
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Oscar Thån Conrad

Database Solutions to Sports
Applications

A Comparison and Performance Test of Graph
Databases and Relational Databases

Master’s thesis in Master of Informatics
Supervisor: Svein Erik Bratsberg

June 2019

Oscar Thån Conrad

Database Solutions to Sports
Applications

A Comparison and Performance Test of Graph
Databases and Relational Databases

Master’s thesis in Master of Informatics
Supervisor: Svein Erik Bratsberg
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Summary

The amount of data generated today is enormous. It is estimated that we generate 2,5
billion gigabytes of data every day. As a result of this, new trends in data analysis
have emerged along with new methods and technologies within data storage, processing,
management, search and visualization. Sports is a field that is known to use data analysis in
order to improve athletes’ performance and to analyze competitors. In addition, bookmakers
rely heavily on data analysis to predict results and provide betting odds.

In this thesis, we developed an application that analyzes sports data provided by an external
API. The data retrieved from the API is stored in two different databases, a graph database
and a relational database. The application is then used to determine which database
technology performs best for the given use case of analyzing sports data. For the graph
database we used Neo4j and for the relational database we used MySQL by Oracle.

Our results suggest that relational databases perform better for small datasets, but as soon
as the number of records surpasses a certain size, graph databases perform better. For our
experiments, that size was approximately 1670 records. That size will differ depending
upon the exact structure of the dataset, but our conclusion is that for larger datasets, there
will be a performance advantage in storing the data in a graph database rather than in a
relational database for our kind of data analysis.

i

ii

Sammendrag

Hver eneste dag genereres det enorme mengder data. Det estimeres at vi genererer 2.5
milliarder gigabyte med data hver eneste dag. Det har resultert i at en ny trend har
utviklet seg, en trend som har brakt med seg nye metoder og teknologier innen lagring,
prosessering, søk og visualisering av data. Idrett er et felt som har tatt i bruk mange av
disse metodene og teknologiene. I dag brukes de blant annet til å forbedre en idrettsutøvers
ytelse og til å analysere motstandere. En annen bransje som også har tatt i bruk disse
metodene er pengespillbransjen. De bruker datanalyse til å forutse resultater og produsere
odds til idrettsarrangement.

I denne avhandlingen utvikler vi en applikasjon som analyserer sportsdata levert av et
eksternt API. Dataen hentes fra API-et og lagres i to forskjellige databaser, en grafdatabase
og en relasjonsdatabase. Applikasjonen benyttes så til å undersøke hvilken database som
egner seg best til analyse av denne type data. Vi benyttet oss av grafdatabasen til Neo4j og
Oracle sin relasjonsdatabase MySQL.

Resultatene våre indikerer at relasjonsdatabaser yter bedre for små datamengder, men
ettersom antall poster passerer en viss størrelse, vil en grafdatabase yte bedre. Under
våre forsøk gikk den grensen ved cirka 1670 poster. Denne grensen vil endre seg avhengig
av datasettet sin struktur, men vår konklusjon er at det vil være en ytelsesmessing fordel å
lagre dataen i en grafdatabase, i stedet for en relasjonsdatabase for vår type datanalyse.

iii

iv

Preface

This thesis was written at the Department of Computer and Information Science (IDI) at
the Norwegian University of Science and Technology (NTNU) in Trondheim, in collaboration
with the technology firm Sportradar AG. The research was conducted by Oscar Thån
Conrad, under the supervision of Professor Svein Erik Bratsberg. It is assumed that the
reader has a basic knowledge of database systems, algorithms, and data structures when
reading this thesis.

The project was designed as a performance and usability test of two database management
systems, Neo4j’s graph database and Oracle’s relational database MySQL. Both databases
were populated with sports data from the English top division in soccer, the Premier
League. Sportradar AG provided us with all the data through their developer APIs.

