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In the preceding decades, molecular characterization has revolutionized breast cancer (BC)

research and therapeutic approaches. Presented herein, an unbiased analysis of breast tumor

proteomes, inclusive of 9995 proteins quantified across all tumors, for the first time reca-

pitulates BC subtypes. Additionally, poor-prognosis basal-like and luminal B tumors are

further subdivided by immune component infiltration, suggesting the current classification is

incomplete. Proteome-based networks distinguish functional protein modules for breast

tumor groups, with co-expression of EGFR and MET marking ductal carcinoma in situ regions

of normal-like tumors and lending to a more accurate classification of this poorly defined

subtype. Genes included within prognostic mRNA panels have significantly higher than

average mRNA-protein correlations, and gene copy number alterations are dampened at the

protein-level; underscoring the value of proteome quantification for prognostication and

phenotypic classification. Furthermore, protein products mapping to non-coding genomic

regions are identified; highlighting a potential new class of tumor-specific immunotherapeutic

targets.
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Research efforts over the preceding decades have led to
immense progress in our understanding of the molecular
heterogeneity of tumors originating in the same tissue,

solidifying a long-proposed idea that single effective organ-of-
origin specific treatments are not adequate. This realization fos-
tered the need for in-depth molecular characterization to stratify
patients into treatment courses that target their individually
unique tumors. This principle was first applied to breast cancer
when Botstein et al. classified 42 tumors into molecular subtypes
based on their mRNA signatures1. These original classifications
have proven extremely robust and are still widely used to predict
prognosis and design therapeutic regimens2,3.

To aid in clinical implementation, a set of 50 transcripts
(collectively known as PAM50) were established for the five
subtypes (basal-like, HER2, luminal A & B, and normal-like) and
surrogate immunohistochemistry (IHC) markers (ER, PR, HER2,
and Ki67) were implemented to partially recapitulate the strati-
fying and prognostic information garnered in the original studies.
However, multigene expression assays (e.g., MammaPrintTM,
Oncotype DXTM, and Prosigna RORTM) are not readily available
to all patients, and despite progress in the development of
pathology-based surrogate PAM50 markers, one out of three
patients are still potentially misclassified2,3.

Parallel advancements in high-throughput protein quantifica-
tion techniques have enabled the burgeoning of protein-based
molecular characterization of breast tumors. In theory, these
classifications are a more accurate reflection of functional het-
erogeneity and stronger predictors of therapeutic response, as
cellular function and pharmaceutical intervention are largely
mediated at the protein level. Though mRNA-based classifica-
tions have had great clinical utility, certain shortcomings may be
attributable to varying protein–mRNA abundance correlations4,5

and the inability of mRNA measurements to capture ligand-
mediated interplay between tumor and host and characterize the
extracellular space.

The immaturity of the field of high-throughput proteomics
relative to transcriptomics is a major obstacle for protein-based
studies to drastically alter the clinical approach to breast cancer,
as Botstein et al. did nearly two decades ago. However, recent
breakthroughs have offered a glimpse of that potential. High-
throughput mass spectrometry-based protein quantification of
PAM50 gene products was found to partially recapitulate the
patient stratification offered by the original mRNA-based
PAM50 subtypes5,6 and unbiased analysis of protein expression
signatures has identified a subset of tumors, not identified by
mRNA analysis, as being associated with a high degree of tumor
differentiation and improved patient outcome5,7–9.

The continued advances in proteomic and genomic technologies
have led to the emergence of the field of proteogenomics. Proteo-
genomics studies link aberrations observed at the protein level to
genomic events or properties, such as mutations, insertions/dele-
tions, substitutions, and single-nucleotide polymorphisms4,5,10,11.
These analyses can identify protein products of genomic regions,
previously thought to be silent and/or specifically expressed in
transformed tissue that could represent neoantigens11,12. The dis-
covery of neoantigens has potential to be an extremely powerful
tool in the design of immunotherapies.

