@ NTNU

Norwegian University of
Science and Technology

Towards Modeling of Data in UML
Activities with the SPACE Method

An Example-Driven Discussion

Nina Heitmann

Master of Science in Communication Technology
Submission date: June 2008

Supervisor: Peter Herrmann, ITEM
Co-supervisor: Frank Alexander Kraemer, ITEM

Norwegian University of Science and Technology
Department of Telematics

Problem Description

The SPACE Method is dedicated to model reactive systems with an emphasis on collaborative
building blocks that are expressed as UML activities. Currently, focus lies on the description of
control flows that do not carry any data. For the development of real systems, however, it is
necessary to also describe how data is transfered between components. While UML provides
several elements for activities to express data, it is not clear how these elements should be used
within the SPACE method and which trade-offs have to be made when introducing detailed data
handling.

In this thesis, the requirements for data handling should be studied based on a specification of the
card game UNO. It should be described how typical situations with regards to data should be
solved and how Arctis, the tool supporting SPACE, can be extended to handle these situations.

Assignment given: 14. January 2008
Supervisor: Peter Herrmann, ITEM

Abstract

The focus of this work is the rapid engineering method SPACE, developed
at NTNU. In this method, services are modeled using UML 2.0 collabora-
tions and activities, and from these executable code can be generated. Ser-
vices can be composed from other services and building blocks. Until re-
cently, SPACE has only focused on control flow. We have extended SPACE
by introducing data flow modeling into SPACE activities. This raises some
important questions, for example, how data between building blocks may
be shared. We discuss a number of possible solutions. Our work is driven
by the UNO card game as an example application. The structure and be-
havior of the UNO card game is analyzed and discussed, highlighting and
exemplifying the aspects discussed in this work.

Preface

This master thesis is the final part of a Master of Science degree from the
Department of Telematics (ITEM) at the Norwegian University of Science
and Technology (NTNU).

I would like to use this opportunity to thank my supervisor Frank Alexan-
der Kraemer for always being available for assistance. His help and guid-
ance has been central in this work. I would also like to thank Professor
Peter Herrmann, who is academically responsible, for valuable input.

Lastly, I would like to thank Stein Magnus Jodal for proofreading my work.

Trondheim, June 26, 2008

Nina Heitmann

iii

Contents

(I Introduction| 1
(1.1 _Contribution| 2
M2 Outling 2

2 Background| 5
............................... 5

211 ArctisandRamses 6

22 UMIL 7
.21 Collaborations| 7
222 Activities|. oo 9

14

2.3.1 Multi-Session Collaborations 14
2.3.2 Waiting Decision Nodes| 15

2.4 Current integration of Data in SPACE and Arctis| 16
25 UNO 17
25.1 Objectof the game| 17
2.5.2 Startingthegame|. 17
053 Playing the gamelo oot 18
R54 Actioncards 20
55 Jump-inRule oo oo 21
2.5.6 Special properties of the mobile version| 22

[3 Specification of UNO — Part 1: Object and Collaboration Struc- |

[ture] 23
.1 Requirements Capture 23

3.1.1 StartingtheGame| 23
3.1.2 PlayingtheGame|. 24
3.1.3 WinningtheGame| 25
.................... 25

B.3 Object Attributes| 27

Vi

CONTENTS

[3.4 Collaborationanalysis| 30

@ Introducing Data into SPACE| 35
M1 Tnput and Output Parameters to Actions. 35
42 Setting and reading variables| 36

43 Several ObjectsinSame Flow] 37
.4 Transforming Types between Object Nodes| 38
4.5 Output Pins for Accept Signal Action] 39
.6 Input Pins for Send Signal Actions] 40
4.7 Fork Node with both Object and Control Flow| 40
4.8 Decision Nodes| 42

[5 Specification Guidelines| 45
.1 Active and Passive Objects|. 45
.2 Modeling Tssues in Regard to Variable Access and Clearness| 46
b.2.1 Alternative 1: Shared data between Building Blocks| . ~ 49

b.2.2 Alternative 2: A Flat Specification| 51

p.2.3 Alternative 3: More Comprehensive Call Operation |

[Actionsl. 52
[5.2.4 Alternative 4: Providing Variables as Input Parame- |

| ters to Building Blocks| 55
b.2.5 Alternative 5: Typed Collaboration Roleg| 56

£.2.6 Discussion|. 61

b27 Conclusionl L. 62

[6 Specification of UNO — Part 2: Behavior| 65
6.1 System View|. 65

6.2 Collaboration Sefup| 67
63 Collaboration PIVING| . . « v v oo e e e oo 70
.31 Collaboration Make Movel 72

(0.3.2 Collaboration Game Updates| 74
6.3.3__Collaboration Draw Card 75

0.3.4 Collaboration Color Dualog| 76

6.35 Collaboration Turn Pilel. 77

6.3.6 Building Block Player Input| 77

6.3.7 Building Block Validate Move]. 80

ionEnd 81

[6.5 Simplifications|. o 0oL oL 82
[Z__Discussionl 85
nclusions and Future Wor 87

81 Conclusions oL 87
82 Futureworkl o oL 87

CONTENTS

Bibliograp

Yl

vii

89

List of Figures

21 SPACE
2.2 Sketch of SPACE and its tool support].

23 Collaborationdrawcardl o v v v v e

24 Collaboration Playing with collaboration use draw card]. . .
R5 "Activity Draw Card|

2.7 Special action notations|. L.
2.8 Collaboration with activity parameter nodes|
2.9 Example of action with an outputpin|

211 Objectflow|.
.12 Exampleuseofselect]
2.13 EBEN for select and exists]

B.1 OSystemview| L
B.2 System view with controller unit|
B.3 System view with the controller included in the discard pile]
B.4 System collaboration|
B.5 Setup collaboration],

E.6 The Elazing collaboratiog|

4.1 Sum action and corresponding Java code|
K2 _AddVariableValueAction notation|
4.3 ReadVariableAction notation|
...............................
4.5 Mergeaction|.

ix

O 0 0 NI O

LIST OF FIGURES

U6 Moveclass| oL 38
“.7 Transtormationnotationin UML) 39
4.8 Transformation notation in Arctisl 39
4.9 Alternative methods for extracting info from received signall 40
4.10 Send signal action with inputpin| 40
4.11 Screenshot of the DrawCard service designed in Arctis| 41
4.12 Examples of valid and invalid fork nodes| 42
4.13 Example of decision node with object flow] 43
414 Simplecounter]. 43
p.1 Simplified Playing activity in Arctis| 47
b.2 Building block Validate Move in Arctis|. 49
b.3 Screenshot of playing activity with building blocks|. 50
b.4 Solution with flat specification] 51
b.5 Screenshot of call operations actions] 53
p.6 Building block with variables provided as input parameters| 55
b.7 Building block Validate Move| 56
5.8 _Collaboration Make Movel 56
.9 Activity diagram for collaboration Make Move| 57
p.10 Interface implementation|. 58
b.11 Activity diagram for collaboration Playing| 58
.12 Multiple interface implementation| 59
.13 System activity using alternative 5 60
b.14 Inheritance of building block] 61
6.1 OSystemactivity] o 66
6.2 ActivitySetup| 68
0.3 Activity Distribute Players| 69
6.4 Activity Select Top Card) 69
6.5 Activity Select Turn| 69
6.6 Activity Deal] 70
6.7 Playingactivity] 71
6.8 Collaboration Make Movd oo oo it 72
6.9 ESM Make Move, Player partition| 73
6.10 ESM Make Move, Discard Pile partition| 73
6.11 Activity Game Updates|. 74
0.12 Activity diagramdrawcard| 75
0.13 Building block Counter| 76
0.14 Activity Color Dialog| 76
6.15 Activity Turn Pile] 77
6.16 Activity Player Input| 78
6.17 Input blocks used in the Player Input building block| 79
6.18 Building block Validate Move| 80
619 Activity End| 81

LIST OF FIGURES

2 -coll

ration

f th,

E

11

xi

xii

LIST OF FIGURES

Chapter

Introduction

Developing advanced telecommunication services can be a difficult and
time consuming task. At the same time, rapid provisioning of services is
important to meet customer demands. We want it to be easier for a designer
to develop advanced and high quality services in shorter time.

The quality of a telecommunication system is to a large extent deter-
mined by its behavior. But behavior is difficult to describe due to its dy-
namic and transient nature. A reason for this may be a problem in ser-
vice engineering known as the cross-cutting nature of services. This means
that a service involves several objects, but the behavior is described object
for object, for example using state machines. Getting a grasp of the com-
plete behavior of the service is difficult as the specification focuses only
on behavior in objects, not the interaction between objects. This leads to
the collaboration-oriented approach, which can describe the complete be-
havior of services. Collaborations makes it possible to describe a complete
behavior between a set of objects or components in isolation.

Another important factor in rapid service creation is reuse. Collabora-
tions works very well for this purpose, as services can be composed from
sub-services, instead of from components.

In addition to the collaborations that describe the complete behavior
between objects, we also need models of the components in isolation, as
it is the components that will have to be created and deployed to realize
the system. However, keeping the diagrams consistent is a challenge and
it takes unnecessary time. A better solution is to let developers create only
one set of diagrams, and generate the other diagrams automatically from
these. By describing the behavior using collaborations and actions, the state
diagrams may be found by analyzing the actions. From the state diagrams
it is possible with automatic generation of code that can be deployed on the
different devices realizing the system.

SPACE is an engineering method for rapid creating of services, devel-

1

2 Introduction

oped at NTNU. The method is based on three principles: Reusable collab-
orative building blocks, model transformation and code generation, and
formal analysis of models. SPACE is supported by tools that help in the
engineering process [17].

Telecommunication systems are examples of reactive systems, which
are systems whose role is to maintain an ongoing interaction with their en-
vironment, rather than produce some final value upon termination [1]]. It
is a well known fact that the behavior of such systems, even small ones,
may be very hard to analyze and understand. With the introduction of
state machines for modeling and analyzing such systems, the situation was
improved, but due to the fact that state machines model the behavior of
one component in separation, the overall behavior was still difficult to un-
derstand. The collaboration-oriented approach, which is an important part
of SPACE, provides a solution to this problem, as the overall behavior be-
tween components can be described a single diagram.

1.1 Contribution

Until now, SPACE has focused on modeling of control flows. We have intro-
duced data into SPACE, which makes it possible to specify data-intensive
systems in a complete way in SPACE. In almost any telecommunication
system data is central. Without data, the system can not fulfill its purpose.
With data, we mean spatial information that exists over time, like color of
a card or name of a player, in opposition to control data, or only control,
which is information about behavior progress, like states [9].

When modeling system with data, more complexity are introduced, as
data representation requires extra UML elements. Structuring this UML
elements in a clear, elegant way is challenging. We will show that this re-
quires data sharing between collaborations and building blocks. Doing this
in a clear, intuitive way that maintain the principle of reuse and conform to
the UML standard is not easy. We provide several possible solutions to this
problem.

The focus of this work is data in SPACE activities. The interface descrip-
tions of collaborative building blocks, so-called External state machines
(ESMs), are not discussed, as they are not concerned with data. Also note
that the UNO game is not the primary focus, it is just used as a basis for
our discussion to identify requirements on data modeling motivated by a
rather complex example.

1.2 Outline

The rest of this report is organized as follows.

1.2 Outline 3

Chapter 2] introduces the UNO game and the game rules. Further it gives
a background on the SPACE method and the SPACE tools. We then
presents UML and the UML diagrams central in SPACE.

Chapter (3| describes the object and collaboration structure of UNO, and the
important data attributes are discussed.

Chapter[d] introduces data into SPACE activities, which is necessary to spec-
ify the UNO behavior.

Chapter|5| discuss guidelines for making good choices when specifying
a system, and discuss solutions for sharing data between building
blocks and collaborations.

Chapter[6] describe the UNO behavior using UML activities.
Chapter[7] discuss and evaluates the work.

Chapter|8] concludes the work and suggests future work.

Chapter

Background

In this chapter the engineering method SPACE and its tools Arctis and
Ramses are presented. A description of the UML Collaboration and Ac-
tivity diagrams is given, together with a description of how SPACE has ex-
tended UML. This chapter ends with a description of the UNO game and
the game rules.

2.1 SPACE

SPACE is an engineering method for reactive systems that support rapid
creation of services [17]. In this approach the specifications of services is
done in terms of UML 2 collaborations, activities and external state ma-
chines. Collaborations express the structural properties of the system at
high level of abstraction, like participants and their multiplicity. Activities
express the complete behavior of collaborations, both local behavior and
interactions between system participants [14]. External state machines de-
fine the externally visible behavior of building blocks [17].

The approach is outlined in Fig. During service design, an engineer
may consult the library for reusable building blocks, as a new service of-
ten can be composed from existing building blocks that may be adapted to
the new service [15]. Services may also be designed from scratch, and the
services may be composed with each other to form new services. The ser-
vice specifications are the only manual work in the engineering process, the
rest of the process is automated. The service specifications are transformed
automatically into executable state machines and composite structures us-
ing model transformation. The state machines and structures are further
transformed into executable code [16].

A crucial point when automatically transforming models into code is to
ensure correctness of both the models and the transformation. Thus, a for-
mal way to define the semantics of activities and state machines is needed.

5

6 Background

_____________________ % :iibrargll
‘. eusable
Building Blocks

Service Specifications

CTLA/C —oomemoceeeee UML Collaborations,
! Activities
i Model
! Transformation
I Service Components
cTL'A/e _________________ UML St‘ate Machines,
. Composite Structures
Code

1

1

1

i Generation
i Executable System

. Service Application Code
Execution Framework

Figure 2.1: SPACE (from [16])

For this purpose, Herrmann’s framework compositional Temporal Logic
of Actions (cTLA) is used, as discussed in [16]. The engineering approach
shown in Fig.[2.1]is complemented by two variants of cTLA; cTLA/c and
cTLA/e, shown on the left side of the figure. cTLA/c formalizes the col-
laborative service specifications given by UML 2.0 activities. As shown in
Fig. cTLA/c is used in the process of transforming collaborations and
activities to state machines. The other variant, cTLA /e, is used to formal-
ize the behavior of the state machines, and to transform state machines into
executable code.

Two SPACE tool sets exist, Arctis and Ramses, both offered as plug-ins
to Eclipse [11]. Eclipse is a Java-based open source development platform,
with a large number of extension or plug-ins.

2.1.1 Arctis and Ramses

Fig. shows how Arctis and Ramses support SPACE. Arctis provides
functionality for manual editing and specification of collaborations and
their behavior. Syntactic inspectors and a TLC model checker ensures a
consistent specification. A model transformer translates a consistent speci-
fication into UML state machines and components [17], which can be used
by Ramses to generate code. Ramses can also be used for modeling of ser-
vices using state machines [2], but since these state machines are generated
by Arctis, only the code generation of Ramses is used.

2.2 UML

(1) Collaborative (2] Compositional €© Executable State Machines
Building Blocks Service Specifications and Components
UML 2.0 Collaboration Collgbg[%tion Components
|Comp05|t|on> \% |Transformat\c> hﬁ! =
toof to
_V}DW __' BN ”
O O N P
@' T T E%;ﬁ State Machines
UML 2.0 Activity ESM Activity

| ' i
iy Editin ' i
7 g Model | :
- E Transformer | 1 E
Library - Syntactic Ei E
1| Inspectors i !
| ! : |
| [|
4[TLC Mode TLA HE
Checker Generator il Generator [T
| | 1
) | , ' ==
Engineer ! Arctis H ' Ramses ! Code

Figure 2.2: A coarse sketch of the SPACE engineering approach and its tool
support (from [17])

2.2 UML

UML is a general-purpose visual modeling language defined by the Ob-
ject Management Group [13]. It is a standardized specification language
mainly used in object oriented software design. UML is used for all stages
in the development process. Three different views may be expressed using
UML: functional behavior view, static structural view, and dynamic behav-
ior view [21].

