. CUDA:IN-DEPTH ANALYSIS 27
5.1. BRIEF DESCRIPTION 27
5.2. PROGRAMMING MODEL 28
5.2.1. HOST AND DEVICE 30
5.2.2. MEMORY MODEL 32
5.3. CUDAAPI 34
5.3.1. COMPUTE CAPABILITES 35
5.4. EXAMPLE 35
6. BLUE MIDNIGHT WISH 37
6.1. BRIEF EXPLANATION 37
6.2. IDENTIFYING PARALLEL BLOCKS 39
6.3. IMPLEMENTATION 40
6.3.1. DESIGN #1 40
6.3.2. DESIGN #2 40
6.3.3. HOw-TO 41
7. RESULTS 43
7.1. WITH SHARED MEMORY 43
7.2. WITHOUT SHARED MEMORY 44
8. FUTURE WORK 47
. CONCLUSION 49
10. BIBLIOGRAPHY 50

Index — 4

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

1.

11.1.
11.2.
11.2.1.
11.2.1.
11.3.
11.3.1.
11.3.1.
11.4.

11.4.1.
11.4.2.

11.5.
11.5.1.

11.5.2.
11.5.3.
11.5.4.
11.5.5.

11.6.
11.6.1.

11.6.2.

APPENDIX 52
SHA-3 HASH COMPETITION TIMELINE 52
IMPLEMENTED PARALLEL BLOCKS 54

COMPUTATION OF F, 54
COMPUTATION OF F, 55
HASH BENCHMARKS 56
WITH SHARED MEMORY 56
WITHOUT SHARED MEMORY 57
COMPRESSION FUNCTION TIMING AVERAGES 58
WITH SHARED MEMORY 58
WITHOUT SHARED MEMORY 65
SOURCE CODE 72
TIMER.H 72
MAIN.CPP 74
BLUEMIDNIGHTWISH.H 78
BLUEMIDNIGTHWISH_CPU.CPP 8o
BLUEMIDNIGHTWISH_GPU.CPP 81
TURBOSHA-2 IMPLEMENTATION 97
TURBOSHA2.H 97
TURBOSHA2.C 98

Index—5

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

3. Introduction

3.1.Goal

The goal of this thesis was, at the first time, the implementation of two hash
algorithms developed in ‘Institutt for telematikk’ at NTNU into a specific
GPGPU (General-Purpose Computing on Graphics Processing Units),
concretely in a CUDA based graphic device card.

But after some tests in the thesis, it was slightly modified in able to get the
needed results in this area. As it can be seen in the results, these are not as
hopeful as expected. Consequently, the thesis was focused in the results and
tries to answer why could or couldn’t be these kinds of implementations
applied to cryptographic area.

3.2.Methodology

Methodology followed is the next:

* Diagnosis: It is studied the project features and the goal it is needed.

* Analysis: It is analyzed the goal and proposed some solutions to this.

* Proposal: It is taken only one proposal and it is designed or thought
how to integrate into the project.

* Implementation: It is implemented the proposal that was decided in
the last step.

* Results: It is observed the final results of the proposal and if the result
doesn’t fit very well it is tried with another analyzed proposal.

3.3.Tools

Different operating systems require different tools to put the thesis working.
There are different tools that together achieve the same result. In this thesis
Windows and Mac OS X were used. The first one was used in the computer
where the CUDA based device card was installed, named as “Thesis Computer”.
Mac OS X instead was the operating system used by the writer of this thesis
named as “Personal Computer”. It was necessary, because the big differences
between these two O.S., to separate the tools description into two sections:

3.3.1. Thesis Computer

The Thesis Computer was a fresh Windows XP SP3 installation with nothing
more than browsers, office automation tools and that kind of stuff. The goal of
this computer was to run benchmarks with the selected and implemented
proposal and create reports as output.

Introduction — 6

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

These were the Thesis Computer’s features, only the CPU and GPU are shown

because it is what really matters:
« CPU:

CPU ICachel Mainboarcll Memoryl SPD | Ahout I

=101 x|

—Processor

Name |

Intel Pentium 4 530 . .
T intel)
Code Name Prescott Brand I

Package | Socket 775 LGA

Pentiunr4 HT
Technology | 90 nm Care Yoftage inside™

Intel(R) Pentium(R) 4 CPU 3.00GHz
Family F Model 4 Stepping 1
Ext. Family F Ext. Model 4 Revision EO

Instructions IMM}(, SSE, SSE2, SSE3

Specification |

Cache

L1 Data 16 KBytes
L1 Trace 12 Kuops

Level 2 1024 KBytes

Level 3

—Clocks (Core #0)

Core Speed [W
Multiplier x15.0
Bus Speed 199.5 MHz
Rated FSB 7958.0 MHz

Lj Cores | 1

Threads | 2

Version 1.49

Selection IProcessor #

CPU-Z

Figure 3.1: CPU-Z application showin CPU information

* GPU:

Detailed information about your NVIDIA hardware and the system it’s running on.

Display] Components |

System information
Operating system:

Microsoft Windows %P, 32-bit (Service Pack 3)

DirectX version: 9.0c

Graphics card inft

Components Details

GeForce 9400 GT

181.20

16

550 MHz

1375 MHz

400 MHz (800 MHz data rate)
128-bit

S12MB

62.94.46.00.00

16

PCI Express x16

Driver version:
Stream processors:
Core clock:

Shader clock:
Memory clock:
Memory interface:
Memory:

Video BIOS version:
RQ:

Bus:

About
I Close I

swe | pint

Figure 3.2: nVidia driver showing GPU information

Introduction —7

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

There is 1 device supporting CUDA

Device @: "GeForce 94068 GT"
Major revision numbher: 1
Minor revision numbher: 1
Total amount of globhal memory: 536543232 hytes
Number of multiprocessors: 2
Number of cores: 16
Total amount of constant memory: 65536 bytes
Total amount of shared memory per hlock: 16384 bytes
Total numbher of registers available per block: 8192
Warp size: 32
Maximum numbher of threads per block: 512
Maximum sizes of each dimension of a bhlock: 512 x 512 x 64
Maximum sizes of each dimension of a grid: 65535 x 65535 x 1
Maximum memory pitch: 262144 hytes
Texture alignment: 256 hytes
Clock rate: 1.48 GH=z
Concurrent copy and execution: Yes

Figure 3.3: A homebrew application that retrieves GPU information

To get this computer working drivers for both GPU and CUDA were needed. In
summary these are the used drivers:

e GPU driver: nVidia GeForce 182.20
e CUDA driver: 2.1
* Software Development Kit: nVidia CUDA SDK 2.10.1215.2015

After installing these packages and testing over the SDK samples that all
worked well it was time to install the most known IDE (Integrated
Development Environment), RAD (Rapid Application Development) or
whatever it is, Microsoft Visual Studio (MVS). In this case it is necessary to
install Microsoft Visual Studio 2005 (8.0 internal version) to maintain the
compatibility with the samples in the SDK. It also was helpful CUDA VS
Wizard, a template to do the task of creating CUDA projects into Microsoft
Visual Studio easier.

VNC (Virtual Network Computing) was installed using TightVNC package to
be able to work without been physically where the “Thesis Computer” was.

To transfer some files and write the thesis SSH was installed too. OpenSSH for
Windows was used.

3.3.1. Personal Computer

The Personal Computer was used at the first stage of the process, coding the
proposal and delivering to Thesis Computer a compiling implementation. This
could be done because CUDA was able to compile and run projects without
having any CUDA based device card. This was called Emulation Mode and as it
says emulates an inexistent CUDA device. In this case, only nVidia SDK (the
same version) was needed.

Because MVS cannot be used in Mac OS X alternatives were needed. In this
case, a pack of tools was used to replace MVS:

Introduction— 8

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

GCC (GNU Compiler Collection): The GNU Compiler Collection
includes front ends for C, C++, Objective-C, Fortran, Java, and Ada, as
well as libraries for these languages (libstdc++, libgcj, ...). Concretely,
gce/g++ was used to compile non-CUDA code.

SCons (A Software Construction Tool): Is an improved, cross-
platform substitute for the classic make utility with integrated
functionality similar to autoconf/automake and compiler caches such as
ccache. In short, SCons is an easier, more reliable and faster way to build
software. It was prepared to work with CUDA (using CudaTool) on
UNiX based systems.

VIM (Vi IMproved): Vim is a highly configurable text editor built to
enable efficient text editing. It is an improved version of the vi editor
distributed with most UNIX systems. It was used to code CUDA
programs as well as SConstruct files.

GNU Octave: GNU Octave is a high-level language, primarily intended
for numerical computations. It provides a convenient command line
interface for solving linear and nonlinear problems numerically, and for
performing other numerical experiments using a language that is mostly
compatible with Matlab. It was used to create charts with generated
benchmarking data.

Paralelly with TightVNC server, JollyFastVNC was used as client. Actually, at
present it is possible to get inside Thesis Computer:

Server List

Q
name
Master Thesis
Hidden
Hidden (VIEW)

Name Master Thesis

Network Address Port

129.241.209.194

Server Type | Default

Security Type | Default

Keyboard Input | Default | login:
Autoconnect | Default bruker
Use | Transport Encoding Order password:

1 tight low bandwidth rekurb

4
4
4
4
A

B
p—

tight medium bandwidth
tight high bandwidth
zrle

zlib

bhmsobila

Closed. [Connect -2

Figure 3.4: JollyFastVNC in action

Introduction—g9g

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

4. Background

The history before reaching the actual position in the graphic devices market
has had a typical evolutionary way, the usual way to converge into the point
that all the enterprises were looking for. Leaving the battles and saying “it’s
over” to the war of conquering the whole market and dividing this into pieces
for controlling their own bubble. As it usually happens some battles will
happen during the next years because some pieces of this market will bump
into the others controlling bubble. Nowadays the war is to keep their bubbles
intact and try to be innovative to control the upcoming sectors.

Concretely, we are talking about the war of the parallel computing. And how
we get into this war is what the next lines will explain.

All the users and developers since the first mono task processor was created
were finding parallel/multi task execution, at least the sensation of that without
taking care it was real or not. From the mono task processor we evolved to
virtual multi task over mono task processor, to made multi task transparent to
the end-user. And now we have broken the hardware frontier where we were.
At present, there are a lot of solutions with multi core (“processor”) in the CPU
or GPU market to get our real multi task system.

While one core processor manufacturing technology continues to improve,
minimizing the transistor sizes, physical limits have become a major problem.
As predicted by Moore’s law, the main problem is, at this moment, the heat
dissipation in that reduced transistor sizes and by consequence the problems
that occur like incorrect data synchronization. This is why the most important
manufacturers changed their priority. While getting core frequency increased is
getting more and more complicated (It’s expected to get atom sizes in 2 or 3
generations) they decided to change how to deal with the problem, using multi
cores.

This new way to tackle the problem has advantages and disadvantages. If the
operating system implements multi core processors, multi tasking is improved
in the same quantity of cores has the processor, and the end user will notice
immediately. But the tasks themselves, if are not coded thinking in parallel
architecture, are not going to be improved or speeded up. Probably they will
run slower than they did in mono processor architectures.

The reason of why the tasks will run slower is easy to understand. Usually
adding more cores to the same processor wants to say that each core running
independently will work slower. And probably the task that we are going to
execute isn’t prepared for threading or parallel computing and it will run only
in one core that isn’'t as good as one mono processor. For example, after
retrieving information from Intel for the same date and the same
manufacturing technology (65nm) we could do this comparison (January,
2006):

Background —10

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

Intel Pentium 4 HT:
Cores: 1
Frequency/core: 3-3,6 GHz
Total power consumption: 65 — 85W

Intel Core Duo:
Cores: 2
Frequency/core: 1,6 GHz
Total power consumption: 34W

This means that a task coded without thinking in parallel programming will
run 50% slower in a Core Duo processor. Instead, if the task is thread-capable it
will run as fast as in the first processor with at least a 50% less power
consumption.

The same thing happens to the GPU’s. When we are using only one core
independently instead of in parallel mode, we are not getting benefit from the
other cores (In nVidia Tesla for example, each one runs at 600 MHz).

Nowadays the reality is a little bit different. Although the hardware vendors
have been moving to multi core architectures creating the situation of a big
multi core dilemma, recently, more choices have become available for the
different kind of applications. But there are a lot of different points of view to
deal with the dilemma and a choice may be done.

4.1.Heterogeneous vs. Homogeneous Multi-Core

Some of the new multi core hardware/software shown below will look more
homogenous, like a group of CPUs. Others, instead, will look more
heterogeneous, like CPUs helped by different specialized cores like GPUs. Both
options will improve our present situation and are going to benefit the
industry, but there are pros and cons for each that should be considered before
any software development planning.

Intel and Sun are planning to continue HOMOGENEOUS strategy:

* Intel’s Larrabee project is a many-core CPU strategy that they argue will
reduce (or eliminate) the need to use separate GPUs and other
accelerators for general-purpose computing, although it seems likely
that it could bear some similarities to GPUs in the areas of floating point
and vector operations. One of the main advantages of this approach is
that it leverages the existing x86 instruction set. Not everyone loves the
x86 instruction set, but there are certainly huge benefits to keeping the
existing tool-chains (compilers, debuggers, profilers) that are already in
place. Some tests have been published with multi core Xeon systems and
seen very good scalability with this approach for common applications.

* Sun released Niagaraz, their follow up to the industry-leading Niagara
multi core server.

Background —u

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

IBM, AMD and nVidia are taking the HETEROGENEOUS approach:

* AMD, with their purchase of ATI, added GPU hardware to their offering,
and has put “stream computing” and “accelerated computing” (formerly
known as “Fusion”) in the middle of their strategy. The vision here is
basically fusion of CPU and specialized “accelerators” so that the
hardware is more tuned to different use cases. For example, CPUs are
great at time slicing and scheduling, while GPUs are great at processing
math in parallel. AMD recently made a public embrace of the nascent
OpenCL standard as a programming model for GPU.

e IBM, in partnership with Sony and Toshiba, has brought the CellBE
processor to market. The basic idea here is similar to AMD’s accelerated
computing: specialized hardware tuned to different use cases all on a
single chip.

* nVidia is focused on the GPU. Focus has a lot of advantages; nVidia is
ahead of AMD in getting GPU into the mainstream market (although
this is still very early stage) and has a more robust API and tool
environment with CUDA. Many people in both industry and academic
areas have reported significant throughput increases using nVidia GPUs
for complex compute-intensive problems that are capable of running in
a massively parallel environment.

4.2.The options

At present, we have these options. As explained before some are homogeneous
and others heterogeneous with their pros and cons. We'll explain features of
each one as brief and detailed as possible.

Background —12

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

4.2.1. nVidia — CUDA

N Cupa zone
NVIRIA

nVidia is the enterprise which has taken the first position on the easy-to-obtain
market. In other words, the best option if we consider quality-price ratio. We
need to put the blame on video game industry. How this market has grown in
these years is incredible, we can corroborate if we track the news about gaming
industry. News like this one are not surprising in the last years:

“2007 U.S. Video Game And PC Game Sales Exceed $18.8 Billion Marking Third
Consecutive Year Of Record-Breaking Sales”.

nVidia put all effort focused in this market to develop competitive GPU devices
and expanded its market giving the chance to use this innovative products in
research areas. CUDA was created with the intention to monopolize these
areas.

As the reader probably knows, nVidia is only dedicated to the development of
graphic device cards putting all its competence creating innovative devices.
That’s a great pro for the enterprise having at present always a step ahead
others. CUDA is the reality of years of work.

But what's CUDA? CUDA (Compute Unified Device Architecture) is a SDK
created by nVidia to use their graphic devices for non-graphical purposes. Its
strength is based on the D&C (Divide & Conquer) strategy, creating a lot of
threads for running in parallel over all the cores that a device has. After doing
some calculations in each thread the result is unified in what we are looking
for.

In CUDA: In-depth analysis a more detailed explanation about how it works is
shown.

Background —13

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

4.2.2. AMD ATi Fusion — ATi Stream Computing

2L ATi

ATi Stream Computing is the response of the AMD ATi Fusion to nVidia’s
CUDA SDK. Although, they created the SDK first (Close-To-Metal (CTM) low-
level API), the well-known one is CUDA.

They have taken with dedication the development of a useful developer kit
before showing it to the world and here is the result. A SDK that works with
CPU and GPU together instead of doing separately as nVidia’s CUDA does,
because these ones have no control over the CPU.

Software
Applications

. ’ Graphics WOrkbads
o W/ 0 » &,
Serial and Task Data Parallel
v Parallel Workloads Workloads

@

Figure 4.1: AMD/ATi Fusion environment

A presentation was done in the 2008 Q4 explaining how is going to work SDK
and solved some doubts that were created during 2008.

The Free and Open ATI Stream SDK

AMD is the first company to offer a freely-
downloadable, open set of programming

Tools, Libraries, tools for stream programming

Brook+ Middleware
High-level language (ACML, RapidMind,

e) Adoption of Stream SDK, launched in

Compute Abstraction Layer (CAL)
Open systems approach to enable
developers: published interfaces from top
f to bottom; open source Brook+
ATI GPU Hardware

AMD’s Stream Developer Forum is the
most active developer forum at AMD

@ 22 | ATI Stream Computing Update | Confidential AMD

The future is fusion

Figure 4.2: Features of Open ATi Stream SDK

Background —14

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

First of all, at present the main language that is going to be used to code on the
ATi graphic devices is a modified version of BrookGPU, supposed to be an
optimized one, called Brook+ (We're going to explain it before).

This high-level language talks to the ATi Stream Layer, which is both a low-
level language and an API. It’s the CTM successor. Other applications and
middleware also speak to this layer.

There was a bit commotion after this presentation because Brook+ was adopted
as the primary tool to code on ATi cards. But in that moment, the world
attended to the union between influencing enterprises shouting for an open
standard adoption.

In some ways it reminds of the early days of the 3D-acceleration where we had
competing 3D API's from 3dfx (Glide), Rendition (Redline) and PowerVR
(VideoLogic now Imagination Technologies). The competition meant that
developers had to program patches for each type of cards just to give users 3D-
support. The solution at that time was a few broader standards, OpenGL and
DirectX, and it looks like the solution will be similar this time. Now the
standard is called OpenCL and is what the enterprises have been claiming for.

At the moment, ATi has sold more than 2 million ATi Radeon™ HD 4000 series
graphic device cards. They announced that downloading a freely available
package will unlock built-in ATi Stream capabilities giving the possibility, for
example, to develop a ATi Radeon™ Folding@Home version that uses this
tools.

Background —15

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

4.2.3. Khronos Group — OpenCL

KHRCONOS OpenCL

GROUP

OpenCL (The Open Standard for Heterogeneous Parallel Programming) is a
language created by Khronos Group during 2008. This is not true at all, because
a draft of OpenCL proposal was given by Apple Inc. to Khronos Group. Here is
the events chronology:

OpenCL
Apple works working group Khronos
with AMD, Intel, develops draft publicly releases
NVIDIA and into cross- OpenCL as
others on draft vendor royalty-free
proposal specification specification
| Jun08 | Oct08 | Feb08
Il t Dec08 t
Apple proposes Working Group Khronos releases
OpenCL working sends conformance
group and completed draft tests to ensure
contributes draft to Khronos high-quality
specification to Board for implementations
Khronos Ratification

Figure 4.3: Chronology of OpenCL growing

Apple is going to include the first release of OpenCL in its upcoming Mac OS X
Snow Leopard setting the trend and going a step ahead.

Its objective is to help growing the market for parallel computing for all kind of
vendors of systems, silicon, middleware, tools and applications. It’s open,
royalty-free standard for heterogeneous parallel programming with a unified
programming model for CPUs, GPUs, Cell, DSP and other processors. The next
chart shows exactly how the OpenCL is going to fusion the worlds of CPU and
GPU.

Background —16

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

CPUs

Multiple cores driving
performance increases

GPUs

Emerging Increasingly general purpose
: \ data-parallel computing
Intersection Improving numerical precision

OpenCL

Heterogenous
Computing

Graphics APls /
and Shading
Languages

Multi-processor
programming —
e.g. OpenMP

OpenCL - Open Computing Language
Open, royalty-free standard for portable, parallel programming of heterogeneous
parallel computing CPUs, GPUs, and other processors

Figure 4.4: Fusion between CPU and GPU with OpenCL

[ts main features are these ones:

Foundation Layer: It’s a layer that gives low-level access to create fast
and efficient middleware and applications.