Herein, we present an in-depth quantitative profile of the
proteomes of 45 breast tumors, 9 represented from each of the 5
PAM50-based molecular classifications. We demonstrate a
remarkable quality of relative quantification by examining protein
complex member correlations across tumor samples and are the
first to recapitulate the current mRNA-based molecular classifi-
cations with an unsupervised analysis of whole-proteome data.
We then use the high-quality proteome profiles as a base to
interpret multiple layers of systems measurements collected on

the same tumors, including those of mRNA expression, genome
copy-number alterations, single-nucleotide polymorphisms,
phosphoprotein levels, and metabolite abundances. Independent
layers of analyses reveal novel immunohistochemical biomarker
candidates to more reliably stratify difficult-to-classify patients for
treatment options, provide a proteome-based framework to assess
prognosis for those straddling treatment class assignments, link
immune cell infiltration and tumor extracellular matrix compo-
sition to prognosis, and connect molecular classification to
metabolic phenotype. Furthermore, the depth and quality of
proteome profiling enables application of proteogenomic analyses
and the discovery of neoantigens arising from tumor-specific
variants of known proteins and regions of the genome previously
thought to be noncoding. Finally, the comprehensive data
collected in this study are presented as an online resource for
the breast cancer research community to explore and to test
new hypotheses within their areas of expertise (www.
breastcancerlandscape.org).

Results
MS-based proteomics quantification of a breast tumor cohort.
Nine patients classified into each of the five PAM50 subtype
groups were selected from the Oslo2 study cohort to ensure
tumor diversity is represented (denoted Oslo2 Landscape cohort)
(Fig. 1)13,14. LC-MS/MS-based protein quantification was per-
formed as described in the Supplementary Methods section11,12.
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In all, 13,997 protein products of 12,645 genes were identified
at a 1% protein false-discovery rate (FDR) based on 248,949
identified unique peptides (Fig. 1, Supplementary Fig. 1A, B,
Supplementary Data S1). The subset of 9995 proteins quantified
(with a median of 12 unique peptides/protein and 24 PSMs/
protein for quantification) in each of the 45 tumors, based on
gene symbol centric quantification (denoted proteins henceforth),
is used for all quantitative proteome analyses (i.e., the quantified
proteome) (Supplementary Fig. 1C–H).

Robustness of protein identification/quantification was exam-
ined by searching raw MS spectra using parallel methods (MS-
GF+ Percolator15,16 and Andromeda in MaxQuant) and per-
forming reverse phase protein lysate assays (RPPA) on sections of
the same tumors. Both spectral search methods yield similar
protein identifications (Supplementary Fig. 1I), 60% of whose
quantities are positively correlated with RPPA findings (Supple-
mentary Fig. 1J)13,17, and MS-based profiles of BC hallmark
proteins are consistent with well-established characteristics of
tumor PAM50 classifications (Supplementary Fig. 1K).

Correlation analysis of tumor proteomes and metabolomes.
Unsupervised hierarchical clustering of proteome profiles stra-
tifies tumors largely in agreement with the PAM50 subtypes
(Fig. 2a, Supplementary Fig. 2, Table S1). Basal-like, normal-like,
and luminal A groups are distinguished; however, the luminal B
and HER2 subtypes are intermixed, indicating similarities in the
molecular phenotype. The validity of these mixed classifications is
further supported by tumor-transcript profiles of both
PAM50 subtypes correlating with either subtype centroid (Sup-
plementary Fig. 2A) and by clinically HER2+ patients often
receiving a conflicting mRNA-based classification18.

Analogous clustering of relative protein quantities, across
tumor samples, groups proteins in accordance with their known
co-functions in BC biology. Gene ontology enrichment analysis
reveals that proteins considered luminal markers, basal markers,
or members of the HER2 amplicon, localized to the mitochondria
or Golgi apparatus, related to proliferation, transcription, adipose
tissue, erythrocytes, immune response, or the extracellular matrix
are closely correlated and coregulated with members of their
respective groups. Of note, plasma and erythrocyte proteins
originate outside of the tumor and would not be detected by
transcriptional profiling, demonstrating the unique capability of
proteome profiling to consider the tumor in the context of
systemic functions of the host (Fig. 2a, Supplementary Fig. 2). In
addition, tumor composition correlates between MS- and
histopathology-based evaluation (Supplementary Fig. 3).