In SPACE we focus on dynamic behavior view. The next subsections
gives an introduction to collaboration and activity diagrams.

2.2.1 Collaborations

A collaboration is a specification of a contextual relationship among in-
stances that interact within a context to implement a desired functional-
ity [21]. A collaboration explains how a set of objects work together to carry
out a particular purpose in ways that are unique to the particular situation.
A collaboration consists of roles, which are descriptions of a participant in
an interaction. A connector is a relationship between two roles within a
particular collaboration [21].

UNO consists of several sub-services. One of these are the service Draw
Card, in which a player can draw a number of UML cards from a draw
pile. Fig.2.3|shows this service as a UML 2.0 collaboration. Participants in

8 Background

Figure 2.3: Collaboration draw card

the service are represented by collaboration roles player and pile. Both the
player and the pile has a default multiplicity of 1, which means that this
collaboration models the interaction between one player and the pile.

_ - Playing T~
o S -
i RS TN | [2..10] N
e _ DrawCard j— ~PREYer player ~.
/ _pile \
! player \
: [1] PN |
\ drawpile \,_MakeMove / !
. . : - ,
. drawp|lt\a d|§pardp|le ,

_ -

~ o e — /
~ c0: ™, 1] e
> { i F—discardpile : :
S - TurnPile A P discardpile - -

Figure 2.4: Collaboration Playing with collaboration use draw card

Fig. 2.4/ shows a collaboration use of the Draw Card collaboration used
in a composite collaboration Playing. The instance c1 of the Draw Card col-
laboration is in UML called a collaboration use. In this example, the player
also has two other collaboration uses, c0 and c4. Each collaboration use is
notated by a dashed ellipse containing the name of the collaboration use
and the collaboration type, separated by a colon. The player role in the
Draw Card collaboration is bound to the player element in the Playing col-
laboration, notated by a dashed line labeled by the name of the role in the
collaboration use. Similarly for the pile role. Note that the player role in
the Playing collaboration has a multiplicity of 2-8, which means that several
players may interact with the draw pile with a Draw Card collaboration at
a time.

2.2 UML 9

2.2.2 Activities

A collaboration may have behavior attached, for example state machines,
sequence diagrams or activities. In SPACE, activities are used. Activities fo-
cus on the sequence, conditions, and inputs and outputs for invoking other
behaviors [4]. Activities use an intuitive token flow semantics inspired by
Petri nets, where “token” is just a general term for control and data values.
UML 2.0 activities define a virtual machine based on routing of control and
data through a graph of nodes connected by edges. UML 2.0 activities con-
tain nodes connected by edges to form a complete flow graph. Control and
data values flow along the edges and are operated on by the nodes, routed
to other nodes, or stored temporarily [3]. The activity in Fig. [2.5/shows the
behavior of the collaboration shown in Fig. The behavior details will
be explained later in this work.

DrawCard

player pile
[#] status: String

draw: int E—h . = getallowance
]

= giveway

!_ --------------- getStatus

[s‘ $em pty]

[start
c0: Counter

= turnPile:

< next: Card [s‘se\se]l

event: Card <

addCard: Card B

= ol

B retrieveCard

Bdlast: Card

= Card: Card

finished: Card EHa—

e pE returnToken

Figure 2.5: Activity Draw Card

Activity Nodes

There are three types of activity nodes: action nodes, control nodes, and
object nodes. Action nodes operate on control and data tokens they receive
via edges of the graph, and provide control and data tokens to other ac-
tions. Control nodes route control and data tokens through the graph. Ob-
ject nodes hold data temporarily as they wait to move through the graph [5]].

Action Nodes An action is the smallest unit of computation that can be
expressed in UML. An action is an activity node that does something to the

10 Background

state of the system or extracts information from it [21]. Fig. shows an
example of such an action. The action draws a random card from the draw
pile.

[Draw random card]

Figure 2.6: Action Draw random card

Actions are predefined in UML, whereas behaviors and operations are
user-defined [4]. This means that actions are not behavior themselves. For
example, in Fig. 2.6 the round-cornered rectangle is an action that invoke
the user-defined behavior draw random card. Actions are the only objects
that can query objects, make changes to objects, invoke operations owned
by objects and invoke behaviors. This means all behaviors must contain
actions to have any effect on objects.

There are a number of different types of actions. Most actions are drawn
as a rectangle with rounded corners, as shown in Fig. Some commu-
nication actions have special notations. These include the accept signal ac-
tion, send signal action, and accept time event action [21]. These actions
are shown in Fig.

Accept event actions handle processing of events during the execution
of a behavior. Such includes receiving signals from the environment and
accept events when a timer expires. Send signal actions are used for send-
ing signals to the environment.

Control Nodes Control nodes route both control and data/object ﬂowﬂ
There are seven kinds of control nodes, all listed and explained in table

[5].

Object Nodes There are four kinds of object nodes: activity parameter
nodes, pins, central buffer nodes, and data store nodes. Data store and central
buffer nodes are not in use in Arctis and will not be discussed further.

"UML does not differ between object and data. They are used interchangeably under
the notion of classifier [4].

X) .

(@) Accept time (b) Accept signal ac- (c) Send signal ac-
event tion tion

Figure 2.7: Special action notations

2.2 UML 11

Control nodes

_’IZ Fork Node. The incoming flow is split into several flows.

:))»I_> Join Node. The outgoing flow starts after all incoming flows
have arrived

Merge Node. A merge node brings multiple flows together.
The outgoing flow starts when one incoming flow arrives.

Decision Node. A decision node chooses between outgoing
flows.

P Initial Node. When an activity is invoked a flow starts in the
initial node.

® Activity Final Node. An activity final node stops all flows in
an activity.

® Flow Final Node. A flow final node stops a flow in an activ-
ity.

Table 2.1: Control nodes

Activity parameter nodes are object nodes at the beginning and end
of flows that provide a means to accept input to an activity and provide
outputs from the activity, through the activity parameters. An activity pa-
rameter node may have either all incoming edges or all outgoing edges, but
it must not have both incoming and outgoing edges. Fig.[2.8|shows an ac-
tivity with input and output activity parameter nodes. The pins with black
background and white arrow are streaming nodes, which are parameter
nodes through which tokens may pass while the activity is ongoing. The
input parameter node with white background is a starting event, while the
output parameter node with white background is a terminating event. The
parameter nodes are used to couple the activity draw card with other col-
laborations.

A pin is an object node for inputs and outputs to actions. Pin rectangles

12 Background

c: Draw Card

\

Figure 2.8: Simplified collaboration draw card with activity parameter
nodes

are notated as small rectangles attached to action rectangles. Fig.|2.9/shows
an example of the action draw random card which has an output pin that can
hold a card.

Draw random card

Figure 2.9: Example of action with an output pin

All object nodes specify the type of value they can hold. If no type is
specified, they can hold values of any type [6].

Activity Edges

The activity nodes are connected by one of two kinds of activity edges;
control flow and object flow. Control flow can only carry control tokens,
while object flow can carry object and data tokens.

Control Flow A control flow is an activity edge that starts an activity
node after the previous one is finished. Objects and data cannot pass along
a control flow edge, it can only pass control tokens. Control flows may not
have object nodes at either end, except for object nodes with control type.
Fig. shows an example of a control flow.

Object Flow Object flow is an activity edge that can have objects or data
passing along it. Object flows may not have actions at either end. Object
nodes connected by an object flow must have compatible types. Fig.
shows an example of an object flow. Note that the object flow has a object
node at either end, in this example pins. To distinguish them from the

2.2 UML 13

control flows denoted by black lines, object flows are denoted by blue lines
in Arctis.

N S L b]

Figure 2.10: Control flow Figure 2.11: Object flow

Call Behavior Actions and Call Operation Actions

Call behavior actions and call operation actions are two central terms when
talking about activities. A single behavior, like draw card, may be invoked
in many activity diagrams or several times in the same activity diagram,
but each invocation are represented by a separate instance of a call behav-
ior action, all referring to the same behavior. This facilitates for reuse of
collaborations.

The same applies to operations. A single operation behavior may be
invoked several times in an activity diagram. Each invocation are repre-
sented by an instance of a call operation action. All call operation actions
refers to the same operation and parameters [3]].

Partitions

The activity Draw Card, depicted in Fig. describes the behavior of the
corresponding collaboration. It has one partition for each collaboration
role; player and pile. As shown in Fig. 2.3|these roles are bound to player
and draw pile. Partitions in SPACE are used to indicate what or who is
responsible for the actions grouped by the partition. This means that a par-
tition conforms to a UML class [7]. For call operation actions, this means
that the class defines the invoked operation. For call behavior actions, this
means that the class owns the behavior. In the example in Fig. the class
pile owns the call operation action getStatus, while the partition player has
no call operation actions, but the class owns the behavior.

Variables

In addition to sending data in control flows, we also need to store values
and retrieve them when needed. For example, players need to hold in-
formation of other participating players, how many cards they have, and
their own cards. For this purpose, UML provides variables. [14] shows an
example of how to use variables in SPACE.

A variable has a name and a type. The values contained in a variable
must conform to the type of the variable. The UML standard does not pro-
vide a specific notation for the variable, but in SPACE we use the following

14 Background

notation: type : name. For example, the name of the player is stored as a
String: String : player N ame.

Actions may access variables and perform operations on them, which
means variables are a way of passing data between actions without using
a data flow path. As we want to transform the activities into executable
state machines for the implementation as described in [18]], actions need to
be localized. This means an action may only access variables owned by the
partition that owns the action, as described in [14].

2.3 Extensions of UML by SPACE

In addition to the UML described above, SPACE offers some extensions
to UML. This includes support for multi-sessions, and waiting decision
nodes, which are described next.

2.3.1 Multi-Session Collaborations

Multi-session collaborations are described in [14], and are introduced to
enable coordination of collaborations that are executed with several simul-
taneous sessions. Fig.[2.12]shows an example of a case where several collab-
oration sessions are needed. The example is a simplification of the Playing
collaboration that will be described later in this work. The playing collab-
oration has two roles: player and discard pile. A player plays a card to
the card pile in the sub-collaboration PlayCard. From the viewpoint of one
player, there is one PlayCard collaboration session towards the discard pile.
However, the discard pile has to maintain the sessions with each of the
players, as all instances of the collaboration is executed at the same time.
To express this, a stereotype multi-session is applied to the call behavior
action, and a border is placed in the discard pile partition which have mul-
tiple sessions.

When a token enters a multi-session collaboration via a pin, a selection
of sessions must be done. When a token enters the CardUpdate pin, it should
go to all of the sessions, while the Valid Card should go to only the session
where the card was played. Two operators were added to support this;
select and exist. Fig. shows the EBNFEI definition for session selection
and existence, which also allows for custom filters.

In the example in Fig a player plays a card, a token is entered in
the Play Card collaboration via the Play Card pin. The discard pile receives
the token via the New card output pin. The card is treated in some way
not shown in this figure, and if it is a valid card, the player must notify all
players that a card has been played via the Card Update pin, and the player
must receive a confirmation that the card was accepted via the Valid Move

2Extended Backus-Naur Form

2.3 Extensions of UML by SPACE 15

- - N
Playing
Player Discard Pile
r <<multi-session>=>
Play Card
— B Play MNew Move

Card Update [+ [select all : fself |

Invalid Move P« [select one : self |

valid Move [select one : self]

Figure 2.12: Example use of select

pin. The card update should be sent to all players, except the player playing
the card. This can be expressed by select all: /self. The slash denotes
exclusion. The card confirmation should only be send to the player playing
the card, which is expressed by select one: self.

select := ‘select’ mod ‘2’ [{filter}] [/’ {filter}].

exists := ‘exists’ name ‘3’ filter [/’ {filter}].

mod := ‘one’ | ‘all’.
filter :== name | ‘self’ | ‘active’

| ‘id=’ variable.

Figure 2.13: EBEN for select and exists (from [14])

2.3.2 Waiting Decision Nodes

A waiting decision node is an extension of a decision node, denoted with
a filled diamond [14]. Waiting decisions are used in combination with join
nodes to model the race between two ore more flows. Figl2.14] shows an
example use of a waiting decision node. First, an incoming flow is split in
three in a fork node. One flow starts a timer, another enters the waiting
decision node, and the last continues to join node jI. If the timer expires,
the token in the waiting decision node is pulled out of the waiting decision
node, and the join node ;2 fires. If the flow el arrives at join node j1 before
the timer expires, join node j1 will fire.

16 Background

i 2 |

Figure 2.14: Example use of a waiting decision node

2.4 Current integration of Data in SPACE and Arctis

As mentioned in Sect. UML provides some elements to handle data
flow in activity diagrams: object nodes and object flows. Object nodes are
needed to represent data as it flows in and out of invoked behaviors, or to
represent collections of tokens waiting to move downstream [12]. Activity
parameter nodes and pins are already supported in SPACE, as introduced
in Chapt. 2} Object flows are needed for sequencing data produced by one
node that is used by other nodes, as object and data cannot pass along a
control flow edge.

2.5 UNO 17

2.5 UNO

UNO is a card game for several players. The game is normally played
with physical playing cards and players located in the same room, sitting
around a table. In this project we are going to design an electronic version
of UNO, where players can play against each other even if they are physi-
cally separated. We assume that each player has a terminal, e.g. a PC or an
Ipod touch, which all are connected to a game server. Fig. shows how
a UNO user interface may look like.

Because of the physical separation of the players, and the nature of an
electronic game, we have to make adjustments to the game rules. The fol-
lowing section describes the official game instructions from Mattel [20], and
discuss which adjustments we need to make.

2.5.1 Object of the game

“The object of the game is to be the first player to score 500 points.
Points are scored by getting rid of all the cards in your hand before
your opponents. Points are calculated from the cards remained in your
opponents hands as follows:

o All number cards: Face value
e Draw Two, Reverse, and Skip cards: 20 points
o Wild and Wild Draw Four cards: 50 points”

[20]

Reaching 500 points may take a considerable amount of time. The players
should be able to choose if they want to play a single game only, where the
first player to get rid of all his cards wins.

2.5.2 Starting the game

“To decide who to deal every player picks a card. The person who picks
the highest number deals. In this part of the game Action cards count
as zero. The dealer shuffles the cards and deals each player seven cards.
The remainder of the deck is placed face down to form a draw pile. The
top card is turned over to begin a discard pile. The person left of the
dealer starts the play.”[20]

In the electronic version the system will deal each player seven cards at
startup of the game. A player is randomly chosen to start the game, and
the system place a card on the discard pile.

18 Background

Player 2 Player 3

Discard pile Draw pile

Player 4

Player 1

Figure 2.15: UNO game

2.5.3 Playing the game
“The game is played using 108 cards as follows:”

19 Blue cards -0to 9

19 Red cards -0to 9

19 Green cards -0to 9

19 Yellow cards -0to 9

8 Draw Two cards - 2 in each color
8 Skip cards - 2 in each color

8 Reverse cards -2 in each color

4 Wild cards -

4 Wild Draw Two cards

“For each turn, the player must play a card matching the card on
the discard pile, either by number, color or symbol. Alternatively, the
player can put down a wild card.”[20]

In the normal version of the game, it is up to the other players to check if
the played card is valid. In our electronic version, validation should not be

2.5 UNO 19

up to the other players. Thus, the system has to ensure that a player has
played a valid card. An invalid card will be rejected.

