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ABSTRACT
Degeneracies of the slowness surfaces of shear (and compressional) waves in low-
symmetry anisotropic media (such as orthorhombic), known as point singularities,
pose difficulties during modelling and inversion, but can be potentially used in the
latter as model parameter constraints. I analyse the quantity and spatial arrangement
of point singularities in orthorhombic media, as well as their relation to the overall
strength of velocity anisotropy. A classification scheme based on the number and spa-
tial distribution of singularity directions is proposed. In normal orthorhombic models
(where the principal shear moduli are smaller than the principal compressional mod-
uli), point singularities can only be arranged in three distinct patterns, and media
with the theoretical minimum (0) and maximum (16) number of singularities are
not possible. In orthorhombic models resulting from embedding vertical fractures in
transversely isotropic background, only two singularity distributions are possible, in
contrast to what was previously thought. Although the total number of singularities is
independent of the overall anisotropy strength, for general (non-normal) orthorhom-
bic models, different spatial distributions of singularities become more probable with
increasing magnitude of anisotropy.
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1 INTRODUCTI ON

Seismic wave propagation in anisotropic media is charac-
terized by many interesting and challenging features, among
which are so-called singularity directions (also degeneracies,
acoustic axes)—points in the phase space where the slow-
ness surfaces of two or more wave modes come in con-
tact. Three types of singularities exist in anisotropic media
of different symmetry: tangential (‘kiss’) and line (intersec-
tion) singularities are mostly encountered in hexagonal (trans-
versely isotropic) systems, and conical (or point) singularities
are often present in lower symmetry (orthorhombic, mono-
clinic, and triclinic) systems (Crampin 1991). Although all
types of singularities pose certain challenges in seismic mod-
elling (Vavryčuk 2001; Grechka 2017), only conical points
have significant influence on the geometrical structure of the
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wavefronts and on the polarization in their vicinities (Mus-
grave 1985; Vavryčuk 2003a; Grechka 2015).

Due to increasing interest in microseismic monitoring,
in which a recorded wavefield from small-scale earthquakes
contains direct shear waves of high energy, and the medium
symmetry is often lower than hexagonal (e.g. orthorhombic
or monoclinic as that of fractured shale), the conical singular-
ities have to be treated with care in both modelling and inver-
sion (Grechka and Yaskevich 2014; Grechka 2015). On the
other hand, they can potentially be used to constrain model
parameters in inversion (Vavryčuk 2013). The goals of the
present work are to study (a) the conditions of occurrence of
conical singularities in orthorhombic (ORT) media, (b) their
spatial distribution, (c) potential dependence of their number
and arrangement on the anisotropy strength and (d) to pro-
vide relevant numerical examples that illustrate the theoretical
findings. This paper is an extended and corrected version of
Ivanov and Stovas (2018).

1C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction
in any medium, provided the original work is properly cited.



2 Y. Ivanov

In the text below, I alternate between common four-index
notation and two-index Voigt notation for the components of
the stiffness tensor. I use lower case indices to describe the
former and capital indices for the latter, and no summation
over repeated indices is assumed.

2 T HEORY

In orthorhombic media, the singularity directions form a pat-
tern that is symmetric about the coordinate planes, and, tak-
ing into account the symmetry about the origin, the maxi-
mum allowed number of real-valued singularity directions is
16 (Musgrave 1985; Ivanov and Stovas 2017). In fact, that
is also the maximum number for any symmetry lower than
orthorhombic (Khatkevich 1977; Vavryčuk 2005; Grechka
2015). Theoretically, there also exist orthorhombic models
with no singularity directions (Alshits and Lothe 1979). Phys-
ical experiments, however, have not identified any real mate-
rials with such properties.

Studying the condition of multiple eigenvalues of the
Christoffel tensor, Boulanger and Hayes (1998) present equa-
tions needed to calculate all singularity directions in an or-
thorhombic medium. I rewrite their equations using the in-
dex notation. In order to calculate the singularity directions
n = (n1, n2, n3) within the [xi , xj ] plane, given nk = 0, one has
to solve the following equation for either ni , nj or ni/nj :

[
n2

i (ciiii − ckiki) + n2
j (cijij − ckjkj)

]
[
n2

i (cijij − ckiki) + n2
j (cjjjj − ckjkj)

]
− n2

i n2
j (ciijj + cijij)

2 = 0, (1)

where i �= j �= k �= i . Assuming that all stiffness coefficients
are different, equation (1) results in 0, 2 or 4 real-valued sin-
gularity directions. Equal values of any two principal stiffness
coefficients (cLL = cMM in Voigt notation) result in multiple
roots of equation (1) meaning that the singularity occurs along
one of the coordinate axes.