RPPA was performed with phosphorylation-specific antibodies
against 41 known cancer-related regulators of cell signaling to
explore their impact on the quantified tumor proteome.
Hierarchical clustering of phosphoprotein correlation profiles
(RPPA-quantified phosphoprotein abundance to MS-quantified
protein abundance) divides phosphoproteins into four distinct
groups (Supplementary Fig. 2F, I). Phosphorylation of proteins of
group 1 (including CHEK1, CDKN1B, and MAP2K1), group 2
(including tyrosine kinases MET, EGFR, and ERBB3), group 3
(including ERBB2, EGFR, and downstream targets JUN and SC1),
and group 4 (including ESR1 and RPS6KA1), respectively,
regulate proteins associated with proliferation, blood plasma,
the HER2 amplicon, and the luminal subtype. Interestingly, HGF
and EGFL7 (MET and EGFR ligands) and HGFAC (activates
HGF) are in the MS-based protein correlation group associated
with blood plasma, indicating a possible pathway of activation
through phosphorylation of proteins of group 2.

PAM50 subtype assignments are based on mRNA profile
distance to subtype centroid as defined by Parker et al.19. High

PAM50 subtype agreement with correlation-based hierarchical
clustering of tumor protein expression profiles considering only
the 37 PAM50 gene members in the quantified proteome
demonstrates the patient-stratifying information contained
within the entire proteome is derived from a smaller subset
(Fig. 2b). Centroid-based subtype assignments are validated by
hierarchical clustering of transcript measurements from the same
37, and all 50, PAM50 genes (Supplementary Fig. 4A, B); though
unsupervised hierarchical clustering of correlations to each
PAM50 subtype centroid demonstrates some ambiguity in the
classification (Supplementary Fig. 2D).

Core sets of tumors whose proteomes are representative of a
proteome-based grouping are defined using unsupervised cluster-
ing based on high-variance protein (n= 1334) abundance profiles
(Supplementary Methods), producing six consensus core tumor
clusters (CoTC) (Fig. 2c, Supplementary Fig. 4C–K). CoTC
assignments overlap with PAM50 normal-like and luminal A
classifications, but divide PAM50 basal-like tumors into two
groups, and combine HER2 and luminal B while maintaining a
separate group of luminal B PAM50 subtype tumors (Fig. 2c, d,
Supplementary Fig. 3I). Unsupervised clustering of CPTAC
breast tumor proteomes5, using the overlapping high-variance
proteins (632 of 1334), identifies three tumor clusters that
resemble CoTC1 (basal-like), CoTC3 (luminal A), and CoTC6 (a
mix of luminal B and HER2) (Supplementary Fig. 5A, B). Of note,
the CPTAC patient cohort does not have a defined normal-like
tumor subtype.

The CoTC groups, composed of PAM50-classified basal-like
tumors (CoTC1 and 2), are distinguished by differential
expression of immune markers, E2F and MYC targets, along
with G2M checkpoint-related proteins (Fig. 2e). The luminal and
HER2 dominated CoTC groups (3, 4, and 6) are stratified by
differential enrichment for proteins related to the estrogen
response, E2F targets, G2M checkpoint proteins, and MYC
targets (Fig. 2e). Tumors with similar immune enrichment as
those of the CoTC2 and CoTC4 groups containing two tumors
each are observed in the whole Oslo2 cohort (Supplementary
Fig. 5C–E). Pairwise inspection reveals proliferation-related
and interferon and estrogen response proteins account for the
largest share of variability between proteome-based tumor groups
(Supplementary Fig. 6).

Finally, tumors displaying marked glycolytic characteristics, as
determined by stratification based on profiled metabolite
abundances, are all members of CoTC6 (Fig. 2f). Depleted
glucose and elevated lactate/alanine indicate glucose may be
rapidly oxidized to pyruvate followed by conversion to lactate or
alanine. Furthermore, elevated MKI67 (a marker of proliferation)
in these tumors is consistent with the Warburg effect (Fig. 2g)20.
Overlapping pursuant classifications with those based on an
independent measurement of cellular function is emblematic of
the value added by proteome-based profiling.