“If the player doesn’t have a card to match the one on the discard pile,
he must take a card from the draw pile. If this card can be played, the
player may put it down in the same turn. Otherwise, the player have
to say “pass”, and play moves to the next person in turn.”[20]

A card is taken from the discard pile by pushing a draw button. The player
says “pass” by pushing the pass button. The system has to ensure that it is
not possible to say pass without having drawn a card from the discard pile
first. The system also have to ensure that a player draws at most one card
for each turn.

“When a player has only one card left, he/she must yell “UNO".
Failure to do this results in having to pick up 2 cards from the draw
pile.”[20]

Because the players are physically separated, a player must yell UNO by
pushing a “"UNO” button. The other players will then be notified that a
player has yelled UNO. If a player forgets to push the UNO-button when
he has only one card left, this is detected by the system, and the player has
to pick up 2 cards.

“Players who make card-play suggestions to the other players must
draw two cards from the draw pile.”[20]

In this game we assume that the players is unable to make such suggestions
to other players.

“If the stock is emptied, the discard pile is shuffled and turned over to
replenish the stock.”[20]

When the stock is empty, the discard pile is automatically shuffled by the
system. It is important to keep the discard pile and the draw pile separated
in our electronic game, as it should not be possible to draw a card from the
draw pile that recently has been added to the discard pile. This way, we
keep differences of the electronic and non-electronic version of the game to
a minimum.

“If a player cheats, or accidentally plays a wrong card, and it is noticed
by the other players, he must take the card back and take 2 extra cards
from the draw pile.”[20]

20 Background

In our electronic game, the system will automatically detect if a player
plays a wrong card, and the player has to draw two extra cards. There
are a number of reasons not to allow cheating. First, we think the game
will be rather chaotic if we allow cheating, leaving all card validation to the
players. Second, it is difficult to determine who actually cheated, since a
players can not necessarily see who has played the card, and the previous
card on the draw pile.

2.5.4 Action cards

There are a number of action cards that affects the course of the game in
different ways. The action cards, their function, and their rules are given
below. Fig.[2.16/show the action cards used in our electronic game.

(a) Reverse (b) Skip (c) Draw Two (d) wild (e) Wild Draw
Four

Figure 2.16: Action cards

Draw two: If a draw two card is played, the next person to play
must draw 2 cards and miss his turn. This card can only
be played on matching colors and other Draw Two cards. If
turned up at the beginning of play, the same rule applies.

Reverse: If a reverse card is played, direction of play is reversed.
The card may only be played on a matching color or on
another Reverse card.

Skip: If a skip card is played, the next player after this card has
been laid looses his turn and is ”skipped”. The card may
only be played on a matching color or on another skip card.
If this card is turned up at beginning of play, the player left
of the dealer is skipped, and the player left of that player
starts to play.

Wild: A wild card can be played at any time, even if the player
has another playable card in the hand. The person playing
this card calls for any color to continue the play, including

2.5 UNO 21

the one currently being played. If this card is turned up
at beginning of play, the person to the left of the dealer
determines the color, which continues play.

Wild draw four: If a wild draw four card is played, the person
who plays it calls the color that continues play. Also, the
next player has to pick up 4 cards from the draw pile and
miss his turn. The card can only be played when the player
do not have a card in his hand to match the color on the
discard pile. If this card is turned up at beginning of play,
it is returned to the deck and another card is picked. A
player holding a Wild Draw Four card may choose to bluff
and play the card illegally. When a wild draw four card is
played, the player required to pick up the four cards can
challenge the player playing the wild draw four card. When
a challenge is issued, the hand of the player must be shown
to the player who made the challenge. If the wild draw four
card has been played illegally, the offending player must
draw 4 cards. If the card has been correctly played, the
challenger must draw 2 cards in addition to the 4.

It is possible to do a simplification in the electronic version, and let a
player play a wild draw four card even if he has another card in his hand
to match the color on the discard pile. Eventually, we can implement the
challenge rule, and give the player having to draw four cards possibility
to challenge the player playing the wild draw four card by pushing a chal-
lenge button. However, instead of the challenged player to show his cards,
the system may determine if the wild draw four card has been played ille-
gally or not. As we do not consider the challenge rule very central in this
game, we will not include this rule in a first version.

2.5.5 Jump-in Rule

In addition to the official rules given above, there are a number of “house
rules” that can be used when playing. A detailed description will not be
given in this report. However, in our version of UNO we will use the
“jump-in” rule as it provides some challenges in designing and implement-
ing UNO. If a player holds a card that matches (identical color and number)
the card on the Discard pile, the player can play a card, even if it is not his
turn. This is called a “jump-in”. The game continues with the player next
to the player doing the “jump-in”.

22 Background

2.5.6 Special properties of the mobile version

As the players are not sitting face to face, they have no possibility to see
how many cards the other players have. This information must be pro-
vided by the user interface. Neither can players hear the color chosen after
a player has put down a wild card. Therefore the user interface has to pro-
vide information on which color is expected next, in addition to the top
card in the discard pile.

During play, a player often has to draw a number of cards, for example
when a wild draw four card or a draw two card is played. Instead of relying
on the players to draw the correct number of cards, the system should push
the correct number of cards on each player.

Chapter

Specification of UNO — Part 1:
Object and Collaboration
Structure

Before we introduce data handling in the next chapters, we study the re-
quirements of UNO in Sect. Section 3.2/ discusses which objects will be
needed in this game, while Sect[3.3|discusses attributes each of the objects
need during the game. Lastly, the collaborations between the objects are
described and discussed.

3.1 Requirements Capture
Requirements based on the rules and the discussion in chapter 2. The re-

quirements are parted into 3, according to the three phases of the game,
which corresponds to the collaborations Setup, Playing and End.

3.1.1 Starting the Game

1. A player has to register with the game controller to participate in the
game.

2. At startup each player is dealt 7 cards each.
3. A player is randomly chosen by the system to start the game.

4. The system choose a card to begin the draw pile. If a wild draw four
card is chosen, it is returned to the deck and another card is picked.

23

24

Specification of UNO — Part 1: Object and Collaboration Structure

3.1.2 Playing the Game

5.

10.

11.

12.

13.

A player need at all times to have information about:

e How many cards each player has.

e Whose turn it is.

Top card on the discard pile.
e Which color is chosen when a wild card has been played.

e Direction of play.
This information must be visible in the user interface.

For each turn, the player must play a card matching the card on the
discard pile, either by number, color or symbol. Alternatively, the
player can put down a wild card.

If the player does not have a card to match the one on the discard pile,
the player must draw a card from the draw pile. If this card can be
played, the player may put it down in the same turn. Otherwise, play
moves to the next person in turn. It is not possible to draw more than
one card for each turn.

If a player plays a wrong card, this will be noticed by the system, and
the player must take the card back and take two extra cards from the
draw pile.

. When a player has only one card left, he must yell “UNO” by pushing

a “UNQO” button. Failure to do this results in having to draw two
cards from the draw pile. The player must yell “UNO” within five
seconds after playing his second to last card.

If a Draw Two card is played, the next person to play must draw two
cards and miss his turn.

If a Reverse card is played, direction of play is reversed.

If a Skip card is played, the next player after this card has been laid
looses his turn and is “skipped”.

A Wild card can be played at any time, even if the player has another
playable card in the hand. The person playing this card calls for any
color to continue the play, including the one currently being played.
If this card is turned up at beginning of play, the person to the left of
the dealer determines the color, which continues play.

3.2 Object-Oriented Analysis 25

14. If a Wild Draw Four card is played, the person who plays it calls the
color that continues play. Also, the next player has to pick up 4 cards
from the draw pile and miss his turn. The card can only be played
when the player do not have a card in his hand to match the color on
the discard pile.

15. If the stock is emptied, the discard pile is shuffled and turned over to
replenish the stock.

3.1.3 Winning the Game

16. Once a player has no cards left, the hand is over. The player receives
points for cards left in opponents” hands as follows:

All number cards: Face value

Draw Two: 20 points

Reverse: 20 points

Skip: 20 points
Wild: 50 points
e Wild Draw Four: 50 points

17. When a hand is over, the other players have to be notified that the
hand is over and the name of the winner.

18. The winner is the first player to reach 500 points.

3.2 Object-Oriented Analysis

The purpose of an object oriented analysis is to get an understanding of
the problem at hand by discovering objects that form the vocabulary of the
problem domain [8]. This section discuss which objects we need in UNO.

The objects we first think of is players. Each human player must be
represented by a player object. A player has behavior, and is as such an
active object. The player object communicates with a player via a graphical
user interface. Another central entity in a card game is of course the card
object. Each player has a number of cards at hand, and the discard pile
and the draw pile have a number of cards. In total there are 108 different
instances of the card class.

What other objects we need in the system are not that easily recognized.
Normally, the game consists of a number of players sitting around a table
holding a deck of cards divided into a discard pile and a draw pile. Thus,
UNO is by default centralized, as illustrated in Fig. A natural idea is
to let the system roles consist of players, draw pile and discard pile. In

26 Specification of UNO — Part 1: Object and Collaboration Structure

Discard pile

ul

Craw pile

Table
Flayers Players

Figure 3.1: System view

general, players add cards to the discard pile, and draw cards from the
draw pile. It should be possible to perform these tasks simultaneously, by
different players. But only one at a time can add a card to the discard pile,
and one at a time can draw cards from the draw pile. These two objects
need to make sure only one player can access them at the time. Both the
draw pile and the draw card are active objects.

However, this functionality is not sufficient to implement the desired
behavior. In the real world the players perform tasks like deciding if the
card played is valid, keeping control of whose turn it is, direction of play
and so on. In case of disagreement, the players has to reach consensus
before play continues. These decisions are made based on the rules the
players keep in their mind. To mirror the real world, our electronic ver-
sion should have a central controller unit mirroring the abstract functions
the players perform together. Letting the players perform these tasks is
not feasible in our electronic version of the game, as we assume physical
separation of the players. The controller unit keeps track of participating
players, how many cards they have, top card on the discard pile, the dis-
card pile, who's turn it is, and current direction of play. In addition, the
controller need to keep all players updated on what happens in the game.
For example, when a card has been played, all players need to be informed.
The controller is also an active object as it has behavior. Fig.[3.2|shows an il-
lustration of the system with the controller unit. The players interacts with
the discard pile by adding cards, and with the draw pile by drawing cards.
The discard pile interacts with the controller for e.g. card validation, and
the controller interacts with the players for game updates.

Having the controller and discard pile as different object is not a requi-
site for a good specification. In our specification we have chosen to model
the controller behavior and the discard pile behavior as one entity, as shown
in Fig. This entity is named a discard pile, to mirror the physical version
of the game. This follows the naming suggestions stated in [8], saying that
things should be named in a way that their function is easily recognized by

3.3 Object Attributes 27

Discard pile

i/ i/
ii\\ T

Flayers Players
|l

Discard pile

\I/

Draw pne Draw pile
Figure 3.2: System view with con- Figure 3.3: System view with the con-
troller unit troller included in the discard pile

domain expertﬂ Tbl. 3.1} summarizes the object oriented analysis.

Object name Purpose

Player Mirrors the real world player.

Draw pile Mirrors the real world draw pile. Has to make sure
that only one card at a time can draw cards.

Discard pile Mirrors the physical discard pile. Makes sure that
only one player player at a time can add a card.
Also includes the controller functions that players
perform, like validating the cards

Card Mirrors the playing cards.

Table 3.1: Objects in UNO

3.3 Object Attributes

Attributes describes an object’s properties. Table[8.2]lists all objects and the
belonging attributes.

A card has a color, symbol and value. The symbol is what is shown
on the face of the card, like wild card, draw two, or the number 6. The
value attribute is used when calculating score after a hand is over. All these
attributes are of integer type.

Players are identified by a name and an ID, which is defined by the me
attribute. The attribute has type PlayerData, which is a composite object for
representing players. The reason for this is that players are active objects,

' A domain expert is a person speaking the vocabulary of the problem domain, often just
a user. In this case, it is a person playing the game.

28 Specification of UNO — Part 1: Object and Collaboration Structure

which can not be passed around, as will be discussed later in this work. A
player has a hand, which is the list of cards the players have available. The
attributes otherPlayers and otherHands holds respectively a list of references
to other players, and a list of how many cards each of the other players
have. Players also hold the game status data; topCard, topColor, turn and
direction. Top card has type Card, turn is of type PlayerData referring to a
player, while the other attributes are of type int.

The draw pile has a drawpile attribute, which is a list of cards in the
draw pile. When the draw pile is empty, the discard pile is emptied and
put in the draw pile.

A discard pile has a discardpile, holding a list of cards that has been
played. In addition the discard pile need all game data; turn, direction,
topCard, and topColor, which is similar to the game data attributes of the
player. This discard pile use this data to decide if the cards played are
valid. The discard pile also has control over the participants of the game,
and thus have a players attribute. The attribute score holds the score for each
player.

We have chosen to let the players and the discard pile both hold the
game data (turn, topColor, topCard, and direction and let both the players
and the discard pile calculate these values when a move has been made.
Then, the discard pile do not need to send these values to the players.

3.3 Object Attributes 29
Card
color: int The color of the card
symbol: int Card symbol, e.g. wild card, skip or 6.
value: int Card value for calculating points when the
hand is over.
Player

me: PlayerData

hand: ArrayList(Card)
otherPlayers:
ArrayList(PlayerData)
otherHands: int[]

topCard: Card
topColor: int

turn: PlayerData
direction: int

The players reference to their own name and
ID.

List of the player’s cards.

Reference to the other players.

List of how many cards each of the other
players has at hand.

The card currently at top of the discard pile.
The current color. It is needed when a wild
card is played, so the other players know
which color is chosen.

Who's turn it is.

Direction of play, either clockwise or coun-
terclockwise.

Draw pile

drawpile: ArrayList(Card)

List of the cards contained in the draw pile.

Discard pile

discardPile:
ArrayList(Card)
players: PlayerData[]

turn: PlayerData
direction: int

topCard: Card
topColor: int

score: int[]

List of all the cards that has been played.

List with all players participating in the
game.

Who's turn it is.

Direction of play, either clockwise or coun-
terclockwise.

The card currently on top of the discard pile.
The color of the current topCard. In case of
a wild card, it holds the color that has been
chosen.

List of the score of each of the other players

Table 3.2: Objects attributes

30 Specification of UNO — Part 1: Object and Collaboration Structure

3.4 Collaboration analysis

As found in the previous section, participants in the UNO service are play-
ers, draw pile, and discard pile. As discussed, the players should be able
to place cards at the discard pile, and draw cards from the draw pile. The
discard pile validates cards, and keeps all players up to date on what is
happening in the game.

Before the system can start, players have to know who participates in
the game, who should start the game, and which card begins the draw pile.
The players, the draw pile, and the discard pile performs these tasks in a
Setup collaboration.

For each card that is played, the collaboration have to check if the player
had right to play the card and if the card played is valid. The collaboration
need to inform other players that a card has been played. If players have
no card to play which match the one on the discard pile, they must draw a
card. All this is done in a single collaboration Playing.

~ A Playing /.

e < “drawpile_ _ -7
- . [1] - -
e drawpile L

- <<system== e
7 NTNUNO N
- -
LT T T T T TS T TS T T oERIT T T T TS T “
- c2: ™ ~
- End ! b ~
4 s N

, ’ .___player' discardpi_ls A .

I - Y
/ [2..10] [1] \
i player discardpile \
i . \
| | player_ discardpile !
L~ | '
\\ player discardpile | ;

o e O - ;

\\ | c: ™, i

“ | Setup / i
B . e B 4
S cl \ drawpile -

Figure 3.4: System collaboration

When a player has played all his cards, score has to be calculated and
updated, the winner has to be announced, and if there is no winner, all
cards have to be collected before a new game can start. This is done in the
End collaborations. Fig.[3.4/shows that player, discard pile, and draw pile
are interacting with collaborations Setup and Playing. Player and discard
pile also interacts with the End collaboration. We have named the system
NTNUNO, and with the stereotype <system>> we express that Fig.
documents the highest system level. Discard pile, and draw pile has a de-
fault multiplicity of one, while there can be from two to ten players in a

3.4 Collaboration analysis 31

game, according to the game rules.