Royalty free: It’s open, with no cost for using the API.

Cross-Vendor: One of the most important features, it doesn’t matter if
you are developing for a nVidia GeForce, ATi Radeon or IBM Cell
processors, the code is going to be the same, transparent to the
developer.

Diverse Applications: It's going to be used in different kind of
applications starting from embedded and mobile software through
consumer applications to HPC solutions.

Diverse Industry: Diverse applications entail to diverse industry
participation like processor vendors, system OEMs, middleware vendors,
application developers, etc.

Rapid deployment in the market: Designed to run on current latest
generations of GPU hardware.

Focus of Graphics/Media: Khronos has an established focus on 2D/3D,
video, imaging, audio APIs, etc.

If all these reasons are not enough, the support of many industry-leading
experts and companies will confirm that this is what the sector was looking for.
Below some of the companies in the OpenCL working group:

Background —17

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

ILABS aaveos BRI AMDZI1 ARM mobex @

4 - = g T=22 '/j
 codeplny ERICSSON =2 z“freescale- §/f. ... =S (intel

.m(?E’ :\ Q moisd NOKIA 3 o<

LLLLLLLLLLLLL MOTOROLA - nlel A. ANX SOFTWARE SYSTEMS
A om0 a

{/ Ny

TEXAS < -

panLe @ seqweed I [NsTROMENTS ;l‘m\w
2 «)

Figure 4.5: OpenCL sponsors

One missing company is Microsoft who plans to develop his own GPGPU
managing tool inside DirectX API with a lot of new features, all included in the
u™ version.

Background —18

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

4.2.4. Stanford University — BrookGPU

; S
M'J‘:

BrookGPU is the Stanford University Graphics group's compiler and runtime
implementation of the Brook stream programming language for using modern
graphic device cards for non-graphical, or general-purpose computation.

It could be defined as the little unknown brother of OpenCL that created a
programming language to unify the most important vendors at present. This is
the scheme that indicates how it works:

.br

Brook source files

\ source to source compiler

foo.cpp

foo.br

brt

Bit I Brook run-time library

dx9 | ARB | nv3x| x86 |

Figure 4.6: BrookGPU flow diagram

Brook is a set of extensions to the C language "C with streams" as its creators at
Stanford presented it. Concretely, Brook proposed to encapsulate all the
management part of the 3D API and expose the GPU as a coprocessor for
parallel calculations. For this, Brook comprises a compiler, which takes a .br file
containing C++ code and extensions and generates standard C++ code that will
be linked to a run-time library that has various back-ends (DirectX, OpenGL
ARB, OpenGL NV3x, x86).

But BrookGPU has a very big problem. One over which BrookGPU’s developers
had no control, compatibility. It’'s not strange for GPU manufacturers to
improve their drivers regularly, furthermore given the heavy competition
between them. While these updates are an improvement for gamers, they could

Background —19

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

break Brook’s compatibility overnight. That made it hard to imagine using the
API in industrial-quality code intended for deployment.

BrookGPU has remained the attention of curious researches and programmers
but is doomed to death because of not having big enterprises support.

Background — 20

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

4.2.5. Intel - ‘Ct’ Larrabee

Larrabee is the codename of the current Intel developing processor with which
expect to get into graphic device cards market, at the moment under nVidia
and AMD/ATi control in 98%.

Intel Larrabee is at present being developed but on a SIGGRAPH 2008 paper
they revealed some interesting data about it. It seems that is some kind of
AMD/ATi Fusion, mixing CPU and GPU in the same unit with processor that
could contain, in the future, 48 cores something not surprising if we take into
account the evolution of two years ago.

Architecture Convergence

Multi-threading

Multi-core Many Core

Ful
S » Evolving toward throughput computing Programrnable
" * Motivated by energy-efficient performance
g
3 Partially
S . EVO'V‘ng toward gemfa"pufpose computing Programmab[e
8’ « Motivated by higher quality graphics and
Qa data-parallel programming

Fixed Function

Throughput Performance

Need: CPU programmability & GPU parallelism

Figure 4.7: Intel’s demagogy about CPU and GPU

Intel Larrabee will mean one big step ahead over current systems. Both Intel
with Larrabee and AMD/ATi with Fusion are walking in the same direction
unifying the two most important components of a system: CPU and GPU.

However, Intel is speaking about a long-term basis, instead of AMD/ATi
Fusion, where the number of cores are of vital importance for the task
distribution (Both task and graphic data) between different execution threads.
On the other hand, AMD/ATi Fusion could be integrated in a short-term basis
and into no so powerful microprocessors even in netbooks.

Background — 21

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

According to Intel, Larrabee is based on several Pentium processors with an
addition of 64 bits instruction set and multi-threading, as well as one cache for
sharing data between cores.

It will be available in the market on 2009-2010. Dates that seem early if we take
into account in the situation we are. Where quad-core processors in the present
market don’t have too much followers (In part due to operating system
developers passivity to fit these processors well in the running architecture).

Some preliminary notes had been given in the SIGGRAPH like performance
data comparing the increasing of cores vs performance. Proving linear increase:

FEAR*
S = Half Life* 2 Episode 2

" Gears of War*

Scaled performance

Number of Larrabee Cores

l | ! l
8 16 24 32 40 48

Figure 4.8: Gaming performance tests

It looks promising, but no runtime environment was given which is a suspicion
reason. Although Intel is very secretive regarding which are the upcoming
Larrabee’s features, what is confirmed is the language they are going to use for
programming on it. It’s called ‘Ct’ (C/C++ for Throughput Computing).

In their words ‘Ct’ is for:

“One of the main challenges in scaling multi-core for the future is that
of migrating programming tools, build environments, and millions of
lines of existing code to new parallel programming models or
compilers. To help this transition, Intel researchers are developing
“Ct,” or C/C++ for Throughput Computing.”

And how is going to be done? Creating a library-like solution in the same way
as BrookGPU does. There is a first step parsing to analyze if ‘Ct’ code exists.
This is done using special Ct-based parallel data types. After that the code
identified by ‘Ct’ is used for parallelizing it. For example we have this:

TVEC<F64> A,expv,product,SMVP;

A 5;
expv [1 2 3 45];

Background — 22

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

[5 10 15 20 25]
5+10+15+20425 = 75

A*expv; // product

product
addReduce (product) // SMVP

SMVP

This is the simplest example that can be written. But teaches how is the idea of
‘Ct’ to cover the most basic part of a programming language (data types) and

try to parallelize the operations between these.

product = A*expv

SMVP = CEAQAReduss (product) §tat/c or Compile-Time Dynamic
Non-fused Fused Threaded

....) Local Multiply|
Multiply
“-‘,---II--..) ‘_---.> ‘.-)
y v a
v

AddReduce Local AddReduce
v l
Global AddReduce Y

Figure 4.9: ‘Ct’ parallelizing method

Below a figure taken from ‘Ct’ whitepaper is shown which simplifies the flow
diagram of a program parsing, compiling/linking and execution:

Ct-based Parallel Data Types

| Physics, Image,
Pysis image. | oy | -—
. Processing, ... K | /'\
.o
[

-
N

C/C++
libs
C/C++ .
. calable,
/" | Com piler Adaptive
\ Performance

Ct

Runtime = _
Core 2 Core 2
_J‘ guo M"“ Tera-scale

Figure 4.10: ‘Ct’ flow diagram

And finally a performance test using ‘Ct’ in Intel Xeon processor E5345 platform

(two 2.33GHz quad-core processors, 4GB memory):

Background — 23

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

Speedup
=

150 +

- 320 Ct(1thread) mCt(8 thteads)
110 4 !
g0 |

72
50 4 42 J
M 31
20 | '
B 1 .

104+_2 . 4 J

Figure 4.11: Basic operations performance tests

If we calculate the speedup of each task dividing the multi-threaded by the
single-threaded we obtain an almost uniform random parameter between [6,8].
This means that if we increase the number of cores the performance is
increased almost linearly.

Background — 24

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

4.2.6. IBM - CelIBE

SONY TOsHIBA === Cell BE

Cell is a microprocessor architecture developed jointly by Sony, Toshiba and
IBM an alliance known as “STI”. It started on 2001 and needed four developing
years for having a working prototype with 400 employees working around the
world and US$400 million.

Cell Processor Architecture

Power Processor Element (PPE)

(64 bit PowerPC with VMX)
1/0 Memory
Controller | I Controller BAM
1/0 I I Memory
Controller Controller DA
/ SPE 1 I SPE S I
Dual "configurable" ==
High speed VO
channels SPE 2 SPE 6
(76.8 GBytes per
second in total)
SPE 3 SPE7
Dual 12.8 GByte per
second memory busses
SPE 4 SPE 8 give Cell huge memory
bandwidth. (25.6 GBytes
N per second in total)
\ EIB (Element Interconnect Bus)
© Nicholas Blachford 2005 is the internal communication system.

Figure 4.12: Cell BE processor

The current chip is composed of one 64-bit PowerPC Processing Element (PPE)
and 8 specialized co-processors called Synergistic Processing Elements (SPE).
The PPE and SPEs are linked together by an internal high speed bus called
Element Interconnect Bus (EIB).

The PowerPC Processing Element (PPE) follows the 64-bit PowerPC AS
architecture, as the PowerPC 970 CPU (also known as the Gs) and all recent
IBM POWER™ processors also use. Like the 970, it can use the VMX (AltiVec)
vector instructions to parallelize arithmetic operations.

The SPEs are composed of a Synergistic Processing Unit (SPU), and a SMF unit
(DMA, MMU, and bus interface). A SPE is a RISC processor with 128-bit SIMD

Background — 25

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

organization for single and double precision instructions. Each SPE contains a
256 KB instruction and data local memory area (called local store) which is
visible to the PPE and can be addressed directly by software. The local store
does not operate like a superscalar CPU cache since it is neither transparent to
software nor does it contain hardware structures that predict what data to load.

The EIB is a circular bus made of two channels in opposite directions each. It
enables communication between the PPE and SPEs. It is also connected to the
L2 cache, the memory controller, and the FlexIO for external communications.

Nowadays, Cell BE is at least as famous as nVidia CUDA capable graphic device
cards for parallel application development. But they have different influencing
area. Cell BE is more focused in industrial area composed by HPC (High
Performance Computing), upcoming Video/Audio systems, powerful consoles,
where has the sector won. nVidia instead is the leader in personal computing
(and now its getting known by researches, universities, etc.) and is migrating its
useful SDK to Home HPC world creating different kind of systems based on
Tesla cards.

A fast comparison could be done between these two supercomputing giants:

Magnetar TDX Pro PS

(nVidia Tesla HPC) 3
Price 11.100 € 465 €
Single Precision 2.8 TeraFLOPS 256 GigaFLOPS
Double Precision 230 GigaFLOPS 25 GigaFLOPS

Table 4.1: Comparison between nVidia Tesla and Sony PS3

Spending the same quantity of money buying one nVidia Tesla HPC we could
buy (11.100/465) = 23.8 PS3s. Knowing that the theoretical GigaFLOPS increases
linearly, with the same quantity of money PS3 arrives to 256%23.8 = 6.1
GigaFLOPS. 2.8 times faster than nVidia Tesla HPC in single precision
computation and 2.58 times faster in double precision.

To get this HPC monster working, IBM released an SDK that is continuously
updating and has a lot of useful libraries as well as a great amount and variety
of documentation.

This release helped to independent groups to create their own supercomputer
(Universitat Politecnica de Catalunya is migrating to PowerXCell, an evolution
of Cell BE, based systems). Consequently, these groups (Universities, HPCs,
Independent PS3 users, etc.) are contributing to the Cell community and it is
growing fast with a lot of software progresses, like CellSs (Cell Superscalar).

Background — 26

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

5. CUDA: In-depth analysis

5.1.Brief description

As explained in the background of this thesis, CUDA is a SDK developed by
nVidia to let developers the possibility of programming into CUDA-capable
nVidia devices. A parallel programming model and software environment
designed to overcome the challenge of transparently scale its parallelism to
leverage the increasing number of processor cores, while maintaining a low
learning curve for programmers familiar with standard programming languages
such as C.

At its engine there are three main abstractions, hierarchy of thread groups,
shared memories and synchronization between threads. To use all of them
together CUDA gives a minimal set of C extensions.

But not all that glitters is gold. CUDA provides the software development kit
for create our parallel made applications but doesn’t magically convert our
sequential thinking habit into optimized code. Although this SDK helps a lot
and reduces dramatically the learning curve, we need to become accustomed
with parallel code deployment.

Once we think up how to create our application for be able to run in a parallel
architecture the benefits came alone. We can see the peak of GigaFLOPS
obtained with one nVidia GPU comparing with an Intel CPU:

v GT200
1000
NVIDIA GPU
wp=|ntel CPU G80 G92
e Ultra
L G80
O
r 500
(G
X G71
o
a
250 NV40 G70 3.2 GHz
NV35 3.0 GHz Harpertown
e AH_EﬁDL/‘.
o @@ @-
Jan Jun Apr Jun Mar Nov May Jun
2003 2004 2005 2006 2007 2008
GT200 = GeForce GTX 280 G71 = GeForce 7900 GTX NV35 = GeForce FX 5950 Ultra
G92 = GeForce 9800 GTX G70 = GeForce 7800 GTX NV30 = GeForce FX 5800
G80 = GeForce 8800 GTX NV40 = GeForce 6800 Ultra

Figure 5.1: Chronology of CPU and GPU improvements

CUDA: In-depth analysis — 27

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

Why weren’t they handicapped in the same way as their rivals who design
CPUs? The reason is very simple: CPUs are designed to get maximum
performance from a stream of instructions, which operates on diverse data
(such as integers and floating-point calculations) and performs random
memory accesses, branching, etc. Up to that point, architects were working to
extract more parallelism of instructions - that is, to launch as many
instructions as possible in parallel. Accordingly, the Pentium introduced
superscalar execution, making it possible to launch two instructions per cycle
under certain conditions. The Pentium Pro ushered in out-of-order execution
of instructions in order to make optimum use of calculating units. The problem
is that there’s a limit to the parallelism that is possible to get out of a sequential
stream of instructions, and consequently, blindly increasing the number of
calculating units is useless, since they remain unused most of the time.

In the other hand, the operation of a GPU is too simple. The job consists of
taking a group of polygons, on the one hand, and generating a group of pixels
on the other. The polygons and pixels are independent of each other, and so
can be processed by parallel units. That means that a GPU can afford to devote
a large part of its die to calculating units which, unlike those of a CPU, will
actually be used.

The difference is shown in the next figure:

Control ALU ALU

CALU ALU

CPU GPU

Figure 5.2: Difference between CPU and GPU architecture

5.2.Programming Model

CUDA as all novel SDKs has created its own programming model based on the
requirements that this kind of SDK should has. Normally, the hardware itself
imposes the restrictions and the needs of a SDK. As shown in the last figure,
the GPU is composed with a lot of ALU’s prepared to process some graphic
data. To manage these ALUs uses threads that can be coded for our own
purposes.

But the threads are organized in one way that it is easy for the device to launch
and maintain under control. In the same manner, these are arranged in one

CUDA: In-depth analysis — 28

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

way that makes the life of a 3D programmer easier, creating the concept of
grids and blocks.

Grid

Block (0,0) Block (1,0) Block (2, 0)

Block (0, 1" Block (1,1) “Block (2, 1)

Block (1, 1)

Figure 5.3: nVidia device grid composition

In the last figure we can identify the thread hierarchy. First it is the Grid a two-
dimensional parameter containing blocks inside. Then we have Blocks, a three-
dimensional parameter in which we have a defined number of threads. Finally,
the Threads themselves where we put the tasks we want to launch. The threads
are a three-dimensional parameters too. The reason why is arranged in a three-
dimensional way is because, in the first implementation of the SDK, was

CUDA: In-depth analysis — 29

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

thought to be running two/three dimensional application and an abstraction
which helps was needed.

How we put threads doing some job? For that was implemented the kernel. The
kernel is similar as a function is in C, which helps launching a task to the GPU
with an appropriate configuration. An easy way to understand:

dim3 numBlocks(1,1,1);

dim3 numThreads(1,1,1);

uint sharedMemsize = 2048;

myKernelTask<<< numBlocks,numThreads,sharedMemsize>>>(argl,arg2,...);

A lot of kernels could be coded in our C program but only one of them is going
to be using the GPU at the same time. This implies a queue to be implemented
in the GPU card to maintain the kernel execution order as they were inserted in
the queue. The queue is a FIFO (First In First Out) based one, it’s up to the
developer create a priority based algorithm if needed.

What the parameter sharedMemsize really does is going to be explained in the
memory model section.

5.2.1. Host and Device

CUDA assumes that the threads may execute on a physically separate device
that operates as a coprocessor to the host running the C program. This is the
case when the kernels execute on a GPU and the rest of the C program
continues executing on a CPU.

It also assumes that both the host and the device maintain their own DRAM
referred to as host memory and device memory, respectively. Therefore, a
program manages the global, constant, and texture memory spaces visible to
kernels through calls to the CUDA runtime environment. This includes device
memory allocation and deallocation, as well as data transfer between host and
device memory.

CUDA: In-depth analysis —30

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

C Program
Sequential
Execution

Serial code

Parallel kernel

Kernel0<<<>>> ()

Serial code

Parallel kernel
Kernell<<<>>>()

\J

Serial code executes on the host while paraliel code executes on the device.

Figure 5.4: nVidia CUDA execution flow

CUDA: In-depth analysis — 31

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

5.2.2. Memory model

There are several types of memory that a developer can use. Each one has its
pros and cons. Lets analyze through the next figure:

=== —

Unit

Processor 1 Processor2 *** Processor M

Figure 5.5: nVidia device architecture in depth

First, we can see that there is a Device Memory usually called as global memory.
This is shared by all the threads and we need to take account how our kernel is
getting information from it. Because it could be extremely slow if more than
one thread are trying to access to a specific memory address at the same time.
This memory it’s readable and writable by all the running threads.

CUDA: In-depth analysis — 32

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

Shared Memory is like Device Memory but it differs in the quantity of threads
that could get access to it. It is deductible with the figure up, that Shared
Memory is only shared by the threads in the multiprocessor. Namely, its
changes could only be seen by the threads within the multiprocessor (within
the block when we configure our kernel) and is used for the communication
between threads. As well as global memory, shared memory is readable and
writable by all the threads within the block.

Before the explanation of another type of memory we need to make one thing
clear. There is a big confusion between what is local memory and registers. In
the nVidia forums usually when people is talking about registers want to say
local memory, and vice versa. But they are not the same.

Local Memory is an abstraction made by CUDA to be able to differentiate
between global memory and local memory of each thread, but in essence, they
reside in the same memory place (global memory). It was created to fulfil as
well as possible the needs of the developer.

Instead, Registers are memories owned by each thread. There aren’t so much
but they help getting our application faster. Normally, automatic variables
declared in a kernel reside in registers, which provide very fast access. In some
cases the compiler might choose to place these variables in local memory,
which might be the case when:

* There are too many register variables

* An array contains more than four elements

* Some structure or array would consume too much register space

* When the compiler cannot determine if an array is indeed with constant
quantities.

Finally, there are two read only address spaces that are vestiges of the graphical
nature of the GPU - the constant and texture memories.

Constant Memory can be filled up with constant values before launching a
kernel and it cannot be modified during the execution. It is like the #define
statement in C that cannot be modified after it have been pre-processed.

The Texture Cache is a place where the 2D textures are put there to have a fast
access to them. It’s vastly larger than Constant Memory and has two-
dimensional locality (traditional caches have locality in a single dimension). It
is not our interest when we are developing not-OpenGL/DirectX kind of
applications.

But there are big differences between memories as we can see in the next table:

Name | Size | Speed | Type | Alloc.Place |
Registers 8192/ MP Fast R/W MP
Shared 16 Kb Fast R/W MP
Memory
Local Memory | Device’s Mem. Slow R/W DRAM

CUDA: In-depth analysis—33

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

Constant 64 Kb Fast R DRAM
Memory
Texture Cache 16 Kb/MP Fast R DRAM
Global Device’s Mem. Slow R/W DRAM
Memory
MP = MultiProcessor (This values could change with device model)
Table 5.1: Memory types comparison
5.3.CUDA API

The CUDA API encompasses a whole ecosystem of software. Its hear is the
CUDA C which is compiled with nvec (nVidia compiler, based on Open64
back-end). CUDA is not C, is a variant of C extensions.

To be able of executing CUDA-kind code it’s needed the installation of CUDA
driver, which is now included in all nVidia graphic drivers. The CUDA run-
time, which is a dynamic compiler (JiT - Just in Time compiler, yes! Based on
Toyota method) that can target the underlying hardware, is an optional
component. Finally, the API includes math libraries, FFT (Fast Fourier
Transform), BLAS (Basic Linear Algebra Subprograms) and DPP (Data Parallel
Primitives). Again, these are optional.

nvece the most important part of the coding process, can output three different
targets:

e PTX: Parallel Thread eXecution
e CUDA binaries
e Standard C

PTX is a virtual instruction set designed as an input set for the dynamic
compiler. The CUDA run-time layer (JiT) converts, compiling the PTX file into
native operations for whatever it is the GPU hardware a user has installed. The
loveliness of this approach is that it's thought for the upcoming years, keeping
in mind the importance of backwards compatibility, longevity, scalability and
high performance.

PTX running in the JiT layer is obviously the best approach to get the highest
performance. Some software companies prefer to give up some performance in
exchange for easy to validate behaviour. To fulfil the needs of this area nvecc
could deliver a CUDA binary file and avoid the dynamic compilar of weird
behaviour. The user who uses .cubin files is tied up to execute in a specific
environment, that is to say, a concrete GPU and nVidia driver version.

Finally, there is the option of getting a Standard C output. This could be
redirected to the actual well-known compilers like Intel (icc), GNU (gcc).
What's the benefit of doing this? It’s easy to understand. When programming
CUDA compatible programs, code is made in the way it’s easy to optimize. It
can certainly be assured that it will considerably improve the scalability for

CUDA: In-depth analysis —34

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

multi core CPUs. In the documentation is showed an improvement of 4x speed
up.

5.3.1. Compute Capabilites

As explained before, CUDA was designed thinking in the longevity of the
released packages. The capabilities of CUDA devices are described as a revision
number that is closely linked with the version of CUDA that could execute. The
first digit indicates the core architecture and the second digit indicates more
negligible improvements.

On July 2006 CUDA released its first SDK version, 0.2 Beta. In this time there
have been 3 minor revisions each trending to more general purpose
functionality:

°* LI
o Atomic functions operating on 32 bit words in global memory.

* 1.2
o Atomic functions operating on 32 bit words in shared memory.
o Atomic functions operating on 64 bit words in global memory.
o Two new warp voting functions
o Support for the GT200 micro-architecture.

* 13:

o Support for double precision floating point values.

Compute capability version is not related to the CUDA version. At present,
nVidia has released CUDA 2.0 but there is no compute capabilities update. For
example, GeForce GTX 280, 260 and Tesla Si070, Ci060 are the only with
compute capability 1.3. There are not compute capability 1.2 devices.

The lack of Compute 1.2 devices today seems to indicate that at least one future
GPU will omit double precision floating point to reduce costs.

5.4.Example

The simplest example but the most didactic is the next one that shows in a
simple manner how to structure the code and the sections that really matter.

#include <stdio.h>
#include <assert.h>

#define NUMTHREADSPERBLOCK 10

__constant__ int kte_dev [NUMTHREADSPERBLOCK];
int kte_host[NUMTHREADSPERBLOCK];

void __device__ addFunc(int idx, int *data) {
data[idx] += kte_dev[idx];
ks

CUDA: In-depth analysis —35

__global_

int

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

_ void myKernel(int *deviceVar) {

extern __shared__ int s_data[];

// This is not necessary because we have only one block full of
// threads but it's illustrative (blockDim.x = numThreadsPerBlock)
// (blockDim.x = numThreadsPerBlock)*(blockIdx.x = 0) = @

int idx = blockDim.x *blockIdx.x + threadIdx.x;

// Transfer data to shared memory
s_data[idx] = deviceVar[idx];

// Execute the addition function
addFunc(idx, s_data);

// Transfer data from shared memory
deviceVar[idx] = s_data[idx];

main(int argc, char **argv) {

// Allocated in the host memory

int *hostVar;

int numThreadsPerBlock = NUMTHREADSPERBLOCK;
int memSize = numThreadsPerBlock * sizeof(int);

// Initialize and copy it to Constant Cache
for(int 1 = @0; i < numThreadsPerBlock; i++) {
kte_host[i] = 1i;
3
cudaMemcpyToSymbol(kte_dev, kte_host, sizeof(kte_host));
// Allocated in the device memory
int *deviceVar;
// Alloc memory in host
hostVar = (int *)malloc(memSize);
cudaMalloc((void **)&deviceVar, memSize);
// Fill with 0's
memsetChostVar,0,memSize);
// Copy it to device's memory
cudaMemcpy(deviceVar, hostVar, memSize, cudaMemcpyHostToDevice);
// Launch kernel 1 block NUMTHREADSPERBLOCK
myKernel<<1l,numThreadsPerBlock,memSize>>(deviceVar);
// Wait until process it's finished
// This is not necessary because the cudaMemcpy below is a blocking
// function which will stop running the CPU task until deviceVar is
// unblocked
cudaThreadSynchronize();
// Copy it back to host's memory
cudaMemcpy(hostVar, deviceVar, memSize, cudaMemcpyDeviceToHost);
// Test if something was wrong
for(int 1 = @; 1 < numThreadsPerBlock ; i++) {
assertChostvar[i] == i);
3
// Free host's memory
freeChostVar);

CUDA: In-depth analysis —36

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

6. Blue Midnight Wish

6.1.Brief explanation

BMW (BLUE MIDNIGHT WISH) was presented on October 2008 as a candidate for
SHA-3 NIST (National Institute of Standards and Technology) hash
competition.

This hash competition was thought in the same way as AES was, with a detailed
timeline and a lot of deadlines before deciding which is going to be the next
standard hash algorithm. In the appendix, you can find the SHA-3 hash
competition timeline where the green blocks mean that the stage has been
completed. This list is provisional and is subject to change at NIST’s discretion.

Like a lot of algorithm developments, BMW has gone through a lot of changes
during its creation timeline. It’s based on Turbo SHA-2, predecessor of BMW,
and has four different output sizes: 224, 256, 384, 512 bits.

Message .] . ' §upport o”f

Algortihm | sizel (in BloF k S14e qud stze Endianess DlgeSt Size | ~one-pass

bits) m (in bits) | w (in bits) n (in bits) | streaming
mode
BMW224 <2% 512 32 Little-endian 224 Yes
BMW256 < 2% 512 32 Little-endian 256 Yes
BMW334 < 2% 1024 64 Litlle-endian 384 Yes
BMWs512 <2% 1024 64 Little-endian 512 Yes

Table 6.1: Basic properties of all four variants of the BLUE MIDNIGHT WISH

Our purpose isn’t to explain how BMW works but it’s advisable to have a global
idea which will help in some subsequent descriptions. BMW follows the general
design patterns with three important stages in its cryptographic algorithm
process:

* Pre-processing.
o Pad the message M.
o Parse the padded message into N, m-bit message blocks, M®,
M@, M®
o Set initial values.
* Hash computation recursively (shown in figures below)
* Output the hash taking the least n significant bits.

A more detailed vision could be taken in the figure below:

Blue Midnight Wish—37

Nonlinear Bijective

M Pipe
Expansion

S {0,117 40,13"

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

o
0) ! " +
H 0"=0,".0" H" cene K 0=, ",0,")

Figure 6.1: A graphic representation of BLUE MIDNIGHT WIisH hash algorithm

fo: {0,137 = 10,1}

coee
Nonlinear Bijective
M seee M Pipe
III III

£i10,117 510,13

A different point of view of the same description could also be seen in the
figure below:

| New message block }—1

{ M; = My, ..., M,s)

B
(| \J
' =
—] 0. (0, O15) | Q
l a
)
e}
=
a
[1, J#Thekey—l 8
!
| O, = Qe ..., O31) T
p 8
Qo
)
e
3
fa (=
2
Q
Z
- l
| H=(Hy, ...Hys) |}———r

}
Final hash

Figure 6.2: Graphical representation of the compression function in BLUE MIDNIGHT WISH

As it can be observed it is a recursive algorithm that depends with the last
double pipe calculated before. The first double pipe is defined in the pre-
processing stage with static values in an incremental way.

The most important parts are the blocks defined as f;, f; and f;. Without going
into BMW in depth the blocks convert and reduce the ingoing message using a
lot of non-linear mathematical procedures via low-cost bit operations. Finally,
we get a “final hash” that is a modified version of the initial value using message
blocks as changing parameter.

Blue Midnight Wish —38

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

6.2.ldentifying parallel blocks

Our purpose is to use CUDA and try to implement BMW on it. To reach this
aim first we need to identify which parts are those that could be parallelized.
This work is done in the paper submitted to NIST (Section 4.5: Internal
Parallelizability of BLUE MIDNIGHT WISH).

The compression function (f;, f; and f,) allows a very high level of
parallelization. This can be achieved with upcoming multicore systems, both
CPU and GPU. Nowadays, a feasible option is only the GPU because they have
at least the quantity of threads that the compression function needs.

The process consists in three main parts but not all of them can be parallelized.
Theoretically all of them could be parallelized but f; is more a sequential
calculation method instead of parallel one. It was decided to consider only the
options involving to f, and f,.

From the NIST submitted paper we have these identified parallelizable points:

¢ Computing f,:

o Step 1: Computation of all 16 parts of W,, W,, ..., Wi, in the jth
iteration.

o Step 2: Computing the values of all 16 parts of Q..

¢ Computing f;:

o Step 1: It has 16 expansion steps and each step depends from the
previous one. But every expansion step have an internal structure
that can be parallelized, and a pipelined setup can compute parts
from the next expansion steps that do not depend on the previous
expansion value.

e Computing f;:

o Step 1: This step can be computed together with the computation
of Step 1 of the function f;.

o Step 2 (First half): Computation of the first 8 words H,, H,, ...,
Hs, in the ;th iteration.

o Step 2 (Second half): Computation of the last 8 words Hs, H,, ...,
H,;, in the ith iteration.

Knowing the internal working flow or pipeline of CUDA, as explained before, it
was decided to don’t implement some parallel parts to get the best
performance with nVidia graphic device cards.

Another decision was taken with the last computation (f,), where instead of
launching 8 computations in each moment, it was decided to launch 16 doing
some changes in the calculation order but obtaining the same result.

In the appendix, it’s framed by a red box the parts that involves to the f, and f,
calculations. How many threads are launched in each step are also shown in
the figures.

Blue Midnight Wish—39

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

6.3.Implementation

Knowing how to proceed using the methodology planned in the introduction,
two different proposals were designed. The significant difference between these
two was how to do the compression procedure. Lets analyze the two designs.

6.3.1. Design #1

We known that the hash obtained from a message before getting the final
output needs to split the message into small blocks. Using a loop and
recursively with the last compression procedure calculation we update the
output at each time and after the last calculation we get the hash.

In this design, the loop is coded inside an unique CUDA kernel. This design
includes the f;, f; and f; calculation in the same kernel. As said in the section
“Identifying parallel blocks” f, and f; can be calculated paralelly but what about
f>? Because of its sequential behaviour it is calculated with only one CUDA
thread that slows down the calculation a lot (in this case slows down fcpu/fcore
=3Ghz/550Mhz = 5.45 times). As summary below the pros and cons:

| Pros | Cons

If a huge message is sent to the GPU
could crash because of memory
overflow

The sequential part slows down the
compression procedure at least 5.45

times
Table 6.2: Design #1 pros and cons

Negligible memory transfer latency
because it’s done only once

It is called the kernel only once,
avoiding a lot of kernel call delays

6.3.2. Design #2

Two kernels were created. The first one calculates f;, block and the second f,.
Each loop iteration compression procedure is called. This means that at each
iteration of a piece of message block needs to be transferred to the device
memory as well as kernel calling. This happens two times for each parallel

block (f; and f;).

| Pros | Cons
All the calculations are done in At each loop iteration memory needs
parallel to be transferred to device.

At each loop iteration two kernels

needs to be called.
Table 6.3: Design #2 pros and cons

It avoids the f; sequential block

Blue Midnight Wish — 40

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

6.3.3. How-To

The two designs were implemented but only one is added to the appendix
because of the difference in performance between two proposals. The first
design was much slower than the second one and all the efforts were focused in
the multi-kernel solution. A shortened version of the GPU working
compression function is the next:

#define Compression256()\

AN
cudaMemcpy(data32_dev, data32, 16*sizeof(u_int32_t), cudaMemcpyHostToDevice);\
cudaMemcpy(p256_dev, p256, 16*sizeof(u_int32_t), cudaMemcpyHostToDevice);\
kernel_f@<<<1,16>>>(data32_dev, p256_dev);\
cudaMemcpy(p256, p256_dev, 32*sizeof(u_int32_t), cudaMemcpyDeviceToHost);\

[..] // f1 sequential block

cudaMemcpy(data32_dev, data32, 16*sizeof(u_int32_t), cudaMemcpyHostToDevice);\
cudaMemcpy(p256_dev, p256, 16*sizeof(u_int32_t), cudaMemcpyHostToDevice);\
kernel_f2<<<1,16>>>(XL32, XH32, data32_dev, p256_dev);\

cudaMemcpy(p256, p256_dev, 32*sizeof(u_int32_t), cudaMemcpyDeviceToHost);\

To implement this multi-kernel proposal, two different kernels were needed as
it can be seen in the code above. The code below are the implemented kernel

bodies.

* Kernel 1: Calculation of f,.

__global__ void kernel_f@Cu_int32_t *data32, u_int32_t *p256) {
u_int32_t thread = threadIdx.x;
u_int32_t idx=thread*5,sign=thread*4;

/* Mix the message block with the previous double pipe. */
p256[thread] A= data32[thread];
__syncthreads(Q);
p256[16+thread] = p256[idx_fO[idx + 0]]
sign_fO[sign+0]*p256[idx_fO[idx + 1]1]
sign_f@[sign+1]*p256[idx_fO[idx + 2]1]
+
+

+ 4+ + +

sign_f@[sign+2]*p256[idx_fO[idx + 31]
sign_fO[sign+3]*p256[idx_fO[idx + 4]1];
__syncthreads(Q);
switch(thread % 5)
{
case
case
case
case
case

p256[thread] = s32_0(p256[l6+thread]); break;
p256[thread] = s32_1(p256[l6+thread]); break;
p256[thread] = s32_2(p256[l6+thread]); break;
p256[thread] = s32_3(p256[l6+thread]); break;
p256[thread] = s32_4(p256[l6+thread]); break;

AP WNREOS

* Kernel 1: Calculation of f;.

__global__ void kernel_f2Cu_int32_t XL32_host, u_int32_t XH32_host, u_int32_t *data32, u_int32_t
*p256) {

u_int32_t thread = threadIdx.x;

u_int32_t XL32 = XL32_host;

u_int32_t XH32 = XH32_host;

Blue Midnight Wish — 41

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

5) A shr(p256[16],5)

A

A

sh1(p256[17],8)
sh1(p256[18],5)
sh1(p256[19],5)
p256[20]
shr(p256[21],6)
sh1(p256[22],6)
sh1(p256[23],2)
p256[24]
p256[25]
p256[26]
p256[27]
p256[28]
p256[29]

p256[30]

A

A

A

A

A

A

A

A

/* Compute the double chaining pipe for the next message
switch(thread)
{
case 0: p256[0] = (shl(XH32,
p256[24] A p256[@]); break;
case 1: p256[1] = (shr(XH32, 7)
p256[25] A p256[1]); break;
case 2: p256[2] = (shr(XH32, 5)
p256[26] A p256[2]); break;
case 3: p256[3] = (shr(XH32, 1)
p256[27] A p256[3]); break;
case 4: p256[4] = (shr(XH32, 3)
p256[28] A p256[4]1); break;
case 5: p256[5] = (shl(XH32, 6)
p256[29] A p256[5]); break;
case 6: p256[6] = (shr(XH32, 4)
p256[30] A p256[6]); break;
case 7: p256[7] = (shr(XH32,11)
p256[31] A p256[7]); break;
case 8: p256[8] = (C XH32
p256[23] A p256[8]); break;
case 9: p256[9] = (C XH32
p256[16] A p256[9]1); break;
case 10: p256[10] = (XH32
p256[17] A p256[10]); break;
case 11: p256[11] = (C XH32
p256[18] A p256[11]); break;
case 12: p256[12] = (C XH32
p256[19] A p256[12]); break;
case 13: p256[13] = (C XH32
p256[20] A p256[13]); break;
case 14: p256[14] = (C XH32
p256[21] A p256[14]); break;
case 15: p256[15] = (C XH32

p256[22] A p256[15]); break;
}

__syncthreads(Q);

p256[31]

block. */

data32[01) + (XL32
data32[11) + (XL32
data32[21) + (XL32
data32[3]) + (XL32
data32[41) + (XL32
data32[51) + (XL32
data32[61) + (XL32
data32[71) + (XL32
data32[8]) + (shl(XL32,8)
data32[91) + (shr(XL32,6)
data32[10]) + (sh1(XL32,6)
data32[11]) + (sh1(XL32,4)
data32[12]) + (shr(XL32,3)
data32[13]) + (shr(XL32,4)
data32[14]) + (shr(XL32,7)
data32[15]) + (shr(XL32,2)

if(thread < 8) p256[thread+8] += rotl32(p256[(thread+4)%8],thread+9);

In this implementation no shared memory was used. It was empirically tested
the speedup of the kernel calculation in each one is negligible. The commented
lines inside the kernels belong to the shared memory versions (In the

appendix).

Blue Midnight Wish — 42

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

7. Results

Any solution of proposal couldn’t be useful without a validation of the results. With
the implementation of proposal a benchmarking tool was coded too. In this code were
analyzed the most important bottlenecks of the compression procedure like:

* Copy data from host memory to device memory
* Kernel Execution
* Copy data from device memory to host memory

In many documents over the net it’s said that using shared memory improves the
speedup of our kernel, that’s not happening in our case.

7.1. With Shared Memory

Timing 12.58.36-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004113

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007767

kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.042342

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.016823

TOTAL TIME: 0.071044
——-Compute f2:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003870

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007768

kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.061432

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.015077

TOTAL TIME: 0.088147

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001427
——-Compute f2:

TOTAL TIME: 0.001403

Results — 43

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

* kernel_fo: 0.071044 ms
o Copy data from host memory to device memory: 0.004113 + 0.007767 =
0.01188 ms
o Kernel Execution: 0.042342 ms
o Copy data from device memory to host memory: 0.016823 ms

* kernel_f2: 0.088147 ms
o Copy data from host memory to device memory: 0.003870 + 0.007768 =
0.011638 ms
o Kernel Execution: 0.061432 ms
o Copy data from device memory to host memory: 0.088147 ms

All of this without taking the constant memory transferring into account. The
benchmarking of complete hash computation is also done. Below a figure showing the
difference between CPU and GPU performance made with an average of 10 samples
(GPU: green, CPU: blue, the samples can be found in the appendix):

4

3.5F

WW(W

WWW

[
T

WJ“ w-.'u

med
L5} .w*
Wi
W‘Mijw}
1 NJLJ
ﬂd o L wl L j

sl R P o it
" M.»er“ . Mu.,mtw"‘-"—”m ""‘M‘M’ﬂkj JL‘

0 2000 4000 6000 8000 10000

Figure 7.1: With shared memory benchmarking average

7.2. Without Shared Memory

Timing 12.55.32-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:
cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004083
cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007808
kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.041249
cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.019024

Results — 44

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

TOTAL TIME: 0.072163
——-Compute f2:
cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003826
cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007720
kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.059499
cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.023448
TOTAL TIME: 0.094493

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001429
——-Compute f2:

TOTAL TIME: 0.001420

* kernel_fo: 0.072163 ms
o Copy data from host memory to device memory: 0.004083 + 0.007808 =
0.011891 ms
o Kernel Execution: 0.041249 ms
o Copy data from device memory to host memory: 0.019024 ms

* kernel_f2: 0.094493 ms
o Copy data from host memory to device memory: 0.003826 + 0.007720 =
0.011546 ms
o Kernel Execution: 0.059499 ms
o Copy data from device memory to host memory: 0.023448 ms

Below the corresponding average figure:

.

3.5}

’ ﬂ&i
A

sl WJ% JMM

2,5F Lr’w»\

i
mew
15t W\‘”‘j\m&

~N

o5t fwu o yM-M”“"JWM‘JA~m}i
W‘““"”WM‘“M

Fissthad A8
NN e

0 2000 4000 6000 8000 10000

Figure 7.2: Without shared memory benchmarking average

We can calculate how much the GPU code slows down the computation:

Results — 45

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

With shared:
0 fo: 0.071044/0.001427 = 49.78 times slower.
o f>:0.088147/0.001403 = 62.86 times slower.
Without shared:
0 fo:0.072163/0.001429 = 50.49 times slower.
o f3:0.094493/0.001420 = 66.54 times slower.

Using the shared capable version or not, the results are not good enough to switch
CPU based code into the GPU one. But, why is this happening? There are several
reasons why this hash algorithm is not going to get optimized in a GPU version code:

Recursive behaviour: Because the iterative conduct added with the need of
the last hash computation creates a big bottleneck avoiding the possibility to
launch more and more threads in parallel.

Few threads quantity: In this implementation it can’t be used more than 16
threads. In concrete, this GPU is capable of executing 512 threads in parallel. If
threads quantity is increased the occupancy is getting closer to 100% usage.
Many if statements: Given the non-linear behaviour of the BMW algorithm
an if statements are needed into it. This slows down a lot because the threads
are diverged and the GPU core syncing method waits until all of them converge
into the same point. In other words, in most of the cases if statements need to
be avoided.

Not expensive calculations: The CPU based hash algorithm calculation is
cheap in computational cost terms. Only calling to the kernel in the GPU
overcome the microseconds used by the CPU to execute the computation.
Without taking into account the memory transferring.

Memory transferring: In the GPU before doing any calculation the data
needs to be transferred to the device memory. This adds delay to the final hash
computation that isn’t made up for parallelized version speed up.

All these reasons together don’t give the possibility to have a hopeful code for
working on it.

Results — 46

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

8. Future Work

Knowing the reasons why the algorithm is not getting the hoped results, it’s
time to think about what could be useful in the upcoming actions.

The most important bottleneck or reason why the algorithm is not working as
well as wanted is that in computational terms the algorithm is costless and the
time spent calling to the kernel overcome the time taken by the CPU executing
the whole algorithm.

A lot of cryptographic algorithms are complex compute-intensive problems
that would benefit the parallel computation of these multi-core systems. This is
not the case of BLUE MIDNIGHT WisH which is complex but not compute-
intensive.

If something could be said to improve the algorithm is to avoid its recursive
behaviour. We can see it in the figure below how it works:

Figure 8.1: Recursive flow diagram

Avoiding this behaviour will give the possibility of optimizing as much as the
GPU systems permit. Something like what the next figure shows would be the
ideal solution to get incredible high performance speed up.

Figure 8.2: Parallel capable flow diagram

Future Work — 47

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

This is parallel in all of its aspects. Because it can be launched in parallel and
after the next compression function does not need to wait for the previous one.

Future Work — 48

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

9. Conclusion

Nowadays, the GPGPU technology is at a very early stage because none one
standard have been adopted and there are a lot of diverged developments over
the net. During 2009-2010 a lot of new technologies based on the knowledge
obtained in the early ages will appear. As well as OpenCL standard, which will
help to get all the forces involved in the same standard and try to group all the
developments together following the same way.

Like always, Sony and its alliance will continue in their way (although they are
in the OpenCL standard consortium). This is not as important as it could sound
because the controlling bubble of Cell-kind processor will not bump into the
GPGPU’s bubble. They are involved in supercomputing world for enterprises
and not home available computation. Although perhaps after seeing the
comparison between nVidia CUDA capable devices and PS3 they could be hard
to beat competitors.

A lot of forums on the net started discussions based on the really non-sense
sentences like “CPU is dead, long life to GPU!”. This is not really true. CPU will
use the capabilities of GPU to increase its performance in a lot of aspects but
will never replace the CPUs at all.

It’s hard to predict how is going to evolve upcoming technologies of GPGPUs
but what is clear is that GPGPU will be the key point of creating the best
partner for the CPU.

In our case, BMW is not improved with CUDA and a specific device card.
Although the answer is negative, it still has a significant scientific value. The
point is that my work acknowledges viewpoints and standings of a part of the
cryptographic community that is doubtful that the cryptographic primitives
will benefit when executed in parallel in many cores in one CPU.

Indeed, my experiments show that the communication costs between cores in
CUDA outweigh by big margin the computational costs done inside one core
(processor) unit. Probably a proper way how to use numerous cores in one
CUDA processor would be to use specially designed modes of operation for
hash function (like tree hashing), but that problem can be left for future work.

The GPGPU computing is not the panacea but maybe it will lead to gold
computing ages. The future will tell if these novel technologies will be an
historic change in the computing world or not.

Conclusion — 49

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

10. Bibliography

[1] D. GLIGOROSKI AND S. J. KNAPSKOG, “Turbo SHA-2”,
<http://eprint.iacr.org/2007/403>

[2] D. GLIGOROSKI, V. KLIMA, S. J. KNAPSKOG, M. EL-HADEDY,]. AMUNDSEN AND S.

F. MJOLSNES, “Blue Midnight Wish”,
<http://www.item.ntnu.no/people/personalpages/fac/danilog/blue_midnight_wish>

[3] GPGPU, “General-Purpose Computation Using Graphics Hardware”,
<http://www.gpgpu.org/>.

[4] WIKIPEDIA, “Miscellaneus GPGPU implementations”,
<http://en.wikipedia.org/wiki/GPGPU>,

<http://en.wikipedia.org/wiki/Larrabee_(GPU)>,
<http://en.wikipedia.org/wiki/BrookGPU>,
<http://en.wikipedia.org/wiki/OpenCL>

[5] WIKIPEDIA, “Intel Processors Comparison”,

<http://en.wikipedia.org/wiki/List_of Intel Core_2_microprocessors>,
<http://en.wikipedia.org/wiki/List_of Intel Pentium_4_microprocessors>

[6] NVIDIA, “CUDA: Quickstart guide”,

<http://www.nvidia.com/object/cuda_develop.html>

[7] NVIDIA, “CUDA: Programming guide”,

<http://www.nvidia.com/object/cuda_develop.html>

[8] NVIDIA, “CUDA: Reference manual”,
<http://www.nvidia.com/object/cuda_develop.html>

[9] NVIDIA, “GeForce 8800 & NVIDIA CUDA: A New Architecture for

Computing on the GPU”,
<http://www.ddj.com/cpp/207200659>

[10] L. HOWES (NVIDIA), “Load structured data efficiently with CUDA”,
<http://www.ddj.com/cpp/207200659>

[1] Dr. DOBB’S, “CUDA, Supercomputing for the masses”,
<http://www.ddj.com/cpp/207200659>

[12] T. R. HALFHILL, “Parallel processing with CUDA”,

<http://www.mdronline.com/>

[13] INTEL, “Ct: Flexible Parallel Programming for Terascale

Architectures”,
<http://techresearch.intel.com/UserFiles/en-us/File/terascale/Whitepaper-Ct.pdf>

[14] INTEL, “Ct: C for Throughput Computing”,

<http://techresearch.intel.com/articles/Tera-Scale/1514.htm>

[15] E. DAVIS (INTEL), “Tera Tera Tera”,

Bibliography — 50

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

<http://bt.pa.msu.edu/TM/BocaRaton2006/abstracts/davis.pdf>

[16] DR. DOBB’S, “Ct In Action”,
<http://www.ddj.com/architect/212700261>

[17] K. MACKEY, “Clearing up the confusion over Intel’s Larrabee”,
<http://arstechnica.com/hardware/news/2007/04/clearing-up-the-confusion-over-intels-

larrabee.ars>,
<http://arstechnica.com/hardware/news/2007/06/clearing-up-the-confusion-over-intels-
larrabee-part-ii.ars>

[18] IBM, “Cell Broadband Engine”,
<http://www-o1.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine>

[19] H. P. HOFSTEE, “Introduction to Cell Broadband Engine”,
<http://www-o1.ibm.com/chips/techlib/techlib.nsf/techdocs/
D21E662845B95D4F872570ABoos5404D>

[20] N. TREVETT (KHRONOS GROUP), “OpenCL, The Open Standard for
Heterogeneous Parallel Programming”,

<http://www.khronos.org/developers/library/overview/opencl_overview.pdf>,
<http://www.khronos.org/registry/cl/specs/opencl-1.0.33.pdf >

[21] T. MATTSON AND L. MEADOWS, “A ‘hands-on’ introduction to OpenMP”,
<http://openmp.org/wp/2008/11/sco8-openmp-hands-on-tutorial-available/>

[22] D. NEGRUT, “High Performance Computing for Engineering
Applications”,
<http://sbel.wisc.edu/Courses/MEg64/2008/index.htm>

[23] P. LEONARD, “Parallel Computing: Strategies for Enterprise Software

Development”,
<http://www.cs.colorado.edu/events/colloquia/current/leonard.html>

[24] P. LEONARD, “The Multi-Core Dilemma”,
<http://softwareblogs.intel.com/2007/03/14/the-multi-core-dilemma-by-patrick-
leonard/>

Bibliography — 51

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

11.

Appendix

11.1. SHA-3 hash competition timeline

1Q =January —March

2Q = April
3Q =July

—June
— September

4Q = October — December

2006

August

Second Cryptographic Hash Workshop: Assess current status,
discuss hash function development strategy, and encourage
further research.

4Q

Draft the preliminary minimum acceptability requirements,
submission requirements, and evaluation criteria for candidate
hash functions.

2007

Publish the preliminary minimum acceptability requirements,
submission requirements, and evaluation criteria for public
comments.

Present the draft minimum acceptability requirements,
submission requirements, and evaluation criteria for candidate
hash functions at the RSA Conference and at FSE 2007.

2008

4Q

| Submission deadline for new hash functions.

2009

Review submitted functions, and select candidates that meet
basic submission requirements.

Host the First Hash Function Candidate Conference to announce
first round candidates. Submitters present their functions at the
workshop.

Call for public comments on the first round candidates.

2010

Public comment period ends.

Note: Depending on the number and quality of the submissions,
NIST may either extend the length of the initial public comment
period to allow sufficient time for the public analysis of the
candidate algorithms, or may include additional rounds of
analysis in order to successively reduce the number of candidate
algorithms for further consideration as finalist algorithms. In
these cases, NIST may host multiple workshops to discuss
analysis results on candidate algorithms until it is ready to select
the finalists.

Note that subsequent dates in the timeline assume that the
initial comment period will not be extended or additional
rounds will not be required.

Hold the Second Hash Function Candidate Conference. Discuss

Appendix — 52

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

the analysis results on the submitted candidates. Submitters may
identify possible improvements for their algorithms.

Address the public comments on the submitted candidates;
3Q select the finalists. Prepare a report to explain the selection.
Announce the finalists. Publish the selection report.

Submitters of the finalist candidates announce any tweaks to
4Q their submissions.
Final round begins.

2011
4Q | Public comment period for the final round ends.
2012
Host the Final Hash Function Candidate Conference. Submitters
1Q of the finalist algorithms discuss the comments on their
submissions.
Address public comments, and select the winner. Prepare a
2Q report to describe the final selection(s).
Announce the new hash function(s).
Draft the revised hash standard.
3Q Publish the draft standard for public comments.
Public comment period ends. Address public comments.
4Q Send the proposed standard to the Secretary of Commerce for
signature.

Appendix —53

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

11.2. Implemented parallel blocks

11.2.1. Computation of f,

fo:{0,1}*" — {0,1}"

Input: Message block M(f) = (M(()'), Mg'),. .., Mgg), and the previous double pipe H(i-1) = (H[g’_l), Hf'_l), e, Hg_l)).
Output: First part of the quadruple pipe Q" = (Q{",Q!",...,Q{!).

1. Bijective transform of M) @ H(-1);

e M) - 0D Pent) - aent? + ofenih) + wedonl?)
W) = (Mg_imgf Y- en{) + (ME"EBH% by 4 (M?‘@Hé ny - (M[’_:eﬂf D))
w? = mPeniV) + (M")@Héf Yy o+ Yeni™) - jenlyV) + Meni?)
wp = eni)y - mPenfY) -+ (M["@H(‘ Yy - eng) + feni?)
wy) = (M{‘_f@ﬂ{‘_ Yy o+ ey + (M.E"@H(' Yy - Penl) - wfeni?)
wy) = eniV) - (M“) el + WMPenll) - (M{‘Z‘ =BHl('z Dy + wlenli)
wé'_] - (M["SBHi' Yy - M @Hé’ Yy - MPenl™y - wMYenl™y + wleni)
W) = Pen V) - MPeniV) - Men) - (M?’{BHE'Z by - (M%‘Jeu(f Yy
W0 = oden) - oden) - oden) + olenit - wifonl)
wh = enf)y - MPenf) + wenV) - (M['_:EBH(_ Dy 4 (Mﬁfeﬂ{; D)
W = (M["g;u(‘ Yy - (M;’)EBH(' Yy - (M[“aan“ Yy - Peni™) 4+ (1\4%‘_‘@1—1(’5 V)
wl':;_l = MPeul) - (M(, oHl™) - Pen{) - (Mé‘_‘@ﬂs(‘_ R (M) @ Hy' Yy
wi;; = (M[‘}enif Do+ '}em‘{ Ny - (M[{:@H‘f Yy - Pen(™) + (M%‘}enib Yy
Wy = M eny Yy o« ™ o1y Yy o+ leny) + Mpeny) + (M;,:@Hd Yy
wl = MPen™) - wPeni™) + WeHi™) MPeulY) - MOenl)
wd = mPenl") - WPeriM)y - WPeni™) - (Mé“a;l—lé‘ R (M[“eu(' Yy
2. Further bijective transform of W(l), =0,.
]]=
Step 2: " " " F . : e
1 1 1 1 1 1 1 1
oiesds | O —so(Wg); Q) = sl(w1<) in’ =W Q) =s(Wy);
Q) =ssWy; Q) =so(W); Q) =W Q) = s (Wy);
(i) _ (i)y. (1) — (). (@ _ (@) (i) _ (@)y.
O —=olve: Qo =l) Q(°> o) Gy a0l
i i i i i i)y,
Qi =5:(Wp); Qs =s3(Wpy); Qi =sa(Wig); Q5 =so(Wi5);

Appendix— 54

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

11.2.1. Computation of f,

Folding f5 : {0,1}3" — {0,1}™
7N 7y g

Input: Message block M) = (M"” M;'), MYy,

quadruple pipe Q¥ = (Q}”, Q}", ..., Q. Q[lg" Q).

Output: New double pipe H() = (H()'), HY,..., HY).

1. Compute the cumulative temporary variables XL and XH.
XL = 2 o) o .. o qf
xH= XL & QY & Q¥ o ... o QU
2. Compute the new double pipe H'":
" Step1:
HY = P (SHLs(XH) ® SHRS(Q,) @ M + (XL o) ol
H = SHR7(XH) © SHLY(Q\) + XL® Q"’ Q!
].

Hy = (SHRS(XH) ® SHL5(Q) + (xz. o Q) ’)
H = (SHR'(xH) & SHL3(QYY) & M3 + (xre Q"’ Q)
HY = (sHR(Xm) o QY + (xteQfe Q“’
HY) = (sHLé(xH) & SHR"(QZ'I]) ® M + (xLeQf & Qf
HY = . SHR*(XH) @ SHLS(QY)) + (xLeQf & qf
H;i: =8 of 16 threads (5 R“(XH) =] SHLZ(Q) + XL& QJ' Qm
H{? =ROTL*(H") | + (xHe Q) + (SHLA(xL) e Qf o Q)
Hy =ROTLO(H)| + (xH © Q"‘ © M., + (sHRé(xL) & Qf & QF
Hyg —ROTL"(H“) + (xHe o eMy) + (sHSXL)e Q" m
1) =roTLR(HI))| + (xHe Qf @Mn + (SHL*(XL) ® Qff "’
H{) =ROTL(H]) + (xHe of eMj) + (sHR(XL)® Q"' “’
H) - OT,_14(H(r)|+ (xHe o e M13 + (SHRY(XL) ® QFf "’
HUD) —ROTL‘S(H[’)| + (xhHe off e M14 + (SHR'(xL) @ Q“' “’
HY =roTL®(H{)| + (xhe Qf eMml) + (sHRXLDeQRe "’)

Appendix— 55

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

11.3. Hash Benchmarks

11.3.1. With Shared Memory

Appendix — 56

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

11.3.1. Without Shared Memory

00000

00000

Appendix — 57

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

11.4. Compression function timing averages

11.4.1. With Shared Memory

Timing 12.58.21-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004080

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007842

kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.042444

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.016691

TOTAL TIME: 0.071058
——-Compute f2:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003846

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007797

kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.061484

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.015070

TOTAL TIME: 0.088197

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001444
——-Compute f2:

TOTAL TIME: 0.001420
Timing 12.58.29-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:
cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004154
cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007810
kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.042450
cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.016771
TOTAL TIME: 0.071185

Appendix —58

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

——-Compute f2:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003830

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007786

kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.061280

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.015093

TOTAL TIME: 0.087989

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001466
——-Compute f2:

TOTAL TIME: 0.001431
Timing 12.58.36-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004113

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007767

kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.042342

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.016823

TOTAL TIME: 0.071044
——-Compute f2:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003870

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007768

kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.061432

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.015077

TOTAL TIME: 0.088147

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001427
——-Compute f2:

TOTAL TIME: 0.001403
Timing 12.58.44-12Feb2009.txt:

GPU

Appendix — 59

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

**Compression256 ()
——-Compute £fO0:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004133

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007796

kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.043016

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.016717

TOTAL TIME: 0.071662
——-Compute f2:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003897

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007753

kernel 256 £f2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.062323

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.015118

TOTAL TIME: 0.089091

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001449
——-Compute f2:

TOTAL TIME: 0.001424
Timing 12.58.51-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004187

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007854

kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.043089

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.016732

TOTAL TIME: 0.071862
——-Compute f2:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003877

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007749

kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.062509

Appendix — 60

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.015061
TOTAL TIME: 0.089196

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001443
——-Compute f2:

TOTAL TIME: 0.001435
Timing 12.58.58-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004111

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007792

kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.042583

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.016741

TOTAL TIME: 0.071227
——-Compute f2:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003848

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007771

kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.061858

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.015125

TOTAL TIME: 0.088601

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001421
——-Compute f2:

TOTAL TIME: 0.001406
Timing 12.59.06-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:
cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004077
cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007806
kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):

Appendix — 61

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

time: 0.042433
cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.016778
TOTAL TIME: 0.071094
——-Compute f2:
cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003873
cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007769
kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.061320
cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.015021
TOTAL TIME: 0.087982

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001433
——-Compute f2:

TOTAL TIME: 0.001422
Timing 12.59.13-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004061

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007813

kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.042503

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.016655

TOTAL TIME: 0.071032
——-Compute f2:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003804

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007783

kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.061448

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.015101

TOTAL TIME: 0.088136

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001434
——-Compute f2:

Appendix — 62

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

TOTAL TIME: 0.001406
Timing 12.59.20-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004078

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007802

kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.042440

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.016658

TOTAL TIME: 0.070977
——-Compute f2:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003811

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007749

kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.061450

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.015081

TOTAL TIME: 0.088091

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001437
——-Compute f2:

TOTAL TIME: 0.001409
Timing 12.59.28-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:
cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004115
cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007817
kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.042358
cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.016720
TOTAL TIME: 0.071010
——-Compute f2:
cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003828

Appendix — 63

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007717

kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.061282

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.015080

TOTAL TIME: 0.087907

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001475
——-Compute f2:

TOTAL TIME: 0.001451

Appendix — 64

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

11.4.2. Without Shared Memory

Timing 12.55.16-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004146

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007809

kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.041207

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.018972

TOTAL TIME: 0.072134
——-Compute f2:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003834

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007762

kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.059848

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.023426

TOTAL TIME: 0.094870

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001394
——-Compute f2:

TOTAL TIME: 0.001375
Timing 12.55.25-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:
cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004189
cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007822
kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.041337
cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.019014
TOTAL TIME: 0.072363
——-Compute f2:

Appendix — 65

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003873

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007756

kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.059801

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.023388

TOTAL TIME: 0.094819

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001419
——-Compute f2:

TOTAL TIME: 0.001390
Timing 12.55.32-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004083

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007808

kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.041249

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.019024

TOTAL TIME: 0.072163
——-Compute f2:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003826

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007720

kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.059499

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.023448

TOTAL TIME: 0.094493

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001429
——-Compute f2:

TOTAL TIME: 0.001420
Timing 12.55.40-12Feb2009.txt:

GPU
**Compression256 ()

Appendix — 66

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

——-Compute £fO0:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004158

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007779

kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.041192

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.019050

TOTAL TIME: 0.072180
——-Compute f2:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003853

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007721

kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.059527

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.023480

TOTAL TIME: 0.094582

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001416
——-Compute f2:

TOTAL TIME: 0.001397
Timing 12.55.48-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004161

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007774

kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.041171

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.019020

TOTAL TIME: 0.072127
——-Compute f2:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003800

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007724

kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.059663

cudaMemcpyDeviceToHost:

Appendix — 67

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

p256_dev->p256 (128 bytes)
time: 0.023436
TOTAL TIME: 0.094623

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001417
——-Compute f2:

TOTAL TIME: 0.001403
Timing 12.55.55-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004139

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007806

kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.041350

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.019088

TOTAL TIME: 0.072383
——-Compute f2:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003816

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007747

kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.059547

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.023443

TOTAL TIME: 0.094552

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001434
——-Compute f2:

TOTAL TIME: 0.001424
Timing 12.56.03-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:
cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004118
cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007774
kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.041161

Appendix — 68

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.019004
TOTAL TIME: 0.072058
——-Compute f2:
cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003802
cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007743
kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.059298
cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.023495
TOTAL TIME: 0.094336

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001422
——-Compute f2:

TOTAL TIME: 0.001400
Timing 12.56.10-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004149

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007759

kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.041260

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.018981

TOTAL TIME: 0.072149
——-Compute f2:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003818

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007728

kernel 256 £f2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.059723

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.023441

TOTAL TIME: 0.094711

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001427
——-Compute f2:

TOTAL TIME: 0.001407

Appendix — 69

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

Timing 12.56.18-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004128

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007771

kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.041299

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.019006

TOTAL TIME: 0.072203
——-Compute f2:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003828

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007708

kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.059858

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.023380

TOTAL TIME: 0.094775

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001404
——-Compute f2:

TOTAL TIME: 0.001412
Timing 12.56.25-12Feb2009.txt:

GPU
**Compression256 ()
——-Compute £fO0:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.004326

cudaMemcpyHostToDevice:
p256->p256_dev (128 bytes)
time: 0.007905

kernel 256 £f0<<<1,16,2048>>>(data32 dev, p256 dev):
time: 0.042749

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.019343

TOTAL TIME: 0.074323
——-Compute f2:

cudaMemcpyHostToDevice:
data32->data32_dev (64 bytes)
time: 0.003961

cudaMemcpyHostToDevice:

Appendix — 70

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

p256->p256_dev (128 bytes)
time: 0.007764

kernel 256 £2<<<1,16,2048>>>(XL32, XH32, data32 dev, p256_dev):
time: 0.061921

cudaMemcpyDeviceToHost:
p256_dev->p256 (128 bytes)
time: 0.023565

TOTAL TIME: 0.097211

CPU
**Compression256 ()
——-Compute £fO0:
TOTAL TIME: 0.001419
——-Compute f2:

TOTAL TIME: 0.001393

Appendix —71

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

11.5. Source code

11.5.1. Timer.h

#ifndef TIMER_H_
#define TIMER_H_

#include <cuda_runtime.h>
#include <cutil.h>
#include <stdio.h>
#include <stdlib.h>

class Timer {
private:
unsigned int timer;
public:
Timer() {
CUT_SAFE_CALL(CcutCreateTimer(&timer));
b
void reset(void) {
CUT_SAFE_CALL(CcutResetTimer(timer));
b
void start(void) {
CUT_SAFE_CALL(CcutStartTimer(timer));
b
void stop(void) {
CUT_SAFE_CALL(CcutStopTimer(timer));
5
float gettime(void) {
return cutGetTimerValue(timer);
b
b

#define BLOCKS 256

class Timing {
private:
Timer timer;
float *timing;
int *counter;

public:
Timing(int n) {
timing = new float[n];
counter = new int[n];
for(int 1 =0 ; 1 <n ; i++) {
timing[i] = 0.0;
counter[i] = 0;
b
b
Timing({
delete [] timing;
delete [] counter;
b

void DoTimingl(void) {
#ifdef _DEBUG
timer.reset();
timer.startQ);
#endif
1
void DoTiming2(int i) {
#ifdef _DEBUG
timing[i] = timing[i] + timer.gettime(Q);
counter[i]++;

Appendix — 72

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

#tendif
b
float* gettiming(void) {
return timing;
b
int* getcounter(void) {
return counter;
b
b

#endif

Appendix— 73

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

11.5.2. main.cpp

#include <cuda_runtime.h>
#include <cutil.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#include "Timer.h"
#include "bmw/BlueMidnightWish.h"

#idefine FILENAME "Benchmark"
#define MAX_FILENAME_SIZE 2048
#define BENCHMARK_CPU 0

#define BENCHMARK_GPU 1

#define BUFFER_LENGTH 10000
#define BENCHMARK_STEP 10

char str[MAX_FILENAME_SIZET;
unsigned char buffer[BUFFER_LENGTH];

#ifdef _DEBUG

extern float *timing_gpu_256;
extern float *timing_cpu_256;
extern int *counter_gpu_256;
extern int *counter_cpu_256;
//extern float *timing_gpu_512;
//extern float *timing_cpu_512;
#endif

//
// Fill buffer with random bytes
//
unsigned int rand32(void) {
static unsigned int r4,r_cnt = -1,w = 521288629,z = 362436069;

= 36969 * (z & 65535) + (z >> 16);
w = 18000 * (w & 65535) + (w >> 16);

N
|

r_cnt = @; rd = (z << 16) + w; return ré4;

unsigned char rand8(void) {
static unsigned int r4,r_cnt = 4;

if(r_ent == 4){
r4 = rand32Q);
r_cnt = 0;

}

return (char)(r4 >> (8 * r_cnt++));
}

void BlockRandomFill(void) {
unsigned int 1i;
for(i = @; i < BUFFER_LENGTH; ++i) buffer[i] = rand8();

Appendix — 74

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

//
// Get formatted date and time
//
char* getDate(void) {
struct tm *ptr;
time_t tm;
char *str;

str = (char *)malloc(25*sizeof(char));
tm = time(NULL);

ptr = localtime(&tm);
strftime(str,25,"%H.%M.%S-%d%b%Y" ,ptr);

return str;
}
//
// Init & Close CUDA
//

#if __DEVICE_EMULATION__

bool InitCUDA(int argc, char **argv){return true;}
bool CloseCUDA(int argc, char **argv){return true;}

#else
bool InitCUDA(int argc, char **argv)
{

int count = 0;

int i = 0;

cudaGetDeviceCount(&count);

ifCcount == 0) {
fprintf(stderr, "There is no device.\n");
return false;

}

for(i = 0; i < count; i++) {
cudaDeviceProp prop;

if(cudaGetDeviceProperties(&prop, i) == cudaSuccess) {
if(prop.major >= 1) {
break;
1
}

}

if(i == count) {
fprintf(stderr, "There is no device supporting CUDA.\n");
return false;

}

cudaSetDevice(i);

printf("CUDA initialized.\n");
return true;

}

void CloseCUDA(int argc, char **argv){CUT_EXIT(Cargc,argv);return;}

#endif
//
// Benchmark and store output in Octave-Matlab compatible format
//
void Benchmark(char *date, int cpu_or_gpu) {
FILE *fd;

Appendix — 75

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

unsigned int i,j,k,size,hsizes[] = {224,256,384,512};
unsigned char fail=0,hv[BlueMidnightWish512_BLOCK_SIZE];

Timer timer;

for(i=0 ; i<4 ; i++) {
sprintf(str,"data/%s_%s_%i_%s.dat\@", FILENAME, (cpu_or_gpu) ? "GPU":"CPU",
hsizes[i],date);

fd = fopen(str,"w");

for(j=1 ; j<BUFFER_LENGTH; j+=BENCHMARK_STEP,fail=0) {
timer.reset();
timer.start();
if(Ccpu_or_gpu == 0) {

if(HashCPUChsizes[i],buffer,j,hv) != SUCCESS){fail = 1;}
1
else {

if(HashGPUChsizes[i],buffer,j,hv) != SUCCESS){fail = 1;}
1

timer.stop(Q);

if(fail) { fprintf(fd,"%10i FAILED\n",j); }
else {
fprintf(fd, "%10i %2.8f\n",j,timer.gettime());
}
}
fclose(fd);

}

void DoBenchmarking(void) {
char *date = getDate();

Benchmark(date, BENCHMARK_CPU);
Benchmark(date, BENCHMARK_GPU);

#ifdef _DEBUG
FILE *fd_timing;
sprintf(str,"data/Timing_%s.txt\Q",date);
fd_timing = fopen(str,"w");

float t_gpu_256[8];
float t_cpu_256[2];

t_gpu_256[0] = timing_gpu_256[0]/(float)counter_gpu_256[0];
t_gpu_256[1] = timing_gpu_256[1]/(float)counter_gpu_256[1];
t_gpu_256[2] = timing_gpu_256[2]/(float)counter_gpu_256[2];
t_gpu_256[3] = timing_gpu_256[3]/(float)counter_gpu_256[3];
t_gpu_256[4] = timing_gpu_256[4]/(float)counter_gpu_256[4];
t_gpu_256[5] = timing_gpu_256[5]/(float)counter_gpu_256[5];
t_gpu_256[6] = timing_gpu_256[6]/(float)counter_gpu_256[6];
t_gpu_256[7] = timing_gpu_256[7]/(float)counter_gpu_256[7];

t_cpu_256[0] = timing_cpu_256[0@]/(float)counter_cpu_256[0];
t_cpu_256[1] = timing_cpu_256[1]/(float)counter_cpu_256[1];

fprintf(fd_timing, "Timing average calculation by Gorka Lertxundi Osa\n");
fprintf(fd_timing, "-------——--—- \n");
fprintf(fd_timing, "GPU\n");

fprintf(fd_timing, "**Compression256(O\n");

fprintf(fd_timing, " --Compute f@:\n");

fprintf(fd_timing, " cudaMemcpyHostToDevice:\n");

fprintf(fd_timing, " data32->data32_dev (%i bytes)\n",16*sizeof(u_int32_t));
fprintf(fd_timing, " time: %f\n",t_gpu_256[0]);

fprintf(fd_timing, " cudaMemcpyHostToDevice:\n");

fprintf(fd_timing, " p256->p256_dev (%i bytes)\n",32*sizeof(u_int32_t));

Appendix — 76

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,

fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,

fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,
fprintf(fd_timing,

fclose(fd_timing);

#endif

}

time: %f\n",t_gpu_256[1]);
kernel_256_f0<<<1,16,2048>>>(data32_dev, p256_dev):\n");
time: %f\n",t_gpu_256[2]);
cudaMemcpyDeviceToHost:\n");
p256_dev->p256 (%i bytes)\n",32*sizeof(u_int32_t));
time: %f\n",t_gpu_256[3]);
TOTAL TIME: %f\n", t_gpu_256[0]+
t_gpu_256[1]+
t_gpu_256[2]+
t_gpu_256[31);
--Compute f2:\n");
cudaMemcpyHostToDevice:\n");
data32->data32_dev (%i bytes)\n",1l6*sizeof(u_int32_t));
time: %f\n",t_gpu_256[4]);
cudaMemcpyHostToDevice:\n");
p256->p256_dev (%i bytes)\n",32*sizeof(u_int32_t));
time: %f\n",t_gpu_256[5]1);

kernel_256_f2<<<1,16,2048>>>(XL32, XH32, data32_dev, p256_dev):\n");

time: %f\n",t_gpu_256[6]);
cudaMemcpyDeviceToHost:\n");
p256_dev->p256 (%i bytes)\n",32*sizeof(u_int32_t));
time: %f\n",t_gpu_256[7]);
TOTAL TIME: %f\n", t_gpu_256[4]+
t_gpu_256[5]+
t_gpu_256[6]+
t_gpu_256[71);

"CPU\n");
"**Compression256()\n");

--Compute f@:\n");

TOTAL TIME: %f\n",t_cpu_256[0@]);
--Compute f2:\n");

TOTAL TIME: %f\n",t_cpu_256[1]);

int main(int argc, char *argv[]) {
if(!InitCUDA(argc, argv)) {

return 0;

}

BlockRandomFill();
DoBenchmarking();

CloseCUDA(argc, argv);

return 0;

Appendix — 77

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

11.5.3. BlueMidnightWish.h

// We use this type definition to ensure that

// "unsigned long" on 32-bit and 64-bit little-endian
// operating systems are 4 bytes long.

#if defined(_MSC_VER)

typedef unsigned long u_int32_t;

typedef unsigned long long u_int64_t;

#else

#include <sys/types.h>

#endif

// General SHA-3 definitions

typedef unsigned char BitSequence;

typedef u_int64_t Datalength; // a typical 64-bit value

typedef enum { SUCCESS = @, FAIL = 1, BAD_HASHLEN = 2, BAD_CONSECUTIVE_CALL_TO_UPDATE = 3 }
HashReturn;

// Blue Midnight Wish allows to call Update() function consecutively only if the total length of
stored

// unprocessed data and the new supplied data is less than or equal to the BLOCK_SIZE on which the
// compression functions operates. Otherwise BAD_CONSECUTIVE_CALL_TO_UPDATE 1is returned.

// Specific algorithm definitions

#define BlueMidnightWish224_DIGEST_SIZE 28
#define BlueMidnightWish224_BLOCK_SIZE 64
#define BlueMidnightWish256_DIGEST_SIZE 32
#define BlueMidnightWish256_BLOCK_SIZE 64
#define BlueMidnightWish384_DIGEST_SIZE 48
#define BlueMidnightWish384_BLOCK_SIZE 128
#define BlueMidnightWish512_DIGEST_SIZE 64
#define BlueMidnightWish512_BLOCK_SIZE 128

// Here we define the default Blue Midnight Wish tunable security parameters.

// The parameters are named EXPAND_1_ROUNDS and EXPAND_2_ROUNDS.

// Since Blue Midnight Wish has 16 rounds in its message expansion part, the

// following relation for these parameters should be satisfied:

//

// EXPAND_1_ROUNDS + EXPAND_Z2_ROUNDS = 16

//

// Blue Midnight Wish in its message expansion part uses 2 different functions:
// expand_1 and expand_2.

//

// expand_1 is the more complex and more time consuming, but offers the fastest
// diffusion of bit differences and produces variables that have the most complex
// nonlinear relations with previous 16 variables in the message expansion part.
//

// expand_2 is faster than expand_1, and uses faster and simpler functions than
// expand_1. The produced variables still have complex nonlinear relations with
// previous 16 variables in the message expansion part.

//

#define EXPAND_1_ROUNDS 2

#define EXPAND_2_ROUNDS 14

typedef struct
{
u_int32_t DoublePipe[32];
BitSequence LastPart[BlueMidnightWish256_BLOCK_SIZE * 27];
} Data256;
typedef struct

Appendix — 78

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

u_int64_t DoublePipe[32];
BitSequence LastPart[BlueMidnightWish512_BLOCK_SIZE * 27];

} Data512;

typedef struct {
int hashbitlen;

// + algorithm specific parameters
u_int64_t bits_processed;

union

{

Data256 p256[1];
Data512 p512[1];
} pipe[1];
int unprocessed_bits;
} hashState;

HashReturn
HashReturn
HashReturn
HashReturn
*hashval);

HashReturn
HashReturn
HashReturn
HashReturn
*hashval);

InitCPUChashState *state, int hashbitlen);

UpdateCPUChashState *state, const BitSequence *data, DatalLength databitlen);
FinalCPUChashState *state, BitSequence *hashval);

HashCPU(int hashbitlen, const BitSequence *data, DatalLength databitlen, BitSequence

InitGPUChashState *state, int hashbitlen);

UpdateGPUChashState *state, const BitSequence *data, DatalLength databitlen);
FinalGPUChashState *state, BitSequence *hashval);

HashGPU(int hashbitlen, const BitSequence *data, DatalLength databitlen, BitSequence

Appendix—79

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

11.5.4. BlueMidnigthWish_CPU.cpp

See bibliography of “Blue Midnight Wish”. It is the same as
BlueMidnightWish.c source code. It only differs that it uses some timing
functions to know how much time spends doing the compression function.

Appendix — 8o

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

11.5.5. BlueMidnightWish_GPU.cpp

#include <string.h>
#include "BlueMidnightWish.h"

#include <cuda_runtime.h>
#include <cutil.h>

#include "../Timer.h"

#define rotl32(x,n) (((xX) << n) | (x) >> (32
#define rotr32(x,n) (((xX) >> n) | ((x) << (32 -
//#define rotl32 _lrotl
//#define rotr32 _lrotr

#define rotle4(x,n) (((X) << n) | ((x) >> (64 -
#define rotroe4(x,n) (((x) >> n) | ((x) << (64 -
//#define rotl6e4 _rotlo4
//#define rotr64 _rotro4

#define shl(x,n) ((x) << n)
#define shr(x,n) (x) >> n)

/* BlueMidnightWish224 initial double chaining pipe */

const u_int32_t 1224p2[16] =

{ 0x00010203ul, 0x04050607ul, 0x08090a0bul, 0x0c@ddedful,
0x10111213ul, 0x14151617ul, 0x18191albul, Oxlcldlelful,
0x20212223ul, 0x24252627ul, 0x28292a2bul, 0x2c2d2e2ful,
0x30313233ul, 0x24353637ul, 0x38393a3bul, 0x3c3d3e3ful,

1

/* BlueMidnightWish256 initial double chaining pipe */

const u_int32_t i256p2[16] =

{ 0x40414243ul, 0x44454647ul, 0x48494a4bul, @Ox4c4d4edful,
0x50515253ul, ©@x54555657ul, 0x58595a5bul, @x5c5d5e5ful,
0x60616263ul, 0x64656667ul, 0x68696a6bul, Ox6c6d6e6ful,
0x70717273ul, Ox74757677ul, Ox78797a7bul, Ox7c7d7e7ful,

1

/* BlueMidnightWish384 initial double chaining pipe */

const u_int64_t 1384p2[16] =

{
0x00010203040506007ull, 0x08090a0b0cOdOedfull,
0x1011121314151617ull, 0x18191alblcldlelfull,
0x2021222324252627ull, 0x28292a2b2c2d2e2full,
0x3031323324353637ull, 0x38393a3b3c3d3e3full,
0x4041424344454647ull, 0x48494a4b4cdd4edfull,
0x5051525354555657ull, @x58595a5b5c5d5e5full,
0x60616263646566067ull, 0x68696a6bbcodoecfull,
Ox70Q71727374757677ull, Ox78797a7b7c7d7e7full

b

nJ)
nJ)

nJ)
nJ)

/* BlueMidnightWish512 initial double chaining pipe */

const u_int64_t i512p2[16] =

{
0x8081828384858687ull, 0x88898a8b8c8d8e8full,
0x9091929394959697ull, 0x98999a9b9c9d9e9full,
0Oxa@ala2a3a4a5a6a7ull, @xa8a9aaabacadaeafull,
0xb@b1lb2b3b4b5b6b7ull, @xb8b9babbbcbdbebfull,
Oxc@clc2c3c4c5c6c7ull, Oxc8c9cacbccedcecfull,
0xd@d1d2d3d4d5d6d7ull, 0xd8d9dadbdcdddedfull,
Oxe@ele2e3edeS5e6e7ull, Oxe8eeaebecedeeefull,

Appendix — 81

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

Oxfof1f2f3f4f5fefrull, Oxf8f9fafbfcfdfeffull

1

#define
#define
#define
#define

/* Components used for 224 and
iy
iy
2)
2)
iy
2)

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

hashState224(x)
hashState256(x)
hashState384(x)
hashState512(x)

$32_0(x)
s32_1(x)
s32_2(x)
s32_3(x)
s32_4(x)
s32_5(x)
r32_01(x)
r32_02(x)
r32_03(x)
r32_04(x)
r32_05(x)
r32_06(x)
r32_07(x)

(shr((x),
(shr((x),
(shr((x),
(shr((x),
(shr((x),
(shr((x),
rotl32((x),
rot132((x),
rotl32((x),
rotl32((x),
rotl32((x),
rotl32((x),
rotl32((x),

((x)->pipe->p256)
((x)->pipe->p256)
((xX)->pipe->p512)
((xX)->pipe->p512)

256 bit version
sh1((x), 3) A
sh1((x), 2) A
sh1((x), 1) A
sh1((x), 2) A
A (X))

A (X))

3

7)

13)

16)

19)

23)

27)

A
A
A
A

*/

rotl32((x),
rotl32((x),
rotl32((x),
rotl32((x),

4
8)
12)
15)

> > > >

rotl32((x), 19))
rotl32((x), 23))
rotl32((x), 25))
rotl32((x), 29))

Timing t_gpu_256(8);

#ifdef _
float
int

#endif

/*
* %k
* %k

CUDA

* %k

*/

unsigned
unsigned
/*

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
*/

DEBUG

code

char
char

char
char
char
char
char
char

__constant__
__constant__

__constant__
__constant__
__constant__
__constant__
__constant__
__constant__

*timing_gpu_256 = t_gpu_256.gettiming();
*counter_gpu_256 = t_gpu_256.getcounter();

idx_fo[8e];
sign_fo[64];

idx_f2_sho[1l6];
idx_f2_sh@value[16];
idx_f2_shlvalue[16];
idx_f2_sh2[16];
idx_f2_sh2value[16];
idx_f2_p256value[16];

u_int32_t *data32_dev, *p256_dev;

const unsigned char

idx_f@_host[80] = {

e

WNPEPoOWOVU AU

el

Appendix — 82

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

const char
sign_f@_host[64] = { -1,+1,+1,+1,
-1,+1,+1,-1,
+1,+1,-1,+1,
-1,+1,-1,+1,
+1,+1,-1,-1,
-1,+1,-1,+1,
-1,-1,-1,+1,
_1’_1’_1’_11
-1,-1,+1,-1,
-1,+1,-1,+1,
-1,-1,-1,+1,
-1,-1,-1,+1,
+1,-1,-1,+1,
+1,+1,+1,+1,
-1,+1,-1,-1,
_1’_1’_1’+1 };
/*
const unsigned char
idx_f2_sh@_host[16] ={0,1,1, 1,
1, 0, 1, 1,
1, 1, 1, 1,
1, 1,1, 13
const unsigned char
idx_f2_sh@value_host[16] = { 5, 7, 5, 1,
3, 6, 4,11,
0, 0, 0, 0,
0, 0,0, 01%;
const unsigned char
idx_f2_shlvalue_host[16] = { 5, 8, 5, 5,
0, 6, 6, 2,
0, 0, 0, 0,
0, 0,0, 01%;
const unsigned char
idx_f2_sh2_host[16] ={1,1,1, 1,
1, 1, 1, 1,
0, 1, 0, 0,
1, 1,1, 13
const unsigned char
idx_f2_sh2value_host[16] = { 8, 6, 6, 4,
3, 4, 7, 2,
0, 0, 0, 0,
0, 0,0, 01%;
const unsigned char
idx_f2_p256value_host[1l6] = {24,25,26,27,
28,29,30,31,
23,16,17,18,
19,20,21,22 };

*/

void AllocCUDA(void) {
cudaMalloc((void**)&data32_dev,16*sizeof(u_int32_t));
cudaMalloc((void**)&p256_dev,32*sizeof(u_int32_t));

cudaMemcpyToSymbol(idx_f@, idx_f@_host, sizeof(idx_f0@));
cudaMemcpyToSymbol(sign_f@, sign_f@_host, sizeof(sign_f0));
/*
cudaMemcpyToSymbol(idx_f2_sh@, idx_f2_sh@_host, sizeof(idx_f2_sh@));
cudaMemcpyToSymbol(idx_f2_sh@value, idx_f2_sh@value_host, sizeof(idx_f2_sh@value));
cudaMemcpyToSymbol(idx_f2_shlvalue, idx_f2_shlvalue_host, sizeof(idx_f2_shlvalue));
cudaMemcpyToSymbol(idx_f2_sh2, idx_f2_sh2_host, sizeof(idx_f2_sh2));
cudaMemcpyToSymbol(idx_f2_sh2value, idx_f2_sh2value_host, sizeof(idx_f2_sh2value));
cudaMemcpyToSymbol(idx_f2_p256value, idx_f2_p256value_host, sizeof(idx_f2_p256value));
*/

Appendix — 83

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

}

void FreeCUDA(void) {
cudaFree(data32_dev);
cudaFree(p256_dev);

}

__global__ void kernel_f@Cu_int32_t *data32, u_int32_t *p256) {
u_int32_t thread = threadIdx.x;
u_int32_t idx=thread*5,sign=thread*4;

//extern __shared__ u_int32_t s_data[];
//u_int32_t *data32,*p256;

//data32 = s_data;
//p256 = &data32[16];

//data32[thread] = data32_dev[thread];

//p256[thread] p256_dev[thread];

//p256[thread+16] = p256_dev[thread+16];

//__syncthreads();

/* Mix the message block with the previous double pipe. */

p256[thread] A= data32[thread];

__syncthreadsQ);

p256[16+thread] = p256[idx_fO[idx + 0]]
sign_f@[sign+@]*p256[idx_fO[idx + 1]1]
sign_f@[sign+1]*p256[idx_fO[idx + 2]1]
sign_f@[sign+2]*p256[idx_fO[idx + 31]
sign_fO[sign+3]*p256[idx_fO[idx + 4]1];

+ + + +

__syncthreads(Q);
switch(thread % 5)
{
case
case
case
case
case

p256[thread] = s32_0(p256[l6+thread]); break;
p256[thread] = s32_1(p256[l6+thread]); break;
p256[thread] = s32_2(p256[l6+thread]); break;
p256[thread] = s32_3(p256[l6+thread]); break;
p256[thread] = s32_4(p256[l6+thread]); break;

PWONEFEOS

}
//p256_dev[thread] p256[thread];

//p256_dev[thread+16] = p256[thread+16];

}

__global__ void kernel_f2Cu_int32_t XL32_host, u_int32_t XH32_host, u_int32_t *data32, u_int32_t
*p256) {

u_int32_t thread = threadIdx.x;

u_int32_t XL32 = XL32_host;

u_int32_t XH32 = XH32_host;

//u_int32_t XL32_sh[2][16];

//u_int32_t XH32_sh[2][16];

//extern __shared__ u_int32_t s_data[];
//u_int32_t *data32,*p256;

//data32 = s_data;

//p256 = &data32[16];

//data32[thread] = data32_dev[thread];
//p256[thread] = p256_dev[thread];

//p256[thread+16] = p256_dev[thread+16];

/*

XL32_sh[@][thread] sh1(XL32, thread);
XL32_sh[1][thread] = shr(XL32, thread);
XH32_sh[@][thread] sh1(XH32, thread);
XH32_sh[1][thread] = shr(XH32, thread);

Appendix — 84

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

if(idx_f2_sh@[thread]) {

p256[thread] = (XH32_sh[idx_f2_sh@[thread]][idx_f2_sh@value[thread]]

shr(p256[thread+16],idx_f2_shlvalue[thread])
data32[thread])

(XL32_sh[idx_f2_sh2[thread]][idx_f2_sh2value[thread]]

p256[idx_f2_p256value[thread]] A p256[thread]);

}
else {
p256[thread] = (XH32_sh[idx_f2_sh@[thread]][idx_f2_sh@value[thread]]
shr(p256[thread+16],idx_f2_shlvalue[thread])
data32[thread])
(XL32_sh[idx_f2_sh2[thread]][idx_f2_sh2value[thread]]
p256[idx_f2_p256value[thread]] A p256[thread]);
!
/* Compute the double chaining pipe for the next message block. */
switch(thread)
{
case 0: p256[0] = (shl(XH32, 5) A shr(p256[16],5) A data32[@])
p256[24] A p256[@]); break;
case 1: p256[1] = (shr(XH32, 7) A shl(p256[17],8) A data32[1])
p256[25] A p256[1]); break;
case 2: p256[2] = (shr(XH32, 5) A shl(p256[18],5) A data32[2])
p256[26] A p256[2]); break;
case 3: p256[3] = (shr(XH32, 1) A shl(p256[19],5) A data32[3])
p256[27] A p256[3]1); break;
case 4: p256[4] = (shr(XH32, 3) A p256[20] A data32[4]1)
p256[28] A p256[4]); break;
case 5: p256[5] = (shl(XH32, 6) A shr(p256[21],6) A data32[5])
p256[29] A p256[5]); break;
case 6: p256[6] = (shr(XH32, 4) A shl(p256[22],6) A data32[6])
p256[30] A p256[6]); break;
case 7: p256[7] = (shr(XH32,11) A shl(p256[23],2) A data32[7])
p256[31] A p256[7]); break;
case 8: p256[8] = (XH32 A p256[24] A data32[8])
p256[23] A p256[8]); break;
case 9: p256[9] = (C XH32 A p256[25] A data32[9]1)
p256[16] A p256[9]); break;
case 10: p256[10] = (XH32 A p256[26] A data32[10])
p256[17] A p256[10]); break;
case 11: p256[11] = C XH32 A p256[27] A data32[11])
p256[18] A p256[11]); break;
case 12: p256[12] = (C XH32 A p256[28] A data32[12])
p256[19] A p256[12]); break;
case 13: p256[13] = (C XH32 A p256[29] A data32[13])
p256[20] A p256[13]); break;
case 14: p256[14] = (XH32 A p256[30] A data32[14])
p256[21] A p256[14]); break;
case 15: p256[15] = (C XH32 A p256[31] A data32[15])

p256[22] A p256[15]); break;
}

__syncthreadsQ);

if(thread < 8) p256[thread+8] += rotl32(p256[(thread+4)%8],thread+9);
//p256_dev[thread] = p256[thread];

//p256_dev[thread+16] = p256[thread+16];

}

#define Compression256()\
SAN
t_gpu_256.DoTimingl();\

>+ > >

>+ > >

C XL32
C XL32
C XL32
C XL32
C XL32
C XL32
C XL32
C XL32
(sh1(XL32,8)
(shr(XL32,6)
(sh1(XL32,6)
(sh1(XL32,4)
(shr(XL32,3)
(shr(XL32,4)
(shr(XL32,7)

(shr(XL32,2)

cudaMemcpy(data32_dev, data32, 1l6*sizeof(u_int32_t), cudaMemcpyHostToDevice);\

t_gpu_256.DoTiming2(@);\

Appendix — 85

275\

375\
\

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

t_gpu_256.DoTimingl();\
cudaMemcpy(p256_dev, p256, 16*sizeof(u_int32_t), cudaMemcpyHostToDevice);\
t_gpu_256.DoTiming2(1);\
t_gpu_256.DoTimingl();\
kernel_f@<<<1,16>>>(data32_dev, p256_dev);\
t_gpu_256.DoTiming2(2);\
t_gpu_256.DoTimingl();\
cudaMemcpy(p256, p256_dev, 32*sizeof(u_int32_t), cudaMemcpyDeviceToHost);\
t_gpu_256.DoTiming2(3);\

/* This is the Message expansion. */\
/* It has 16 rounds.

p256[16]

+ 4+ + 0

+
XL32 =
p256[17] =
+
+
+

+

s32_1(p256[01D
s32_1(p256[41
s32_1(p256[81D
s32_1(p256[12])

@x55555550ul + data32[0@]
p256[16];\

s32_1(p256[11D
s32_1(p256[51D
s32_1(p256[91D
s32_1(p256[13])

+
+
+
+
+
+
+

+

*/\
s32_2(p256[11D
s32_2(p256[51D
s32_2(p256[91D
s32_2(p256[13])

s32_2(p256[21D
s32_2(p256[61D
s32_2(p256[10])
s32_2(p256[14])

+
+
+

+

+ data32[3]

+
+
+

+

s32_3(p256[21)
s32_3(p256[6]1)
s32_3(p256[10])
s32_3(p256[14])

$32_3(p256[31)
$32_3(p256[71)
s32_3(p256[117)
$32_3(p256[15])

+
+
+
+
+
+
+

+

s32_0(p256[31D\
s32_0(p256[71D\
$32_0(p256[11]D\
$32_0(p256[15]D\

- data32[10];\

s32_0(p256[41D\
s32_0(p256[81D\
s32_0(p256[121OD\
$32_0(p256[16]D\

@x5aaaaaa5ul

XL32 A= p256[17];\

TempEven32

TempOdd32

= p256[14]

= p256[15]

/* expand32_22(18); */\

p256[18] =

TempEven32 +
+

+ + +

XL32 A= p256[18];\
/* expand32_21(19); */\

p256[19] =

TempOdd32

+
+
+
+
+

XL32 A= p256[19];\

TempEven32+=p256[16]; TempEven32-=p256[2];\

/* expand32_22(20); */\

p256[20] =

TempEven32 +
+

+
+
+

XL32 A= p256[20];\

Temp0dd32 +=p256[17]; Temp0dd32 -=p256[37;\

/* expand32_21(21); */\

p256[21] =

TempOdd32 +

+ + 4+ +

XL32 A= p256[21];\

TempEven32+=p256[18]; TempEven32-=p256[4];\

/* expand32_22(22); */\

p256[22] =

TempEven32 +
+
+
+

+ data32[1]
+ p256[12]

+ p256[13]

r32_01(p256[31)
r32_03(p256[71)
r32_05(p256[11])
r32_07(p256[15])

+ data32[4]
+ p256[10]

+ p256[11]

+ + +

+

- data32[11];\

+ p256[8] + p256[6] + p256[4]

+ p256[9] + p256[7] + p256[5]

r32_02(p256[51O\
r32_04(p256[91O\
r32_06(p256[13]D\
s32_5(C p256[16]) + s32_4(C p256[171)\

Ox5ffffffaul + data32[2] + data32[5] - data32[12];\

r32_01(p256[41D
r32_03(p256[81D
r32_05(p256[12])
r32_07(p256[16])

+
+
+

+

r32_02(p256[61D\
r32_04(p256[10]D\
r32_06(p256[141D\
s32_5(C p256[17] D) + s32_4(p256[18]D\

0x6555554ful + data32[3] + data32[6] - data32[13];\

r32_01(p256[51D
r32_03(p256[91D
r32_05(p256[13]1)
r32_07(p256[17])

+
+
+

+

r32_02(p256[71D\
r32_04(p256[11]D\
r32_06(p256[15]D\
s32_5(C p256[18] D) + s32_4(p256[19]D\

0x6aaaaaadul + data32[4] + data32[7] - data32[14];\

r32_01(p256[6]1)
r32_03(p256[10])
r32_05(p256[14])
r32_07(p256[18])

+
+
+

+

r32_02(p256[81D\
r32_04(p256[12]O\
r32_06(p256[16]D\
s32_5(C p256[19]) + s32_4(p256[20]D\

Oxoffffffoul + data32[5] + data32[8] - data32[15];\

r32_01(p256[71D
r32_03(p256[11])
r32_05(p256[15])
r32_07(p256[191)

+ 4+ + +

r32_02(p256[91D\
r32_04(p256[13]D\
r32_06(p256[17]D\
s32_5(C p256[20]) + s32_4(C p256[21]D\

+ p256[

+ p256[

Appendix — 86

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

+
XL32 A= p256[22];\

0x7555554eul + data32[6] + data32[9] - data32[@];\

Temp0dd32 +=p256[19]; TempOdd32 -=p256[5];\

/* expand32_21(23); */\
p256[23] = TempOdd32 +

+ + 4+ +

XL32 A= p256[23];\

r32_01(p256[81D + r32_02(p256[10]1D\

r32_03(p256[12]) + r32_04(p256[141)\

r32_05(p256[16]) + r32_06(p256[18]D\

r32_07(p256[20]) + s32_5(C p256[21]) + s32_4(C p256[22])\
0x7aaaaaa3ul + data32[7] + data32[10] - data32[1];\

TempEven32+=p256[20]; TempEven32-=p256[6];\

/* expand32_22(24); */\
p256[24] = TempEven32 +
+
+
+
+
XH32 = XL32Ap256[247;\

r32_01(p256[91) + r32_02(p256[11]1)\

r32_03(p256[13]) + r32_04(p256[15]D\

r32_05(p256[17]) + r32_06(p256[19]1D\

r32_07(p256[21]) + s32_5(C p256[22]) + s32_4(C p256[23]O\
Ox7ffffff8ul + data32[8] + data32[11] - data32[2];\

Temp0dd32 +=p256[21]; TempOdd32 -=p256[7]1;\

/* expand32_21(25); */\
p256[25] = TempOdd32

+ + 4+ +

XH32 A= p256[25];\

+ r32_01(p256[10]) + r32_02(p256[12])\

r32_03(p256[14]) + r32_04(p256[16]1D\

r32_05(p256[18]) + r32_06(p256[20]1D\

r32_07(p256[22]) + s32_5(C p256[23]) + s32_4(C p256[241D\
0x8555554dul + data32[9] + data32[12] - data32[371;\

TempEven32+=p256[22]; TempEven32-=p256[8];\

/* expand32_22(26); */\
p256[26] = TempEven32 +
+
+
+
+

XH32 A= p256[26];\

r32_01(p256[11]) + r32_02(p256[13]1)\

r32_03(p256[15]) + r32_04(p256[171)\

r32_05(p256[19]) + r32_06(p256[21]D\

r32_07(p256[23]) + s32_5(C p256[24]) + s32_4(C p256[25])\
0x8aaaaaa2ul + data32[10] + data32[13] - data32[4];\

Temp0dd32 +=p256[23]; Temp0dd32 -=p256[9];\

/* expand32_21(27); */\
p256[27] = TempOdd32 +

+ o+ + +

XH32 A= p256[271;\

r32_01(p256[12]) + r32_02(p256[141)\

r32_03(p256[16]) + r32_04(p256[18]D\

r32_05(p256[20]) + r32_06(p256[22]1D\

r32_07(p256[24]1) + s32_5(C p256[25]) + s32_4(p256[26])D\
Ox8ffffff7ul + data32[11] + data32[14] - data32[5];\

TempEven32+=p256[24]; TempEven32-=p256[10];\

/* expand32_22(28); */\
p256[28] = TempEven32 +
+
+
+
+

XH32 A= p256[28];\

r32_01(p256[13]) + r32_02(p256[15]D\

r32_03(p256[17]) + r32_04(p256[19]1D\

r32_05(p256[21]) + r32_06(p256[231D\

r32_07(p256[25]) + s32_5(C p256[26]) + s32_4(C p256[271)\
0x9555554cul + data32[12] + data32[15] - data32[6];\

Temp0dd32 +=p256[25]; TempOdd32 -=p256[11];\

/* expand32_21(29); */\
p256[29] = TempOdd32 +

+ o+ + +

XH32 A= p256[29];\

r32_01(p256[14]1) + r32_02(p256[16])\

r32_03(p256[18]) + r32_04(p256[20]1D\

r32_05(p256[22]) + r32_06(p256[241D\

r32_07(p256[26]) + s32_5(C p256[27]) + s32_4(C p256[28])\
0x9aaaaaalul + data32[13] + data32[@] - data32[7];\

TempEven32+=p256[26]; TempEven32-=p256[12];\

/* expand32_22(30); */\
p256[30] = TempEven32 +
+

+
+
+

r32_01(p256[15]1) + r32_02(p256[171)\

r32_03(p256[19]) + r32_04(p256[21])\

r32_05(p256[23]) + r32_06(p256[251D\

r32_07(p256[27]) + s32_5(C p256[28]) + s32_4(C p256[291O\
Ox9ffffffoul + data32[14] + data32[1] - data32[8];\

Appendix — 87

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

XH32 A= p256[30];\
Temp0dd32 +=p256[27]; TempOdd32 -=p256[13];\

/* expand32_

21(31); */\

p256[31] = TempOdd32 + r32_01(p256[16])

r32_03(p256[20])
r32_05(p256[24])

+
+
+

r32_02(p256[181)\
r32_04(p256[221)\
r32_06(p256[26])\

+ + + +

XH32 A= p256[31];\

t_gpu_256.DoTimingl();\
cudaMemcpy(data32_dev, data32, 1l6*sizeof(u_int32_t), cudaMemcpyHostToDevice);\
t_gpu_256.DoTiming2(4);\
t_gpu_256.DoTimingl();\
cudaMemcpy(p256_dev, p256, 16*sizeof(u_int32_t), cudaMemcpyHostToDevice);\
t_gpu_256.DoTiming2(5);\
t_gpu_256.DoTimingl();\

kernel_f2<<<1,16>>>(XL32, XH32, data32_dev, p256_dev);\

t_gpu_256.DoTiming2(6);\
t_gpu_256.DoTimingl();\

cudaMemcpy(p256, p256_dev,

t_gpu_256.DoTiming2(7);\

}

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
SAN

s64_0(x)
s64_1(x)
s64_2(x)
s64_3(x)
s64_4(x)
s64_5(x)

(shr((x), 1) A shL((x), 3) A rotle4((x), 4) A
(shr((x), 1) A shl((x), 2) A rotle4((x), 13) A
(shr((x), 2) A shl((x), 1) A rotl64((x), 19) A
(shr((x), 2) A shL((X), 2) A rotle4((x), 28) A

(shr((x), 1) A (X))
(shr((x), 2) A (x))

ro4_01(x) rotle4((x), 5)
ro4_02(x) rotle4((x), 11)
re4_03(x) rotle4((x), 27)
ro4_04(x) rotle4((x), 32)
re4_05(x) rotle4((x), 37)
ro4_0o(x) rotle4((x), 43)
re4_07(x) rotle4((x), 53)

Compress

ion512(O\

r32_07(p256[28]) + s32_5C p256[29]) + s32_4(p256[30])\
0xa555554bul + data32[15] + data32[2] - data32[9];\

32*sizeof(u_int32_t), cudaMemcpyDeviceToHost);\

rotle4((x), 37))
rotle4((x), 43))
rotle4((x), 53))
rotle4((x), 59))

p512_00=p512[@]Adata64[0]; p512_01=p512[1]Adata64[1]; p512_02=p512[2]Adatac4[2];
p512_03=p512[3]Adata64[37;\
p512_04=p512[4]Adata64[4]; p512_05=p512[5]Adata64[5]; p512_06=p512[6]Adatac4[6];
p512_07=p512[7]Adata64[7];\
p512_08=p512[8]Adata64[8]; p512_09=p512[9]Adata64[9]; p512_10=p512[10]Adatac4[10];
p512_11=p512[11]Adata64[11];\
p512_12=p512[12]Adata64[12]; p512_13=p512[13]Adata64[13]; p512_14=p512[14]Adatac4[14];
p512_15=p512[15]Adata64[15];\

\

p512_16
p512_17
p512_18 =
p512_19 =
p512_20 =
p512_21 =
p512_22 =
p512_23 =
p512_24 =
p512_25 =
p512_26 =
p512_27 =
p512_28 =
p512_29 =
p512_30 =
p512_31 =

Y Yttt tatatatatatataYaYe

p512_05-p512_07+p512_10+p512_13+p512_14);\
p512_06-p512_08+p512_11+p512_14-p512_15);\
p512_00+p512_07+p512_09-p512_12+p512_15);\
p512_00-p512_01+p512_08-p512_10+p512_13);\
p512_01+p512_02+p512_09-p512_11-p512_14);\
p512_03-p512_02+p512_10-p512_12+p512_15);\
p512_04-p512_00-p512_03-p512_11+p512_13);\
p512_01-p512_04-p512_05-p512_12-p512_14);\
p512_02-p512_05-p512_06+p512_13-p512_15);\
p512_00-p512_03+p512_06-p512_07+p512_14);\
p512_08-p512_01-p512_04-p512_07+p512_15);\
p512_08-p512_00-p512_02-p512_05+p512_09);\
p512_01+p512_03-p512_06-p512_09+p512_10);\
p512_02+p512_04+p512_07+p512_10+p512_11);\
p512_03-p512_05+p512_08-p512_11-p512_12);\
p512_12-p512_04-p512_06-p512_09+p512_13);\

Appendix — 88

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

p512_00
p512_01 =
p512_02 =
p512_03 =
p512_04 =
p512_05 =
p512_06 =
p512_07 =
p512_08 =
p512_09 =
p512_10 =
p512_11 =
p512_12 =
p512_13 =
p512_14 =
p512_15 =

/* This is

= s64_0(p512_16);\

s64_1(p512_17);\
s64_2(p512_18);\
s64_3(p512_19);\
s64_4(p512_20);\
s64_0(p512_21);\
s64_1(p512_22);\
s64_2(p512_23);\
s64_3(p512_24);\
s64_4(p512_25);\
s64_0(p512_26);\
s64_1(p512_27);\
s64_2(p512_28);\
s64_3(p512_29);\
s64_4(p512_30);\
s64_0(p512_31);\

the Message expansion. */\

/* It has 16 rounds.

p512_16

XL64 = p
p512_17

+ 4+ A+ 1O+ + o+

+

s64_1(p512_00)
s64_1(p512_04)
s64_1(p512_08)
s64_1(p512_12)

+
+
+

+

*/\
s64_2(p512_01) +
s64_2(p512_05) +
s64_2(p512_09) +
s64_2(p512_13) +

@x5555555555555550ull + data64[@]

12_16;\

s64_1(p512_01)
s64_1(p512_05)
s64_1(p512_09)
s64_1(p512_13)

+
+
+

+

s64_2(p512_02) +
s64_2(p512_06) +
s64_2(p512_10) +
s64_2(p512_14) +

@x5aaaaaaaaaaaaaaSull + data64[1]

s64_3(p512_02) +

s64_3(p512_06) +

s64_3(p512_10) +

s64_3(p512_14) +
+ datao4[3]

s64_3(p512_03) +

$64_3(p512_07) +

s64_3(p512_11) +

s64_3(p512_15) +
+ datac4[4]

XL64 A= p512_17;\
TempEven64 =
TempOdde4 =

p512_15 +

/* expand64_22(18); */\

p512_18

XL64 A= p512_18;\

= TempEven64 +

+

+ + +

/* expand64_21(19); */\

p512_19 = TempOdd64

XL64 A= p512_19;\

+
+
+
+
+

r64_01(p512_03)
r64_03(p512_07)
r64_05(p512_11)
r64_07(p512_15)

OXSffffffffffffffaull + datac4[2] + data64[5] - datac4[12];\

ro4_01(p512_04)
ro4_03(p512_08)
re4_05(p512_12)
ro4_07(p512_16)

0x655555555555554full + datac4[3] + data64[6] - datac4[13];\

+
+
+

+

+
+
+

+

TempEven64+=p512_16; TempEven64-=p512_02;\
/* expand64_22(20); */\

p512_20

XL64 A= p512_20;\

= TempEven64 +

+

+
+
+

r64_01(p512_05)
r64_03(p512_09)
r64_05(p512_13)
r64_07(p512_17)

0x6aaaaaaaaaaaaaa4ull + datac4[4] + data64[7] - datac4[14];\

+
+
+

+

Temp0dd64 +=p512_17; TempOdde4 -=p512_03;\
/* expand64_21(21); */\

p512_21 = TempOdd64

XL64 A= p512_21;\

+

+ o+ + +

ro4_01(p512_06)
ro4_03(p512_10)
r64_05(p512_14)
ro4_07(p512_18)

Ox6fffffFffffffffoull + data64[5] + data64[8] - data64[15];\

+
+
+

+

ré4_02(p512_05)\
ré4_04(p512_09)\
ré4_06(p512_13)\

s64_0(p512_03)\
s64_0(p512_07)\
s64_0(p512_11D\
s64_0(p512_15)\

- data64[10];\

s64_0(p512_04)\
s64_0(p512_08)\
s64_0(p512_12)\
s64_0(p512_16)\

- data64[11];\

p512_14 + p512_12 + p512_10 + p512_08 + p512_06 + p512_04 + p512_02;\
p512_13 + p512_11 + p512_09 + p512_07 + p512_05 + p512_03;\

s64_5C p512_16) + s64_4(p512_17)\

ro4_02(p512_06)\
ro4_04(p512_10)\
ro4_00(p512_14)\

s64_5(C p512_17) + s64_4(p512_18)\

ro4_02(p512_07)\
r64_04(p512_11)\
ro4_00(p512_15)\

s64_5(C p512_18) + s64_4(p512_19)\

ro4_02(p512_08)\
ro4_04(p512_12)\
ro4_00(p512_16)\

s64_5(C p512_19) + s64_4(p512_20)\

Appendix — 89

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

TempEven64+=p512_18; TempEven64-=p512_04;\

/* expand64_22(22); */\

p512_22 = TempEveno4 + ro64_01(p512_07) +
+ re4_03(p512_11) +

+ re4_05(p512_15) +

+ re4_07(p512_19) +

+

ro4_02(p512_09)\
ro4_04(p512_13)\
re4_00(p512_17)\
s64_5(C p512_20) + s64_4(p512_21)\

@x755555555555554eull + data64[6] + data64[9] - data64[0];\

XL64 A= p512_22;\

Temp0dd64 +=p512_19; TempOdde4 -=p512_05;\
/* expand64_21(23); */\
p512_23 = TempOdd64 + re4_01(p512_08) +
re4_03(p512_12) +
re4_05(p512_16) +

ro4_07(p512_20) +

+ o+ + +

XL64 A= p512_23;\
TempEven64+=p512_20; TempEven64-=p512_06;\
/* expand64_22(24); */\

ro4_02(p512_10)\
r64_04(p512_14)\
ro4_00(p512_18)\
s64_5(C p512_21) + s64_4(p512_22)\

0x7aaaaaaaaaaaaaa3ull + data64[7] + data64[10] - datac4[1];\

ro4_02(p512_11)\
ro4_04(p512_15)\
ro4_06(p512_19)\
s64_5(C p512_22) + s64_4(p512_23)\

OX7FFfFEFffffffff8ull + data64[8] + data64[11] - data64[2];\

p512_24 = TempEven64 + r64_01(p512_09) +
+ re4_03(p512_13) +
+ re4_05(p512_17) +
+ re4_07(p512_21) +
+

XH64 = XL64Ap512_24;\

TempO0dd64 +=p512_21; TempOdde4 -=p512_07;\
/* expand64_21(25); */\
p512_25 = TempOdd64 + r64_01(p512_10) +
re4_03(p512_14) +
re4_05(p512_18) +

ro4_07(p512_22) +

+ + + +

XH64 A= p512_25;\

TempEven64+=p512_22; TempEven64-=p512_08;\

/* expand64_22(26); */\

p512_26 = TempEven64 + r64_01(p512_11) +
+ re4_03(p512_15) +

+ re4_05(p512_19) +

+ re4_07(p512_23) +

+

ro4_02(p512_12)\
ro4_04(p512_16)\
ro4_00(p512_20)\
s64_5(C p512_23) + s64_4(p512_24)\

0x855555555555554dull + datac4[9] + data64[12] - datac4[37;\

ro4_02(p512_13)\
r64_04(p512_17)\
ro4_00(p512_21)\
s64_5(C p512_24) + s64_4(p512_25)\

0x8aaaaaaaaaaaaaa2ull + data64[10] + data64[13] - data64[4];\

XH64 A= p512_26;\

Temp0dd64 +=p512_23; TempOdde4 -=p512_09;\
/* expand64_21(27); */\
p512_27 = TempOdd64 + r64_01(p512_12) +
re4_03(p512_16) +
re4_05(p512_20) +

ro4_07(p512_24) +

+ + 4+ o+

XH64 A= p512_27;\

TempEven64+=p512_24; TempEven64-=p512_10;\

/* expand64_22(28); */\

p512_28 = TempEven64 + re4_01(p512_13) +
+ re4_03(p512_17) +

+ re4_05(p512_21) +

+ re4_07(p512_25) +

+

ro4_02(p512_14)\
ro4_04(p512_18)\
ro4_00(p512_22)\
s64_5(C p512_25) + s64_4(p512_26)\

OX8FFFFEFfFffffff7ull + data64[11] + data64[14] - data64[5];\

ro4_02(p512_15)\
ro4_04(p512_19)\
ro4_00(p512_23)\
s64_5(C p512_26) + s64_4(p512_27)\

0x955555555555554cull + data64[12] + data64[15] - data64[6];\

XH64 A= p512_28;\

Temp0dd64 +=p512_25; TempOdde4 -=p512_11;\
/* expand64_21(29); */\
p512_29 = TempOdd64 + ro64_01(p512_14) +
re4_03(p512_18) +
re4_05(p512_22) +

ro4_07(p512_26) +

+ o+ + +

XH64 A= p512_29;\
TempEven64+=p512_26; TempEven64-=p512_12;\

ro4_02(p512_16)\
ro4_04(p512_20)\
re4_06(p512_24)\
s64_5(C p512_27) + s64_4(p512_28)\

0x9aaaaaaaaaaaaaalull + data64[13] + data64[@] - data64[7];\

Appendix — 9o

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

/* expand64_22(30); */\

p512_30 = TempEven64 + r64_01(p512_15) + re4_02(p512_17)\
+ re4_03(p512_19) + ro4_04(p512_21)\

+ re4_05(p512_23) + ro4_06(p512_25)\

+ re4_07(p512_27) + s64_5C p512_28) + s64_4(p512_29)\

+ OXOffffffffffffffoull + data64[14] + datac4[1] - datac4[8];\

XH64 A= p512_30;\

Temp0dd64 +=p512_27; TempOdd64 -=p512_13;\

/* expand64_21(31); */\

p512_31 = TempOdd64 + ro64_01(p512_16)

+ + 4+ +

XH64 A= p512_31;\

ro4_03(p512_20)
ro4_05(p512_24)
ro4_07(p512_28)
0xa55555555555554bull + data64[15] + data64[2] - data64[97;\

+
+
+

+

ro4_02(p512_18)\
ro4_04(p512_22)\
re4_06(p512_26)\
s64_5(C p512_29) + s64_4(p512_30)\

/* Compute the double chaining pipe for the next message block. */\
p512[0] = (sh1(XH64, 5) A shr(p512_16,5) A datac4[@])

p512_24 A p512_00);\

p512[1] = (shr(XHo64,

p512_25 A p512_01);\

p512[2] = (shr(XHo64,

p512_26 A p512_02);\

p512[3] = (shr(XHo64,

p512_27 A p512_03);\

p512[4] = (shr(XHo64,

p512_28 A p512_04);\

p512[5] = (shl(XH64,

p512_29 A p512_05);\

7D A
5) A
DA
3) A

6) A

p512[6] = (shr(XH64, 4) A

p512_30 A p512_06);\

p512[7] = (shr(XH64,11) A

p512_31 A p512_07);\
\

p512[8] = rotle4(p512[4], 9 + (
p512_23 A p512_08);\

XH64

p512[9] = rotle4(p512[5],10)

(shr(XL64,6) A p512_16 A p512_09);\

p512[10] = rotle4(p512[6],11) + (
p512_17 A p512_10);\

p512[11] = rotle4(p512[7],12) + (
p512_18 A p512_11);\

p512[12] = rotle4(p512[0],13) + (
p512_19 A p512_12);\

p512[13] = rotle4(p512[1],14) + (
p512_20 A p512_13);\

p512[14] = rotle4(p512[2],15) + (
p512_21 A p512_14);\

p512[15] = rotle4(p512[3],16) + (
p512_22 A p512_15);\
}

HashReturn InitGPUChashState *state, int hashbitlen)

{
switchChashbitlen)

{

case 224:
state->hashbitlen = 224;

XH64

XH64

XH64

XH64

XH64

XH64

sh1(p512_17,8)
sh1(p512_18,5)
sh1(p512_19,5)
p512_20
shr(p512_21,6)
sh1(p512_22,6)

sh1(p512_23,2)

p512_24
XH64 A
p512_26
p512_27
p512_28
p512_29
p512_30

p512_31

A data64[1]1)
A data64[2])
A data64[3])
A data64[4]1)
A data64[5])
A data64[6])

A datae4[7])

A dataoc4[8])
p512_25 A
A datac4[10])

A datac4[11])

>

data64[12])

>

data64[13])

A datac4[14])

>

data64[15])

// #1 Between comments #1 and #2 add algorithm specific initialization

state->bits_processed = 0;
state->unprocessed_bits = 0;

memcpy(hashState224(state)->DoublePipe, 1224p2,

16 * sizeof(u_int32_t));

// #2 Between comments #1 and #2 add algorithm specific initialization

+

(XLe4
(XLe4
(XLe4
(XLe4
(XLe4
(XLe4
(XLe4
(XLe4
(sh1(XL64,8)

data64[91) +

+

+

+

+

+

+

(sh1(XL64,6)
(sh1(XL64,4)
(shr(XL64,3)
(shr(XL64,4)
(shr(XL64,7)

(shr(XL64,2)

Appendix — 91

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

return(SUCCESS);

case 256:

state->hashbitlen = 256;

// #1 Between comments #1 and #2 add algorithm specific initialization
state->bits_processed = 0;

state->unprocessed_bits = 0;

memcpy(ChashState256(state)->DoublePipe, i256p2, 16 * sizeof(u_int32_t));
// #2 Between comments #1 and #2 add algorithm specific initialization
return(SUCCESS);

case 384:

state->hashbitlen = 384;

// #1 Between comments #1 and #2 add algorithm specific initialization
state->bits_processed = 0;

state->unprocessed_bits = 0;

memcpy(ChashState384(state)->DoublePipe, i384p2, 16 * sizeof(u_int64_t));
// #2 Between comments #1 and #2 add algorithm specific initialization
return(SUCCESS);

case 512:

state->hashbitlen = 512;

// #1 Between comments #1 and #2 add algorithm specific initialization
state->bits_processed = 0;

state->unprocessed_bits = 0;

memcpy(ChashState224(state)->DoublePipe, i512p2, 16 * sizeof(u_int64_t));
// #2 Between comments #1 and #2 add algorithm specific initialization
return(SUCCESS);

default: return(BAD_HASHLEN) ;

HashReturn UpdateGPU(ChashState *state, const BitSequence *data, Datalength databitlen)
{

u_int32_t *data32, *p256;

u_int32_t XL32, XH32, TempEven32, TempOdd32;

u_int64_t *data64, *p512;

u_int64_t XL64, XH64, TempEveno4, TempOdd64,

u_int64_t p512_00, p512_01, p512_02, p512_03, p512_04, p512_05, p512_06, p512_07;
u_int64_t p512_08, p512_09, p512_10, p512_11, p512_12, p512_13, p512_14, p512_15;
u_int64_t p512_16, p512_17, p512_18, p512_19, p512_20, p512_21, p512_22, p512_23;
u_int64_t p512_24, p512_25, p512_26, p512_27, p512_28, p512_29, p512_30, p512_31;

int LastBytes;

switch(state->hashbitlen)
{

case 224:
case 256:
if (state->unprocessed_bits > @)

{
if (state->unprocessed_bits + databitlen > BlueMidnightWish256_BLOCK_SIZE * 8)

{
3

else

{

return BAD_CONSECUTIVE_CALL_TO_UPDATE;

LastBytes = (int)databitlen >> 3; // LastBytes = databitlen / 8

memcpy(hashState256(state)->LastPart + (state->unprocessed_bits >> 3), data,
LastBytes);

state->unprocessed_bits += (int)databitlen;

databitlen = state->unprocessed_bits;

Appendix — 92

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

data32 = (u_int32_t *)hashState256(state)->LastPart;
}
1

else
data32 = (u_int32_t *)data;

p256 = hashState256(state)->DoublePipe;
while (databitlen >= BlueMidnightWish256_BLOCK_SIZE * 8)

{
databitlen -= BlueMidnightWish256_BLOCK_SIZE * 8;
// #1 Between comments #1 and #2 add algorithm specifics
state->bits_processed += BlueMidnightWish256_BLOCK_SIZE * 8;
Compression256Q);
data32 += 16;

}

state->unprocessed_bits = (int)databitlen;
if (databitlen > @)
{
LastBytes = ((~(((- (int)databitlen)>>3) & 0x01ff)) + 1) & OxQ1ff; // LastBytes =
Ceil(databitlen / 8)
memcpy(hashState256(state)->LastPart, data32, LastBytes);
}
// #2 Between comments #1 and #2 add algorithm specifics
return(SUCCESS);

case 384:
case 512:
if (state->unprocessed_bits > @)

{
if (state->unprocessed_bits + databitlen > BlueMidnightWish512_BLOCK_SIZE * 8)

{
3

else

{

return BAD_CONSECUTIVE_CALL_TO_UPDATE;

LastBytes = (int)databitlen >> 3; // LastBytes = databitlen / 8
memcpy(hashState512(state)->LastPart + (state->unprocessed_bits >> 3), data,
LastBytes);
state->unprocessed_bits += (int)databitlen;
databitlen = state->unprocessed_bits;
data64 = (u_int64_t *)hashState512(state)->LastPart;
}
}

else
data64 = (u_int64_t *)data;

p512 = hashState512(state)->DoublePipe;
while (databitlen >= BlueMidnightWish512_BLOCK_SIZE * 8)
{
databitlen -= BlueMidnightWish512_BLOCK_SIZE * 8;
// #1 Between comments #1 and #2 add algorithm specifics

state->bits_processed += BlueMidnightWish512_BLOCK_SIZE * 8;
Compression512Q);
data64 += 16;
}
state->unprocessed_bits = (int)databitlen;
if (databitlen > @)
{
LastBytes = ((~(((- (int)databitlen)>>3) & 0x03ff)) + 1) & Ox@3ff; // LastBytes =
Ceil(databitlen / 8)
memcpy(hashState512(state)->LastPart, data64, LastBytes);

}

Appendix— 93

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

// #2 Between comments #1 and #2 add algorithm specifics
return(SUCCESS);

default: return(BAD_HASHLEN); //This should never happen

HashReturn FinalGPUChashState *state, BitSequence *hashval)
{

u_int32_t *data32, *p256;

u_int32_t XL32, XH32, TempEven32, TempOdd32;

u_int64_t *data64, *p512;

u_int64_t XL64, XH64, TempEveno4, TempOdd64,

u_int64_t p512_00, p512_01, p512_02, p512_03, p512_04, p512_05, p512_06, p512_07;
u_int64_t p512_08, p512_09, p512_10, p512_11, p512_12, p512_13, p512_14, p512_15;
u_int64_t p512_16, p512_17, p512_18, p512_19, p512_20, p512_21, p512_22, p512_23;
u_int64_t p512_24, p512_25, p512_26, p512_27, p512_28, p512_29, p512_30, p512_31;

DatalLength databitlen;
int LastByte, PadOnePosition;

switch(state->hashbitlen)
{
case 224:
case 256:
LastByte = (int)state->unprocessed_bits >> 3;
PadOnePosition = 7 - (state->unprocessed_bits & 0x07);
hashState256(state)->LastPart[LastByte] = hashState256(state)->LastPart[LastByte] &
(Oxff << (PadOnePosition + 1) D\
A (@x01 << PadOnePosition);
data64 = (u_int64_t *)hashState256(state)->LastPart;

if (state->unprocessed_bits < 448)
{
memset(ChashState256(state)->LastPart) + LastByte + 1, 0x00,
BlueMidnightWish256_BLOCK_SIZE - LastByte - 9);
databitlen = BlueMidnightWish256_BLOCK_SIZE * 8;
data64[7] = state->bits_processed + state->unprocessed_bits;
1
else
{
memset(ChashState256(state)->LastPart) + LastByte + 1, 0x00,
BlueMidnightWish256_BLOCK_SIZE * 2 - LastByte - 9);
databitlen = BlueMidnightWish256_BLOCK_SIZE * 16;
data64[15] = state->bits_processed + state->unprocessed_bits;

}

data32 = (u_int32_t *)hashState256(state)->LastPart;
p256 = hashState256(state)->DoublePipe;
while (databitlen >= BlueMidnightWish256_BLOCK_SIZE * 8)
{
databitlen -= BlueMidnightWish256_BLOCK_SIZE * 8;
// #1 Between comments #1 and #2 add algorithm specifics
Compression256Q);
data32 += 16;
}
// #2 Between comments #1 and #2 add algorithm specifics
break;

case 384:
case 512:

Appendix — 94

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

LastByte = (int)state->unprocessed_bits >> 3;
PadOnePosition = 7 - (state->unprocessed_bits & 0x07);
hashState512(state)->LastPart[LastByte] = hashState512(state)->LastPart[LastByte] &
(Oxff << (PadOnePosition + 1) D\
A (@x01 << PadOnePosition);
data64 = (u_int64_t *)hashState512(state)->LastPart;

if (state->unprocessed_bits < 960)
{
memset(ChashState512(state)->LastPart) + LastByte + 1, 0x00,
BlueMidnightWish512_BLOCK_SIZE - LastByte - 9);
databitlen = BlueMidnightWish512_BLOCK_SIZE * 8;
data64[15] = state->bits_processed + state->unprocessed_bits;

}

else
{
memset(ChashState512(state)->LastPart) + LastByte + 1, 0x00,
BlueMidnightWish512_BLOCK_SIZE * 2 - LastByte - 9);
databitlen = BlueMidnightWish512_BLOCK_SIZE * 16;
data64[31] = state->bits_processed + state->unprocessed_bits;

}

p512 = hashState512(state)->DoublePipe;
while (databitlen >= BlueMidnightWish512_BLOCK_SIZE * 8)
{
databitlen -= BlueMidnightWish512_BLOCK_SIZE * 8;
// #1 Between comments #1 and #2 add algorithm specifics
Compression512Q);
data64 += 16;
}
break;
// #2 Between comments #1 and #2 add algorithm specifics

default: return(BAD_HASHLEN); //This should never happen

switch(state->hashbitlen)
{
case 224:
memcpy(Chashval, p256 + 9, BlueMidnightWish224_DIGEST_SIZE);
return(SUCCESS);
case 256:
memcpy(Chashval, p256 + 8, BlueMidnightWish256_DIGEST_SIZE);
return(SUCCESS);
case 384:
memcpy(Chashval, p512 + 10, BlueMidnightWish384_DIGEST_SIZE);
return(SUCCESS);
case 512:
memcpy(Chashval, p512 + 8, BlueMidnightWish512_DIGEST_SIZE);
return(SUCCESS);
default: return(BAD_HASHLEN); //This should never happen

}

HashReturn HashGPU(int hashbitlen, const BitSequence *data, DatalLength databitlen, BitSequence
*hashval)

{
HashReturn qq;

hashState state;
AllocCUDAQ);

qq = InitGPU(&state, hashbitlen);
if (qq !'= SUCCESS) return(qq);

Appendix — 95

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

g = UpdateGPU(&state, data, databitlen);
f (aqq !'= SUCCESS) return(qq);
q = FinalGPU(&state, hashval);

q
i
q

FreeCUDAQ);

return(qq);

Appendix — 96

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

11.6. TurboSHA-2 Implementation

11.6.1. TurboSHA2.h

#ifndef TURBOSHAZ2_H__
#define TURBOSHAZ2_H__

#include <string.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/time.h>

/* 32 bit Turbo SHA-2 (224/256) */

uint32_t* TurboSHA224(uint8_t *M, uint64_t 1);
uint32_t* TurboSHA256(uint8_t *M, uint64_t 1);

/* 64 bit Turbo SHA-2 (384/512) */

uint64_t* TurboSHA384(uint64_t **M, uintl28_t N);
uint64_t* TurboSHA512(Cuint64_t **M, uintl128_t N);

void test(uinte4_t 1);

#endif

Appendix — 97

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

11.6.2. TurboSHA2.c

#include "TurboSHA2.h"

#define Ch(x,y,z) () & () A (<) & (2))

#define Maj(x,y,z) () & () A Cx) & @) Ay & (@)
#define SHR(x,n) () > (n))

/* 32-bit specific functions */

#define ROTR32(x,n) WY > M) | (x) << (32 - (MDY

#define SUM32_0(x) ROTR32(x,2) A ROTR32(x,13) A ROTR32(x,22)
#define SUM32_1(x) ROTR32(x,6) A ROTR32(x,11) A ROTR32(x,25)
#define VAR32_0(x) ROTR32(x,7) A ROTR32(x,18) A SHR(x,3)
#define VAR32_1(x) ROTR32(x,17) A ROTR32(x,19) A SHR(x,10)

/* 64-bit specific functions */

#define ROTR64(x,n) (XY > (M) | ((x) << (64 - (")

|
#define SUM64_0(x) ROTR64(x,28) A ROTR64(x,34) A ROTR64(x,39)
#define SUMG4_1(x) ROTR64(x,14) A ROTR64(x,18) A ROTR64(x,41)
#define VARG4_0(x) ROTR64(x,1) A ROTR64(x,8) A SHR(x,7)
#define VARG4_1(x) ROTR64(x,19) A ROTR64(x,61) A SHR(x,6)

/* 32/64 bit functions */

/* Message expansion */

#define MSG_EXP(t,W,P) W[t-16] \
VAR32_O(W[t-15]) \
W[t-14]
VAR32_1(W[t-13]) \
W[t-12]
VAR32_O(W[t-111) \
W[t-10]
VAR32_1(W[t-9]1)
W[t-8]

W[t-7]
VAR32_Q(W[t-6])
W[t-5]
VAR32_1(W[t-4]1)
W[t-3]
VAR32_1(W[t-2])
VAR32_Q(W[t-1])
P[t-16]

e

e

+ 4+ A+
S s s

/* Initialize eight working variables: a,b,c,d,e,f,g,h */

#define AH_INIT(v,H,W) v[@] = H[@Q] + W[31]; \
v[1] = H[1] + W[30]; \
v[2] = H[2] + W[29]; \
v[3] = H[3] + W[28]; \
v[4] = H[4] + W[27]; \
v[5] = H[5] + W[26]; \
v[6] = H[6] + W[25]; \
v[7] = H[7] + W[24];

#define PROC(t,v,T,W) T[0Q] = v[7] \
+ SUM32_1(v[4D) \
+ Ch(v[4],v[5],vl6D) \

+ (W[t] A WLt+16]D) \
+ (W[t+4] A WLt+24DD) \
+ (W[t+8] A W[Lt+201) \
+ W[t+12]; \
T[1] = SUM32_o(v[e]) \
+ Maj(v[e],v[1],v[2D); \
v[7] = v[6]; \
v[6] = v[5]; \
v[5] = v[4]; \
v[4] = v[3] + T[0]; \

Appendix — 98

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

v[3] = v[2]; \
v[2] = v[1]; \
v[1] = v[el; \
vle] = T[@] + T[1];

/* Calculate i-th iteration hash value */

#define iTH_HASH(v,H) H[@] = v[0] + H[@]; \
H[1] = v[1] + H[1]; \
H[2] = v[2] + H[2]; \
H[3] = v[3] + H[3]; \
H[4] = v[4] + H[4]; \
H[5] = v[5] + H[5]; \
H[6] = v[6] + H[6]; \
HL7] = v[7] + HL7];

/* Initial Hash values */

/* Turbo SHA-224 */

uint32_t H_224[] = { 0xc1059%ed8,
0x367cd507,
0x3070dd17,
0xf70e5939,
Oxffcoob3l,
0x68581511,
0x64f98fa7,
Oxbefa4fas

1

/* Turbo SHA-256 */

uint32_t H_256[] = { 0x6a09e667,
Oxbb67ae85,
0x3c6ef372,
0xa54ff53a,
0x510e527f,
0x9b05688c,
0x1f83d9ab,
0x5be@cd19

b

/* Turbo SHA-384 */

uint64_t H_384[] = { UINT64_C(@xcbbb9d5dc1059%ed8),
UINT64_C(0x629a292a367cd507),
UINT64_C(0x9159015a3070dd17),
UINT64_C(0x152fecd8f70e5939),
UINT64_C(0x67332667ffcO0b31),
UINT64_C(0x8eb44a8768581511),
UINT64_C(0xdb@c2e@d64f98fa7),
UINT64_C(0x47b5481dbefa4fad)

b

uint64_t H_512[] = { UINT64_C(@x6a09e667f3bcc908),
UINT64_C(@xbb67ae8584caa73b),
UINT64_C(0@x3coef372fe94f82b),
UINT64_C(@xa54ff53a5f1d36f1l),
UINT64_C(0x510e527fade682d1),
UINT64_C(0x9b05688c2b3ebclf),
UINT64_C(0x1f83d9abfb41bdob),
UINT64_C(@x5be@cd19137e2179)

1

/* Initial double pipe */

/* Turbo SHA-224/256 */

uint32_t P_256[] = { 0x428a2f98,
0x71374491,
@xb5c@fbcf,
@xe9b5dba5s,

Appendix — 99

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

1

/* Turbo SHA-384/512
uint64_t P_512[] = {

1

void TurboSHA256_iteration(uint32_t *M, uint32_t *H, uint32_t *P) {

uint t;

uint32_t W[32];
uint32_t vars[8];
uint32_t T[2];

/* Step 1 */
for(t=0 ; t<16 ;
for(t=16 ; t<32 ;

/* Step 2 */
for(t=0 ; t<16 ;

/* Step 3 */

0x3956¢25b,
Ox59f111f1,
0x923f82a4,
@xablc5ed5,
0xd807aa98,
0x12835b01,
0x243185be,
@x550c7dc3,
0x72be5d74,
0x80@deblfe,
0x9bdco6a?,
0xc19bf174

*/
UINT64_C(0x428a2f98d728ae22),
UINT64_C(0x7137449123ef65cd),
UINT64_C(@xb5cOfbcfec4d3b2f),
UINT64_C(0xe9b5dba58189dbbc),
UINT64_C(0x3956c25bf348b538),
UINT64_C(0x59f111f1b605d019),
UINT64_C(0x923f82a4af194f9b),
UINT64_C(@xablc5ed5da6d8118),
UINT64_C(0xd807aa98a3030242),
UINT64_C(0x12835b0145706fbe),
UINT64_C(0x243185bedeedb28c),
UINT64_C(0@x550c7dc3d5ffb4e2),
UINT64_C(0x72be5d74f27b896f),
UINT64_C(0x80deblfe3bl696bl),
UINT64_C(0x9bdc06a725c71235),
UINT64_C(@xc19bf174cf692694)

t++) { WLt] = M[t];
t++) { W[t] = MSG_EXP(t,W,P);

t++) { P[t]

WEt] + W[t+16];

AH_INIT(Cvars,H,W);

/* Step 4 */
for(t=0 ; t<8 ;

/* Step 5 */
iTH_HASH(Cvars,H);
}

void TurboSHA512_iteration(uint64_t *M, uint64_t *H, uinto4_t *P) {

uint t;

uinte4_t W[32];
uint64_t vars[8];
uinte4_t T[2];

/* Step 1 */
for(t=0 ; t<16 ;
for(t=16 ; t<32 ;

t++) { PROC(t,vars,T,W);

t++) { W[t] = M[t];
t++) { W[t] = MSG_EXP(t,W,P);

(SRS

3
3

Appendix —100

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

/* Step 2 */
for(t=0 ; t<16 ; t++) { P[t] = W[t] + W[t+le]l; }

/* Step 3 */
AH_INIT(vars,H,W);

/* Step 4 */
for(t=0 ; t<8 ; t++) { PROC(t,vars,T,W); }

/* Step 5 */
iTH_HASH(Cvars,H);
}

uint32_t* TurboSHA224(uint8_t *M, uint64_t 1) {
int32_t a,k,delay;
uint8_t *M_tail;
uint32_t *H,*M_current;
uint32_t P[1l6];
uint64_t i,r,l_bits;

/* Initialize some variables */
1_bits = 1*8;
/* Initialize hash and double pipe parameters */

H = (uint32_t *)malloc(8*sizeof(uint32_t));
for(i=0 ; i<8 ; i++) {
H[i] = H_224[i];
P[i] = P_256[1i];
}
for(i=8 ; i<16 ; i++) {
P[i] = P_256[1i];

}

/* Padding the message */
/* Solve this equation 1+1+k = 448 mod 512 (k unknown) */
a=0;

r= (1% 64);

do { k =448 - 1 - r*8 + 512*a; a++; } while(k < 0);

/* Initialize last Message block */
M_tail = (uint8_t *)malloc(64*a*sizeof(uint8_t));
memset(&M_tail[0@],0,64*a);

delay = 0;
memcpy(&M_tail[@]+delay,&M[@]+(1-r),r);
delay += r;

M_tail[delay] = 0x80;

delay += 1;

memset(&M_tail[@]+delay,@,(k-7)/8);
delay += (k-7)/8;
memcpy(&M_tail[@]+delay,&1_bits,8);

for(i=0 ; i<l-r ; i+=64) TurboSHA256_iteration((uint32_t *)&M[@]+i,H,P);
for(i=0 ; i<a ; i+=64) TurboSHA256_iteration((uint32_t *)&M_tail[@]+i,H,P);

return H;

}

uint32_t* TurboSHA256Cuint8_t *M, uint64_t 1) {
uint 1i;
uint32_t *H;

uint32_t P[1l6];

H = (uint32_t *)malloc(8*sizeof(uint32_t));

Appendix — 101

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

for(i=0 ; i<8 ; i++) {
H[i] = H_256[1i];
P[i] = P_256[1i];

}
for(i=8 ; i<16 ; i++) {
P[i] = P_256[1i];
}
for(i=0 ; i<l ; i++) TurboSHA256_iteration(M[i],H,P);

return H;

}

uint64_t* TurboSHA384(uint64_t **M, uint N) {
uint 1i;
uint64_t *H;
uint64_t P[1l6];

H = (uint64_t *)malloc(8*sizeof(uint64_t));

for(i=0 ; i<8 ; i++) {
H[i] = H_384[i];
P[i] = P_512[i];
}
for(i=8 ; i<16 ; i++) {
P[i] = P_512[i];
}
for(i=0 ; i<N ; i++) TurboSHA512_iteration(M[i],H,P);

return H;

}

uint64_t* TurboSHA512(Cuint64_t **M, uint N) {
uint 1i;
uint64_t *H;
uint64_t P[1l6];

H = (uint64_t *)malloc(8*sizeof(uint64_t));
for(i=0 ; i<8 ; i++) {

H[i] = H_512[i];
P[i] = P_512[i];

}
for(i=8 ; i<16 ; i++) {
P[i] = P_512[1i];
}
for(i=0 ; i<N ; i++) TurboSHA512_iteration(M[i],H,P);

return H;

}

void print32_hex(uint32_t *A, int arrayNum) {
uint 1i;
for(i=0 ; i<arrayNum ; i++) printf("%8x ",A[i]);
printf("\n");

}

void print64_hex(uint64_t *A, int arrayNum) {
uint 1i;
for(i=@ ; i<arrayNum ; i++) printf("%1611lx ",A[i]);
printf("\n");

}

struct timeval gtod_start_time;
void timer_start(void) {

Appendix — 102

}

uint32_t timer_gettime(void) {

}

Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

gettimeofday(>od_start_time,0);

uint32_t result;

struct timeval gtod_now_time;

gettimeofday(>od_now_time,d);
result=(gtod_now_time.tv_usec-gtod_start_time.tv_usec);
//result+=(gtod_now_time.tv_sec-gtod_start_time.tv_sec)*1000;

return result;

void test(uint64_t 1) {

uint 1i,j,us;
uint32_t *H32;
uint64_t *Ho4;
uint8_t *M32,*M64;

printf("Generating %ix16 (32 & 64 bit) random numbers...",1);

/* Create Nx16 message block full of random numbers, 32&64 bits */
M32 = (uint8_t *)malloc(l*sizeof(uint8_t));

M64 = (uint8_t *)malloc(l*sizeof(uint8_t));

for(i=0 ; i<l ; i++) {
srand(rdtsc());

M32[1i] = (uint8_t)(rand() % UINT32_MAX);
Mo4[i] = (uint8_t)(rand() % UINT32_MAX);

}
printf("done\n");

timer_start();

H32 = TurboSHA224(M32,1);
us = timer_gettime(Q);
printf("Turbo SHA-224 (%i

timer_start();

H32 = TurboSHA256(M32,N);
us = timer_gettime(Q);
printf("Turbo SHA-256 (%i

timer_start();

H64 = TurboSHA384(M64,N);
us = timer_gettime(Q);
printf("Turbo SHA-384 (%i

timer_start();

H64 = TurboSHA512(M64,N);
us = timer_gettime(Q);
printf("Turbo SHA-512 (%i

free(M32);
free(Mo4);

usd)\n" ,us);

us)\n" ,us);

us)\n" ,us);

usd)\n" ,us);

print32_hex(H32,8); free(H32);

print32_hex(H32,8); free(H32);

print64_hex(H64,8); free(Ho4);

print64_hex(Ho64,8); free(Ho4);

Appendix—103

	Title Page
	Problem Description
	Master Thesis (grayscale)

