
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 In
fo

rm
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r 

Sc
ie

nc
e

M
as

te
r’

s 
th

es
is

Vestein Dahl

Handling big spatial data

Master’s thesis in Informatics
Supervisor: Svein Erik Bratsberg

June 2019





Vestein Dahl

Handling big spatial data

Master’s thesis in Informatics
Supervisor: Svein Erik Bratsberg
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





Abstract

In recent years, modern services and applications handle more and more multi-dimensional
data than ever before. Satellites, mobile devices, social networks and in the future IoT
devices, generate huge amounts of data tagged with time, date and location. Handling large
volumes of multi-dimensional data creates new challenges for today’s data management
systems that tries to index, store and analyze such data efficiently in real-time.

Transforming random writes to sequential writes have been increasingly important for
insert-intensive workloads. Traditional index structures such as B+-trees and R-trees per-
form very poorly with large quantities of random writes because of their usage of in-place
writes for updates and insertion. Modern database systems have therefore implemented
the Log-Structured Merge-tree (LSM) [1] in their storage layer [2–4].

Managing multi-dimensional data has gained attention with the development of advanced
database systems which require high real-time throughput and efficiency for processing
tasks or transactions. Techniques to improve performance include efforts to reduce the
dimensionality of the data, because the memory models of modern computers are one-
dimensional [5].

This thesis implemented an experimental LSM-tree data structure which incorporates a R-
tree index in the disk component. By utilizing the properties of space-filling curves such
as the Hilbert curve and Z-Order curve, it is possible to map multi-dimensional geometric
objects to one dimension and create a sequential order which conserves locality. A storage
layer structure was suggested in the thesis, additionally two different merging strategies,
threading and other minor considerations when tuning for write throughput.
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Sammendrag

De siste årene har moderne tjenester og applikasjoner måtte håndtert mer og mer flerdi-
mensjonale data enn noen gang tidligere. Satellitter, mobilenheter, sosiale nettverk og
fremtidige IoT-enheter genererer store mengder data merket med tid, dato og sted. Håndtering
av store mengder flerdimensjonal data skaper nye utfordringer for dagens databasesyste-
mer som forsøker å indeksere, lagre og analysere slike data effektivt i sanntid.

Å gjøre om tilfeldig skriving til sekvensiell skriving har blitt stadig viktigere for innset-
ting av store mengder data. Tradisjonelle indeksstrukturer som B+-trær og R-trær takler
store mengder med tilfeldig skriving svært dårlig på grunn av “in-place” skriving for opp-
dateringer og innsetting. Moderne databasesystemer har derfor tatt i bruk Log-Structured
Merge-tree (LSM) [1] i lagringslaget [2–4].

Behandling av flerdimensjonal data har fått mye oppmerksomhet den siste tiden på grunn
av utviklingen av avanserte databasesystemer som krever høy gjennomstrømning og effek-
tivitet for behandling av oppgaver eller transaksjoner i sanntid. Teknikker for å forbedre
ytelsen inkluderer metoder for å redusere antall dimensjoner til dataen, fordi minnemod-
ellene til moderne datamaskiner er endimensjonale [5].

Denne oppgaven implementerte en eksperimentell LSM-tre datastruktur som inkorpor-
erer en R-tre indeks i diskkomponenten. Ved å benytte egenskapene til romfyllingskurver
som Hilbert Curve og Z-Order-Curve, er det mulig å forandre flerdimensjonal geometriske
objekter til én dimensjon og lage en sekvensiell ordning som beholder lokaliteten. En la-
gringslagstruktur ble foreslått i oppgaven, i tillegg til to forskjellige sammenslåingsstrategier,
tråding og andre vurderinger å ta hensyn til for høy skriveytelse.
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Chapter 1
Introduction

In recent years, modern services and applications handle more and more multi-dimensional
data than ever before. Satellites, mobile devices, social networks and in the future IoT
devices, generate huge amounts of data tagged with time, date and location. Handling large
volumes of multi-dimensional data creates new challenges for today’s data management
systems that tries to index, store and analyze such data efficiently in real-time.

Traditional relational databases have usually been using B-trees, which have been the de
facto standard access method in all relational systems for years. While being great for
indexing one-dimensional data and doing point-queries, it can not efficiently index spatial
data and do range-queries.

In 1983, the original R-tree was described by Guttman [6] and expanded the concept of
B+-trees to a structure which can handle dynamic organization of d-dimensional objects.
It paved the way for spatial databases and geo-information systems to store and query
multi-dimensional data [7]. But the R-tree and most of its variants uses in-place writes
like B-trees, resulting in expensive random writes to disk during updates.

Transforming random writes to sequential writes have been increasingly important for
insert-intensive workloads. Traditional index structures such as B+-trees perform very
poorly with large quantities of random writes because of their usage of in-place writes
for updates and insertion. Modern database systems have therefore implemented the Log-
Structured Merge-tree (LSM) [1] as their storage layer [2–4]. LSM-trees buffers writes in
main-memory and writes them to disk in batches at a later stage, effectively transforming
random writes to sequential writes.

A problem with multi-dimensional data is the absence of a natural linear ordering and
techniques to improve performance include efforts to reduce the dimensionality of the
data, because the memory models of modern computers are one-dimensional [5]. Space-
filling curves such as the Hilbert Curve [8] and Z-Order curve [9] have been implemented
in R-tree like indices [10, 11] to increase insertion performance and storage utilization.
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1.1 Research Questions

The goal of this thesis is to create an experimental LSM-tree data structure which incor-
porates a R-tree index using space-filling curves and utilizes the LSM-tree properties. By
transforming the multi-dimensional geometric objects in a R-tree to one-dimensional ob-
jects, it should be possible to incorporate the R-tree to a LSM-tree. Space-filling curves
are widely used for reducing dimensionality and different curves are well research for
their locality conservation property. There exists database systems that uses R-tree in their
LSM-tree structure [2], but the implementation details are hard to come by.

• RQ1: Is it possible to utilize the properties of a LSM-tree for a R-tree index?

• RQ2: How does it perform?