The main idea with collaborations is to give a description of how the
system works, while leaving out unimportant details. The collaborations
shown in Fig. 3.4{show the three stages of the game, but it is not sufficient
to describe how the system works. Thus, further level of detail is necessary.

The Setup collaboration is shown in Fig. In this, the initialization of
the game is done. This involves choosing a player to start the game, choose
a top card to begin the discard pile, and deal each player seven cards. In
addition, all players need to be informed of game participants, whose turn
it is and which card begins the discard pile. These tasks are done in the
respective collaborations Select Turn, Select Top Card, Deal, and Distribute
Players.

-7 Setup T-a
/_’ ________________________ -
-~ s
- ~
P N
P N
- e S “
e e c3: \\“._ di doil o [1] ~
. i DistributePlayers /— — — Iscardpiie discardpile .
Vs s I = N
’ } I - discardpile \
f’ e \

J player '-_MSelectTurn’/;' \\
.) _player \
1
i [2..10] 'I
1 player i
\ layer. -

\ piay c0: ~, !

\ Deal / !
N player S— ~ . ,"
i | drawpile P

N B

emememeeees . L,
N ~ r."'-‘ c2: Y) m / y
~ i selectTopcard s drawpile— — — _ .
N e drawpile P
~ T——— B

cd

Figure 3.5: Setup collaboration

The Playing collaborations has several sub-collaborations, as shown in
Fig. This includes Draw Card, Turn Pile, Make Move, Color Dialog, and
Game Updates. The Draw Card collaboration makes sure only one person at
a time can draw a card, by using the well known binary semaphore pattern
for mutual exclusion (for example described in [10]). To draw a card, a
person must first ask for permission. The draw pile grants permission by
giving a token. The token is returned when the player has drawn a card.
This mirrors the real world, where people have to wait in turn to draw
cards from the same pile.

If the draw pile is empty, the cards from the discard pile will have to
be shuffled and put back in the draw pile. This happens in the Turn Pile
collaboration. The collaboration Make Move takes care of the problem of

32 Specification of UNO — Part 1: Object and Collaboration Structure

R Playing Tt -a
- T T T T T T T T T T T T T T s s s s s s = = -
- - -~
- ~
- aememTm .. >
e cl: \’_ player [2..10] ~
L, D Card / o o >
. “-~-‘Iaw a_r,,-"’ Elavey ~
e Y
¢] p; g N
’ / | N\ N
1/ - > N
i
' pile player player player \
I 7 | ™ v
I P | R — !
! STome N e TN
{ [i MakeMove / 7 €3 ™\ colorDialog [
\ e i, GamelUpdates / T !
\ drawpilz S o S ;
\ | / ’
) ' discardpile . | discardoll ’
N iscardpile . _discardpile ’
N drawpile . discardpile "/ s
A ™, | s s
~ N 4 -

[1] -

= discardpile -
A scardple discardpile -

Figure 3.6: The playing collaboration

mixed initiatives. We can have mixed initiatives because a player can make
a move, e.g. play a card, while another person can do a jump-in at the ex-
act same time. As transitions takes time, a player can do a jump-in after
another player has played a card, but before the card has reached the con-
troller. This means that the discard pile will change before the jump-in card
reaches the discard pile. How the Make Move collaboration will address this
issue will be further discussed later in this work.

During the game, the controller will have to exchange data with the
player. The players and controller exchange data via the Game Updates col-
laborations. When players play a wild card, they have to choose a color to
continue the game. This is done in the Color Dialog collaboration.

- End T~
o = === = = meEmem T T — — — = = = = = s
.- L . -
- . .
- i c0: A RS
e % CalculateScore / ~
S

i _playe .

El'iscardpil_e \

-~ T

I ! N
- _DistributeScore / -

Figure 3.7: The End collaboration

The End collaboration has three collaboration uses, as shown in Fig.
The first is Calculate Score which calculates how many points the winner

3.4 Collaboration analysis 33

scores based on the cards remaining in the other players hands. The player
gives the remaining cards to the discard pile, which calculates all scores.
If a player has reached 500 points, the game is over, and the discard pile
announces the winner to all players. This is done in the collaboration An-
nounce Winner. If no player has reached 500 points, the players are updated
of the current score in the Distribute Score collaboration.

Chapter

Introducing Data into SPACE

With the start of our work, SPACE focused on control flows and the Arc-
tis tool did not support object flows or object nodes in activities. In the
specification of UNO, however, object flows are needed as well, as it is nec-
essary to distribute card data, player data, and other game data among the
participants.

In this section, we discuss some patterns where object nodes and object
flows are needed in the specification of UNO, and which elements UML
offers to express the desired behavior. We also discuss how Arctis may
be extended to support this behavior. Motivated by practical needs for
implementing UNO, the following functionality has been added:

- Input and output parameter to actions.

Actions for setting and reading variables.

Sending several objects in same flow.

- Transforming types between object nodes.

Output pins to accept signal actions.

Input pins to send signal actions.

Fork node with both object and control flow.

4.1 Input and Output Parameters to Actions

To examine and perform actions on data, we have need for actions to han-
dle data input and output. Data input and output are denoted by pins,
which are kind of object nodes [4]. Arctis generates Java code from the
UML activities specification. Fig. shows a sum action with two inte-
gers a and b as input parameters, and one integer as outgoing parameter,
which is the sum of the input parameters. Fig. shows the correspond-
ing Java code. In Java, methods have at most one return value. To keep

35

36 Introducing Data into SPACE

the mapping between Java and UML operations simple, we permit only
one outgoing pin from an action. For each input pin parameter type and
parameter name has to be specified. Each call operation action must refer
to a Java method, which must have the same number of input parameters
as there are input pins to the call behavior action. The name and type of
the input pins must match the name and type of the parameters in the Java
method.

public int sum{int a, int b)/
return a * b;

!

(a) Sum action (b) Sum method in Java

Figure 4.1: Sum action and corresponding Java code

An action starts when all its data inputs are available. In the example
in Fig. if parameter b arrives before a, the action will store parameter
b and wait for parameter a before it starts [4]. From a control-flow point of
view, this implies a similar synchronization behavior as a join node.

4.2 Setting and reading variables

UML provides actions for saving and retrieving variables; add variable value
action and read variable action.

- Add variable value action is a write variable action for adding values
to a variable [12]. Add variable value action has one input pin and no
output pin, as shown in Fig.

- Read variable action is a variable action that retrieves the values of a
variable. Read variable action has no input pin and one output pin,
as shown in Fig. The type of the output pin is the same as the
specified variable.

Read
= WariableName

Add to
YariableName

Figure 4.2: AddVariableValueAction Figure 4.3: ReadVariableAction nota-
notation tion

4.3 Several Objects in Same Flow 37

Figure 4.4/ shows an example for the usage of read and write actions.
Counter is a building block used to keep count of how many times a repet-
itive task is performed. In this case, the task is to draw a given number
of cards. The action starts when the starting event start arrives, specifying
how many cards to draw. The variable count is set to number of cards to
draw. Each time a event arrives, the count variable is decreased by one in the
decrease count action. The decrease count action have access to the count vari-
able. After the counter is decreased the Card object is sent on. Instead of
passing the Card token through the decrease count action, the Card is saved
to a variable, and retrieved after the decrease count action is finished.

Counter

card: Card
count: irt

= M ey e

cint

P event: Card
card: Card]

Add to card

[Wlard: card
new: Card ui_l last: Card

Figure 4.4: Counter

4.3 Several Objects in Same Flow

In UNO, many objects have to be exchanged between the participants, and
often several objects which belong together need to be passed between par-
ticipants. For example, players have to inform other players which card
they have played. The other players need information about both the card
and who has played the card. An object flow, however, can only hold a
single object token. This means that card and player can not simply be sent
in the same flow. A solution could be to send the objects in two different
flows, and synchronize the flow at the receiving side by a join node. A join
node offers token to the outgoing edge in the same order they where of-
fered to the join [12]. This means that it is not possible to know in which

38 Introducing Data into SPACE

order the tokens will arrive. This again means that the card and player to-
kens have to be saved to variables before arriving at the join, to make sure
the card value is saved to the card variable, and the player value is saved to
the player variable. Sending several objects and synchronizing them at the
sender side is untidy, and involves several operations that may be avoided.

A better solution is to add objects to a single object containing references
to two objects. For example, the objects Card and Player may be merged to
a Move object, as shown in Fig. Fig.[4.¢]illustrates the Move class.

Move

-p: Player
-c: Card

Figure 4.5: Merge action Figure 4.6: Move class

With this solution synchronizing the behavior is unnecessary, and there
is no need to handle tokens arriving in different orders. We find this so-
lution more clear, as there is only one flow exchanged between partitions
instead of two. This is especially the case when we have more than two ob-
jects that need to be synchronized at the receiving side. For this reason, in
addition to the fact that the solution is in accordance to the UML standard,
the solution shown in Fig. [4.5]is adopted in the UNO specification. Another
point of using this solution is that it could be automated by a specialized
action in Arctis.

4.4 Transforming Types between Object Nodes

If an action requires a Card object, but is provided with a Move object, the
downstream action has received an incompatible type.

UML 2.0 provides a transformation behavior to solve this problem. Fig.
shows the UML transformation notation. The action Create Move provides
a Move object as output, while the action Update Top Card requires a Card
object as input. The transformation behavior transforms the Move object to
a Card object, and thus ensures that the downstream action receives a valid
type.

The transformation behavior takes one input parameter and provides
one output parameter. The input parameter must be of the same type as
the object token provided by the source object node, and the output pa-
rameter must be of the same type as the object token expected by the end
object node. This way, the UML specification constraint that object nodes
connected by object flows must be of compatible types is not broken.

4.5 Output Pins for Accept Signal Action 39
<=<transformation==>
Move.card E]

Update
Create Move E Topp Card
Move: m :

Figure 4.7: Transformation notation in UML

It is also possible to model the transformation behavior as an action
with one input parameter and one output parameter, as shown in Fig.
This alternative is easier to support by Arctis, as it only uses the elements
from call operation actions as introduced above. For this reason, we pro-

pose to use this form.
m: Move c: Card

Figure 4.8: Transformation notation in Arctis

4.5 Output Pins for Accept Signal Action

Accept event actions for signals, also called accept signal actions, need sup-
port for data flows as well. In the current approach, these actions are used
to receive signals from the environment, to which for example the user in-
terface belongs. For example, when a player plays a card, an accept event
action receives a signal. To validate the card, and inform other players of
which card has been played, we need to know which card has been played.
This information has to be extracted from the parameters contained in the
received signal.

According to the UML standard [12], an accept event action may have
zero or a number of output pins. The output pins of an accept event action
may hold the received signal, or the attributes contained in the received
signal. These two possibilities are illustrated in Fig. Which of these
two is chosen depends on the value of the attribute isUnmarshall. 1f isUn-
marshall is set to true, the result output pins contains the values of the signal
attributes, as shown in Fig. If isUnmarshall is false, the received signal
is placed on the output pin of the action, as shown in Fig.

In UNO, we are not interested in the signal itself, but its parameters.

40 Introducing Data into SPACE

l l

PlayCard{Card c) > PlayCard(Card c)
T c Card Tsignal: PlayC ard
(a) Signal attributes as (b) Signal as output
output

Figure 4.9: Alternative methods for extracting info from received signal

Therefore, we assume all signals to have isUnmarshall=true, and add one
output pin for each parameter to the accept signal action.

4.6 Input Pins for Send Signal Actions

When updating the user interface with data, for example how many cards
the opponent has, or the color chosen when a wild card is played, signals
containing this data are sent to the user interface. To add data to signals,
send signal actions are extended with input pins. UML states that the num-
ber and order of argument pins must be the same as the number and order
of attributes in the signal. Fig. shows an example of a send signal ac-
tion where the signal to be sent is ColorUpdate, which has a parameter color
of type int. The send signal action has one input pin which accepts a token
matching the signal parameter. The signal is created and sent when all its
input is available.

M color: int
< ColorUpdate(int color)

!

Figure 4.10: Send signal action with input pin

4.7 Fork Node with both Object and Control Flow

The UML standard states that the flows coming into and out of a fork node
must be either all object flows or all control flows [12]. However, we found
that this is not always suitable in UNO. Often one of the outgoing flows is

4.7 Fork Node with both Object and Control Flow 41

used for sending data, while another flow is used to perform an action
where only a control flow is needed. Fig. shows three fork nodes,
f1, f2, and f3, where this is the case. Note that in Arctis, control flow
is denoted with solid black lines, while object flow is denoted with dashed
blue lines.

The example shows the activity DrawCard, which consists of two par-
titions, player and pile. Player contains a building block Counter which
keeps count of how many cards that has been drawn. This building block
has been described earlier in this chapter. The DrawCard activity starts at
the arrival of the draw event. The object flow is forked at f1, and one flow
starts the counter block, while the other flow is sent to the output pin getAl-
lowance. This output pin does not require any data, and is therefore pro-
vided with a control flow. Fork node f2 shows a similar situation, where
it receives a Card token, which is sent out via an outgoing flow, while the
other outgoing flow are sent to getAllowance.

An alternative solution could have been to let both flows from the fork
nodes be object flows. This would result in the parameter node getAl-
lowance receiving an object token that it does not need. Another conse-
quence is that the merge node in the player partition will receive different
object tokens. This is not a problem here, as the object token has no in-
fluence on the behavior, but in general we do not want this to happen.
Another reason for avoiding sending unnecessary information is that un-
necessary information is a security problem in applications where security
is important.

I Y
DrawcCard

player pile [#] drawpile: ArrayList=Card=
1 [#] status: String

L~ L
drave int 3 4 A 3 getAllowance
1
3 giveWay
!'_ getStatus
.' Hd @ Strina
- s empty]
v turnPile
‘g el
< next: Card [$$ese]
addCard: Card =
event: Card <yiailtd -
ok

b last: Card

finished: Card & !
| \\-F returnToken

Figure 4.11: Screenshot of the DrawCard service designed in Arctis

o
1]
o
a5
N E
% 3
v
g

42 Introducing Data into SPACE

To summarize, fork nodes with all control flows or all object flows are
allowed, according to the UML standard. In addition, fork nodes with an
incoming object flow may have control flows in addition to an control flow.
These valid fork nodes are shown in Fig. Fork nodes with an in-
coming control flow can not have outgoing object flows, as the fork does
not have any object tokens to pass on. Fork nodes with an incoming object
flow can not have only outgoing control flows, as the object tokens are then
unnecessary, and if it is not needed in the fork it should not be sent to the
fork in the first place. The invalid for nodes is shown in Fig.

Figure 4.12: Examples of valid and invalid fork nodes

4.8 Decision Nodes

As stated in the UML standard [12], the input and output flows to a de-
cision node must either be all control flows or all object flows. Guards of
the outgoing edges, which are Boolean value specifications, are evaluated
to determine which edge the tokens should traverse. Tokens are offered to
all edges, but only one should pass, meaning that only one guard should
evaluate to true.

When decision nodes receives a control flow, partition variables or meth-
ods are evaluated in the guard. An example is shown in Fig. The
building block Simple Counter has a decision node with two outgoing edges.
The leftmost edge is traversed if the count variable of type integer is larger
than 0. Else, the rightmost edge is traversed, which have an else guard.