I would like to thank Svein Erik for his guidance and valuable feedback throughout the
year. In addition, I would like to thank my father Mark Allan Conrad for being a valuable
discussion partner and for helping me improve my work by proofreading and solving
linguistic challenges. Lastly, I would like to thank Sportradar for providing me with data,
by giving me access to their developer API.

v

vi

Table of Contents

Summary i

Sammendrag iii

Preface v

Table of Contents ix

List of Tables xi

List of Figures xiii

List of Listings xv

Abbreviations xvi

1 Introduction 1
1.1 Project Description . 1
1.2 Background . 1
1.3 Motivation . 2

1.3.1 Extended Friends Experiment 3
1.4 Personal Motivation . 3
1.5 Sportradar AG . 4
1.6 Scope . 4
1.7 Research Strategy . 5
1.8 Structure . 6

2 Related Work 9
2.1 World Cup As a Graph . 9

2.1.1 The World Cup Graph Domain Model 10
2.2 Medhi’s Study . 10

vii

2.3 Import Time . 11

3 Background 15
3.1 Application Programming Interface . 15

3.1.1 Sportradar Developer API . 15
3.2 Graph . 17

3.2.1 Use Cases . 17
3.3 Graph Storage . 19
3.4 Neo4j . 19

3.4.1 Choosing Neo4j . 19
3.4.2 The Property Graph Model . 20
3.4.3 Neo4j Browser . 20
3.4.4 Cypher . 21
3.4.5 APOC . 22

3.5 Alternative Graph Database Management Systems 22
3.5.1 Amazon Neptune . 23
3.5.2 OrientDB . 23
3.5.3 ArangoDB . 23

3.6 Oracle . 24
3.6.1 MySQL . 24
3.6.2 Structured Query Language . 24
3.6.3 Support . 25
3.6.4 Choosing MySQL . 25
3.6.5 InnoDB . 25
3.6.6 B+-Tree . 26
3.6.7 MySQL Workbench . 26

3.7 Python . 27
3.8 Premier League . 27

4 Design & Implementation 29
4.1 Approach . 29
4.2 Database Design . 32
4.3 Neo4j Graph Database . 36

4.3.1 Neo4j Driver . 39
4.3.2 Neo4j Configuration . 39

4.4 MySQL Relational Database . 39
4.4.1 Design . 39
4.4.2 MySQL Server . 41
4.4.3 MySQL Workbench . 41

4.5 Data Mapper Application . 41
4.5.1 Neo4j Data Mapper . 42
4.5.2 MySQL Data Mapper . 42
4.5.3 Data Aggregation . 43

4.6 Hardware . 45

5 Results & Discussion 47

viii

5.1 Expectations . 47
5.2 Results . 47

5.2.1 Execution Time Neo4j . 48
5.2.2 Execution Time MySQL . 49

5.3 Analysis . 50
5.3.1 Single Match . 50
5.3.2 Team Season . 51
5.3.3 Complete Season . 52

5.4 Discussion . 52
5.4.1 Response time . 53

5.5 Database Querying . 56
5.5.1 Query Performance . 57

5.6 Visualization . 58
5.7 Data Import . 60
5.8 Data Model . 61

6 Conclusion & Future Work 63
6.1 Conclusion . 64
6.2 Future work . 66

6.2.1 Hardware & Architecture . 66
6.2.2 Memory Consumption . 66
6.2.3 Import time . 66
6.2.4 Different dataset . 67
6.2.5 Mitigate Cold Start . 67

6.3 Threats to Validity & Limitations . 67
6.4 Contribution . 67

Bibliography 69

Appendix 75

ix

x

List of Tables

1.1 Results in seconds from extended friends experiment 3

2.1 Execution time for different queries based on database and size of database 11

5.1 Execution times for Neo4j database in seconds 48
5.2 Neo4j test case results in seconds . 49
5.3 Execution times for MySQL database in seconds 49
5.4 MySQL test case results in seconds . 50
5.5 Results for Neo4j un-optimized Neo4j queries in seconds 58

6.1 The median processing time in seconds 65
6.2 The average processing time in seconds 65

xi

xii

List of Figures

1.1 Research process model . 5

2.1 World Cup graph model . 10
2.2 Relational model of dataset . 12
2.3 Graph model of dataset . 13
2.4 Data import time results . 14

3.1 Sportradar API map . 16
3.2 Graph examples . 17
3.3 Graph use cases . 18
3.4 Property Graph Model . 20
3.5 Relationship between two nodes . 21
3.6 B+-tree example . 26

4.1 System design . 31
4.2 Visualized subset of the graph database 37
4.3 Relational database design . 40
4.4 Output from executing each of the test cases 44

