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II

Abstract

In this project we have developed three different methods for analyzing

Sentinel-2 satellite images containing ships, and determining whether

the ship is obscured by a cloud or not.

Our motivation for this work is to find the optimal method for correctly

labeling images for use as training data in a ship detection machine learn-

ing model. By creating three different approaches we are able to compare

and evaluate each approach with each other and existing solutions, as

well as create a baseline and detailed outline for further work.

We present the background and theory for our work to specify why and

how we are doing this, as well as presenting an overview of what consti-

tutes a correctly labeled image.

The three different methods proposed in this work is a fuzzy logic reas-

oning method for determining the probability that the ship is obscured,

an image segmentation method for calculating the cloud cover over the

ship, and lastly a deep learning model capable of producing cloud masks

on a given image.

Through evaluation and analysis we uncovered that image segmenta-

tion was the most accurate method in correctly detecting when a ship is

covered by a cloud, and we present the case for deep learning semantic

segmentation being the optimal choice for further work given a better

data set.
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Sammendrag

I dette prosjektet har vi utviklet tre forskjellige metoder for å analysere

Sentinel-2 satellitt-bilder som inneholder skip, med mål om å avgjøre om

skipet er skjult av en sky.

Vår motivasjon for denne oppgaven er å finne den optimale metoden for

å kunne klassifisere bilder av skip med høyest mulig nøyaktighet. Må-

let med bildene og klassifiseringen er å kunne bruke de som et trenings-

sett for å lære en maskinlærings-algoritme å gjenkjenne og spore skip i

Sentinel-2 bilder. Ved å utvikle tre forskjellige metoder tillater det oss

å sammenligne og evaluere de forskjellige metodene med hverandre og

eksisterende løsninger, og også legge et grunnlag og detaljert beskrivelse

for videre arbeid på oppgaven.

Vi presenterer bakgrunnen og teorien for oppgaven for å gi leseren den

nødvendige kunnskapen for å forstå hva vi gjør og hvorfor vi gjør det.

Leseren vil også få en forståelse for hva som utgjør en korrekt og nøyaktig

klassifisering av et Sentinel-2 bilde.

De tre metodene presentert i denne oppgaven er fuzzy logikk metode for

å avgjøre sannsynligheten for at skipet er tildekket, en bildesegmenterings-

metode for å regne ut det potensielle skydekket over en båt, og til slutt en

dyp lærings-metode som er i er stand til å produsere skysegmenter på et

gitt bilde.

Gjennom evaluering og analyser har vi fastslått at bildesegmentering er

den mest nøyaktige metoden for å finne ut om skip er tildekket av en

sky eller ikke. Vi presenterer også argumentet for bruk av vår dyp læring

metode som det optimale valget for videre arbeid, gitt et bedre datasett

av høyere kvalitet.





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . I

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

1 Introduction 3

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7

2.1 Sentinel-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Spectral bands . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Data Products . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Level 1C cloud masks . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 AIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Convolutional Neural Networks . . . . . . . . . . . . 15

2.4.3 Training data . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Proposed Methods 23

3.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

V



CONTENTS 1

3.2 Fuzzy logic reasoning . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Fuzzy logic . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Further testing . . . . . . . . . . . . . . . . . . . . . . 38

3.2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.3 Network architecture . . . . . . . . . . . . . . . . . . . 51

3.4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Conclusions 59

4.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . 59

4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Recommendations for Further Work . . . . . . . . . . . . . . 65

4.3.1 Improved data set for semantic segmentation . . . . 65

4.3.2 Extending the labeling problem further . . . . . . . . 66

4.3.3 Further extending the U-net architecture . . . . . . . 66

A Acronyms 67

B Formulas and functions 69

B.1 Euclidian Distance . . . . . . . . . . . . . . . . . . . . . . . . 69

B.2 Max pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.3 Leaky ReLu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.4 Sigmoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Bibliography 70





Chapter 1

Introduction

In this chapter we will introduce the background and motivation for this

work, as well as the objectives and how we aim to complete them. This

chapter will give the reader an understanding of what we are doing and

why.

1.1 Background

In the recent years there have been a growing investment in free and

open earth obervation (EO) data through the Copernicus Programme,

led by the European Space Agency (ESA) and the European Commission.

The programme aims to deliver full, open and free-of-charge earth ob-

servation data for the public to freely use.

With the launch of the first Sentinel-2 satellite in 2015, the Copernicus

programme delivers open high-resolution multi-spectral imaging for land

services. With this wealth of highly detailed and free data there is a lot

of untapped potential. Examples applications of this data is monitoring

land and sea change, measuring water quality and natural disaster mon-

3
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itoring [1].

It is through Vake that I first became aware of these opportunities, as

the founders of Vake had previously written a master thesis on this topic

[2]. Vake is currently working on a solution combining machine learn-

ing, Sentinel-2 imaging data and Automatic Identification System (AIS)

messages to provide automatic ship identification. By providing the ma-

chine learning algorithm with Sentinel-2 images based on the corres-

ponding AIS ship messages, the algorithm can be trained to recognize

ships through satellite imagery. This solution could provide detection of

ships that are not broadcasting AIS signals, which could provide useful

help for search-and-rescue operations, detection of illegal coastal activ-

ities and detecting and tracking of refugees traveling by sea without the

proper equipment and preparations, amongst other.

Through the cooperation with Vake I learned that one of the challenges

the project is facing is cloud recognition and cloud masking. The ma-

chine learning algorithm relies heavily on a consistent, large, clean and

highly accurate training set of images containing ships. The problem

arises when a ship is fully covered by a cloud, which could lead to the

machine learning algorithm training on the wrong data, causing low ac-

curacy and precision, and in the worst case, not working at all (e.g recog-

nizing a cloud as a ship).

There are some pre-existing solutions to this problem, most notably from

ESA themselves, which will be covered in Chapter 2.

However, even though these solutions exist, they tend to have a rather

large error margin and are not directly applicable to this problem. In

most circumstances this error margin would be adequate, but this error

margin could propagate in the training set, which would greatly impact

the quality if the machine learning model.

With this problem in mind, I structured my master thesis around this
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problem area, with the main goal of providing a way to detect and dis-

card images where ships are fully covered by clouds, or if the image is in

some way unusable as training data. The developed method(s) should

also be able to correctly label images in situations where the ship is vis-

ible but partially obscured, as this variation will greatly help the machine

learning model detect ships in difficult environments.

To achieve this we will be developing different methods of image valid-

ation, which can be compared to the existing solutions, as well as other

methods developed in this work. With this we aim to not only provide

a solution capable of generating a varied training set of high quality, but

also a detailed evaluation of different approaches for this problem as a

basis for further research

1.2 Objectives

Here we will present the main objectives which this work aims to com-

plete:

1. Develop different methods for validating and correctly labeling ship

images for use in ship detection.

2. Evaluate and compare the developed solutions.

3. The methods should be fast and optimized for ship level labeling.

In order to meet these main objectives, we also define a set of objectives

which should be completed in order to reach these goals:

1. Generate images used for developing and evaluating the methods.

2. Develop a method for evaluating our proposed methods in com-

parison with existing solutions.

3. Define what makes an accurate label
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1.3 Approach

In this work we will approach the problem by developing different meth-

ods within different fields. The fields we will be examining in this work

are fuzzy logic reasoning, image segmentation and deep learning.

By comparing and evaluating these approaches together we can determ-

ine which approach is best suited for our objectives. This also allows us

to compare, evaluate and discuss the different fields in the context of

our problem, by looking at strengths and weaknesses. As the problem

of cloud detection and masking in EO-images is a highly discussed prob-

lem, our evaluation of the different approaches will serve as the basis for

further research.

In order to minimize the delay from the images are captured until we are

able to analyze them, the ship detection will be done on the Sentinel-2

1C product. This is the earliest available product provided by ESA, and is

the least processed level for a Sentinel-2 product. As such, level 1C will

be the basis for all our methods in this work, ensuring that our developed

approach is capable of correctly generating a training set on the 1C level.

More information about the different processing levels can be found in

chapter 2.1.2



Chapter 2

Background

In this chapter we will present the relevant background theory needed

for the work presented in this thesis. The reader will get an understand-

ing of the theory behind our developed solutions as well as the theory in

regards to our motivation.

2.1 Sentinel-2

As of 2019, the Sentinel-2 mission is composed of two satellites: Sentinel-

2A, launched in 2015, and Sentinel-2B, launched in 2017. These twin

polar-orbiting satellites are in the same orbit phased at 180° to each other.

These satellites orbit with a 10 day cycle, which together give a 5 day tem-

poral resolution at the equator. At higher latitudes, the temporal resolu-

tion can be as low as 2-3 days [3].