Equation (1) is bi-quadratic in the components of n, and
the sign of its discriminant (�) determines the nature of its
roots. If � > 0, all four roots are either real valued or complex
valued. Writing this condition for the three symmetry planes,
one arrives at the following system of inequalities (in Voigt
notation):

⎧⎪⎪⎨
⎪⎪⎩

(c22 − c66)(c33 − c55)(c44 − c55)(c44 − c66) > 0,

(c33 − c44)(c11 − c66)(c55 − c66)(c55 − c44) > 0,

(c11 − c55)(c22 − c44)(c66 − c44)(c66 − c55) > 0.

(2)

It is evident upon closer inspection of equations (2) that
unless the shear stiffness moduli (cLL, L = 4, 5, 6) are larger
than the compressional moduli (cLL, L = 1, 2, 3), the system
of equations has no solutions. Hence, in orthorhombic mate-
rials with

{c11, c22, c33} > {c44, c55, c66}, (3)

the allowed number of singularity directions within the sym-
metry planes is between 2 and 12. I shall call any orthorhom-
bic medium satisfying condition 3 ‘normal’.

Let us now examine the aforementioned condition
from the geometrical standpoint. I consider an arbitrary or-
thorhombic medium whose symmetry planes are aligned with
the coordinate frame. Taking advantage of the mirror sym-
metry, I can focus on one of the octants only, say, defined
by xi > 0. In each of the three quadrants of this octant, there
can be zero, one or two intersections (i.e. singularity direc-
tions) of the phase surfaces of three wave modes as has been
discussed above. Assuming that all principal stiffness moduli
are different, and that the medium is normal, there are six
possible relations among the principal shear stiffness moduli:
c55 ≶ c66 along x1, c44 ≶ c66 along x2 and c44 ≶ c55 along x3

(two impossible cases, e.g. c55 > c44, c44 > c66, c66 > c55, are
excluded). The intersection of the coordinate planes with the
phase surfaces of the shear waves produces two smooth curves
in each plane. One of the curves corresponds to a shear wave
that has the same velocity along the coordinate axes (e.g.

√
c55

along x1 and x2) and is commonly referred to as an SV-wave
in that symmetry plane following the limited equivalence be-
tween orthorhombic and transversely isotropic (TI) media.
The other curve corresponds to the shear wave that has dif-
ferent velocities along the coordinate axes, also known as the
SH-wave in TI media. It is then impossible for these six line
segments (two smooth curves in each of the three planes) to
have an even number of intersections in the considered octant
(Fig. 1).

The out-of-plane singularity directions are obtained ex-
plicitly as

n2
k/λ = (

ciiii − β2
i − ckiki

)(
cjjjj − β2

j − ckjkj

)
+ (ckiki − cijij)(cijij − ckjkj), (4)

where

β2
i = (ciijj + cijij)(ciikk + cikik)/(cjjkk + cjkjk), (5)

and the factor λ is determined from the condition |n| = 1.
Equation (4) results in either four or zero real singularity di-
rections (one in each octant in the upper half-space x3 > 0).
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Point singularities in orthorhombic media 3

Figure 1 Six possible relations between c44, c55 and c66. The dashed and solid lines depict the intersections of shear wave phase velocity
surfaces with the coordinate planes and correspond to the SV and SH modes, respectively, if each symmetry plane is considered as a TI medium;
vLL ≡ √

cLL.

To investigate the dependence of the distribution of the
singularity directions upon the anisotropy strength, I propose
a classification of orthorhombic media based on the number of
singularity directions, as follows from equations (1). A similar,
although more general and slightly less intuitive classification
is proposed in Musgrave (1985). I define 10 classes (Table 1)
based on the number of the singularity directions within the
symmetry planes. Numbering of the symmetry planes is arbi-
trary due to their equivalence, and possible permutations of
the symmetry planes are indicated in the table. Additionally,
each class can have zero or four out-of-plane singularities.
Based on the aforementioned observations, for normal or-
thorhombic media, one of the symmetry planes must contain

just one singularity direction, thus allowing only three classes,
namely, II, V and IX, to be present.

To quantify the overall elastic anisotropy strength, I use a
recently introduced parameter known as the universal elastic
anisotropy index (Ranganathan and Ostoja-Starzewski 2008).
It accounts for both shear and bulk (compressional) contri-
butions, is uniquely defined and is invariant to rotational
transformations:

AU = 5GV/GR + KV/K R − 6, (6)

where G and K are shear and bulk moduli calculated using
the Voigt (V) and Reuss (R) averages,

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 1–11
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Table 1 Classification of orthorhombic models based on the occur-
rence of point singularities in the symmetry planes

Numbers of Singularities
in Each Plane

Class i j k
Permutation
Multiplicity

Total Number
of Singularities

I 4 + 4 + 4 1 12 (16)
II 2 + 4 + 4 3 10 (14)
III 2 + 2 + 4 3 8 (12)
IV 0 + 4 + 4 3 8 (12)
V 0 + 2 + 4 6 6 (10)
VI 2 + 2 + 2 1 6 (10)
VII 0 + 0 + 4 3 4 (8)
VIII 0 + 2 + 2 3 4 (8)
IX 0 + 0 + 2 3 2 (6)
X 0 + 0 + 0 1 0 (4)

The indices i , j and k in the second column indicate different symmetry planes.
The number of possible permutations for a given distribution is specified in
the third column. Each class can have zero or four out-of-plane singularity
directions, as specified in the parentheses.

9KV = c11 + c22 + c33 + 2(c12 + c23 + c31),

K R = [
s11 + s22 + s33 + 2(s12 + s23 + s31]

)−1
,

15GV = c11 + c22 + c33 − (c12 + c23 + c31) + 3(c44 + c55 + c66),

1
15

GR = [
4(s11 + s22 + s33) − 4(s12 + s23 + s31)

+ 3(s44 + s55 + s66)
]−1 ; (7)

s = c−1 is the compliance matrix in Voigt notation. In the
isotropic limit, AU = 0.

Multiple roots of equation (1) and ‘kiss’ singularities.

If velocities of any two waves along any symmetry axis be-
come equal, the degeneracy known as the ‘kiss’ singularity
(Crampin 1981; Vavryčuk 1999) occurs (same as the on-axis
singularity in TI media). At this point, the slowness sheets
touch tangentially and do not exhibit the anomalous curva-
ture observed in the vicinity of a conical point. Let us investi-
gate the case when the shear stiffness moduli are equal along
xi -axis, assuming that the orthorhombic medium is normal.
Then cijij = cikik, and equation (1) written for the two symme-
try planes that contain axis xi simplifies to

n2
j

[
n2

i (ciiii − cijij)(cjjjj − ckjkj) + n2
j (cijij − ckjkj)(cjjjj − ckjkj)

− n2
i (ciijj + cijij)

2] = 0. (8)

Equation (8) has a double root that corresponds to the on-axis
singularity (ni = 1, nj = nk = 0). Solving it for nj , one arrives
at

n2
j = (ciijj + cijij)

2 − (
cjjjj − ckjkj

)(
ciiii − cijij

)
(
cjjjj − ckjkj

)(
cijij − ckjkj

) n2
i . (9)

Since the denominator on the right-hand side of equation (9)
is positive in a normal medium, the condition that the real
singularity directions exist in the symmetry planes adjacent
to xi -axis requires a positive numerator. Employing an idea
somewhat similar to that of the anisotropic notation of Thom-
sen (1986) and Tsvankin (1997), one can rewrite the condition
above as

1
γ j

[
v2

Pi

v2
Si

(
ε j − δ j

) − γ j

]
> 0, (10)

where vPi
= √

ciiii and vSi
= √cijij are the on-axis velocities of

the P-wave and S-wave polarized in the xj -direction, respec-
tively, and δ j , ε j , γ j are the anisotropy parameters defined in
the [xi , xj ] plane with respect to the xi axis,

δ j = (ciijj + cijij)
2 − (

ciiii − cijij

)2

2ciiii

(
ciiii − cijij

) ,

ε j = cjjjj − ciiii

2ciiii
,

γ j = ckjkj − cijij

2cijij
.

(11)

Further inspecting inequality 10, one can notice that the pa-
rameters inside the brackets are responsible for the shear-wave
normal-moveout (NMO) velocities in TI media and in the
symmetry planes of orthorhombic media. Hence, the inequal-
ity simplifies to

sgn(γ j )v
2
SVj

> sgn(γ j )v
2
SHj

, (12)

where vSVj
and vSHj

are the NMO velocities of the shear waves
in the [xi , xj ] plane defined for a reflector orthogonal to the
xi -axis,

v2
SVj

= v2
Si

[
1 + 2

v2
Pi

v2
Si

(
ε j − δ j

)]
,

v2
SHj

= v2
Si

(
1 + 2γ j

)
.

(13)

Here, following the limited equivalence between the symme-
try planes of ORT media and TI media, SV and SH notations
are used. Since the NMO velocity vn is related to the curva-
ture of the slowness surface, k (k ∝ −v2

n), condition 12 can
be written as sgn(γ j )kSVj

< sgn(γ j )kSHj
, where kSVj

and kSHj

are the curvatures of the slowness surfaces of the SV- and

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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Point singularities in orthorhombic media 5

Figure 2 Schematic illustration of the in-plane singularity when the
on-axis velocities of the shear waves are equal. The solid and dashed
lines correspond to the slowness surfaces of the SH and SV modes,
respectively. Stars mark the singularity points.

SH-waves calculated at xj = xk = 0 in the xj -direction. The
geometric interpretation of this condition then becomes clear
and intuitive: in order for the ellipse (SH-wave) and a quartic
curve (SV-wave) to have an intersection outside the xi -axis,
their curvatures have to be related accordingly. This point is
illustrated in Figure 2. Following the classification in Table 1,
and counting the on-axis singularity once in each symmetry
plane adjacent to xi , the allowed classes for normal media are
I–V and VIII.

If all on-axis shear-wave moduli are equal, equation (1)
has no solutions other than n = x, and no in-plane singulari-
ties can occur. It is also possible to encounter a ‘kiss’ singular-
ity outside the symmetry axes (Schoenberg and Helbig 1997).
The condition for this situation inside the symmetry planes
follows from equation (1) when the latter has a double root
for n2

j /n2
i and is given by the following expressions:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ciijj + cijij)
2 − ciiii(cjjjj − ckjkj) + ckiki(cjjjj + cijij − 2ckjkj)

+ cijij(ckjkj − cijij) = 0,

n2
j

n2
i

= (ciiii − ckiki)(ckiki − cijij)

(cjjjj − ckjkj)(cijij − ckjkj)
> 0.

(14)

Note that equation (4) specifies a direction along which
the phase velocities of two (or, potentially, three, see, e.g.
Musgrave (1981)) modes coincide, but does not distinguish
between the singularity types. It is possible (but highly un-
likely) to encounter a ‘kiss’ singularity outside the symmetry
planes in orthorhombic media (Crampin 1991), and the
necessary condition (for arbitrary symmetry) in terms of the
polarization vectors is given in Shuvalov (1998) and Vavryčuk
(2003b).

3 NUMERICAL EXPERIMENTS

3.1 Randomly generated orthorhombic models

Following Vavryčuk (2005), I conduct four numerical exper-
iments to study the occurrence of the shear-wave singulari-
ties in orthorhombic media and its relation to the anisotropy
strength. In the first experiment, the orthorhombic stiffness
tensor is obtained by the following perturbation:

cORT = cISO + εc̃ORT, (15)

where cISO is the isotropic stiffness tensor with the Lamé pa-
rameters λ = μ = 1 GPa, ε determines the anisotropy strength
and c̃ORT is a randomly generated orthorhombic stiffness ten-
sor, such as the probability density function of each stiffness
coefficient corresponding to a continuous uniform distribu-
tion in the interval [−3, 3] GPa, (c̃ORT)i jkl ∼ U(−3, 3). Gener-
ated stiffness tensors are tested for the thermodynamic sta-
bility. Using equations (1) and (4), all singularity directions
for the obtained model are calculated and their types (con-
ical or tangential) are determined. Based on the number of
singularities, a class is assigned to the model in accordance
with Table 1, and it is also noted if out-of-plane singularities
are present.

The total of 105 thermodynamically stable models are
generated and analysed. The resulting distribution of the or-
thorhombic models based on the number of singularities as
a function of the anisotropy strength, ε and AU , is shown
in Figure 3. The frequency of each class is normalized by
the number of all possible permutations depending on which
symmetry plane contains the singularities (the multiplicity in
Table 1). For practically realizable models that correspond to
ε < 1/3 and result in normal orthorhombic media, there exist
only three classes (Figs. 3a,b), as predicted in Section 2, and
it is almost equally probable to encounter a model with or
without out-of-plane singularities. Classes II and IX have a
multiplicity of 3, whereas class V has a multiplicity of 6. It is
difficult to relate ε and AU since the latter has a large variance
for a fixed value of ε.

The ε − AU cross-plot is shown in Figure 4, where the
maximum threshold for AU is indicated in the graph. Impor-
tantly, all models with ε < 1/3 have singularities associated
with shear waves only. Once ε becomes larger than 1/3, the
shear stiffnesses (c44, c55, c66 in Voigt notation) can become
larger than the compressional stiffnesses (c11, c22, c33). Then
all classes become present in the generated models, including
I (the maximum number of singularities) and X (no in-plane
singularities) classes. Interestingly, there are no models with
only out-of-plane singularities. For classes I, III, IV, VI–VIII

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 1–11
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(a) (b)

(d)(c)

Figure 3 Frequency distribution of the generated orthorhombic models based on the classes introduced in Table 1. The horizontal axis is the
class number (total number of the in-plane singularities is indicated in parentheses), the vertical axis is the relative frequency in percent, purple
and pink colours correspond to models with only in-plane singularities and models with in-plane and out-of-plane singularities, respectively.
The total relative count of these two groups is shown inside the legend boxes. The frequencies are normalized by the class multiplicity. The
average values of AU are displayed in the individual panels (a–d).

and X, at least one singularity is associated with the P-wave. In
all tested models, no ‘kiss’ singularities are encountered due to
the very low probability of satisfying the necessary conditions.

3.2 Variable strength of anisotropy

In the second numerical experiment, one of the randomly
generated orthorhombic stiffness matrices c̃ORT with c̃11 =
2.88, c̃22 = 2.8, c̃33 = 2.09, c̃44 = 1.9, c̃55 = 1.6, c̃66 = 0.26,

c̃23 = 1.38, c̃13 = −0.72, c̃12 = −1.47 km2 s−2 is fixed and
the orthorhombic model is obtained by varying the strength
of anisotropy in equation (15), with ε ∈ [−5000, 5000].
For each obtained model (both stable and unstable), the
out-of-plane singularity directions are calculated and plotted
on the unit sphere (Fig. 5). A similar experiment for generally
anisotropic media was performed by Vavryčuk (2005), who

obtained singularity directions that followed closed and self-
intersecting curves (comprised of the singularity directions
in stable and unstable media). In the simpler orthorhombic
case presented here, these curves form relatively complicated
self-intersecting patterns and pass through the directions
associated with the in-plane singularities. The complexity
of the pattern is model dependent, and it is possible to
encounter non-intersecting curves where the singularity
directions that correspond to stable and unstable media are
completely separated.

3.3 Anisotropy due to aligned fractures

In the third numerical experiment, the effective anisotropy
due to aligned fractures is considered. I use the linear-slip
theory (Schoenberg 1980; Schoenberg and Helbig 1997) to

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 1–11
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Figure 4 Cross-plot of ε and AU values obtained from the data in
Figure 3. Since AU has a large variance, its maximum value is limited
by a threshold indicated in the plot.

model orthorhombic media by embedding a single set (or
multiple orthogonal sets) of parallel fractures in a transversely
isotropic background or multiple orthogonal fracture sets in
an isotropic background (Bakulin, Grechka and Tsvankin
2000). The occurrence of point singularities for the con-
structed media is then studied. The effective compliance ten-
sor is obtained by adding the excess-compliance tensor due
to the fractures to the compliance tensor of the background
medium. The effective stiffness matrix of the orthorhombic
medium obtained by putting two vertical orthogonal sets of
parallel fractures into a transversely isotropic background has
the form:

ce =
[

c1 0
0 c2

]
, (16)

with

c1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11b

(
1 − δ

(1)
N

) (
c2

11b − c2
12bδ

(2)
N

)
c2

11b − c2
12bδ

(1)
N δ

(2)
N

c12b

c2
11b

(
1 − δ

(1)
N

) (
1 − δ

(2)
N

)
c2

11b − c2
12bδ

(1)
N δ

(2)
N

c13b

c11b

(
1 − δ

(1)
N

) (
c11b − c12bδ

(2)
N

)
c2

11b − c2
12bδ

(1)
N δ

(2)
N

c12b

c2
11b

(
1 − δ

(1)
N

) (
1 − δ

(2)
N

)
c2

11b − c2
12bδ

(1)
N δ

(2)
N

c11b

(
c2

11b − c2
12bδ

(1)
N

) (
1 − δ

(2)
N

)
c2

11b − c2
12bδ

(1)
N δ

(2)
N

c13b

c11b

(
c11b − c12bδ

(1)
N

) (
1 − δ

(2)
N

)
c2

11b − c2
12bδ

(1)
N δ

(2)
N

c13b

c11b

(
1 − δ

(1)
N

) (
c11b − c12bδ

(2)
N

)
c2

11b − c2
12bδ

(1)
N δ

(2)
N

c13b

c11b

(
c11b − c12bδ

(1)
N

) (
1 − δ

(2)
N

)
c2

11b − c2
12bδ

(1)
N δ

(2)
N

c33bc2
11b − c11bc2

13b

(
δ

(1)
N + δ

(2)
N

)
+ c12b

(
2c2

13b − c12bc33b

)
δ

(1)
N δ

(2)
N

c2
11b − c2

12bδ
(1)
N δ

(2)
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

and

c2 =

⎡
⎢⎢⎣

c44b(1 − δ
(2)
V ) 0 0

0 c44b(1 − δ
(1)
V ) 0

0 0 c66b(1−δ
(1)
H )(1−δ

(2)
H )

1−δ
(1)
H δ

(2)
H

⎤
⎥⎥⎦ , (18)

where ci jb are the stiffness elements of the transversely-
isotropic background medium with a vertical symmetry axis

Figure 5 Out-of-plane singularity directions for different values of
the coefficient ε, calculated in stable (red) and unstable (blue) media.
The orthorhombic symmetry planes are displayed.

(VTI) (c12b = c11b − 2c66b), and δ
(m)
d are the normal (d = N),

vertical (d = V) and horizontal (d = H) weaknesses of the
m = 1, 2 fracture set. In the isotropic limit, the background
stiffness moduli are related as c11b = c33b, c66b = c44b and
c13b = c12b. The values of the background VTI stiffnesses
correspond to a shale and are taken from Schoenberg and
Helbig (1997): c11 = 10, c33b = 6, c44b = 2, c66b = 3 and
c13b = 2.5 km2 s−2. The fracture weaknesses are generated
randomly [δ(m)

d ∼ U(0, 1)], and only stable and normal result-
ing orthorhombic media are considered. Four cases are anal-
ysed: (a) the background is VTI and two fracture sets have
different weaknesses, (b) only one fracture set is embedded in
the VTI background, (c) two fracture sets are embedded in
the isotropic background and (d) two rotationally invariant

(δ(m)
V = δ

(m)
H ) fracture sets are embedded in the isotropic back-

ground. In each case, 105 samples are generated and anal-
ysed. The resulting distributions are displayed in Figure 6.
When two non-circular fracture sets are present (Figs. 6a,c),
three possible classes (II, V and IX) of orthorhombic media
are observable as in the case of randomly generated media
(Section 3.1). However, one can note that the distribution
pattern is drastically different: there are approximately twice

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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(a) (b)

(d)(c)

Figure 6 Similar to Figure 3 but for randomly generated fractured orthorhombic models.

as many models with out-of-plane singularities, and most of
the generated media fall into class V (six in-plane singulari-
ties), even after correcting for the multiplicity due to mirror
symmetry. When only one fracture set in the VTI background
is present (Fig. 6b) or both fracture sets in the isotropic back-
ground are rotationally invariant (Fig. 6d), there are no models
that belong to class II.

Schoenberg and Helbig (1997) provide a detailed discus-
sion on the number and distribution of singularity directions
in orthorhombic models with a single set of fractures in VTI
background. The authors state that there is a maximum num-
ber of 14 degenerate points (class II in the present classifica-
tion). The numerical observations discussed above, however,
do not support this conclusion. Interestingly, the probability
to encounter an out-of-plane singularity in class IX in the case
of two sets of circular fractures in isotropic background is
much lower than in any other case or class. As in the experi-
ment in Section 3.1, no ‘kiss’ singularities are encountered in
any of the tested models.