5.1 Graphed results of the first test case . 50
5.2 Graphed results of the second test case 51
5.3 Graphed results of the third test case . 52
5.4 Complete overview of execution times 55
5.5 Returned results from SQL query . 59
5.6 Returned results from Cypher query . 60

xiii

xiv

Listings

3.1 Cypher query used to create graph from Figure 3.5 21
4.1 Result from calling the Tournament List API 32
4.2 Result from calling the Tournament Info API 33
4.3 Result from calling the Tournament Schedule API 34
4.4 Result from calling the Match Timeline API 35
4.5 Query for importing all teams to the graph database 38
4.6 Cypher statement for connecting home teams with matches 38
4.7 Cypher statement for connecting a match with its corresponding events . . 39
4.8 Python function that temporary stores team attributes 40
4.9 Python function that writes each team with attributes to database 41
4.10 Cypher query that returns relevant information for a given matchId 42
4.11 Cypher query that returns name for home and away team for a given matchId 42
4.12 SQL query that returns relevant information for a given matchId 42
4.13 SQL query used to retrieve name of home team 43
5.1 SQL query that returns all offsides that Chelsea have produced on home

ground . 56
5.2 Cypher query that returns all offsides that Chelsea have produced on home

ground . 57
5.3 Un-optimized cypher query not utilizing relationships 57

xv

Abbreviations

ACID = Atomicity, Consistency, Isolation, Durability
API = Application Programming Interface
APOC = Awesome Procedures on Cypher
CAP = Consistency, Availability, Partition, Tolerance
CRUD = Create, Read, Update, Delete
DB = Database
DBTG = Data Base Task Group
GDB = Graph Database
GDBMS = Graph database management system
HTTP = Hypertext Transfer Protocol
I/O = Input/Output
JSON = JavaScript Object Notation
NoSQL = Not Only Structured Query Language
NFL = National Football League
NHL = National Hockey League
RDBMS = Relational database management system
REST = REpresentational State Transfer
RQ = Research Question
SQL = Structured Query Language
XML = Extensible Markup Language

xvi

Chapter 1
Introduction

This chapter introduces the project for this thesis. In addition, this chapter will present
its relevance and context to the research community. Research goals, research questions
are also presented in this chapter, together with a short description of the chosen research
strategy.

1.1 Project Description

This project is a result of a Master’s thesis in Informatics written at the Norwegian University
of Science and Technology in the city of Trondheim. The research was conducted in
cooperation with the technology firm Sportradar AG. The starting point for the project
was the following description drafted by Sportradar AG:

Currently, we host all our sports and betting data in various relational databases.
Google and Facebook have successfully structured a lot of their data as graphs,
and we have seen several other interesting use cases for graph databases.
Graph databases provide a different way of structuring our data that allows
for different kinds of data queries. We would be interested in researching
strategies for structuring sports data as graphs, and if this will allow us to
search and aggregate our sports data.

1.2 Background

A database management system is a system where users can organize, store, and retrieve
data through a computer, and is a way of communicating with a computer’s internal
storage. In the 1950s, the early days of computers, computers were essentially huge

1

Chapter 1. Introduction

calculators, and punch cards were used to store data. Computers were quickly adopted by
people and became available for commercial use. People adapted them to solve real-world
problems, which made the demands regarding data processing and storage to skyrocket. In
1960 the American computer scientist Charles Bachman designed what is known as “The
Integrated Data Store” (IDS), on behalf of General Electric. IDS is considered the world’s
first database management system [16].

By the middle of the 1960s, the development of computers was booming, and many kinds
of databases became available for consumers. Resulting in a wide range of systems
and standards. At the same time, Bachman formed the Database Task Group (DBTG),
which took responsibility for creating a common standard for databases. In 1971 DTBG
presented their new standard called Common Business Oriented Language (COBOL) [16].

COBOL was based on a model known as the network model, which represented data as
different kinds of objects with relations between them. The Network Model was conceived
as a graph and known for being schemaless. Many databases were built on this concept,
and the COBOL standard came to be known as the CODASYL-approach [16].

There is, in many ways, a direct resemblance between the network model and graph
databases as we know them today. However, there is one crucial element that separates the
two. The CODASYL approach is a complex system, which makes it very hard to search
and query data. Graph databases usually have their own query language which makes
these kinds of operations much easier [8].

Due to the CODASYL approach’s failing abilities to search for records, it eventually lost
its popularity. A developer from IBM was not satisfied with the search engine in the
CODASYL approach. Therefore he started to look at alternative ways to manage data.
So in 1970, he published a series of papers describing a different way of constructing a
database and storing data as rows in tables. This evolved into the relational database model
as we know it today [16].