7
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2.1.1 Spectral bands

The Sentinel-2 Multispectral Instruments samples 13 different spectral

bands: four bands at 10 metres, six bands at 20 metres and three bands at

60 metres spatial resolution [4]. The spatial resolution is the measure of

the smallest object that can be resolved by the sensor, which translates to

the linear dimension on the ground represented by each pixel [5]. These

13 bands range from visible and near-infrared (VNIR) to Short-Wave In-

frared (SWIR), giving each band different characteristics as shown in fig-

ure 2.1

Figure 2.1: The spectral bands of Sentinel-2 [6]
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2.1.2 Data Products

The Copernicus Programme currently offers two different products to

end-users, level 1C and level 2A. These two products are different levels

of processing available for each image. There are multiple ways to ac-

cess and download these products. ESA offer a web-based client as well

as an API for downloading images programmatically, which are collect-

ively called the "Copernicus Open Access Hub" [7]. As of 2019, products

are also hosted on Amazon AWS, but with a slight delay of a few hours

behind the Copernicus Hub. [8]

Level 1C

Level 1C is the least processed data product available to the public, and is

achieved by processing the raw Sentinel-2 ground segment several times.

Compressed raw data (level-0) is decompressed into level 1A where a

geometric model is developed, allowing any pixel in the image to be loc-

ated. Level 1B is then achieved by performing radiometric corrections

on the level 1A product, and finally 1C is reached by resampling level 1B

into orthorectified Top-Of-Atmosphere (TOA) reflectances together with

computed land/water and cloud masks. The final 1C product is com-

posed of orthorectified 100x100 km2 tiles in UTM/WGS84 projection [4].

A detailed look into the computation of the 1C cloud mask can be in

Chapter 2.2.

Level 2A

The 2A product is achieved by applying atmospheric corrections to the

TOA 1C product, resulting in a Bottom-of-Atmosphere (BOA) corrected

reflectance product. Additionally, a scene classification map, a water va-

pour map and Aerosol Optical Thickness map is computed for the 2A
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product [9]. A condensed overview of the scene classification algorithm

is shown in figure 2.2, and an example of the scene classification map is

seen in figure 2.3

Figure 2.2: An overview of the Scene Classification algorithm for level 2A [9]

Metadata

All the Sentinel-2 products also come with a wide selection of metadata,

which is queryable both through the API and the Copernicus Open Ac-

cess Hub. The available metadata ranges from technical specifications

regarding the onboard instruments to image related metadata such as

when sensing started and ended, as well as geographic-specific data. This

also includes a calculated cloud cover, detailing how much of the current

tile is considered cloudy on a 0-100 percentage scale. Since the Sentinel-

2 products are relatively large in size (500-700MB in average), it is often

preferred to query and review the returned metadata before committing

to a rather lengthy download. For training and experimenting purposes

it will be beneficial to filter based on cloud cover and geographical posi-

tion (e.g not over landmasses), resulting in suitable data products for our

purposes.
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Figure 2.3: Left to right: Level 1C, level 2A and 2A scene classification map

2.2 Level 1C cloud masks

Level 1C products come with a pre-computed cloud mask in a Geographic

Markup Language (GML [10]) vector format, which is computed on data

sampled at 60m spatial resolution.

The cloud mask differentiates between dense clouds (also called opaque

clouds) and thin, semi-transparent clouds called cirrus clouds. The 1C

cloud masks include an indicator specifying the type of cloud identi-

fied. Some of the more transparent cirrus clouds (and other atmospheric

haze) are naturally removed during the Atmosphere Correction process

when going from level 1C (Top-of-Atmosphere) to 2A (Bottom-of-Atmosphere).

Dense clouds are characterised by a high reflectance in band 2 (Blue

spectral region), thus the method of identifying dense clouds make use

of a reflectance threshold in the blue band. Since snow and high altitude

ice clouds are also highly reflectant in the blue band, the algorithm util-

izes the Short-Wave Infrared (SWIR) reflectance in bands 10, 11 and 12 to
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differentiate between snow and clouds. Snow has a low SWIR reflectance,

whereas clouds have a high SWIR reflectance.

Cirrus clouds on the other hand, due to the low opacity and density, has

very little reflectance in the blue spectral region, but a high SWIR reflect-

ance in band 10 due to their high altitude. Since band 10 is a high at-

mospheric absorption band only high altitude clouds are detected. Thus

the algorithm can differentiate between dense clouds (High reflectance

in band 2, band 10 and band 11), cirrus clouds (low reflectance in band

2, high reflectance in band 10) and snow (high reflectance in band 2, low

reflectance in band 10, band 11 and band 12).

To limit false detection, the algorithm applies a filter using morphology-

based operations to perform erosion (remove isolated pixels) and dilata-

tion (fill gaps and extend clouds). After these operations, pixels are set to

one of three values, where 0 is a cloud-free pixel, 1 is a dense cloud pixel

and 2 is a cirrus cloud pixel. If measurements are not available in one

or several bands that are needed to calculate the cloud masks, the mask

value is set to NODATA.

After all filtering steps, the cloud mask is available at a spatial resolution

of 60 m, but is resampled to 10m and 20m spatial resolution through a

radiometric transformation [11].

Figure 2.4: 1C product with corresponding cloud mask. Left: 1C cloud mask.
Right: 1C RGB product
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2.3 AIS

Automatic Identification System (AIS) is an automated system broad-

casting information about the vessel to other vessels and coastal author-

ities. The current regulation requires that all ships over 300 gross ton-

nage and upwards engaged on international voyages, cargo ships of 500

gross tonnage and upwards not engaged on international voyages and all

passenger ships irrespective of size be equipped with AIS-capable equip-

ment [12].

AIS messages are required to be broadcast every 2 to 10 seconds (depend-

ing on the speed) while underway, and every 3 minute while the vessel is

anchored. These messages includes:

• The vessel’s Maritime Mobile Service Identity (MMSI) - A unique 9

digit code

• Navigation status

• Rate of turn

• Speed over ground

• Positional accuracy

– Longitude – to 0.0001 minutes.

– Latitude – to 0.0001 minutes.

• course over ground

• true heading

• True bearing at own position

• UTC Seconds when the data was generated

Additional data is broadcast every 6 minutes, which includes dimensions

of the ship, type of ship, destination and an optional high precision time
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stamp amongst other.

2.4 Deep Learning

Deep learning is part of the broader term "Machine Learning", in which

the model is based on an Artificial Neural Network (ANN). In this sec-

tion the term "machine learning" and "deep learning" will be used inter-

changeably for the sake of simplicity.

Deep learning is often categorized into several broad categories: Unsu-

pervised learning, Supervised learning and reinforcement learning. Our

motivation for this work is to label and generate training data for object

detection, i.e detection of ships, which shows promising results within

the area of supervised learning. We will cover the concepts needed to

understand our motivation and the qualities of a good training set, as

well as the concepts needed for our proposed method.

2.4.1 Neural Networks

In order to understand how a deep learning model is able to learn, we

will present a general overview of the underlying ANN structure. A more

in-depth look and implementation of a neural network is presented in

chapter 3.4.3.

A neural network is is composed of connected nodes (Often referred to as

a ’Neurons’) arranged in layers, where the intermediate layers are called

the ’hidden layers’. If the topology of the network is a Directed Acyc-

lic Graph (DAG), the network is known as a Feedforward Neural Net-

work, which is what we will be examining in this section. The edges

between the nodes are weighted and the nodes are given biases. When
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a node receives input from the preceding node, it puts this weighted in-

put through an activation function together with the bias to produce an

output. Based on the network and the activation function this output

can either dictate if the node should fire or not, as is the case when using

a Step function, or it can be used as input for the ensuing nodes. Most

commonly used in modern neural networks is the Rectified Linear Unit

function (ReLu), which will output 0 if the produced value is negative,

otherwise output the value as-is. ReLu can be written as:

f (x) = max(0, x)

When data has passed through the network, the final layer will produce

an output. During the training phase this output is compared against the

ground truth and the error is calculated using a loss function (Sometimes

referred to as a Cost function or an Error function). This loss is a measure-

ment of "how wrong" the prediction is. The loss is then backpropagated

through the network, adjusting all the parameters accordingly in order to

minimize the error.

How the parameters are adjusted is through an Optimizer, which aims

to calculate the minimum for the loss function. An optimizer uses learn-

ing rate and momentum to adjust how much the parameters should be

changed given a loss value, where slower means longer training is re-

quired, but will result in higher accuracy.

2.4.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a specific type of neural net

that is suited for images. The input layer of the CNN takes in a tensor

with shape (Depth ×W i d th ×Hei g ht ), where the depth is the amount

of channels in the input image, and the width and height are the dimen-
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Figure 2.5: A neural network with two hidden layers

sions of the image. Typical channels for an image is the red, blue and

green (RGB) channels. The image is represented as a 3D array of pixel

values which is then put through the network.