Proteome characterization reveals tumor subclass processes.
Protein abundances of a number of known complex members are
exceedingly correlated, as exemplified by condensin I, MCM,
GINS, condensin II, mitotic 14 s cohesin I, and DNA polymerase
alpha complexes (Fig. 3a, Supplementary Fig. 7A, B). Although
the common biological process involvements of protein complex
members is expected to be evidenced by correlation21, the phy-
sical nature of component interactions or their tightly related
functions may exacerbate this effect. Indeed, proteins with known
interactions, as reported by Biogrid or CORUM, have more
correlated abundances. Moreover, these elevated correlations are
substantially more distinguished at the protein as opposed to the
transcript level (Fig. 3b, Supplementary Fig. 7B, C).
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Correlation also appears to be indicative of co-function, as
mapping associations (defined by Pearson correlation > 0.5) of
proteins marked by high variance across the Oslo2 Landscape
cohort in a manner that minimizes edge length (protein nodes are
in proximity to groups of nodes with which they share multiple

edges, Supplementary Methods) illustrates that proteins function-
ing as components of similar biological processes are highly
connected (Fig. 3c, Supplementary Fig. 7D, E); a feature also
present in the CPTAC dataset (Supplementary Fig. 7F). Con-
sidering each CoTC and PAM50 group individually and
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overlaying protein abundances onto this network provides
snapshots of the defining characteristics of each group (Fig. 3d,
Supplementary Fig. 8A–E), which are consistent with and expand
upon the previously discussed enrichment analyses (Fig. 2e).

Abundances of proteins related to the immune response,
including the MHC class (Supplementary Figs. 5D, 8F), are
starkly elevated in CoTC2 as compared with CoTC1 tumors (all
PAM50 basal-like). This may influence their depletion in
proliferation-related proteins and suggests PAM50 basal-like
may be an incomplete classification (consistent with Lehmann
et al.22). CoTC3 (all luminal A) and CoTC4 (a subset of luminal
B) tumors highly express luminal proteins, yet are distinguished
by a small immune response network outpost enriched for
function in the interferon alpha response (Figs. 2e, 3d) in CoTC4
members. Finally, CoTC5 tumors (primarily normal-like) are
distinguished by elevated extracellular matrix cluster 1 (ECM1)
and plasma protein abundances (Fig. 3d).

MET and EGFR are coregulated in normal-like tumors.
Development of drug resistance is a nearly universal response to
targeted cancer monotherapies and simultaneously inhibiting
proteins in series or of parallel pathways is a promising treatment
approach. Thus, we examined known drug targets for correlating
expression (Fig. 4a, Supplementary Data 2), which would impli-
cate them as operating in series/parallel and suggest that they are
promising co-targets.

Protein abundances of ESR1, PGR, AR, and BCL2 are highly
correlated (as measured by MS, Oslo2 Landscape cohort, n= 45,
and RPPA, Oslo2 cohort, n= 329, and consistent with TCGA
RPPA measurements, n= 892) (Fig. 4b), suggesting they may
operate in concert and render tumors sensitive to simultaneous
targeting by existing therapeutic estrogen, progesterone, and
androgen hormone receptor inhibitors along with an apoptosis-
inducing BCL2 antagonist (one of which recently received FDA
approval)23.

Similarly, protein abundances of MET and EGFR are highly
correlated (Fig. 4a, c) and their co-expression may be a marker
for basal-like (consistent with Kim et al.24) and normal-like
tumors (Fig. 4d). Upon histopathological inspection in two
independent cohorts (Oslo2 Landscape, n= 40, and Oslo1, n=
530), co-elevation of EGFR and MET appears to be confined to
ductal carcinoma in situ (DCIS) regions for a subset of normal-
like tumors (Fig. 4e–g, Supplementary Fig. 9, Supplementary
Data 3), and high-resolution images of these regions in two
tumors suggest EGFR-MET co-localization may confer an
advantage for their in situ survival (Fig. 4h).

The normal-like subtype is often overlooked as a BC
classification because of the tumors’ close semblance to normal
tissue and less aggressive luminal tumors. Identifying histopatho-
logical markers is an important step to ensuring patients are
properly stratified into treatment regimens while revealing the
inverse coregulation of EGFR and MET in invasive and DCIS
regions provides fodder for therapeutic development within this
understudied disease class.