In the example shown in Figl4.13} the decision node receives an object
token with a boolean value. The token is passed on to both outgoing flows.
The two guards are false and true, respectively. If the token is false, the
token traverses the leftmost node which has the false guard. If the boolean
token evaluates to true, the rightmost edge is traversed.

In Arctis, each guard has a Java method, which may declare at most one
parameter. In the case of control flows no parameters are needed, as the
result of the guard does not depend on the token carried in the flow. With
object flows, the guard method need the object flow token as parameter to
determine if the token should be allowed to pass.

4.8 Decision Nodes

43

validjumpin

K4 boolean

'
[Efalse]r V —l[ﬁtrue]

Figure 4.13:

Example of decision

node with object flow

SimpleCounter

Mext

main
[#] count: int

¥ arin

Fdwalua
set count

decreaseCount

[count>0]

I[ss‘ss else]

= Event

B | ast

Figure 4.14: Simple counter

Chapter

Specification Guidelines

While specifying the UNO behavior, we soon realized there was an end-
less number of ways to specify a system. The systems can be correct with
respect to the functional requirements implied by the game itself, but still
not optimal with regard to reuse, clarity and intuitiveness. Several issues
need to be kept in mind. Here we discuss some non-functional issues that
are central for a good specification of a system. The first section addresses
active vs passive objects. The next section discuss how to model large and
complex functionality in a best possible way in regard to reuse and clear-
ness.

5.1 Active and Passive Objects

In UNO, as in all other telecommunication systems, we have to distinguish
between active and passive objects. Active objects have behavior, and are
run within its own thread. An example of an active object in UNO is a
player. A passive object is an object without a behavior. An example of
such an object is a card.

A player object can not be sent between the players, in the same way
a card may be sent around. But players need to have a reference to the
other participating players. When a player plays a card, the other players
are informed of which card has been played, and who played it. Since
the player object can not be sent around, we have to make another object,
e.g. player data, which is a reference to the player object. Thus, a player
is identified by a PlayerData object. Each player has a PlayerData object for
each of the other participating players. When a card has been played, each
player receives an object containing the card that has been played, and a
PlayerData object identifying the player of the card.

45

46 Specification Guidelines

5.2 Modeling Issues in Regard to Variable Access and
Clearness

As stated earlier in this chapter, it is necessary to keep data about the game
in a number of variables. This includes direction of play, top card on the
discard pile, and whose turn it is. Some of these variables will have to be
changed every time a player plays a card, someone draws a card or some-
one passes. In UML, these variables are only accessible from the activity
owning the variables. Consider the activity shown in Fig. The play-
ing activity consists of three partitions; player, discard pile and draw pile.
Note that for simplicity, no behavior is included in this diagram. In the
Make Move collaboration players either play cards to the discard pile, or
passes. This collaboration decide who came first when two players play a
card almost simultaneously. In the Game Updates collaboration, the players
and the discard pile distribute game data, like number of cards at hand or
the color chosen after a wild card has been played. In the Draw Card col-
laboration, the players draw card from the draw pile. In case of an empty
draw pile, the discard pile must be turned. This happens in the Turn Pile
collaboration. In this discussion we will focus on the discard pile partition
in the top right of Fig. Discard pile is the partition owning all game
variables. In this example, the discard pile performs two tasks, but we will
later see that it also has a number of other tasks. The two tasks are to vali-
date the card and update all game data. When a card is played, the discard
pile will check whether the played card is a legal one, which means having
a correct color or symbol. If it is a legal card, all variables will be updated,
as it now is a new card on the discard pile, turn is moved to the next player,
and so on.

Problem context When specifying the validate card behavior we saw that
it included many UML elements. As a consequence of this, we thought of
having a building block for this function. Then we realized we would get
problems with the variable access. However, not having a building block
would result in a complex and large-scale specification. Thus, we had to
find alternative ways to describe the wanted behavior.

5.2 Modeling Issues in Regard to Variable Access and Clearness

47

Playing
player discardpile
[#lme; int [¢lturn:int
[#] others: int [#] DiscardPile: List<Card=>

[#] otherNames: String

c4: MakeMove

[#] hands: List<int=

[#]topColor: int
[#] direction: int
[#] players: List<int>
[#]topcCard: Card

[#]termpMove: Move

[#] direction: int
[#]topCard: Card

[#] hand: Arraylist=Card=>
[#lturn: int

[#ltopColor: int

c3: GameUpdates

c0: TurnPile

drawpile

cl: DrawCard

Figure 5.1: Simplified Playing activity in Arctis

Preview. The rest of this section presents and discuss the solutions we
considered. This includes using building blocks with shared variables,
a flat specification, more comprehensive building blocks, building blocks
with variables provided as input parameters instead of sharing data, and
finally typed collaboration roles. Table [5.1|gives a brief introduction of the
solutions discussed in the rest of this chapter.

48 Specification Guidelines

Preview

Alternative 1: Shared data between building blocks

The building blocks share data with the
parent partition. Meaning that a building

block may access the data from within the
building block.

Flat specification where no building
blocks are used. This results in many
UML elements on the same level.

More of the behavior may be put in call
operation actions, resulting in a less de-
tailed activity diagram, thus less UML el-
ements.

All data that are needed in the building
blocks are provided as input parameters
to the block, meaning that no data shar-
ing is used.

Alternative 5: Typed collaboration roles

The collaboration roles encapsulate data
by interfaces. If collaboration roles want
to share data with other collaboration
roles, their interfaces implement inter-
faces of the collaborations roles it wish to
share data with.

Table 5.1: Preview of the solutions to be discussed

5.2 Modeling Issues in Regard to Variable Access and Clearness 49

5.2.1 Alternative 1: Shared data between Building Blocks

The validation of a card is a task which is natural to separate from the rest
of the system and make a unit for this task only. The solution first coming
to mind is to make a building block. The card validation function is a small
function in the system as a whole, but as mentioned before, it involves quite
a few UML elements, as shown in Fig. All the different UML elements
take the focus away from the function itself, which is to validate the card.
A building block Validate Move hides the complexity in another level of
abstraction. A similar building block Save Data can be made for hiding the
elements whose function is to update all the variables. Fig.|5.3|illustrates
the approach.

I N
ValidateMove:

main [l move: Move [¢ltopColor:int [#ltopCard: Card [#lturn: PlayerData

;2 ralua Moy
set move validColor "[validSymbol) wildcard)
:boolean | ' boolean NI,|; Boolean
' [Efalse}

[$‘$e|se] [$‘$turn=sender1 [Etrue] [Efa\se]
i

Validate: Move B

N1 boolean [Etrue]
[Efa\se] v [ﬁtrue}
[Etrue] [Efa\se]
! : '
[get move] [get move] get move get move] [get move
result: Move result: Move Nresult: Move R result: Move result; Move

Ealidjumpin: Move Elinvalidjumpin: Move Evalidvove: Move Elnvalidvove: Move EwalidwildCard: Move

Figure 5.2: Building block Validate Move in Arctis

There is a problem with this solution. The building blocks inside the
discard pile partition, Save Data and Validate Move, do not have access to the
variables of the discard pile. It is possible to give these building blocks ac-
cess to the variables of the surrounding partition. This will, however, break
the principle that building blocks should be self-contained, and therefore
independent of the surrounding elements and variables.

A possible solution is to let the building blocks maintain their own vari-
ables, normally a subset of the variables in the surrounding partition. These
variables will have to be mapped to the variables in the parent partition. To
differ between variables that are local and variables that are mapped to the
surrounding partition, we can declare variables public and private. Public
variables are mapped to the variable with the same name located in the sur-
rounding partition. Making changes to the variable in the building block
means that the variable in the service are changed simultaneously. Vari-
ables that are declared private may only be read and changed from within
the building block.

50

Specification Guidelines

Playing

discardpile

Cardl

c3: GameUpdates

c4: ValidateMove

% Validate: Move

[& Invalidjumpin: Move

2 InvalidMove: Move
= validwildCard: Move

B szlidiumnin: Move B validMove: Mowe

GameNatal Indated: Mowe

Figure 5.3: Screenshot of playing activity with building blocks

The building blocks are not likely to be reused in other parts of the sys-
tem, or other systems as they are special for the UNO system, and does not
perform a repetitive task. This in itself is a good reason not to use building
blocks. Another downside with using building blocks with shared data, is
it may lead to competition for resources and in the worst case a deadlock.
It is also a possible source for bugs. Say, that variables are declared pub-
lic that should not be public, and are overwritten in the parent partition
because it had a variable with the same name.

5.2 Modeling Issues in Regard to Variable Access and Clearness 51

5.2.2 Alternative 2: A Flat Specification

The straight forward solution to the problem with building blocks and
shared data is to have no building blocks. However, the consequence of
not using building blocks is a specification difficult to understand as we
get a large number of UML elements on the same level. This is illustrated
in Fig. As mentioned before, one of the strengths of the collaboration
and activities approach is that is should be easy to understand, so this is
not a good solution either.

In many cases it may be a good solution to have all elements on the
same level, but often there are too many actions. In these cases we need
to find another solution, one that are robust and in conformance with the
UML standard. One way to go is to try to reduce the number of UML
actions to make the specification more clear.

Playing

discardpile
Hlvalue: boyve - -
set tempMove validColor validsymbol) wildcard)
T: oolear R boolean M boolean

c2: MakeMove
\ 3 et tempMove
VRl e M3 Hrh’esut Mave

CardUpdate: Move & l
oo ean P

Kdresult: Move

: Plaverlntn

set toECard

[get tempMove
KA result: Move

c3: GameUpdates

RequestColor &

Figure 5.4: Solution with flat specification

52 Specification Guidelines

5.2.3 Alternative 3: More Comprehensive Call Operation Actions

It is possible to have a single call operation action validate the move and
another call operation action to save all data. This means expressing more
behavior in Java and less using activities. This approach makes data shar-
ing unnecessary, as all operations are on the same level. It also hides the
complexity and less important operations, and makes it easy to understand
the specification.

On the downside, there is more to program and less that can be auto-
matically generated. The behavior is described in a less accurate way, mak-
ing it harder to know exactly what happens by looking at the specifications.
For example, for the call operation save data, you know that some data has
been saved, but not exactly which data. In our UNO specification we can
argue that knowing exactly which data has been saved is not important.
Having a correct, easy to understand behavior is much more important,
and to accomplish this, call behavior actions are a good solution, at least in
this example. There may be occurrences where this is not satisfying, where
building blocks or a more detailed description are better solutions.

Call operation actions are practical as long as a limited number of out-
put parameters are needed. If several output parameters are needed, the
call operation actions should be divided into several call operation actions.
First, as Java only permits one return parameter, which means that all pa-
rameters must be aggregated into a single object or data structure. To ex-
tract information from this object, several operations and control nodes are
needed to extract the necessary data from the aggregated object, and then
decide what to do.

Validate move has several return parameters, and should for this reason
be divided into several call operation actions. The operations in the green
rectangle in Fig. 5.5/shows how validate move are divided. First, call oper-
ation action validate Jump-in or validate Card are called, depending on who's
turn it is. If the card is a valid card, a call operation action are performed
to check if it is a wild card, in which case the player must be requested to
choose a color. Listing[5.1shows the Java code for these three operations.

5.2 Modeling Issues in Regard to Variable Access and Clearness 53

Playing
discardpile
c2: MakeMove [set terIpMove]
| v]
¥ ¥
[validate|urmpin] [validateCard]
NA: boolean NT: Boclean
l
e l
riptor |
hd
Invalidmove &5 - -
{ |
i |
| ¥
] 1 [iswildCard]
KA boolean
¥
CardUpdate: Maove & v v
T «

updateGameData
R Move

c3: GameUpdates

A

RequestCaolor

Figure 5.5: Screenshot of call operations actions

54 Specification Guidelines

Listing 5.1: Java methods corresponding to call operation actions for vali-
dating a move

public boolean validateCard () {
if (move. getCard () . getColor () == topColor ||
move. getCard () . getSymbol () == topCard.getSymbol() ||
move. getCard () . getSymbol () == WILDCARD) {
return true;

}
else{

return false;
}

}

public boolean validateJumpin (Move m) {
if (move.getCard () .getSymbol() != WILDCARD) {
return move. getCard () . getColor () == topColor &&
move. getCard () . getSymbol () == topCard. getSymbol () ;

}
else{
return false;
}

}

public boolean isWildCard () {
return tempMove. getCard () . getSymbol () == WILDCARD;
}

To save the game data, only one input parameter is needed. The move
object is provided at output parameter, as it will be needed in the next input
parameter nodes. Since it has only one output parameter, only one call
operation action is needed. The call operation action is shown in the red
circle in Fig.

To summarize, call operation actions should only be used when:

e Making building blocks is a bad solution because of shared data and
lack of generality.

o Call operation actions can be used to hide unimportant functionality,
like set and get variable actions and create object actions.

How call operation actions should be used:
e Small enough call operation action so only one return value is needed.

e Large enough granularity to a reader can understand what it happen-
ing without reading the Java code.

5.2 Modeling Issues in Regard to Variable Access and Clearness 55

5.2.4 Alternative 4: Providing Variables as Input Parameters to
Building Blocks

The problem with alternative 1, having building blocks, is the need for data
sharing between building blocks and partitions. It is possible to give vari-
ables as input to a building block, as illustrated in Fig.[5.6] This solution is
not the same as sharing data, as the building block have copies of, not refer-
ences to, the discard pile variables. This means the variables in the building
block do not change if the variables in discard pile changes. Fig.[5.7]shows
the details of the validate move building block.

Playing

discardpile

c4: ValidateMove

Nresult: int

get topColor

% Validate: Move
c2: MakeMove

[Invalidjumpin: Move topColor: int &
e o2 nvalidMove: Move

@ validwildCard: Move topCard: Card [
CardUpdate: Move &

c3: GameUpdates
M Garmenatallndated: Mave
RequestColor &=

Figure 5.6: Building block with variables provided as input parameters

This solution works fine as long as the variables sent as parameters to
the building block does not have to be changed within the building block.
In the example of validate move, we only wish to check the variables values
to be able to verify if a correct card has been played. In the example of save
data, all variables will have to be sent to the building block, then saved in
the building block, and finally have to be given as output from the building
block so the data may be saved in the partition as well. This is clearly a very
bad solution, as it involves more operations than a flat specification.

56 Specification Guidelines

e ~
ValidateMove

main [#lturn: int [¢]lmove: Move [#]topColor:int [¢]topCard: Card

topCard: CardE—— -

1 I] —
Bualue: card | FifbreThirmufizn T——
[set topCard] { [set turn] [set topColor]
turn: int
topColor: int B}
Validate: Move B ¥
fhwaiba-plowve validcolor I validSymbol —* wildCard
“sat move “Doolean | W Boolean ‘ Wd: boolean
1 [$‘$turn:sender] [ﬁfalse]
_ — 1 |
[i e\sa] [Etrue]
|
N boclean | [Efalse} ¥ [Etrue}
[ﬁtrue:l l [ﬁfs\sa] [Etrua] ‘
—

'
getmove) ([getmove) (_getmove] ([_etmove) | get move)

NAresult: Move Wresult: Move MMresult: Move Mresult: Move result: Move

Ié‘v’a\idjumpin: Move Invalidlumpin: Move li“\,’ahdMuve: Move InvalidMove: Move EdvalidwildCard: Move

Figure 5.7: Building block Validate Move with variables provided as input
parameters

5.2.5 Alternative 5: Typed Collaboration Roles

The fifth alternative takes a different approach. The idea is to let the col-
laboration roles encapsulate data by interfaces. In this way, variables which
are needed in several collaborations and building blocks are available where
they are needed, without having to send data between collaborations. The
approach will be explained with an example, and then discussed in the end
of this section.

