
June 2008
Peter Herrmann, ITEM
José R. Casar, Universidad Politecnica de Madrid
Johan Montelius, The Royal Institute of Technology

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Conceptualization and Design of a
Context-Aware Platform for User-
centric Applications

Ana Hristova

Problem Description
The goal of this thesis is to conceive a platform prototype to provide context-aware services in a
given mobile computing environment, namely advanced e-healthcare. Conclusions should be
drawn for architectures, to deal with general mobile, location sensitive and context dependent
services.

The project consists of:
o A study of the characteristics and architecture of well-known general purpose platforms for
context-aware applications (Context Toolkit, CoBrA, CMF and Gaia).
o An analysis of the application field and identification of the parameters which describe context.
o An analysis of the Context Toolkit and proposals for its future extension.
o Design of an architecture to go from context sensing to context monitoring to final context
awareness. Determining the functionalities of the platform’s components.
o Implementation of a prototype in Java. The prototype should implement a subset of
functionalities and interface with a location-providing platform.
o Experiments to determine the suitability of the architectural issues.
o Making reasonable tuning changes, conclusions and generalization to other environments.

Assignment given: 15. January 2008
Supervisor: Peter Herrmann, ITEM

Abstract

With the appearance and expansion of mobile devices, ubiquitous computing

is becoming more popular nowadays and the user and his tasks are becoming the focus

of application development. One area of ubiquitous computing is composed by the

context-aware systems, systems where applications are designed to react to the

constant changes in the environment. The heterogeneity of the different domains

where context is a key parameter has generated different approaches for context

acquisition and modeling. Thus, a number of platforms have been developed in order

to alleviate the process of application development and to set a common practice for

building applications and services.

 This thesis studies the different platforms, focusing on the Context Toolkit. It

examines the design principles, context representation, context acquiring methods and

context handling. By developing services for a smart home, it explores the

mechanisms applied in the framework and evaluates it. Furthermore, proposals for

improving the Context Toolkit’s functionality and the application’s performance are

given, by introducing the concept of quality of context and several enhancements

regarding the resource discovery mechanism. Consequently, after gaining hands-on

experience with developing a sample context-aware application and analyzing the

Context Toolkit, a context-aware platform design is proposed which offers a complete

solution defining all the necessary components and their interactions.

 2

Preface

This thesis is done as the final work of the Master’s of Science program in

Security and Mobile Computing (NordSecMob) attended at the Royal Institute of

Technology (KTH) and the Norwegian University of Science and Technology

(NTNU). It has been performed remotely at the Technical University of Madrid

(UPM) in the spring semester 2008.

 The thesis has been supervised by Professor José R. Casar and PhD Ana

Bernardos from UPM, while the academic people responsible were Professor Peter

Herrmann from NTNU and Professor Johan Montelius from KTH. I would like to

thank them for the help and support provided while working on the thesis, especially

Ana Bernardos and Professor Casar for offering the valuable topics, suggestions and

guidelines for the thesis which lead the work to a successful end.

Most of all I would like to thank my parents for their support throughout the

master program, and Aleks and Borche who always encourage me in everything that I

do. Without them I wouldn’t have completed the thesis project. Furthermore, I also

want to thank my friends for all the wonderful moments we’ve shared during the

studying years: Nate, Andrijana, Ivica, Gaby, Daniel, Ines, Sara, Ana, Blagica, Mila,

Aleksandar, Eli, Ana and Tomi.

Madrid, June 2008

Ana Hristova

 3

Contents

1. Introduction..8

1.1 Problem definition..9
1.2 Motivation ..9
1.3 Report organization ..10

2. Context Aware Computing..12

2.1 Definition of context...12
2.2 Definition of context-awareness ..13
2.3 Application domain of context-aware services...14
2.4 Design principles of context aware systems ...15
2.4.1 Architectural approaches ..15
2.4.2 Sensing infrastructure ...17
2.4.3 Context Modeling ...18
2.4.4 Reasoning methodologies...19
2.4.5 Historical data ...19

2.5 Overview of Context Aware Frameworks ...20
2.5.1 Context Toolkit ...20
2.5.2 Context Broker Architecture – CoBrA...21
2.5.3 Context Management Framework..21
2.5.4 Gaia...22
2.5.5 Comparison of the context-aware frameworks ..23

2.6 Challenges in context awareness ..24

3. Analysis of the Context Toolkit ...27

3.1 Introduction...27
3.2 Modes of Application Design ...28
3.3 Description of the Architecture ..29
3.3.1 Widget..30
3.3.2 Aggregator..31
3.3.3 Interpreter ..31
3.3.4 Services ...31
3.3.5 Discoverer...32
3.3.6 Enactor...32
3.3.7 Communications Infrastructure..33

3.4 Flow of actions..34
3.5 Critical analysis ..37
3.5.1 Strengths ..37

 4

3.5.2 Weaknesses ...39

4. Enhancements of the Context Toolkit ..43

4.1 Quality of Context ..43
4.1.1 What is it ...43
4.1.2 Why do we need it ...45
4.1.3 Design issues ...46
4.1.4 Proposal for improvements ...47
4.1.5 Challenges in the QoC ..49

4.2 Resource Discovery ...49
4.2.1 Introduction ..49
4.2.2 Proposal for improvements ...50

5. Design of a Context Aware Platform..53

5.1 Design principles ...53
5.1.1 User-centered design ...53
5.1.2 Layered approach ..53
5.1.3 Ontology-based context model...54
5.1.4 Context retrieval ..56
5.1.5 Service description and discovery ...56

5.2 Components ..57
5.3 Flow of actions..60

6. Context awareness in healthcare..62

6.1 Need for support of the life of elderly ...62
6.2 Background..63
6.3 Prototype of a smarthome application ..66
6.3.1 General description ...66
6.3.2 Functions...68
6.3.3 Reasoning engine ..68
6.3.4 Widgets architecture...70
6.3.5 Technology background ..71
6.3.6 System overview..74

7. Conclusion and future work ..76

7.1 Conclusion..76
7.2 Future work ...77

8. References ...79

 5

List of Figures

Figure 1: CoBrA Architecture... 21
Figure 2: CMF Architecture ... 22
Figure 3: Architecture of Gaia ... 23
Figure 4: Traditional application design without a discoverer........................... 28
Figure 5: Application design with a discoverer... 28
Figure 6: Enactor application design .. 29
Figure 7: Relationship between Context Toolkit components 30
Figure 8: Structure of an Enactor [20].. 33
Figure 9: Diagram of object inheritance of the Context Toolkit’s abstractions 34
Figure 10: Flow of actions – discovery initialization and widget subscription...... 35
Figure 11: Flow of actions – enactor initialization and event handling............... 36
Figure 12: Infrastructure of an application that retrieves information from

different context-aware platforms... 40
Figure 13: Quality of Context parameters ... 44
Figure 14: Class diagram of the new components introduced related to the QoC 48
Figure 15: Sequence of actions when handling QoC 48
Figure 16: Sequence of actions when locating a resource................................ 50
Figure 17: Layered approach... 54
Figure 18: Context ontology written in OWL.. 55
Figure 19: Web Services architecture ... 56
Figure 20: Proposed context-aware platform architecture 58
Figure 21: Screenshot of the monitoring tool .. 67
Figure 22: Screenshot of the ECG view... 67
Figure 23: Widgets’ architecture.. 70
Figure 24: Alive Wireless Heart Monitor .. 72
Figure 25: MICAz mote module ... 73
Figure 26: SDiD 1010 NFC/RFID SD Card ... 73
Figure 27: Elements and connections for acquiring location data 74
Figure 28: System overview of the prototype solution 74

 6

List of Tables

Table 1: Context-aware application categories depending on Schilit et al. [4].... 13
Table 2: Comparison of the context-aware frameworks [10] 24
Table 3: Example of abstract descriptions of the QoC parameters 46
Table 4: Functionalities of the application ... 68
Table 5: Architecture components and their functionalities.............................. 71

 7

List of Abbreviations

AHCS Ambient Home Care System

CC/PP Composite Capabilities/Preference Profile

CoBrA Context Broker Architecture

CORBA Common Object Request Broker Architecture

CSCC Computer Supported Coordinated Care

CTK Context Toolkit

ECG Electrocardiogram

HMM Hidden Markov Model

HTTP Hypertext Transfer Protocol

J2EE Java 2 Platform Enterprise Edition

J2SE Java 2 Standard Edition

NFC Near Field Communication

ORM Object-Role Modeling

OWL Web Ontology Language

QoC Quality of Context

PDA Personal Digital Assistant

RDF Resource Description Framework

RFID Radio-frequency Identification

RMI Remote Method Invocation

RSS Received Signal Strength

SD Secure Digital

SMS Short Message Service

SQL Structured Query Language

SOAP Simple Object Access Protocol

TCP/IP Transmission Control Protocol/ Internet Protocol

UAProf User Agent Profile

UDDI Universal Description Discovery and Integration

UML Unified Modeling Language

WLAN Wireless Local Area Network

WSDL Web Services Description Language

XML Extensible Markup Language

 8

1. Introduction

With the appearance and expansion of mobile devices, ubiquitous computing

is becoming more popular nowadays and the user and his tasks are becoming the focus

of application development. One area of ubiquitous computing is composed by the

context-aware systems, systems where applications are designed to react to constant

changes in the environment. However, the importance of context-based systems

extends far beyond systems that are designed around information about the location,

user identity, device capability, and services related to this information. Moreover

these systems can acquire data for the biomedical functions of people or virtual data

coming from software applications, which combined in a new way, can be used in a

domain that can improve a person’s wellbeing, such as healthcare.

 Context awareness, considered as a basic property in the future mobile

applications, has gained a momentum in the last few years. The heterogeneity of the

different domains where context is a key parameter has generated different approaches

for context acquisition and modeling. Thus, a number of platforms have been

developed in order to alleviate the process of application development and to set a

common practice for building applications and services. They address different

architectures, design principles, context representation, sensing approaches, and

handling context. Study of the state-of-the-art architectures is an inevitable step for

getting better understanding of the problems that application developers face. This,

together with the definition of the parameters that describe the context, can lead to

inferring a better way of managing context and making suggestions for extensions of

the Context Toolkit, a context-aware platform chosen for analysis, which would

increase the functionalities and aid the developers in modeling and supporting context

aware applications.

 Thus, by examining the structure of the Context Toolkit, this project presents

ideas, methods and issues that will lead to a new design of a conceptual model of a

context aware platform that will ease the task of adaptive context-aware applications

development and will increase its acceptance.

 9

1.1 Problem definition

There are number of existing context aware frameworks that approach the

application design from different perspectives. The goal of this master thesis is to

study the existing context-aware platforms, particularly the Context Toolkit, analyze

the architecture and context modeling. By developing services in a smart home, this

thesis critically analysis the Context Toolkit platform and examines the design

practices applied in the framework. Furthermore propose ways that will help building

applications, by increasing their quality and reducing the complexity of their creation

and aggregation.

In this project we narrow the scope to several issues. We explore the quality of

the captured data i.e. quality of information that is used as context information,

including: precision, accuracy, freshness, resolution and reliability, and outline several

design issues and challenges in the area. Furthermore, we study the resource discovery

process imposed from the decoupling of the application from the actual process of

acquiring context information. Proposals to improve the current design of the resource

discovery are examined together with the option for further decoupling of the

acquisition process from the rest of the infrastructure.

By studying these issues the goal is to draw conclusions about best practices in

this domain, and design a context aware platform that can establish the basis for its

further development and future implementation.

The main problem statements in this project can be outlined as follows:

• Analyze general approaches for building a context aware systems and

design principles;

• Define the strengths and weaknesses of the Context Toolkit;

• Infer enhancements and enrichments that could be added to the Context

Toolkit for making more easy and functional way of building complex

applications;

o Examine the quality of captured sensor data handling and

correspondingly define suitable evaluation parameters;

o Analyze the resource discovery, a mechanism for automatically

subscribing to appropriate widgets, and propose improvements;

• From the performed analysis propose a design of a context aware platform

and motivate the decisions taken;

• Define and create a smart home application that will ease the life of elderly

or disabled people;

• Experiment in order to determine the suitability of the architectural issues

and make appropriate tuning changes and draw conclusions;

1.2 Motivation

There are several reasons for working on this master thesis. On one hand there

are a number of platforms that enable developing context aware applications. They

defer in architecture, sensing, representation of context data, resource discovery,

security and privacy issues, keeping track of historical data, target group they aim

 10

towards to etc. In this project we closely examine the Context Toolkit, infer possible

add-ons that would increase and improve its functionality and make it suitable for

developing more complex and complete context aware applications. Then, we identify

the need for a design of a new context-aware platform that will make use of the

aspects analyzed previously and will encompass the enrichments outlined. Therefore

this report can set the ground for future investigation and can further be used as a

cornerstone and give directions for design of better and generally accepted solutions.

On the other hand, working on this project gives me the chance to get in-depth

knowledge and hands-on experience of a hot topic that will evolve, improve, develop

in the years to come and eventually will become inevitable part of normal way of

living.

1.3 Report organization

This report analyzes the context aware systems’ domain and conceives ideas

for a context aware platform that encompasses the modifications proposed. Following

is the structure of the report:

Chapter 2

Chapter 2 gives an overview of context aware computing. It defines the concept,

introduces the application domains, the components found in a context aware system,

challenges in this area and shortly discusses several context aware platforms.

Chapter 3

Chapter 3 evaluates one of the context aware platforms, the Context Toolkit. It

describes its architecture and possible ways of building an application, the

components involved, the flow of actions and gives critical analysis of its strengths

and weaknesses.

Chapter 4

Chapter 4 proposes several enhancements of the Context Toolkit that would enrich the

context awareness and enable easy development of complex context aware

applications. It speaks about extending the resource discovery mechanism and

examines the definition of a possible quality of context evaluation parameters that

would describe the widgets and would further influence on improving the

performance.

Chapter 5

In this section we draw conclusions on best practices in the domain and we design a

context aware platform that can address some of the issues analyzed before and deal

with new ones. Chapter 5 presents a proposal for a context aware platform based on

the in-depth study conducted on the Context Toolkit.

Chapter 6

Chapter 6 addresses the need for support of the life of elderly and gives a background

of the related work in this area. A service is proposed and a prototype for a smart

home application is developed. The details about the structure and implementation of

the prototype are described in this chapter.

 11

Chapter 7

Finally, chapter 7 offers conclusions from the performed study and provides proposals

for future work.

 12

2. Context Aware Computing

2.1 Definition of context

With the appearance of mobile devices, ubiquitous systems have gained

popularity and application developers have increasingly focused on making

applications that target PDAs, mobile phones, notebooks, smart phones etc and the

way to use these devices and new technologies to aid the user in performing its daily

tasks. This has resulted in rapid integration of these devices in a person’s day-to-day

life in a manner that the user and his tasks have been placed in the forepart and are

central for service development, suppressing the devices, their connectivity and other

technical issues.

One area of pervasive computing is context awareness, a concept first

introduced by Schilit and Theimer in 1994 referring to a new class of applications that

are aware of the context where they are executed. Focusing on active map service that

provides information about the located objects and how they change in time, they use

the term context to refer to location and they perceive context-awareness as the ability

of mobile applications to discover and react to changes of the environment where they

are located. [1]

Schilit later gives a user-centered definition of context stating that context can

be characterized by several important aspects: where you are, who are you with, and

what resources are nearby. [2] Therefore information about the location is just one

segment of the context information, and context is presented as a relation between the

user and the environment. Opposite of this Lieberman et al. propose another,

application centered definition to context, specifying that context can be considered to

be everything that affects the computation except the explicit input and output. [3]

With this they define the context awareness as the ability of the system to take action

as a response to the context gathered and not just adjust the application interface

according to the context and the direct command the user is entering. Consequently

many other scientists and researchers have continued working in the domain,

expanding and redefining the concept of context, but these views remain to represent

two distinct approaches of context awareness in human computer interaction and its

further development evolves following these two paths.

 13

When referring to context different context parameters are being given

different preference. Context parameters that researches and application developers

often list are: location, time, environmental parameters, user activity, device

capabilities, identity, network capacity etc. Application developers look into the

‘who’, ‘what’, ‘where’ and ‘when’ of certain entities and by its analysis they reason

about the ‘why’ of a given occurrence, and program the application logic. However a

common way to classify context is by differentiating between physical and logical

context.

• Physical context is the one that can be measured by hardware sensors, such as:

light, temperature, humidity, sound, movement, location etc.

• Logical context is the one that is inferred by monitoring the user’s behavior,

his tasks, his physical and emotional state etc.

It very difficult to include each context category in an application and

coordinate their interactions, therefore an extraction and identification of the

parameters of interest is the basic step when considering the context elements.

2.2 Definition of context-awareness

Schilit et al. [4] have also first discussed about context awareness as the

capability of a system to “adapt according to the location of use, the collection of

nearby people, hosts, accessible devices, as well as to changes to such things over

time”. An application with these abilities will be able to sense the environment and

correspondingly react to its changes. On the other hand, Pascoe et al. [5] define

context-awareness as the ability to detect, gather, interpret and react to context

changes in the user’s surrounding and changes in its device.

Schilit et al. outline four categories of context aware applications shown in

Table 1. The categories are divided according to two properties: whether the system

gathers information or executes an action, and whether this is done manually or

automatically.

 Manual Automatic

Information Proximate selection and

context information

Automatic contextual

reconfiguration

Command Contextual commands Context-triggered actions

Table 1: Context-aware application categories depending on Schilit et al. [4]

Proximate selection is when applications manually request information based

on is current disposable context, while the automatic contextual reconfiguration

category encompasses applications that automatically retrieve information based on

the current context. Contextual command applications are the one that execute

commands for the user when they are manually instructed to do so and context

triggered applications refer to applications that provide automatic execution of

commands depending on available context.