RNA–protein correlation analysis. Transcriptomics has
remained the standard-bearer in the molecular profiling of breast
tumors since Perou et al.1, first described the current
PAM50 subtypes, and transcript quantity is widely used as a
surrogate for protein abundance. Thus, we characterize the rela-
tionships between mRNA transcript and protein abundances to
provide an understanding of when mRNA is a reliable surrogate
for the protein product.

Positive and significant correlations exist across tumors
between 70% of the proteins quantified in the Oslo2 Landscape

cohort and their mRNA transcripts (Fig. 5a, Supplementary
Data 4) (consistent with previous reports5,7,25) and do not appear
dependent on protein/mRNA half-life (as measured in mice by
Schwanhäusser et al.26), average protein precursor area, or
number of peptide spectral matches (PSMs) (Supplementary
Fig. 10A–D). However, proteins known to rapidly accumulate
ubiquitin groups upon inhibition of the proteasome27 have
quantities significantly less correlated with their transcript
abundances (Supplementary Fig. 10E), suggesting the influence
of transcript regulation is buffered for those whose abundances
are controlled at the protein level.

Additionally, structural ribosomal proteins and those of the
inner-mitochondrial membrane embedded electron transport
chain (oxidative phosphorylation) are not as highly correlated
with transcript quantity as are groups of soluble metabolic (amino
acid metabolism, fatty acid metabolism, and steroid hormone
synthesis) and signaling/proliferation-related (estrogen and
interferon responses, MTORC1 signaling, E2F targets, and G2M
checkpoint) proteins (Supplementary Fig. 10F–G, Supplementary
Data 4).

Strikingly, protein products of transcripts profiled as part of BC
prognostic panels are significantly enriched for high mRNA to
protein correlations (Fig. 5b). This suggest that the robustness of
clinical mRNA markers is due, at least in part, to being reliable
protein surrogates and demonstrates a clear link to protein
phenotype. However, overall mRNA–protein correlation appears
to have a non-linear dependence on variability (Supplementary
Fig. 11A, C). Modeling this dependence (Supplementary Fig. 11B,
D, Supplementary Data 4, Supplementary Equation 1–4) still
reveals prognostic mRNA signatures to have higher correlation
with their protein products than expected (Supplementary
Fig. 11E–R).

Genes causally associated with cancer (COSMIC)28 and breast
cancer29 display varied mRNA–protein correlations, indicating
that some proteins should not be studied by mRNA expression
serving as a surrogate measurement (Fig. 5c).

Highly proliferative tumors (basal-like, HER2, luminal B, and/
or high MKI67) have a tendency to have more correlated
proteomes and transcriptomes than lowly proliferative tumors
(luminal A, normal-like) (Supplementary Fig. 12). This is further
supported by high abundances of proteins involved in transcrip-
tion, splicing, translation, and cell cycle being associated with
high-tumor mRNA–protein correlation (Fig. 5d). On the other
hand, high abundances of the extracellular matrix and plasma
proteins are linked to a poor tumor mRNA–protein correlation
(Fig. 5d).

Impact of CNAs is dampened at the protein level. Much of
contemporary thinking labels cancer as a disease of the genome,
and gene copy-number alterations (CNAs) are known to be
associated with expression of their corresponding transcripts (i.e.,
associated in cis) in breast tumors30. Thus, we explore whether
variance across proteomes in the Oslo2 Landscape cohort can be
accounted for by CNAs.

Consistent with Curtis et al.30, mRNA expression in cis is
associated with CNAs, and the same effect, though dampened,
appears to be present at the protein level (Supplementary
Fig. 13A). Imposing fold change and Wilcoxon test statistic
cutoffs (Supplementary Fig. 7B–E) allows for determination of
genes with significant CNA (gain or loss) to mRNA or protein
associations (Supplementary Data 5). Considering gain and loss
effects, a gene selected whose protein abundance is associated
with a cis CNA is twice as likely to have both mRNA expression
and protein abundance associated with that CNA than a gene
selected based on an mRNA–CNA association (Fig. 6a, b), further
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supporting the hypothesis that CNA effects are attenuated at the
protein level.

The attenuation of CNA effects may be explained by regulatory
mechanisms at the protein level. To investigate, genes are split
into lowly and highly attenuated groups based on a gaussian
mixture model of protein abundance and mRNA expression
correlations to CNAs. The gene subset with high mRNA–CNA
and low protein–CNA correlations are defined as highly
attenuated (Fig. 6c), and accumulate ubiquitin (according to
Kim et al.27) at an elevated rate (Fig. 6d); suggesting the
abundances of these highly attenuated proteins are more
regulated at the protein level (consistent with Gonçalves et al.31).

CNAs appear to be distributed over the genome (Fig. 6e,
Supplementary Fig. 13F), though many gain effects (mRNA and
protein) are localized to chromosome 17, and cover genes of the
HER2 amplicon, while loss effects influence estrogen signaling
(Fig. 6f) and are concentrated in basal tumors (Supplementary
Fig. 13G). Interestingly, six genomic losses (including that of
CCNB1) are associated with increased abundances at both the
mRNA and protein level (Supplementary Fig. 13F, Supplemen-
tary Data 5), suggesting possible implementation of a compensa-
tory mechanism. Of note, Myhre et al. observed similar effects of
CCNB1 gene copy-number loss32.

Curtis et al.30 classifies breast tumors (n= 2000) based on cis
associations of CNAs and mRNA expression of 619 genes. Of
those that we quantified at the protein level in the Oslo2

Landscape cohort, 83% overlap with the set of genes having
significant copy number to transcript or to protein abundance
associations as determined by the linear regression method
implemented by Curtis et al.30 (Fig. 6g). This consistency
demonstrates that a cohort sized for a tractable high-quality
proteome quantification study contains sufficient statistical power
to reproduce findings from much larger cohorts.

Proteogenomics identifies candidate immunotherapeutic tar-
gets. Translation of tumorigenic genomic aberrations produces
tumor-specific proteins, whose immunoreactivity renders them
ideal candidate antigens for targeted immunotherapies. Thus, we
apply our recently developed integrated proteogenomics analysis
workflow11,12 to the in-depth proteome characterization of the
Oslo2 Landscape cohort.

In brief, MS spectra are searched against databases of known
peptides, SNPs, mutations, and theoretical peptides from genomic
regions believed to be noncoding derived from the six reading
frame translation of the entire genome (restricted based on
peptide isoelectric point). Spectra matching known peptides and
multiple genomic regions are filtered out along with single amino
acid variants (SAAVs) not meeting stringent verification criteria
imposed by SpectrumAI12 (Fig. 7a).

Among the Oslo2 Landscape cohort, hundreds of peptides are
identified mapping to genomic regions thought to be noncoding
or intronic (pseudogenes, noncoding RNA), or corresponding to
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un-annotated alternative gene translations (exon extensions, 3′
and 5′ UTRs, exonic alternate open-reading frames) (Fig. 7b,
Supplementary Data 6); two-thirds of which are identified by at
least two PSMs (Supplementary Fig. 14A). Furthermore, these
peptides have a similar pI distribution as known peptides
(Supplementary Fig. 14B), and 10% of the corresponding coding

genomic loci are supported by mappings of at least two peptides
(Supplementary Fig. 14C). Additionally, RNAseq measurements
and proteomic MS-spectra5,33 verify that many of these peptides
are transcribed and translated in independent breast tumor
cohorts (Fig. 7c, Supplementary Fig. 14D), while CAGE34 and
ribosomal profiling35 reveal they are transcribed and translated in
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other systems (normal and cancer) (Supplementary Fig. 14E, F).
Moreover, genetic loci corresponding to peptides previously
annotated as pseudogenes and noncoding RNA are more highly
conserved than random loci with the same annotation (Supple-
mentary Fig. 14G). Finally, 61 peptide identifications are verified
by MS-spectra of synthetic peptides (out of 67 attempted)
(Supplementary Data 7).

Of the identified peptides, 30% (116) were predicted to bind
MHC class I36 and not identified in MS data from normal tissue37

(Fig. 7d, Supplementary Data 6). Patient-specific candidate
immunotargets are exemplified by lnc-AKAP14–1:3 and lnc-
CXorf36–3:1; each corresponding to noncoding regions whose
protein products are respectively elevated in one and two tumors,
and whose presence is supported by multiple mapped peptides
(Fig. 7e). Tumor specificity in the breast of proposed immuno-
targets is evidenced by their absence in normal surrounding tissue
as detected in a separate MS proteomics assay (Supplementary
Fig. 14H, Supplementary Data 8). These profiles are contrasted to
those which suggest patient (rather than tumor) specificity
(Supplementary Fig. 14I, Supplementary Data 8).

Identifying antigen targets in the proteome, as opposed to the
transcriptome, may streamline development of immunotherapies,
because the immune system is activated by protein fragments
displayed on the MHC. These high-confidence identifications
demonstrate the prominent role proteogenomic analyses of high-
quality proteome spectra will have in the push towards
individualized medicine.

Single amino acids variants impact protein abundances. Cer-
tain SAAVs of proteins, naturally occurring or acquired via
somatic mutations, are known risk factors for the development or
prognosis/therapy response predictors of cancer. Cancer-related
SAAVs are cataloged in the CanProvar and COSMIC databases.
Thousands of these SAAVs match Oslo2 Landscape proteome
spectra (after applying the stringent SpectrumAI filter) (Fig. 7f,
Supplementary Data 6), have a similar ΔpI distribution as known
peptides (Supplementary Fig. 15A), and 28 (out of 31 randomly
selected) spectral identifications are confirmed with synthetic
peptides (Supplementary Data 7). Furthermore, breast cancer
driver genes29, including MAP3K1, AKT2, FOXA1, ERBB2, and
CDKN1B, are amongst proteins identified with SAAVs (Supple-
mentary Data S6).

Discussion
Molecular characterization has progressively stratified breast
cancer patients into more disease-type specific cohorts; with the
first clinical manifestation being the adoption of immunohisto-
chemical evaluation of ER, PR, KI67, and later HER2 expression
as primary determinants of treatment regimens. Though inter-
pretation of marker expression and administration of targeted
therapies denotes a vast improvement over sole reliance on

staging and grade, variances in specimen preparation and a heavy
reliance on human judgment along with technological advances
in measuring gene expression fostered development of unbiased
whole-transcriptome profiling as an accompaniment.

Importantly, unbiased analyses of thousands of gene tran-
scripts largely recapitulates pathological marker classifications,
inspiring confidence that they could further delineate patients
responsive to targeted therapies. Indeed, transcript profiling of
gene panels selected to represent the variance across tumor
subtypes is recommended for assigning treatment courses for
patients with early stage ER+ /HER2− tumors2,3 and may pre-
vent patients from receiving chemotherapy who do not stand to
benefit38. Furthermore, mRNA profile-based stratification has
defined a normal-like subtype that clinical markers alone do not
recognize.

Proteome characterization has provided valuable insight on
CNA effects and their attenuation at the protein level4,5. How-
ever, to date, unbiased proteome profiling has not resolved a
consistent variance with mRNA profiling across known breast
tumor subtypes. This has largely been accredited to the unrelia-
bility of mRNA as a surrogate for protein abundance. However,
given unbiased mRNA profiling distinguishes function and dif-
ferential responses to therapy; adherence to the tenets of the
central dogma dictates proteome profiles would distinguish the
same differences while layering additional insights. In fact, our
findings suggest expression profiles of prognostic mRNA panels
stratify breast tumors based on known biological variances partly
because the selected transcripts are reliable protein surrogates.

Herein, we present a landmark study, which is the first to
recapitulate known function-enriched stratifications of breast
tumors based on unbiased analyses of proteome profiles. We
attribute this to the proteome coverage and high-quality quanti-
fication resulting from the reduction in peptide fraction com-
plexity accomplished by HiRIEF separation11. The reliability of
protein quantification is attested to by the remarkable correlation
of protein complex members, and suggests protein co-function
may be inferred by high cross-tumor correlation. From here, we
layer additional insight over the breast cancer landscape by fur-
ther analyses of proteomes and parallel systems measurements.
Such insights include identifying a definitive separation of basal-
like tumors based on immune components, postulating reg-
ulatory control of characteristic cancer hallmark genes by phos-
phorylation of specific groups of regulatory proteins, revealing the
glycolytic preference of proliferative tumor subtypes, and deter-
mining copy-number alterations may be attenuated by protein-
level regulatory mechanisms, such as ubiquitinylation and sub-
sequent degradation in the proteasome. Furthermore, we validate
the often ambiguous mRNA-based normal-like subtype, both
with an unbiased approach and the identification of MET-EGFR
coexpression as a biomarker; potentially for the DCIS component.

With an eye toward advancing to individually tailored thera-
pies, we apply our recently developed proteogenomics pipeline12

Fig. 7 Proteogenomics analysis. a Overview of the proteogenomics workflow and additional data levels used for validation. b Curated peptides from novel
coding regions. Categories according to genome annotation in the respective loci. Inset shows Manhattan plot of novel peptide distribution across the
human genome. c Orthogonal evidence of novel peptides by public domain data, indicated by the presence of black bars in corresponding rows for RNA-
seq33, and re-analysis of proteomics data on breast tumors5. See Supplementary Fig. 14 for details. d Prediction of MHC class I binding36 and identification
in normal tissues from draft proteome data37 among novel peptides. e High levels of novel peptides from lncRNA lnc-AKAP14–1:3 in one Luminal A (top)
tumor and in two tumors (Luminal A and B) for lnc-CXorf36–3:1 (bottom). f Unique and overlapping identifications of curated SAAV peptides from
CanProVar and COSMIC databases. g Impact of SNPs (from iCOG array), with corresponding SAAV peptide identification, on protein levels. Impact score
is plotted cumulatively for reference allele, hetero and homozygous SNPs. Percentage of impact scores below −2 and above 2 are shown in the inset. See
Supplementary Fig. 15B for examples. h Allele-specific protein levels displaying SAAV peptide and matched reference allele peptide quantification cross the
45 tumors. Peptide quantification is categorized into reference allele (Ref), hetero- and homozygous SNPs, based on iCogs data. See Supplementary
Fig. 15C for more examples
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and identify proteins in individual tumors, with high confidence,
corresponding to un-described gene variants, noncoding regions,
or regions thought to be noncoding due to poor genome anno-
tation. We postulate protein products of undescribed gene var-
iants and noncoding regions are the consequences of cancer
genome instability, and that they are strong candidates of tumor-
specific targets for immunotherapies.

As breast tumors are continuously revealed to be individually
unique diseases, considerations of molecular profiles will become
paramount in selecting from available treatment options and
developing new ones. Though mRNA profiling has been initially
dominant in this role, the “landscape” study presented herein
demonstrates the instrumental contribution analyses of the
quantitative proteome will have moving forward. Patient strati-
fication based on high-quality proteome MS data is marked by
consistency with multiple systems level and immunohistochem-
ical readouts, underscoring the utility of a multi-faceted approach
to translate systems level findings into effective therapeutic
strategies.

We have created a user friendly and easily accessible data
portal with analysis tools to ensure that this rich dataset can be
explored by the research community, available at: www.
breastcancerlandscape.org.

Methods
HiRIEF-nanoLC-MS/MS-based proteomics and proteogenomics. Tumor sam-
ples from Oslo2 cohort were prepared for MS analysis using a modified version of
the spin filter-aided sample preparation protocol11,39, and peptides were separated
using immobilized pH gradient-isoelectric focusing (IPG-IEF) on narrow range pH
3.7–4.9 and 3–10 strips11. Peptide fractions were separated using a 3000 RSLCnano
system and analyzed using a Thermo Scientific Q Exactive. MSGF+ Percolator in
the Galaxy platform was used to match MS spectra to the Ensembl 75 human
protein database15,16. Protein identifications were limited to 1% protein FDR40.
Proteogenomics was performed as described by Branca et al. and Zhu et al.11,12.
See Supplementary information for additional methods and details.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The MS data have been deposited in the ProteomeXchange database under the accession
code PXD008841 and PXD011385. The additional datasets referenced during the study
are available in public repositories and can be found in the Data availability table
in Supplementary information. All the other data supporting the findings of this study
are available within the article and its Supplementary information files and from the
corresponding author upon reasonable request.
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