_ =~ 7 “MakeMove _ = -

_—— e == === == = -
<<interfaces>> , - ~ N ::-:mterfa_ce»
IPlayerMM ! FR—— \ IDiscardpileMM
- vo-lplayer: IPlayerMM 1scardpiie: } toncard: Card
+hand: Arravlist<Card= N IDiscardpileMM P +topCard: Car
+setHand () - P +getTopCard()
~ - +setTopCard()
- — - -

Figure 5.8: Collaboration Make Move

The internal structure of the MakeMove collaboration is shown within
the UML collaboration in Fig. The collaboration consists of two collab-
oration roles, player and discard pile. An instance playing the player role
must possess the properties specified by the interface IPlayerMME and sim-

'The name IPlayerMM is chosen over IPlayer to make it easier to understand which in-
terface is discussed, as there will be several IPlayer interfaces.

5.2 Modeling Issues in Regard to Variable Access and Clearness 57

ilarly for the discard pile role. The IPlayerMM and IDrawpileMM interfaces
are shown in the figure, connected to the roles with dashed lines. Note that
this is not UML standard notation, but for illustration purposes only.

Fig. shows the incomplete activity diagram for the collaboration
Make Move. The discard pile partition, which corresponds to the collabo-
ration role discard pile, has two call operation actions setTopCard and get-
TopCard, referring to the methods specified in the IDiscardpileMM interface.
It also has a variable, topCard, which refers to the variable with the same
name in the IDiscardpileMM interface. Similarly, the player partition has
a call operation action setHand, and a variable hand, corresponding to the
method and variable in the IPlayerMM interface.

s !
MakeMove

player discardpile

hand: ArrayList=Cards= topCard: Card

setTopcare
getTopCard

L. -

Figure 5.9: Activity diagram for collaboration Make Move

The lower part of Fig. shows the MakeMove collaboration used
within the playing collaboration, where the roles in the playing collabora-
tion are bound to the roles in the MakeMove collaboration. The same roles
are also bound to the roles in the game updates collaboration, which has a
structure which is similar to the MakeMove collaboration.

The player role in the playing collaboration must possess the properties
specified by IPlayerMM, in addition to the properties specified by IPlayerP.
This is solved by letting the interface for the player in Playing, IPlayerP, im-
plement the IPlayerMM interface in the MakeMove collaboration, as shown
on the left in Fig. Similarly, the IDiscardpileP interface must implement
the DiscardpileMM shown on the right side of Fig. As IDiscardpileP in-
herit methods from the IDiscardpileMM, the collaboration role discard pile
in the Playing collaboration can access methods from both interfaces. This
is shown in Fig. where the call operation actions call methods from
both the IDiscardpileMM and the IDiscardpileP interface.

In addition to implement the interfaces in the make move collaboration,
IPlayerP and IDiscardpileP in Playing must also implement the interfaces
of the game updates collaboration, as the playing roles must possess the
properties of the roles in the game updates collaboration to play those roles.
Fig. shows that the playing interfaces implement both the interfaces

58 Specification Guidelines

-

=z Z _ _ _MakeMove T - |
- -
<<interfaces> P - ~ \ <<interface>>
IDiscardpileMM
IPlayerMM ! \averIPlaver| discardpile: ’
hand \ playeriHayertiid IDiscardpileMM P +topCard: Card
+setHand () N - +getTopCard ()
Y S - +setTopCard()
- _ -
I Tt e T A
I - I
| P Playing N 1
L - - - - - = - = = === — I
| - JSEECLI . N |
1 < T m: MakeMove N
<<interface>> ,-‘/ P RN A - If .
~ <<lntertace>>
IPlayerP i’ \ : ¢
Y [' 4 | IDiscardpileP
+turn \ discardpile: |
+color \ playeriPlayer? IDiscardpileP [+Turn
+setTurn() \ 13 ¥ / +direction
+getTurn() " N R - / p +geE'DI'L_JI"n(i_ o
+getDirection
+setCotor() > N g:GameUpdates ¥ P

F T TP - -

Figure 5.10: Interface implementation

Playing

player discardpile

hand: ArraylList<Card> tC‘F‘CEf‘C!Z Card
turn: int turn: int

colar: int direction: int

setTopCart
getDirection

Figure 5.11: Activity diagram for collaboration Playing

of make move and game updates. At the bottom of Fig. it is shown
that the player role in the system collaboration NTNUNO must possess the
properties of the player role in playing, and thus inherit these properties
through interface implementation.

The result of this is that variables which are saved in e.g. the NTNUNO
collaboration can be read from the Playing collaboration, given that meth-
ods for reading this variables are provided in the interfaces of the Playing
collaboration. This means data which is needed in several collaborations
do not have to be sent between the collaborations; defining methods for
saving and reading these variables are sufficient. Fig. shows how the
top level activity NTNUNO looks like when sending data between collab-
orations between data is avoided. Fig.|6.1{shows the same activity where
data is sent between collaborations.

5.2 Modeling Issues in Regard to Variable Access and Clearness 59

<<interfaces>
IPlayerGu

<<interface>>
IDiscardpileGU

+hand
+topCard; Card

+getTopCard ()
+setTopCard ()

+getHand () ~

+setTopCard ()

<<interface>>

IPlayerMM

-
player:|PlayerGU
+topCard \
~
-
=~ -
_ -

~ “MakeMove T = ~

I

I +hand

1 +setHand ()
]

\

7.

1

\ 1
]

|

\ 1

<<interfaces>
IPlayerP

+turn
+color
+setTurn ()
+getTurn()
+setColor()

-y

<<interfaces>
IPlayer

+otherPlaver:

+setOtherPlayers()

== _ _ _ _MakeMove " - -
P ~
P ~
/ Y
discardpile:
player:|PlayerMi IDiscardpileMM ’
N “ e
~ - -
~ — -

-7 Playing s

~ g:GameUpdates f ~

~ . o

- 7 T<<Systems> T~

NTNUNO ~

discardplle:
IDiscardpile

<<interface>>

IDiscardpileMM

+topCard: Card

+getTopCard()

~{+turn

+setTopCard ()

7.y
I
]
I
|

IDiscardpileP

+direction
+getTurn()
+getDirection()

A

|
<<interface>>

IDiscardpile

“|+topCard: Card
+getTopCard()
+setTopCard()

Figure 5.12: Multiple interface implementation

<<interfaces> |

60

Specification Guidelines

«system»
NTNUNO
player discardpile drawpile
[#] players.: ArrayList<PlayerDescriptor> 2NewGame
[¢] score: int[] M plavers: Arravl

=

E ’
c2: End

an . =
B ContinueGame B Gameower

Figure 5.13: System activity using alternative 5

5.2 Modeling Issues in Regard to Variable Access and Clearness 61

For building blocks like Validate Move to get access to these variables,
the same approach is used. In this example, we wish to have a validate
move block in the discard pile partition in the playing collaboration. Val-
idate move may define its own parameters and variables, in an interface,
which the entity playing the discard pile role must implement. This is il-

lustrated in Fig.

IValidateMove

+turn
+topColor
+topCard
+getTurn()
+getTopColor()
e +getTopCard()

P Playing T~ x
Lo T o .
~ IR . ~ I
/s o . N |
/ Am:MakeMove 5
P RN \ 1
/ < ~ \ <<interface>>
I ~, . .
<=interface== | 4 A | IDiscardpileP
discardpile:
IPlayerP layer:IPlayerP
4 A Flay Y IDiscardpileP ! ttopCard; Card
\ *® ' 7 +getTopCard ()
~ N e i Vi +setTopCard()
~ v"" T -
~ ¢ g:GameUpdates 7 -

-
-

Figure 5.14: Inheritance of building block

This solution enables data sharing between collaborations and building
blocks in a smooth and intuitive way, which gives a clearer specification as
it is not necessary to model the exchange of data between collaborations
and building blocks. Modeling of behavior will not be driven by where
data is available, but by where it is natural for a user to place the behavior
to make a clear specification. Thus, this solution will make the specification
more intuitive as sending data between collaborations seems unnecessary
and inefficient.

The multiple interface implementation process can be highly automated,
and Java access methods can be generated automatically. This means that
the complexity are hidden from users. However, how this can be solved in
Arctis is not a focus in this work.

5.2.6 Discussion

While specifying the behavior of UNO, it is important that the specifica-
tions are compact and easy to understand. This means that a reader un-
experienced with UML collaborations and activities should understand it
without a throughout explanation. Reuse is also important, as it is one of
the basic ideas behind collaborations and activities. A system consists of a
number of building blocks that may be reused in new service specifications.

A third issue worth considering is how detailed the specification should

62 Specification Guidelines

be. In general, we wish the specification to be detailed enough to describe
all important decisions and operations.
To find out which solution are best, we have listed a few criteria.

e The behavior must be clear and easy to understand.
e Reuse must be possible.
e The specification should be in conformance with the UML standard.

e Reasonable granularity. Not to fine and not to coarse.

The solution first proposed, building blocks with shared data, are intu-
itive to understand. However, shared variables may have unwanted side
effects. The solution is not in conformance with the UML standard.

A flat specification may take time to understand, even for a person ex-
perienced with these kind of specifications. The finer granularity, the more
difficulties with understanding the specifications. However, there is no
need for shared data, and the solution is in conformance with the UML
standard.

More comprehensive call operation actions does not involve shared data,
and it is possible to hide complexity. However, hiding too much of the com-
plexity means a less descriptive behavior, which again means that it does
not describe in detail what happens. This is not necessarily a bad thing as
it is not all behavior that are important to know in detail. Another down-
side is that less of the behavior is automatically generated using Arctis, and
more work has to be done manually by implementing the functionality in
Java.

The solution with providing variables as input parameters to building
blocks has a drawback as it can not be used when the input parameters
need to be changed inside the building block. It may also seem a bit noisy
if the building block needs a large number of input parameters, as each of
these variables will have to be read outside the building block, and saved
inside the building block. Advantages with building blocks are that there
is no need for shared data, and it is possible to have a fine granularity
within the building block, while the behavior specification look nice and
clear from outside the building block.

Typed collaboration roles are in conformance with the UML standard,
and makes it possible to share data between building blocks and collabora-
tions, while ensuring possibility of reuse. Tbl.[5.2] summarizes the discus-
sion.

5.2.7 Conclusion

In the example with validate move, the typed collaboration roles solution
seems like the best choice, as it does not have any serious drawbacks. The

5.2 Modeling Issues in Regard to Variable Access and Clearness 63

Solution name Pros and cons

Share

data between

building blocks + Intuitive and easy to understand

A flat specification

More

comprehensive
call operation actions

Building blocks depend on surrounding par-
tition

- Easy to make mistakes

+ No need for shared data

- Requires time to understand specification

+ No data sharing

+

Hides complexity

+

Easily understood

- More to implement, less generated automat-
ically

- Less descriptive behavior

- Person looking at specifications do not un-

derstand what happens
Provid iabl
 roviae varan'es a5 | No need for shared data
input parameters to
building blocks + Can have a fine granularity
- Seems unnecessarily complex
- Can not be used when the input data need to
be changed
Typed llaborati
rglFe): cotaboration Conformance with UML

+ Makes it possible to share data between col-
laborations and building blocks

- May get race conditions

Table 5.2: Possible solutions with their pros and cons

64 Specification Guidelines

solution with shared data should be avoided, as the typed collaboration
roles solution solves the problem in a better way. Call operation actions,
data input to building blocks, and a flat specification are all used in the
UNO specification, but for the problem described in this section they was
not ideal.

An example of where call operation actions can be used is with save
data. Even if it is possible to make a building block for save data with typed
collaboration roles, call operation actions may be a better solution. A single
call operation action may be just as easy to understand as a building block,
and defining exactly which data that is saved in the activity diagram is not
important.

Chapter

Specification of UNO — Part 2:
Behavior

This section describes the behavior of UNO in the form of activity dia-
grams. Sect. describes the top level behavior, while the three next sec-
tions describe the behavior of the three collaborations Setup, Playing and
End. Then, in Sect. lists the simplifications done on the UNO imple-
mentation.

6.1 System View

A screen shot from Arctis of the activity diagram describing the behavior
of the NTNUNO collaboration is shown in Fig. This activity diagram
connects the collaborations Setup, Playing, and End. When the system starts,
we immediately arrive at a receive signal action. Upon arrival of signal
New Game containing the list of the participating players, we arrive at a
fork node. The leftmost outgoing edge continues to save the players to
the player variable, before creating the score list. The rightmost edge that
leaves the fork node starts the Setup collaboration. The Setup collaboration
performs the initialization of the game, like dealing cards to players and
choosing a player to start the game.

In the Playing collaboration the participating roles need the data that
are created in the Setup collaboration. The players need information about
the card they have been dealt, whose turn it is, other players, and top card
on the discard pile. The discard pile needs the same information except the
card details, and the draw pile needs to get the remaining cards in the draw
pile. This information is provided from the Setup collaboration to the input
parameter nodes Initial Data, Draw Pile, and Start Game. When this data is
available, the Playing collaboration starts.

65

66 Specification of UNO — Part 2: Behavior

When a player has no cards left, the hand is over. The output parameter
node HandOver contains data that will be needed in the End collaboration.
This includes the winner of the game, and the remaining cards in both the
discard pile and the draw pile. The End collaboration starts when input to-
kens are available in the Hand, FinalGameData, and Score parameter nodes.
If a player has reached 500 points and thus wins the game, the End collab-
oration terminates via the output parameter node GameOver. Then the NT-
NUNO collaboration is terminated. If no one has won the game, the score
is updated, and the End collaboration terminates via the output parameter
node RestartGame. This token is provided to the Setup collaboration via the
input parameter node ContinueGame.

«system»
NTNUNO
player discardpile drawpile
[#] players_: Arraylist=PlayerData= 2 NewGame I
[#] score: int[] N plavers: Arravl

h

(3 H F'.Ia;ring

DrawPile: Arr

Ml Handower: Frdhata

c2: End

M RestartGame: Arravl ist M SetSeare: intl]

Ak ain

NEETETE
set score

Figure 6.1: System activity

6.2 Collaboration Setup 67

6.2 Collaboration Setup

The Setup activity describes the behavior of the Setup collaboration, and is
shown in Fig. As input, the activity receives the players participating
in the game via the starting pin SetupGame. The input token immediately
arrives at a fork. The fork has three outgoing edges:

o The first edge starts the collaboration DistributePlayers, which informs
all players about the participants in the game.

e The next saves the players to the players variable. Then a player is
randomly chosen to start the game, and the SelectTurn collaboration
is started.

e The third outgoing edge from the fork enters the partition draw pile,
upon which a number of things happens. First, the 108 cards used in
the UNO game are created to form a draw pile. Then a card is ran-
domly chosen to start the game. (If the card chosen is a wild draw
four, it has to be put back in the pile, and another card is chosen).
When a card is successfully chosen we arrive at a fork, where one
outgoing edge starts the collaboration Deal. In this collaboration all
players are dealt seven cards each. The other edge starts the SelectTop-
Card collaboration, where all players are informed of the card chosen
to begin the game.

Note that all collaborations that are started are multi-session collabora-
tions, seen from the discard pile and the draw pile. Thus, when entering
the collaborations, a selection of session must be done. When entering the
sub-collaborations in the Setup collaborations, all sessions are chosen using
select all. This is not yet implemented in Arctis, but is shown in Fig.[6.2|as
an illustration.

When a Deal collaboration is terminated, we arrive at a decision node.
A guard checks if more Deal collaborations exists in the guard exists c0:
active. If some collaborations still are active, the flow is terminated, as it
means that not all players has been dealt cards yet. If no Deal collaborations
are active, the Setup collaboration can finish.