 14

Pascoe et al. define context-aware application categories that can match some

of the already specified by Schilit, but they emphasize that they allow a context-aware

application that will fit in each of this categories and will contain all od its

characteristics and will not be limited just to this properties.

Dey and Abowd define a context-aware system as “a system that uses context

to provide relevant information and/or services to the user, where relevancy depends

on the user’s task”. [6] This definition differentiates from the previous one because it

only requires response to context, allowing its gathering and interpretation to be

performed by other components, but the definition is given in a broad sense so that it

encompasses already developed context-aware applications. These authors outline

three categories of context aware applications that deal with presentation of

information, automatic execution and tagging of context information, and represent a

combination of the categories previously mentioned.

2.3 Application domain of context-aware services

As technology advances and context awareness computing evolves, the

number of areas where context awareness is applied increases. Following some of

them are listed:

• Airports: Emergency response solutions are based on context aware systems

which can automatically deliver immediate security alerts to the relevant

personnel at the airport, such as: security, maintenance, fire department, police

etc. Services directly aimed to passengers, that are closely connected to the

location of the passenger are developed as well. They adapt the notifications

that are sent to the passengers’ mobile devices depending on the users’

location and inform them about shopping zones nearby, exits, gates, arrivals

and departures.

• Smart homes: Context awareness integrated with technology and services

through home networking increases the quality of living and can help disabled

or elderly people lead safe and independent lives in their homes. It can

provide:

o Security functions: Generation of alerts in case of fire, gas leakage, open

tap, detection of unknown persons present in the home. These alerts are

sent to the user as graphical or audio information, but can be directly sent

to the appropriate institution as well e.g. police, fire department etc.

o Appliances functions: Monitoring and control of the appliances in the

household such as turning on/off the light, opening/closing the window,

turning on/off the air conditioner and heater (tasks that the householders

are unable to do), improving energy management etc.

o Environmental information: Overview of the situation in the domicile and

the environmental parameters in each room.

o Healthcare functions: Constant monitoring of the person’s biomedical

functions, sending reminders about daily tasks he needs to perform e.g.

medication intake and sending alerts to remote caregivers if an emergency

situation is detected.

 15

• Leisure/Entertainment: This application area is closely associated with the

user’s location. Namely, a variety of services have been lately developed that

are activated and offered to the user and provide information about nearby

restaurants, cinemas, theatres, festivals, concert events, shops, maps and other

information related to the area where the user is present.

• Hospitals/Healthcare: Context awareness can aid in improving the quality of

service in hospitals by implementing interactive hospitals where doctors and

nurses are provided information about the diagnosis, the treatment and medial

history of patients in their proximity and they are able to carry out video

conferences which enable collaborative feedback, discussion and diagnosis

with other doctors. These interactive hospitals would also support reminders to

patients for medication intake, verification that the nurse is carrying the right

medicine, closely monitor the patient’s state and raise emergency alerts if

necessary, carry out video conferences between a doctor and a patient at home

etc.

• Museums and fairs: Context awareness is closely related to detecting user’s

position in a building and guiding them through it. It is commonly used to run

applications on portable devices which are location sensitive and provide

audio and video information to the user about art pieces in a museum or a

gallery, give directions about the way to reach a specific place of interest

during a fair, send notifications about stands that might be of the user’s interest

depending on his already known preferences and enable adaptation of music,

sounds and other effects as the user changes the location.

• Offices: Usual services that can be found beneficial in office work is locating

the position of employees in the company building, additional information

about the office where they are located (whether there is a meeting in progress,

how many people are present), status of the equipment in the company,

environmental parameters measured in the office where a user is present,

inferring the activity of the user depending on pending calendar entries etc.

2.4 Design principles of context aware systems

In this section an overview of different architectural approaches when building

a context-aware framework is given, together with an emphasize of the units found in

most frameworks: sensing infrastructure, inference engine, storage of historical data

and several methods for context modeling.

2.4.1 Architectural approaches

There are a number of different architectural designs when building a context-

aware system. The selection of the one that an application will adopt should

encompass decisions about issues such as scalability, number of users, reusability,

location of the sensors, the method of context-data acquisition or the type of devices

 16

disposable for usage. Winograd describes three different approaches for managing

context and context-aware system components. [7]

• Widgets: Widgets are software components that give a uniform way of

handling device specific drivers and are coordinated by a widget manager. They hide

low level details about the sensing by encapsulating the driver details and physical

connection ports, and furthermore provide contextual data directly to the applications.

Instead of implementing notifications in distinct way for each device driver

incorporated, this approach offers a consistent way of sending messages to widgets,

and callbacks - when a certain event is registered by the sensor. A drawback in this

approach is that it is susceptible to component failures that might impact the normal

functioning of the system.

• Networked services: Unlike the previous model, where a centralized

component that keeps track of existing widgets is introduced, this model approaches

context acquisition sources as independent services. Although locating appropriate

processes can be more expensive when it comes to time and communication, with

careful selection of specialized protocols this can be surpassed. Applications find

services of interest by using discovery techniques (most usually in the same network)

and describing the desired process. Although less efficient due to additional

networking costs, this model provides robustness. [8]

• Blackboard model: Unlike the process-oriented approaches earlier, this

approach follows the data-centric view. Instead of sending requests and process

callbacks, in this model processes send messages to a common board i.e. a context

server, and subscribe to get messages that match certain criteria. All messages pass the

centralized server and require two hops in order to reach the application, which

decreases the communication efficiency, but on the other hand provides easy

configuration and alleviates the addition of new context sensors.

Similarly, Chen introduces three architecture designs for context acquisition:

[9]

• Direct sensor access: In this approach, there is no division between the sensor

data acquisition and its logical processing; everything is tightly coupled in the

application. This method was earlier adopted but because of its poor reusability

nowadays it is not utilized as much.

• Middleware architecture: Good software practices and design impose

modularity and separate the business logic from data acquisition. Hence this approach

introduces separation of these logics and their implementation in different layers,

which furthermore increases the reusability of the sensing infrastructure.

• Context server: This design allows access of sensor data concurrently by

multiple clients at a time through collecting all sensor data by the server. On the server

side, if necessary additional processing is performed, alleviating the mobile device by

decreasing the amount of computational power needed for obtaining certain data.

 17

To some extend the categories in these classifications overlap with each other

and should not be taken rigorously since they intersect and a combination of two

sometimes might be the most suitable design.

2.4.2 Sensing infrastructure

In order to improve reusability of applications and to alleviate the process of

building them, a common practice is to separate the sensing logic from the rest of the

system. Hence a common basic module for all architectures is the sensing layer.

Context-acquisition begins with sensors. Sensor technology has significantly

improved in the past years powered by new solutions that increase quality, reliability,

increase the number of parameters that can be measured (temperature, pressure,

humidity, acceleration, motion, location, blood pressure etc.) and minimize energy

consumption, size and cost. Sensors are sources of contextual data, but the term does

not only infer hardware sensors; it encompasses any source of information which

provides contextual data and improves the description of a real situation.

Three types of sensors can be identified depending on the way the data is

measured and acquired: physical, virtual and logical. [10]

• Physical sensors are hardware sensors which capture physical data. They are

the ones that are most common and most widely spread when information

about the environment, people, objects, or body functions is needed. They

range from temperature sensors, microphones, touch sensors, light sensors,

location sensors, motion sensors, biosensors for measuring the human body’s

functions etc.

• Virtual sensors refer to context data that comes from applications and these

sensors are usually software processes. [11] They observe application events,

operating system events or network events. For example, a virtual sensor may

include schedule’s info, calendar’s entries and e-mail for determining a user

location; then, the level of network congestion and the abilities of the user’s

device.

• Logical sensors include data inferred from both, physical and virtual, sensors.

The information derived with combination of these data sources is usually

used to resolve complex tasks e.g. by combining the context data sensed which

measure the human body’s functions and the person’s medical history stored in

a database in the hospital, a logical sensor can determine the value of a

parameter used as an indicator for the seriousness and urgency of some

anomaly detected.

These sensors include explicit information given by the user, implicit

information about the abilities of the devices; existing information obtained by other

services and captured data by physical sensors. Integrated together, they constitute the

sensing module of the architectural model which provides information to the rest of

the system.

 18

2.4.3 Context Modeling

After context data acquisition, in order to further efficiently use the obtained

data, it needs to be represented and/or stored in appropriate form suitable for further

processing. The context model chosen is determined from the general approach of the

whole context aware framework and the data processing methods selected. Several

most frequently used modeling approaches are:

• Key-value model: This is the simplest modeling technique which is widely

utilized. It represents contextual information with a key-value pairs which are later

used by some matching techniques to perform sensor data discovery.(e.g.

TEMPERATURE = 25)

• Logic based model: This model is based on facts, expressions and rules. [10] A

logic based system manipulates with the elemental items of this model and infers

higher level logic by utilizing the already defined rules to deduce new facts.

• Ontology based model: Ontology is a description of concepts and their

relationships. However, it is not only a classification of concepts; it also includes

higher relationships between them and enables interaction between systems that have

compatible ontologies. One way of implementing these ontologies is by using the Web

Onotlogy Language (OWL) which consists of a set of classes, class hierarchies, set of

property assertions, constraints on these elements, and types of permitted relationships

between them. [12] While, another alternative is using a knowledge representation

language - the Resource Description Framework (RDF). This is a promising model

because of the possibility to apply reasoning techniques. [8]

• Graphical models: Using the Unified Modeling Language (UML) is another way

of representing context, as well as using an extension of the Object-Role Modeling

(ORM) with context information. [10]

• Object-oriented models: Object-oriented design of context benefits from the

common properties object-oriented programming, such as inheritance, encapsulation,

reuse, and polymorphism. An architecture exists that uses a class ContextObject,

which is inherited by other context–specific classes which implement the common

abstract methods, convert data streams to context objects and vice versa, and provide

well known interfaces to access the context’s logic.

• Markup languages: These models have hierarchical structure composed of tags

and attributes. User Agent Profile (UAProf) and Composite Capabilities/Preference

Profile (CC/PP) are some of the specifications that describe the capabilities of mobile

devices and different user agents, enabling the content providers to produce and

deliver content suitable for each request.

Research has shown that the most complete modeling technique is the

ontology model. It is the most expressive and meets the requirements of most of the

systems. [10] However because each architecture tries to meet different goals, this

model is not always chosen in a given architecture.

 19

2.4.4 Reasoning methodologies

A challenge in context-aware computing is to manage context appropriately

and use it in an intelligent way, by using captured data from different sources in order

to deduce new information. Interpreting low-level context data into a higher level ones

can be done by using ontologies and logic reasoning, or by using one of the following

techniques for inferring context and situations in context aware systems: [13]

• Artificial Neural Networks: They perform well regardless the noise level produced

when capturing sensor data and they support unsupervised learning of input data. New

context data can be easily included, and the algorithm will be able to adapt the context

from the new input by recalculating the internal representation of the contexts. [13]

Therefore unpredictable context that hasn’t been introduced to the system yet can be

detected, complex relationships can be modeled and patterns in behavior can be

found.

• Bayesian Networks: Bayesian network is a probabilistic graphical model that

represents a set of variables (known and random context parameters) and their

probabilistic relationships. Given all the possible context types and values acquired by

the sensors, a Bayesian network would be able to calculate the probability for

occurrence of some situation or the probable state of set of variables.

• Hidden Markov Models: This is a statistical model where the system that is

represented is assumed to be a Markov process with unknown context parameters and

the aim is to find out the unknown parameters (context types or an inference of a

higher-level situation) from the context data on disposal. HMM requires training

phase in order to initially categorize activities and builds statistical memory of

sequences of events that are reliable and robust to changes and provide higher-level

knowledge deduction. It is mostly used for modeling human behavior, because it is

able to recognize sequences of activities. [13]

• Fuzzy logic: This is a method for approximate rather than precise reasoning, that

ranges the probability of every statement’s in the interval between 0 and 1 and is not

limited only to two values (true and false).

• Dempster-Shafer Theory and evidential reasoning: This is a mathematical theory

of evidence where evidence is associated with multiple possible events e.g. sets of

events. [14] It is an approach that models judgments with uncertainty.

Although several methodologies have been outlined, none of them can be

pointed out as most efficient or beneficial, since they all address different issues.

Therefore selection of one is guided by the framework’s requirements.

2.4.5 Historical data

Keeping a record of historical data might be useful for the section discussed

previously. It can help the system to detect patterns, establish tendencies and predict

future behavior of a context parameter. Historical data enable implementation of

 20

intelligent learning algorithms which would provide flexible and easy adjustable

context-aware services.

Main issues regarding keeping storage with historical data is the memory

usage. Since this storage would be memory resource demanding, a storage component

needs to be allocated. Context data is usually written in a database which with the use

of the Structured Query Language (SQL) enables constructing queries that will enable

revealing more complex patterns and detect relationships on a higher level. Context –

aware frameworks may also provide an interface for accessing this database and the

possibility to store other entities apart from the context data, such as rules,

expressions, and higher logic representation.

 This storage component is also know as a context knowledge base and can be

centralized or distributed. If it is centralized then we have one context server that

collects all the sensor info and dispatches it to the appropriate applications, while in

the case of a distributed storage components, each application in need for historical

data retrieves it from a number of locations without any centralized support.

2.5 Overview of Context Aware Frameworks

In this section different context aware frameworks are shortly introduced,

discussed and compared on common criteria. They adopt different architectural styles

mainly driven by the context acquisition, different method of context representation,

processing logics and reasoning engines, and at times distinct storage approaches and

communication patterns.

The following frameworks will be shortly described:

• Context Toolkit

• Context Broker Architecture

• Context Management Framework

• Gaia

2.5.1 Context Toolkit

The Context Toolkit adopts the widget architecture style and its main purpose

is to alleviate the development of context-aware applications by providing a common

framework that will be taken as a base for further uniform development of services. It

consists of widgets which comply with a distributed allocation managed by a central

component called a discoverer that keeps record of all running widgets in the network.

A central component in this architecture is the widget, which is a software

component that encapsulates the sensor specific communications details and notifies

subscribed applications when the context changes. Other components include

aggregators, which are extensions of widgets that combine the context info of several

widgets, decreasing the processing requirement on the application side; and

interpreters which are components that translate certain information from a low-level

to higher-level data suitable for processing.

 21

The communication between two components is peer-to-peer, without any

direct intermediaries and most of the components inherit the communication

capabilities from a superclass called BaseObject, which provides the ability for

interconnection between the context aware system’s components. The framework

adopts the key-value pairs (encoded using XML for transmission) context modeling,

has no reasoning engine and has storage support.

This architecture is further analyzed in details in Chapter 3.

2.5.2 Context Broker Architecture – CoBrA

COBRA shown in Figure 1 is an agent based architecture that supports

context-aware systems in smart spaces (physical places-meeting rooms, homes,

vehicles that are equipped with intelligent systems that enable ubiquitous computing).

[15] Its central component is the Context Broker, which maintains and manages a

shared contextual model on behalf of the collection of agents and is consisted of four

main components: Context Knowledge Base, Context Reasoning Engine, Context

Acquisition Module and Privacy Management Module.

Figure 1: CoBrA Architecture

Context is modeled with ontology, which is integrated with a rule based

inference engine, and also, the architecture includes its own policy language, Rei,

which controls access and enables security and privacy protection. [10]

2.5.3 Context Management Framework

The Context Management Framework is shown in Figure 2 and is an example

of a framework that adopts the blackboard architectural design. It is consisted of

several entities: context manager, resource servers, context recognition services,

change detection server, security component and an application.

 22

Figure 2: CMF Architecture

The context manager is the central component that manages the blackboard

and acts as a central server, it processes the context information acquired from many

sources, infers higher level information from them and delivers them to its clients.

Data acquisition is performed by the resource servers, while the context recognition

services are used on demand by the context manager to deduce complex data out of

simple context entities.

What distinguishes this framework from the others, apart from the

architectural design, is the advanced way of handling context data represented with

ontologies and the usage of fuzzy logic to build higher-level data. However, a

drawback of this architecture is that the context manager presents a single point of

failure, since application’s normal functioning depends directly from it.

2.5.4 Gaia

The Gaia project illustrated in Figure 3 is a distributed middleware

infrastructure which extends the typical operating system concept. It is intended to

coordinate the development and execution of mobile applications for active spaces,

typically a single room and provides the following functionalities: program execution,

I/O operations, file-system access, communications, error detection and resource

allocation. [16]

It is structured as a traditional file system with a kernel composing the core of

the system and applications built on top of it which provide specific services. Here,

context is acquired by context providers, classified by the type of information they

gather, therefore the architecture distinguishes between three types of context:

location, context and events which enables reasoning on a higher level and inferring

activities. The framework’s processing is implemented into the Context Service

Module which performs first order logical operations such as “and” and “or”, and

applications query this module for obtaining specific context information.

 23

Figure 3: Architecture of Gaia

Context is modeled in a special manner, by using 4-ary predicates consisting

of: (<Context Type>, <Subject>, <Relater>, <Object>), a notation that is used for

representing context and defining rules. [10] In addition, context is represented as

directory, where the path represents the context type and the value (e.g. location =

kitchen is represented as: /location:/kitchen/).

2.5.5 Comparison of the context-aware frameworks

On the following table a breakdown of the described context-aware

frameworks is given over a set of common criteria, such as: architecture, sensing,

contextual model, processing, resource discovery, storage of historical data, and

security and privacy.

Context
Toolkit

CoBra
Context

Management
Framework

Gaia

Architecture Widget based

Agent based,

centralized

context broker

Blackboard based MVC extended

Sensing
Context

widgets

Context

acquisition

module

Resource servers
Context

providers

Context model
Attribute-

value pairs

Ontologies

(OWL)

Ontologies

(RDF)

4-ary

predicates

Context
processing

Context

interpretation

and

aggregation

Reasoning based

on OWL schema,

rules and

inference engine;

knowledge base

Context

recognition

service and fuzzy

logic to build

higher-level

concepts

Context-service

module (first-

order logic)

Resource
discovery

Discoverer

component
N/A

Resource servers

and subscription

mechanism

Discovery

service

 24

Historical data Available Available N/A Available

Security and
privacy

Context

ownership

Rei policy

language
N/A

Supported(e.g

secure tracking,

location

privacy, access

control)

Table 2: Comparison of the context-aware frameworks [10]

A common property for all solutions analyzed is the decoupling between the

sensing infrastructure and the rest of the system, which increases reusability of context

sources within the system. On the other hand each framework has its own format for

context representation and uses different communication principles, which in turn

makes the interconnection of the frameworks difficult to be accomplished and disables

developers to reuse services based on another framework.

Furthermore, almost all systems have well developed resource discovery

component and support storage of historical data which later aids the context

reasoning. Security and privacy is present in most of the systems, but still in the form

of basic security mechanisms which should further be strengthened.

2.6 Challenges in context awareness

Due to the existence of a variety of different context aware frameworks a

series of challenges in the domain of context-aware computing arise. They address

sensor issues, intelligence and inference, architectural design issues, privacy and

ethical issues etc. Following they are analyzed in more details.

• Sensor issues

o Determining the right number of sensors deployed in the sensor network is

another challenge that engineers face. The amount of sensors deployed should

be a trade off. On one hand as the number increases, the data they acquire is

more accurate and reliable, but then the higher number of sensors deployed

consumes computational power in the pre-processing engine and decreases the

speed of the learning algorithms. Hence a number of sensors that would

provide good performance should be chosen. This can be done through context

data selection, which implies that the context data from all the sensors should

not be captured. A basic filtering needs to be done and a subset of sensors

should initially be chosen for recognizing context and use the redundant ones

only in case of uncertainty. In this way, data transmission over the network

would decrease together with the processing demand.

o Automatic restarting of components is another challenge in this area. Often a

component fails and it is later manually restarted, which requires close human

observation and maintenance of the whole architecture. To overcome this,

redundancy in the system can be introduced as well as software components

that verify the normal operation of all critical entities in the system.

 25

o Handling context is sometimes difficult. Developers are forced to include

context information which is made available from the context acquisition

mechanisms – hardware and software sensors. This makes them adjust the

application concept and its future development according to the sensor data

obtainable, which in turn limits the scope of the applications that can be

developed by guiding its design from this sensor-oriented approach. Therefore,

a way of capturing and acquiring information about more parameters, which

describe the situation around the user, should be developed.

o A way to interact with the sensors and relevant actuators is an important point

of interest. Feedback the sensors and dynamically managing them during the

operational phase can improve the applications performance and the quality of

the service offered. Hence, the need for developing a generic way to support

this requirement.

• Intelligence and inference

o Since new contexts are continuously added in the sensor network, continuous

adaptive learning is an issue that draws attention. A way of autonomous

learning without any user assistance needs to be added to the algorithms in use,

so they can better learn the new contexts that are presented to the system, as

well as preserve the knowledge for the already known ones.

o Also, context inference is a complex task that requires a good mechanism for

mapping simple captured context data to higher level one. This is not an easy

task and requires using ontologies with logic reasoning, or probabilistic

reasoning. Research is still ongoing to find the best method that will disregard

errors, automatically adapt the system to new types of data, learn

autonomously and reason correctly.

• Architectural design issues

o Making context aware services and components between frameworks reusable,

is something that the context-aware systems community should focus more on.

At present there are no methods or tools that allow using a component

developed with one framework for usage by another. The frameworks should

be extended in order to support interoperability between its components and

applications on heterogeneous platforms.

o Service description and discovery is something that each framework handles

differently, and it is not specific to context-awareness solely. Services should

be described with a language that will alleviate the process of their discovery

and the discovery technique should be such that will be able to easily match

the service request with its description and would support service and context-

acquisition entities relocation. [17]

o Designing strategies to make the context-aware system work with different

levels of user collaboration is needed in the systems. For example, self-

adaptation of the system depending on the user preferences should be

provided. If user preferences are not provided, the system should adjust and

continue working without that info. Also, adjusting the location where some

 26

calculations are performed (client or server side) depending on the info needed

to be calculated, is another architectural issue of interest.

o Cooperative and distributed handling of context data should be added in the

architectural designs developed. For example, a given device may be able to

estimate some parameters that another device is not able to. A way of sharing

some of these descriptors with other devices that need them, in order to

increase their knowledge base, should be modeled in the architecture.

• Other issues

o Security and privacy is an issue that hasn’t been quite solved yet because its

introduction in the system is twofold. As the amount of information which is

on the application’s disposal increases, the application decisions’ quality

increases as well. Applications will operate with more data and will be able to

make more accurate decisions. On the other hand, the more information is

available, the less privacy the user can sustain. Users should be able to control

which information they are willing to reveal for application purposes and when

they allow their access. This as a consequence decreases user-friendliness of

any application, because it becomes cumbersome to constantly reconfigure it,

and reduces its usability. Hence, as mentioned, this is an issue that needs good

balance in order to preserve both benefits, respecting privacy of users on one

side, and confidentiality and easy utilization on the other.

o Although composition of simple context-aware services appears like an

obvious and intuitive task, in reality integration of the components of these

systems is not seamless as it seems. [18] It is a complex task whose difficulty

lies in solving practical design and implementation problems that have not

been predicted. Hence, a better understanding on services composition should

be acquired and guidance with best practices should be proposed.

 27

3. Analysis of the Context Toolkit

3.1 Introduction

The Context Toolkit is a platform for distributed context-aware systems. It was

developed by three researchers, Daniel Salber, Anind Dey and Gregory Abowd, at the

Georgia Institute of Technology in USA during five years and was mainly intended to

aid developers when building context-aware applications by providing a suitable

framework. [19]

The toolkit represents an implementation of formalism for describing context

and its abstractions. Context is represented by data acquired from context widgets

which encapsulates the communication with sensors, context combined from several

widgets in an aggregator or context translated by context interpreters. The toolkit

enables subscription and discovery mechanism so that these contextual data can be

easily utilized and appropriate components easily located.

It is a JAVA-based framework deployed in a distributed infrastructure, but

components in other programming languages exist as well, such as C++, Frontier,

Visual Basic and Python, therefore allowing expansion of the possible application

domain. The framework provides several services which will be further analyzed in

this chapter: encapsulation of sensors, abstraction and of context data and combining

them through interpreters, support of aggregation of context information,

independence and persistence of context widgets, storing history of context data,

sharing context data in a distributed infrastructure etc [15] Furthermore, the toolkit

employs the key-value context model required for defining and storing context data.

Attribute-value pairs are used to describe the context information and they are utilized

for service discovery by matching the required data according to these pairs.

This section gives an overview of the Context Toolkit. It first describes several

modes of application design that the toolkit provides and introduces the architecture,

its main components and the way communication is performed between these

components. Then, it gives a more detailed description of the sequence of actions that

occur when initializing a context-aware application and other components required.

Finally, it finishes with the critical analysis of the strengths and weaknesses of this

framework.

 28

3.2 Modes of Application Design

 Different designs exist for context-aware systems that depend on several

parameters like number of users, location of sensors, device capabilities etc. Context

Toolkit encapsulates three different design principles of handling context and building

an application which directly refers the manner of acquiring contextual information.

 The first approach is a simple direct sensor access shown in Figure 4,

something that is easily accomplished. This approach does not use any additional layer

for acquiring and processing data. The context retrieval is tightly coupled with the

application and sensor drivers are hardwired into the application. However several

problems exist in this approach. It doesn’t support good software design practices and

imposes dealing with complex context acquisition of context. This results in poor

reusability that leads to rare utilization. On the following picture this design can be

examined closer.

Figure 4: Traditional application design without a discoverer

The second approach shown in Figure 5 utilizes the middleware infrastructure

principles. Here the business logic, the user interface and the sensing infrastructure are

separated. This layered architecture enables hiding of the low-level sensing details and

mostly this separation is accomplished by the discoverer component which acts as a

registry where available CTK entities are registered. Applications do not contain

details about the widgets they need to communicate with, in fact, they subscribe to the

discoverer to dynamically locate the widgets. By this, automatic discovery of widgets

Figure 5: Application design with a discoverer

 29

is provided, the sensing and application layers are divided and access to the remote

data sources by multiple clients is enabled.

Further enhancement later added to this design by Newberger and Dey [20]

addresses the issue of monitoring and controlling context-aware applications by

introducing the concept of Enactor. This enhancement alleviates the designer access to

the application state and behavior and allows developers to easily encapsulate

application logic in this component. All enactors are managed by Enactor Subscription

Manager which manages CTK subscriptions on behalf of the enactors by notifying and

subscribing them to widgets that match the enactors’ description. On Figure 6 the

relation between different components in the third approach that encompasses

enactors is presented.

Figure 6: Enactor application design

A context-aware application will usually have several enactors, all

encapsulating and processing different kind of context information, such as location

enactor, temperature enactor, light enactor etc. But, although the whole application

logic can be placed in only one enactor which manipulates with all context data,

grouping the functionalities in different enactors enables sustaining modularity and

increases its reusability.

3.3 Description of the Architecture

The Context Toolkit’s architecture uses the object-oriented approach and

consists of several main types of context abstractions further analyzed in this

subsection and presented on Figure 7.

The relationship between different entities is presented by a configuration that

consists of: two widgets, an aggregator, an interpreter, a service, a discoverer and two

applications. All components’ existence is independent of any application and its

communication with other components is automatic and in line with known network

protocols. Every component registers its characteristics to the discoverer, alleviating

the discovery process for other components that want to subscribe to it. Therefore,

aggregators can easily find appropriate widgets, interpreters can locate widgets, and

applications can subscribe to suitable widgets, aggregators and interpreters.

 30

Figure 7: Relationship between Context Toolkit components

As shown on the Figure 7, sensors provide data to widgets. This data can be

further translated by an interpreter to comply with a form that is more understandable

for an application. The acquired data from several widgets can be aggregated in a

single component that extracts and combines the logic for certain entity. Finally, this

context is delivered to the application which further manipulates with it and develops

the application logic.

 Following each of these components is closely examined.

3.3.1 Widget

A context widget is a software component that enables applications to access

to context information in the same way as GUI widgets enable the interaction between

the user and the application. It encapsulates the context information and provides

methods for accessing it.

Some of the benefits that widgets offer are:

o They hide the complexity of the actual sensors used by the application. [21]

o They provide uniform interface to applications;

o They can abstract desired context information that matches the conditions set

in the application, e.g. a widget may notify an application when the

temperature rises above certain level, but not about variations below that level.

With this the widget does not report information that is not of interest for the

application.

o They are built as separate building blocks that can be adjusted, combined and

reused by multiple applications simultaneously.

o They provide context data on demand or when a change has occurred. More

specifically they utilize callbacks that notify the application and the

 31

subscribing components when an event has occurred and the context of interest

has changed. Furthermore they can also be queried and pooled by applications.

Each widget class defines a set of constant and non-constant attributes that

define the context that the sensors provide, and callbacks which are further delegated

to the widget’s subscribers. Also it contains the details about how to connect and

query data from the sensor.

3.3.2 Aggregator

The aggregator or server, as it is called in the toolkit, combines context

information from multiple widgets that are logically connected into a joined

repository. It gathers contextual information about a specific entity, like a person or a

certain location, and directly provides information related to it or builds higher-level

context objects. This alleviates the job of an application developer because it allows

the application to subscribe only to a single object that encapsulates the logic of many.

Therefore inferring a higher level of context is easier if all pieces of information are

available in an aggregator.

The aggregator subscribes to every widget of interest by providing their names

and acts as a proxy to the application. [22] This component inherits all the methods

and properties that widgets have, and therefore can be subscribed to and be pooled. In

addition it automatically inherits all the callbacks and attributes of the widgets it is

subscribed to, therefore no special declaration is needed. However, in order to better

describe the aggregator’s behavior other callbacks and attributes can be added as well.

3.3.3 Interpreter

Another abstraction introduced in the toolkit is the Interpreter. Interpreters

transform context information by raising the level of abstraction. They take a piece of

information and interpret it into another form or meaning. Usually interpretation has

been performed by applications, but by introducing this concept this functionality is

separated from the application layer and reusability by multiple applications, widgets,

servers and other interpreters is enabled.

When creating an interpreter the developer provides the following information:

the incoming and outgoing attributes and an implementation of the InterpretData()

method that does that translation.

3.3.4 Services

 Apart from aiding the process of acquiring context data, the toolkit defines

objects that are able to perform some action in return. Services are components that

can execute actions on behalf of the application. This concept has not been introduced

from the beginning of the definition of the toolkit; therefore it hasn’t been explored as

much. The idea is to support output just as collection of input is supported, and by that

 32

to influence the environment using an actuator. Similar to widgets, the details about

how this is done and the communication with the actuator are hidden from the

application and encapsulated in this component. [23] An example would be to change

the temperature in a room, after a certain level is reached.

 Services can be synchronous and asynchronous. In the case of synchronous

services, the service is considered complete when a reply about the status of the

successful execution is being sent back to the application. While in the case of

asynchronous services, the service notifies the application that the service has been

started and feedbacks about results when they will be available.

3.3.5 Discoverer

The discoverer is one of the most important components in the framework

because it allows adding a discovery system to the toolkit. It contains a registry of

what capabilities the platform provides and registers all the widgets, aggregators,

interpreters, and services that are available for use by applications. It contains

information about how to contact the widget, the id of the widget, then its’ hostname,

port number; and also information about what kind of context the component

provides, such as: callbacks, constant, nonconstant attributes, input and output

attributes. The Discoverer inherits the widget’s class attributes and methods and its

basic functionality, therefore widgets can subscribe to it, query it and subscribe to

notifications.

When a widget is created, it does not know the other components. It can

subscribe to another component of interest if it knows its hostname, port number and

name. Therefore when created, the widget finds the discoverer, using a multicast

communication, and it registers to it by having the discoverer store its description. So,

whenever an aggregator or application needs to contact other contextual component

they can find the appropriate information by querying the discoverer and matching the

component by some or all of its description parameters.

Applications can query the discoverer in two ways: by performing a lookup

that resembles the yellow pages lookup and another one that is similar to the white

pages lookup. [21] The white pages lookup allows finding a component by stating its

name and id, while the yellow pages lookup allows retrieving it by declaring a set of

its attributes.

3.3.6 Enactor

Newberger and Dey have identified the need for effective context monitoring

and control, hence propose a solution that provides external access to the application

logic and enables its manipulation. [20] They have defined a new component, enactor,

which enables application developers to define the application logic and expose its

design-time and run-time characteristics. The Enactor’s structure is shown in Figure 8.

 33

Figure 8: Structure of an Enactor [20]

An enactor is composed of three subcomponents: references, parameters and

listeners. References fully describe a widget via a set of attributes and a set of

conditions about those attributes. They send queries to discoverers and automatically

subscribe to any components that match those queries. [24] The set of parameters

constitute the enactor’s public view in a distributed environment. Enactors inform the

listeners when an action has been invoked and context data received, so that a

corresponding action can be taken: a service can be executed, a user can be notified, a

message can be written on a display etc. On top of all enactors is the Enactor

Subscription Manager which manages subscriptions on behalf of the enactors. It

generates discovery queries from the enactor’s references and notifies the enactors if

any new widget matches those references. It subscribes to that widget and further

delegates the callbacks from the widget to the enactor.

Another feature of enactors is that they allow designers to easily enclose

application logic in one component giving a compact solution that communicates with

all relevant components in an automated way. This can be accomplished by creating

an enactor reference for every widget the application needs to subscribe to and

listeners that trigger appropriate application behavior. However a recommended

approach is to create a separate enactor for different kind of contextual information

(e.g. temperature, location) as a way to encourage reusability and preserve modularity.

[20]

3.3.7 Communications Infrastructure

One of the requirements set when defining the communications infrastructure

of the toolkit has been that the platform supports TCP/IP. This was decided in order to

alleviate integration and increase support by many custom built devices, such as:

wearable computers, handheld computers, mobile phones and many custom made

sensors.

All the previously mentioned objects, i.e. widgets, aggregators and interpreters,

extend the capabilities of a single class called BaseObject, shown in Figure 9. The

BaseObject encapsulates the communication logic in a distributed environment and all

its subclasses inherit its functionality for communication with the rest of the context

 34

architecture. This object enables subscribing and unsubscribing to other components,

pooling and retrieving historical context and other component’s specific data, having a

double role and acting as both, a client and a server.

Figure 9: Diagram of object inheritance of the Context Toolkit’s abstractions

The BaseObject’s default configuration is to support HTTP (Hypertext

Transfer Protocol) and XML (Extensible Markup Language). HTTP is used for

sending and receiving messages, while XML is used as the language for the data being

sent. Its purpose is to facilitate sharing of structured data between different

information systems, by defining own elements and to be used on any platform that

supports text parsing. [25] XML and HTTP were chosen because they support

lightweight integration of distributed components and enable access to heterogeneous

platforms with multiple programming languages. The devices that are used in the

architecture should only support ASCII parsing and TCP/IP.

The BaseObject can be extended to support other communications protocols

and data structures as well. This is accomplished by creating an object that speaks the

newly chosen protocol for both incoming and outgoing communication, and utilizing

this class when creating the BaseObject. [22] CORBA (Common Object request

broker Architecture) and Java RMI (remote Method Invocation) are one alternative to

XML and HTTP, but they were not implemented because it was evaluated that they

can be deployed on a small number of platforms and would be more demanding on

computational resources in comparison with the current selection. [21]

3.4 Flow of actions

There are several flows of actions that need to be closely examined in order to

understand the processes that occur within a context-aware application built with the

Context Toolkit.

In Figure 10 two sequences of actions are presented. First, the discoverer

creation and initialization, and second a widget creation, registration and event

handling. Before a context-aware application is started, the Discoverer needs to be

run. This object extends the Widget class and inherits all its functionality, therefore

inheriting the communication functionality that the BaseObject provides. It creates a

CommunicationsObject, which further handles the network communications and

exchange of messages, and then the attributes, callbacks, ids and subscribers are

initialized. It sets the attributes by specifying the information parameters that the

 35

discoverer is storing when registering components, parameters such as: id, hostname,

port number, constant and non-constant attributes, classname, input and output

attribute elements.

Figure 10: Flow of actions – discovery initialization and widget subscription

Furthermore it creates a DiscovererMediator, an object that creates a log file where it

stores all registered components and also handles subscription queries, and then

initializes the discoverer’s description with its id, hostname and port. The discoverer

initialization phase terminates by registering the discoverer’s characteristics and

description into the discoverer’s registry.

 36

Next, a custom widget is run. It first initializes the attributes, callbacks, id and

the subscribers (it sets the subscribers by going through the log of its previous

subscribers’ description and sends them a ping message to check their aliveness before

it restarts the subscription). Then, it searches the discoverer by sending a

LOOKUP_DISCOVERER message, and after receiving the discoverer’s description it

registers to it, enabling its later retrieval by other components. The widget now listens

for notifications coming from the sensor regarding latest captured events, sets the new

attributes’ values and sends this event to all of its subscribers who are registered in

this widget’s subscriptions log file for the specified callback. Subsequently, this event

is processed by the handle of the subscribed component.

Figure 11: Flow of actions – enactor initialization and event handling

In Figure 11, the flow of action regarding the enactor is shown. First an

enactor reference is defined, containing the logic for processing a widget’s specific

information, and a QueryItem object is defined, which contains query criteria used for

matching the required widget. EnactorSubscriptionManager object is created, which

creates a BaseObject for establishing communication, finding the Discoverer and

registering to it. Then, each custom made enactor is added to the already created

EnactorSubscriptionManager object which in turn adds the enactor references to the

common registry of references and subscribes to the widgets that meet the conditions

stated in the query item. If everything is successfully done, an invocation of

 37

componentAdded method follows that sets some custom parameters for better

manipulation of the widgets matched. When a widget event has occurred, the handle

method of the EnactorSubscriptionManager is invoked, which propagates the event

handling to the widget reference whose description query matches the widget’s

characteristics and then delegates the handling of the latest acquired contextual data to

the enactor where the component is evaluated.

3.5 Critical analysis

Although still in its early stages, context awareness makes attempts to set the

basis for design and development of context-aware applications. The Context Toolkit,

as one response to this attempt, addresses problems identified in this domain and

suggests a design that deals with some of these issues. Although it successfully

implements some approved concepts and newly introduced design principles,

nevertheless it contains weaknesses that set the ground for further formulation and

development. This section highlights the most distinctive assets and weaknesses of

this framework

3.5.1 Strengths

Following some of the strengths and good design practices of this architecture are

identified.

• Reusability: A main concern for designers of context-aware applications is that

there is no common way to acquire and handle context, so developers usually

reach to what is the most suitable technique at the moment and implement it

without considering its scalability and extensibility. By separating the context

acquisition and processing from the application logic, the Context Toolkit

enables the widgets, interpreters and aggregators built to be reused. Each

application just locates the component of interest, according to the

components’ description, and subscribes to receive notifications from it.

Therefore this software design increases the easiness for the application

developer to utilize already handled sensor’s information into multiple

applications. Applications that are now developed can use contextual

information without worrying about the sensor details and how to acquire

context from it.

• Distributed approach: The designers have chosen a distributed architecture for

positioning the components involved, i.e. the widgets and the application no

longer need to be running on the same computer. A number of sensors could

be spread on different locations, all queried by a single or multiple widgets.

The applications are also spread on different computers and communicate with

the widgets over a computer network through well established protocols.

Hence, choosing distributed computing increases the independence between

components and failure of one would not mean malfunctioning of all.

 38

• Easy extension for support of other protocols: As far as communication is

concerned, another advantage is the communication mechanism. The designers

have adopted one set of protocol and encoding language and have based the

architecture on it. However, they have set the ground for its extension. Very

easily another CommunicationsObject that supports protocols and languages

different from the default ones can be created. This object will reference the

classes that implement the newly supported communications mechanisms and

the communications framework would be easily extended.

• Resource discovery mechanism: Earlier, the sensor’s location and name should

have been known if an application wanted to communicate with the sensor.

With the resource discovery mechanism the application describes the

component it needs, by using parameters such as constant, non-constant

attributes, callbacks, component types (widget, server, interpreter etc) and

queries the discoverer. Subsequently the discoverer, which keeps a registry of

available components, either returns the desired widget’s contact details or if

such widget is not available, it subscribes to be notified when such widget is

registered by the discoverer.

• Storage of context data: Keeping track of captured data and user’s behaviour

can be beneficial for an application. If a component maintains a history of the

context it provides, it could allow applications to later on establish patterns

and predict future behavior. The Context Toolkit brings forward former

designs and introduces a Storage Interface which, when implemented, keeps

account of the last captured context info and flushes it to a database table, if

one specified. This way, by saving the attribute values of the widgets, the

architecture supports storage and meets any application’s need for querying

historical context data. Additionally, this lays the foundation for the possibility

of implementing learning algorithms that will provide highly adaptable

services.

• Automatic unsubscribing. Applications do not register as components into the

discoverer’s registry, so whenever an application is closed by the user, it is

automatically unsubscribed from any widget it was subscribed to. In case it

was terminated due to some failure, the widget unsubscribes the application

after several unsuccessful attempts for sending data. [21]

• Push and pool capability: Applications can process information which were

pushed by the widget of interest, i.e. delivered by some kind of a notification,

or can either choose to pool for such context information, i.e. to ask for those

data explicitly. This allows better flexibility of the application by providing on

time and on demand notification about specific context of interest.

• Context monitoring and control: An extension was added to the toolkit which

enables context monitoring and control by providing external access to the

application logic at the toolkit level through standard API. The API is

represented through the Enactor, a component that operates independently

from any application interface, encapsulates the application logic, gathers

 39

context data through references and exposes significant properties through

parameters. By this, an external application can monitor a given context data

by having an overview of the relevant parameters of an enactor, and also can

instruct the enactor to change some conditions that determine its behavior.

• Easy-updatable architecture: If some logic has to be changed of a component

(i.e. enactor, widget, server, interpreter), that can be done without drastically

affecting the reasoning and the logic of another component in the system. If an

algorithm for calculating certain output parameters is changed, this

modification would not trigger subsequent changes in other interacting

components. However, if the change refers the definition of an output

parameter (introducing a new one or eliminating an existent one), then this

change would demand corresponding changes in the interacting components.

• Easy-extendable system: The system based on the context toolkit can be easily

extended by adding a new component, whether it is a widget, interpreter or

aggregator. Namely, the application does not need to acquire context data from

all the described sensor units at once because the architecture allows dynamic

modification of the system and consequent subscription which allows easy

addition and removal of new components.

3.5.2 Weaknesses

Following some of the weaknesses of this architecture are identified.

• Discoverer – single point of failure: The discovery mechanism used is

centralized since only one discoverer is utilized. On one hand this adds

simplicity but on the other represents a single point of failure by focusing and

increasing the load of work for the registration and subscription functionality

to only one component. The discoverer when started first checks the aliveness

of the components already registered in its database by pinging them several

times and noting whether they respond or not. The components that do not

respond are removed from the registry and new components that have queried

for these kind of components are now notified. If the Discoverer component is

in any way compromised, new components won’t be able to be registered and

applications would not be able to query and locate them since there won’t be

any central repository that keeps a list of all widgets available. Therefore, the

Discoverer, as a mediator for establishing communication implements the

centralized approach where the lack of redundancy poses serious threat for

further normal functioning of the context-aware applications.

• Clocks should be precisely synchronized: Choosing a distributed environment

besides some advantages has some downsides as well. All components should

keep a clock and should sustain their clocks synchronized. Since in all context-

aware application time is a key parameter, a small error and mismatch in its

components’ clocks might mean applications misbehavior in terms of not

capturing the right behavior on time and triggering the appropriate action.

 40

Hence, the dependency on the clocks’ tuning increases the frangibility of the

architecture.

• Limited scalability: Choosing XML and HTTP for distributed communication

as well as selecting centralized discoverer architecture, imposes limited

scalability when the number of components increases. [21] Scalability in this

case measures the system’s ability to maintain the usual response time as the

user load grows. This can be easily alleviated by implementing another

network architecture for distributed systems, e.g. Jini. Jini technology forms a

network on the fly, without manual configuration, therefore can be used to

create technology systems that are scalable, evolvable, and flexible, as required

in dynamic runtime environments, such as our context toolkit and its

components.

• Absence of automatic restarting: Another restriction is the lack of automatic

restarting. It was already mentioned that when a component fails because of

some reason, it is automatically unsubscribed from the components it was due

to receive callbacks from. But in an environment where constant context

notification is needed, a mechanism that supports automatic restarting and its

subsequent normal operation would improve the quality and would alleviate

the maintenance process.

• Not interoperable: A serious drawback of this architecture, as well as for the

other, is the interoperability issue. Most of the platforms developed use their

own context modeling and handling, and offer this info to applications without

having a basic service infrastructure established. Because the sensing

mechanism is implemented differently in every framework, the developers of

the application user interface have to adapt its communication towards the

context toolkit’s components that supply the context information, and readapt

its interfaces when acquiring contextual data from another context-aware

platform.

Figure 12: Infrastructure of an application that retrieves information from

different context-aware platforms

• Privacy and security not yet implemented in the official distribution: Privacy

and security are important issues in context-aware systems. Nevertheless, their

introduction in the system is twofold. On one hand, the more context

information the application has on its disposal, it can carry out better reasoning

 41

and operation. On the other hand, by exposing the context data to all

application users, the owner of the context data becomes more vulnerable, by

allowing access of its personal information to everybody, without any

restriction.

Dey, Abowd and Salber, the creators of the toolkit have introduces the

concept of Owner. [21] An owner has to be added to each contextual

information and has to define a set of rules which describe who has access to

the context information and under which conditions. Furthermore the real

implementation of this concept involved introducing new objects:

MediatedWidget and OwnerPermissions, and modified versions of the

BaseObject and Authenticators classes. [10] The Mediated Widget is an

extension of the Widget class and contains a widget developer field indicating

who owns the context sensed. The OwnerPermissions is an object that receives

quires asking for permissions and grants or rejects access. The BaseObject is

extended with identification mechanisms, where with the help of the

Authenticator one can prove its identity by using public-key infrastructure.

[10] However, although introduced, this concept was not implemented it the

available official distribution of the Context Toolkit; therefore can be noted

that the toolkit at present does not support this feature.

• No mechanism for resolving conflicts: The toolkit is lacking an engine for

resolving conflicts. Often, there is more than one sensor that gathers the same

context information. This information may come with different granularity,

distinct level of details specified and those details may be contradicting each

other, e.g. different sensors positioned near one of another may measure

different temperature values, and only one should be further propagated to the

application. Hence a mechanism for resolving these contradicting situations is

needed, that would reason the correct data, would give preference on one

context data over another or would derive one by processing all of them.

• Absence of a reasoning engine: A major drawback for the Context Toolkit is

the absence of a reasoning engine and any implementation of intelligence. The

context modeling with attribute-value pairs does not have any meaning if not

incorporated with additional programming logic. This programming logic

decreases the independence of the widgets and tightly couples the model to the

rest of the system. A more abstract reasoning engine which will introduce well

established mechanisms and rules for higher reasoning needs to be imposed to

the system. It will infer over the context data and would make deductions

using a form of intelligence.

• Lack of centralized discoverer of discoverers: Each set of applications and set

of sensor units, geographically very distant, would usually use a separate

discoverer, responsible for the given network where these components are run.

A centralized discoverer where all discoverers will also be registered is

missing in this architecture. Its introduction would alleviate the process of

locating required components by the client applications, even though they are

not part of the local network.

 42

• Difficulty of usage the toolkit: Although the CTK developers aimed at

developing a platform that will accelerate context service development and

deployment, they partially achieve these objectives. Although the developer

has a set of classes that enable uniform interfaces for handling the context

data, the developers’ effort in working with the toolkit and learning how to use

the toolkit in a way beyond the examples provided is not to be neglected.

Some of the functionalities offered are not well explained; therefore,

documentation is lacking that if provided will alleviate developer’s tasks.

 43

4. Enhancements of the Context Toolkit

4.1 Quality of Context

Context-aware applications adapt their behavior depending on the contextual

information they receive. The context information has a feature that better explains its

quality, called Quality of Context (QoC) and this section defines this concept,

analyzes it, proposes an approach that can be adopted by the Context Toolkit and

identifies the challenges in this area.

4.1.1 What is it

In 2003, Buchholz, Kupper and Schiffers were the first ones to define the

Quality of Context as: [26]

 “Quality of context is any information that describes the quality of information

that is used as context information. Thus, QoC refers to information and not to

process nor the hardware component that possibly provide the information.”

When analyzing the problem area and the characteristics of the sensor data

acquired, it can be noted that researchers have distinguished and defined several

quality of context parameters that better define and describe the concept of quality of

context. Following some of them are outlined:

• Precision: It describes how precise are the data that the sensor is producing. Its

definition depends on the context that is measured, e.g. for location it can be

expressed as number of meters, for temperature as number of significant

figures or in general precision can be expressed with percentage.

• Accuracy or Correctness: It defines the degree to which the information

captured is correct. This parameter can be deduced by using statistical

estimation method, determining a value how often the sensor incorrectly

captures the data. Although it is difficult to estimate and know whether the

value captured is correct, a confidence interval can be defined in order to

verify whether the captured value is within this interval or not.

 44

Figure 13: Quality of Context parameters

• Freshness: Describes the age of the contextual information, i.e. the difference

in time between the latest received contextual information and the currently

received one, or the difference between the current time and the time of the

last received contextual information. [26] It can usually be calculated by

adding a timestamp with every context info delivered and in that manner

extracting the time difference. Furthermore, the time when the context data

was received is mostly used as a reference in time rather than the exact

moment when the data was actually captured, because out of some reason the

data might be delayed and the time that is captured as an acquisition time is the

delayed one and not the real one. An advantage of this parameter is that it can

have a uniform representation no matter of the nature of the contextual

information, as it always represents a period of time.

• Reliability: Describes the level to which contextual information are available.

It gives the completeness of data produced, presented by the ratio between the

expected number of context data produced and the total number of output

values that should have been produced. This parameter is closely correlated to

the sensor’s hardware and the error rate it has defined, as well as the reliability

of other components that participate in the context acquisition from the widget.

• Resolution: Refers to the granularity of the context information. [26]

Sometimes the sensors do not provide information that give exact information

for a given location, and only measure a parameter in a certain part of that

location. However this information is still correlated with the whole location,

e.g. the temperature measured can be associated with a room but actually it

gives information for a corner in a room, because in the opposite side of the

room a heater might be running and the temperature might be higher.

Selecting the quality of context parameters is a trade-off. On one hand the

parameters selected should be generic enough so they can be applied to all types of

 45

context data, whereas their number should be well chosen so it can be easy

implemented as an add-on in as many context-aware frameworks as possible. [27]

4.1.2 Why do we need it

Introduction of a mechanism that handles quality of context issues is needed

because the correctness of the information retrieved is of great importance. This is

especially critical in applications in the healthcare domain, where on-time, urgent and

accurate analysis of the vital signs of the patient’s functions as a step closer for

preventing attacks, is gaining momentum.

When focusing on quality of context, several aspects should be taken into account,

which emphasize why quality of context is necessary:

• Noise in the sensor network may appear from a number of reasons (sensor

failure, sensor noise), which consequently introduces errors in the measured

data and inaccurate data capture. Consequently this can cause false detection

of a critical situation (false positive) or complete overlooking of an existing

one (false negative). Therefore, a value that truly reflects the ‘predetermined’

level of noise should be known, together with appropriate adaptation of the

algorithm that deals with the sensed data to detect such noise occurrences and

reduce their influence;

• In a context aware system it is common that several sources provide the same

type of contextual information and refer to the same entity. Hence, several

pieces of context information taken at the same time can relate to the same

entity measured, and can deliver distinct data measured, leading to

inconsistency. For example, there might be several sources that provide

location information (GPS, schedule information, mobile phones, RFID tags

and readers etc) all differentiating in its accuracy, having different error rates

and providing location with different precision, such as: coordinates, rooms,

buildings and areas. This imposes the need of a mechanism that solves these

conflicting situations;

• Contextual data is imperfect, which comes as result of: sensor limitations, the

situation of the specific measurements (sensors can be affected by heat, cold,

humidity), the setting where the sensor is situated, the granularity of the data

the sensor produces, the sensor unavailability etc;

Context-aware applications adapt their behavior guided by the context

acquired. However, the reasons listed above indicate that applications should adapt

their behavior on Quality of Context as well, and this information should be supplied

to the application along with the contextual information. Another reason for

introducing this dimension to a system would be the connection between QoC and

privacy of information. [28] Often a context-owner might like to limit the information

that is supplied to the requesters, e.g. a person might not want others to be able to

accurately locate him, and would like to supply and reveal less precise location

 46

information. Consequently, introducing the concept of QoC imposes itself more as

need and requirement rather than as an enhancement in context-aware systems.

4.1.3 Design issues

The previous section emphasizes the necessity of the introduction of quality of

context, therefore several design issues that are associated to its implementation will

be examined in this section.

a) The value of context data is not the only thing required from the application in

order to make an accurate decision. Quality of context parameters should also be

propagated to the application along with each context information update. In

addition to the parameters, sending a single evaluation parameter that reflects the

quality in general and represents a summary parameter can also be sent.

b) Next, a decision should be taken whether the framework should deal with abstract

descriptions of the quality parameters or with the exact values that describe them.

• Descriptive form: This approach gives all applications a uniform way of

evaluating the quality of context parameters. However, on the downside,

sending the parameters in descriptive form limits the application knowledge

and imposes usage of the value-description mapping that the widget designer

has set before. Moreover, the widget designer and the application developer

might have different understanding on the same mapping, e.g. what is high

precision for the widget designer, might be medium precision for the

application developer.

Context Type QoC Parameter QoC Value
Location Precision Low

Temperature Accuracy High

Schedule Reliability High

Heart Rate Freshness High

Location Resolution Medium

Table 3: Example of abstract descriptions of the QoC parameters

• Exact values: Sending the parameters in a raw form provides the application

with the true and objective parameter values, and enables it to make more

accurate decisions on whether they meet the standards for the application or

not.

Both approaches are acceptable and choosing one is a matter of choice that

should comply with the architecture’s design approach. If we want less processing

on the application side and not so exact values, than the abstract descriptions

approach should be selected. If we operate with health-critical applications that

require precise and full description of all the parameters involved, then the

propagation of the exact value of the QoC parameter is recommended.

 47

c) Following, the quality of context mechanism should be integrated with the

system’s existing mechanism for resolving conflicts. Due to the fact that there can

be several sources of the same context information, but from different type of

sensors (physical, virtual, logical) and several sensors of each type, it is very likely

that they won’t always deliver the same data. The concept of QoC can aid in this

situation by filtering the data and giving preferences of one sensor data over

another by using the quality of context evaluation parameters. A certain threshold

for each quality parameter can be set and all the context data that don’t meet the

requirements will be discarded and will not be further processed. Next, the

established conflict resolution mechanism is applied and a certain value for the

context type is set.

As a side note it is advisable that the different sources of the same type of

contextual information use the same representation format, so that this info can be

later easily processed on a joined scale.

d) Finally, there are several ways how the application will handle the quality of

context paradigm:

• The system can perform conflict resolution and together with the information

supplied it can represent how authentic is the given value to the original,

actually which is its confidence rate.

• The user is presented an overview of the different information retrieved by

different sensors and is prompted for selection of one. This approach demands

more attention from the user, but it gives him power to choose which sensor

source it finds more trustworthy.

4.1.4 Proposal for improvements

At present, in the current distribution of the Context Toolkit there is no

mechanism that covers quality of context issues. An object that describes the QoC

parameters can be added to each widget, sent together with the non-constant attributes

with each callback, and passed for further processing to the application side.

The architecture will be extended with several new components:

QualityOfContextParameter, QualityOfContextItem, QualityOfContextItems whose

class diagram is shown in Figure 14, and a modified Widget and

ComponentDescription class:

• The QualityOfContextParameter class contains (name, value, type) tuple that

describes a parameter;

• The QualityOfContextItem class contains a list of all the quality of context

parameters for a certain contextual type and a description for the context

information;

• The QualityOfContextItems class contains all the quality of context items related

to a single widget, e.g. one widget may provide QoC information about

temperature, light and humidity;

 48

Figure 14: Class diagram of the new components introduced related to the QoC

• The QualityOfContextConstants class contains the definitions of the QoC

parameters;

• The ComponentDescriptor class now contains QualityOfContextItems which are

passed to the widget’s subscriber together with the non-constant attributes when

every callback processed;

• The Widget class has been extended with several methods for initialization of the

QualityOfContextItems and the way the callback’s ComponentDescription is built.

With the adoption of the widget model, the Context Toolkit has separated the

sensing infrastructure from the application logic and therefore tends to use the widgets

as context acquisition components without implementing any logic in specific.

Consequently, more suitable approach for the Context Toolkit would be to propagate

the exact value of the quality of context parameters and let the application make its

own estimations, an approach shown in Figure 15.

When the EnactorReference is defined and coupled with a certain widget for

new data notifications, a requirement for the QoC parameters can be also declared. If

the data obtained do not meet the demands and do not conform to the threshold values

set, the system either disregards them or re-requests them. Furthermore, the Context

Toolkit does not offer any mechanism for conflict resolution, so a simple

implementation can involve introducing a summary value that unites all QoC

parameters by giving different weights to the parameters. So, if a conflict occurs, it is

resolved by referring to the summary QoC value in a manner that the context data with

a higher summary QoC value is taken into account over the others.

Figure 15: Sequence of actions when handling QoC

 49

4.1.5 Challenges in the QoC

Although there are many analysis in this area, there are still some challenges

that remain to be solved:

• Representation format: Sensors from the same type often provide the

contextual data in a different format. Standardization needs to be done so that

the chosen format could express the sensors measurement as authentic as

possible and in the same way, which will further alleviate its processing.

• Rules for calculation of the parameters: Establishing a bundle of rules to make

the acquisition services calculate its quality of context parameters in a

standardized way, so that we can be sure that they are all using the same

criteria.

• Integrating QoC with resource discovery: Frameworks should be extended to

support context description with the QoC parameters, which in turn will allow

location of context sources and sending notifications depending on the QoC

definitions and values. [29]

• Trustworthiness: Keeping track of the performance of a context source, how

many contradictions it has encountered and whether it complies with other

contextual data from the same type, should aid in building a reputation for a

certain source that can be extracted as another QoC parameter. Different

applications should be able to share the trustworthiness knowledge on the

context sensors and infer better decisions.

• Recalibrating the parameters: Recalibrating the QoC descriptors during the

operation time depending on the learned behaviour and history tracked.

4.2 Resource Discovery

4.2.1 Introduction

The designers of the Context Toolkit have selected the widget architectural

approach in order to separate the application logic from the sensing infrastructure. In

this manner they manage to hide the details about the sensors connectivity and driver’s

configuration in a widget component and ease the application development. This in

turn increases: the reusability of the context acquiring process by using the same

retrieved context data for multiple applications, its maintainability in terms of easy

substitution of a single component without influencing the normal operation of others,

and the extensibility of the system by seamlessly adding new components.

In order to allow the decoupling, the system must be able to provide a mechanism

for locating the widgets, to get information about the host where they are running and

the port on which they can be accessed. Therefore the decoupling imposes the support

of resource discovery.

 50

Presently the resource discovery process of the Context Toolkit is illustrated in

Figure 16 and occurs in the following order:

• A widget is started and it is registered in the Discoverer’s database. The

following data are stored: name, hostname, host address, port, version, type,

constant and non-constant attributes, callbacks and services. The Discoverer

“pings” all components in its list to ensure that they are functioning normally.

If the component does not answer, then it is removed from the list.

• An application is run which sends a multicast message containing its id, port

and hostname, in order to locate the Discoverer;

• The application describes the widget of its interest by constructing a query

object which contains some or all of the parameters that describe a widget

(usually type, constant and non-constant attributes);

• The application queries the Discoverer for such components and once it

receives the widgets’ description, it directly communicates with the widgets

and subscribes to them;

• Once the application is shut down, it is automatically unsubscribed from the

widget’s subscribers list. If the application terminates due to some failure then

it is unsubscribed after several consecutive unsuccessful notifications.

Figure 16: Sequence of actions when locating a resource

4.2.2 Proposal for improvements

The current resource discovery design is quite functional as it is, still

improvements can be introduced in the system to advance its performance. This

section examines several issues and motivates the given proposals.

• The current implementation of the Context Toolkit offers the following

parameters that describe a component: name, hostname, host address, port,

version, type, constant and non-constant attributes, callbacks and services.

This description can be further extended by adding the QoC parameters

(precision, accuracy, reliability, freshness and resolution) as criteria for

matching widgets. Other criteria for further widget selection can be the context

information type, e.g. location, temperature, light, weather etc. This spans the

 51

description capability and makes the user filter the right widgets with higher

precision.

• As mentioned in section 3, the discovery mechanism in the Context Toolkit is

based on a centralized approach. This imposes the risk that this component is a

single point of failure in the system. If it stops functioning out of some reason,

new components can not be registered and consequently will not be able to be

located by the applications.

One option is to impose redundancy in the system by replicating the

discoverer, which would no longer make the system be physically centralized

and would enable rapid recovery in the event of failure. But as solving one,

this opens another problem of keeping the consistency between all instances of

the Discoverer. Consistency is hard to implement, keeping copies may be

expensive and depends how often updates are performed. Therefore, this is a

trade-off between reliability and performance.

• Presently, only widgets that are run on near by devices are located. An

extension would be to focus on resource discovery on distant hosts, not just

close by devices. One approach is to introduce a centralized discoverer-of-

discoverers, where all discoverers register. The discoverers are all independent

and still reachable between each other. When sending the request for matching

a widget, a flag can be introduced which can indicate whether the search

should be performed only in the local Discoverer or in all discoverers by

querying the central master Discoverer. Searching through other discoverers

will decrease the response time but will give more extensive results.

• Since interoperability is an issue that all frameworks should aim for, a

discovery mechanism that will be universally accepted is another aspect of this

issue. Service Architectures such as Web Services are lately targeting service

integration on the Internet and in enterprise architectures, and use different

discovery mechanisms. [30] They try to provide advanced search mechanisms

with very small error retrieval rate, by extending service description languages

and enabling more accurate matching of desired services. Therefore, using the

Web Services model of Service Provider, Service Broker and Service

Requester is already widely spread and might provide just the approach needed

for the context-aware frameworks.

• The resource discovery implemented at the moment requires that the

application finds out the hostname, address and port number of all the widgets

it needs to subscribe to. If we want to increase the decoupling and make the

retrieval of this communication information unnecessary, the widget model

can be combined with the blackboard model.

A mediator (alike a common board) component can be introduced and

will be in-between the widgets and the applications. The application will send

the widget descriptions it is interested in, and it will subsequently directly

receive notifications from the mediator component. On the other side, widgets

will send notifications when a new event occurs only to the mediator and then

 52

the mediator will redirect the notifications to the appropriate applications. The

mediator would process widget registrations, widget notifications and would

handle the application’s subscription to the widgets. This approach increases

the decoupling but also increases the time spent in communication.

In absence of perfect approach, the selection of one applied for the Context

Toolkit will come with some advantages and disadvantages at the same time.

Choosing one is a trade off between parameters such as: reliability, performance,

scalability, extensibility, interoperability etc. and its selection should generally be

guided by the demands that the framework would like to meet.

 53

 5. Design of a Context Aware Platform

By analyzing the context-aware application domain and design principles,

focusing on the Context Toolkit, its architecture, information flow, advantages and

disadvantages in its design and possible add-ons, in this section we draw conclusions

on best practices in the domain and we design a context aware platform that can

address some of the issues analyzed before and deal with new ones.

5.1 Design principles

 In order to ease and generalize the development of context-aware applications,

an abstract framework will be conceived that should offer generic base for further

development and implementation. Following several principles that the framework

will be build on are outlined.

5.1.1 User-centered design

 The architecture offered should comply with the user centered design, which

should optimize the user experience, in a manner that the user does not adapt to the

system, but forces the system to adapt to the user’s behavior. Also, it does not only

follow the user’s actions and make adjustments according to that, but also performs

usability analysis and testing where it examines the correctness of the assumptions

made and improves its future reasoning. It considers the user’s interface preferences

and model the system actuation taking into account the user’s privacy constraints.

Therefore, it positions the user in the center of its concerns.

5.1.2 Layered approach

 As mentioned in the previous chapters, an infrastructure that decouples the

sensing infrastructure from the rest of the system is what all frameworks should

support. Although there is no best solution, the one that is a combination and

integration of several architectural approaches is often the most suitable one. The

architecture proposed possesses characteristics that describe three different

architectural approaches: widget, blackboard and networked services approach. As

 54

shown on Figure 17 the framework is roughly divided into three layers: application

layer, context manager layer and context provider layer. The context provider follows

the widget model and standardizes the context data acquisition and its decoupling

from the sensors infrastructure by applying software components called widgets. All

the retrieved data from the context provider are sent to the context manager for further

processing following the blackboard model, and then made available for the

applications as services complying with the network services approach.

Figure 17: Layered approach

 Context provider layer: Consists of sensors, classified as physical, virtual and

logical, and presents the data acquisition part of the system. It acquires the sensor data

by coupling each sensor with a standardized component that further delegates the

contextual information. This layer provides the upper layer with sensor data from

multiple sources in a reliable way, enables reuse of the contextual data from multiple

clients and makes the framework easy extendible by allowing adding of new context

providers. Apart from context data acquisition, it offers a mode to feedback the

sensors and thus achieving interaction of the application with the sensors. This adds

value to the services offered and improves performance of the system as a whole.

 The context provider layer contains very little or no logic at all, and is meant to

serve only as an interaction layer with the sensors.

 Context manager layer: Consists of several modules and implements the logic

of the framework. It processes the contextual data obtained and is responsible for

storing this data. The data acquired is usually raw information that needs to be

interpreted and higher level information need to be reasoned. The problem of

detecting and solving conflicts is also addressed at this level, together with data

manipulation depending on the quality of the data sensed. Moreover, as privacy and

security of the sensitive information becomes key issue, the framework should handle

this aspect as well. Finally, this layer offers data to the application layer through a

public interface that is easily understandable and accessible from as multiple

applications at a time.

 Application logic layer: This is the implementation of the client, realized in the

upper, third layer. It implements the logic of a custom created application, the events

that should be triggered when certain conditions are met and the adjustments that need

to be done in the interface depending on the context information and the user’s

situation.

5.1.3 Ontology-based context model

 55

 Determining the context model of the representation of the context data is an

important step that influences the whole system design and performance. Since the

key-value pair model already reviewed requires additional programming effort, the

ontology based model was chosen for this architecture.

The ontology provides a vocabulary for representing knowledge about a

domain and for representing specific situations in a domain. [31] This model describes

context in an expressive way independent from the programming language and aids

the system by applying intelligent reasoning techniques by using first-order logic. An

ontology language that can be adopted is the Web Ontology Language, OWL, an XML

language designed to be interpreted by computers, chosen because of its higher

expressiveness in comparison to other similar languages.

Following is an example of basic representation of contextual data expressed

with this model using predicates and later on Figure 18 using OWL:

• Location (Aleksandra, Kitchen)

• Light (Living room, On)

• HeartRate (Borche, Normal)

• Temperature (Bedroom, 25)

Figure 18: Context ontology written in OWL

These statements can be combined with other more complex predicates and

can infer higher-level information about people, objects, situations and other entities.

An open source popular tool based on Java that can be used to model

ontologies is Protégé, which is an ontology editor and knowledge-base framework.

Furthermore, Jena Semantic Web Framework can be used as a tool to reason upon the

ontologies defined. This is a Java framework that includes a rule-based inference

engine and provided programmatic environment for RDF, OWL etc.

 56

5.1.4 Context retrieval

The contextual data should be delivered to the Context Manager layer for

further processing and from there sent to the application layer. In order to be more

flexible, the architecture should support the two basic modes of context retrieval and

delivery:

• Push: Enables automatic context delivery to all subscribed components.

• Pull: Enables on demand context data retrieval, done by addressing a special

query to the context manager layer.

When initiating these types of retrieval methods, the client has to state the

context information needed, the accuracy of the data requested expressed through the

quality of context parameter values and possibly other requirements.

5.1.5 Service description and discovery

The discovery mechanism in a context-aware system in a pervasive setting is

an important issue. The sources used are not stable and always available, so up-to-date

listing of the currently available resources and its discovery should be always

obtainable. Hence, the context manager layer exports available services that can query

the system or can subscribe to receive automatic notifications when a new event is

detected for particular context data or a higher-level contextual information.

Figure 19: Web Services architecture

Currently the industry is imposing convergence to a single service-oriented

architecture. Therefore a way of modeling service descriptions with the Web Services

model presented on Figure 19 is proposed. Web Services are APIs that can be

accessed over the network and be executed on a remote host. They encompass

communication using XML messages that comply to the Simple Object Access

Protocol, SOAP, where clients request for services which are earlier described using

the Web Service Description Language, WSDL. [32] This enables the architecture to

use well established modeling languages and protocols for communication which

 57

increases its support for interoperability, since many of the other frameworks could be

augmented to support this already well understood and spread design.

Moreover, the service provider can explicitly register its services into a Web

Services Registry, such as the Universal Description Discovery and Integration,

UDDI, and make them available for usage. UDDI is a XML registry for publishing

services, discovering each other and defining how the services interact over the

Internet. [33] Furthermore it enables service discovery by performing yellow and

white pages lookup.

 The link between service description and discovery is obvious and the web

services paradigm offers a way of handling both. The context manager can publish the

contextual data, together with required input parameters (e.g. quality of context

parameters), it provides them in the form of services using WSDL, and the application

can search into a service registry for description of appropriate services.

5.2 Components

 The platform proposed is given on Figure 20 and provides the fundamental

abstraction elements necessary for developing a context – aware application. This

section looks into the components that each of the layers consists of.

• Widgets, aggregators, interpreters: Main building elements in the first layer are

the widgets, aggregators and interpreters, a design inherited from the Context

Toolkit earlier discussed. All sensors in the layer are closely coupled with widgets,

software components that encapsulate the communication and driver details,

which further delegate the data. Data from several widgets can be integrated in an

aggregator, offering a higher-level abstraction of context data, or the context data

can be translated and mapped from one set to another set of values with the help of

interpreters.

 Contextual data offered from a set widgets, aggregators and interpreters

constitute a context provider. And context providers are formed based on

reference to the same logical group of widgets (e.g. widgets that capture context

info in the same building).

• Sensing Infrastructure Manager: A sensing infrastructure management block is a

component that manages physical resources, and keeps track of the state of all the

widgets in the lowest layer, as well as their description, location and capabilities.

• Context Provider Registry: The context manager needs to keep a record of all the

context providers subscribed to it. Therefore, different context providers are stored

and listed in a registry component that contains an overview of all context

information sources available.

• Storage: Context storage is a component responsible for storing the historical

information, keeping record of the chronological sequence and changes of data

 58

retrieved for each sensor, enabling future retrieval. This data further enables

performing analysis, to help in detecting a pattern and predict future behavior.

 The stored context data should be organized in tables and a database

implementation can be selected for its deployment, which provides the

architecture with a high-resource storage element. This alleviates the process of

data analysis by allowing the construction of complex queries with the use of the

Structured Query Language, SQL.

Figure 20: Proposed context-aware platform architecture

• Quality of Context Manager: A manager that evaluates the captured context data

and assesses it on several parameters is an important module of the context

 59

manager layer. As mentioned earlier, precision, accuracy, freshness, reliability and

resolution, were chosen as descriptors of the concept of quality of context and

provide a mean of measuring how good data is. In order to achieve better

expressiveness, precision and unambiguity the parameters’ values should be

represented with exact values rather than using descriptive vocabulary.

 This component takes the applications service request, analyses the demands

referring to quality of context defined in it and further processes information that

meet these requirements. It may just filter data that meet the demands or filter

them and return exact information about the quality of context overall

characteristics in a summary value which the application may want to display to

the user.

• Conflict Resolution Engine: A component that the Quality of Context Manger

needs to be integrated with is the Conflict Resolution Engine. After the requested

context data have been filtered depending on whether they satisfy the quality of

context requirements, contradictory values can be detected, captured by different

sensors that measure the same parameter. This component offers a way of dealing

with the ambiguity of the context and makes a preference of one sensor data over

another. The preference can be based on the:

o User decision: the user makes an explicit selection of the sensor data it prefers;

o Quality of context: the sensor data with a higher summary value for the quality

of the context data is selected;

o Analysis of historical data: An analysis is performed based on the previous two

aspects (user decisions, quality of context historical data) and context data is

selected based on prediction for higher reliability.

• Inference Engine: In order to recognize new and deduce more complex contextual

information, an inference engine is a necessity in the architecture. By using the

knowledge obtained and the historical data already stored, this component

represents the intelligent part and introduces the ‘awareness’ in the context-aware

system.

The ontology based contextual model earlier chosen, declares classes, rules

and relationships between them. It already supports some form of intelligence that

can be augmented by adding the ability to make further inference by using

intelligent reasoning methods, like logic or probabilistic reasoning, fuzzy logic,

Bayesian networks etc.

• User Behavior Analyzer: The user-centric design is a requirement that the system

should fulfill, and it makes an attempt to do so by adding the user behavior

analyzer component into the system. By using reinforcement learning which is a

sub-area of machine learning it analysis the user behavior and its interaction with

the application.

Reinforcement learning utilizes the user’s feedback, which is automatically

tracked in order to modify the system’s behavior. [34] The method is actually

learning what action to take in order to maximize a reward signal. Two features

 60

make the technique distinguishable: trial-and-error search and delayed reward.

[35] If the user selects one feature, but then switches to another from the same

category and uses that one for a longer period of time, the later might be

considered as a preferred one and switching to the second one can be interpreted

as a negative feedback for the earlier feature. The analyzer registers the user’s

behavior and its interaction with the system and affects on improving the

application performance and increasing user satisfaction.

• Privacy and Security Module: This module introduces the concepts of security in

the context-aware platform. However, its consolidation in the system is a sword

with double edges. On one hand it enables the user maintain its privacy and

control which information he makes available to the rest of the users. And on the

other hand, it increases the need of user’s interaction with the system, by

frequently reconfiguring the security preferences for every piece of contextual

information it provides.

A basic functionality this module provides is authentication. It is a necessity

because often in healthcare applications the data provided is personal and access

should be allowed only to verified users. Proving somebody’s identity should be

fast, easy and over a secure communication link.

Another functionality is to guarantee the privacy of the context information it

offers by providing access control mechanism. One approach is to assign an owner

to each context information provided. Therefore, full and partial access can be

granted to all or specific users or access can be completely denied, resulting in

absence of context delivery to the application. Another approach is to use policies

to express the rights allowed, and the security rules the system and the data it

provides, should comply to.

Finally, keeping the context data protected is another capability of this module,

which enables even stronger protection. Depending on the application domain that

the context manager supports, encryption of context data can be deployed or can

be omitted.

5.3 Flow of actions

Following, the general sequence of actions in the proposed context-aware

framework are described.

A set of sensors, widgets, aggregators and interpreters comprise a context

provider which locates and registers to a context manager component. A context

manager can operate with the data of multiple context providers and keep a record of

the subscribed providers by registering them in the context provider registry. The

widgets acquire sensor data and delegate these data to the upper layer, which stores

them for later inference and pattern detection.

When an application needs a certain contextual information, it searches for it

in the service registry (e.g. UDDI) by performing a white pages lookup (by specifying

 61

the exact name or id of the service), or a yellow pages lookup (by specifying attributes

that define and describe the service). Once a service is matched, the appropriate

context manager is communicated and a service request is sent.

The context manager contains a security module that authenticates the user of

the application. If the authentication is not successfully completed the service request

is denied, otherwise a normal flow of actions follows. Moreover, whether the response

delivered to the client will contain the data requested, depends on the rights the

authenticated user has been granted and the policies established. If the user requesting

the data is not allowed to access certain information then the service response will not

deliver them.

The context manager retrieves the latest data stored for the context info

requested, or in case of a higher level data, it retrieves several entities from the

database. Furthermore, the manager processes this data through the quality of context

manager, to eliminate all the data that do not fulfill the QoC requirements specified in

the service request. Then, the subset of data is run through the conflict resolution

engine, which solves conflicts and deduces the most probable value for certain context

when several distinct values are detected. If a higher-level data has been requested, the

inference engine draws conclusions depending on the last obtained data and the

historical information, otherwise the data processed is prepared for the service

response.

Moreover, the applications operation and users’ satisfaction is improved by

analyzing the user’s behavior. Namely, features that the user most frequently utilizes

can be automatically reconfigured. They are made more accessible by dynamically

reorganizing the interface and adapted depending on user’s interaction.

Last, the architecture proposed provides all the essential building blocks

needed for a robust platform that can match the wide range of demands and should be

able to alleviate the work of the application developers for developing complete,

stable and reliable context-aware applications.

 62

 6. Context awareness in healthcare

With the reduction of size and price of computing devices, ubiquitous

computing has become part of our reality, being present in almost every part of our

surroundings and starting to cover more segments of modern way of living. This was

made possible by combining a number of technologies available, such as:

telecommunications, electronic engineering and computer science. [36] In particular,

the development of wireless networks, mobile communications, intelligent sensors

and their integration has brought intelligence in a wide range of settings, making

context – aware applications possible more than ever. These services have been

targeting home environments, hospitals, conferences, workplaces, elderly nursing

homes but many more are yet to come.

Smart homes apply gathering contextual information and reasoning in order to

provide a series of functions into one’s household. They encompass information about

the need for food supply, devices’ status in the domicile and their control, energy

consumption, alarm system, medication consumption, access monitoring.

This section focuses on smart homes and their design to alleviate everyday life

of elderly people who have decided to live at home. First, the needs of elderly or

dependable people are identified, and then a background of services already provided

in this domain is given, followed by an analysis of a prototype of the application

implemented.

6.1 Need for support of the life of elderly

A deeper analysis of the challenges that elderly and dependable people face is

needed to properly identify the focus of the applications already developed.

A study performed in Finland by Sauli Tiitta [37] has pointed out two factors

that affect the quality of life of elderly people: immobility and solitude. The study was

conducted by choosing four voluntary elderly persons documenting their activities and

commenting which tasks they find troublesome performing. The study came to the

conclusion that elderly people lack the support of social interactions and e.g. would

 63

need assistance in building new friendships especially with people that live close by. It

has also identified security as a feature that they are very concerned about.

Furthermore as the world population is aging rapidly, the number of people

aged over 65 is increasing for 800 000 per month. [38] A big percentage of this people

are starting to face the inability to live independently and they require the assistance of

another individual in conducting the day-to-day activities. Therefore, elderly are

confronted with the need to be moved to a nursing home. Unfortunately, studies show

that once elderly are moved to a nursing facility they tend to get depressed and

increase the number of doctor visits.

Loosing the independence has a negative impact on the elderly and dependable

people and finding a way to make use of the technological achievements would impact

positively on prolonging the transfer to an institutional care. In addition, development

of services that would aid in daily activities would also offer a cost effective way in

preserving the independence. Therefore gaining information about the state of the

environment and automating processes in the household would significantly alleviate

people’s life.

Another point for preserving the independence is to increase the monitoring of

the elderly person’s vital functions i.e. health monitoring. This would exclude the

need for a person to be closely supervised in an institution, by providing the means of

performing the monitoring in a home environment, by creating devices that measure

the critical parameters and rise notifications and alarms if abnormalities occur. This

out-of-hospital monitoring has already been in the focus of researchers and offers

benefits to the medical staff as well by providing insights about the effectiveness of

the medical treatments at home. [39]

Applying context awareness in a home environment can be found beneficial

for elderly and dependable people from several perspectives: it can improve social

interactions, support independent living, increase the support for performing daily

activities and carry out health monitoring. By this, the need for nursing care could be

avoided or postponed, elderly people’s independence will be sustained, and the quality

of life will be improved.

6.2 Background

This section reviews the research literature, and intends to provide an objective

view of the progress that has been done in the area of context awareness in smart

home with emphasis on applications useful for elderly or dependable people. It

captures the dynamism of the advancement and gives overview of the applications

proposed by different research groups.

Choi, Shin and Shin [40] propose a context-aware middleware that provides

automatic control of devices in a smart home environment depending on user’s

preference. Their prototype measures six parameters: pulse, body temperature, facial

expression, room temperature, location and time; and based on the measured values it

learns and predicts the user’s preference. The user behavior and choices that he makes

 64

are captured and stored by a user’s profile manager so that the appliances´ (TV, air

conditioner, projector, light) setting can be predicted based on the learned behavior.

Another research group consisting of Baek, Lee, Lim and Huh [41] have

designed an intelligent home care system based on context information. This system

minimizes the users´ intervention and increases its autonomy by automatically

triggering services based on the context reasoning. In addition, it encompasses a way

of resolving context conflicts and service interactions, analysing scenarios where two

different users give opposite commands related to services such as: turning on/off the

light, alarm clock setting etc and dealing with them by proposing priorities. Baek,

Choi and Huh [42] subsequently extend this work by deploying a location tracking

system and a sensor platform that acquires data on heat and illumination. The location

tracking service presents user’s position on a 3D home map and the home appliance

control system manages optimal automatic control of devices at home such as air

conditioner, heater, light etc.

Lee, Kim and Huh [43] describe context-aware based home services that make

people’s life more comfortable, easy and efficient, by providing automatic intelligent

services in relation with the location, time and situation. The authors suggest several

services, ranging from answering doorbell (greeting the visitor appropriately

depending if there is somebody at home, or choosing who should answer the door if

there is more than one person at home based on location and preference), seamless

transfer of the transmission from one display device to another as the user moves

around the house and watches TV, reminders to turn off some devices while cooking

as well as recipes outline on a display near by, and reminders for better management

of the home (such as receiving notification to turn off the light, gas stove and some

electronic devices).

Another research group has been examining ubiquitous healthcare services and

has proposed a wearable sensor system which measures the biological functions of a

person. [44] The infrastructure allows two categories of services: remote health

monitoring and self health check. In the case of remote health monitoring, the sensors

measure information about the heart rate, blood pressure, body temperature and

respiration. The user subscribes to a health monitoring service through Internet, sends

this information and thus allows doctors to monitor his state. In the case of self health

check service, a service is downloaded to the wearable computer in advance. The

service determines the health status based on the mentioned context information and

offers an overview to the user of his health condition through a comprehensive GUI

on a portable computer. This group has later extended their research by adding another

healthcare medical device which can measure blood pressure, blood sugar level and

body mass index. [45]

 Korel and Kao [46] have also addressed the issue of context awareness in body

sensor networks. They are implying the importance of monitoring the vital signs of

elderly or patients with chronic cardiac anomaly through measuring the physical and

bio signals derived from body sensors (ECG, heart rate, blood pressure, oxygen

saturation and sweat volume/rate). Information on other context elements such as

environment temperature, person’s condition and others are significant for

 65

determining unnatural behaviour of some body functions and by that preventing

mortality on time.

 Another approach is the design of a social alarm system based on wearable

sensors and monitoring of the condition that will fit the needs of elderly and

dependable people. [47] Social alarm systems usually consist of activating an alert

button that is usually worn on the wrist or the neck. However, due to the fact that a

person not always has this device with himself or is not able to press the button,

Korhonen, Pavilainen and Särelä have suggested an intelligent alarm system that

provides remote monitoring of a user’s state. The implemented system consists of

three units: a wrist unit, a base station and software for receiving and routing alerts.

The wrist unit has the already mention button but in addition also has incorporated

movement sensors, sensitive to muscle movements on the wrist as well as the whole

hand and body movements. Help is automatically requested if no movement is

observed for longer period. The system also triggers notifications delivered to the

emergency person if it has detected that the user does not wear the wrist unit and

therefore a warning is sent to the user.

 Helal, Giraldo, Kaddoura, Lee, El Zabadani and Mann [48] have developed a

mobile patient care giver assistant which is deployed on a smart phone and its main

objective is to catch the attention of people with Alzheimer’s Disease and notify them

about an action they have to do, by playing a message on the phone, by playing a

sample of the task on the nearest displays in the house which the user is facing, or

playing an action notification and instructions recorded by relatives and friends.

Then, a general reminder system is included, which reminds the user about medicine

consumption or a scheduled appointment. When taking certain medicine, the medicine

box is scanned for verification that the right medicine will be taken and also a control

of the medicine left in the box is performed so that refill can be done on time.

 Similar system for monitoring and assisting medication consumption at home

has been developed by Agarawala, Greenberg and Ho [49] and by Fishkin and Wang.

[50] The later have developed a prototype of the system consisting of a portable pad

that combines Radio Frequency Identification (RFID) tags and a sensitive scale to

detect when a bottle has been picked up or placed down and measures the changes in

the weight. This data is processed and is supplied to an application that reminds a user

how many pills need to be taken and when.

 Bardram has introduced his visions and on-going research in the domain of

healthcare in a hospital environment, and some of the services he suggests can be

found appropriate for usage in a context aware home as well. [51, 52] He proposes an

interactive bed with a touch sensitive display. The bed has sensors that detect the

position of the patient, the identity of the person standing besides the bed and the

medicines that are carried. In this way the system controls if the right medication is

supplied to the right person and verifies the dosage on the screen attached to the bed.

In addition a number of body functions can be measured and be displayed on the

screen, as well as displaying the patient’s record.

The review of the applications in the domain of context aware home and

healthcare of elderly and dependable people indicates that this application area is in an

 66

early stage of evolution, but it is gaining momentum because if ubiquitously deployed

it will succeed in improving the quality of people’s life. As noticed, some of the work

of the research groups has been overlapping i.e. the functionalities that the

applications are offering are close to one another, but they differ in their

implementation and technologies used. As there is a wide range of opportunities in

this field of research, new applications that require competence and know-how of

several disciplines, should be designed and be developed to better shape the focus of

this area and in the same time alleviate people’s life.

6.3 Prototype of a smarthome application

This chapter explains and documents the application that has been developed

in order to better understand the structure and mechanisms of the Context Toolkit, its

advantages and drawbacks, the aspects of the architecture where improvements are

needed and finally to infer techniques and approaches for designing a new context-

aware platform.

Taking into account the previous discussion about the necessity to support the

life of the elderly in a home environment and the background literature study of the

applications developed in this area we choose to implement an application that is

targeting both, elderly people living at home and caregivers which remotely monitor

patients and react accordingly to the situation. To the elderly the application should

offer reminder functionality in conducting daily activities and to the caregiver it offers

a monitoring tool about the person’s behavior within his home, his condition and the

state of the environment where the user is located. The system is a type of an Ambient

Home Care System (AHCS) that can be extended to establish a Computer Supported

Coordinated Care (CSCC) network for an elderly residence or a hospital.

The application chosen to be implemented serves as a proof of concept. It is an

on-going work that will continue in order to fulfil the description given in the next

subsections.

6.3.1 General description

An application’s screen shot is shown on Figure 21. The application is thought

as a remote monitoring tool of an elderly person. In order to show its capabilities a

selection of example scenarios is further listed:

• Borche is at home and receives a notification that it is time to take a medicine.

After taking the medicine, if the medication bottle is almost empty a notification is

sent to him that he needs to refill the supplies for that medicine.

• Aleksandra is about to leave the house for a meeting with her friend scheduled

outside of the domicile. While the appointment is scheduled, she has to take a

medicine. Therefore, she receives a reminder to take the medicine before leaving

the house and a notification about the weather forecast for the rest of the day.

 67

• Light on is detected in a room for a longer time where Ivica has not been present

for a while. Send a notification to Ivica that he should turn off the light. (This can

be further extended into automatic regulation of the light)

Figure 21: Screenshot of the monitoring tool

• The caregiver, Natasha, instead of working in the patient’s home, can work from

distance and monitor several patients at a time. She receives information about the

environmental conditions of the patient’s home (light, temperature and humidity),

the location of the patient within his home, the electrical activity of his heart, and

information whether the patient has taken the medications on time.

• Daniel’s ECG shows abnormal rhythm of the heart. The caregiver can immediately

verify the other parameters in the environment and the state of the person and take

urgent actions if necessary.

Figure 22: Screenshot of the ECG view

 68

6.3.2 Functions

Following are the functionalities of the application and the information it covers:

Functionality Description

Automatic positioning The application can automatically locate and identify a

patient within his home.

Schedule overview Caregivers can have insight of the scheduled medication

intake events of the patients.

Environmental parameters The caregiver’s monitoring tool features information about

the state of the user’s home environment: light, temperature

and humidity.

Weather forecast information Informs the patient about the weather before leaving the

house.

Medication intake reminder

Patients at home should be able to get notifications for each

medication intake scheduled in the calendar. The reminder

issuing depends on the patient’s state and location. Patients

also receive a reminder for medication intake when

overlapping events scheduled on different locations are

found.

Biomedical functions The caregiver’s application monitors the ECG of the user.

Table 4: Functionalities of the application

At present the notifications sent to the person monitored are only showed in

the notifications panel of the application. Further development of the application can

encompass sending notifications through SMS.

6.3.3 Reasoning engine

The application logic is implemented using a rule-based reasoning engine that

is based on "if-then-else" rule statements. The actions triggered usually depend on

several conditions depending from the information retrieved from various widgets,

closely observed on a joined timescale.

• General

o Display a notification in the monitoring tool when the user changes the

location;

• Status

o User/elder/person’s status:

� Medication pending: This status will be set 20 minutes before the

scheduled medication intake;

� Scheduled appointment: if an appointment is scheduled in the next 60

minutes.

o Status of the environment:

� Normal;

� Too hot: temperature 10C above the normal temperature;

 69

� Too cold: temperature 10C below the normal temperature.

• State of the environment

o If the temperature exceeds the limits for normal condition for +/-5 C, send a

notification to the user that he needs to turn on the air conditioner/heater;

o If the temperature surpasses the upper limit for 15C, send an alarm to both the

caregiver and the elderly resident, to check the given room where a possible

fire might have started;

o When the user is in the same location for more than 15 minutes, check the

light in the other rooms of the user’s home and if the light is on send a

notification to the user to switch off the light in those rooms;

o If the user changes the location, display the environmental parameters for the

room where the user is currently present;

• General schedule

o If an event is scheduled outside of the person’s home, send a reminder to the

user about the event and a notification about the current weather conditions

and the forecast for the rest of the day. The notification should be sent 30

minutes before the event;

o If the user is located in the entrance hall, an event is scheduled outside of the

home and a reminder has already been issued, then the user is about to leave

for the scheduled event;

� If the weather forecast says it might be raining, issue a notification to the

user to take an umbrella;

� If the weather forecast says that the current temperature is below 0C, issue

a notification to the user to take a hat and gloves.

• Medication intake schedule

o Display all the medications that the user needs to take till the end of the day;

o If a medication intake overlaps with an event scheduled outside of the person’s

place of residence, 30 minutes before the event is scheduled send a reminder to

the user that he should take the medication with him;

o Update the status of each medication scheduled event in the remote monitoring

tool:

� Pending - Status set till 20minutes before the medication intake event is

scheduled;

� Notified - Status set when a notification for the medicine intake has been

sent to the user. 20 minutes before this event locate the user:

- If user is in the kitchen, send a reminder;

- If user is asleep, wait for issuing the reminder till the exact time for

medication intake comes;

- If the user is not in the kitchen, wait till 5 minutes before the

medication intake time and then issue the reminder;

 70

� Forgotten - If the medication was not taken after 20 minutes of the

scheduled time, this status will be set. A warning will be resent to the user

and a notification to the caregiver;

o If the number of pills left in the medication bottle is 5, issue a warning to the

user that the certain medication needs to be refilled and also a notification to

the caregiver about this situation.

• Health

o Monitor the ECG of the person on demand.

6.3.4 Widgets architecture

This subsection discusses the widget architecture that the application benefits

from. In Figure 23 the interconnection between the Context Toolkit components is

presented. The application makes use of a number of context information. Each

Figure 23: Widgets’ architecture

context info is retrieved from a widget or aggregator component which correspond to

a given sensor: physical, virtual or logical. Examples of physical sensors are the motes

deployed in different positions and measure the temperature, humidity, light etc.

Examples of virtual sensors are the public interfaces Google Calendar and Google

Weather utilized in the presented infrastructure, and an illustration of a logical sensor

is the UserPosition aggregator, which combines information from several physical and

logical sensors (Wi-Fi localization, motes localization and RFID localization).

Moreover, Table 5 gives an overview about the types and functionalities of the

components implemented.

 All the widgets, except of the aggregators, are run in advance - before running

the application. During application initialization, the following aggregators are

initialized: UserPosition, UserRfidData, UserHeartRateMonitor and

UserEnvironmentalParameters. The UserPosition aggregator subscribes to the position

widgets (Wi-Fi, motes and RFID) and is responsible for aggregating the position

information referring to the application’s user. The same applies to the rest of the

 71

aggregators; they subscribe to the corresponding widget and extract only the context

data referring to the application user.

Component

Type
Sensor
Type

Component Functionality

Widget Physical PositionWifi Positions users with a Wi-Fi

positioning system

Widget Physical PositionMotes Positions users depending on the RSS

signal received from static motes

Widget Physical RfidData Gathers data about read RFID tags

Aggregator Logical UserPosition Gathers information about person’s

position

Aggregator Logical UserRfidData Gathers information about read RFID

tags from a specified user’s device

Widget Physical HeartRateMonitor Acquires ECG data

Aggregator Logical UserHeartRate

Monitor

Gathers ECG data for specified user

Widget Physical Environmental

Parameters

Acquires environmental parameters

(temperature, light, humidity)

Aggregator Logical UserEnvironmental

Parameters

Gathers environmental parameters for

locations referring to a specific user

Widget Virtual WeatherForecast Acquires data about the weather

forecast

Widget Virtual Schedule Acquires data about a person’s

scheduled events

Widget Virtual Time Generates callbacks with certain

frequency

Interpreter / RfidData Interprets the read RFID tag (it can be

a location indication or a medication

identification)

Table 5: Architecture components and their functionalities

6.3.5 Technology background

This subsection gives an overview of the technology used to make the already

described services possible.

• Software components

o Java was chosen as the programming language for the development of the

application since it is built on top of the Context Toolkit which is developed in

Java. In particular Java 2 Standard Edition, J2SE, was used for the application

development and Java 2 Platform Enterprise Edition, J2EE, was used for

developing Java Servlets that render an xml file as a response to a service request.

Java Servlets were chosen for extracting some of the logic (e.g. motes based

positioning) in order to make the functionality reusable by several different

applications.

 72

o The information about the user’s data, medication, location and connectivity

details is stored in the open source database – MySQL version 12.

o The common functionalities that other developed applications also need to

access, are placed in the Apache Tomcat web server version 5.5.

o Google Calendar API, which enables client applications to view and update

calendar events that match certain criteria.

o Google Weather API, which provides current weather conditions and weather

forecast for the rest of the day as well as three more days in advance.

• Hardware components

o Alive Wireless Heart Monitor presented on Figure 24 is a wireless health

monitoring system that conducts real time transmission of measured parameters

via Bluetooth to PDA, smartphone or PC and performs further analysis. It

measures ECG, acceleration and heart rate. [53]

Figure 24: Alive Wireless Heart Monitor

 For the purposes of the application, the heart rate monitor sends the ECG

measurements to the PDA and the PDA forwards it to the Tomcat web server

from where they are processed and delivered in XML format to the appropriate

widget on its request.

o The application benefits from data gathered from a deployed wireless sensor

network which includes the following components:

� MoteWorks 2.0 Software Platform, which enables: MoteView client

application, a server gateway (XServe) and sensor devices (XMesh

networking protocol);

� Crossbow’s MICAz which is 2.4 GHz mote module presented on Figure

25 that measures: temperature, light, humidity, acceleration etc. [54]

 73

Figure 25: MICAz mote module

� Crossbow’s MDA100, MDA300, MTS400 and MTS 420 data

acquisition boards. [55]

o SDiD 1010 shown on Figure 26 is a Near Field Communication/Radio

Frequency Identification Secure Digital Card, designed to plug into a PDA,

smartphone or other hand-held device with an SD slot. The card offers NFC two-

way communications and RFID read/write capabilities.[56]

For the application’s needs, this

card has been inserted into a PDA that

the user is always carrying with him. It

is used for reading RFID tags, for the

purpose of identifying a medicine taken

or as an additional source for acquiring

location information (RFID cards with

written location are utilized as a

simulation for door sensors).

 Figure 26: SDiD 1010 NFC/RFID SD Card

o WLAN user positioning: Most newer mobile phones and PDAs come with the

possibility to connect to Wi-Fi networks. In addition, the access points become

increasingly present in the surrounding area, being capable of offering

functionality other than communication, such as localization of mobile devices.

Hence, the application takes advantage of the already deployed WiFi localization

system and Figure 27 displays the elements and connections of the system for

acquiring location data. In particular, the exact location of the access points is

known and used by the ‘getLocation’ servlet implemented in the Tomcat web

server to retrieve the user’s position.

 74

Figure 27: Elements and connections for acquiring location data

6.3.6 System overview

A high level system overview of the prototype solution for a ambient home

care application is shown on Figure 28. There are several elements that compose the

framework: a remote monitoring tool, a set of reusable widgets running independently

Figure 28: System overview of the prototype solution

from the application, a collection of sensors distributed in the person’s home, a set of

devices that the person always carries with him (PDA/mobile phone with RFID

reader, heart monitor), access to some public web services (Google Calendar and

Google Weather), and access to Apache Tomcat web server that encapsulates the

processing of some of the data that the widgets deliver to the application.

 75

The widgets are run beforehand and independently from the applications.

When the remote monitoring tool is started it initializes several aggregators that

acquire user specific information and subscribes to the widgets of interest by matching

them according to certain criteria (constant and non-constant attributes defined in the

widget), which in turn supply the application with notifications about new sensed

context data.

 The distribution of the access points enable localization of the user within his

home. The WifiPositionWidget queries the web server which successively calculates

the user’s position and sends back a structured data with this info.

The data that the sensors acquire is sent over-the-air and gathered by the

MoteWorks server. This info is requested from a servlet deployed on the web server,

and a structured data is delivered to the EnvironmentalParametersWidget on its

demand.

The same applies to the read RFID tags. The read data is being sent to the web

server, processed, structured depending if it is a medication data or a location data and

further delegated to the RfidDataWidget.

 Instructed from the application, the ECG view can be activated. The

HeartMonitorWidget then starts querying the web server for ECG data retrieved for

the specific user that wears the heart monitor. The retrieval is terminated when the

view is close.

 All these data is merged and its interaction is aggregated into a joined

application logic that displays state data and generates notifications in an application

which is run on location remote from the position of the elderly person.

 76

 7. Conclusion and future work

The main goal of this thesis is to conceive and design a platform for context-

aware services in a mobile-computing environment. In this chapter a conclusion is

given based on the analysis performed followed by additional guidelines for future

work.

7.1 Conclusion

This thesis is focusing on exploring the Context Toolkit, as a sample of a

context-aware framework, detecting its strengths and weaknesses, identifying the

possible enhancements and successively proposing a design of a new context aware

framework.

From the analysis performed on the Context Toolkit, it can be concluded that it

possesses a number of good design principles such as: reusability, distributed

approach, resource discovery mechanism, storage of context data, automatic

unsubscribing, context monitoring and feedback etc. However, weaknesses are present

as well: the discoverer is a single point of failure, there is a need for clocks

synchronization, there is no automatic restarting, there is lack of interoperability

support, privacy and security are not yet implemented, there is no reasoning engine,

and there is an absence of a conflict solving mechanism.

In this thesis, some of these issues were closely looked into and examined. For

example, a quality of context mechanism is proposed for improving the quality of the

application by making it more reliable and offering service adequate to the application

developer’s or user’s demands. Also several proposals were suggested as a possible

way of improving the resource discovery mechanism. Moreover, a matter that would

need further focus is the interoperability, in particular making the context data and

services provided from one platform available for discovery and usage by others as

well. A mechanism has to be developed that will interface with different platforms

and will reuse the context sources implemented with different frameworks by

providing a common interface that everybody can interact with.

 77

 A prototype application has also been developed for the purpose of evaluating

the Context Toolkit and obtaining hands-on experience of building a context-aware

application. Each widget was easily developed, but integration of all the services has

not been a seamless task, since the way they interact between each other has to be

carefully established and implemented. Another difficulty was the testing; setting up

all the involved context parameters on a joined timescale that matches the present, at

times was found somewhat troublesome. Also, dealing with different technologies

required studying all the sensors’ specifications and interfaces just to be able to extract

the context info needed for the application.

Consequently, after gaining practical experience with developing a sample

application and analyzing the Context Toolkit, a conceptual model of a context-aware

platform was proposed. It defines the components necessary for building context-

aware applications, and the interactions between them. The suggested design is

general and should fulfill the demands of a number of application areas of the context-

aware application development. It is a combination of several studied architectural

designs. It comprises the widget paradigm, the blackboard model and complies with

the networked services approach.

Some of the platforms reviewed totally lack important modules for building a

complete context-aware application. Therefore, when designing the platform several

aspects were taken into consideration such as: the necessity of quality of context

handling, conflict resolution, reasoning engine and a privacy and security module.

Approaches such as user-centered design, prediction of user’s preferences and testing

these assumptions are important for the design of the platform therefore an analyzer of

the user behavior was also a component added in the proposed architecture.

Furthermore, a general flow of actions has been defined that presents the main idea of

the system’s functioning.

Finally, the designed platform does not drastically defer from the other

analyzed. Most of them follow the layered approach and have similar abilities because

they are based on similar methodologies. What defers in the proposed model is the

completeness. It covers the central points of concern that improve the performance

and the overall quality of the developed applications.

7.2 Future work

Further work in this area encompasses several aspects, outlined as following:

The prototype was developed in order to get familiar with the Context Toolkit,

its drawbacks, missing functionalities, sample design principles, software practices,

technologies and examine the need for its future expansion. It has not been built in

order to satisfy scalability issues and it was developed without the intention to go in

real production. It serves only as a proof of concept. However, there are issues in its

current implementation that can be further improved. The application could be

expanded to support remote monitoring of several persons at a time, sending SMS

messages to the elderly and his family members in case of an alerting situation and

enriching the application with more context information in order to get more exact

 78

information about the current situation. New services can also be offered: fall

detection, abnormal heart rate state alarm, nutritional recommendations, fridge

monitoring system (by tracking the items left inside the refrigerator and constructing

the shopping list) etc.

 Concerning the Context Toolkit, its future development can cover: complete

implementation of the quality of context mechanism including a conflict resolution

engine which will be standardized and will adapt on the information provided,

extending the widget description with other parameters that describe it in greater

details, introducing redundancy in the system and replicating the Discoverer

component for achieving better reliability, and adding a module that will aid

interoperability by making the context info more available to other frameworks.

Moreover, proposing solutions for the other weaknesses detected and their

implementation can also be a topic for further work.

Last, the proposed context-aware framework in this thesis is general. It defines

the architectural design principles and identifies the necessary components. Further

work would include more detailed specification of the building elements and selection

of the algorithms that some need to define. This should be followed with an

implementation of the proposed solutions and sample application development which

will serve for evaluation purposes.

 79

 8. References

[1] Bill N. Schilit, Marvin M. Theimer, “Disseminating Active Map Information to

Mobile Hosts”, IEEE Network, Volume: 8, Issue: 5, September/October 1994, pp. 22-

32, available at: http://impact.asu.edu/~cse591uc/papers/00313011.pdf, last visited:

June 2008

[2] B. Schilit., M. Adams, R. Want., “Context Aware Computing Applications”,

Workshop on Mobile Computing Systems and Applications, December 1994, pp. 85-

90, available at: http://www.ubiq.com/want/papers/parctab-wmc-dec94.pdf, last

visited: June 2008

[3] Jesper J. Bisgaard, Morten Heise, Carsten Steffensen, “How is Context and

Context-awareness defined and Applied? A survey of Context-awareness”, available

at: http://www.csconsult.dk/rap/inf7_con.pdf, last visited: June 2008

[4] Bill Schilit, Norman Adams, Roy Want, ”Context-Aware Computing

Applications”, Workshop onMobile Computing Systems and Applications, 1994.

Proceedings., Santa Cruz, CA, USA, available at:

http://sandbox.xerox.com/want/papers/parctab-wmc-dec94.pdf, last visited: June 2008

[5] J. Pascoe, N. Ryan, D. Morse, “Using While Moving: HCI issues in fieldwork”,

ACM Transactions on Computer-Human Interaction (TOCHI), Volume 7, Issue 3,

September 2000, pp. 417 - 437, available at:

http://delivery.acm.org/10.1145/360000/355329/p417-

pascoe.pdf?key1=355329&key2=9722834121&coll=GUIDE&dl=GUIDE&CFID=340

47412&CFTOKEN=41193238, last visited: June 2008

[6] Anind K. Dey, Gregory D.Abowd, “Towards a Better Understanding of Context

and Context-Awareness”, Proceedings of the 1st international symposium on

Handheld and Ubiquitous Computing, Vol. 1707, 1999, pp. 304-307, available at:

ftp://ftp.gvu.gatech.edu/pub/gvu/tr/1999/99-22.pdf, last visited: June 2008

 80

[7] Terry Winograd, “Architectures for Context”, Human Computer Interaction,

Volume 15, no. 4, 2000, pp. 263-322, available at:

http://hci.stanford.edu/~winograd/papers/context/context.pdf , last visited: June 2008

[8] Oriana Riva, “A Conceptual Model for Structuring Context-Aware Applications”,

Fourth Berkeley - Helsinki Ph.D. Student, Workshop on Telecommunication Software

Architectures, June 2004, available at:

http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=8199F1E754DF6887BED7B

3223EC8F345?doi=10.1.1.97.3855, last visited: May 2008

[9] H. Chen, T. Finin, A. Joshi, “An ontology for context-aware pervasive computing

environments”, Special issue on Ontologies for Distributed Systems, Knowledge

Engineering Review, Vol.18, No.3, 2004, pp.197-207, available at:

http://www.cs.umbc.edu/~finin/papers/ijcai03OntologiesCAPCE.pdf, last visited:

June 2008

[10] Matthias Baldauf, “A survey on context-aware systems”, Int. J. Ad Hoc and

Ubiquitous Computing, Vol. 2, No. 4, 2007, pp. 263 - 277, available at:

https://berlin.vitalab.tuwien.ac.at/~florian/papers/ijahuc2007.pdf, last visited: June

2008

[11] Jadwiga Indulska, Peter Sutton, “Location Management in Pervasive Systems”,

Conferences in Research and Practice in Information Technology Series; Vol. 34,

Pages: 143 - 151 , Adelaide, Australia, 2003, available at:

http://crpit.com/confpapers/CRPITV21WIndulska.pdf, last visited: June 2008

[12] Wikipedia – Web Ontology Language (OWL), available at:

http://en.wikipedia.org/wiki/Web_Ontology_Language, last visited: June 2008

[13] Barbara T. Korel, Simon G. M. Koo, “Addressing Context Awareness

Techniques in Body Sensor Networks”, 21
st
 International Conference on Advanced

Information Networking and Applications Workshops, Volume 2, Niagara Falls, ON,

Canada, May 2007, pp. 798 - 803, available at:

http://ieeexplore.ieee.org/iel5/4221005/4224052/04224203.pdf?arnumber=4224203,

last visited: June 2008

[14] Kari Sentz, “Combination of Evidence in Dempster-Shafer Theory”, Sandia

Technical Report, SAND 2002-0835, Sandia National Laboratories, Albuquerque,

NM, April 2002, available at: http://www.sandia.gov/epistemic/Reports/SAND2002-

0835.pdf, last visited: June 2008

[15] Abhishek Singh, Michael Conway, “Survey of Context aware Frameworks -

Analysis and Criticism”, UNC-Chapel Hill ITS, The University of North Carolina,

2006, available at: http://its.unc.edu/teap/tap/core/caf_review.pdf, last visited: May

2008

 81

[16] Kristian Ellebæk Kjær , “A Survey of Context-Aware Middleware”, Proceedings

of the 25th conference on IASTED International Multi-Conference: Software

Engineering, Innsbruck, Austria, 2007, pp. 148-155, available at:

http://delivery.acm.org/10.1145/1340000/1332069/p148-

kjar.pdf?key1=1332069&key2=3382834121&coll=&dl=&CFID=34049128&CFTOK

EN=45233244, last visited: June 2008

[17] Julien Pauty, Davy Preuveneers, Peter Rigole, Yolande Berbers, “Research

Challenges in Mobile and Context-Aware Service Deevelopment”, Future Research

Challenges for Software and Services Conference, pp.141-148, Vienna, Austria, 2006

available at: http://www.loms-itea.org/publications/frcss06.pdf, last visited: June 2008

[18] M. Satyanarayanan, “Pervasive Computing: Vision and Challenges”, Personal

Communications, IEEE Wireless Communications, Volume: 8, Issue: 4, Aug 2001,

pp. 10-17, available at: http://www.cs.cmu.edu/~aura/docdir/pcs01.pdf, last visited:

June 2008

[19] Christoph Endres, Andreas Butz, Asa MacWilliams, “A Survey of Software

Infrastructures and Frameworks for Ubiquitous Computing”, Mobile Information

Systems Journal, 1(1), Jan-March 2005, pp. 41-80, available at:

http://www.medien.ifi.lmu.de/pubdb/publications/pub/butz2005ubicompsurvey/butz2

005ubicompsurvey.pdf, last visited: May 2008

[20] Alan Newberger, Anind Dey, “Designer Support for Context Monitoring and

Control”, Technical Report IRB-TR-03-017, Intel Research, Berkeley, June 2003,

available at: http://www.intel-

research.net/Publications/Berkeley/070920031122_141.pdf, last visited: May 2008

[21] Anind K. Dey, Gregory D. Abowd, Daniel Salber, “A Conceptual Framework

and a Toolkit for Supporting the rapid Prototyping of Context-Aware Applications”,

Human-Computer Interaction Journal, Vol. 16 (2-4), 2001, pp. 97-166, available at:

http://citeseer.ist.psu.edu/cache/papers/cs/32861/http:zSzzSzwww.cc.gatech.eduzSzfc

ezSzctkzSzpubszSzHCIJ16.pdf/dey01conceptual.pdf , last visited: May 2008

[22] Anind K. Dey, Daniel Salber, Gregory D. Abowd, Masayasu Futakawa, “An

Architecture to Support Context-Aware Applications”, GVU Technical Report, GIT-

GVU-99-23, Georgia Institute of Technology, June 1999, available at:

ftp://ftp.gvu.gatech.edu/pub/gvu/tr/1999/99-23.pdf , last visited: May 2008

[23] Context Toolkit - Tutorial, available at:

http://contexttoolkit.sourceforge.net/documentation/tutorial/, last visited: May 2008

[24] Adrian K. Clear, Stephen Knox, Juan Ye, Lorcan Coyle, Simon Dobson, Paddy

Nixon, ”Integrating Multiple Contexts and Ontologies in a Pervasive Computing

Framework”, in Contexts and Ontologies: Theory, Practice and Applications, Riva

Del Garda, Italy, August 2006, pp. 20–25, available at:

http://www.cs.ucd.ie/UserFiles/publications/1148314115874.pdf, last visited: May

2008

 82

[25] Wikipedia - XML, available at: http://en.wikipedia.org/wiki/XML, last visited:

May 2008

[26] Thomas Buchholz, Axel Kupper, Michael Schiffers, “Quality of Context : What

It Is And Why We Need It”, In Proceedings of the Workshop of the HP Open View

University Association 2003 (HPOVUA 2003), Geneva, July 2003, available at :

http://media.cs.tsinghua.edu.cn/~qinwj/readings/paper/buchholz-hpovua03.pdf, last

visited : May 2008

[27] Tobias Zimmer, “QoC : Quality of Context - Improving the Performance of

Context-Aware Applications”, Adjunced Proceedings of Pervasive 2006, September

2006, available at : http://www.pervasive2006.org/ap/pervasive2006_adjunct_4E.pdf,

last visited : May 2008

[28] Kamran Sheikh, Maarten Wegdam, Marten van Sinderen, “Middleware Support

for quality of Context in Pervasive Context-Aware Systems”, Proceedings of the Fifth

IEEE International Conference on Pervasive Computing and Communications

Workshops, 2007, pp 461-466 , available at:

http://portal.acm.org/citation.cfm?id=1263543.1263826&coll=&dl=ACM, last

visited: June 2008

[29] Michael Krause, Iris Hochstatter, “Challenges in Modelling and Using Quality of

Context (QoC)”, Mobility Aware Technologies and Applications, 2005, pp. 324-333,

available at: http://www.springerlink.com/content/f72510g13705x3t1/fulltext.pdf, last

visited: June 2008

[30] Giovanni Cortese, Massimiliano Lunghi, Fabrizio Davide, “Context-Awareness

for Physical Service Environment”, Ambient Intelligence: The Evolution of

Technology, Communication and Cognition Towards the Future of Human-Computer

Interaction , 2005, pp. 71-97, available at :

http://books.google.com/books?id=sACug4nZDmUC&printsec=frontcover&dq=Giov

anni+Cortese,+Massimiliano+Lunghi,+Fabrizio+Davide,+%C2%A8Context-

Awareness+for+Physical+Service+Environment%C2%A8,+&lr=&source=gbs_summ

ary_r&cad=0, last visited : May 2008

[31] Tao Gu, Hung Keng Pung, Da Qing Zhang, “A Service-Oriented Middleware for

Building Context-Aware Services”, Journal of Network and Computer Applications,

Volume 28, Issue 1, January 2005, pp.1 – 18, available at: http://www1.i2r.a-

star.edu.sg/~tgu/gutao/paper/SOCAM_gutao.pdf, last visited: June 2008

[32] Wikipedia – Web service, available at:

http://en.wikipedia.org/wiki/Web_services, last visited: June 2008

[33] Wikipedia-UDDI, available at: http://en.wikipedia.org/wiki/UDDI, last visited:

June 2008

[34] Petteri Nurmi, Patrik Floréen, “Reasoning in Context-Aware Systems”, 2004,

available at : http://www.cs.helsinki.fi/u/ptnurmi/papers/positionpaper.pdf, last

visited : June 2008

 83

[35] Reinforcement Learning e-Book, available at:

http://www.cs.ualberta.ca/%7Esutton/book/ebook/node7.html, last visited: June 2008

[36] Giuseppe Riva, “Ambient Intelligence in Health Care”, Cyberpsychology &

Behaviour, Volume 6, Number 3, 2003, pp. 295-300, available at:

http://labstudenti.unicatt.it/doo/autori/Username%20n.%2007/p295_s.pdf, last visited:

June 2008

[37] Sauli Tiitta, “Identifying elderly people´s needs for communication and

mobility”, Proc. Include, Helen Hamlyn Research Centre. London, England, March

2003, pp. 266-271, available at:

http://www.hiit.fi/~tiitta/articles/Identifying_elderly_peoples_needs_for_communicati

on_and_mobility.pdf, last visited: May 2008

[38] Oxford University: “Injuries of Aging Person’s Report”, 2008, available at:

http://www.jr2.ox.ac.uk/bandolier/band25/b52-2.html, last visited: May 2008

[39] I. Korhonen, J. Parkka, M. Van Gils, “Health Monitoring in the Home of the

Future. Infrastructure and Usage Models for Wearable Sensors”; Engineering in

Medicine and Biology Magazine, IEEE Volume 22, Issue 3, May-June 2003, pp. 66 -

73, available at: http://ieeexplore.ieee.org/iel5/51/27287/01213628.pdf, last visited:

June 2008

[40] Jonghwa Choi, Dongkyoo Shinn, Dongil Shin, “Research and Implementation of

the Context-Aware Middleware for Controlling Home Appliances”, IEEE

Transactions on Consumer Electronics, Volume 51, Issue 1, Feb 2005, pp. 301 - 306,

available at:

http://ieeexplore.ieee.org/iel5/30/30482/01405736.pdf?arnumber=1405736, last

visited: June 2008

[41] Seungho Baek, Hyunjeong Lee, Shinyoung Lim, Laedoo Huh, “Managing

Mechanism for Service Compatibility and Interaction in Context-aware Ubiquitous

Home”, IEEE Transactions on Consumer Electronics, Volume 51, Issue 2, May 2005,

pp. 524 - 528, available at:

http://ieeexplore.ieee.org/iel5/30/31480/01467996.pdf?arnumber=1467996, last

visited: June 2008

[42] Seung-Ho Baek, Eun-Chang Choi, Jae-Doo Huh, ¨Design of Information

Management Model for Sensor Based Context-Aware Service in Ubiquitous Home¨,

International Conference on Convergence Information Technology 2007, Gyeongju,

Republic of Korea, Nov. 2007, pp. 1040-1047, available at:

http://www.ieeexplore.ieee.org/iel5/4420216/4420217/04420396.pdf?tp=&isnumber=

4420217&arnumber=4420396, last visited: June 2008

[43] Hyunjeong Lee, Jongwon Kim, Jaedoo Huh, “Context-Aware Based Mobile

Service for Ubiquitous Home”, The 8th International Conference Advanced

Communication Technology 2006, Volume 3, Korea, Feb. 2006, available at :

http://ieeexplore.ieee.org/iel5/10826/34122/01625957.pdf?isnumber=34122&prod=C

 84

NF&arnumber=1625957&arSt=+4+pp.&ared=&arAuthor=Hyunjeong+Lee%3B+Jong

won+Kim%3B+Jaedoo+Huh, last visited: June 2008

[44] Dong-Oh Kang, Hyung-Jik Lee, Eun-Jung Ko, Kyuchang Kang, Jeunwoo Lee,

“A Wearable Context Aware System for Ubiquitous Healthcare”, Proceedings of the

28th IEEE, EMBS Annual International Conference, New York, USA, Aug-Sep 2008,

pp.5192-5195, available at:

http://ieeexplore.ieee.org/iel5/4028925/4030573/04398624.pdf, last visited: June 2008

[45] Dong-oh Kang, Kyuchang Kang, Hyung-jik Lee, Eun-jung Ko, Jeunwoo Lee, “A

Systematic Design Tool of Context Aware System for Ubiquitous Healthcare Service

in a Smart Home”, Future generation communication and networking (fgcn 2007),

Volume: 2, Dec. 2007, pp. 49-54, available at:

http://ieeexplore.ieee.org/iel5/4426076/4426188/04426202.pdf?isnumber=4426188&

prod=CNF&arnumber=4426202&arSt=49&ared=54&arAuthor=Kang%2C+Dong-

oh%3B+Kang%2C+Kyuchang%3B+Lee%2C+Hyung-jik%3B+Ko%2C+Eun-

jung%3B+Lee%2C+Jeunwoo, last visited: June 2008

[46] Barbara T. Korel, Simon G.M. Koo, “Addressing Context Awareness Techniques

in Body Sensor Networks”, 21st International Conference on Advanced Information

Networking and Applications Workshops 2007, Volume 2, Niagara Falls, Canada,

May 2007, pp.798 - 803, available at:

http://ieeexplore.ieee.org/iel5/4221005/4224052/04224203.pdf?arnumber=4224203,

last visited: June 2008

[47] Ilkka Korhonen, Paula Paavilainen, Antti Särelä, “Application of Ubiquitous

Computing Technologies for Support of Independent Living of the Elderly in Real

Life Settings”, Proc. UbiHealth 2003: 2nd Int'l Workshop Ubiquitous Computing for

Pervasive Healthcare Applications, Seattle, Washington, October 2003, available at:

http://www.healthcare.pervasive.dk/ubicomp2003/papers/Final_Papers/2.pdf, last

visited: June 2008

[48] Sumi Helal Carlos Giraldo,Youssef Kaddoura,Choonhwa Lee, Hicham El

Zabadani, William Mann, “Smart Phone Based Cognitive Assistant”, Proc. UbiHealth

2003: 2nd Int'l Workshop Ubiquitous Computing for Pervasive Healthcare

Applications, Seattle, Washington, October 2003, available at:

http://www.healthcare.pervasive.dk/ubicomp2003/papers/Final_Papers/14.pdf, last

visited: June 2008

[49] Anand Agarawala, Saul Greenberg, Geoffrey Ho, “The Context-Aware Pill Bottle

and Medication Monitor”, In Video Proceedings and Proceedings Supplement of the

UBICOMP 2004 Conference, Nottingham, England, September 2004, 4 minute video

and 2-page summary, available at:

http://grouplab.cpsc.ucalgary.ca/grouplab/uploads/Publications/Publications/2004-

Pillbottle.UBICOMP.pdf, last visited: June 2008

[50] Ken Fishkin, Min Wang, “A Flexible, Low-Overhead Ubiquitous System for

Medication Monitoring”, Intel Research Seattle Technical Memo IRS-TR-03-011,

October 2003, available at:

 85

http://informationmediary.com/media/pdf/IntelSystemForMedicationMonitoring.pdf,

last visited: June 2008

[51] Nathalie Bricon-Souf, Conrad R. Newman, ”Context Awareness in Health Care:

A Review”, International Journal of medical informatics 76, 2007, pp. 2-12, available

at : http://www2.chi.unsw.edu.au/pubs/souf_newman_07.pdf, last visited : June 2008

[52] Jakob E. Bardram, “Hospitals of the Future- Ubiquitous Computing support for

Medical Work in Hospitals”, In Proceedings of UbiHealth, Workshop on Ubiquitous

Computing for Pervasive Healthcare Applications, Seattle, Washington, October 2003,

available at :

http://www.healthcare.pervasive.dk/ubicomp2003/papers/Final_Papers/13.pdf, last

visited : June 2008

[53] Alive Technologies – Alive Heart Monitor Specification, available at:

http://www.alivetec.com/products.htm, last visited: June 2008

[54] Crossbow Home Page - MICAz 2.4GHz specification, available at:

http://www.xbow.com/Products/productdetails.aspx?sid=164, last visited: June 2008

[55] Crossbow Home Page - MDA Data Acquisition Boards, available at:

http://www.xbow.com/Products/productdetails.aspx?sid=178, last visited: June 2008

[56] Wireless Dynamics Inc – SdiD 1010 Specification, available at:

http://www.wdi.ca/docs/SW06-0007-DS%20-%20SDiD%201010.pdf, last visited:

June 2008

	Title Page
	Problem Description
	Microsoft Word - Master thesis report FINAL -without title page.doc