A CNN is composed of Convolutional layers that uses learnable filters

to detect certain features from the image. A filter is a N xN matrix (Ker-

nel) that slides across the image, computing the dot product between the

matrix and each N xN block of pixels, resulting in a new image. This pro-

cess is repeated a set number of times, with each iteration being able to

identify more abstract features. A pooling layer is used to down-sample

the image in order to save memory, reduce the parameters and save com-

putational time. Most commonly used is max pooling [13], described in

Appendix B.2.

Once the data has passed through the convolutional and pooling layers,

the data is sent through a fully connected neural network, producing an

output. By back-propagating the loss, the network adjusts the paramet-

ers as before, but the values in the filter kernels are also adjusted accord-

ingly. This is what makes the CNN able to learn different features em-

bedded in the training set.
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Figure 2.6: Abstract example showing how a CNN processes increasingly more
complex and abstract features in images

2.4.3 Training data

A supervised learning model takes a set of data that contains both the

input and the desired output [14]. For object detection this will be an

image and a label which represents the ground truth for the image, which

in the case of ship detection will be labels representing the class of the

image, i.e "ship" and "no ship". How well these labels match the input

images is called the accuracy of the data, and is arguably one of the most

important aspects of the training data in relation to the final correctness

of the machine learning model [15]. The effect of a mislabeled image can

be offset by having a large volume of data, as this lessens the effect of

each mislabeled image. However it is important that the overall accuracy

of the data set is as high as possible, as a machine learning model will

only ever be as accurate as the data it trained on, which is a considerable

bottleneck. Thus it is also important to have a good variety in the data
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set.

With this work we not only aim to provide precise labeling (Accuracy),

but also a good variety. Our proposed methods aim to to correctly label

ships in a variety of situations, such as ships in clouded environments

that are still visible. This introduces not only good representation of

real-life scenarios, but also a good variety for the model to train on. Fur-

ther augmentation techniques can be applied to the data set to provide

even more variety, such as random cropping, rotation and scaling. The

line between obscured and not obscured is not always easy to differenti-

ate, and as such it is not an easy task to define what makes an accurate

label. In this work we try to define an unobscured ship as when ship fea-

tures are easily distinguishable by a human. The idea behind this is that

if a human can see and process the information required to distinguish

the boat, the machine should be able to also. As such we will manually

label all images used for evaluation in this work.

Figure 2.7: Different examples of variety in ship training images, from clear to
nearly obscured.

Volume, or the size of the data set, is another aspect that is important

for deep learning. There is no one-size-fits-all as different tasks requires

different amount of data. For multiclass classification there should be a

relatively balanced amount of images per class, so for each class another

set of N images are required. This number might be lower for binary clas-

sification, but in general a large data set is always to be preferred.
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The goal of a neural network is to achieve generalization, in which the

model can make accurate predictions based on unseen data. In the case

of the model scoring great accuracy on test images, but lower accuracy

score on unseen images, we say the model is overfitted, which is an un-

wanted effect we want for our model. In a way we can say that our model

has "memorized" the training set instead of actually learning to general-

ize. This can be caused by not having a large enough data set, or if the

model is overtrained on the data set. A common method to avoid over-

training is to continually check the prediction accuracy on a set of un-

seen validation images between training rounds (Often called epochs)

and stopping the training when the accuracy on the validation images

reach a peak. A clear sign of overtraining is when the accuracy continu-

ally increases for training images, but stagnates/converges for validation

images, or getting gradually worse validation accuracy.

A data set is often split into three different parts:

• Training set

– A set of images and corresponding labels that the model will

train on.

• Validation set

– A set of images and corresponding labels that the model will

use to check the prediction accuracy on between training sets.

• Test set

– A set of images and corresponding labels that will be used as

a final benchmark after testing has completed.
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2.4.4 Training

The training phase is where all the previous theory comes together to

learn and produce outputs. During the training phase we often define a

couple of parameters:

• Epoch

– One epoch is a pass of all the training data

• Batch size

– The number of inputs passed through the network before para-

meters are updated

These parameters are called Hyperparameters, and should not be con-

fused with the trainable parameters in the model. There is no one way to

correctly set these hyperparameters, and is often set through continuous

testing, tweaking and iteration. Batch size defines the number of inputs

the network should process before adjusting parameters in the model,

and as such can have a noticeable impact on the accuracy of the model.

Since whole batches are kept in memory during training, it is not feas-

ible to process the whole data set before updating weights. A batch size

of one input might be memory efficient, but the model might not adjust

parameters correctly if the images are highly varied. How to set the op-

timal batch size is a highly debated topic and is left for the designer tweak

accordingly.

The number of epochs required until you reach convergence (I.e a de-

sired accuracy) varies depending on the data and network implementa-

tion. Early stopping is employed here to avoid overfitting, stopping the

training if the model shows signs of overfitting to the data set.
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Algorithm 1 shows a basic outline of a simple training process:

Algorithm 1: Training process

1 E pochs ← Number of epochs

2 batchsi ze ← Number of inputs for each batch

3 Tr ai ni ng set ← Set of inputs and corresponding labels

4 V ali d ati onset ← Set of inputs and corresponding labels

5 Net ← The neural network

6 for i ← 0 to E pochs do

7 B atches ← getBatches(Training set, batch size)

8 foreach Batch in Batches do

9 Out put ← Net(batch)

10 Loss ← lossFunction(output)

11 Net .B ackw ar d s(Loss)

12 end

13 B atches ← getBatches(Validation set, batch size)

14 foreach Batch in Batches do

15 Out put ← Net(batch)

16 Loss ← lossFunction(output)

17 end

18 end





Chapter 3

Proposed Methods

In this chapter we will be presenting the technical implementation, ana-

lysis and experiments done for the work. The end goal for all the pro-

posed methods is to correctly identify when a ship is obscured by a cloud,

and label it as such. We also want our methods to be able to identify ships

that are semi-obscured but still distinguishable from clouds, as we want

our methods to be able to label a data set with a high variety. This should

not come at a cost of mislabeling obscured ships however, as this could

have a major negative impact when used as training data for a machine

learning model.

The approach for this work involves three different methods in differ-

ent fields. The methods will be developed in an iterate fashion, building

on analysis done in previous methods. This chapter presents the imple-

mentations used for each of these methods, as well as the evaluations.

All the following solutions will be written using Python.

23
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3.1 Pre-processing

First off we break down our main objective into "Are there any clouds in

this image" and "If so, do they obscure the ship in any way?". In order

to answer these questions, the first step is to reduce the problem area

and focus only on parts of the image that we know for certain contain

ships. In order to do this we need to know where the longitude/latitude

positions of the ships in the image.

By combining AIS time stamp and longitude/latitude position, we can

find areas with a large amount of boats in the same time frame. This al-

lows us to find the corresponding Sentinel-2 1C data product by querying

metadata based on the time stamp and geographical location from the

AIS messages. Figure 3.1 shows a 1C product with 121 identified ships, as

a result of this process.

Figure 3.1: A 1C product with ship positions (Marked in red) found by combining
AIS messages and Sentinel-2 metadata.



3.1. PRE-PROCESSING 25

With the ships identified and the correct data product retrieved, we can

cut out three sets of images for each ship:

• One set of 78x78 px images containing all the 10m bands (Band 02,

03 and 04)

• One set of 39x39 px images containing all the 20m bands (Bands

05, 06, 07, 08A, 11 and 12)

• One set of 13x13 px images containing all the 60m bands (Bands

01, 09, and 10)

Since the spatial resolution for the different bands vary between 10, 20

and 60, these raster sizes allows us get the same size for each set of im-

age in actual metres, which is 780m2. These images are produced by

using the Geospatial Data Abstraction Library (GDAL) Python wrapper,

outputting GeoTiff files. For this work we will be using both uint16 and

float32, especially as float32 is better suited for deep learning later on in

the work. This gives us rasters where each pixel value is represented by

an unsigned integer value with a range of 0-65535 in the case of uint16.

Each raster is originally greyscale, so these pixel values represents the in-

tensity of the pixel, where higher equals brighter.

Figure 3.2 shows a 78 × 78px cutout produced with this method. The

image is shown using a colormap (As it is originally greyscale), where

brighter colors indicate higher intensity values:
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Figure 3.2: Example of a 78x78px cutout produced by translating the lat/long co-
ordinates of the ship to raster x/y coordinates. Image is shown using a colormap
where brighter equals higher intensity.

3.2 Fuzzy logic reasoning

With isolated pictures of ships, we can begin engineering a solution to

test whether a ship is obscured by a cloud or not. Firstly we need to find

a threshold for when a pixel should be considered a cloud. This value var-

ies slightly based on what band we’re currently processing. As previously

seen, dense clouds are characterised by a high reflectance in the blue

band (band 2), so band 2 will theoretically yield a bigger difference in val-

ues between cloud pixels and non-cloud pixels. By calculating the aver-

age value of pre-determined pixels we know to be dense, opaque clouds,

it averages out to a value of roughly 1400 (uint16), or 5.0 for float32. We

can use this value as a starting threshold for cloud cutoff, but different

values can be used when testing for accuracy.

We can utilize the other bands to filter out false-positive pixels that ex-

ceed this threshold. Urban cityscape and certain vegetation near shore

can be highly reflectant in all bands, and as such can negatively impact

the calculation. To help minimize these potentially falsely identified pixels,
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we can use a combination of the SWIR (band 10 through 11) and NIR

(Near-Infrared band 8) bands. The NIR band will yield considerably higher

values for land and vegetation than the blue band, so we will disregard

pixels that have considerably higher reflectance in the NIR band than in

the blue band as this in most cases indicate land cover.

We can also apply this filtering technique with the 20m SWIR bands. As

SWIR bands will reflect off high-altitude clouds, high SWIR will be indic-

ative of higher-altitude clouds, thus pixels that exceeds both the SWIR

and dense cloud threshold can safely be assumed to be clouds [16]. It

is important to set conservative thresholds for the SWIR and NIR bands,

as we don’t want to potentially filter out actually clouded pixels. This fil-

tering should only catch pixels where these properties are clearly distin-

guishable. Thus there may still be cases of falsely identified pixels, such

as in urban areas and shorelines with a lot of unpredictability, but these

extra measures should minimize the potential false-positives.

In order to calculate the cloud coverage of the image, one could simply

iterate over the pixel value and count how many pixels are identified as

clouds. This value can then be compared to a set threshold in order to de-

termine if the image is obscured or not, but this approach raises some in-

teresting questions and obstacles. This output from this approach could

be assumed correct if nearly all the pixels are identified as clouds, but for

lower counts this approach is less reliable. Consider these cases:

• The ship is completely obscured by a small cloud, but the rest of

the image is cloud free, resulting in a low cloud count. The ship

would be falsely marked as unobscured.

• The image has a lot of clouds around the ship, but the ship itself is

unobscured. The ship would be falsely marked as obscured.

One interesting approach may be to simply check if the ship pixel ex-

ceeds the threshold, which would imply that the ship is behind a cloud.
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This will not be sufficient for our work, as slight inaccuracies in the co-

ordinates can cause the point to drift from the actual ship. The ship itself

may also be highly reflectant and may exceed the cloud threshold. As

such it is necessary to check surrounding pixels as wells.

In order to counter this, we need to know roughly where the pixels are in

relation to the ship. We can transform the longitude/latitude coordinates

of the ship into the corresponding pixel in the raster by using GDAL to

map pixel/line coordinates into georeferenced space. This gives us six

coefficients we can use to calculate which pixel the coordinates results

in, thus giving us "ship pixel". We can calculate the distance from each

pixel to the ship pixel by using the Euclidian distance (see appendix B.1),

where a lower number equals closer to the ship.

With a spatial reference we can begin to calculate a score for each pixel

exceeding the cloud threshold. By using the current pixel value, the cur-

rent distance to the ship pixel and the total distance we can construct a

basic decreasing function:

scor e = i ntensi t y ∗
( a

l n(tot alDi st ance +1)

)
∗ ln(di st ance +1)+a

where a is a constant, i ntensi t y is the value of the pixel and tot alDi st ance

is the max distance from the ship that a pixel can be.

This function gives us a weighting coefficient that decreases from a to

0 non-linearly as the distance increases to tot alDi st ance. We can also

create a further bias by multiplying all pixels within a certain distance

with another weight coefficient, making our decreasing function non-

linear favoring closer pixels. With this weighting function we can lessen

the value of far-away pixels without disregarding them completely which

should result in a more precise result. By summing the resulting intensity

scores, we can then calculate a confidence score for our ship.

Another question that arises is how to determine the threshold for the
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Figure 3.3: A graph of the decreasing function where a = 1 and tot alDi st ance =
5

result. There is no clear-cut answer here and requires testing different

threshold to find the best cutoff for our purposes. We can approximate

different values by creating different models we can run our algorithm

on.

We test the following models:

• Where all pixels within tot alDi st ance are at the threshold value

• Where all pixels within tot alDi st ance have a value greater than

the threshold

• Where half of all the pixels within tot alDi st ance are at the threshold

value

• Where half of all pixels within tot alDi st ance have a varying value

greater than the threshold.

• Where a third of all pixels within tot alDi st ance are at the threshold

value.

As dense, opaque clouds tends to be coherent, the pixels are set relative

to each other as to best simulate real world scenarios. This gives us a
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theoretical upper threshold, as well as some intermediate values. But

due to the nature of the images, values can vary significantly above our

threshold, so we treat these values as starting points. By combining this

with real world examples of clouds, as well as constructed test images,

we can narrow down a suitable threshold value that should hold in most

scenarios.

Comparing our model result with different parameters to clouded 1C im-

ages, we see a correlation between our model with a third of the pixels

at the threshold and actual clouded images. Images with dense, highly

reflectant clouds gives a significantly higher value, but for images with

a moderate amount of cloud cover we see a clear correlation with our

model results. This gives us a baseline value for the threshold.

We test this threshold on a set of constructed test scenarios. By creating

greyscale images with either 16 or 32-bit depth, we can simulate differ-

ent scenarios to see if our threshold is adequate for certain edge-cases.

Some of the results from these simulations can be seen in Figure 3.4 (be-

low).

Figure 3.4: Constructed scenarios correctly identified using the threshold values
uncovered from our experiments. The red dot represents our ship positions, while
the white masks represent clouds.
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3.2.1 Fuzzy logic

Our current solution utilizes a fuzzy logic approach, where there are no

clear-cut true or false values. Pixel values for clouds can differ signific-

antly based on a number of different factors, thus knowing when a pixel

goes from transparent to opaque is not a straight-forward task in most

cases. Problem also arises when defining when a ship is properly ob-

scured, or if it is still visible through the clouds. Thus deciding when

and how a ship is completely obscured is not only hard to decide, but

can also be hard to measure. In our approach exploit these properties by

using pixel values to represent a range between "completely false" and

"completely true", where a higher value represents a higher confidence

that the pixel is opaque and is indeed a cloud pixel. This also enables us

to use distance to further modify the truth values of each pixel.

Our algorithm can be seen as a "Defuzzification" process that aims to

convert these fuzzy problems into crisp logic/boolean logic, in our case

the output values ’true’ or ’false’.

3.2.2 Evaluation

We can test our current implementation and values on a couple of known

images and compare the results. This initial evaluation should show us

how the algorithm works in practice, and if the values from our experi-

ments holds for real images. The implementation returns true if the ship

is obscured, and false if the ship is unobscured. The following tests uses

1 as the constant a for calculating cloud scores:
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First a completely cloud free image:

Figure 3.5: Cloud free image where a = 1 and tot al Di st ance = 20. Correctly
labeled as unobscured (False)

A clouded, obscured ship:

Figure 3.6: Obscured ship image where a = 1 and tot alDi st ance = 20. Correctly
labeled as obscured (True)
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A partially obscured ship/Semi-transparent clouds:

Figure 3.7: Semi-transparent clouds where a = 1 and tot al Di st ance = 20, cor-
rectly labeled as unobscured (False)

For these three known test images, the algorithm is able to correctly identify

the images.

In order to properly evaluate our solution, we can compare our results

with other existing solutions. For this we have chosen to compare with

the 1C cloud mask that accompanies the 1C data product, and a cloud

mask algorithm F-mask [17]. F-mask is one of the more popular cloud-

masking algorithms for Sentinel-2 images, initially developed for Landsat-

8 products, but in the recent years have been developed for use in Sentinel-

2 products as well. Finally we will also compare our solution to the cloud

classification masks from the 2A product.

Since the 1C cloud masks are given as polygons we can check if each

point falls within the polygon or not. This is achieved by using a ray-

casting algorithm, and for this work we’re using the Shapely python im-

plementation of the algorithm.

For F-Mask we need a different approach to judge whether the point con-

stitutes a cloud or not. Since a F-Mask image is composed of pixels values
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ranging from [0-4], where 4 is a cloud pixel, we need to check if the co-

ordinates translate to a pixel of value 4. In order to get a more precise

result we also look at the adjacent pixels, and if all pixels are of value 4,

the point is safely assumed to be within the F-Mask cloud mask.

The comparison is done with several different parameters for our solu-

tion.

Comparison where total distance = 20 and a = 1.0

The following results are from a comparison where our solution looks at

pixels within a distance of 20, with a weight coefficient decreasing non-

linearly from 1 to 0 as the distance increases.

Of the 121 ships, 66 are marked as False (unobscured) and 10 are marked

as True (obscured) by all three solutions. By manually reviewing these

two sets of results, we can see that they are all correctly identified.

This leaves us a data set of 45 ships that have conflicting results between

our solution and the two others. A quick overview shows that the 1C

cloud mask identifies all of the 45 ships as unobscured;False, whereas the

F-Mask cloud mask identifies all the 45 ships as obscured; True.
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By manually reviewing each ship, we get the following results:

• 16 images correctly identified by our algorithm, that F-Mask cloud

mask incorrectly identified (Falsely marked as obscured). Some ex-

amples of these images can be seen in Figure 3.8.

• 27 images correctly identified by our algorithm that the 1C cloud

mask incorrectly identified (Falsely marked as unobscured).

• 2 images with uncertain verdict. These are images where the GPS

error margin makes it difficult to correctly judge the validity of the

results. This is often due to the ships being near shore or at anchor,

and the ship position lands on nearby land cover.

Figure 3.8: Four examples of ships incorrectly identified when using F-Mask cloud
masks.
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Thus, for 119 boats (if we remove the uncertain images), where we know

that 38 ships are obscured by clouds and 81 ships are not obscured:

Results
1C cloud mask F-Mask masks Our method

Obscured ships 10 of 38 correctly
identified

38 of 38 correctly
identified

37 of 38 correctly
identified

Unobscured
ships

81 of 81 correctly
identified

65 of 81 correctly
identified

81 of 81 correctly
identified

Total 91 of 119 in total
(76.47%)

103 of 119 in
total (86.55%)

118 of 119 in
total (99.16%)

Table 3.1: The results of 1c cloud masks, F-Mask cloud masks and our method
when evaluatiing 119 known images with distance = 20 and a = 1.0

Our method has lowest error margin so far, with only one ship that is

incorrectly labeled (Figure 3.9). Examining this image, we can see that

the mislabeling occurs because of the ribbon-like structure and semi-

transparent clouds. This can be remedied by either lowering the threshold

(which may cause other false positives) or further tweak the weighting al-

gorithm.

Figure 3.9: Image incorrectly labeled as unobscured by our solution.
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Comparison with a steep decreasing function where totalDistance =

20.0

The following results are from a comparison where our solution uses an

aggressive cutoff for our decreasing function, highly valuing pixels with a

distance less than 10.

Of the 121 ships, 66 are marked as False (unobscured) and 10 are marked

as True (obscured) by all three solutions. As before, these ships are all

correctly labeled. This leaves us a data set of 45 ships that have conflict-

ing results between our solution and the others.

By manually reviewing each ship, we get the following results:

• 12 images correctly identified by our algorithm, that F-Mask incor-

rectly identified (Falsely marked as obscured).

• 27 images correctly identified by our algorithm that the 1C cloud

mask incorrectly identified (Falsely marked as unobscured).

• 2 images with uncertain verdict.

• 4 images incorrectly identified by our algorithm.

As in the last section, the results for F-Mask and the 1C-mask is the same.

Thus, for 119 boats, where we know that 38 ships are obscured by clouds

and 81 ships are not obscured:

• Our solution: 115 of 119 ships correctly identified. (97.47%).

– Obscured ships: 38 of 38 correctly identified

– Unobscured ships: 77 of 81 correctly identified

With a more aggressive weighting of nearby pixels, we are able to cor-

rectly label all obscured ships, but at the cost of four new incorrectly

labeled images.
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3.2.3 Further testing

We can test this further by doing the same analysis on different sets of

ships, using parameters with the lowest error margin. In order to avoid

overfitting our solution to the set, we can introduce some variety and

randomness by having the ship position be anywhere in the cut image. In

the previous test we have mainly been cutting our images with the ship in

the center, but we can generate some randomness by having multiple cut

images of ships in non-static positions. As seen in figure 3.10, different

positions introduces new information in the image. With this we can test

if our results are deterministic, i.e if all images for a ship have the same

results, or if the results vary depending on the position and information

available. Our new data set consists of 108 new ships, each with 5-10

images with the ship in different positions.

The same algorithm is then applied to each image. In the interest of

avoiding false-positives, a ship and all its images are marked as obscure

if a single of the images is marked as obscured.

For 108 new ships, where only 1 is completely obscured, we get the fol-

lowing:

• 1C cloud mask: 106 of 108 ships correctly identified in total. (98.15%).

– Obscured ships: 0 of 2 correctly identified

– Unobscured ships: 106 of 106 correctly identified

• F-Mask: 102 of 108 ships correctly identified. (94.44%)

– Obscured ships: 2 of 2 correctly identified

– Unobscured ships: 102 of 106 correctly identified

• Our solution: 108 of 108 ships correctly identified. (100%).
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Figure 3.10: Same ship in four different positions

3.2.4 Conclusions

From this we can see that the 1C cloud masks are highly inaccurate and

that F-mask is significantly more accurate. A ship can however be safely

assumed to be obscured if it falls within the 1C masks, as they are con-

siderably more conservative than other solutions. Although F-mask is

highly accurate for most use cases, it is a very computationally expensive

algorithm (With computation time ranging from 10 to 40 minutes de-

pending on the image, cloud cover and hardware), so for our solution

we can both reduce the computational power needed as well as provide

fine-grained accuracy on a ship level. Closer inspection of F-Mask also

shows some interesting results:
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F-Mask sometimes incorrectly masks large, highly reflectant ships as clouds,

as seen in figure 3.11.

Figure 3.11: F-Mask incorrectly masking larger ships

This is the opposite of the properties displayed by 1C, both of which

would be inadequate for our usage.

Our solution proves to be quite effective, with a lower error margin than

both F-mask and 1C cloud masks. With an aggressive weighting of pixels

a short distance from our ship we can in most cases guarantee that a ship

is indeed obscured, and we can guarantee that a ship is not obscured if

there are little to no clouds present in the image.
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3.3 Image Segmentation

In the previous examples we have used a fuzzy logic approach to labeling

images, combining several factors to output a Boolean value based on a

threshold. This method proved to be effective, but relies heavily on chan-

ging factors and initial guesswork. Another popular approach within the

field of computer vision is image segmentation. Image segmentation is

the process of partitioning an image into multiple segments based on

some common characteristic. Using what we learned from our previous

results we can construct an image segmentation algorithm to eliminate

some of the variables and guesswork previously needed. With a seg-

mentation approach we aim to do a binary classification of each pixel,

i.e cloud region pixel or clear pixel.

One of the simplest approaches to this is a threshold-based region-growing

algorithm. Region-growing works by growing outwards from an initial

seed point, incorporating neighbours based on similarity (threshold). When

there are no more similar neighbours to incorporate, the segmentation is

done, and the region is the list of neighbouring pixels that matched the

given criteria.

Algorithm 2 shows the pseudo-code for a simple region growing algorithm

we will base our solution on:
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Algorithm 2: Region Growing Pseudo-code

1 SeedPoi nt ← Initial Seed point
2 Pr ocessed ← Empty list of processed pixels
3 Queue ← Empty queue
4 Queue ← Push seed point
5 Reg i on ← Empty region matrix
6 while Queue 6= Empt y do
7 Pi xel ← Queue.pop()
8 Reg i on ← Push Pi xel
9 foreach Neighbour do

10 if Neighbour ≥ threshold then
11 Reg i on ← Push Nei g hbour
12 if Neighbour not in Processed then
13 Queue ← Push Neighbour
14 end
15 end
16 Pr ocessed ← Push Neighbour
17 end
18 end
19
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The quality and accuracy largely depends on the choice of seed point(s)

and the threshold. With this we have a few different approaches to con-

sider:

• Create a cloud segment by using the brightest pixels as seed point(s).

• Create a clear, non-cloud water segment by using the least bright-

est pixels as seed point(s).

• Use our ship pixel as the initial seed point and grow based on a

cloud threshold.

The first approach to be considered is growing our region from the bright-

est pixels to create a cloud segment. If the ship pixel falls within the

region it would be considered obscured. This method introduces some

problems however: This would indeed work for images with large, uni-

form dense clouds, but as we’ve seen earlier, clouds may take ribbon-like

and scattered forms. The brightest pixels is also not guaranteed to be

clouds, and as such we cant guarantee that the seed point is a cloudy

pixel with our current information.

The second approach is the inverse of our first proposal: Finding clear

pixels and checking if the boat does not fall within the segment. We can

with a high certainty guarantee that the pixel is water, but this method

also sees the same problems. Due to the possibility of scattered clouds

our seed points are not guaranteed to produce accurate segments in all

scenarios. Choosing several seed points a certain distance away from

each other could possibly relieve some of these concerns.

Our final approach involves using the ship pixel as a seed point and grow-

ing a region based on a cloud threshold. This alleviates some of the

problems we’ve encountered in the other methods. Since we just want

to know if the ship is obscured or not, we don’t have to consider the form

of the clouds, and we don’t have the problem of finding appropriate seed

points. The resulting segment will either be the ship itself, due to the
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high reflectancy property most ships exhibit, or a larger segment of the

cloud covering the ship. However, due to the small error margin in the

positional accuracy we cannot in all cases guarantee that our seed point

is the ship itself. In the scenario of the seed point being non-cloud/water

pixel the result will be an empty segment, which will indicate a cloud-

free ship. This may cause false positives in the scenario where the ship is

unobscured, but the reported position drifts to a nearby cloud.

All approaches provides their own specific problems, but using the ship

as the seed point will, except for certain edge-cases, provide the most ac-

curate segments for our use. We can use the threshold values and filter-

ing methods from the previous solution as our threshold method when

generating the segments. This proved highly accurate, and should be a

good fit for our region growing implementation.

For our implementation we will be using 8-connectivity when generating

neighbouring pixels (Figure 3.12). In order to calculate the final result, we

need to compare the size of the mask with a given threshold. Since ships

are usually relatively small, we say that segments consisting of less than

50 pixels are unobscured (false), while any segment exceeding 50 pixels

are obscured (true). Examples of this can be seen in figure 3.13.

Figure 3.12: 4-connectivity and 8-connectivity when generating neighbouring
pixels
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Figure 3.13: Ship segment (left) and a cloud segment (right), where the seed point
is denoted with a red dot.

We do note that this way of calculating the size of the mask is not ideal for

situations where the ship is obscured and near an edge or a corner. This

approach would not work in the case of a ship being covered by the edge

of a cloud appearing from outside the boundaries of the images, as this

could lead to the resulting segment being below the size threshold and

yet be a cloud. These specific cases are not covered in our data set, and

for our work we can eliminate this by mosaicing corresponding images

together to restore information from outside the original image. This

might not be ideal for images where this is not possible, so alternative

ways to validate the resulting mask is a topic for discussion. A further

discussion of this can be found in chapter 4.2.
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3.3.1 Evaluation

To evaluate our segmentation method we will be using the same set of

ships as before:

• Region growing segmentation: 227 of 227 ships correctly identified

in total. (100%).

– Obscured ships: 40 of 40 correctly identified

– Unobscured ships: 187 of 187 correctly identified

Our region growing implementation is able to correctly label all images

in our data set, making it an improvement over our previous method.

The computional time needed for this method is not ideal howerver. De-

pending on hardware, image size and cloud cover, one image can take

upwards of 1 minute to process in a worst case scenario. For cases where

there are little to no clouds, the process is fast. Although this method is

our most accurate so far, it is a trade-off in terms of speed.

3.4 Deep Learning

Our final approach is examining the possibility of a Deep Learning model

for labeling images. There have been a growing interest in the application

of Deep Learning on EO data, especially when it comes to cloud mask-

ing and detection. Due to the unpredictable nature of clouds, we aim

to eliminate any guesswork and unpredictability needed by delegating it

to a deep learning model. Deep learning networks excel in finding pat-

terns and meaning in large data sets, which in theory should make such

an approach more generalizeable than our previous methods. However,

there have been uncovered some limitations to this approach, outlined

in chapter 3.4.1.
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In designing a method for our objective we need to decide on what the

goal of the network is. In order to properly detect where the clouds are in

the image, a standard image classification or object detection approach

would not be sufficient. A promising approach that has been growing in

popularity the recent years is Semantic Segmentation, which is a pixel-

level classification method. Semantic segmentation is the task of clus-

tering parts of image together which belong to the same object class [18].

This method of segmentation should give us fine-grained precision in

the same vein as F-Mask and 1C masks.

The input is an image, and the label is the corresponding mask. Since

our problem is a binary classification problem, our labels will be cloud

masks. The network then trains on the input data and finally produces

an output mask.

Figure 3.14: Difference between segmentation (Middle) and Object Detection
(Right). The semantic segmentation mask is denoted with a pink mask, while
the object detection bounding box is shown with a pink box together with the
identified class.
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3.4.1 Limitations

As of this papers date there exists no publicly available data set of 1C

clouds with corresponding cloud masks. There exists segmentation data

sets for other satellite platforms, such as DSTL[19], Airbus[20] and a Landsat-

8, but none of which are directly applicable to our work. Previous se-

mantic segmentation work has been done on Sentinel-2 2A images, but

the authors found it necessary to create their own training images and

masks by hand [21]. There is work being done on creating a public data

set of manually curated masks, but this is unfortunately not available at

the time of writing [22].

Therefor we find it necessary to generate our own training data and masks.

As previously seen, F-mask is the most accurate masking solution covered

in this work, although prone to falsely labeling pixels as clouds. 1C masks

would be far too conservative for us to use as a mask, as for our training

set we rather want ships to be falsely labeled as obscured rather than in-

troducing falsely labeled unobscured ships.

As the model will only ever be as accurate as the data it trained on, our

best hope for this model is to approximate the F-Mask masks. This even

includes its faults, such as incorrectly labeling pixels, but with a large

enough data set combined with manually ’cleaning’ the data set of es-

pecially inaccurate masks we aim to offset these unfortuante properties

as much as possible.

Since F-Mask is not accurate enough in comparison with our other pro-

posed methods, this method should be seen as a "proof-of-concept", to

prove the viability of such an approach given a large data set of high qual-

ity in future work.



3.4. DEEP LEARNING 49

3.4.2 Data set

For our image input data we will be using 1C images taken from three

different scenes off the coast of Norway. Most CNNs are built with the

expectations of three channel RGB input. Although our data has the pos-

sibility of 13 channels, we will only be using the red, blue and green spec-

tral bands for the sake of simplicity in this work.

For our masks we will be computing the masks on our three scenes us-

ing F-Masks. Since the resulting masks contains 5 different classes (Pixel

values), we need to pre-process our masks to fit with our model. F-Mask

comes with the following pixel classifications:

• 0 = clear land pixel

• 1 = clear water pixel

• 2 = cloud shadow

• 3 = snow

• 4 = cloud

• 255 = no observation

To reduce this to a binary classification mask, we set all pixels with a value

of 4 to 1, and all other pixels to 0, so we have a cloud mask represented

by the value 1.

We utilize a sliding window across both images to produce 128x128 pixel

output images with corresponding masks. It is important that the di-

mensions of the images are even and a power of 2 because of the down-

sampling and upsampling process in our network (Detailed in chapter

3.4.3. Since 1C images are provided with a data type of uint16 (0-65535),

we process each image as they are created by normalizing to [0-255] and

converting the data type to float32. Float is useful for our model because
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of the improved precision, especially when normalizing to the range of

[0-1] in the training process.

As seen earlier in this work, F-mask has the unfortunate property of in-

correctly masking some ships as clouds, which would be greatly detri-

mental to our model accuracy. We correct this by manually cleaning our

data set for these cases, as well as removing sets of images containing

potential noise, such as land cover and urban cityscape. A small amount

of noise could in some situations be advantageous [23], but could in our

case introduce incorrect masks. Therefor we aim to reduce the potential

noise as much as possible.

This leaves us with a data set of around 1000 images. We can apply aug-

mentations to synthetically increase the data set, giving us a theoretical

increase in training images. This not only gives us a larger data set to

work with, but augmenting images will also help our model avoid over-

fitting. For this we will be applying random augmentations with a prob-

ability P for each image during training. Our augmentations are hori-

zontal and vertical flips, and Elastic Transform[24] (illustrated in figure

3.15).

Figure 3.15: Example of elastic transformation in image augmentation [25]



3.4. DEEP LEARNING 51

Figure 3.16: Two examples of training set input images with their corresponding
processed masks

3.4.3 Network architecture

There exists several networks used for semantic segmentation, such as

ResNet, PSPNet and DeepLab, but for our purposes we will be using the

U-net architecture [26]. U-net is shown to work well on segmentation

tasks for EO data [27], as well as being advantageous when dealing with

smaller data sets [28] [26]. U-net was initially developed for segmenta-

tion tasks in biomedical images, but has shown great promise in general

segmentation tasks and is a widely used architecture today.

For our implementation we will be using PyTorch [29].

U-net is a Fully Convolutional Network using an Encoder-Decoder struc-
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ture, meaning it consists only of convolution layers. The max-pooling

layers of a CNN is used for downsampling, which can be seen as an en-

coding process through a stack of pooling and convolutional layers. This

process greatly reduces the size of the image and helps the CNN under-

stand what the features in the image, but trades off spatial information,

i.e where the features are in the image. U-net uses an up-sampling pro-

cess through Transposed Convolution that can be seen as a Decoder pro-

cess, restoring the size and spatial information that was removed during

the encoding phase. An overview of the U-net network architecture is

shown in figure 3.17

The encoding path uses convolution layers and max pooling layers to

halve the size of the image and double the number of feature channels

for each step.

The decoding path consists of convolution layers up-sampling the fea-

ture maps from the encoding phase, halving the number of feature chan-

nels for each step. We also concatenate the feature map from the cor-

responding encoding convolution layer, which are often called the skip

connections or Residual connections. These connections gives the up-

sampling convolutional layers the information needed to undo the max

pool downsampling from the encoding path. Each convolution layer in

the network is followed by a ReLu. For this implementation we will be

using a Leaky ReLu with a leakage factor of 0,01 (Appendix B.3).

The final convolution layer reduces the number of feature channels down

to 1. For this last layer we will be using a Sigmoid activation (Appendix

B.4) resulting in a 128x128 pixel mask with each pixel classified with a

value between [0-1]. These values can be seen as a "cloud probability"

ranging from 0 (no cloud) to 1 (Cloud). The threshold for what values

constitutes a segment can be seen as another hyperparameter. For this

work we will be using 0.5 as the threshold for our cloud segment.

We will also be extending the original U-net paper by including batch
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Figure 3.17: Overview of the general U-net architecture. Skip/residual connec-
tions are shown with a grey arrow.

normalization and a dropout layer in the middle block. Batch normaliz-

ation is a technique where the output from each layers in the network is

normalized using trainable parameters, which is updated for each batch

passing through the network. This is also useful for combating a phe-

nomenon called "Exploding Gradients". This occurs when the layer out-

puts are not normalized, which can cause the difference between the

output and the desired output to grow very large, which can cause sat-

uration in the network when back-propagating the large loss sum.

A dropout layer sets all activations in the layer to zero with a random

probability P of activating each forward pass. Although there are discus-

sions regarding the effectiveness of dropout for convolutional layers, it

has been shown to an effective technique for some CNNs when used on

a deep layer [30] [31] [32].



54 CHAPTER 3. PROPOSED METHODS

Loss function

For our loss function we will be using Binary Cross Entropy (BCE) loss,

which is a good fit for our [0-1] probability values resulting from the Sig-

moid activation. The output from the BCE is a value between [0-1], where

lower equals better. BCE can be simplified as:

L =−y · log(ŷ)

Where y is our prediction and ŷ is the ground truth.

Optimizer

Our choice of optimizer for the network will be Adam, which is shown to

work better than the widely used Stochastic Gradient Descent [33], and

can be seen as a combination of AdaGrad and RMSProp. Adam com-

putes individual adaptive learning rates each parameter during training

and utilizes a Momentum technique to further optimize the parameters.

Momentum is when a small fraction of previous updates in the network

are added to the current step. Repeated updates in one direction will

build up a momentum in that direction, increasing the rate at which the

parameters change. This will give faster convergence to the minimum of

the loss function.

Accuracy

In order to check our model accuracy during the evaluation phase of the

training, we need to include a function to calculate the accuracy of the

output mask on the given validation set. For this we will be using Jaccard

similarity coefficient. Jaccard similarity coefficient calculates the Inter-

section Over Union (IoU) between two sets. Essentially this means that
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we calculate the similarity between our predicted output mask and our

target mask. Jaccard is defined as:

i oU (A,B) = |A∩B |
|A∪B |

Where A and B are the output mask and target mask respectively. This

gives us a value between 0 and 1 that denotes the similarity between the

masks, where higher equals better.

3.4.4 Evaluation

Our training set of roughly ~1000 images will be divided into a test-set

and a validation-set randomly, where the split for each set is 67% and

33% respectively. Each input image is normalized to the range of [0-1],

with a probability of 50% of being applied a random augmentation.

For our Adam optimizer we will be using a low learning rate of 0.0001,

and training will be done over 100 epochs. This will make the training

process take longer until convergence, but should yield more accurate

results. Training will be done with batch sizes of 16 and 32 for compar-

ison.

The results of our training (Shown in figure 3.18) shows some interesting

properties. Although our validation loss converges around ~0.1, the ac-

curacy oscillates after the 10 epoch mark. There could be multiple reas-

ons for this, but it is safe to assume a larger training and validation-set

of good quality could smooth this out. Further tweaking of the different

hyperparameters could also yield a more stable result, such as a lower

training rate, bigger batch sizes and a larger validation set. Our model

does show signs of overtraining after the 60 epochs mark, where train-

ing loss continues to decrease while our validation loss beings to con-

verge. Thus an early stop between 50 and 60 epochs should yield the
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(a) Batch size of 32.

(b) batch size of 16.

Figure 3.18: Training loss (Blue), validation loss (green) and Accuracy (red) for
different batch sizes over 100 epochs.



3.4. DEEP LEARNING 57

best model.

With this model we’re consistently able to get a best accuracy (similarity)

score of ~0.98 on our validation set, with a mean accuracy of ~0.90 for

our epochs. For fine-grained segmentation purposes this might not be

adequate, but for our objective this accuracy should be able to correctly

label most images. Figure 3.19 shows a predicted mask created by our

model compared with the corresponding ground truth mask.

Figure 3.19: Predicted mask shown in yellow (left) and the corresponding ground
truth mask shown in white (right)

To get a better grasp of the actual accuracy of our model in relation to our

objective, we can use our model on the 221 ship images we have used

as validation so far. For this we will be using the same technique as we

did to evaluate F-Mask, looking at adjacent pixels near the ship coordin-

ates.

Since our model is trained on F-Mask masks it is reasonable to assume

that the model will closely follow the same results as F-Mask (90.3% of all

images correctly labeled):

• Semantic Segmentation: 214 of 227 ships correctly identified in

total. (94.27%).
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– Obscured ships: 40 of 40 correctly identified

– Unobscured ships: 174 of 187 correctly identified

Results shows that our segmentation model actually achieves better res-

ults than F-Mask did, by correctly labeling two new ships as unobscured

that F-Mask previously incorrectly labeled as obscured. Upon closer in-

spection we see that this is due to the slight error margin in our model,

causing the masks to contract and be slightly off from the F-Mask masks.

In a way we can see this as the loss in the model actually making the

model an improvement over F-Mask. Example of a previously incorrectly

labeled image is seen in figure 3.20.

Figure 3.20: Image correctly labeled by our segmentation model that was previ-
ously labeled as obscured. Predicted mask is shown in yellow.

Training of the model is a rather time consuming and computationally

expensive process, requiring high-end hardware. However, once the model

is trained, it is exceptionally fast and scales very well with size and cloud

cover percentage. This makes this solution the ideal intersection between

speed and accuracy given a model trained on highly accurate training

data.



Chapter 4

Conclusions, Discussion, and

Recommendations for Further

Work

4.1 Summary and Conclusions

In the introduction we presented three main objectives:

1. Develop different methods for validating and correctly labeling ship

images for use in ship detection.

2. Evaluate and compare the developed solutions.

3. The methods should be fast and optimized for ship level labeling.

In this section we will be summarizing the methods proposed in this

work, compare them and evaluate whether we met our objectives or not.

Over the course of this work we developed three different methods for la-

beling images, each with different approaches to the same problem.

In Chapter 2 we introduced the background theory needed to under-
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stand the work and our motivation. Here we presented the qualities for a

good data set, as well as what defined an accurate label, in correspond-

ence with out sub-objective presented in the introduction: Define what

makes an accurate label.

In Chapter 3 we first narrowed down our problem area to smaller im-

ages containing boats, presenting a data set of cut images containing

boats. This process was in accordance with one of the sub-objectives

introduced in the introduction: Generate images used for developing and

evaluating the methods. By combining the coordinates reported in AIS

messages with the corresponding Sentinel-2 images and extracting ship

images we have also reduced the domain for each method, making them

very fast and optimized in accordance with our third main objective: The

methods should be fast and optimized for ship level labeling. By further

examining the speed and computational time and power needed, we can

safely say that our methods satisfy this objective.

Our first proposed method was a fuzzy logic reasoning approach for la-

beling the ship images. Here we explored the different properties the

clouds exhibited in the different spectral bands as well as experiments

used to determine a cloud probability threshold. During testing we saw

that different parameters impacted had an impact on the results. Using

balanced decreasing function we were able to get an accuracy score of

99.16%, where one obscured ship was falsely labeled as unobscured. By

using a more aggressive weighting of pixels close to the ship our over-

all accuracy dropped to 97.47%, but we were able to correctly label all

obscured ships.

During the evaluation we also saw the different flaws in the existing clouds

masks: F-Mask and 1C cloud masks. Both solutions exhibited oppos-

ite properties: 1C cloud masks were highly inaccurate and conservative,

whereas F-Mask was more accurate but prone to falsely labeling pixels as

clouds.
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Secondly we presented an image segmentation method based on the re-

gion growing algorithm. The goal was to eliminate the guesswork and

more volatile factors utilized in our fuzzy logic approach. By using what

we learned from the previous experiments we had a solid groundwork for

our algorithm, which utilized threshold values and cloud properties pre-

viously uncovered. By choosing to use the ship as our seed point we were

able to eliminate a lot of the guesswork required, as well as making sure

our solution worked optimally despite the volatile and random nature of

clouds. With this method we were able to get an accuracy score of 100%,

which is the best accuracy score in this work.

Lastly we introduced a deep learning method for semantic segmenta-

tion of clouds. The goal with this approach was to completely eliminate

any guesswork by offloading it to a neural network. Through the limit-

ations uncovered we presented a data set based on the F-Mask masks,

which after the analysis proved to not be ideal. The network was built

with a modified U-net architecture, and trained for 100 epochs. Results

showed that the model had a validation loss of ~0.1, and a best validation

accuracy of ~0.98. Evaluating this approach on our data set gave us an

accuracy score of 94.27%, where our model incorrectly labeled 13 ships

as obscured when they were in reality unobscured.

A summary of all the collected results are shown in table 4.1:

Results of all proposed methods
Method Best Accuracy
Fuzzy logic reasoning 99.16%
Image segmentation 100%
Semantic segmentation 94.27%

Table 4.1: Results table
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In conclusion we can see that we have met our first main objective: De-

velop different methods for validating and correctly labeling ship images

for use in ship detection. We have proposed three different methods, all

of which yielded a better labeling accuracy on a ship level than the pre-

existing masking solutions examined in this paper. All methods are vi-

able for use in generating and labeling training set, with Region growing

image segmentation yielding the best results for our objective. There

were some concerns uncovered in regards to images with non-static ship

placements, in which case our fuzzy logic reasoning approach is a good

alternative. For our motivation we do prefer to use parameters yielding

slightly lower overall accuracy, but a high accuracy on obscured ships.

Lastly, our deep learning semantic segmentation approach proved quite

successful, but due to the lack of good training data makes it the inferior

choice at the moment on a pure accuracy level. However, the potential

of this solution in further work is covered in Chapter 4.3.

For our second main objective: Evaluate and compare the developed solu-

tions, we will be presenting a more in-depth discussion around our meth-

ods in Chapter 4.2.

4.2 Discussion

When evaluating our proposed methods we see that the results differ in

terms of mislabeling obscured ships or unobscured ships. As covered

in the background chapter, the quality of the machine learning model

is highly dependant on the quality of the training set. As such it is an

important distinction whether a method is more prone to incorrectly la-

bel obscured ships as unobscured or vica versa. For the purposes of ob-

ject detection, an obscured ship labeled as unobscured will negatively

affect the model. Mislabeling an unobscured ship as obscured would



4.2. DISCUSSION 63

not negatively affect the model (Given that we exclude images marked

as obscure), but rather give a slightly smaller and potentially less varied

training set.

As we saw in the case of the fuzzy logic reasoning method, different para-

meters yielded different results and different mislabeling. It is arguably

a far better choice to minimize the potential of mislabeled images en-

tering our training set than have a larger training with incorrect classi-

fications. A smaller but more accurate data set can easily be augmented

to increase in size, as seen in our semantic segmentation method. The

fuzzy logic approach is also quite dependant on the pixel values present

in the image, as it uses the values to calculate a final score. Seeing how

unpredictable and varied EO data can be, it is perhaps the least stable ap-

proach in our work, and as such should be tested more vigorously with

more varied data in order to properly determine the long-term potential

of this approach.

The Region growing algorithm is not dependant on as many variables,

only a binary understanding of the pixels in terms of the pixel exceed-

ing the threshold or not. Region growing image segmentation also faced

some theoretical limitations in the case of ships appearing near the edges

or corners of the image while being obscured by a cloud appearing from

outside the borders of the image. This is due to the way we both gener-

ate the cloud segment as well as how we calculate the mask size. Seeing

as machine learning models greatly benefit from variation in the train-

ing set, it is likely that we want to use our proposed methods to label

images with ships in random, non-static positions. Although we did not

manage to test our methods on an edge case described here, it is im-

portant to discuss the potential that it could happen. One approach to

tackling this problem is a more sophisticated way of calculating and veri-

fying the resulting cloud segment. A potential solution would be to not

only look at the size in terms of the number of pixels in the segment, but

looking at the shape and placement as well. If the segment is localized
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near a corner or edge and the shape indicates extending outside image,

it could signal that it is a cloud appearing from outside the boundaries of

the current image. Another solution would be to cut the image slightly

larger, with the ship in center. After labeling the image with the region

growing algorithm, one could proceed to cut the image into smaller sub-

images. This ensures that all the resulting sub-images are indeed cor-

rectly labeled.

The error margin in the positional accuracy of the ships is also another

point of potential concern. Timestamp from the AIS message and the

timestamp of the Sentinel-2 data product will not necessarily line up

perfectly, which can cause further positional drift. Inaccurate coordin-

ates can cause problems in certain edge cases, where the state of the ac-

tual ship position differs from the reported position. It is, however, pos-

sible to account for this drift by extrapolating the actual position using

the direction the ship is headed together with the speed and timestamp

[34].

For our semantic segmentation model U-net showed great potential, achiev-

ing good accuracy and a low loss. Although the training set was not

ideal, the network architecture shows great potential for further work.

Our augmentation techniques also helped greatly in reducing overfit-

ting, and made the model generalize better, which is a good sign that

the task of cloud segmentation is possible without an unrealistic data

set size. This method also shows promise not only in image labeling,

but could be extended to work on a scene level (i.e segmenting whole

Sentinel-2 scenes). Although processing whole scenes during training is

unrealistic due to memory and hardware constraints, using these smaller

images could very well train a model to work on any 1C scene. Extend-

ing this method should not be any different than our existing approach,

and shows great potential for use in general cloud segmentation on EO-

data. Extending the model further we could also introduce multiclass

segmentation, allowing our model to not only classify cloud pixels, but
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vegetation, snow and more.

In conclusion, our region growing approach is currently the optimal method

for automatic labeling for use in ship detection. Fuzzy logic reasoning is

a viable approach when used with the correct parameters, but the trial-

and-error that is potentially required for this to reach the desired accur-

acy makes this method the least desirable method for automatic ship la-

beling.

The U-net architecture and deep learning approach shows great poten-

tial for our objective, as well as in a broader EO-context, and is the logical

continuation of our work.

4.3 Recommendations for Further Work

For our objective in labeling ship images, we have found our work to be

satisfactory, but our semantic segmentation model shows potential for

further improvements on both labeling and general cloud segmentation.

In this section we will cover what we recommend for further work within

this topic.

4.3.1 Improved data set for semantic segmentation

The biggest bottleneck for our segmentation model is the quality and

availability of the data set needed to train our model. As previously men-

tioned there is work being done on curating such a data set which would

be a perfect fit for our purposes. Alternatively, manually masking images

would also be a good alternative, albeit a time-consuming and arduous

task. Our method is only concerned with images over water, so a bigger,

more diverse data set could easily be introduced to expand the domain

of the model as well.
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4.3.2 Extending the labeling problem further

In this work we have only focused on clouds as the main concern when

labeling images for use in machine learning. However, there are other

factors that could affect the image, causing it to not be viable as training

images when detecting ships. This main area of interest for further work

would be cloud shadows. Large, opaque clouds can cause shadows to

completely obscure ships in worse-case scenarios. For further work we

recommend extending the proposed solutions to also take into account

the expected reflectance of the ship. If missing, and the area is found to

be of low luminous intensity, the ship could be marked as obscured. For

our deep learning model incorporating the cloud shadow mask and ex-

tending the model past a binary classification is the recommended next

step for this goal.

4.3.3 Further extending the U-net architecture

A logical next step to further increase the accuracy of our semantic seg-

mentation model would be to extend the U-net architecture to accept

more bands for each input-image. For each image we have upwards of

13 spectral bands for our disposal all of which could further help the

network infer the cloud masks. A closer analysis on what combination

of bands yields the best result should be the first step, after which the

network can be modified to accept input-images with multiple channels

past RGB.



Appendix A

Acronyms

AIS Automatic Identification System

ANN Artifical Neural Network

BCE Binary Cross Entropy

CNN Convolutional Neural Network

DAG Directed Acyclic Graph

EO Earth Obersveration

ESA European Space Agency

GDAL Geospatial Data Abstraction Library

GML Geographic Markup Language

IoU Intersection Over Union

ReLu Rectified Linear Unit

TOA Top-Of-Atmosphere
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Appendix B

Formulas and functions

B.1 Euclidian Distance

The distance between two points in the plane with coordinates (x, y) and

(a, b) is given by: di st ((x, y), (a,b)) =√
(x −a)2 + (y −b)2

B.2 Max pooling

Max pooling defines a N xN matrix that slides across the image, selecting

the max value from each submatrix in the window.

Figure B.1: Max pooling operation with a 2x2 filter with stride = 2
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B.3 Leaky ReLu

A leaky ReLu is a Rectified Linear Unit with a small negative slope for

values below 0.

Figure B.2: Leaky ReLu function

B.4 Sigmoid

A sigmoid function is defined by the formula: S(x) = 1

1+e−x
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