As discussed in the previous section, the players need data about play-
ers, top card, who start the game, and which card they have been dealt in
the Playing collaboration, and thus has to be sent transferred from the Setup
collaboration. When all this information is ready, it is packed in an object,
and sent to the output pin InitialPlayerData. The discard pile need the same
data, with the exception of the hand. An composite object is created, which
is sent to the output pin InitialData. The draw pile will need the drawpile
variable in the Playing collaboration. This is sent via the output pin Draw-
Pile.

68 Specification of UNO — Part 2: Behavior

- \
Setup

player [2..10] discardpile

[#] players: ArraylList<PlayerData>
[#]topCard: Card
c3: DistributePlayers [#lturn: int

[$‘$ select all}

DistributePlay: PlayerData>
SetunGame:

PlayerData

I = Players: Arraylist<PlayerData>

t

set players

[]
.I
-“‘—Iq—ECOntmueGame
-—
cl: SelectTurn s
SetTurn: PlayerData & selectPlayerToBegin

e
-

tint

createlnitialControllerData

N InitialData

InitialData:
InitialControllerData

drawpile

 —
[¢] drawpile: ArrayList=Card=> -

createDrawPile

c2: SelectTopCard

drawRandomCard

SetTopCard: Card &
¢ select aII}

.= 1opCard: Card

0: Deal ‘$else]v .
< o2 [$‘$|sW\\dDrachur]
Ve, card
addToDiscardPile

[$‘$ [select a\l]]

< Hand: ArrayList<Card> Deal: int &

Heountiia
drawPlayerCards
WA ArravList<Car

& o adribhelabepaen

'createinitialData J
N InitialData

[$‘$ e\se} 1

M result: Arraviis

¢°g [exists cO: act\ve]]

Elnlt\a\P\ayerData: InttialData DrawPile: ArrayList<Card>

Figure 6.2: Activity Setup

If the game is played in several rounds until a player reach 500 points,
the Setup collaboration may receive a token via input pin ContinueGame to
make ready for another round. As the players already have information
about their opponents, and the discard pile already have saved the players,
these two functions are omitted, and else the same flow is followed as when
receiving a token via the SetupGame input pin.

The Distribute Players activity is shown in Fig. The activity starts
when the input pin DistributePlayers receives a token. The token is sent to
the discard pile which contains a fork. One edge is sent to the send signal
action, which send the list of the participating players to the user interface.
The other edge terminates the collaboration via the output pin Players.

The activities Select Top Card and Select Turn is similar to the Distribute
Players activity. The activities are shown in Fig.[6.4/and Fig.[6.5] respectively.

The activity Deal is shown in Fig. The activity starts with the arrival
of a token of integer type in the input pin Deal. The token immediately ar-
rives at the output pin GetCards. This is necessary as the draw pile in the

6.2 Collaboration Setup 69

DistributePlayers

player discardpile

Players: Eft———eeememeees I

— === DistributePlavers:

Arraylist<PlayerData=> ArraylList<PlayerData>
— ; Lt
Participants

:

Figure 6.3: Activity Distribute Players

' ™
SelectTopCard

player drawpile

. [
TopCard: Card I4---- ----------------- 9 SetTopCard: Card
{ TopCardUpdate |

&

Figure 6.4: Activity Select Top Card

SelectTurn

player discardpile

A

PlayerToBegin:

PlayerData T < SetTurn:

PlayerData

TurnlUpdate

:

Figure 6.5: Activity Select Turn

collaboration has no access to the draw pile attribute. The cards arrives at
the input pin Cards, and arrives at a fork. One of the outgoing edges arrives
at the player, where the hand is sent to the interface, and leaves the collab-
oration via the outgoing pin Hand. The other outgoing edge terminates the
collaboration.

70 Specification of UNO — Part 2: Behavior

'd Y
Deal

| g dr il
[HEE ML ———d Deal: int

L GetCards: int

Hand: ArrayList<Card= e —l A

—r' r—ECardS:
1 Arraylist<Card=

R cards: Arrad st

SetOwnHand |

@
L4
Mpone

Figure 6.6: Activity Deal

6.3 Collaboration Playing

The playing activity is shown in Fig. To reduce the size and complex-
ity, this diagram is modeled assuming use of typed collaboration roles, as
described in Sect. With typed collaboration roles, data can be shared
between collaborations and building blocks, and more of the behavior in
the Playing collaboration can be put in building blocks and collaborations.

As the Playing collaboration is a rather complex collaboration with many
variables, several sub-collaborations and many things happening, the effect
of using typed collaboration roles is in this case a significantly smaller and
less complex activity diagram. However, it still is a complex activity di-
agram, and will not described in details. The sub-collaborations and the
most important building blocks will be described in detail in the next sec-
tions. The playing activity starts when a token is available in the input
pin StartPlaying. We arrive at a fork, where the control token is duplicated
twice. One outgoing flow is sent to the draw pile and arrives at a join node.
The second outgoing flow creates the initial data, and activates the player
buttons at the players sideE] The third flows starts the collaborations Make
Move and Game Updates. Now, the players can start playing UNO.

In the player partition, mainly two tasks are performed. One is to up-
date game data when there has been a status change and informing the
external user interface of these changes by sending signals. This is done in
a number of building blocks. The second is to accept input from the user
interface, and perform actions according to the type of input. For example,
if a draw button is pushed, the collaboration Draw Card is started. If the
player plays a card, the card is sent to the Play Card collaboration. Input
from the user is handled in the building block PlayerInput.

!For clarity, the control flow is not drawn across the whole diagram. Instead, the control
flow goes to a encircled A, and is continued in the similar token on the player side.

71

6.3 Collaboration Playing

b -
_”mm_m ?wu_

S pUED (PIEDPPY

peiepdnspueH

uumvazm—uzmz._.w_.mwc 162 TEHEE?&

eleqlade|d [JanopuEeH

GJUIpUEH

e

uMEI[|sEHJ2AE|Q
SAE|d NS CEE] 1]

< ndujoun

Ul andumelg

Ul doju
£ a1epdnJolo
Buiie|guels Bt P&iepcnIo|o Tm_m?&
ajepdnuojod 012 LINLIBY30 &
< Indu|ssed
< pJed andujpaed
mdupaie|d 92
. o

[sw=wnys,5]

1

ERL=TalEY

_”_m_ucmmHE_im H_
PE4EpUr LI

—
L
1

EjegelUEDaIERdN

i ojoddoy [#]
penesee ks

=

| <eleQlade|d =1sMAeLy isiade|d [¢]
=pleD=1sAelly (e)dpiedsip [4]

anol 2noduwal (4]
peD ipieddole]

B0 180

PAED [EnULEY ejegaiepdn :8>

[Jaut :spueH.aLio [¢]
Eleiade|d Bl [#]
UL U0RIEIp [4] panoWEYpIED £ <eleIake|d>15MARLY (S13AB|dIaY10 [¢]

a0 i31pljeA

BA G2 andpieasip [Tt] B [o1 2] 1aheld

ity

1V1

t

Playing ac

Figure 6.7

Buife|qd

72 Specification of UNO — Part 2: Behavior

In the discard pile partition, the cards played are validated, and if they
are valid, game data is updated. Further, if a wild card is played, the dis-
card pile requests a color from the player playing the wild card. This hap-
pens in the Color Dialog collaboration. In the collaboration Turn Pile, the
discard pile is emptied, with the exception of the topmost card, and added
to the draw pile.

The draw pile makes sure that only one player at a time can draw a
card. This is done using a join node, which received a input flow when
the activity started. When a player wants to draw a card, he has to ask for
allowance. This happens via the output pin getAllowance from the Draw
Card collaboration. Then, the second token arrives at the join node, and the
join node can fire, granting the user access to draw a card. Now there is
no tokens at the join node, so if another player wants allowance to draw
a card, he must wait until the player holding the allowance to return the
token to the join node.

6.3.1 Collaboration Make Move

The Make Move collaborations handles mixed initiative, a problem common
in reactive systems, which is hard to get right. Arctis will provide solutions
to help the engineer handle mixed initiatives, but this function is still under
development. For this reason we have specified the ESMs (External State
Machines) for the Make Move collaboration instead of the activity diagrams.
ESMs describe the externally visible behavior on each of the participants in
the collaboration. An external state machine document in which sequence
the pins of an activity may be invoked [19]. This description is sufficient for
an engineer to use the collaboration as a building block, as we have done
with the Make Move collaboration in the Playing collaboration described in
the previous section. Knowing the internal details is not necessary. Fig.
shows the collaboration Make Move, to which we will describe the ESMs.

m: MakeMove

Start i3

PassUpdate: PlayerData <

Figure 6.8: Collaboration Make Move

6.3 Collaboration Playing

73

fout: I

Mewhove

in: Play/

WaitCardValidation

fout: PassMOK

i fout: OtherHasPaszed

in: Pass/

WaitPassWalidation }

Jout: PassOK

fout CardAccepted

fout: CardRejected

\r P
(Active) C Active) (_ Active)

Figure 6.9: ESM Make Move, Player partition

The ESM for the player partition in the Make Move collaboration is shown
in Fig. This refers to the pins on the left in Fig. Seen from the player
side, the activity starts in state active. At any time, the player can receive
updates from the discard pile, telling that another player has made a move.
This is expressed by the self-transitions /out: NewMove and /out: otherHas-
Passed, which has the state active as source and target. Note that the slash
is used to distinguish between ESM transitions triggered from outside or
inside the block. When the player plays a card, the input pin Play is acti-
vated, and the state WaitCardValidation are entered. Then the card is either
accepted or rejected. Similarly, when a player passes, the pass can either be
accepted or rejected.

in: CardUpdate/

Jn: Startf
‘ in: PassUpdate/

fout: Newhove fout MewPass

YWaitC ardvalidation) YWaitPa ssvalidation
in: ValidCard/ in: InvalidCard! in: ValidPass/ in: InwvalidPass!

Ch o)

Figure 6.10: ESM Make Move, Discard Pile partition

The ESM for the discard pile partition in the Make Move collaboration is
shown in Fig. This refers to the pins on the right in the collaboration
shown in Fig. The externally visible behavior is triggered from the out-
side via starting pin Start. When the block is active, the discard pile may at
any time receive a signal when a player has played a card or pushed a but-
ton via the output pins NewMove and NewPass, shown with the transition
labels /out: NewMove and /out: NewPass. When the discard pile receives a
NewMove it will validate the card, and respond with either a ValidMove or

74 Specification of UNO — Part 2: Behavior

InvalidMove. When a player has made a valid move, the other players are
informed, represented in the ESM with the self-transitions CardUpdate and
PassUpdate.

6.3.2 Collaboration Game Updates

The activity Game Updates, shown in Fig. describes the behavior of
the corresponding collaboration. A player has one collaboration with the
discard pile, while the discard pile has one collaboration with each of the
players. Thus, from the discard pile point of view, it participates in multi-
session collaborations.

-
GameUpdates

player [4] penalty: int discardpile

HandUpdates: Handinfo
Handinfo
Colorupdate: int

otherHandUpdates:::

Updatecolor: int

AnnounceWinner:
PlayerData

M winrer-Rlaya
HandOver

[#s cards==0]

Winner: PlayerData

@
HandUpdate: HandInfo B L PlayerHandUpdate:
[3‘5 cards==] | Handinfo
UNO: PlayerData & - ——
(getpenalty =04 i \
R ft:int |
Invalidune: intEq—‘ resHE PlayerHasSaidUNO:
' PlayerData
! UnoUpdate: PlayerData
1
M plaver PlavarD:
Unolpdate
| Start
@

Figure 6.11: Activity Game Updates

The task of these collaborations is to distribute data among the players.
This includes how many cards the player has at hand, notify other players
when a player has yelled “UNQO”, and color updates when a wild card has
been played. When the player has chosen a color, the controller will inform
all other players of their choice. The color is chosen in the collaboration,
Color Dialog.

Another central task of the Game Updates collaboration is to check if
the players remembers to yell “UNO” when they have only one card left,
and to announce the winner if a player has no cards left. When players
update their hand count, the controller checks how many cards the player
has left. If the player has one card left, a timer is started, and a token is
placed in a waiting decision node. The token remains there until one of
the downstream joins may fire. If the player yells "UNO” before the time

6.3 Collaboration Playing 75

expires, the leftmost join node fires, and the controller will inform the other
players that a player has yelled "UNO”. If the time expires, e.g. after five
seconds, the right join node will fire, causing the player to receive a penalty.
The same penalty applies if a player yells "UNO” when he has more than
one card left.

If a player has no cards left, the player has won the game round. The
controller will announce the winner to all other players. If a player has
more than one card left, the controller will announce how many cards the
player has to all participating players.

6.3.3 Collaboration Draw Card

The activity Draw Card is shown in Fig. The partitions player and pile
corresponds to the roles player and draw pile. The activity starts when
there is a token available in the input parameter node Draw. The input
token is a data token containing an integer specifying how many cards to
draw. From the input pin, we arrive at a fork, upon which a token is sent
to the output parameter node getAllowance asking for allowance to draw a
card, and simultaneously start the Counter building block. When allowance
is granted, the pile status is checked. If the draw pile is empty, the pile has
to be turned, before a card can be retrieved from the draw pile. The counter
block checks if more cards should be drawn. If not, the token is retrieved
and the activity ends. Else, the whole process is repeated until all cards
have been drawn.

s "\
DrawCard

player pile
[#] status: String

draw: int B hl—l e . = getAllowance
3 giveWay
.

getStatus

[s‘ $em pty]

turnpile:

< next: Card [$‘$e\se]l

addcCard: Card B event: Card <P

ok

retrieveCard

Blast: Card

Card: Card

finished: Card Ed—J returnToken

Figure 6.12: Activity diagram draw card

76 Specification of UNO — Part 2: Behavior

Building block Counter

A screenshot of the Counter building block is shown in Fig. The build-
ing block makes sure that a task, in this case drawing a card, is performed a
specified number of times. The counter building block is described in more
detail in Chapt.

(Y
Counter
main
[+l card: Card
[#] count: int
start: int F——e-—esssesssmrnerseeeeeee
Mwaluain
T2 event: Card
NAvalueCard
set card
[s‘s counthA ~[$‘$else]
(__getcard) get card)
Niresult: Car result: Carc
next: Cardﬁqi"
last: Card

Figure 6.13: Building block Counter

6.3.4 Collaboration Color Dialog

The activity color dialog in the player partition of activity Playing is shown
in Fig. This dialog is activated when a player plays a wild card, and
the controller requests the player to choose a color. A Choose Color signal is
sent to the user interface requesting the player to choose a color. An accept
signal event action waits for an incoming signal Color Choice holding the
chosen color.

4 B ™
ColorDialog

player discardpile

ChooseCalor RequestColor
ColorChoice

color: int

ColorChosen: int

Figure 6.14: Activity Color Dialog

6.3 Collaboration Playing 77

6.3.5 Collaboration Turn Pile

The Turn Pile activity is shown in Fig. The partitions draw pile and
discard pile are bound to the draw pile and discard pile roles. The activity
starts when the input is available in the starting node turn pile. An output
streaming node requests the cards from the discard pile, except the topmost
card. An input streaming nodes contains a list with cards. If the list is
empty, an error is output. Else an OK message containing the list of cards
is returned.

' Y
TurnPile
drawpile discardpile
turnpile +l RetrieveCards
[#°s emnpty list]
error [& - cards: ArrayList<Card>
1
1 i,
i [#9 else]
ok: ArrayList<Card> [E] !

