
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Jonas Hermansen Muribø

Locating Sheep with YOLOv3

Master’s thesis in Informatics
Supervisor: Professor Svein-Olaf Hvasshovd

June 2019

Jonas Hermansen Muribø

Locating Sheep with YOLOv3

Master’s thesis in Informatics
Supervisor: Professor Svein-Olaf Hvasshovd
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Summary

Recent years have seen an increase in the use of unmanned aerial vehicles in numer-
ous fields, ranging from power line inspections to wildlife monitoring. One of these
fields is locating free-ranging sheep, specifically at the end of the grazing period for the
roundup.

This thesis examines how well YOLOv3 (You Only Look Once), a one-stage object de-
tector, is able to locate sheep in drone footage. Additional objectives were to examine
how some modifications to the network affected performance. The first modification was
how the network would make detections; either attempt to detect sheep as a superclass, or
detect white, black and brown sheep separately as subclasses. The other modification was
to a series of network parameters that related to input resolution, and confidence thresh-
old for predictions. YOLOv3 was implemented through a popular fork of Darknet, an
open-source framework for neural networks.

The most important metric was to find as many sheep as possible, and this was achieved
by detecting sheep as a superclass, with a resolution of 832x832 pixels and a confidence
threshold of 0.1. 12 out of 1650 sheep in the test set were not detected, resulting in a recall
of 99%.

There is, however, some uncertainty to how applicable the network is; all footage was of
sheep on pasture with hardly any change in lighting, and 84% of all sheep in the dataset
were white. Additionally, the low threshold caused an overabundance of bounding boxes
for some predictions. Further work should attempt to capture substantially more data for
training to increase generalisability.

i

Sammendrag

De siste årene har ubemannede flyvende fartøy hatt en stor vekst innen mange forskjellige
fagområder, fra inspeksjoner på strømnettet til overvåking av vilt. Et av disse feltene
innebærer å lokalisere sau på beite, spesifikt i forbindelse med innsankning nær slutten av
beiteperioden.

Hovedfokuset i denne oppgaven er å undersøke i hvilken grad YOLOv3 (You One Look
Once), en enkelt-stegs objektgjennfinnings-algoritme, er i stand til å lokalisere sau i drone-
bilder. Ytterligere mål involverer å undersøke hvordan noen endringer i network påvirker
ytelsen. Den første endringen består i å endre hvordan nettverket klassifiserer et funn;
nettverket kan enten forsøke å lokalisere og detektere sau som en kategori, eller prøve å
separere forskjellig fargede sau som svarte, hvite eller brune. Resterende endringer består
av å endre oppløsning, og variere terskelen for hvor sikker nettverket skal være i et funn
for at det skal klassifiseres som en sau. YOLOv3 ble implementert gjennom en populær
variant av Darknet, et rammeverk for nevrale nettverk med åpen kildekode.

Å finne så mange sau som mulig var regnet som det viktigste målet, og dette ble oppnåd
ved å gjennfinne sau som en overordnet kategori, med en oppløsning på 832x832 piksler,
og en terskel på 0.1. 12 av 1650 sau i testsettet ble ikke funnet, noe som resulterte i en
gjennfinningsrate på over 99%.

Det er dog noe usikkert i hvor anvendeling nettverket er på dette stadiet; alle bilder er av
sau på inngjerdet beite med liten varians i lys og datasettet består av rundt 84% hvite sau.
I tillegg har den lave terskelen for gjennfinning ført til usikkerhet knyttet til antall funn per
sau. Videre arbeid burde forsøke å anvende betraktelig mer og varierende data for å øke
anvendeligheten.

ii

Preface

This thesis was carried out as a Master’s thesis as the culmination of the Master’s of Sci-
ence in Informatics programme at the Norwegian University of Science and Technology,
Trondheim in 2018/2019.

I would like to thank Steingrim Horvli for allowing me to capture footage of his sheep,
and Professor Svein-Olaf Hvasshovd for supervising all work related to this thesis. Your
input has been invaluable.

iii

iv

Table of Contents

Summary i

Preface iii

Table of Contents vi

Abbreviations vii

1 Introduction 1

2 Literature Review 3
2.1 Earlier Master’s Thesis . 3
2.2 Wildlife . 4
2.3 Civil Engineering Applications . 4
2.4 Military Applications . 5
2.5 Summarised . 6

3 Theory 7
3.1 Artificial Neural Networks . 7
3.2 Convolution . 7
3.3 Layers . 8

3.3.1 Convolutional Layer . 9
3.3.2 Shortcut Layer . 9
3.3.3 Route Layer . 9
3.3.4 Upsampling Layer . 10
3.3.5 YOLO Layer . 11

3.4 Convolutional Neural Networks . 11
3.5 Back Propagation . 12
3.6 YOLO - You Only Look Once . 13
3.7 Transfer Learning . 15

v

4 Data Acquisition and Analysis 17
4.1 Planning . 17

4.1.1 Requirements . 17
4.1.2 Equipment . 18
4.1.3 Location . 18
4.1.4 Analysis . 19

4.2 Acquisition . 19
4.3 Analysis . 20
4.4 Labelling . 23
4.5 Observations . 25

5 Experiment Structure 27
5.1 Research Questions . 27
5.2 Experiments . 28
5.3 Performance . 29
5.4 Hardware . 30

6 Results and Discussion 31
6.1 Performance . 31
6.2 Discussion . 33
6.3 Research Questions . 37
6.4 Threats to Validity . 37

6.4.1 Generalisability . 37
6.4.2 Overfitting and Underfitting . 38
6.4.3 Erroneous Bounding Boxes . 38
6.4.4 Suggested Remedies to Increase Validity 39

7 Further Work 41
7.1 On-board Graphics . 41
7.2 Combine Infrared and Visual Imagery 41
7.3 Use Altitude Data . 41
7.4 Predators . 42
7.5 Improvements on YOLOv3 . 42

8 Conclusion 43

Bibliography 43

Appendix A 49

Appendix B 50

vi

Abbreviations

AI = Artificial Intelligence
ANN = Artificial Neural Network
CNN = Convolutional Neural Network
DNN = Deep Neural Network
DP = Deep Learning
FLIR = Forward-Looking InfraRed
FOV = Field Of View
GCS = Ground Control Station
GPS = Global Positioning System
NN = Neural Network
R-CNN = Region Convolutional Neural Network
RNN = Recurrent Neural Network
UAV = Unmanned Aerial Vehicle
YOLO = You Only Look Once

vii

viii

Chapter 1
Introduction

Each year approximately 2.1 million sheep range freely in Norway which in itself presents
a lot of challenges [39, 20]. One challenge is locating smaller groups of sheep that have
strayed from the flock at the end of the grazing period. The process of manually searching
and traversing a large area is both tedious and time-consuming.

A popular solution to this problem is to radio tag a portion of the free-ranging sheep to aid
in recovery. This method drastically reduces the time spent herding sheep at the expense of
costly equipment. The tags are typically around 1000 NOK a piece (not including required
subscriptions) [10, 32, 36, 31], making it expensive to tag every sheep. Luckily, sheep tend
to stick together in flocks and ewes with their lambs, and therefore tagging only a portion
of the sheep is often sufficient to recover the majority.

Fall roundups in Norway usually consist of three steps: two major roundups by use of
radio tags where more than 90% of sheep are gathered, and a final roundup to locate all
of the stragglers [15]. While the two first roundups are quite efficient, the last one is the
most troublesome; there could be no information on the whereabouts of the last sheep and
the farmers are by law required to roundup all of the surviving sheep and document their
losses.

Recent years have seen enormous growth in applications involving unmanned aerial vehi-
cles (UAV), resulting in more affordable commercial and industrial products. Internation-
ally, UAVs are used in a wide range of applications, and some farmers in Norway have
already started utilising UAV’s for oversight during the grazing period, and have reported
great success in doing so [13]. Manually sifting through all of the footage and marking po-
sitions of sheep, however, is a time consuming and error-prone process that could benefit
from automation, especially in regard to large areas.

One of the state-of-the-art object detection and localisation solutions is You Only Look
Once (YOLO), and more specifically YOLOv3. YOLOv3 has a mAP@50 (mean aver-
age precision with 50% IoU (Intersection over Union) as the threshold) of 57.9 with an

1

Chapter 1. Introduction

inference time of 51ms, and while it is not the most accurate it is likely one of the best
trade-offs between precision and speed currently available [28].

Currently, a large portion of the roundup is spent trying to locate a small portion of sheep.
A lot of resources are invested in the sheep, and the farmers are by law required to account
for all sheep that have been released in the grazing period, which means that it is not
feasible for them to simply stop looking for the sheep despite how long it might take. By
using a drone with automated sheep detection software, it would be easy to examine large
areas in a short amount of time to swiftly locate nearby sheep.

This thesis revolves around examining possible software solutions to handling the au-
tomated detection aspect of a tool to aid farmers in roundup at the end of the grazing
period.

2

Chapter 2
Literature Review

This chapter gives an overview of existing research related to localisation of livestock,
game, planes, and cars from UAV footage, as well as ways to analyse this footage ef-
ficiently. The purpose of this chapter is to give an overview of relevant research and
state-of-the-art techniques for object detection in images.

Developing a fully automated system for recognising objects, animals and people have
a multitude of uses in modern society. New advances in deep learning (DL) are making
these techniques prevalent in the field of object detection. As will be discussed below,
some notable applications include wildlife monitoring and research, as well as civil en-
gineering. There are numerous possible military applications as well, however, due to
several challenges this field takes on a rather slow stance on integrating deep learning into
their systems.

2.1 Earlier Master’s Thesis

The problem of locating sheep in drone imagery was also a topic in a thesis from 2018,
however, with somewhat different scope. The thesis was divided into two parts. The
first part consisted of planning a flight path for optimal area coverage, and the second
part was a comparison between a feature engineered computer vision technique and two
different deep neural networks. The dataset used for comparison consisted entirely of
thermal images captured from a fixed-wing drone, and due to some issues with interference
during flight, most images contained notable noise.

The thesis concludes that a classical computer vision approach performs best overall as
compared to RetinaNet [18] and their implementation of a convolutional neural network
(CNN). The authors argue that this is likely due to the small dataset used for training as

3

Chapter 2. Literature Review

deep neural networks often require large amounts of data to outperform traditional tech-
niques. The results indicate that using deep learning and thermal images is a highly rele-
vant solution to object detection.

2.2 Wildlife

Conservation workers, farmers, and researchers are often groups with limited budgets, and
drones have repeatedly proven to be both a cheap and efficient solution to aerial monitor-
ing. The combination of automated flights with object localisation has further improved
this process, as demonstrated in a paper by Van Gemert et al. from 2015 [38].