1.2 Thesis Structure

The thesis is structured into three main parts: The background chapter introduces R-trees,
LSM-trees and space-filling curves and their principles, underlying structures and appli-
cations. The implementation chapter presents the suggested proof-of-concept implemen-
tation, and is followed by results. The thesis then concludes the results and presents po-
tentially further work.

2



Chapter 2
Background

This chapter focuses on providing some basic background knowledge about the R-tree,
space-filling curves and the LSM-tree. Most of the R-tree theory is from [7], while the
theory about space-filling curves and LSM-trees are various papers in the literature.

3



2.1 R-Tree

In recent years, modern services and applications handle more and more multi-dimensional
data than ever before. The need for efficient search structures has made the industry rec-
ognize the usefulness and necessity of R-trees and its cousins. The original R-tree was
described by Guttman [6] in 1984 and set the path for a wide range of alternative access
methods being made.

B-trees have been the de facto standard access method in all relational systems for years.
While being great for indexing one-dimensional data and doing point-queries, it can not
efficiently index spatial data and do range-queries. However, the R-trees are based on
B+-tree with support for dynamic organization of d-dimensional data.

The R-tree structure and B+-tree share a similar structure, both are balanced search trees,
organizes the data in pages and designed for persistent storage. Instead of using alphanu-
merical keys, the R-tree uses the minimum bonding d-dimensional rectangles (MBRs) to
order the nodes and leaves. Unlike the B+-tree, which has the keys interleaved with point-
ers, the R-tree has one pointer dedicated to each MBR in the node.

Figure 2.1: Example of a two-dimensional R-tree

A simple example of a R-tree is illustrated in figure 2.1. Every node in the R-tree corre-
sponds to the MBR for its children. For example, R5 is the MBR for its leaf node which
contains the two entries R13 and R14. Going further up the hierarchy, it is shown that R1
is the MBR for R5 and its siblings.

It is important to note that the MBRs for the nodes at a certain level may overlap and create
intersections. Therefore when doing a spatial search on the tree, it may be necessary to

4



visit more than one node before concluding the result of the query. Intersection increases
the search space and may therefore greatly influence the performance of search queries. It
is also important to examine the candidate objects to resolve false positives. Two objects
may have MBRs that intersect, but their geometric shapes do not.

2.1.1 Insertions

The insertion algorithm for the R-tree are very similar to the one for a B+-tree. The traver-
sal starts from the root node and at each level it selects the node with a MBR which require
the least enlargement to cover the new entry. If there is a tie, the node whose MBR has the
minimum area is chosen. When a leaf node is encountered and it is not full, the new entry
is inserted and if enlargement is needed, update the nodes along the path from the root.

In case the encountered leaf node already contains M entries, splitting is required. Since
R-trees have d-dimensions, splitting requires a lot more consideration than the splitting
in B+-trees. The goal of the split algorithm is to minimize the probability that both the
two newly created nodes get invoked during a search query (no overlap). The simplest
split algorithm proposed by Guttman is linear split, which tries to minimize the total area
of both nodes in linear time complexity. Guttman also described two other alternatives,
quadratic and exponential.

Between different R-trees variants, the insertion and split algorithms are normally the
main distinction. A lot of research has suggested better algorithms which either provides
better search performance or higher insert throughput. The R*-tree [12] is an example of
one variant which is widely accepted as prevailing performance-wise and during insertion
considers not only minimization of the area by a MBR, but also overlap, perimeters and
storage utilization. Therefore achieving much better search performance.

2.1.2 Search

The main advantage R-trees have over B+-trees are the opportunity to do range queries,
which are the task to find all data rectangles that are intersected by a given rectangle Q. The
search process starts at the root node and travels to every node whose MBR intersect with
Q. When a leaf node is reached, every entry intersecting with Q is added to a temporary
set. Finally, all the entries added to the temporary set is examined to determine if the actual
geometric object intersect with Q and added to the result set.

2.1.3 Deletions

First step in deleting an entry is to first find the leaf node that contains the element. After
the leaf node is found during the search, the element is removed and parent nodes are
updated. If the leaf node underflows (fewer than m entries), reinsertion of the remaining
elements in the node is usually the recommended method. Reinsertion of elements is
considered more appealing than merging nodes because multi-dimensional data does not

5



(a) First order (b) Second order (c) Third order

Figure 2.2: First three iterations of the Peano curve

have a natural linear ordering in contrast to one-dimensional data. Additionally, reinsertion
maintains the tree quality better after several deletions.

2.2 Space-Filling Curves

Space-Filling curves has its origins as mathematical curiosities, at the end of the nineteenth
century. The idea that it exists a continuous one-dimensional curve which passes through
every point of a volume or an area, contradicted the established notions in topology at the
time [13]. Since it demanded new concepts in topology, many influential mathematicians,
such as Hilbert and Peano, studied this new concept. Peano was the first to solve that every
point of the unit square could be mapped to a continuous curve [14], but Hilbert was the
first to discover the construction of an class of curves with a general geometric procedure
[8].

A space-filling curve is a way to create a linear ordering of multi-dimensional data. In
simple mathematically terms this corresponds to mapping multi-dimensional data with d-
dimensions from indices {1, ..., n}d to one-dimensional sequential indices {1, ..., nd} and
vice versa. The first three iterations of the historically first space-filling curve, the Peano
curve, is illustrated in Figure 2.2.

One important property for space-filling curves are that the mapping should retain neigh-
bour relations in all dimensions, which also will conserve the locality properties of the
data [5]. In reality, creating a sequential order on the data which conserves locality for
all dimensions usually fails. This happens because when space-filling curve sequentialize
one dimension, it usually fails for the other dimensions [15]. Therefore the preserving of
neighbour relations in all dimensions becomes even harder with increasing dimensionality
as a consequence of the curse of dimensionality [16].

In the last couple of years the problem of managing multi-dimensional data has gained at-
tention with the development of advanced database systems which require high real-time
throughput and efficiency for processing tasks or transactions. Techniques to improve per-
formance include efforts to reduce the dimensionality of the data, because the memory

6



(a) First order (b) Second order (c) Third order

Figure 2.3: First three iterations of the Hilbert curve

models of modern computers are one-dimensional [5]. Examples of application where
this mapping is used are; routing, partitioning for supercomputers [17], image process-
ing [18][19], memory management [20], disk scheduling [21], geographical information
systems, computing [22] and simulations [23].