1.3 Motivation

Today, enormous amounts of data are collected. According to Forbes, we produce 2.5
quintillion bytes of data every year. During the last two years, 90% of all measured data in
the world was generated [25]. According to a publication from the advisory firm EY [15],
we will by 2020, generate about 1.7 megabytes of new information every second for every
human being on the planet. Buzz words like ”Big data” are often in found tech-blogs and
other publications, which points to a trend, where enormous amounts of data go through
comprehensive analytic processes.

The relational database model has been around since the 1970s. Relational database
technology has been the choice for most traditional applications that require both data
storage and retrieval. A relational database consists of tables with rows and columns.
These tables can have thousands or even millions of rows, known as records.

2

1.4 Personal Motivation

With these vast amounts of data, both practical and ethical questions arise on how can we
process and take advantage of this? What kind of data management systems can we utilize
in order to process this data, and meet the new demands of analyzing data.

For decades traditional relational database management systems have been used in order
to store and manage data. For a very long time they have worked well, and they have been
rather easy to use and implement. With the massive data we produce today, we expect
more from the data, and we are continually looking for new ways to apply all this data, in
order to find new trends and patterns. For this kind of data processing, traditional RDBMS
may come to short. Processing queries that output the kind of data that we often wish for
today is usually very costly and may require many join operations. Besides, the queries
can be complicated to write and may not very intuitive for people to interpret.

Meanwhile, many other database models and providers have come to the surface. Today,
document, key-value and graph model databases have challenged the traditional relational
database with different properties. A popular database that has emerged is the graph
database Neo4j. Neo4j has grown quickly, and many big corporations have implemented
their database.

1.3.1 Extended Friends Experiment

Partner and Vukotic present a very interesting experiment in their book [63]. The experiment
is known as the extended friends experiment and is widely used to demonstrate the power
of a graph database. The experiment seeks to find friends of friends in a social network,
consisting of 1.000.000 people, where each person has 50 friends. The experiment is done
in four iterations, seeking to find friends of friends in depth one to four. The social network
is modeled as a graph in Neo4j and a relational database in MySQL. The results can be
seen in Table 1.1 and it clearly shows how Neo4j outperforms MySQL for this kind of
query.

Depth MySQL
Execution Time

Neo4j
Execution Time Records returned

2 0,016 0,01 ∼2500
3 20,267 0,168 ∼110.000
4 1543.305 1,359 ∼600.000
5 Unfinished 2,132 ∼800.000

Table 1.1: Results in seconds from extended friends experiment

1.4 Personal Motivation

The authors of this thesis have a great interest in both analyzation and management of
data. The interest increased while completing a bachelor’s degree in informatics prior
to this thesis, which included several subjects within data management and information

3

Chapter 1. Introduction

retrieval. Discovering the extended friends experiment, revealing how powerful a graph
database can be, supplemented to that curiosity. Also, the idea of working together with
a firm, which is world-leading in its area and founded by two earlier computer science
students from NTNU was highly motivating.

The background study, presented in Chapter 2, revealed that the research regarding the
use of graph databases to manage sports data was somewhat limited. Therefore this thesis
will also contribute to the research community within data management, processing and
analyzation.

1.5 Sportradar AG

Sportradar AG hereafter, referred to as Sportradar, is a company founded in Trondheim in
the year of 2000. It all started with two computer science students’ master’s thesis here
at NTNU. Together they designed a high accuracy wrapper that could crawl the web, and
gather betting odds and information from 25 different sports across 300 different online
bookmaking platforms [5].

One of the co-founders of the company had been following different bookmakers’ online
betting platforms. He discovered the fact that the odds to a given sporting event tended
to differ between different betting platforms depending on in which country the odds
were determined. Knowing this, he could predict score results better than most other
bookmakers. Further, he discovered that the different bookmakers tended to provide better
odds for teams that represented their interests. For example, a Spanish bookmaker would
give better odds to Spain’s national soccer team for a given soccer match, than what an
American bookmaker would do. Knowing all this and subsequently making more money
on betting, than what he considered normal. The idea of developing an application that the
rest of the world’s bookmakers could have enormous use of emerged [52].

Today, Sportradar is a leading company providing live sports results, sports statistics, odds,
and sports integrity services. They cover the entire value chain of collecting, processing,
marketing and monitoring of sports-related live data as well as sports-related services.
They consist of about 1700 employees and serve customers in approximately 100 countries
[14].