Van Gemert et al. performs experiments with a quadcopter carrying a GoPro Hero 3 Black
across fields with cattle. The experiments aim to evaluate the effectiveness of a fully
automatic system to aid conservation workers with examining population trends and iden-
tifying threats. While their dataset was not recorded in the wild, the use of the quadcopter
allowed for recording at a variety of heights, speeds, and camera angles, and it is argued
that the recording setup closely matches a real-world setup. The experiments showed the
most promising results with a technique called Exemplar SVM (Support Vector Machine)
with a precision and recall of 0.66 and 0.72 respectively at a rate of 0.9 sec/image.

A similar set of experiments were performed by Rik Smit in 2016 [33]; a commercial
drone was flown over fields with cattle, followed by a comparison of different machine
learning algorithms on the output data post-flight. Smits results top out at 0.446 and 0.742
for precision and recall; while the recall is similar, the precision reported by Van Gemert
et al. is significantly better.

Both of these studies demonstrate the viability of using some kind of object localisation on
UAV footage, however, they are not ready to replace manually annotated data due to a lack
in both recall and position. They can, on the other hand, be used as an aid in analysing
the footage. It is worth to note that all recordings were taken in open fields with some
man-made structures present which might not represent the performance experienced in
real-world applications.

2.3 Civil Engineering Applications

A paper by Radovic et al. [23] demonstrates success in using a modified, YOLO-inspired
[26] CNN to locate airplanes in aerial images taken by UAVs. The paper proposes an
architecture with 24 convolutional layers followed by two fully connected layers as shown
in Figure 2.1.

Radovic et al. were able to achieve an object classification accuracy of 97.8% when tested
on aerial images at varying levels of resolution. It is, however, worth to note that no
average Intersection over Union (IoU) was specified in the paper, i.e. how accurate the

4

2.4 Military Applications

Figure 2.1: Illustration of CNN architecture (from Radovic et al., 2017).

predicted bounding box of the object was, and as such it is difficult to judge the overall
quality of their predictions, but the results are promising.

Benjdira et al., [4], perform a comparison between YOLOv3 and Faster R-CNN (Region-
CNN), two state-of-the-art CNN algorithms, on UAV footage of cars at different altitudes
in an urban environment. They conclude that YOLOv3 is on par with or outperforms Faster
R-CNN on all of the evaluation metrics, and especially the processing time of 0.057 s,
compared to 1.39 s for Faster R-CNN, makes YOLOv3 very attractive for real-time oper-
ations.

These papers by Benjdira et al., and Radovic et al. presumably lack in generalisability as
both datasets are generated from similar environments; daytime lighting in urban areas.
While airplanes are less likely to be present in rural areas, cars are ubiquitous in mod-
ern society and it remains to be seen whether the trained networks perform as well on a
wider variety of environments. Both papers indicate that YOLO, or its derivatives, may be
efficiently applied to object localisation on drone imagery.

Other civil engineering uses include, but are not limited to: construction site monitoring,
solar farms inspection, traffic monitoring, oil, gas, and power line inspections.

2.4 Military Applications

While UAVs have been utilised by intelligence and military agencies for years, there is
a reluctance to apply deep neural networks (DNN) to localisation systems. A paper by
Svenmarck et al. from 2018 [35] summarise the reasoning for this in three main cate-
gories:

• Lack of transparency and interpretability - It is difficult to legitimise a decision made
by a DNN due to its black box nature. The output from the network may have drastic
consequences, and it is challenging to understand the reason behind the output; in
some cases, the output could be caused by broader statistical correlations as opposed
to the desired deciding factors.

5

Chapter 2. Literature Review

• Vulnerable to adversarial attacks - By manipulating the input signal of a DNN it is
possible to drastically change the output, even if the model is unknown. This has
been demonstrated by Su et al. [34] by changing as little as one pixel to entirely
change the outcome of the DNN. Su et al. demonstrate a success rate of up to
72.85% on a basic DNN, which could potentially be disastrous.

• Data - There is a concern about whether or not the data previously gathered can
be used successfully for machine learning. It might be challenging to adjust data
pipelines to adapt to new data requirements.

None of these categories apply to the problem at hand; Firstly, there is no specific need
to legitimise the object detections as they are intended as an additional aid, and not a
replacement. Secondly, there is not expected to be a need to secure the network against
attacks. Lastly, there is no current data pipeline that can be utilised for this problem.

Military applications, or limits thereof, are mainly mentioned here due to the obvious
advantages for tactical applications and the like, and this section aims to illustrate why
most of the literature research is based on civilian applications.

2.5 Summarised

Several surveillance and monitoring papers, as well as the earlier Master’s thesis, utilise a
thermal imagery system rather than a visible imagery one [12, 5, 6], and it is not hard to see
why. Thermal cameras can detect subtle differences in temperature, for instance between a
warm bodied animal and its background, therefore making it quite suitable for discovery-
style applications. Thermal cameras on drones are not considered standard equipment,
especially on off-the-shelf drones, and may as such require substantial investment. Ulti-
mately, this means that footage is to be captured by the use of an easily available and cheap
off-the-shelf drone.

Several different deep neural network architectures have been tested, as well as traditional
computer vision techniques, however, YOLO has demonstrated superior performance. Al-
though the results are promising, it is worth to note that the subject of study has mostly
been mechanical, e.g. cars and planes, and the environment urban. It is unclear whether
YOLO will perform at the same level on sheep in rural areas,

6

Chapter 3
Theory

This chapter will briefly explain convolutional neural networks, its constituents and how
they learn. Finally, it will explain the main aspects of the single-stage object detector
YOLOv3, You Only Look Once v3.

3.1 Artificial Neural Networks

In the modern sense of the word, artificial neural networks (ANNs) are networks of in-
terconnected nodes inspired by the neurons in the brain. The nodes are typically grouped
together in layers, and a series of layers make an ANN. While not a new invention, the
use of ANNs has grown immensely in recent years and has seen applications in finance,
marketing, production, monitoring, and more [21].

YOLOv3 is a variation of a convolutional neural network (CNN), which in turn is a vari-
ation of an ANN. To explain the relevant fundamentals of YOLOv3 it is easiest to start at
the bottom by explaining convolution.

3.2 Convolution

In image processing, convolution is an operation where a matrix K, often called kernel,
is applied to another matrix I . The operation itself is called convolving I by K. Usually
denoted by ∗, convolution is quite similar to a dot product of K and I , see Figure 3.1. K
is fitted into the upper left corner of I so that there is full overlap and each weight in K is
multiplied with the corresponding overlapping value in I and then summarised resulting in
I ∗K. The kernel then slides across the entire image with a given stride; in this example,
the stride is set to one. Note that a convolution normally decreases each dimension of I

7

Chapter 3. Theory

by the corresponding dimension in K minus one; this is also demonstrated in Figure 3.1.
This is because the result of the convolution is placed at the centre of the kernel, and in
this instance, I goes from 7x7 to 5x5 due to K being 3x3, i.e. a reduction of two in each
dimension. This can be avoided by padding I with a one-pixel wide border of zeroes and
is useful if there might be important information along the edges of the input or if it is
desired to maintain the size of the input.

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

a)

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

b)

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 3.1: Convolving image I with the kernel K (I ∗K). The first step is shown in a where the
kernel is placed in the upper left corner, and the next step shown in b where the kernel slides with a
stride of one. The process is repeated until the kernel has been slid across the entire image (images
derived from [1]).

The reason why convolution is used in some ANNs is that the operation resembles the way
neurons in the brain respond to visual stimuli, and as ANNs are inspired by neurons it is
natural to attempt to apply techniques for visual processing as well. From a more practical
perspective; convolution is a good way of detecting features and patterns in images in an
efficient manner. Edges, for instance, consist of transitions between intensities or colours,
and are often good descriptors of high-level information in images.

3.3 Layers

While convolution may be useful on its own, the real advantage comes from grouping
convolution operations together in layers. There is a multitude of different layers, however,
only the relevant ones will be explained here. Note that all examples are taken from the
default yolov3.cfg [25], and an overview of all layers can be found in Appendix B.

8

3.3 Layers

3.3.1 Convolutional Layer

A convolutional layer is a layer that applies convolution with 1 kernel per input channel
and one or more kernels together make up one filter. Convolution is a good way of exam-
ining the relationship between neighbouring pixels and discovering important features in
images, and CNN’s utilise convolution through convolutional layers.

A filter evaluates how well the input resembles a feature, e.g. edges, roundness, colour or
higher level information that may be difficult for humans to understand. The same filter
can be applied to all parts of the image as a feature is expected to be equally important at
all locations. Multiple filters may be used, and the number of filters used directly corre-
spond to the amount of channels output. Listing 3.1 shows an example configuration of a
convolutional layer:

Listing 3.1: Convolutional Layer

[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1

which results in a layer as illustrated in Figure 3.2. Batch normalisation is explained
further in section 3.6, however, its overall purpose is to improve training. The filters, size,
stride, and pad parameters define the format of filters as well as how they are applied.
Filters are 3x3x1024 with a stride of 1 and the input is padded with 1 so that the output
retains the same dimensions as the input, see section 3.2 for an explanation of stride and
pad. Note that the depth of the output correlates to the number of filters, and the depth of
the input correlates with the number of kernels in each filter.

3.3.2 Shortcut Layer

A shortcut layer is a variation of a skip connection, i.e. a connection that can skip past lay-
ers. A shortcut layer concatenates the outputs of two layers: the previous one, and a sec-
ond defined by the current layer minus from number of layers. Listing 3.2 shows a shortcut
layer that concatenates the previous layer and the layer 3 before the current.

Listing 3.2: Shortcut Layer

[shortcut]
from = -3
activation = linear

3.3.3 Route Layer

Route layers are very similar to shortcut layers, as they can be used to skip layers. There
are however two different kinds of route layers, one with a single parameter, and one with

9

Chapter 3. Theory

Figure 3.2: Example of a convolutional layer: an input of 13x13x512 is convolved (*) by 1024
filters of shape 3x3x512 resulting in an output of 13x13x1024. As the input was padded, the output
retained the resolution of the input.

two parameters as shown in Listing 3.3.

Listing 3.3: Route Layer

[route]
layers = -4

[route]
layers = -1, 36

The first instance uses one parameter and simply outputs the layer indexed by the current
layer minus 4. The second instance concatenates the previous layer, -1, and layer at index
36, however, it can be used to concatenate arbitrarily indexed layers as well.

3.3.4 Upsampling Layer

Listing 3.4: Upsampling Layer

[upsample]
stride = 2

An upsampling layer performs upsampling by a factor of stride, which in the instance of
Listing 3.4 is 2. If the input is 13x13x256, this layer would then output 26x26x256.

10

3.4 Convolutional Neural Networks

3.3.5 YOLO Layer

The YOLO layer is the layer in YOLOv3 responsible for performing detection. YOLOv3
contains three of these layers that are responsible for the detection of objects at three
different scales, from largest to smallest where each layer attempts to extract higher-level
information than the previous.

To understand this layer, a new concept has to be introduced: Anchors. Anchors, or anchor
boxes, are a series of predefined height-to-width ratios that are the basis for predicted
bounding boxes. In a way, anchors can be considered a series of boxes that represent the
most typical size and shape of objects in a dataset. Optimally, anchors are calculated with
K-means clustering on the training set so that their initial shape and size is closer to the
objects in the dataset. When a network makes a prediction, instead of directly outputting
dimensions of the bounding box, it predicts an offset from the most similar anchor box.
This technique has shown promising results in regards to improving the performance of
CNN’s with little overhead to implementation, training and inference time [40, 27].

Listing 3.5 shows relevant parts of the configuration for the second YOLO layer. Anchors
are defined in the parameter anchors, and by default each layer consist of 3 out of the
num = 9 anchors defined by use of the mask parameter. For this layer, anchors 3, 4 and
5 are used, resulting in anchors (30, 61), (62, 45) and (59, 119) respectively as they are 0
indexed. Larger objects are detected at the first layer and smaller objects at the third. Note
that the number of classes is set to 80 by default and does not necessarily reflect what will
be used in this thesis.

Listing 3.5: YOLO Layer

[yolo]
mask = 3,4,5
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, ...
classes = 80
num = 9
jitter = .3
...
random = 1

The final parameters, jitter and random, are data augmentations the layer applies at even
intervals during training. jitter specifies the maximum random adjustment to size and
aspect ratio performed, and random enables resizing of the network input resolution up
to a certain offset from the original resolution. Using random should improve network
performance when using images of different resolutions as input as the network is trained
with inputs of varying resolution.

3.4 Convolutional Neural Networks

A convolutional neural network (CNN) is an artificial neural network that uses convolu-
tional layers to process data. CNN’s are specifically designed to handle image input in the

11

Chapter 3. Theory

shape of a multidimensional matrix and are very efficient at doing so. AlexNet, the archi-
tecture of which is shown in Figure 3.3, demonstrated great success in comparison to other
computer vision techniques in the ImageNet Large Scale Visual Recognition Challenge in
2012 where it won the classification and localisation categories as the only competitor that
used a CNN [29]. Subsequent years saw an enormous increase in the use of CNN’s, and
in 2014 most of the submissions for the challenge were based on CNN’s.

Figure 3.3: Architecture of AlexNet, a CNN from 2012(image from [11]).

Operations involving CNN’s can be classified as computer vision tasks as they attempt to
extract high-level information from images, and this thesis is no exception to that. Clas-
sification and object detection are two main areas of research; classification is simply to
classify an image as a certain object, while object detection locates an object in the image
and then classifies it. Object detection is the most challenging of these two, and also the
most relevant for this thesis; images may contain zero, one or several sheep, and it is im-
portant to know the position of sheep in the image for retrieval and validation purposes.
Traditionally, object detection performed by multi-stage detectors use two steps:

1. Predict or detect possible objects in the image and return bounding boxes for these

2. Classify the bounding boxes as an object or false positive

However, in recent years a couple of notable one-stage detectors have appeared: SSD [19],
RetinaNet [18] and YOLO [26]. These detectors take an image as input and directly output
bounding boxes with class predictions. The main arguments for using one stage detectors
as opposed to multistage detectors is the ability to train and optimise an entire network
in one go, whereas multistage solutions may consist of multiple networks that need to be
trained and optimised separately resulting in additional complexity to the solution.

3.5 Back Propagation

Backpropagation is the process of adjusting the weights of an ANN so that it can be trained
to solve a problem and is the typical process that is repeated when training a network. This
is done by passing the input through the network, comparing the output to ground truth,
i.e. expected output, and then calculating an error rate via a specialised loss function.
This error rate is then cascaded backwards through the network to modify the weights (in

12

3.6 YOLO - You Only Look Once

the instance of CNN’s filters are the weights) so that the next time the same or a similar
image is passed through the network, the prediction should be closer to the ground truth.
A series of parameters define limits on how drastically the network can learn, i.e. how
drastically weights may be changed at a time to attempt generalisability. The theory is that
with enough small changes and tweaks to weights, a network of nodes is able to learn any
arbitrary mapping of input to output.

Weights are usually not updated after only passing a single image through the network, but
rather after passing a batch of images through. The size of the batch is usually constant
when training a network, however, it is not standardised across AI frameworks. After
one batch has been passed through, and the error rate backpropagated, it is called a single
epoch. Note that the term epoch varies in definition and use, and epoch as a term in this
thesis follows the given definition.

3.6 YOLO - You Only Look Once

YOLO is a one-stage object detector that performed very well at its release in 2015 and has
since seen two major updates: YOLOv2 [27] and YOLOv3 [28] in 2016 and 2018 respec-
tively. Each update has kept YOLO in the state-of-the-art tier among object detectors, and
especially the latest version, YOLOv3, performs exceptionally well in comparison with
competitors, as evidenced by [28].

As YOLO is a fully convolutional neural network, and a one-stage object detector, dif-
ferent parts of the network architecture are responsible for different parts of the object
detection; most notable is the new feature extractor, Darknet-53, see Figure 3.4. The fea-
ture extractor is the backbone of YOLOv3 and is purely responsible for extracting features
that directly relate to objectness from images. Darknet-53 is named after its constituent 53
convolutional layers and YOLOv3 consists of Darknet-53 plus additional object detection
layers that total to 106 layers [16].

YOLOv3 uses a series of smart techniques to improve object detection, the most notable
of which are described below (YOLO will be used to reference YOLOv3 from this point
onward unless stated otherwise) [14, 26, 27, 28]:

Bounding box prediction across scales - YOLO predicts objects at three scales across
the entire image within a grid with a stride of 32, 16 and 8 meaning that each cell size is
defined as the network input resolution divided by stride. By default, each cell uses three
anchors per scale to make predictions and the cell where the centre of the object is located
is responsible for its detection. If the input is 608x608 the number of bounding boxes
predicted would be

((608/32)2 + (608/16)2 + (608/8)2) ∗ 3 = 22743.

As it is not viable to work with this amount of bounding boxes YOLO performs pruning
of bounding boxes in two steps: thresholding by objectness and non-maximum suppres-
sion. Each predicted bounding box is assigned a confidence that indicates how certain the

13

Chapter 3. Theory

Figure 3.4: The architecture of the feature detector Darknet-53 (image from [28]).

network is in its prediction that an object is present in this bounding box; this is known
as objectness. The default threshold for objectness during detection is 0.25 but can be
altered at runtime. Non-maximum suppression is a way of removing highly overlapping
bounding boxes by pruning away every bounding box except for the one with the highest
confidence.

Batch normalisation - Normalisation is the process of converting the distribution of val-
ues to have a mean of 0 and a standard deviation of 1, resulting in values that are mostly
between -1 and 1. Batch normalisation normalises the activation values from the previous
layer, which regularises the effect of a varying distribution in the training data and speeds
up training [22].

Configurable anchors - As previously mentioned YOLO uses 9 anchors for predictions.
These anchors are calculated by performing k-means clustering on the dataset and dividing
the output evenly across scales. By having anchors extracted from the current dataset
YOLO increases mAP (mean average precision) and reduces training time.

High-resolution classifier - YOLO uses a high-resolution input of 608x608x3 and sup-
ports any multiple of 32 as input due to the grid structure used for detection. This can be
modified both before training to improve accuracy at the cost of increased training time,
and after training prior to inference to improve accuracy at the cost of inference time.
Increasing the resolution requires additional memory.

Extensive Loss Function - From YOLO(v1) all variations of YOLO have used an exten-
sive and effective loss function and the original function is shown in the paper from 2015
[26]. The loss function in YOLOv3 is composed of three loss-calculations [14, 28]:

• Classification Loss is the penalty for predicting the wrong class for a bounding

14

3.7 Transfer Learning

box and uses binary cross-entropy loss for each label, the details of which are not
important to this thesis.

• Localisation Loss is a measure of how erroneous a predicted boundary box is, and
is only applied to bounding boxes responsible for detecting an object. Both location
and size are taken into account.

• Confidence Loss is entirely based on objectness. As explained, YOLO uses three
anchors per cell per scale and objectness for a prediction is 1 if the anchor respon-
sible has the highest IoU of all anchors at this scale. If the other anchors have an
IoU with the ground truth of less than 0.5 (default threshold), then the predictions
are penalised. If on the other hand, they are over 0.5, they incur no loss.

3.7 Transfer Learning

Training a network from scratch is a time-consuming process, however, there is a way
to use a previously trained network for other purposes. Darknet-53 is the backbone for
YOLOv3 and the variation of Darknet-53 used for by Joseph Redmon et al. [28] was
trained on ImageNet [17] with over 20 000 categories. Transfer learning is a way of
training where a previously trained network is used for another purpose. This is done
by removing some of the detection and classification layers near the end of the network,
and then training new detection layers with the new data. The theory behind this is that the
feature extraction layers of a network have learnt to detect important features from images,
and by extracting the layers and weights related to this feature extraction, a large portion
of training has already been completed.

The idea behind Darknet-53 is exactly this; a high-performance backbone that can be
used as a basis for a multitude of purposes so that new models do not have to train from
scratch. The term training, or learning, in the context of this thesis, is that of applying
transfer learning to the problem at hand, namely object detection of a custom dataset with
sheep.

15

Chapter 3. Theory

16

Chapter 4
Data Acquisition and Analysis

This chapter explains how the data acquisition was planned, executed and finally how data
was analysed and labelled.

4.1 Planning

The timeframe for this thesis in regards to the grazing period was rather unfortunate;
the work began within a month of the end of the grazing period and finished close to a
month or two after the grazing period started again the next year. As there would be no
other opportunities to record data the acquisition had to be planned and executed within
a limited amount of time, possibly before the details surrounding the project had been
decided.

4.1.1 Requirements

The premise of deep neural networks is primarily that their performance correlates di-
rectly to the quality and quantity of the data used to train them. While it is possible to
train a neural network with limited amounts of data, this often results in an impact on the
generalisability of the network.

Some basic requirements were defined in regards to the desired characteristics of the
data:

• A large number of pictures - DNN’s perform better when trained on more data.

• A varying number of sheep per picture - This should ensure that the network is
not faultily trained to place x number of sheep in every picture.

17

Chapter 4. Data Acquisition and Analysis

• A spectrum of different coloured sheep - Sheep tend to have differently coloured
wool, and some sheep have wool of multiple colours and shades. It is also possible
that sheep may be dirty, and this change in colour should be accounted for as well.

• As wide a range of environments as possible - Different backgrounds and lighting
result in widely different pictures.

• Footage from different heights - YOLO predicts a series of sizes for the bounding
boxes, and having a range of sizes could increase generalisability.

Optimally, the data should fulfil all of these requirements to be as versatile and applicable
as possible, however, lacks in most areas can possibly be supplemented with augmented
data, e.g. changes in brightness, saturation, random scaling, and cropping.

4.1.2 Equipment

A DJI Mavic Pro [8] will be used to take pictures at 4000 * 3000 pixels at varying heights
every 2 seconds. This particular drone was chosen due to being relatively cheap off-the-
shelf consumer hardware, as well as being available in the early stages of the thesis and
during roundup. Retailed at $749 it is a very affordable option that features 4k video,
12MP camera, live feed to a smartphone and 27 minutes of flight time.

Individual pictures were chosen over video due to the Mavics limitation regarding saving
metadata from the flight. By taking pictures rather than video the Mavic Pro natively
supports storing a range of metadata related to each picture most importantly, longitude,
latitude, and altitude based on the built-in GPS, and relative altitude based on the pressure
difference between the takeoff and current height. This meant that it was possible to
generate an overlay of the flight path and the height from the drone to the ground during
analysis, however, there were some problems with the height measurement, as will be
discussed in section 4.3.

4.1.3 Location

All footage was planned to be taken at a farm named Horvlia in Lønset, Oppdal. The
owner, Steingrim Horvli, graciously allowed us to fly our drone over his farm. Most of
Horvli’s sheep were either free ranging within a fenced area or had not yet been retrieved
for the end of the grazing period. However, the numbers were unclear prior to the day of
recording.

According to Google Maps and Kartverket, the farm is surrounded by boreal forest and
terrain transitioning between farmland and highland. The environment is considered to be
representative of a possible environment for free ranging.

No particular flight path was planned due to the unknown number and locations of sheep
that were currently grazing prior to arriving at the farm. The flight path would thus have
to be planned or improvised on location.

18

4.2 Acquisition

4.1.4 Analysis

When performing analysis on imagery taken by a drone, there are three main ways of
digesting the data:

• Post flight - All data is saved on a portable storage device. An analysis is performed
after the flight is finished, and the storage device retrieved. In the event of a crash,
all data could be lost.

• In-flight - All data is sent to a Ground Control Station (GCN) capable of receiving
and analysing data in real-time. Interference could render transmitted data useless,
and no data is stored on the drone for later retrieval.

• Hybrid - Data is saved on a portable storage device and sent to a GCN for real-time
analysis. When the flight is finished, the storage device is retrieved and the data
analysed, checking for discrepancies with what was received at the GCN.

It is important to note that these three methods only apply to drones that are by themselves
incapable of performing analysis in real-time, like the DJI Mavic Pro used in this project.
While the DJI is capable of sending a live video feed to a smartphone that is connected
to the remote, alternatively a smart-remote, this video feed is limited to 30 frames/second
at 1920 by 1080 pixels. The quality of the video is naturally affected by interference,
distance and blocking objects. At the time of recording, there is not expected to be a
working solution for handling a video feed in real-time, and analysis will be performed
post-flight in an exploratory fashion.

4.2 Acquisition

Images were captured the 2. of October 2018 between 11:00 and 13:00. Conditions were
near perfect; sunny and lightly clouded throughout the session with hardly any wind. De-
spite reports of snow in earlier weeks, no snow appeared to remain on the day of cap-
ture.

A total of three flights and captures were executed:

• The first flight was over sparse forest, with what is assumed to be typical Norwegian
flora and terrain; mountainous, rocky, mossy, and trees both spread and in clus-
ters. Sheep were supposed to be in the area, however, it turned out that they had
moved approximately 500 meters further away, and due to challenging terrain and
legal compliance to stay in the line of sight to the drone, further exploration was
discontinued. The first flight ended up resulting in a series of ”negative” images, i.e.
images that were expected not to contain any sheep.

• The second flight was of a mix of open fields surrounded by dense forest. Most
sheep appeared to spread out in groups across the open fields, though a fraction kept
close to the edges.

19

Chapter 4. Data Acquisition and Analysis

• The third and final flight included the farm buildings and equipment as well as some
sheep and cattle ranging close to the buildings. Mostly open fields with some roads,
buildings and equipment present.

4.3 Analysis

Figure 4.1: The flight path from the three flights recorded. Note that there is an interpolation
between all flights, and the long line between the left and the right of the map is one of these
interpolations.

A total of 942 pictures were captured from three different flights, from a varying range of
heights. Some pictures were removed due to being too close to the ground or otherwise
unsuitable, resulting in 844 images in the final dataset.

Due to the quite significant differences in height in the environment (90 meters difference
at most), some preprocessing was required to get an estimated height difference between
the drone and the ground directly beneath it. As all images were tagged with longitude and
latitude at the moment of capture, it was a simple task to extract this data from the footage
and draw a flight path onto a Google Maps cutout as shown in Figure 4.1.

The DJI Mavic Pro has two independent ways of measuring altitude; the first is based
on the GPS and the second uses an onboard barometric pressure sensor that measures the
difference in air pressure between take-off height and current height. As DJI does not
specify an accuracy for either method, both will be examined here.

20

4.3 Analysis

Figure 4.2: A cutout of the sheep in question from DJI 0654.JPG

DJI 0654.JPG, see Figure 4.2, was chosen due to a sheep standing close to parallel with
the height axis of the image, and as such provides a reasonable point of reference. The
calculated height based on the GPS is

HeightDifference = DroneHeightGPS −GroundHeight

= 776m− 550m

= 226m

(4.1)

above the ground. This number is of particular concern as it is illegal to fly a drone above
120 meters above the ground without specific permission from ’Luftfartstilsynet’ (the Civil
Aviation Authority of Norway) as well as a certificate. During flight, it did not appear as
though the drone was flying at this height, which raises a question about the accuracy of
these measurements. The following calculations attempt to calculate the real-world size
of a sheep in the image by use of the GPS altitude measurements to examine whether they
are reasonably accurate.

An average adult sheep is 1.3 meters long [30], and the sheep in question was found to be
68 pixels in length. The FOV of the camera on the DJI Mavic Pro is 66.8◦ horisontally and
52.5◦ vertically according to DJI’s tech support, see Appendix A. The real world vertical
span, or footprint, of the image, was calculated to be

Ft = 2 ∗ h ∗ tan (FOVt/2)

= 2 ∗ 226m ∗ tan (52.5◦/2)
' 223m.

(4.2)

From there we can calculate the approximate real-world tallness of each pixel as

21

Chapter 4. Data Acquisition and Analysis

Pt =
Ft

NumberOfPixels

= 223m
3000px

' 0.074m/px,

(4.3)

resulting in a sheep that is

SheepLength = PixelsTall ∗ Pt

= 68px ∗ 0.074m/px

' 5.0m

(4.4)

according to measurements recorded by the GPS. While the calculations are rough estima-
tions the values are clearly incorrect, and the validity of height measurements provided by
GPS is not considered to be reliable. Despite erroneous altitude reporting, the associated
latitude and longitude correspond reasonably with images taken at each location, and these
measurements are for all intents and purposes treated as accurate.

Calculations (4.1) through (4.4) use the altitude reported by the GPS, however, Mavic Pro
has a second way of measuring altitude; the barometric pressure sensor. This sensor does
not directly measure height above sea level; instead, it measures offset in height from a
previous location and altitude. On takeoff, the drone automatically measures the pressure
at its current height, and all further heights measured are based on an offset from this initial
height. In practicality, this requires the user to know the absolute height at the takeoff
position to be able to calculate anything other than the difference in height given that the
sensor is accurate enough. At the image in question, DJI 0654.JPG, the drone recorded a
relative altitude of ' 75 meters and a ground height of ' 549 meters. The related flight
started at DJI 0192.JPG, whose ground height is at approximately 533 meters. This results
in an absolute height of 533m+75m = 608m. The measured distance to the ground is as
such 608m− 549m = 59m. It follows that the size of the sheep according to the relative
altitude is

Ft= 2 ∗ 59m ∗ tan (52.5◦/2)
' 58m

P = 58m
3000px

' 0.02m/px

SheepLength = 68px ∗ 0.02m/px

= 1.36m.

(4.5)

Compared to the average length of sheep at 1.3 meters, 1.36 seems like a reasonable esti-
mate. The GPS relies on connections to satellites to measure its position accurately, and
as the area in question is mountainous this could interfere with the signals. The baro-
metric sensor, on the other hand, is not reliant on any external factors other than the air

22

4.4 Labelling

pressure and, if calibrated properly, should give quite accurate results as demonstrated
above.

It is, however, worth noting that these calculations do not take into consideration the nat-
ural curvature of the landscape; height differences in an image are not accounted for, and
could as such lead to erroneous values. Assumptions are also made regarding the real-
world size of each pixel; pixels at the centre of the image should be smaller than those at
the edges due to the curvature of the lens. These calculations simply serve as a very rough
estimate, and are by no means meant to be used to calculate an accurate real-world size; it
does, however, give an indication of the actual size of a sheep.

As previously mentioned, it is illegal to fly above a certain height without special permis-
sions and qualifications, and there is often a built-in security feature in consumer drones
that prevent them from flying above this limit. The DJI Mavic Pro is no exception to this
and enforces 120 meters above-the-ground limit at all times that intuitively has to be en-
forced by use of the barometric sensor, as the GPS by itself is incapable of measuring its
altitude above the ground. This raises an interesting question about flight height; as the
barometric sensor measures the height difference between take-off and current position.
By taking off from the top of a mountain and then flying over a cliff the drone could fly at
several hundred meters above the ground whilst not breaking the limitation.

The inaccuracy and limitations of the DJI Mavic Pro mean that it is not a likely candidate
for any commercial use in the capacity that is desired.

4.4 Labelling

Images were labelled with LabelImg [37], where a rectangular bounding box was speci-
fied for each sheep discovered and its graphical interface is shown in Figure 4.3. All sheep
were labelled with one of three colours; brown, black or white.

Table 4.1: Distribution of images that contain sheep.

With sheep Without sheep Total
Number of images 361 483 844
Distribution 43% 57% 100%

Table 4.2: Table of sheep distribution in the entire dataset.

White sheep Black sheep Brown sheep Total
Number of sheep 4621 724 132 5477
Distribution 84.4% 13.2% 2.4% 100%

The distribution of images containing sheep is shown in Table 4.1 and the total distribution
of sheep is shown in Table 4.2, and white sheep clearly constitute the largest portion of
sheep in the dataset with 84.4%. An additional category to the three primary colours of

23

Chapter 4. Data Acquisition and Analysis

Figure 4.3: LabelImg - Tool used for labelling images

sheep was added: difficult. This tag specifies that it was difficult to label said sheep due to
either multiple colours, partial obstruction or uncertainty. Note that this classification was
additional, not alternative, and this distribution is shown in Table 4.3. Approximately 5.8%
of all sheep were difficult to label and 22% of black sheep. Black sheep were often difficult
to label due to their shadow being of a similar colour to their wool, possibly resulting in
poor bounding boxes for black sheep.

Table 4.3: The distribution of difficult sheep to label across the different classes of sheep. Distribu-
tion is the portion of the relevant class that was difficult to label.

White sheep Black sheep Brown sheep Total
Number of sheep 160 159 0 319
Distribution 3.5% 22.0% 0% 5.8%

The dataset was split into training and test with a ratio of 60:40 respectively. The distribu-
tion of train:test is typically closer to 75:25, however, due to the dataset containing a large
amount of similar images (as the pictures were taken within 2 seconds of one another)
as well as a recommended requirement by AlexeyAB [2] of having an equal amount of
images with and without sheep in the training set, the 60:40 distribution was chosen. The
training set contains 500 images, 250:250, and the test set 344, 111:233.

24

4.5 Observations

4.5 Observations

While examining the dataset, a couple of peculiarities were discovered:

• Several pictures showed signs of loss of focus at the perimeter of the image. This
was especially clear when hovering in place and then increasing altitude. This could
be a limitation with the lens/camera on the DJI Mavic Pro, and there is no way to
remedy this without removing large parts of the images. No illustration is provided
to demonstrate this example as it was hard to examine the extent of the loss of focus
on print.

• There is a surprising difference in exposure, or brightness, between some pictures
taken within 2 seconds of one another. This could be due to clouds temporarily cov-
ering the sun, or it could be an issue with the camera and lens, however, it is difficult
to verify this. An example is shown in Figure 4.4. From a practical perspective, it
should not make much of a difference in performance as YOLO already performs
some data augmentations that alter the hue and saturation of images.

Figure 4.4: Example of exposure difference between images taken within 2 seconds of each other.
DJI 0349.JPG and DJI 0350.JPG

• There are only 2.4% brown sheep in the dataset and this raises the question of
whether or not brown sheep are indistinguishable from black sheep in drone im-
agery. As the main task is to locate sheep in images and not only brown sheep there
should not be an issue. This could, however, cause some issues in case farmers are
interested in comparing the images to what was observed.

• Due to a mistake during acquisition, all images from the first flight were flipped 90
degrees. As this could potentially be an issue for YOLO, all of these images were
flipped back 90 degrees so that all images were horisontally aligned.

25

Chapter 4. Data Acquisition and Analysis

26

Chapter 5
Experiment Structure

This chapter details the research questions, the experiments derived from these questions
and the metrics used for evaluation.

5.1 Research Questions

Based on the motivation and literature review, the following research questions are pro-
posed:

RQ1 How well does YOLOv3 locate sheep in UAV footage?

RQ2 Is it easier to classify sheep as a superclass, or as one of three subclasses based on
colour?

RQ3 Is it possible to increase performance noticeably by tweaking parameters post train-
ing?

See Figure 5.1 for an overview of the relationship between the superclass and subclasses.

Figure 5.1: Class diagram illustrating the relationship between the superclass and subclasses.

27

Chapter 5. Experiment Structure

5.2 Experiments

RQ1 is not examined by experiments on its own, but rather through RQ2 and RQ3 due to
the nature of these questions as modifications of YOLOv3 parameters. Furthermore, RQ3
is applied to both the superclass and subclass configurations mentioned in RQ2, meaning
that all research questions are closely tied together and are rather treated together as a
concept than separately. Ultimately, all three questions are collectively answered through
the experiment structure detailed below and are not strictly assigned individual experi-
ments.

The hyperparameters related to the superclass and subclass separate the two configurations
into two top-level categories. Each of these categories are subsequently examined through
additional modifications to parameters that, as opposed to the hyperparameters, can be
altered after network training is completed. Preliminary tests indicate that performance
typically peaks and stabilises within 12000 epochs with a stable loss per epoch of < 1,
and is as such the target amount of training for both superclass and subclass. Weights are
saved at 1000 epoch intervals, and only the weights that result in the highest recall and
precision are used for testing.

Three different resolutions for network input have been chosen. Configuring different res-
olutions was chosen due to two reasons, the first being a recommendation by AlexeyAB
[3], the creator of the code repository used, that increasing resolution before or after train-
ing may improve performance, albeit at the cost of additional training and inference time
respectively. Secondly, increasing the network input size will increase the amount of in-
formation that can be input, which could be important as sheep in the images are quite
small. 608x608 pixels is the resolution used in the YOLOv3 paper and is a such a natural
base resolution, and as lower resolutions are not expected to improve results, the other
values are higher than 608x608 pixels. 832x832 and 1024x1024 pixels were chosen as
two higher resolutions for performance evaluation. Note that all resolutions have to be a
multiple of 32 due to how YOLOv3 is structured, details of which are explained in Section
3.6.

By decreasing the resolution of all images by a factor of 4, from 3000x4000 to 750x1000
pixels, training time is decreased as YOLO has to perform less scaling for images to fit
within 608x608 pixels. As this scaling results in images that are smaller than the higher
resolution input configurations, unscaled images are used during performance evalua-
tion.

Additionally, each of these 6 configurations will be examined at different threshold levels,
i.e. by changing the limit for how confident the network has to be per prediction for it to
count as a prediction. A lower threshold will increase the recall, as even predictions the
network are not very confident in, will be assumed to be correct. With a higher threshold,
the network has more confidence in the predictions it makes, take for instance a thresh-
old of 0.7; for a prediction to count, the network has to be at least 70% confident in its
prediction.

Finally, two specific parameters were edited to optimise YOLO specifically for small ob-
jects. Small objects in this instance are defined as objects smaller than 16x16 pixels after

28

5.3 Performance

images are downsized to 608x608 pixels. As with most other parameters, these too are
recommended AlexeyAB [3], and the first is anchor recalculation. As explained in section
3.6, anchors define a series of height-to-width ratios, and every bounding box prediction
is defined as an offset from these anchors. By having multiple bounding boxes at different
scales, YOLO performs better on overlapping objects, and thus possibly on objects that
are close to each other as well. The reason for needing to recalculate these is that the de-
fault anchors are too large for what is expected to be found in the images, take for instance
the last and largest anchor; At 373x326 pixels, a sheep would have to span about half the
image for this ratio to be correct, while the average size is < 10%, i.e. 61x61 pixels or less
for most instances.

The second set of parameters consists of increasing upsampling from 2x to 4x at layer 97
as well as changing which layers are concatenated at layer 98. Why exactly these layers
were recommended is not known, however, it is likely due to some attributes of small
objects that are more easily detected at certain layers.

5.3 Performance

Performance data is generated by applying different configurations of YOLOv3 to the
dataset of labelled sheep and then comparing the differences. The performance will be
measured against ground truth, i.e. the manually annotated bounding boxes detailed in
section 4.4, and will consist of 4 different metrics that showcase different advantages and
disadvantages. The 4 metrics are:

• Precision - Ratio of correct classifications on predicted bounding boxes

• Recall - Ratio of predicted bounding boxes and ground truth

• Inference time - Time to evaluate a single image

• mAP@50 - Mean average precision with a threshold of 0.5 intersection over union
(IoU).

The best performance is achieved by the configuration that results in the highest recall.
This is based on the idea that this thesis aims to evaluate a solution for a sheep locating
tool, and the most important aspect of this tool is to locate every sheep. While it might
be unrealistic to locate every sheep, selecting the configuration that results in the highest
recall is expected to be the most useful for farmers during a roundup.

That being said, additional metrics are being used as well to demonstrate other practical as-
pects of the configuration, namely precision and inference time. mAP@50 is mainly pro-
vided to examine how well YOLOv3 performs on this dataset as compared to the COCO
test-dev dataset [7], a commonly used dataset for performance comparison of modern ob-
ject detection frameworks. As briefly mentioned in chapter 3.6, 57.9 is the documented
mAP@50 of YOLOv3.

29

Chapter 5. Experiment Structure

5.4 Hardware

A single compute node with the following specifications will be used for all neural network
training and evaluation:

• CPU - i7-9700K 8 cores

• GPU - RTX 2080 Ti 11GB

• RAM - 16GB

30

Chapter 6
Results and Discussion

In this chapter, the results are presented, discussed and examined for validity.

6.1 Performance

Both superclass and subclass configurations were trained 12000 epochs (see Section 3.5
for an explanation on epochs) as performance appeared to stabilise at this point, and this
was achieved after approximately 20 hours with no notable difference between the two.
Each configuration was evaluated on 12 different sets of weights, from 1000 to 12000
epochs, and the weight that resulted in the highest recall and precision, where recall was
prioritised, was used. The number of epochs for all configurations is shown in Table 6.1,
and on average, training with subclasses achieved peak performance 1000 epochs earlier
than training with a superclass. There was no instance where the 12000 epoch-weights
were the highest performing weights, and the highest resolution for both subclass and
superclass achieved its peak performance earlier than the other resolutions.

Figure 6.2 shows the precision/recall trade-off for varying thresholds, and each plot rep-
resents a structure and network resolution labelled accordingly. As shown, the results are
quite good across the board with a precision of [0.87-0.99] and recall of [0.81-0.99] for the
different configurations. Some preliminary tests were run without optimisation for small

Table 6.1: The number of epochs trained before the best performance was achieved. Maximum
number of epochs was 12000.

Epochs 608x608 832x832 1024x1024 Average
Superclass 9000 9000 5000 7667
Subclasses 7000 7000 6000 6667

31

Chapter 6. Results and Discussion

Table 6.2: True positives, and false positives and false negatives for the different configurations at
a threshold of 0.1. The total number of sheep in the test set was 1650, the sum of true positives and
false negatives. The best result for each column is highlighted.

Structure Resolution True Positives False Positives False Negatives

Superclass
608x608 1622 101 28
832x832 1638 98 12

1024x1024 1633 153 17

Subclasses
608x608 1601 152 49
832x832 1617 145 33

1024x1024 1602 249 48

objects, and these resulted in a maximum precision and recall of 0.92 and 0.88 respec-
tively, which indicates that making these optimisations caused a drastic improvement in
performance. At each threshold, the lowest performing superclass and resolution achieved
equal or superior performance to the best configuration using subclasses. Further details
on the performance of each configuration are shown in Table 6.2 and an example from the
best configuration, superclass at 832x832 pixels, is shown in Figure 6.1.

Figure 6.1: An example of a near perfect prediction where each sheep in the image is assigned a
single bounding box with high IoU. From DJI 0682.JPG with superclass at 832x832 pixels and a
threshold of 0.1.

Likewise, mAP@50 is also quite high as shown in Table 6.3, and notably higher than the
57.9 reported by Joseph Redmon [28] by at least 33.8. As mentioned in Section 5.3, recall,

32

6.2 Discussion

and typically precision, are the main performance metrics, and these mAP@50 values
were not taken into account when examining what configuration performed best.

Inference times, as shown in Table 6.4, are achieved by taking the average evaluation time
for each threshold [0.1-0.9] and then dividing this by the total number of images in the eval-
uation set. It is also possible to examine execution time for individual images, however,
the chosen method more closely resembles a real-world situation where a series of images
are analysed in bulk. When using higher resolution network inputs, the inference time
increases slightly, which is likely due to the increased processing time for larger images as
there are simply more pixels. What is interesting is that despite images with 1024x1024
pixels having close to three times the amount of pixels as images with 608x608 pixels, the
increased processing time per image is only about 12-13%. The memory requirements,
on the other hand, are expected to be directly correlated to the size of the input, however,
memory usage was not recorded during inference.

It does, however, seem like inference time for both superclass and subclasses are practi-
cally the same, which is as expected. The image size for both configurations are the same,
the structure is practically identical, except for a couple of extra filters and output size
that are caused by having more classes when working with subclasses as opposed to the
superclass.

Table 6.3: mAP@50 at different resolutions with either the superclass or subclass structure.

mAP@50 608x608 832x832 1024x1024
Superclass 98.3 99.1 98.9
Subclasses 91.7 93.2 92.8

Table 6.4: Average inference time for a single, unedited image at different resolutions with either
the superclass or subclass structure.

Inference Time 608x608 832x832 1024x1024
Superclass 62.02ms 65.89ms 69.77ms
Subclasses 62.34ms 64.92ms 70.41ms

6.2 Discussion

The first and most important aspect to examine is the recall and precision of all configu-
rations, especially the discrepancy between superclass and subclasses. When trained with
sheep as a superclass, the network consistently performed better than when trained on the
subclasses based on the primary colour. Take for instance the best performing configu-
rations for superclass and subclass; the ones with a resolution of 832x832 pixels. The
subclasses were able to find most sheep leaving only 33 out of 1650 sheep outside of de-
tection, while the superclass was able to detect all but 12. Both configurations performed
exceptionally well on the same data basis which indicates that hyperparameters and pa-
rameters can make a notable difference on the outcome.

33

Chapter 6. Results and Discussion

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

Threshold

Subclasses - 608x608 pixels

Precision
Recall

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

Threshold

Superclass - 608x608 pixels

Precision
Recall

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

Threshold

Subclasses - 832x832 pixels

Precision
Recall

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

Threshold

Superclass - 832x832 pixels

Precision
Recall

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

Threshold

Subclasses - 1024x1024 pixels

Precision
Recall

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

Threshold

Superclass - 1024x1024 pixels

Precision
Recall

Figure 6.2: Precision and recall from inference with all configurations and varying threshold.

34

6.2 Discussion

The expected culprit for this discrepancy is the distribution of differently coloured sheep.
Assume that the only difference between sheep is the colour of their wool; if a network is
able to accurately learn the shape, size, rotation or some other high-level feature related to
sheep, that might be difficult for humans to understand, then it should result in a colour-
insensitive network. This could potentially explain the difference in results between the
superclass and subclasses; both configurations have the exact same basis, however, each
subclass could be separately attempting to define what a sheep looks like, with a base
assumption that it has to be of a certain colour to be classified as such. This assumption, in
addition to white sheep being the main constituent in the dataset with 84%, should result
in a network that is good at detecting white sheep, and worse at detecting black and brown
sheep. When working with a superclass, the main difference is colour, and if there is a
colour invariant pattern to sheep that can be learnt, chances are that YOLOv3 is capable
of learning it. This theory is backed up by the absolute number of sheep that were not
detected, 33 (2%) and 12 (0.72%) for subclasses and superclass respectively.

A second theory that slightly contradicts the one proposed above is based on how YOLOv3
learns about objects through objectness. As mentioned in 3.6, objectness is the confidence
of a network in a predicted bounding box containing an object. As YOLOv3 assigns and
penalises objectness independently of classification and localisation, given that the data
basis is identical, both of the network configurations should be equally capable of detecting
all sheep as their objectness is independent of their class. Based on this assumption, recall
for both the superclass and subclasses should be practically the same.

There is an uncertainty that applies to both of these theories that have not yet been ad-
dressed; the difficulty label. While the label itself was not used during training or inference
the fact that a total of 6% of all sheep were difficult to label as a colour remains. The work-
ing theory is that while these sheep were difficult to label as a single colour mostly due
to being multi-coloured, the superclass configuration does not care about what colour the
sheep is, but rather if a sheep is present or not. This could explain why the superclass was
able to achieve slightly better results than the subclasses and that precision is noticeably
better.

Moving on to mAP@50, the results show that even the worst mAP@50 achieved, 91.7,
is considerably better than YOLOv3’s reported 57.9 [28]. There are two main reasons for
this, both being directly dependent on the number of classes. The dataset that Redmon et
al. use to train and evaluate YOLOv3 contains 80 different classes, as opposed to either the
one or three classes used in this thesis. These 80 classes are mostly independent of each
other, e.g. elephant, skateboard and pizza do not necessarily have as many features in
common as sheep. This variety introduces the first reason for why the presented network
performs so much better than the one used by Redmon et al.; there are simply fewer
features to learn and look for. When working with more classes, and especially classes
that are not interchangeable if colour is discarded, it will naturally take longer to train
due to the complexity separating multiple classes. The second reason is closely related to
the first; with fewer classes, there is a smaller chance that YOLO will confuse classes with
each other. If a situation occurs when the network is uncertain about a classification yet the
objectness is high, having only three classes, as opposed to 80, to choose from increases
the chance that the prediction is correct.

35

Chapter 6. Results and Discussion

While investigating why the highest resolution classifiers gave negative returns, the first
of two mistakes made during the thesis became clear. Originally it was assumed that
the parameter random in the configuration file enabled upscaling of the input image of
608x608 pixels up to a certain value for every 10 iterations. What the parameter actually
does is temporarily increase the network input resolution so that the input image can have
higher resolution. In the case of an original resolution of 608x608 pixels, this peak higher
resolution was 896x896 pixels. This would typically not be an issue as the network scales
the input to fit the network resolution, however, all images were scaled down to 750x1000
pixels to increase training speed. By pure luck, this resolution is still higher than 896x896
pixels which resulted in the network being trained as intended if random is enabled as
the fork of Darknet used for this thesis resizes the input image without keeping the aspect
ratio.

In regards to the difference in performance between 832x832 and 1024x1024 pixels, it is
highly likely that this is due to the network having been trained on images with resolutions
between 608x608 and 896x896 pixels. Features within images of 608x608 and 832x832
pixels are of a known size as the network has been trained on similarly sized examples,
however, features in images with 1024x1024 pixels are too detailed and with features too
large for the network to perform optimally. From Table 6.2 it is also clear that the number
of false positives increases drastically when moving to 1024x1024 pixels for both the
superclass and subclasses which lends credibility to this theory.

The second mistake made was not a critical mistake either, however, it could potentially
have evened out the results between superclass and subclass; hue and saturation. YOLOv3
performs a random amount of data augmentation at regular intervals, and two of these
augmentations alters the colour. Saturation alters the vibrancy of colours, and hue rotates
the colour palette. By having both of these enabled the span that is brown, black and white
as colour ranges increase. The main issue with this is that the difference between black
and brown decreases. An augmented brown sheep may appear black and vice versa, which
could lower the precision of these two classes. This should, however, not affect recall in
any significant manner; a black sheep being detected as a brown sheep is still a sheep
located.

Finally, inference time was not on par with Joseph Redmon et al.’s reported 51 millisec-
onds [28], and was approximately 62 milliseconds for the corresponding resolution. As
there is no practical difference in network architecture or the likes, the only plausible cause
for this increase inference time should be tied to the original size of the input. When run-
ning inference, images with a resolution of 3000x4000 pixels were used and each image
had to be scaled to fit within 608x608 pixels, and this operation is the expected reason
behind the additional 11 milliseconds of inference time. As the COCO dataset contains a
large number of images [7], it would not be viable to store or use high-resolution images
for object detection because it would take up an enormous amount of space. Additionally,
most object detectors use a resolution similar to, or lower than, YOLOv3.

36

6.3 Research Questions

6.3 Research Questions

This section attempts to answer each of the research questions in regard to the results and
discussion.

RQ1: How well does YOLOv3 locate sheep in UAV footage?

The best configuration is the one that uses a superclass and a resolution of 832x832 pixels.
At a threshold of 0.1, it is able to achieve a precision of 0.94 and a recall of 0.99 with only
12 out of 1650 sheep not being detected.

RQ2: Is it easier to classify sheep as a superclass, or as one of three subclasses based on
colour?

Yes, it is easier to classify sheep as a superclass rather than as a subclass based on the
performance achieved by the different configurations. All configurations with a superclass
were equal or superior to the subclasses. It is worth to note that while a superclass per-
formed best, peak performance for the subclasses was on average reached 1000 epochs
before its counterpart.

RQ3: Is it possible to increase performance noticeably by tweaking parameters post train-
ing?

Parameter tweaking was limited to adjusting threshold and resolution. By modifying
threshold it was possible to increase focus on either precision or recall, with recall be-
ing the highest at the lower threshold. Increasing the resolution was found to improve
overall performance, however, the highest performance was not achieved by the highest
resolution, but rather by the one in the middle: 832x832 pixels. This was consistent for
both superclass and subclasses.

6.4 Threats to Validity

Threats to validity consist of both internal and external aspects of the experiments, data,
and procedures that might have caused some interference or otherwise affected the results
in an unintended or inevitable way.

6.4.1 Generalisability

The generalisability of the network refers to how well it may be applied to new and un-
known data. In total there are three major issues to generalisability in this thesis:

Sheep distribution - The distribution of sheep is approximately 84%, 13% and 2% for
white, black, and brown sheep respectively. Due to the low amount of black and brown
sheep as compared to white sheep, the network is likely to perform significantly better on
the localisation of white sheep. While it is estimated that white sheep constitute the largest
portion of sheep in Norway, this would typically always result in datasets containing a

37

Chapter 6. Results and Discussion

lot of white sheep. This is, unfortunately, counter-intuitive to the idea of training neural
networks by example; the sheep expected to be hardest to find have the smallest data basis,
which should result in poor performance.

Environment - The environment of the footage mainly consists of grassy fields. While
there are some images from more typical Norwegian highlands, these do not contain any
sheep and are simply negative samples in the dataset. It is unknown how well YOLOv3
will perform on any other kind of environment than these grassy fields, and it is not un-
likely that the network has learnt to connect sheep to spots of white, brown and black
surrounded by grass.

Contiguous Data - While data is technically from three different flights, the footage itself
is quite similar, and the fact that images were taken at two-second intervals means that the
same sheep are often present in multiple consecutive images. Imagine an image series of 5
images; image 1,2,4 and 5 are used to train a neural network, and image 3 is used to evalu-
ate its performance. While the performance will likely be exceptional, it is unlikely that it
will perform even remotely as well on data from another dataset. As neural networks learn
from similar examples, be it from colour, shape, orientation, size or other, it is important
to have a diverse dataset to hope to achieve any kind of generalisability.

6.4.2 Overfitting and Underfitting

When working with ANN’s in general, overfitting and underfitting are two concerns that
govern how long one should train the network. YOLOv3 has already proven to be a good
model, however, if not trained long enough, or too long, it might perform too poorly to
be useful. On the other hand, we have overfitting; this occurs when YOLOv3 has been
trained for too long, and while it may perform exceptionally well on the training set, it is
incapable of applying what has been learned to new data. It is next to impossible to define
what the optimal amount of training is, and while it may be possible to improve results by
training the network further, a decision was made to stick with 12000 epochs and leave
further optimisations to other projects.

6.4.3 Erroneous Bounding Boxes

In total, four different issues were encountered that directly related to bounding box pre-
dictions:

Close Proximity - Multiple instances were discovered where sheep in close proximity to
each other were often mislabelled as fewer sheep than were actually present, see Figure
6.3. This occurred to several different colours of sheep and is as such likely a larger
problem than on related the shade of sheep. Both training and test sets contain multiple
instances of sheep that are so close to each other that it is hard to determine where one
sheep ends and the other begins. The issue might be caused by the way these sheep were
labelled; all bounding boxes are rectangular and parallel to the corresponding image axis,

38

6.4 Threats to Validity

Figure 6.3: Example of bounding box issue cause by close proximity of two or more sheep. From
DJI 0313.JPG with superclass at 1024x1024 pixels and a threshold of 0.1. Approximately the exact
same issue was found in the corresponding subclass configuration as well.

which could result in some overlap when labelling sheep close to each other that were not
oriented parallel to the image axes themselves.

Overlap - In a surprisingly large portion of images, multiple bounding boxes were pre-
dicted at highly overlapping locations, an instance of which is shown in Figure 6.4.
YOLOv3 uses non-maximum suppression to automatically select the best bounding box
when this kind of overlap occurs, however, it seems to be performing sub-par on this
dataset. While YOLOv3 supports overlapping objects, in this case, sheep, this issue should
only be widespread with the subclasses as multiple different coloured sheep may be pre-
dicted at the same location. This is however not the case, and the issue is similarly present
in both superclass and subclasses. By increasing the threshold for detection most of these
overlapping bounding boxes are discarded, albeit at the cost of a lower recall.

Complete Miss - The final issue is completely faulty predictions; a series of instances
exist where YOLOv3 labels a patch of grass with no specific pattern, rocks, and outliers
at the borders of images. The sizes appear entirely arbitrary and are not related to the size
of correctly detected sheep in images. The issue is present in all tested configurations and
likely consist of detections that barely pass the 0.1 objectness threshold limit. An example
is shown in Figure 6.5.

6.4.4 Suggested Remedies to Increase Validity

Most, if not all, of the threats to validity, should be solved by using additional data for
training. Data should represent as wide a range of environments and contexts as the de-
sired use cases. Furthermore, increasing resolution during training to 832x832 or even
1024x1024 pixels could results in even more accurate predictions as showcased by having
a network trained on images between 608x608 and 896x896 pixels.

39

Chapter 6. Results and Discussion

Figure 6.4: Example of overlapping bounding boxes in output. From DJI 0405.JPG with superclass
at 832x832 pixels and a threshold of 0.1.

Figure 6.5: Example of a complete miss on patches of grass. From DJI 0407.JPG with superclass
at 1024x1024 pixels and a threshold of 0.1.

40

Chapter 7
Further Work

This chapter gives an overview of ideas considered for this project that were discarded due
to being outside of the desired scope.

7.1 On-board Graphics

Nvidia has a series of portable modules that may be capable of performing analysis at a
sufficient speed. The portable hardware does not need to be capable of training on its own,
it should simply be able to utilise a pre-trained network at a reasonable speed.

7.2 Combine Infrared and Visual Imagery

While this thesis demonstrates the capability of YOLOv3 on visual imagery, the efficiency
of YOLOv3 on Infrared still remains to be seen. The success of ordinary images advocates
a success for infrared as well. There is also a possibility of using infrared images as a form
of pruning; every image without a hotspot can be discarded as the infrared should be able
to pick up everything remotely warmer than the background. As rocks in direct sunlight
might also be picked up, by using YOLOv3 on the corresponding visual image it should
be possible to verify the presence of sheep.

7.3 Use Altitude Data

As shown in Chapter 4, altitude measurements from the barometer appear reasonably ac-
curate. It should be possible to use these measurements to prune out detected sheep that

41

Chapter 7. Further Work

are either too large or too small for what their expected size should be at a certain height.
While it will not improve recall, it could definitely be used to achieve noticeably fewer
false positives thus improving precision. As YOLOv3 is a fully convolutional network
it is not possible to simply input height data next to the images; additional layers will
likely have to be added as convolutional layers are not designed to handle data of this
format.

7.4 Predators

It should be possible to extend the usage area of the developed solution to locate other
kinds of animals as well, and predators are of particular interest to Norwegian farmers. A
portion of sheep each year are lost to predators and the government compensates farmers
for the loss in revenue if there is documentation that sheep are properly taken care of
[9]. Additional tools to monitor the local predator populations could help with preparing
appropriate preventive measures.

7.5 Improvements on YOLOv3

While working on this thesis, a new alternative to the YOLOv3 architecture was released;
YOLOv3-SPP (Spatial Pyramid Pooling). This architecture increases the mAP@50 from
57.9 to 60.6 while maintaining the low inference time [24]. By simply using the same data
and default parameters used in this thesis, it could be possible to increase performance or
simply decrease the bounding box issues experienced.

42

Chapter 8
Conclusion

The primary objective for this thesis was to evaluate the performance of YOLOv3 on drone
footage of sheep and secondary objectives consisted of tweaking parameters to better fit
the dataset. The desired application was to use YOLOv3 to aid farmers in analysing drone
footage from roundup at the end of the grazing period.

YOLOv3 performs exceptionally well on the drone footage and reaches peak performance
of 99% recall and 94% precision, leaving out only 12 out of 1650 from detection. De-
tecting sheep as a superclass marginally outperformed detecting sheep as brown, black
or white and it was possible to increase performance by increasing the network resolu-
tion. All configurations trained were capable of outperforming the reported performance
of YOLOv3.

While the results are good, the applicability of the trained network is uncertain, however,
likely negatively impacted by the limited variety of environments and conditions that are
present in the footage. Additional data should be used for training before the trained
network is applicable for practical uses.

The research could benefit from further work that examines ways to perform detection
onboard a drone in real-time, and the use of infrared cameras as well. The literature and
results also indicate that there are additional usages for YOLOv3 as an object detector,
especially in regards to monitoring native predators.

43

44

Bibliography

[1] 2d convolution. https://github.com/PetarV-/TikZ/tree/
master/2D Convolution. Accessed 27.02.2019.

[2] AlexeyAB. Darknet. https://github.com/AlexeyAB/darknet.
Accessed 01.02.2019.

[3] AlexeyAB. Darknet. https://github.com/AlexeyAB/darknet#
how-to-improve-object-detection. Accessed 01.02.2019.

[4] B. Benjdira, T. Khursheed, A. Koubaa, A. Ammar, and K. Ouni. Car Detection
using Unmanned Aerial Vehicles: Comparison between Faster R-CNN and
YOLOv3, 2018.

[5] U. Braga-Neto. Automatic target detection and tracking in forward-looking infrared
image sequences using morphological connected operators. Journal of Electronic
Imaging, 13(June 2003):1–22, 2004.

[6] L.-P. Chrétien, J. Théau, and P. Ménard. Wildlife Multispecies Remote Sensing
Using Visible and Thermal Infrared Imagery Acquired From an Unmanned Aerial
Vehicle (Uav). ISPRS - International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XL-1/W4:241–248, 2015.

[7] Common objects in context. http://cocodataset.org/#termsofuse.
Accessed 20.05.2019.

[8] Dji mavic pro specification sheet.
https://www.dji.com/no/mavic/specs. Accessed 15.10.2018.

[9] Fanesak tap av sau på beite.
https://www.dyrebeskyttelsen.no/tap-sau-pa-beite/.
Accessed 29.05.2019.

[10] Findmy. https://www.findmy.no/. Accessed 11.03.2019.

[11] J. Gallego, A. Pedraza, S. Lopez, G. Steiner, L. Gonzalez, A. Laurinavicius, and

45

https://github.com/PetarV-/TikZ/tree/
master/2D Convolution
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet#how-to-improve-object-detection
https://github.com/AlexeyAB/darknet#how-to-improve-object-detection
http://cocodataset.org/#termsofuse
https://www.dji.com/no/mavic/specs
https://www.dyrebeskyttelsen.no/tap-sau-pa-beite/
https://www.findmy.no/

G. Bueno. Glomerulus Classification with Convolutional Neural Networks -
Scientific Figure on ResearchGate. https://www.researchgate.net/
figure/AlexNet-CNN-architecture-layers_fig1_318168077.
Accessed 18.03.2019.

[12] L. F. Gonzalez, G. A. Montes, E. Puig, S. Johnson, K. Mengersen, and K. J. Gaston.
Unmanned aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife
monitoring and conservation. Sensors (Switzerland), 16(1), 2016.

[13] B. Hansen. Varmesøkende droner finner sauen. http:
//gardsdrift.no/varmes%C3%B8kende-droner-finner-sauen,
2015. Accessed 15.10.2018.

[14] J. Hui. Real-time Object Detection with YOLO, YOLOv2 and now YOLOv3.
https://medium.com/@jonathan_hui/
real-time-object-detection-with-yolo-yolov2-28b1b93e2088.
Accessed 01.02.2019.

[15] S.-O. Hvasshovd. Droner og Sau og litt til !! - Anvendelser og Muligheter.
https://www.fylkesmannen.no/contentassets/
cbf122460efa4e37a051c17c07fade0d/droner-buskerud-2017.
pdf, 2017. Accessed 13.03.2019.

[16] A. Kathuria. What’s new in yolo v3? https://towardsdatascience.com/
yolo-v3-object-detection-53fb7d3bfe6b. Accessed 25.03.2019.

[17] S. V. Lab. Imagenet. http://image-net.org. Accessed 25.04.2019.

[18] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal Loss for Dense Object
Detection, 8 2017.

[19] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg.
SSD: Single Shot MultiBox Detector, 12 2015.

[20] A. L.J. and M. I. The Norwegian Sheep Farming Production System. In M.-F. P.
and R. R., editors, Systems of sheep and goat production: Organization of
husbandry and role of extension services, volume 38 of Options Méditerranéennes :
Série A. Séminaires Méditerranéens, pages 249–253. Zaragoza : CIHEAM, 1999.

[21] M. R. Minar and J. Naher. Recent Advances in Deep Learning: An Overview, 7
2018.

[22] I. R. Batch Normalization - Speed up Neural Network Training.
https://medium.com/@ilango100/batch-normalization
-speed-up-neural-network-training-245e39a62f85. Accessed
25.03.2019.

[23] M. Radovic, O. Adarkwa, and Q. Wang. Object Recognition in Aerial Images Using
Convolutional Neural Networks. Journal of Imaging, 3(2):21, 2017.

[24] J. Redmon. Yolo: Real-time object detection.
https://pjreddie.com/darknet/yolo/. Accessed 19.04.2019.

46

https://www.researchgate.net/figure/AlexNet-CNN-architecture-layers_fig1_318168077
https://www.researchgate.net/figure/AlexNet-CNN-architecture-layers_fig1_318168077
http://gardsdrift.no/varmes%C3%B8kende-droner-finner-sauen
http://gardsdrift.no/varmes%C3%B8kende-droner-finner-sauen
https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://www.fylkesmannen.no/contentassets/cbf122460efa4e37a051c17c07fade0d/droner-buskerud-2017.pdf
https://www.fylkesmannen.no/contentassets/cbf122460efa4e37a051c17c07fade0d/droner-buskerud-2017.pdf
https://www.fylkesmannen.no/contentassets/cbf122460efa4e37a051c17c07fade0d/droner-buskerud-2017.pdf
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
http://image-net.org
https://medium.com/@ilango100/batch-normalization
-speed-up-neural-network-training-245e39a62f85
https://pjreddie.com/darknet/yolo/

[25] J. Redmon. yolov3.cfg. https://github.com/pjreddie/darknet/
blob/master/cfg/yolov3.cfg. Accessed 01.02.2019.

[26] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You Only Look Once: Unified,
Real-Time Object Detection. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 779–788. IEEE, 2016.

[27] J. Redmon and A. Farhadi. YOLO9000: Better, Faster, Stronger. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
6517–6525. IEEE, 2017.

[28] J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement. Technical
report, University of Washington, 2018.

[29] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

[30] Encyclopedia of life - sheep. http://eol.org/pages/311906/data.
Accessed 15.10.2018.

[31] Shiip. https://www.shiip.no/. Accessed 11.03.2019.

[32] Smartbjella. https://smartbjella.no/. Accessed 11.03.2019.

[33] R. Smit. Automatic animal detection using unmanned aerial vehicles in natural
environments. PhD thesis, University of Groningen, The Netherlands, 2016.

[34] J. Su, D. V. Vargas, and S. Kouichi. One pixel attack for fooling deep neural
networks, 2017.

[35] P. Svenmarck, L. Luotsinen, M. Nilsson, and J. Schubert. Possibilities and
challenges for artificial intelligence in military applications. In Proceedings of the
NATO Big Data and Artificial Intelligence for Military Decision Making
Specialists’ Meeting, 2018.

[36] Telespor. https://telespor.no/. Accessed 11.03.2019.

[37] Tzutalin. Labelimg. https://github.com/tzutalin/labelImg.
Accessed 20.10.2018.

[38] J. C. van Gemert, C. R. Verschoor, P. Mettes, K. Epema, L. P. Koh, and S. Wich.
Nature conservation drones for automatic localization and counting of animals. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 8925, pages 255–270,
2015.

[39] O. Vangen and A. Blix. Sau. https://snl.no/sau, 2018. Accessed
12.03.2019.

[40] Y. Zhong, J. Wang, J. Peng, and L. Zhang. Anchor Box Optimization for Object
Detection, 2018.

47

https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg
https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg
http://eol.org/pages/311906/data
https://www.shiip.no/
https://smartbjella.no/
https://telespor.no/
https://github.com/tzutalin/labelImg
https://snl.no/sau

48

Appendix A - DJI Mavic Pro Field of View

Jonas Muribø <jmurib@gmail.com>

[Support] : RE Field of view for Mavic Pro

James Russell (DJI Support) <support@dji.com> 17 October 2018 at 12:09
Reply-To: DJI Support <support@dji.com>
To: Jonas Muribø <jmurib@gmail.com>

##- 请在此⾏�上输��的回� -##

Your request（#1416766）has been updated, please reply the email below.

James Russell （Support）
10⽉17日 CST18:09

Hello Jonas,

Good day!

This is to inform you that our engineers provide us an answer about your query.
The FOV is 66.8° in horizontally, 52.5° in vertically.

If you have any further questions, feel free to contact us.
[Quoted text hidden]

[Quoted text hidden]

[Quoted text hidden]

[YD6PGL-R4D7]

Gmail - [Support] : RE Field of view for Mavic Pro https://mail.google.com/mail/u/0?ik=1c0320bb...

1 of 1 27/02/2019, 13:24

49

Appendix B - YOLOv3 Layers

layer filters size input output
 0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32
 1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64
 2 conv 32 1 x 1 / 1 208 x 208 x 64 -> 208 x 208 x 32
 3 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64
 4 Shortcut Layer: 1
 5 conv 128 3 x 3 / 2 208 x 208 x 64 -> 104 x 104 x 128
 6 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64
 7 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128
 8 Shortcut Layer: 5
 9 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64
 10 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128
 11 Shortcut Layer: 8
 12 conv 256 3 x 3 / 2 104 x 104 x 128 -> 52 x 52 x 256
 13 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
 14 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
 15 Shortcut Layer: 12
 16 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
 17 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
 18 Shortcut Layer: 15
 19 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
 20 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
 21 Shortcut Layer: 18
 22 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
 23 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
 24 Shortcut Layer: 21
 25 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
 26 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
 27 Shortcut Layer: 24
 28 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
 29 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
 30 Shortcut Layer: 27
 31 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
 32 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
 33 Shortcut Layer: 30
 34 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
 35 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
 36 Shortcut Layer: 33
 37 conv 512 3 x 3 / 2 52 x 52 x 256 -> 26 x 26 x 512
 38 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
 39 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
 40 Shortcut Layer: 37
 41 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
 42 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
 43 Shortcut Layer: 40
 44 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
 45 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
 46 Shortcut Layer: 43
 47 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
 48 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
 49 Shortcut Layer: 46
 50 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
 51 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
 52 Shortcut Layer: 49

50

 53 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
 54 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
 55 Shortcut Layer: 52
 56 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
 57 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
 58 Shortcut Layer: 55
 59 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
 60 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
 61 Shortcut Layer: 58
 62 conv 1024 3 x 3 / 2 26 x 26 x 512 -> 13 x 13 x1024
 63 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
 64 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
 65 Shortcut Layer: 62
 66 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
 67 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
 68 Shortcut Layer: 65
 69 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
 70 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
 71 Shortcut Layer: 68
 72 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
 73 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
 74 Shortcut Layer: 71
 75 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
 76 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
 77 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
 78 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
 79 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
 80 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
 81 conv 18 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 18
 82 detection
 83 route 79
 84 conv 256 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 256
 85 upsample 2x 13 x 13 x 256 -> 26 x 26 x 256
 86 route 85 61
 87 conv 256 1 x 1 / 1 26 x 26 x 768 -> 26 x 26 x 256
 88 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
 89 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
 90 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
 91 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
 92 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
 93 conv 18 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 18
 94 detection
 95 route 91
 96 conv 128 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 128
 97 upsample 2x 26 x 26 x 128 -> 52 x 52 x 128
 98 route 97 36
 99 conv 128 1 x 1 / 1 52 x 52 x 384 -> 52 x 52 x 128
 100 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
 101 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
 102 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
 103 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
 104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
 105 conv 18 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 18
 106 detection

51

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Jonas Hermansen Muribø

Locating Sheep with YOLOv3

Master’s thesis in Informatics
Supervisor: Professor Svein-Olaf Hvasshovd

June 2019

	Summary
	Preface
	Table of Contents
	Abbreviations
	Introduction
	Literature Review
	Earlier Master's Thesis
	Wildlife
	Civil Engineering Applications
	Military Applications
	Summarised

	Theory
	Artificial Neural Networks
	Convolution
	Layers
	Convolutional Layer
	Shortcut Layer
	Route Layer
	Upsampling Layer
	YOLO Layer

	Convolutional Neural Networks
	Back Propagation
	YOLO - You Only Look Once
	Transfer Learning

	Data Acquisition and Analysis
	Planning
	Requirements
	Equipment
	Location
	Analysis

	Acquisition
	Analysis
	Labelling
	Observations

	Experiment Structure
	Research Questions
	Experiments
	Performance
	Hardware

	Results and Discussion
	Performance
	Discussion
	Research Questions
	Threats to Validity
	Generalisability
	Overfitting and Underfitting
	Erroneous Bounding Boxes
	Suggested Remedies to Increase Validity

	Further Work
	On-board Graphics
	Combine Infrared and Visual Imagery
	Use Altitude Data
	Predators
	Improvements on YOLOv3

	Conclusion
	Bibliography
	Appendix A
	Appendix B