2.2.1 Hilbert Curve

The Hilbert Curve is a space-filling curve described by David Hilbert in 1891 [8] and
is a variant of the Peano curve. It is widely used in computer science because of its
mapping from two-dimensional space to one-dimensional space preserve locality very well
[24]. Experimentally it is also shown that the Hilbert curve achieves the best clustering
compared to Z-Order and Gray-code curves [25]. Because of the good locality properties
Hilbert order is common in proposals for multi-dimensional databases and has been used
to increase storage utilization and performance of R-tree indices [11].

The construction and definition of the space-filling curve is based on a recursive proce-
dure which uses reflection and rotation operations to create the next iteration. Figure 2.3
illustrates the first three iterations and the recursive steps. From one iteration to the next,
the pattern of the current iterations is copied four times and assigned to four smaller sub-
squares. The four new copies are connected at their start and end points by using either
rotation and/or reflection. It is normally assumed that the curve starts in the lower left
corner and ends in the lower right.

The original Hilbert curve only mapped from two-dimensional space to one-dimensional
space but code generation for three-dimensional space has been suggested [26] [27] and a
generalized approach for higher-dimensional space [28].

2.2.2 Z-Order Curve

Morton [9] was the first who used the concept of Z-order mapping for linear indexing
of 2-dimensional spatial data and the Z-order mapping is therefore usually attributed to

7



px = 0.1010
Py = 0.0111

⇓
px = 0.10001000
py = 0.00010101

⇓
code = 10011101

Figure 2.4: Interleaving bits for a point in two-dimensions

(a) First order (b) Second order (c) Third order

Figure 2.5: Three iterations of the Z-order curve

Morton. In literature, the Z-order is also referred to as the Peano curve, Morton key order
(Morton code) and bit-interleaving. Some confusion may occur, but the Z-Order curve
is essentially the Peano curve [25], but are using bit-shuffeling to map multi-dimensional
space to one-dimensional space.

The calculation of the z-value of a point in multi-dimensional space is easily done by
interleaving the binary representation of its coordinate values. The first step in generating
a code for a point in d-dimensions is to take each coordinate and expand it by inserting d-
zeroes after each bit. Finally, all coordinates is interleaved to form a single binary number
as shown in figure 2.4. Figure 2.5 illustrates three different iterations of the z-order curve
in two-dimensional space.

Compared to the Hilbert curve, the Z-order curve is more widely implemented in software.
According to [5] one important property for an efficient space-filling curve is that the
mapping between data and indices should be easy to compute, which the Z-order curve is.
In contrast, the Hilbert curve is relative expensive to compute, but conserves locality far
better than the Z-order curve. Faloutsos and Rong’s study [29] finds that the Z-order curve
had about nearly twice as many sections intersecting with queries as the Hilbert curve
sections.
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2.3 Log-Structured Merge-Tree

The Log-Structured Merge-Tree (LSM-tree) [1] is an ordered, persistent index structure
that supports normal operations such as insert, update, delete and search [2]. LSM-trees
provides efficient search and updates by optimizing for frequent and substantial amount of
updates. It achieves this by buffering writes and writes the data in batches at a later stage,
instead of performing very expensive in-place updates. Batching writes does decrease the
efficiency of reads, but the huge increase in data ingestion rates is well worth the penalty.

Today, LSM-trees are used in a lot of different key-value stores where fast indexing of
frequent and high-volume updates are required. AsterixDB [2], LevelDB [3], RocksDB
[4] and Cassandra [30] are examples of some commercial products that uses LSM-trees or
similar variants as its storage layer for structuring storage.

2.3.1 Data Layout

The data layout consists of a hierarchy of storage components (also called levels) with
increasing size. The minimum number of components are two, but three or more are
common in implementations. Figure 2.6 illustrates a two component LSM-tree. The first
component is called C0 which is located entirely in main memory and C1 and higher
are resident on disk. In some implementations C0 can also be called for L0 or buffer or
some variant of the latter. C0 is used to buffer updates for higher efficiency since it is
stored in main memory and writes are therefore considered free in terms of I/O. However,
memory is expensive and limits the size of the in-memory component C0. Normally, the
data structure of C0 differs from higher components stored on disk which are comparable
to a B-tree and data structures such as linkedlist, heap, skiplist, arrays, etc. may be used
instead.

Figure 2.6: Simple two component LSM-tree

If the capacity of C0 has reached its limits, the content must be sorted on key-order and
written to a file on disk. A component’s capacity is defined by two properties which
defines how the LSM-tree should grow. The first one is a threshold size, which can either
be expressed in bytes, number of entries or a factor of the buffer size. The second one, the
merge policy, decides when a merge should happen and is a threshold for the maximum
number of runs that are allowed for a component.
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A run is a collection of one or more files which are sorted on key order and have no
overlapping keys. Files are immutable and their format is implementation specific such as
SSTable for RocksDB and Sorted tables for AsterixDB. Additional structures like Bloom
filters can also be stored in the files to help with search queries by potentially reducing the
need for unnecessary I/O.

2.3.2 Writes

Utilizing the main memory makes the writes in LSM-trees very fast. When C0 is full, the
content are written in bulk to the disk and as a consequence transforms huge amount of
random writes to sequential I/O. This is very beneficial for both hard disk drives and solid-
state drives since they are considerably better at sequential I/O than random I/O. Insert and
updates are handle as the same operation in a LSM-tree because both binds a value to a key.
Deletion on the other hand is handled the same way except it is marked as an ”anti-matter”
record. An ”anti-matter” record will wipe out an older record if encountered. At some
point, a component reaches its maximum capacity and the merging process is triggered.