Sportradar is in partnership with many international sporting federations, for example, the
NHL, NFL and NASCAR and German Bundesliga where they are the leading provider of
sporting statistics. Furthermore, they provide several bookmakers like Bet365, Ladbrokes,
Svenska Spel and Norsk Tipping with betting services [55] [59].

1.6 Scope

Based on the description above, the goal of this research was to investigate how sports
data from Sportradar performed when structured in a graph database. Since this was a

4

1.7 Research Strategy

comprehensive problem, we had to narrow down our scope, in order to make the research
feasible. One of the sports that Sportradar had excellent data coverage for was soccer, and
especially the English Premier League. In combination with good data coverage and the
fact that many people have a relationship with soccer, we chose to use that as our domain
for our research. Therefore we developed out a pair of research questions with the purpose
of supporting the overall goal. The research questions were as follows:

• RQ1: Identify a use case which is representative for the data and applications of
Sportradar.

• RQ2: How does the Neo4j graph database management system compare against
Oracle’s MySQL relational database management system, in regard to target the
problem?

1.7 Research Strategy

The findings we present in this thesis was a result of planning, implementing and conducting
a research strategy. B. J. Oates [39] presents a model in his book, Figure 1.1 which
highlights important elements of research.

Figure 1.1: Model of research process [39]

Our Research strategy was rooted in this model. We developed our research questions
based on experiences, motivation and previous work. We mainly used quantitative research

5

Chapter 1. Introduction

methods through experiments to generate data for our analysis. However, qualitative
methods were also used in order to assess aspects of a DBMS that are not measurable
by numbers. Babbie, Earl R [3] defines both quantitative and qualitative research methods
as follows:

• Quantitative methods emphasize objective measurements and the statistical,
mathematical, or numerical analysis of data collected through polls,
questionnaires, and surveys, or by manipulating pre-existing statistical
data using computational techniques. Quantitative research focuses on
gathering numerical data and generalizing it across groups of people or
to explain a particular phenomenon

• Qualitative research is a scientific method of observation to gather non-numerical
data. This type of research ”refers to the meanings, concepts definitions,
characteristics, metaphors, symbols, and description of things” and not
to their ”counts or measures.

In our research, we designed two different databases, based on two different technologies,
Neo4j and MySQL. Both databases were populated with identical data, provided by Sportradar.
We collected numerical data by having the databases execute three different test cases each.
Then we analyzed the databases’ performance by comparing and analyzing the execution
times for each of the test cases. The test cases were the same for both databases and
consisted of different kinds of queries. However, they differed in the way that they were
written and customized in order to meet the requirements of both database technologies.
After obtaining results from our database performance testing, they were discussed with
regards to previous related work, presented in Chapter 2. In the discussion, aspects such
as documentation, durability and usability were enlightened.

1.8 Structure

This section presents a list, which in short, describes each chapter and its content.

• Chapter 1 - Introduction introduces the thesis as a whole and presents how this
project came to life. Furthermore, it introduces Sportradar and gives a brief introduction
to the history of databases.

• Chapter 2 - Related Work presents related work and studies which have played an
important role in this research.

• Chapter 3 - Background introduces central concepts within graph databases and
relational databases. The database management systems Neo4j and MySQL are
presented, along with other related tools and technologies.

• Chapter 4 - Design & Implementation delves into how our solution was implemented
step by step. By explaining how the databases import data from Sportradar’s API,
and how our Python scripts and queries interact with the databases.

6

1.8 Structure

• Chapter 5 - Results & Discussion presents all results and findings achieved through
carrying out our different experiments. In addition, results are discussed in light of
previous related work.

• Chapter 6 - Conclusion & Future Work summarizes the thesis, and evaluates how
the project can be improved. Also, it presents advantages and disadvantages with
both MySQL and Neo4j. Lastly, it discusses future work that may verify or discredit
the results achieved through this project.

7

Chapter 1. Introduction

8

Chapter 2
Related Work

Graph database theory has been around for a pretty long time, compared to other computer
science concepts. However, they have only been practiced to a small degree, until recently.
Therefore the amount of relevant research and work within this topic is limited. Nevertheless,
there has been significant research on graph database usage in other domains. Some of it is
relevant to our research and can be adapted for our domain. This chapter will summarize
that literature.

2.1 World Cup As a Graph

During the FIFA Soccer World Cup In 2014, the team behind Neo4j built two different
graph data sets. One based on historic World Cup data, and the other on data from the
2014 World Cup in Brazil. With both databases, they were able to explore the World Cup
data in new and different ways [29].

When graphing the historical data, and later querying the database, the developer team
discovered many interesting findings. Some examples are as following:

• After losing to France, it took Mexico 82 years to get their revenge. Mexico lost in
1930 and did not beat France until 2012.

• During the tournament in 1954 Hungary met West Germany in the initial round, but
then lost to them in the final.

• The following five players were all drafted to play in the World Cup three times, but
were kept as substitutes and never brought on the field.

– Anthony Seric (Croatia)

– Antonio Juliano (Italy)

9

Chapter 2. Related Work

– Marek Kusto (Poland)

– Borislav Mikhailov (Bulgaria)

– Francisco Urruticoechea (Spain)

This list is an example of things that one can do with graph databases.

2.1.1 The World Cup Graph Domain Model

The Neo4j Team presented a model, Figure 2.1, that shows a subgraph of how they chose
to model one match in the World Cup. With this starting point, the creators had many
possibilities to expand the graph. It may look like as if the green node “Home vs. Away” is
the center of the graph, but actually, it is the beige “World Cup” node that is the center-node
in this example. The creators could have added more “World Cup” nodes, in order to
represent additional World Cups in the graph. By adding the yellow “Round” node, one
can by querying the complete graph, see how countries perform across different world
cups. The orange “Time” node is there in order to discover happenings related to when
teams play their matches [30].

Figure 2.1: Remake of the World Cup graph model by Neo4j [30]

2.2 Medhi’s Study

An Indian study conducted by Medhi at Gauhati University [26] did a comparative analysis
on relational databases and graph databases. The study was rather simple. However, the

10

2.3 Import Time

results were conclusive. Medhi used a dataset based on three different cricket tournaments,
the Test Cricket Tournament, One Day International Tournament (ODI) and the Twenty-Twenty
Tournament (T20). The dataset consisted of all the cricket players’ information, team and
which player had played which matches.

This dataset was modeled in both a relational database and a graph database. For the
relational database MySQL version 5.1.0 was used, and for the graph database Neo4j
version 2.0.3 was used. PHP and Cypher were respectively used as languages to query the
database. A relational database consisting of three tables were then created, based on data
from the dataset. Furthermore, a graph based on the same data was modeled. With the
two different databases containing the exact same data. They executed the three following
queries:

• Find the names of the teams.

• Find the names of the cricketers who have played in both the One Day International
Tournament and the Test Tournament.

• Find the Cricket players who belong to team India.

These the queries were executed three times each. During each iteration the databases were
modified to respectively contain 100, 300 and 400 objects. The results of these queries can
be seen in Table 2.1:

No. of
objects

Query 1
MySQL

Query 1
Neo4j

Query 2
MySQL

Query 2
Neo4j

Query 3
MySQL

Query 3
Neo4j

100 12.56ms 5ms 18.52ms 7.32ms 15.75ms 6ms
300 153ms 7ms 212.53ms 13ms 180.24ms 9.32ms
400 164.43ms 8.32ms 387.34ms 15.67ms 302.44ms 13.32ms

Table 2.1: Execution time for different queries based on database and size of database

As Table 2.1 shows, there were significant differences in the time it took to execute the
above queries. As the size of the dataset increased, the execution time increased at a much
faster rate with the MySQL database than with the Neo4j database. The study concluded
that the graph database performed much better than the relational database concerning
time. Also, it added that it was easier to model, maintain and expand the graph database
due to the high connectivity of the data.

2.3 Import Time

Many studies have been conducted that assess the pros and cons of both graph databases
and relational databases. A study [45] published in August 2018 compares the architectural
structure between Neo4j, MySQL and the NoSQL database MongoDB. In this study, they
focus on how the different databases perform while importing data. They performed
an experiment using a dataset containing details on vehicle transactions between a car

11

Chapter 2. Related Work

dealership and their customers, consisting of about 100.000 records. The dataset had the
following structure:

• transaction id

• counter id

• branch id

• date of transaction

• hour

• high level territory

• staff id

• product id

• payment amount

• bea admin

• cust id

• name

Before the dataset was imported, it was restructured into the respective schemas according
to the database’s requirements. For the relational database, the dataset was modeled into
seven tables, containing six foreign-key relationships between them. Six tables contained
actual data, while the last table only contained links between the different entities in the
model, as shown in Figure 2.3.

Figure 2.2: Relational model of dataset

12

2.3 Import Time

Figure 2.3 shows how the graph database was modeled. By using six different nodes that
represented the data, and seven different connections, that represented the relationships
between the nodes.

Figure 2.3: Graph model of dataset

During this experiment, they imported parts of the dataset at the time. They tested the
different databases’ abilities to import datasets containing 10.000, 30.000, 60.000, and
100.000 records. Figure 2.4 shows how the databases performed concerning time.

13

Chapter 2. Related Work

Figure 2.4: Data import time results adopted from [45]

From Pandey’s study [45] we saw that the size of the dataset that was imported, affected
how the different databases performed. We also noticed that MongoDB and Neo4j performed
almost constant, only decreasing in performance with a few milliseconds as the dataset
grew. On the other side, we found MySQL, when the dataset was smaller than 20.000
records, MySQL performed better than Neo4j, with regard to import time. Lastly, we
observed that data import time grew close to exponentially as the dataset increased in size.

14

Chapter 3
Background

This chapter introduces central concepts related to graphs, graph theory and graph databases.
In addition, other graph database management systems will be introduced to better evaluate
and compare Neo4j against other providers of graph databases. Furthermore, this chapter
will present one of Neo4j’s biggest competitors, Oracle with its database management
system MySQL, and relevant theory behind it. As graph database theory is a newer and
less known concept than relational database theory, the focus in this chapter will mainly
be on graph database theory.

3.1 Application Programming Interface

An Application Programming Interface (API) allows software applications to communicate
with one another. It is a well defined set of functions and procedures that allow one
application to interface with another [54]. Commonly used is the Web-API that uses
RESTful methods, meaning that it uses HTTP requests to GET, PUT, POST and DELETE
data. Communication is done via a defined request–response message system, that can be
publicly available or restricted to certain users. The response from the endpoints is usually
expressed in either JSON or XML. Developers typically build applications based on the
data returned by calling the different endpoints [6].

3.1.1 Sportradar Developer API

The API developed by Sportradar delivers enormous amounts of data in both JSON format
and XML format. It is Sportradar’s main product, and their customers have to purchase
a subscription in order to use the API. With the API, users can access sports statistics
feeds, which contain vast amounts of data for different leagues, conferences, teams, games,

15

Chapter 3. Background

and players in their database. The API uses RESTful methods, making it possible for
developers to integrate Sportradar’s services directly into their application.

With regard to soccer, Sportradar covers almost all leagues and tournaments. Big leagues
such as the Premier League is broader covered than less popular leagues such as the highest
Norwegian league Eliteserien. Figure 3.1 is a mapping of the Soccer API that shows how
all the different soccer APIs are connected and what kind of data they return.

Figure 3.1: API map from Sportradar [56]

16

3.2 Graph

3.2 Graph

A graph is a way of representing a collection of vertices and edges and how they are
connected to each other. Graph theory is the study of mathematical objects known as
graphs, which consist of vertices (or nodes) connected by edges [10]. Figure 3.2a shows a
simple graph where the vertices are the numbered circles, and the edges join the vertices.

(a) Undirected graph (b) Directed graph

Figure 3.2: Graph examples

Edges in a graph are either directed as the edges are in Figure 3.2b or undirected as the
edges are in Figure 3.2a. An edge (u, v) is directed from u to v if the pair (u, v) is ordered,
with u preceding v. If all the edges in a graph are undirected, then the graph is undirected,
and directed if all the edges are directed. Both graphs can also be weighted, which means
that edges can be assigned either with a positive or negative value. Graphs are typically
visualized by drawing the vertices as ovals or rectangles and the edges as segments or
curves connecting pairs of ovals and rectangles. An undirected graph can be converted
into a directed graph by replacing every undirected edge with a directed edge. It is often
useful to keep undirected and mixed graphs represented as they are, for such graphs have
several properties that can have different areas of use [20].

3.2.1 Use Cases

There is a wide range of real-world scenarios that can be modeled using graphs. Graph
theory is used to model problems such as government administration, different fields
within science, business strategies and social networks [50]. Figure 3.3 illustrates four
different use cases, where graphs are used to model real-world scenarios.