Figure 6.15: Activity Turn Pile

6.3.6 Building Block Player Input

The building block Player Input is shown in Fig. The purpose of this
building block is to accept player input from the user interface. The idea
is when one input signal is received, no other signal is accepted until the
previous signal has been processed. For example, when a player plays a
card, the card input, pass input, draw input, and UNO input is deactivated.
When the played card has been accepted or rejected, the input building
blocks are activated again, and they continue to wait for signals from the
user interface. Draw and pass input are only active when it is the player’s
turn, while players can play a card even if it is not their turn. In this case
the player does a jump-in. If the players has drawn a card, the players can
not draw another card until next time it is their turn.

Fig. shows the activity diagrams for the input building blocks used
in the Player Input activity shown in Fig. They differ only in what
signal the accept signal action will accept. The Draw Card signal contains
an integer parameter specifying how many cards to draw. The Play Card
signals specifies which card has been played. This parameters are extracted
from the signal, and returned from the respective building blocks.

78 Specification of UNO — Part 2: Behavior

Playerinput

main

otherTurn a—* c0: Cardinput r—

- st
start -

»& Cardinput: Card

cl: Drawinput

myTurn B— stop €

B 1 ished: int

=5 Drawlinput: int

pIayerHasDrawnE—’I;

» Passinput

c3: Unolnput

=FUn0Input

Figure 6.16: Activity Player Input

6.3 Collaboration Playing

79

Cardinput

main

start 54
;Pa;Card

@G+—mstop

card: Card

B pushed: card
(a) Card Input

Drawlnput

main

start 5}
zDrawCard

@e—Q stop

count; int

Figure 6.17: Input blocks used in the Player Input building block

B pushed: int

(c) Draw input

Passinput

start Bt

main

;Pass

@e+—@ stop

B pushed
(b) Pass Input

Unolnput

start B

main

@e—@stop

Elsushed
(d) UNO Input

80 Specification of UNO — Part 2: Behavior

6.3.7 Building Block Validate Move

The activity diagram for the building block Validate Move is shown in Fig.
In this building block, we assume that data is shared with the Playing col-
laboration using typed collaboration roles. The building block starts at the
arrival of a Move token in the input pin validate. First, the Move token is
saved, and a check is performed to find if it is a jump-in or a regular move.
If it is a jump-in, the jump-in is validated, and the building block is termi-
nated via input pins ValidJumpin or InvalidJumpin, depending on if it was
valid or not. The jump-in is valid if card and color matches the top card at
the discard pile.

If it is not a jump-in, the card is valid if has a valid color, valid symbol,
or if it is a wild card. If it is a wild card, the building block terminates via
the output pin ValidWildCard. Else it terminates via one of the output pins
ValidMove or InvalidMove.

4 N ™
ValidateMove

main ¥l move: Move [#ltopColor:int [#ltopCard: Card [#lturn: PlayerData

;1 lug M
set move validColor r"'[validsymbol) wildCard]
‘boolean | : boolean erz Boolean
Tir false
v [Ffaise]] i

[s°9 else] [turn=sender] [ﬁtruej [T false]
N boolean [Etrue]

[Etrus] [Efalse}

G|

get move] [get move] [get move] [get move] [get move
result: Move result: Move Wresult: Move Hresult: Move result: Move

Validate: Move B

[E false} * [Etrue]

Evalidumpin: Move Elinvalidjumpin: Move ElyalidMove: Move B invalidvove: Move B validwildCard: Move

Figure 6.18: Building block Validate Move

6.4 Collaboration End 81

6.4 Collaboration End

The End collaboration is activated when a player has got rid of all his cards
in the Playing collaboration. The activity diagram for the End collaboration
is shown in Fig. The sub-collaborations of the End activity is shown in
Fig. [6.20}

The activity starts when data is available in the input pins Hand, Fi-
nalGameData, and Score. From the input pins FinalGameData and Score, the
variables winner and score are set, respectively. Then the tokens are ter-
minated. From the input pin Hand, each player starts a collaboration Cal-
culateScore with the discard pile. In this collaboration the points from the
remaining cards on the opponents hands are calculated according to the
rules listed in Sect. The activity diagram for the collaboration Cal-
culateScore is shown in Fig. After the score has been calculated, the
collaboration ends, and the player’s points is added to the winner’s score.
When score for all players has been calculated, a check is performed to see
if a player has reached 500 points. If a player has reached 500 points, the
game is over, and the winner has to be announced. This is done in the An-
nounce Winner collaboration, shown in Fig. Then the End activity is
terminated via the output pin GameQOuver.

- ~
End

player discardpile

[¢]winner; PlayerData
[#]score: int[

c0: CalculateScore
Hand: Arraylist<Card> B = RemainingCards: ArrayList<Card>
Score: int =

[$‘$ exists cO: act\ve}
- .®

[$‘$ e\se}
:boolean

KA
[Etrue} l

€2: AnnounceWinner get winner

NAresult: Plar

Winner: PlayerDescriptor & [ﬁfslsa]

M result: intl
Nualuatin

set score

c3: DistributeScore

&

Score: int[]

Hd e
set <variable>

NFinalGameData: PlayerData M setScore: int[] M GameOver M RestartGame EScore: int[]

Figure 6.19: Activity End

If none of the players has reached 500 points, the updated score has
to be sent to all participating players. This is done in the collaboration
DistributeScore, shown in Fig. After the score has been distributed,

82 Specification of UNO — Part 2: Behavior

e —
CalculateScore
player discardpile
RemammgCards:ﬂﬂ
Arraylist<Card> hand: Apraud ist-
[calculatePoints]
lslH sint
I B Score: int

(a) Activity Calculate Score

r'd Y
AnnounceWinner

player discardpile

Winner:
PlayerData

<GameOver

@

(b) Activity Announce Winner

DistributeScore

player discardpile

Score: int[]

oraintll
T

A
<ScoreUpJate

:

@

(c) Activity Distribute Score

Figure 6.20: Sub-collaborations of the End collaboration

the End collaboration is terminated via the output pin RestartGame.

6.5 Simplifications

As designing a fully working UNO system was not the primary goal of this
work, we have designed a slightly simplified version of UNO. Some of the
functionality that we have excluded is listed below.

e Playing history. A player should get more detailed information on
what has happened in the user interface.

e It should be possible to choose if the player first to get rid of all his
cards wins the game, or if the player first to reach 500 points wins.

e No exception handling. For example, no functionality exists to han-
dle that a player leaves the game in the middle of a game.

e It should be possible to choose how many cards to start with.

6.5 Simplifications

83

e The challenge rule should be implemented.

Chapter

Discussion

Based on the needs for describing the UNO behavior, uncovered by doing
an object and collaboration analysis, we have introduced data into SPACE.
As data is central in all reactive systems, this is an important contribution
to the work of developing a highly automatic engineering method. It is
now possible to describe the complete behavior of systems using activities,
from which state machines and executable code can be generated.

As discussed in this work, one of the strengths of describing behavior
using activities lies in a clear, intuitive specification. However, with the in-
troduction of data, the models grows considerable, resulting in large, com-
plex activity specifications that are difficult to understand. A reason for
this complexity is the difficulty of letting each collaboration model a clear,
separate task, as all collaborations have needs for data owned by a single
partition. Thus, the decision of where to place behavior is driven by where
data is available, which clearly is not ideal.

A solution to this challenge is using typed collaboration roles for shar-
ing data between building blocks. As data access no longer is restricted to
the partition owning the data, this allows for decomposition of the system
according to sub-functions, which in our opinion makes the specification
clear and intuitive. Typed collaboration roles make the designing of behav-
ior more intuitive as well, which again will speed up the work of designing
systems.

Support for data and typed collaboration roles may be implemented in
Arctis, so future users of Arctis may take advantage of our work. We think
that this is another step towards a highly automatic model-based software
design method.

UNO was chosen as an example application because we thought it was
challenging due to high complexity, collaborative to a certain degree, and
needed support for data. After doing the specification, we think that this
was a good choice. It was fairly challenging and complex, and during the

85

86 Discussion

design, several challenges and issues were uncovered and has been de-
scribed in this work, which hopefully will be of help for later users of Arctis
and the SPACE method.

Chapter

Conclusions and Future Work

8.1 Conclusions

Our motivation was to examine the SPACE approach, and introduce mech-
anisms and suggest guidelines for designing large, complex systems that
relies on data in SPACE. UNO was used as an example application, and the
UNO system has been described in detail.

Motivated by the needs uncovered in UNO, elements for representing
data in SPACE activities have been added. We have suggested how they
may be implemented in Arctis, and in cases where the element syntax dif-
fers from the UML standard, we have suggested constraints that should be
implemented in Arctis as well.

We have discussed how to best specify large and complex systems,
where an important contribution is typed collaboration roles, which pro-
vides an elegant way for sharing data between building blocks. We think
that this approach should be included in SPACE and implemented in Arc-
tis. We have shown by examples that data sharing is essential for describing
such systems in a clear and intuitive way, as describing behavior using data
introduce many extra UML elements.

Our work makes it possible to describe the behavior of systems in a
more complete and clear way using SPACE. We believe that this will con-
tribute to the work of developing advanced telecommunication systems
rapidly.

8.2 Future work
As shown in the specifications in Chapt. [} some support for data is al-
ready implemented in Arctis. However, the elements have constraints and

restrictions that should be checked for, both those discussed in this work,

87

88 Conclusions and Future Work

and those stated by the UML standard. This is done by implementing so-
called inspectors to support the user when designing services. While some
inspectors already exists, more should be provided ensuring a proper ap-
plication of the concepts to handle data as described in this thesis.

Support for typed collaboration roles should be implemented in Arctis.
As discussed in Chapt. [/} typed collaboration roles are essential when mod-
eling large systems where data is needed. Care should be taken to make
this highly automatic and intuitive, even for users that have no experience
with describing behavior of such systems.

When this functionality is implemented in Arctis, the UNO specifica-
tion should be finished so code can be generated to make an executable sys-
tem that can be used as an example application for future users of SPACE
and the SPACE tools. This will also validate the model transformation cor-
rectness.

Bibliography

[1] Luca Aceto, Anna Ingolfsdottir, Kim Guldstrand Larsen, and Jiri Srba.
Reactive Systems: Modelling, Specification and Verification. Cambridge
University Press, 2007.

[2] Sebjeorn Seether Birkeland. A Pattern-Based Approach for the Correct
Design of Interaction Interfaces. Master’s thesis, Norwegian Univer-
sity of Science and Technology, June 2006.

[3] Conrad Bock. UML 2 Activity and Action Models. Journal of Object
Technology, 2(4), July-August 2003.

[4] Conrad Bock. UML 2 Activity and Action Models, Part 2: Actions.
Journal of Object Technology, 2(5), September-October 2003.

[5] Conrad Bock. UML 2 Activity and Action Models, Part 3: Control
Nodes. Journal of Object Technology, 2(6), November-December 2003.

[6] Conrad Bock. UML 2 Activity and Action Models, Part 4: Object
Nodes. Journal of Object Technology, 3(1), January-February 2004.

[7] Conrad Bock. UML 2 Activity and Action Models, Part 5: Partitions.
Journal of Object Technology, 3(7), July-August 2004.

[8] Grady Booch, Robert Maksimchuk, Michael Engle, Bobbi Young, Jim
Conallen, and Kelli Houston. Object-Oriente Analysis and Design with
Applications. Object Technology Series. Addison-Wesley, 2007.

[9] Rolv Breek and Oystein Haugen. Engineering Real Time Systems: An
Object-Oriented Methodology Using SDL. The BCS Practitioner Series.
Prentice Hall, 1993.

[10] Allen B. Downey. The Little Book of Semaphores. Green Tea Press,
second edition, 2008. Available at http://greenteapress.com/
semaphores/.

89

http://greenteapress.com/semaphores/
http://greenteapress.com/semaphores/

90

BIBLIOGRAPHY

[11]
[12]

[13]

[14]

(18]

[19]

[20]

[21]

Eclipse.org. http://www.eclipse.org. Last visited on May 1 2008.

Object Management Group. Unified Modeling Language: Activities.
Technical report, August 2007.

The Object Managemet Group. http://http://www.omg.org/.
Last visited on April 10 2008.

Frank A. Kraemer, Rolv Breek, and Peter Herrmann. Synthesizing
Components with Sessions from Collaboration-Oriented Service Spec-
ifications. volume 4745 of Lecture Notes in Computer Science, pages 166—
185. Springer—Verlag Berlin Heidelberg, September 2007.

Frank A. Kraemer and Peter Herrmann. Design of Trusted Systems
with Reusable Collaboration Models. 2007. Presentation at the Joint
iTrust and PST Conferences on Privacy, Trust Management and Secu-
rity.

Frank A. Kraemer and Peter Herrmann. Formalizing Collaboration-
Oriented Service Specifications using Temporal Logic. In Networking
and Electronic Commerce Research Conference 2007 (NAEC 2007), October
2007.

Frank Alexander Kraemer. Arctis and Ramses: Tool Suites for Rapid
Service Engineering. In Proceedings of NIK 2007 (Norsk informatikkon-
feranse), Oslo, Norway. Tapir Akademisk Forlag, November 2007.

Frank Alexander Kraemer and Peter Herrmann. Transforming Col-
laborative Service Specifications into Efficiently Executable State Ma-
chines. In Karsten Ehring and Holger Giese, editors, Proceedings of the
6th International Workshop on Graph Transformation and Visual Modeling
Techniques (GIT-VMT 2007), volume 7 of Electronic Communications of
the EASST. EASST, 2007.

Frank Alexander Kraemer, Vidar Slatten, and Peter Herrmann. Tool
Support for the Rapid Composition, Analysis and Implementation of
reactive Services. Preprint submitted to Elsevier, May 2008.

Mattel. UNO card game. http://www.mattelgamefinder.com/
overview.asp?redirectID=uno.

James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Mod-
eling Language, pages 136-143. Addison-Wesley, second edition, 2005.

http://www.eclipse.org
http://http://www.omg.org/
http://www.mattelgamefinder.com/overview.asp?redirectID=uno
http://www.mattelgamefinder.com/overview.asp?redirectID=uno

	Title Page
	Problem Description
	Introduction
	Contribution
	Outline

	Background
	SPACE
	Arctis and Ramses

	UML
	Collaborations
	Activities

	Extensions of UML by SPACE
	Multi-Session Collaborations
	Waiting Decision Nodes

	Current integration of Data in SPACE and Arctis
	UNO
	Object of the game
	Starting the game
	Playing the game
	Action cards
	Jump-in Rule
	Special properties of the mobile version

	Specification of UNO --- Part 1: Object and Collaboration Structure
	Requirements Capture
	Starting the Game
	Playing the Game
	Winning the Game

	Object-Oriented Analysis
	Object Attributes
	Collaboration analysis

	Introducing Data into SPACE
	Input and Output Parameters to Actions
	Setting and reading variables
	Several Objects in Same Flow
	Transforming Types between Object Nodes
	Output Pins for Accept Signal Action
	Input Pins for Send Signal Actions
	Fork Node with both Object and Control Flow
	Decision Nodes

	Specification Guidelines
	Active and Passive Objects
	Modeling Issues in Regard to Variable Access and Clearness
	Alternative 1: Shared data between Building Blocks
	Alternative 2: A Flat Specification
	Alternative 3: More Comprehensive Call Operation Actions
	Alternative 4: Providing Variables as Input Parameters to Building Blocks
	Alternative 5: Typed Collaboration Roles
	Discussion
	Conclusion

	Specification of UNO --- Part 2: Behavior
	System View
	Collaboration Setup
	Collaboration Playing
	Collaboration Make Move
	Collaboration Game Updates
	Collaboration Draw Card
	Collaboration Color Dialog
	Collaboration Turn Pile
	Building Block Player Input
	Building Block Validate Move

	Collaboration End
	Simplifications

	Discussion
	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography

