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Recent advances in cell reprogramming technologies enable the in vitro generation of

theoretically unlimited numbers of cells, including cells of neural lineage and specific

neuronal subtypes from human, including patient-specific, somatic cells. Similarly, as

demonstrated in recent animal studies, by applying morphogenetic neuroengineering

principles in situ, it is possible to reprogram resident brain cells to the desired phenotype.

These developments open new exciting possibilities for cell replacement therapy in

stroke, albeit not without caveats. Main challenges include the successful integration

of engineered cells in the ischemic brain to promote functional restoration as well as

the fact that the underlying mechanisms of action are not fully understood. In this

review, we aim to provide new insights to the above in the context of connectomics of

morphogenetically engineered neural networks. Specifically, we discuss the relevance

of combining advanced interdisciplinary approaches to: validate the functionality of

engineered neurons by studying their self-organizing behavior into neural networks as

well as responses to stroke-related pathology in vitro; derive structural and functional

connectomes from these networks in healthy and perturbed conditions; and identify

and extract key elements regulating neural network dynamics, which might predict the

behavior of grafted engineered neurons post-transplantation in the stroke-injured brain.

Keywords: neural networks, neuroengineering, cell reprogramming, disease modeling, multielectrode arrays,

computational modeling, electrophysiology, cell therapy

INTRODUCTION

Stem cell therapy for ischemic stroke may extend the therapeutic window from the acute into the
sub-acute and chronic stage. As such, it is a particularly interesting approach, considering that
more than 80% of stroke patients are de facto not eligible for the standard clinical treatment
options, i.e., thrombolysis or thrombectomy (1). Numerous animal studies have demonstrated
the potential of stem cell therapy alone, or in combination with in situ tissue engineering
strategies and/or pharmacotherapeutics, for promoting functional restoration after stroke.
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The rationale behind stem cell therapy is that it can promote
functional recovery through a range of possible mechanisms
of action, including neuroprotection, modulation of the
inflammatory response, cell replacement, remyelination,
tissue/vascular remodeling and de novo neurogenesis (2–8).
Although promising and valuable in the quest of elucidating
relevant recovery mechanisms at the experimental level, clinical
translation of stem cell-based approaches tends to be largely
confounded by significant challenges. These include poor graft
survival and integration with the host tissue, which indeed is
hardly surprising, given the intricacies inherent in aspiring to
create safe, functional in situ biointerfaces that could effectively
re-establish functional connectivity in multiple foci (9–12). As
a result, numerous past and ongoing clinical trials of various
stem cell-based therapies have largely failed to fully confirm
preclinical findings by promoting significant and/or long-
lasting gain of motor, sensory, or cognitive function in stroke
patients (10, 11, 13–15).

Apart from the conceivable limitations of extrapolating
findings from animal studies to the clinic, a substantial barrier
to clinical translation is the lack of a thorough understanding of
the underlying mechanisms determining cell graft behavior post-
transplantation in the ischemic brain. This is further confounded
by the intrinsic complexity of stroke lesions and, with regard to
cell replacement and functional integration of the engrafted cells,
also the lack of direct empirical evidence supporting neuronal
replacement in human patients (1).

It is also worth considering the potential role of endogenous
plasticity in response to ischemic injury, not least, the manner in
which associated mechanisms may influence transplant behavior
(16). Plastic responses after stroke can be demonstrated as
neurogenic niche activation and cytogenesis in the ipsilesional
brain hemisphere, as well as rewiring of surviving neural
networks and recruitment of intact synapses contralateral, but
also ipsilateral to the lesion (17–22). Such plastic responses and,
not least, concomitant inflammatory processes triggered by brain
ischemia, may conceivably play a significant role in determining
functional outcomes after stroke (12, 23, 24). The underlying
mechanisms regulating such responses are however unclear and,
consequently difficult to harness in an appropriate or timely
manner. Furthermore, the fact that intrinsic neuroplasticity
can be adaptive, but also maladaptive, suggests that any
attempt to harness it that fails to fully comprehend or suitably
engage fundamental underlying mechanisms may inadvertently
exacerbate lesion-induced deficits rather than contribute toward
functional restoration.

Several questions therefore arise that warrantee rigorous
discussion in the scientific community. In this review, we
aim to contribute to this discussion by providing a concise
overview of novel and emerging theoretical and methodological
perspectives which may be significant for improving the
robustness of pre-clinical studies with a view to clinical
translation. Specifically, we propose the investigation of in vitro
engineered neural networks in the context of connectomics and
discuss how morphogenetic neuroengineering can be supported
by advanced interdisciplinary approaches, including in vitro
electrophysiology, microfluidics, and computational modeling,

to obtain robust preclinical models that can promote our
understanding of cell replacement therapy for stroke beyond
the state-of-the-art.

MORPHOGENETIC NEUROENGINEERING

The differentiation and development of projection neurons in the
mammalian neocortex is regulated by tight molecular control,
which determines and orchestrates sequential cell fate decisions
over different temporospatial scales [reviewed in Greig et al.
(25)]. An understanding of fundamental mechanisms regulating
these processes led to the development of morphogenetic
neuroengineering approaches based on controlled expression
of transcription factors (26, 27). In 2002, a proof-of-principle
study by the Göetz lab demonstrated that the Pax6 gene controls
the neurogenic potential of radial glia, and also that its forced
expression can induce astrocytes to a neuronal fate in vitro (28). A
few years later, the same group showed that upregulation of Olig2
expression after brain injury, including focal ischemia, suppresses
Pax6 expression, while in vivo transduction with a dominant-
negative form of Olig2 in the acute and chronic phase after injury
can induce neurogenesis in the neocortex (29).

A major barrier in morphogenetic neuroengineering with a
view to clinical translation for cell replacement therapy was
broken by Sinya Yamanaka’s research. In a seminal paper in
2006, Yamanaka and Takahashi demonstrated conversion of adult
somatic cells into induced pluripotent stem cells (iPSCs) after
transduction with only four genes (Oct4, Sox2, Klf4 and c-Myc)
(30). This method paved the way toward autologous sourcing
and generation of theoretically unlimited numbers of stem cells
applicable to a range of possible therapeutic approaches in
regenerative medicine, including treatment of central nervous
system (CNS) lesions, such as ischemic stroke.

Recent advances in cell reprogramming technologies have
led to the development of efficient, reproducible, high-yield
protocols for the generation of iPSCs and induced neural
stem cells (iNSCs), as well as protocols for the generation
of induced neurons (iNs) and specific neuronal subtypes,
including spinal motoneurons, dopaminergic, cholinergic, and
medium spiny neurons, and also cortical neurons, by direct
conversion of somatic cells (31–37); reviewed in Gascon et al.
(38). Such direct conversion protocols bypass the pluripotency
state through forced expression of lineage-specific transcription
factors regulating brain development and may also effectively
preserve the age-related and epigenetic imprint of the cell (31,
39). Similar principles can be applied for direct reprogramming
of glia, including astrocytes, NG2 glia, microglia, and pericytes,
into neurons (40–44). Interestingly, a number of studies have
also demonstrated in vivo reprogramming of resident brain and
spinal cord astrocytes and endogenous neural progenitors into
neurons (44–51).

Reprogramming through the iPSC/iNSC state or by direct
conversion is highly relevant for cell-based therapies for brain
ischemia. A number of studies have demonstrated the potential
of iPSC and iNSC-derived neurons for cell replacement therapy
in stroke (4, 52). Furthermore, neurons derived from immature
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progenitors and pluripotent cells have the potential to establish
long-range target-specific functional connections in the adult
mammalian CNS (49, 53–57) reviewed in Wuttke et al. (58).

However, unequivocal evidence of functional integration
of iPSC/iNSC derived neurons in the ischemic brain post
transplantation is scant, not least regarding the potential
of these cells to establish long-term efferent connections
in a target-specific manner (1). Tornero and co-authors
were the first to show that cortical neuronal progenitors,
differentiated from human fibroblast-derived iPSCs, survive after
intracortical transplantation in the rat brain after stroke and also
receive afferent inputs, as suggested by observed monosynaptic
responses from the grafted neurons after stimulation of the intact
cortical region adjacent to the graft (59). Furthermore, in a
recent study, the same group demonstrated that transplanted
iNSC-derived neurons can functionally integrate with the local
thalamocortical circuitry and receive direct synaptic inputs from
the relevant brain regions (60).

Taken together, such evidence suggests that the state-of-
the-art morhogenetic neuroengineering approaches for the
generation of neuronal types relevant for cell replacement
therapy in stroke hold promise. Their potential for clinical
translation, however, is not without caveats. A fundamental,
currently unresolved, question as whether transplanted
engineered neurons can promote improved functional outcomes
after stroke is the extent to which they can morphologically and
functionally integrate with the host tissue.

Several related questions arise: Do engineered neurons have
the capacity to establish efferent connections, in addition to
afferent ones, post-transplantation? If so, where in the brain are
transplanted neurons likely to project and form synapses? How
does the transplant respond to evolving stroke related pathology,
including the spontaneous reorganization of the relevant neural
circuitry after the injury, as well associated dynamic changes at
the micro-, meso-, and macroscale? Is it possible to anticipate
such responses and, importantly, predict whether functional
integration of the transplanted neurons in the host brain will
elicit adaptive or maladaptive processes?

CONNECTOMICS OF THE HEALTHY AND
LESIONED BRAIN

Adaptive and Maladaptive Neuroplasticity
To achieve therapeutic interventions for stroke beyond the
state-of-the-art we need to consider stem cell therapy in
the context of the extremely complex, highly interconnected
structural and functional circuitry of the human brain, especially
the altered, highly plastic, structure-function relationships
triggered by an ischemic lesion. Endogenous neuroplasticity
after stroke and its relevance for the functional integration
of morphogenetically engineered transplants to elicit recovery
of motor, sensory, or cognitive deficits as a result of brain
ischemia, can be briefly discussed in the context of Hebbian and
homeostatic mechanisms.

During development, the CNS is characterized by a high level
of plasticity, where functional brain networks and circuits are

shaped by Hebbian mechanisms, such as long-term potentiation
(LTP) and long-term depression (LTD) (61, 62) constituting
the synaptic basis of associative learning (63). These processes
are regulated by evolutionarily conserved mechanisms and
involve functional and structural changes which occur in
a well-orchestrated spatiotemporal manner. However, once
development has been completed, Hebbian mechanisms alone
cannot explain how the mature brain maintains normal function.
In the same manner, Hebbian laws per se cannot sufficiently
explain plastic network responses, such as synaptic scaling
(64, 65), which are observed following externally induced
perturbations. This suggested that there may be another form of
plasticity underlying such responses. Compelling experimental
evidence over the last two decades supports that another form
of plasticity, i.e., homeostatic plasticity, does exist (64, 66–69).
Indeed, homeostatic plasticity operates in tandem with Hebbian
plasticity along complex temporal and spatial scales and serves
to maintain normal neural network function as well as regulate
network responses to perturbation (67, 70).

It is well-documented that any major disturbance to
normal neural network function tends to result in severe,
permanent functional deficits, but also trigger adaptive and
maladaptive network responses, which are demonstrated as
changes in network structure and function (12, 18, 19, 66,
69–74). Such alterations may represent various underlying
forms of neuroplasticity, which involve both homeostatic and
Hebbian mechanisms (67, 75, 76), and which can be described
as morphology-activity, (i.e., structure-function) relationships.
Such relationships are highly complex and, as a result, poorly
understood. However, elucidation of how different forms of
plasticity may result in adaptive or maladaptive neural network
responses and, thereby, how such processes may promote
or hinder functional restoration after a perturbation such as
stroke is of fundamental importance for our ability to achieve
functional repair.

As mentioned earlier, plastic responses to an ischemic
event include spontaneous functional recovery (77), rewiring of
surviving neuronal networks and axonal ramification, and the
recruitment of intact synapses post-lesioning (78), demonstrated
as intra- and interhemispheric neural network remodeling (74).
Furthermore, there is increasing consensus as to the likelihood
that such responses are also influenced by evolving inflammatory
processes (12). The underlying mechanisms regulating such
responses largely involve structural as well as functional changes
in brain circuits closely associated with the ones directly affected
by stroke. These circuits can further be engaged and modified
through experience-dependent plasticity (17, 79).

It is a reasonable assumption to make that there is a critical
period of increased neuroplasticity after stroke, which can be
harnessed to promote functional recovery, as exemplified in a
number of preclinical as well as clinical studies (12, 17, 77, 80–
84). Moreover, recent evidence suggests that recovery after stroke
can be mediated through the engagement of neural networks
in a functional hierarchy both in the contralesional as well
as ipsilesional brain hemisphere and also upstream as well as
downstream of the lesion (85). Furthermore, it is becoming
increasingly evident that any cortical remapping that may occur
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after stroke is both activity dependent, but also based on
competition (86).

Neural Transplants as Part of the Brain
Connectome
Where does cell replacement therapy fit in this context? To
seek answers to this question, it is important to consider the
behavior of engineered neural transplants in the ischemic brain
in terms of connectomes (87, 88) i.e., the changing structure-
function relationships and complex interplay between affected
and intact neural ensembles in the brain in the context of evolving
stroke pathology.

Highly relevant insights as to how the brain connectomes
underpin the behavior of a neural system and determine
functional outcome after a perturbation can be found in an
excellent review by Fornito and co-authors (89). In this paper, the
authors discuss how the highly interconnected, complex topology
of the neural architecture of the brain, which is characterized
by a fine, coordinated balance between regional segregation and
specialization of function, but also highly precise functional
segregation and integration of distal neuronal ensembles across
multiple temporal scales, can shape the brain’s response to
perturbations (89–93). Specifically, brain network topology can
determine not only disease progression, but also adaptive or
maladaptive responses to pathological perturbations. By applying
fundamental principles from graph theory, it is possible to extract
key functional and structural elements of the brain’s connectome
that may explain or predict such responses (94).

According to graph theory, a neural assembly consists of
key elements, namely nodes and edges, and as such, metrics
that define properties of the graph can be applied to make
inferences about the neural connectome, for example, as it
is revealed by electrophysiological activity (92, 94–96). Nodes
incorporate neurons, neuronal populations, and macroscopic
brain regions, while edges determine structural, functional,
or effective connectivity and, as a result of the latter, the
directionality of internodal neural communication. In this
manner, structural connectivity can be indicative of morphology-
activity relationships between neurons, whereas functional
connectivity, which is independent of the physical proximity of
the neurons, provides a temporal correlation of their activity.
On the other hand, effective connectivity can determine whether
there is a causal relationship between the activity of different
neurons (94). Topological properties of particular interest
include economical wiring, hierarchical modularity, small-world
organization enabling functional segregation, integration and
specialization through high network clustering and characteristic
short path lengths (93, 95–100), as well as highly-connected
network hubs. Connections between hubs can be describes as
rich club, i.e., central core connections, if they extend over large
anatomical distances and link distinct functional systems (101).
As such, rich club connections mediate high-volume network
traffic and integrated brain function.

Connectomics of Adaptive and
Maladaptive Responses to Brain Ischemia
As a result of high interconnectivity of neural networks and
circuits, the damage induced by lesions such as focal cerebral

ischemia dissipates in the brain and progressively spreads to
affect distal loci (81). This diaschisis phenomenon constitutes a
maladaptive response and may explain the deafferentiation and
aberrant synchronization observed in brain regions remote from
the one directly affected by the stroke (74, 89, 92). Excitotoxicity
thus plays a central part in the damage sustained to these
remote nodes after a stroke. Associated maladaptive responses
include anterograde and retrograde neuronal degeneration,
for example, as a result of neuronal loss, excitotoxicity and
impaired axonal transport, but also dedifferentiation. Apart
from loss of tissue at the lesion site, neuronal degeneration
involves structural deterioration over time of nodes connected
to the primary lesion site, while dedifferentiation refers to the
gradual loss of specialized function in the affected brain region,
followed by increased, non-specialized activity in associated
nodes (89, 92) (Figure 1A).

On the other hand, adaptive network responses include
lateralization, i.e., compensation for lost function by increased
structure-function interactions and the engagement of intact
neuronal ensembles within the affected system, or within
other systems. Other adaptive responses may include neural
reserve, a process by which remaining intact tissue in the
immediately affected region can sustain the previous level of
behavior, and also degeneracy, where a second system, without
demonstrating apparent changes, can adequately support the
activity of the affected one (89, 102). Thus, the effects of a
perturbation critically depend on the topological centrality and
degeneracy of the affected region, as pathology of central regions
can exacerbate maladaptive responses, whereas degeneracy can
facilitate adaptive ones (89, 95, 96). By the same token,
spontaneous or induced gain of function after stroke may
imply partial restoration of neural networks previously involved
in impaired function or, alternatively, a compensatory or
substitution mechanism, which is contingent on the recruitment
of other networks (74) (Figure 1B).

However, in any perturbed system, not least, the
ischemic brain, which is characterized by highly complex
pathophysiological mechanisms and associated cellular and
molecular cascades, such responses are neither unequivocal,
nor mutually exclusive. Furthermore, as mentioned earlier,
the resilience of the perturbed system and the manner in
which it may reconfigure its structure-function relationships
in response to the lesion largely depends on the topological
substrates being affected. It follows that a neural transplant,
effectively, a new topological element (likely, a node) within
the local circuitry, becomes another integral component
in the system’s connectome. As such, the input and
output functions of the transplant node are shaped by
other key elements of the connectome, as for example,
its interactions with other nodes, in an interdependent,
reciprocal manner.

Assessing the Potential of
Morphogenetically Engineered Neurons to
Become Integrated Within the Connectome
What are the exact processes that determine whether and/or to
what extent neurons engineered in vitro (and by the same token,
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FIGURE 1 | Schematic representations illustrating typical maladaptive (A) and adaptive responses (B) to brain injury in the context of connectomes and graph theory.

Colored circles represent nodes, while lines represent interconnecting edges [Figure modified from Fornito et al. (89)].

in vivo), have the capacity to become part of the local connectome
in a manner that may promote gain of function after stroke?

Detailed study and elucidation of relevant mechanisms in
stroke patients is not feasible and is thus de facto limited to
methods and analyses based on indirect and often incomplete
observations or measures. Relevant research must therefore
rely on robust preclinical models. Notwithstanding various
excellent studies employing cell replacement strategies, coupled
with cutting-edge methods for monitoring and assessment
of functional integration of the engineered neurons in
experimental stroke animals (16, 60), there is currently no
unequivocal evidence supporting that these neurons become
fully integrated into the ischemic brain. As a result, pertinent
questions remain unanswered, especially with regard to the
intrinsic capacity of engineered neurons to engage with local
circuitry, whether we can predict their responses to evolving
pathology, as well as determine whether their morphological
and functional integration into the host brain will elicit adaptive
or maladaptive responses and, ultimately, promote repair
or inadvertently exacerbate the lesion-induced deficits. We
may start addressing such questions by combining in vitro
morphogenetic neuroengineering with electrophysiology studies
and computational modeling.

Reductionist in vitro Paradigms That
Capture Complex Network Dynamics in
Healthy and Perturbed Conditions
State-of-the-art platforms for the study of in vitro neural
networks includemicroelectrode arrays (MEAs).MEAs represent
a breakthrough in in vitro electrophysiology platforms, as
they enable direct observation of evolving network dynamics
through extracellular recordings, as well as disease modeling and
modulation of network activity by electrical, chemical, opto- or

chemogenetic manipulation to selectively perturb network
function or engage its plasticity (94, 103–111).

This approach largely exploits intrinsic attributes of in vitro
neural networks, including emergence/morphogenesis, as a result
of cell behaviors driven by local cell-cell interactions, and self-
organized criticality (SoC) (112). A universal characteristic of
in vitro cultured neurons, irrespective of source (i.e., rodent
or human) or specific subtype, is that they self-organize
into functional complex networks. This spontaneous process,
which occurs in the absence of any external instructive
influence (113), involves the network’s gradual transition through
distinct morphology-activity states underscored by increasing
structural and functional complexity as a result of emerging
neuronal activity, axonal elongation and pathfinding, synapse
formation and pruning (113, 114). Over time, the network gains
morphological and functional maturity, ultimately reaching SoC,
a critical state characterized by a fine balance between excitation
and inhibition (113, 115–118). Once at the SoC state, the
neural network exhibits neuronal avalanches, i.e., characteristic
cascades of activity defined by rich, stable spatiotemporal
patterns and power-law distributions of variables (114, 119).
Criticality has been closely, yet not exclusively, associated with
self-organization (112, 120–124).

How does SoC displayed by in vitro neural networks relate
to normal or impaired brain function? The idea that the brain
operates in a near-critical state is not new (119, 125, 126),
yet the presence of SoC states in the brain has, to a certain
extent, been the subject of debate until relatively recently (119,
127–129). However, emerging evidence, including findings from
magnetoencephalography (MEG) studies in human subjects,
strongly supports the presence of SoC in the brain, not only as
a mechanism underlying spatially local or internodal measures of
brain activity, for example, as relevant for cortical function, but
also as a global phenomenon (123, 130).
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This suggests that within the brain connectome, SoC states
play a putative role in information transmission and processing,
including segregation and integration of function along different
spatiotemporal scales (114, 123, 124, 131). As such, critical states
in the brain emerge from the complex underlying morphology-
activity relationships shaping the system’s behavior and are
stipulated to underscore adaptation processes in the context of
neuroplasticity. It is currently unknown how changes in network
organization over different spatiotemporal scales, for example, as
a result of ischemic insult, may affect such states (114).

In vitro biological substrates that combine morphogenetically
engineered neurons with MEAs can be used to obtain insights
into such mechanisms. For example, neural avalanches can
be observed and recorded as synchronous local field potential
(LFP) spikes across multiple electrode locations. Dependent on
the number of embedded recording electrodes available on the
MEA, which may range from a few dozen (typically 60–120
electrodes) to several thousand, the observed LFPs may arise
from neuronal clusters, effectively individual nodes within the
network, but also represent single-cell activity, as in the case of
very high-density (>11,000 electrodes) complementary metal-
oxide semiconductor (CMOS) integrated circuit MEAs (118).
This effectively means that the derived neural substrates can
faithfully recapitulate fundamental aspects of neural network
behavior, thus enabling the study of complex network dynamics
in reductionist in vitro paradigms. Maintenance of the relevant
MEA-based neural networks in optimal culture conditions
enables long-term monitoring of network behavior up to several
weeks or months (132) (Figure 2).

Verification of Functionality
In light of the above, an immediate application of in vitro
morphogenetically engineered neurons on MEAs can be the
validation of the neurons’ functionality prior to transplantation
in the ischemic brain. This is a crucial but often overlooked
parameter, given that fundamental intrinsic properties of
engineered neurons, such as self-organization, spontaneous firing
activity, or capacity to reach SoC states, can be expected to
provide a gauge as to their potential to survive and integrate with
the host tissue post-transplantation. As such, electrophysiological
recordings from engineered neurons on MEAs is a highly
complementary method to transcriptional analyses of such
neurons after reprogramming and should constitute an integral
part of their characterization before proceeding to in vivo studies.

Importantly, apart from verification of the inherent capacity
of in vitro engineered neurons to self-organize into functional
networks, reductionist in vitro paradigms such as MEA-based
biological substrates also constitute a powerful tool for assessing
the behavior of these networks in healthy and perturbed
conditions by enabling the study of their connectomes.

Several recent studies have demonstrated that in vitro
neural networks, including human engineered neuronal cultures,
demonstrate physiological maturation over time suggestive of
complex underlying structure-function relationships (133–138).
Functional maturation can be further enhanced typically by
culturing neurons on a feeder layer of astrocytes (139, 140), or
by adapting the differentiation protocol to generate both neurons

and astrocytes (141), thus optimizing neuronal polarization,
axonal and dendritic arborization, and synapse formation in
the derived networks (142–144). In this manner, in vitro neural
networks recapitulate fundamental topological properties of
the brain, including key features mentioned earlier, such as
hierarchical modularity and small-world organization (98, 100).

Various methods for MEA data analysis can be applied to
make inferences about the functional, structural or effective
connectivity of the network, as well as its dynamical or critical
states (94, 145). Such inferences are particularly relevant for
obtaining insights as to the state of a neural network (including
sub-critical and super-critical states) (113, 115, 146–148) but also
for identifying evolving pathology, and predicting the manner in
which the network will respond, i.e., adaptive or maladaptive.

Mimicking Stroke-Related Pathology
As mentioned earlier, one of the fundamental yet unanswered
questions pertaining to the functional integration of in vitro
engineered neurons in the ischemic brain post-transplantation
is lack of unequivocal evidence from in vivo stroke models as
to the ability of these grafts to extend axons and form efferent
connections with appropriate targets. A corollary to the above
is the capacity of such grafts to become incorporated in the
local circuitry while pathophysiological processes of the injury
and/or spontaneous plasticity of the host brain are in progress.
MEA-based neural substrates provide an excellent platform for
mimicking key aspects of such processes in a controlled manner.

There are currently no reported studies in the literature
investigating stroke-related pathology in human engineered
neural networks using MEA-based platforms. However, a
number of reports have demonstrated the utility of these
platforms for CNS disease modeling, often in the context
of neurodegenerative disorders, epilepsy, toxicology, and drug
screening, as well studies of neural network plasticity and
response to selective modulation (108, 149–151).

Beyond the state-of-the-art modeling of engineered
neural network responses to stroke may be achieved by the
incorporation of defined topography and/or dimensionality
in the MEA-based substrate. For example, a host of
different biological and synthetic scaffolds can be applied
for bioengineering of in vitro neural networks in three-
dimensional (3D) cultures as opposed to the conventional
two-dimensional (2D) ones (152–155). Such systems, which may
also combine the use of a scaffolding substrates with 3D- rather
than planar 2D-MEAs, can help recapitulate structure-function
relationships shaped by cell morphology, cell-to-cell interactions,
and axonal outgrowth in all directions within the extracellular
microenvironment. In this manner, the derived in vitro
connectomes can better approximate the micro-, meso-, and
macroscale dynamics of the brain, thus enabling self-organized
neural network behavior of increased complexity, compared
to 2D systems (150, 156, 157). Importantly, 3D substrates are
compatible with co-culture of neurons with other relevant cell
types, including astrocytes and microglia, thus adding to the
physiological relevance of the assay (142, 144, 158–162).

Hence, the 3D configuration can be used to assess emerging
morphology-activity relationships in unperturbed engineered
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FIGURE 2 | Evolution of spontaneous electrical activity in a morphogenetically engineered neural network on a 60-electrode MEA. (A) Standard in vitro

electrophysiology platform (Multi Channel Systems, Germany). (B) Standard planar 60-electrode MEA with protective ring for long-term neuronal culture. (C) Overview

image showing a neural network on a 60-electrode MEA. Neuronal clusters appear as dense white regions on the MEA. (D–F) Self-organization of engineered neural

networks on an MEA over time and corresponding development of spontaneous activity shown as tonic firing (D1), unsynchronized bursts (E1), and pacemaker

bursts (F1) at 20, 28, and 40 days in vitro, respectively. (G) Shows the mature neural network at >45 days in vitro.

neural networks in vitro, but also to study their responses
to stroke related pathology, as for example, after oxygen-
glucose deprivation or induced excitotoxicity. The versatility
and relevance of these platforms for in vitro connectomics
of engineered neurons, can further be enhanced with the
incorporation of microfluidics devices, which enable in
vitro culture of modular neuronal ensembles with definable
connectivity at the micro- and nanoscale level.

Custom-designed microfluid devices can be fabricated using
a variety of methods including etching techniques, photo-
and e-beam lithography, embossing, replica molding, and
laser photoablation (163). Such systems enable the culture
of in vitro neural networks by confining neuronal somata
within designated compartments, i.e., nodes, and controlling
afferent and efferent inter-nodal connectivity by predefined,
directional axonal outgrowth through micropatterned channels
only permissible to neuronal axons and neurites (164). As
such, microfluidic devices can be superior to conventional
culture systems as they enable spatial and temporal control
of the neuronal microenvironment (163). Importantly, such
microfluidic devices can be interfaced with MEAs, thus enabling
longitudinal monitoring of intra- and internodal network
dynamics in normal and perturbed conditions.

These integrated in vitro platforms may thus constitute
a powerful tool for the investigation of the connectomics of
morphogenetically engineered neural networks alone, or in
co-culture with other relevant cells, including different relevant
neuronal subtypes, glia, and microglia (142, 158, 165, 166).
A potential application of multi-nodal microfluidic devices
integrated with MEAs is to test whether compartmentalized
engineered neurons can form integrated multi-nodal functional
networks which demonstrate efferent, as well as afferent
connectivity. Such studies can thus help address a pertinent, yet
unelucidated question regarding engineered neural networks,
namely, whether they can form efferent synapses. Furthermore,
the topology and molecular/flow gradients of the microfluidic
platform can be exploited to induce disease-related pathologies
in a selective or controlled manner and monitor dynamic
intra- and inter-nodal responses over time (167, 168). Added

microtopography features, such as the incorporation of
synaptic chambers (169), enable monitoring of axons and
synapses at cross-sections between nodes, and also facilitate
added manipulations, as for example axotomy (170, 171).
Depending on electrode alignment in the MEA interface,
such microfluidic designs can also enable monitoring of spike
propagation along axons between nodes (172), as well as selective
electrical stimulation.

Distinctive Advantages of in vitro Models
Clearly, advanced in vitromodeling platforms are highly versatile
and can recapitulate complex morphology-activity relationships
underpinning brain function (173–175). Such in vitro systems
afford unique scope for mimicking stroke-related pathology and
determining dynamic behavior of engineered neurons in the
context of functional integration. Thus, although in vitromodels
are reductionist in nature, they are by no means simplistic and,
compared to in vivo models, they enable specific manipulations
and observations in a highly controlled manner. Especially
with regard to connectomics studies, in vitro models have the
distinctive advantage of allowing the study of emerging, dynamic
network behavior at the micro- and mesoscale across large
populations of neurons in different assemblies, including their
internodal interactions (166, 176). Advanced in vitro models
are thus highly complementary to in vivo ones, constituting
valid alternatives and providing valuable insights that can
instruct the design of in vivo stroke transplantation studies
with improved predictive validity for clinical translation. As
such in vitro modeling platforms are also aligned with the 3R
principles (i.e., Replace, Reduce, Refine) pertaining to the use of
experimental animals.

Deep Learning; Making Inferences and
Predictions About Behavior
Notwithstanding the tremendous potential afforded by these
advanced in vitro platforms for studying engineered neural
networks in the context of stroke modeling, it must be
emphasized that MEA-based electrophysiology tends to generate
very high volumes of data (typically, a standard 10min recording
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from a 60-electrode MEA can generate 0.5 GB of data;
indicatively, the corresponding data volume increases to 1,5 GB
when using a 4,096-electrode MEA). As a result, the study of
connectomes, which requires extraction of functional, structural
and effective connectivity and, by the same token, inference
about the underlying neural network state, or prediction about
its dynamic responses to stroke-related pathology, including
anticipated behavior post-transplantation in vivo, cannot be
achieved with standard software analysis methods. Advanced
computational modeling applying deep learning principles is
thus necessary.

As mentioned earlier, connectomics analyses may apply
graph theory and relevant theoretical models to determine
underlying structure-function relationships within a neural
network and infer its critical states (94, 109, 116, 117, 172).
For example, advanced computational modeling may apply
principles from cellular automata (CAs) or random Boolean
networks (RBNs), which examine the relationships between
constituent key elements of a system based, respectively, on
proximal or random connections (177). Furthermore, machine
learning or deep learning approaches, such as artificial neural
networks (ANNs) and artificial recurrent neural networks
(RNNs), are highly relevant computational models for MEA data
analysis. Such models take inspiration from biological neural
networks (BNNs). Briefly, in these models the neurons, i.e., the
computing elements of the system, are arranged in layers through
which information flows in a feed-forwardmanner. Interestingly,
temporal dynamics of the systems can be captured by RNNs by
assigning recurrencies (cycles) within the connection topology
of the neurons in the system. As a result, the system possesses a
memory of previous inputs; in other words, the activation state of
the network at a given time represents a function of its previous
activation states. As such, an RNN can be seen as an untrained
reservoir of dynamics that operates in a near-chaotic state. This
enables control of the system by selecting only a single linear
redout layer for training (178).

RNNs are thus well-suited to capturing dynamic network
behavior of in vitro neural networks, including their critical
states. These attributes of RNNs make them an excellent
computational paradigm for the investigation of mechanisms
by which neuronal populations, including engineered neural
networks, solve various computational problems in healthy
and perturbed conditions (178–182). In this way, we can start
addressing fundamental questions that can help determine the
functional capacity of engineered neurons. Moreover, such
models can be applied to decipher as well as predict the behavior
of engineered neurons in response to stroke-related pathology
in vitro and also post-transplantation in vivo. Importantly, the
relevant computational models can be applied tomake inferences
about underlying critical states, including spontaneous and
induced plasticity of these networks.

Finally, closed-loop hybrid systems are highly relevant in
this context as they can be used for advanced simulations
of spontaneous and induced plasticity, including bi-directional
learning. For example, by interfacing an engineered neural
network on an MEA with a simulated agent (i.e., computer
hardware) we could elicit real-time agent behavior powered
by the neural network using reservoir computing (183).
Furthermore, by selecting a pacemaker node within the
engineered neural network as the target for electrical stimulation,
we were able to alter the pacemaker activity in a manner
suggestive of LTP, and at the same time demonstrate learning
behavior in the simulated agent (183). Other reported studies
have also demonstrated the capacity of embodied neural
network cultures for goal-directed behavior and learning (184–
186). Such approaches are highly promising for the future
development and application of relevant experimental paradigms
for in vitro and in silico assessment of the endogenous as
well as induced plasticity of engineered neural network, as
for example, in terms of guided closed-loop neuromodulation
approaches post-transplantation.

CONCLUSIONS

In this review, we have discussed how the combination of
interdisciplinary methods and theoretical principles can help
develop robust pre-clinical experimental paradigms that can help
validate the functional capacity of morphogenetically engineered
neurons as well as provide significant insights as to their potential
for promoting functional outcomes after transplantation in the
stroke lesioned brain. This integration of approaches is both
timely and necessary and can be expected to make significant
contributions toward the safe translation of stem cell therapy in
the clinic.
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