2.3.3 Merging

Figure 2.7: Illustrates merging of components

Merging or compaction, is the process of taking a set of sorted files, merging them on
key-order and then creates a new run containing the new set of files. A merge process can
happen in two different states for a certain component. The first state is when the current
component has reached its run limit. Its current content then need to be moved to a higher
component to clear more space for new runs. It is normal to merge all runs in a given
component, but it is possible to use different strategies to decide which and how many
runs to move upwards and merge. The second state that triggers a merge process, happens
when a run is moved upwards, but the destination component has no more room for more
runs. Therefore the run must be merged with an already existing run. As a consequence,
merging can cause a cascading effect of further merges through higher components.
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Figure 2.7 illustrates the merging in a LSM-tree. The simplest implementation is to merge
one run at a time upwards to the next component. When C0 has reached its threshold, all
the content of one run is selected and flushed to the next component C1. During the merge,
only the newest value for a key is kept if update and delete operations were performed. A
cascading effect can occur and a run in C1 is pushed upwards to C2.

2.3.4 Lookups

Lookups and searches is the most expensive operations in a LSM-tree since with increasing
number of disk components, more and more disk access is required and the performance
degrades [2]. Therefore extra structures are often used to optimize search queries. Bloom
filters are used to increase the speed of point-queries in a run and can either be persisted
to disk for a run or rebuilt during startup. Fence pointers are also applied in some cases,
which allows for skipping runs not in a relevant range.

Point-queries are performed in a propagating manner. The search start in C0 and if no
matching key is found, the process continuous to the next component C1 and so on until a
match is found. Range-queries on the other hand must search every component and must
be wary for update and delete records during the search.

2.3.5 Component Management

The concept of a component are defined and managed by the LSM-tree implementation,
while files are controlled by the file system. Maintaining a consistent view of immutable
files is crucial for guaranteeing readers query correctness. It is therefore important to have
some sort snapshot management with catalog or list structures for referencing files for all
components persisted on disk and those in main memory. Managing snapshots ables the
merging tasks to work in the background without disturbing other operations.
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Chapter 3
Related Work

This chapter presents related work in the literature that are very relevant for this thesis and
its proof-of-concept data structure. This includes the Hilbert R-tree which uses the Hilbert
Curve and AsterixDB which uses a LSM-tree base storage layer with different indices
incorporated into the LSM-tree.
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3.1 Hilbert R-tree

The Hilbert R-tree [11] is a R-tree variant which is very similar to the B+-tree. Actually,
it is a B+-tree with R-tree characteristics, but includes support for multi-dimensional ge-
ometrical objects. It achieves this by using the Hilbert space-filling curve to calculate a
Hilbert value for the entries’ geometrical object, in addition to calculating the MBR. Nodes
in the tree are then given the largest Hilbert value (LHV) as an additional property. Figure
3.1 illustrates an organized Hilbert R-tree.

Range queries are processed the same way in the Hilbert tree as the original R-tree, checks
if MBRs intersect, but point queries may utilize the Hilbert value instead of the MBR.
However, the significant difference lies in the insertion procedure compared to other R-
tree variants. Instead of using the MBR as a determining factor when comparing, the
Hilbert value is utilized.

Figure 3.1: Hilbert R-tree organization (Hilbert values in brackets), from [31]

The traversal during insertion starts in the root node and at each level the Hilbert value
H for the new entry is compared to the largest Hilbert values to the nodes. It then selects
the node with the smallest Hilbert value that is larger than H . Or if no such nodes exists,
the node with the largest Hilbert value is selected. If a leaf node is encountered, the new
entry is inserted and all nodes along the path are updated to reflect changes in MBR and/or
largest Hilbert value.

Since the Hilbert space-filling curves creates a sequential ordering, nodes and entries have
a well-defined order. This means that the order of entries at the leaf level always will be
the same regardless of the order new entries are inserted. As a result, it is possible to
delay node splitting when a node overflows and instead move entries to sibling nodes. If
the sibling nodes also have reached their capacity, one new node is created and all entries
are distributed evenly among them. Delaying the splitting of a node increases the storage
utilization considerably compared to the original R-tree.
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However, the Hilbert R-tree does not perform well with high-dimensional space because
of the properties of space-filling curves, as discussed in section 2.2.

3.1.1 Packed variant

The Hilbert packed R-tree [32] is based on the structure of the Hilbert R-tree and is de-
signed for static data. The sequential ordering of entries with the Hilbert space-filling
curve is exploited to build a Hilbert-tree with almost 100% storage utilization.

Dynamic R-trees are normally constructed from the top and downwards, while the Hilbert
packed R-tree is constructed in a bottom-up approach. The packing algorithm goes as
follows; First the Hilbert value of all entries are calculated and sorted accordingly. While
there are remaining entries, the next f (fanout) entries are assigned to a new node. This is
repeated for every level until a level only contains one node, which is assigned as the root
of the tree. After the procedure has completed, all the nodes in the tree are full, except
from the last node at every level.

3.2 AsterixDB’s Storage Management Layer

Apache AsterixDB [33] is a parallel, semi-structured information management platform
that provides the ability to ingest, store, index, query, and analyze mass quantities of data
[34]. It uses ideas from semi-structured data, parallel databases and data-intensive com-
puting to create a platform that runs on shared-nothing clusters.

Inside AsterixDB lies maybe the most important part, the LSM storage layer. The storage
layer contains a generalization for converting a class of indices such as B-trees and R-
trees, so they can be used in a LSM-tree. The framework provides basic operations such
as insert, delete, and bulk-loading for the converted indices and reduces the time and effort
for constructing a index structure from scratch.

The LSM storage layer consists of four different indices, a primary LSM B-tree, a sec-
ondary LSM B-tree, a secondary LSM R-tree and a secondary LSM keyword Inverted
Index. A overview of the storage layer and example queries are shown in figure 3.2.

The primary LSM B-tree has different structures for the in-memory component and disk
persistent component. The in-memory component consists of a single B-tree with entries
are ordered by their primary key. The disk component is similar except it also contains a
Bloom filter to reduce the search space during point-queries.

The secondary LSM B-tree does not have a Bloom filter on the disk component and the
usually (key, value) pair is instead on the form: (seconday key, primary key). This provides
an opportunity to have extra indices on fields containing integer data.

Since a B-tree is only suited for one-dimensional data and point-queries, AsterixDB uses
a LSM R-tree for fields with multi-dimensional data. While the in-memory component is
a normal R-tree, the disk component uses a Hilbert curve to order the entries. The Hilbert
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Figure 3.2: AsterixDB’s storage layer and operation example, from [34]

curve creates a linear ordering of the entries such that it is possible to do incorporate the
R-tree index into the LSM-tree. Insert operations is handle the same way as a traditional
R-tree, but deletes are added to an in-memory B-tree. When the in-memory component is
flushed to disk, entries in the R-tree and B-tree are merged, but the B-tree entries changes
to anti-matter.

The last secondary index is the Inverted index which is used to index keywords on string
fields. The in-memory component consists of a B-tree and an extra B-tree for deleted keys.
The on-disk component share the same structure, but also consists of a Bloom filter for
optimizing search queries. In contrast to the LSM R-tree where deleted keys are merged
into the main structure during flush operation, the Inverted index merges the deleted keys
separately and retains its own tree structure on disk, as illustrated in figure 3.2.
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Chapter 4
Implementation

This chapter describes the ideas and implementation of an experimental LSM-tree data
structure that incorporates a R-tree index in the disk component. First an overview of the
implementation is presented and is then followed by the actual implementation explained.
The basic structure is explained first followed by the internal components with their corre-
sponding challenges and ideas, before moving up to higher components again. In the end,
a proof-of-concept structure is designed and constructed.
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4.1 Overview

This thesis’ purpose is to propose a proof-of-concept structure for a high throughput LSM-
tree that incorporates a R-tree index in the disk component. This includes challenges such
as how to merge-sort components into a higher component while maintaining an efficient
R-tree structure, which compaction algorithm to apply and how to sequentialize multi-
dimensional data.

Two methods for performing the merge-sort process was implemented, one is based on
the packing algorithm for Hilbert Packed R-tree and the second one is an iteration on the
same concept, but optimized for caching. Compaction uses a leveled-N algorithm inspired
by Fluid LSM [35] with less write amplification than leveled. The last main part of the
implementation is the usage of space-filling curves such as Hilbert Curve and Z-Order
curve for sequentializing multi-dimensional data.

4.2 Structure and Files

MBR lhv pointer lenghtNode

MBR lhv pointerLeaf

Header #entries type(leaf/node)

16B 4B 8B 8B

Figure 4.1: Data layouts for internal objects

Nodes

Cn

Sorted

root

Leaves

Figure 4.2: Disk component

The first thing to consider when incorporating a R-tree into the disk component for a LSM-
tree, is a proper structure. The first property to note is that the entries must be sorted and
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stored in a sequential way, as required by the properties of the LSM-tree.

Figure 4.1 shows the data layout of the three different types of objects stored in the files.
The smallest one, the header, is just a marker for a sequence of entries. It specifies the total
length in byte for the sequence of entries and specifies if it is either a sequence of leaves
or normal nodes. The other two objects, leaf and node, contains a MBR, the largest hilbert
value (lhv) or an equivialent and a pointer to its children location. They are are based on
the same layout suggested in the paper [6], except that the node object also contains the
total length in bytes for its children. Together, the pointer and length attributes determines
where the children are located.

A potential structure for a run in a disk component Cn for a LSM-tree is illustrated in
figure 4.2. It is composed of three different parts with each part stored as separate files.
The first part is the leaf level and contains all entries and resembles the normal LSM
structure. Entries are sorted in ascending order by their corresponding space-filling value,
which may either be a Hilbert value or Morton code (Z-order) in this implementation.

The second part is the actual tree structure. This is the upper levels for a R-tree resembling
the Hilbert R-tree and contains only nodes. Section 3.1 covers this in more detail. The third
and last part is the “root” part, it contains metadata about the run such as size, number of
entries, leaves location or other data that may be useful in some situations.

The reasoning for storing the parts in different files is that it may be useful for applying
more aggressive caching techniques. The “root” part should mostly be available in main
memory since it contains useful metadata for merging or other purposes. During a merging
process, only the leaves are of interest since it is not possible to merge the upper levels on
key-order since the MBRs need to be recalculated. More details are about the merging
process are covered below in section 4.4.

4.3 Space-Filling curves

The LSM-tree requires that entries can be sorted in key-order for the purpose of being able
to do the merging efficiently. This poses a challenge for multi-dimensional data that does
not have a linear ordering defined in its properties. To overcome this, space-filling curves
are utilized to sequentialize multi-dimensional geometric objects. More specifically, the
Z-order curve and the Hilbert curve have been implemented and is used during insertion,
where the entry’s space-filling curve value is calculated from its MBR. As discussed in
section 2.2, they retain their neighbour relations and conserves locality, which is important
for indices.

Implementing the calculation of a Hilbert value is non-trival and therefore an external
library was used to calculate the value. Z-order curve is a lot simpler and can be done
by interleaving bits, either by table lookup, multiplication or magic numbers. Figure 4.3
shows how the calculation of the Morton code for a two-dimensional point can be done
using bit interleaving and binary magic numbers. The implementation in this thesis is
based on the code in figure 4.3, but extended it to 64-bits from 32-bits. By using 64-bits
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it is possible to calculate the value for a point represented by two floats (32-bits) without
losing much precision and reducing the chance of collisions with keys.

unsigned i n t B [ ] = {0 x55555555 , 0 x33333333 ,
0x0F0F0F0F , 0x00FF00FF } ;

unsigned i n t S [ ] = {1 , 2 , 4 , 8} ;

unsigned i n t x ;
unsigned i n t y ;
unsigned i n t z ;

x = ( x | ( x << S [ 3 ] ) ) & B [ 3 ] ;
x = ( x | ( x << S [ 2 ] ) ) & B [ 2 ] ;
x = ( x | ( x << S [ 1 ] ) ) & B [ 1 ] ;
x = ( x | ( x << S [ 0 ] ) ) & B [ 0 ] ;

y = ( y | ( y << S [ 3 ] ) ) & B [ 3 ] ;
y = ( y | ( y << S [ 2 ] ) ) & B [ 2 ] ;
y = ( y | ( y << S [ 1 ] ) ) & B [ 1 ] ;
y = ( y | ( y << S [ 0 ] ) ) & B [ 0 ] ;

z = x | ( y << 1 ) ;

Figure 4.3: Interleave bits by Binary Magic Numbers

4.4 Merging

Merging in a LSM-tree is perhaps the most difficult task to tune for high write throughput
without interfering with other queries. This thesis does not cover the concepts around
reading from a LSM-tree, but explores the challenges with write throughput. Therefore
are constrains for accessing runs for read operations only partly considered in the choice
of compaction algorithm.

There exists a lot of different compaction algorithms for merging components in a LSM-
tree. Some can be very complex to implement, tiered compaction, and others are more
straight forward, leveled. Since compaction is not in the focus of the thesis, a leveled-N
algorithm is implemented. It differs from leveled with that it allows for more than one run
per component. It also provides less write amplification and more read amplification than
leveled which was introduced in the LSM-tree paper by O’Neil et al [1].

When the merging progress is triggered for a given component Cn all its runs are merged
into one new run in component Cn + 1, which are similar to leveled compaction. This
means that the component Cn + 1 is many times larger than Cn, since all runs in one
component are merged. While all non-max components have n runs, the max component
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has only one run. This is similar to the compaction algorithm Fluid LSM, suggested by
Niv Dayan and Stratos Idreos [35]

While a compaction algorithm defines how runs and components should interact, the actual
merging of two or more runs is implementation specific. The structure suggested in section
4.2 poses some challenges and two different strategies are suggested and implemented.

4.4.1 Partly

The first strategy are one called “partly” in this thesis, it is similar to the packing procedure
used for the Hilbert Packed R-tree [32]. The procedure is illustrated in figure 4.4 and goes
as follows:

The first step is to gather all the leaf -files from the lower component’s runs. The previous
tree structure in the lower component is ignored simply because it is not possible to merge
without significantly degrading the R-tree’s performance and storage utilization. Then
the files are merged using a normal merge procedure and written to disk sorted by their
space-filling curve value in ascending order.

After the leaves are sorted and written to disk, the tree construction begins. A new node is
created at level l and assigned leaves in ascending until the fanout is reached, its MBR and
lhv is updated accordingly. This is repeated until all leaves are assigned to a node. Then
the same steps are repeated in level l − 1 for the new nodes until a level only contains a
single node. Then this node becomes the root of the tree.

Merge

Cn

Nodes
Leaves

Cn+1

Sorted

Figure 4.4: Illustrates “partly” merging of components

4.4.2 Continuous

The second strategy is referred to as “continuous” and tries to optimize the tree construc-
tion in the partly procedure. The hypothesis is that the requirement to read the entire
leaf-file after it is written to disk for the partly procedure, may decrease write throughput
for very large runs when the leaf-file does not fit in main memory.
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The change is quite simple; Instead of constructing the R-tree after the merge is done, the
tree is constructed continuously while merging. This means that it is not necessary re-read
the leaf-file. Figure 4.5 shows this process. During the merging a new node n at level l is
created and is filled with sorted entries until fanout is reached. Then node n is assigned
to a node at level l − 1 and a new node is created at l, their lhv and MBR are updated
accordingly. This process cascade upwards when a node reaches its fanout and terminates
when the runs are sorted. In the end, the entire R-tree index is constructed and no extra
read operations are required.

Merge

Nodes

Leaves

Cn Cn+1

Sorted

Figure 4.5: Illustrates “continuous” merging of components

4.5 Minor considerations

This section addresses some implementation specific challenges with LSM-trees.

4.5.1 Threading

In this day and age, parallel programs have become more important because the advance-
ments of parallel systems. In this thesis, threading is only implemented on the buffer
component and the merging of the buffer component to C1. The advantages threading
gives at the higher components are not too significant because the merging process is for
the most part heavily I/O bound. Every run in the buffer is run in parallel and has its own
thread. This means that it is possible to handle multiple updates at the same time. When
a run in the buffer has reached its threshold, it is sent to a different thread for merging the
content to disk.

Further work one should consider researching methods for task-parallelism and data-
parallelism for the merging process of higher components. It may increase write-throughput
if the task is not to heavily I/O bound. Also for range-queries, data-parallelism could be
interesting. Searching multiple runs in parallel in a component could increase performance
significantly.
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4.5.2 Buffer

The first component in a LSM-tree is C0 or sometimes called the buffer and is stored in
main memory. Its main purpose is to buffer inserts and updates for efficiency and batch
to disk later. Often its structure is different from the disk components since it is only
intended for in-memory operations. Structures such as heaplist, arrays and skiplists can
be used. In this implementation, a normal array is used for the buffer for its simplicity
for write operations. An array will probably perform very poorly on range-queries which
is normal on R-tree indices. For further work where read operations are considered, a
dynamic R-tree variant based on the Hilbert R-tree should most likely be used instead
since it is more trivial to do range-queries.

4.5.3 Snapshots

In this thesis read operations are not considered on the implemented LSM-tree and there-
fore it does not have implemented a procedure for maintaining a consistent view of the
components’ files. Usually some sort of global catalog structure is stored in-memory for
accessing a snapshot of the current LSM-tree without getting disturbed by write opera-
tions.
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Chapter 5
Results

The following chapter present and compares results from different configuration for the
proof-of-concept LSM-tree that is implemented in this thesis. Results are evaluated in
terms of completion time, reads over time and total number of reads. Writes are not
considered since for an input set with fixed size it will always be the same.
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5.1 How testing was performed

The different test were run several times and the median with regards to total runtime
was selected for data analyze to remove outliers. The median is chosen over mean be-
cause sometimes an outlier performed significantly better or worse than the other runs and
therefore would have skewed the result in a calculated average.

The tests were performed on commodity hardware; an i3-8100 with 16GB RAM and two
SSDs striped together in ZFS. More accurate details of the setup are described in the
sections below.

5.1.1 Default configuration

The default parameters for a test run are shown in table 5.1. If nothing else is specified in
a section, the default parameters apply.

Parameter Value Description
Buffer size C0 1048576 Threshold for a run in C0

Buffer threads 2 Number of input threads aka runs in C0

Merge threads 2 Number of threads merging C0

Fanout 8
Curve Z-Order Space-filling curve used
Runs 1 Runs at Cn, Cn−1 have two times more

runs etc.
Levels 4 Max number of components
Merge Strategy Continuous
Read buffer size 32k
Write buffer size 32k

Table 5.1: Default parameters

5.1.2 System

System configuration
Intel(R) Core(TM) i3-8100 CPU @ 3.60GHz
16GiB DDR4 2400MHz
Crucial MX500 500GB x2
Debian GNU/Linux 9 (stretch)
Linux 4.9.0-7-amd64
openjdk 11.0.3 2019-04-16

Storage
The storage consists of two MX500 SSDs, which are striped together in a ZFS pool. This
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was done to not be I/O bound in some scenarios.

Notable ZFS properties
recordsize: 128k
blocksize: 4k
ashift: 12

5.1.3 Dataset

There are many ways to generate datasets. One could use synthetic ones or real data that
are collected. Different data distributions may perform poorly on some indices and better
on others. Therefore are usually tests done with different types of distributions such as
uniform distribution and clustered datasets.

In this thesis, the dataset is generated with uniform distribution, since the distribution does
not matter for performance in this implementation of a LSM-tree. This is because the R-
tree index is always reconstructed when inserting new entries, as explained in section 4.4.
The dataset contains a total of 100 million entries with location data as points (longitude
and latitude) and a random long value. Each entry has a size of 32 bytes. Before the the
insertion process starts, the whole dataset is loaded into memory to reduce any influence
read operations could have on the LSM-tree.

5.2 The art of runtime evaluation

A paper written by Krieger et al. [36] discusses and evaluates pitfalls and challenges with
testing the performance of implemented algorithms. It is an interesting read and they
suggest that there should be payed more attention to runtime experiments and should be
handled with care. They also have a lot of recommendations for doing experiments. In
short, the first recommendation is to find the fastest implementation. The second rec-
ommendation is to use proper parameters and datasets, which is not chosen to skew the
results. This is to ensure more fair and conclusive comparisons in the literature.

To do experimental evaluations is not trivial at all and the results in this thesis should be
used as guidelines for potential further work and not directly compared to other works.
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5.3 Fanout

Fanout is the number of children in internal nodes and could have significant impact on
the performance of a R-tree. When the fanout is increased, the tree height is reduced
and results in fewer disk access for point- and range-queries. It could also affect write
performance since a higher tree requires additional levels to be created or updated.

As shown in figure 5.1, after a fanout of 2, the number of operations quickly stabilizes for
both reads and writes. There seems to be a slight reduction towards a fanout of 32, but
is probably in the margin of error. It is to be expected that fanout does not have a huge
impact on writes since the reduction of internal nodes are negligible compared to the size
of the leaf level.
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Figure 5.1: Total reads for different buffer sizes

5.4 Buffer size

Testing buffer size is not too relevant for the suggested implementation, but it can be
important to tweak the value for optimal write throughput. The total number of reads for
different buffer sizes are shown in figure 5.2. This shows that there are huge differences in
the number of reads for buffer sizes. About a 40% increase in reads from the lowest ones
to the larger ones. The jumps are also very noticeable between buffer sizes.

The interesting part is that 4k is the block size of the SSDs used during testing. So the
high reads from values below that is expected, but then the number of reads jump by a lot
at 8k and 16k and falls again at 32k. The fall at 32k to 256k is probably due to the limits
of the L1 and L2 cache. For the processor used in testing, the L1 cache has a size of 32kB
per core and L2 has a limit of 256kB.

If instead the actual runtimes shown in figure 5.3 are considered, it shows that there are not
a clear correlation between runtime and number of reads for different buffer sizes. After
4k there are no significant performance loss for different buffer sizes. For some workloads
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Figure 5.2: Total reads for different buffer sizes

this behavior may be different and testing and tuning should probably be done for different
types of systems.
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Figure 5.3: Runtime for different buffer sizes
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Figure 5.4: Operations over time for partly and continuous merging

5.5 Merging

In this thesis, two different merging strategies were suggested in section 4.4, “continuous”
and “partly” merging. Two different scenarios of tests were performed to compare the
number of reads for both. The first scenario is in a environment were the merging is not
limited by memory. This means that most of data needed during the merge process can
be stored in-memory and is cached by the operating system. In the other scenario, it is
heavily memory limited and only parts of needed data are cached in main memory by the
operating systems. Limiting memory is done by artificially amplifying the entries size
by a factor of 4 and quadruples the memory requirement. This may be the most realistic
scenario for a high throughput service.

The results from the first scenario are shown in figure 5.4a for reads and figure 5.4b for
writes. There are no significant deviations for writes between the two merging strategies,
but “continuous” finishes the run slightly faster at the ~90 seconds mark, while “partly”
finishes at about the ~100 seconds mark. Continuing to number of reads shown in 5.4a,
there are some higher and wider spikes for “partly” and probably contributes to the in-
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creased runtime.

In the second scenario, shown in figure 5.5a and 5.5b, the effects from the first scenario is
amplified. The spikes for reads in figure 5.5a for “partly” is more extreme than previously
and the effect on writes is also visible in figure 5.5b.

Figure 5.6 shows the total runtime for both strategies in both scenarios. It is clear that the
“continuous” strategy is significantly faster when memory is limited. In figure 5.7 the total
number of reads and writes for both scenarios are presented and “continuous” has less than
half the reads than “partly”.

In total, these results live up to the hypothesis covered in subsection 4.4.2. It is shown
that the “continuous” merging has a significant impact on the number of reads during the
merge process and can reduce the runtime by a little bit.
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Figure 5.5: Operations over time for partly and continuous merging with limited memory
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5.6 Z-order and Hilbert-curves

The testing of Z-Order curve and the Hilbert curves was done in two different scenarios.
The first run was with no amplification of entry size to not to be limited by memory. The
second run had an amplification of a factor of four. This means that the entry size were
increased during writing to simulate a high throughput scenario without increasing the
memory requirement to hold the test dataset.
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Figure 5.8: Operations over time for Z-Order and Hilbert Curve

In figure 5.8, we can see that there are significant less operations for the Z-Order curve
compared to the Hilbert Curve. Z-Order Curve also finished earlier, around 90 seconds
while the Hilbert Curve used a total of 120 seconds on the same dataset. This scenario was
also not memory limited and therefore the application was for the most part not I/O bound.
This means that a reduction in total required processor cycles, gives better throughput.

If we look at figure 5.9, which was a memory limited run, was more I/O bound that the sce-
nario above. This is shown by a reduced difference between the two space-filling curves.
Both write and read graphs for operations are similar for Z-Order and Hilbert, while Z-
Order have slightly higher throughput and finishes in less time.
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Figure 5.9: Operations over time for Z-Order and Hilbert Curve with limited memory

Pure throughput is not usually the deciding factor in a R-tree. The degree of overlap
and intersections in the final tree can have huge impacts on query performance. One of
the upper levels of the R-tree index is shown in figure 5.10 from the first scenario. As
expected, the overlap between nodes for a Z-Order curve in (a) are of a higher degree than
the Hilbert Curve in (b).

5.7 Threading

Threading has not been a major concern in this thesis, but some test were still ran. The re-
sults are displayed in figure 5.11 and shows the runtime for different thread configurations.
The test were performed on a four-core processor and therefore has some limitations for
multi-threading. bt stands for buffer threads and are the number of threads handling ar-
riving entries, while bmt is the number of threads that merges a buffer (C0) to component
C1.

By having more than two buffer threads, it seems like starvation is occurring and is prob-
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(a) Z-Order curve (b) Hilbert Curve

Figure 5.10: Comparison of overlap between Z-Order and Hilbert

ably due to other threads blocking and the limited number of cores. The number of buffer
threads seems to not be the limiting factor, but instead the merging of buffer components
to C1 have a larger impact on throughput.
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Figure 5.11: Run time for buffer with n-threads with m-threads for C1
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Chapter 6
Conclusion and Further Work

In this chapter the research questions presented in Section 1.1 are evaluated. The imple-
mentation is discussed and potential improvements and considerations are suggested for
further work.
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6.1 Conclusion

The purpose of this thesis was to create an experimental LSM-tree data structure that
incorporated a R-tree index with the usage of space-filling curves to cope with the large
amounts of data generated in modern applications and services. We presented two research
questions in Section 1.1 that specified the goal of the project.

• RQ1: Is it possible to utilize the properties of a LSM-tree for a R-tree index?

• RQ2: How does it perform?

Throughout the thesis we have answered RQ1. In Chapter 4, a proof-of-concept LSM-
tree with a R-tree index was created and achieved a positive result for RQ1. Space-filling
curves was utilized for the mapping of multi-dimensional data to one dimension and two
different curves were implemented; the Z-Order Curve and the Hilbert Curve. Z-Order
curve was the simplest one to implement which could be done with bit-interleaving. By
fulfilling the LSM-tree requirement of sequential data, it was made possible to use the
LSM-tree structure for a R-tree since multi-dimensional data could be sorted in a linear
order.

The biggest challenge proved to be the merging of runs in the LSM-tree. The nature of
the R-tree makes it hard to construct efficiently. Based on an algorithm from Kamel et al.
[32], two different merging strategies were suggested in this thesis. Both used the concept
of reconstructing all of the upper levels of the R-tree during a merging process to create a
new efficient index with high space utilization.

In light of RQ2 some performance tests were performed. For the two different space-
filling curves, Z-Order and Hilbert Curve, we saw that for raw throughput in both a I/O
bound scenario and not, the Z-Order curve was better. The differences in throughput was
only slightly reduced for the Hilbert Curve compared to the Z-Order curve in I/O bound
scenarios. The difference of overlap between internal nodes was only shown briefly in
figure 5.10.

The results from the testing of the two merging strategies, “partly” and “continuous”,
discovered that “continuous” was superior to the “partly” strategy. By removing the re-
quirement in “partly” to re-read the leaf level after merging to construct the R-tree, the
number of read operations was cut in half for “continuous” as shown in figure 5.7.

In addition to the space-filling curves and merging strategies some minor tests for buffer
size, fanout and threading was done. Fanout proved to not be very important for write
throughput while buffer size and threading showed more potential. Choosing the right
buffer size could be critical for fine tuning write and read performance.

To summarize; RQ1 proved to be possible with some simple design chooses, but requires
further testing and considerations. It should also be tried to be implemented in a real
database system such as AsterixDB or RocksDB, this will also give RQ2 more meaningful
data.
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6.2 Further Work

6.2.1 Merging

More research should probably be done with the merging process, since the merging of
R-trees are non-trivial. The two methods suggested in this thesis provides an alright foun-
dation to extend and derive into better methods.

It would also be interesting to look at merging of only runs with non-overlapping key-
ranges. This could make it possible to reuse the already constructed tree structure from
the runs instead of reconstructing it every time. This will save a lot of CPU time and I/O
operations, but is maybe only feasible for lower components since they usually have more
runs. Could also have multiple merging procedures with different properties and choose
the one which are best for a specific set of runs.

Multi-threading is an area of interest and a parallel the merging technique could further
improve throughput, but may not be too trivial for a R-tree. Methods to either do it with
data-parallelism or task-parallelism would provide better utilization of today’s modern
highly parallel hardware.

6.2.2 Range-queries

In this thesis read operations were not considered. It would be interesting to test the
performance and efficiency of the proof-of-concept tree with regards to point- and range-
queries. This would also cover the difference in number of disk accesses between the
Z-Order curve and the Hilbert Curve during queries. And determine if the extra write
throughput the Z-Order curve provides is worth it with the reduced query performance
compared to the Hilbert Curve.

6.2.3 Bloom filters and Fence pointers

Finding methods to utilize Bloom filters, Fence pointers or similar auxiliary structures for
a R-tree could be helpful for reducing the total number of components in the LSM-tree to
search. With a LSM-tree with many components, it becomes expensive to do queries if all
components has to be searched and read from disk. Filters could then have a huge impact
on read throughput.
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