3.4 Samples from materials database

In the final numerical example, I apply the developed classifi-
cation methodology to materials reported in Jong et al. (2015).

Figure 7 Similar to Figure 3 but for orthorhombic models taken from
the materials database (Jong et al. 2015).

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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Figure 8 Slowness (top row) and group-velocity (bottom row) surfaces of P (left), S1 (middle) and S2 (right) wave modes in an orthorhombic
medium with zero (theoretical minimum) singularity directions. The surfaces are not scaled.

Figure 9 Same as in Figure 8 but in an orthorhombic medium with theoretical maximum (16) number of singularity directions.

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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The database contains the elastic tensors of inorganic com-
pounds taken from the Materials Project (an online database
of inorganic compounds; see Jain et al. 2013). Out of the 1181
materials, I select 193 samples with orthorhombic symmetry.
The resulting distribution based on the number of singularities
is shown in Figure 7. Only one material, germanium selenide
(GeSe), falls into class I, and two materials in class III are
found, yttrium aluminium (YAl) and tellurium oxide (TeO2).
Although this database is of little interest in exploration seis-
mology, it is nevertheless important to understand what type
of singularity pattern one might expect.

3.5 Examples of phase and group surfaces

As a final remark, I would like to illustrate the peculiar be-
haviour and complexity of the slowness and group-velocity
surfaces in some of the orthorhombic media encountered in
numerical experiments. Many scholars note the complicated
shape of these surfaces in the vicinity of singularity points
in orthorhombic and lower-symmetry media (Crampin 1991;
Brown et al. 1993; Grechka and Obolentseva 1993; Vavryčuk
2005; Grechka 2015, 2017; Ivanov and Stovas 2017). Con-
ical points and anomalous curvatures of the slowness sheets
associated with them cause multi-valued wave fronts, caustics
and strongly non-linear and rapidly varying particle motion
(polarization) directions. Two realizations of orthorhombic
media from the first experiment that belong to classes I and
X and contain the maximum (16) and minimum (0) number
of singularity directions, respectively, are chosen somewhat
arbitrarily. The phase and group surfaces of all wave modes
in these media are displayed in Figures 8 and 9, respectively.
One can see that the corresponding surfaces are highly com-
plex. However, I should note that neither of these two cases
has been observed.

4 C ONCLUSIONS

I analysed the conditions that govern the occurrence of sin-
gularity directions in orthorhombic media. The relationship
between the anisotropy strength and the number and distribu-
tion of conical singularities in orthorhombic media is studied.
It is demonstrated theoretically and confirmed numerically
that for models in which the principal compressional stiff-
nesses are larger than the shear stiffnesses (referred to as nor-

mal orthorhombic media), the singularities can be distributed
in only three different patterns (classes II, V and IX), and all
singularities are associated with the shear waves only. The dis-
tribution of singularity directions between the classes in nor-

mal orthorhombic media does not depend on the anisotropy
strength due to a limited number of possible relations be-
tween the stiffness moduli. If both normal and non-normal

orthorhombic models are considered, all possible singular-
ity patterns are present, and the stronger the anisotropy, the
more uniform is the distribution of models among the classes.
However, the singularity directions are not restricted to the
shear phase surfaces only. No relation is observed between the
anisotropy strength and the total number of the singularity di-
rections. The probability to encounter out-of-plane singulari-
ties is close to 50% regardless of the anisotropy strength. Tan-
gential (‘kiss’) singularities can only be encountered in special
cases, and neither in-plane nor out-of-plane ‘kiss’ singularities
have been identified in the analysed models. By varying the
anisotropy strength, it was shown that the out-of-plane singu-
larities follow closed, potentially intersecting trajectories and
pass through the symmetry planes (merging with the in-plane
singularities).

In normal orthorhombic media obtained using the linear-
slip theory, all possible (II, V, IX) classes of singularity dis-
tributions are present only if two orthogonal sets of parallel
fractures are embedded in a VTI or isotropic background. If
either one set of fractures in a VTI medium or two sets of
circular fractures in a purely isotropic background are consid-
ered, orthorhombic models of only two classes are observed
(in contrast to previously published conclusions of Schoenberg
and Helbig 1997).

The above results can potentially be used to constrain
model parameters in the inversion of laboratory, microseismic
and surface seismic data, provided that shear-wave singulari-
ties can be observed.
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