17

Chapter 3. Background

(a) Social network graph derived from [23]
(b) Fraud detection graph derived from [49]

(c) Recommendation System graph derived from
[64] (d) Insurance Fraud graph derived from [49]

Figure 3.3: Graph use cases

There is a wide range of well-developed graph algorithms that perform many kinds of
graph operations such as clustering, pattern matching, shortest path calculations, depth
search and other graphing functions. Some well-known examples are the following:

• Depth & Breadth First Search: A simple search algorithm used to find the shortest
path from one node to another. Depth first search begins by inspecting the deepest
nodes first. Breadth first search begins with inspecting the closest node first [7].

• Belleman-Ford: An algorithm used to find the shortest path to all other nodes from
a given starting point. Used in graphs that have negatively weighted edges [17].

• Dijkstra: Algorithm used to find the shortest path between two nodes in a network
with weighted edges [24].

• K-means: A clustering algorithm used to discover underlying patterns by grouping
similar data points together [19].

18

3.3 Graph Storage

3.3 Graph Storage

The term “Graph Storage” refers to the internal graph database structure, and how the data
storage is actually implemented. Different systems use different ways of storing graphs.
However, systems built specifically for storing graph data are called native graph storage.
Native graph storage means that the system is optimized for graphs in every aspect, and
considerations for other aspects may be down-prioritized [9]. A native graph storage
enables traversal of connected nodes in constant time. It makes it possible to traverse,
for example, a dataset consisting of one billion nodes, just as fast as a one million node
dataset.

In order to achieve native storage, graph databases utilize an architecture known as
“index-free adjacency”, which is designed explicitly for graph databases. “Index-free
adjacency” means that a data element is directly connected and points to another data
element or relationship. This makes lookups extremely fast because there is no need to
look up and follow index pointers [21].

The term non-native storage is used for systems where other sources handle how the graph
is stored. If a relational or a different kind of NoSQL database has to store a graph, nodes
and relationships may end up being placed far from each other, and performance will be
drastically affected [9].

3.4 Neo4j

Neo4j is a native graph database management system written in Java and Scala, developed
by Neo4j. Inc. The development of the system began in 2003 and was released for
commercial use in 2007. Neo4j is an open-source, NoSQL, native graph database. The
source code can be found on GitHub1, and the service can also be used through a user-friendly
desktop application. Neo4j is available in two different versions, a community edition
and an enterprise edition. The enterprise edition includes all the same features as the
community edition, but it also includes services to back up data and features clustering and
failover abilities. Today, Neo4j is used by many big corporations, for example, Telenor,
Nettbus(Vy), Volvo, Walmart, eBay, IBM and Microsoft [33].

3.4.1 Choosing Neo4j

The rationale behind choosing Neo4j as service for this project was mostly because Sportradar
already used Neo4j for parts of their data. Furthermore, Neo4j is one of the most used
graph database management systems. Naturally, there exists more documentation for
Neo4j compared to other graph databases. The research and use of graph databases are
quite limited; therefore choosing a well-known provider was important.

1https://github.com/neo4j/neo4j

19

https://github.com/neo4j/neo4j

Chapter 3. Background

Community

Neo4j has a large online community with more than one thousand users. The community
consists of a global forum for online discussion on how graphs work. Furthermore, Neo4j
has its own workspace on Slack2; “neo4j-users.slack.com” where users can register. Today
there are 10.000 active users on Neo4j’s Slack. Both the forum and the workspace on Slack
are two reliable sources to explore when looking for documentation and answers regarding
Neo4j.

3.4.2 The Property Graph Model

Neo4j has its own unique object model, called The Property Graph Model, which describes
how its system works in terms of objects, classes and the relationships between them. It
is shown in Figure 3.4. The Property Graph Model organizes data as nodes, relationships
and properties. Nodes and relationships are the graph’s vertices and edges. Properties are
various kinds of information that are stored on both the nodes and the relationships [36].

Figure 3.4: Property Graph Model by Neo4j [36]

3.4.3 Neo4j Browser

The Neo4j Browser is Neo4j’s graphical user interface. The browser is easy to use and
can be run through the web browser. With the Neo4j Browser, users can query, visualize,
administer and monitor a graph database.

2https://slack.com

20

https://slack.com

3.4 Neo4j

3.4.4 Cypher

Cypher is Neo4j’s own query language created for describing visual patterns in graphs. It
is a declarative language and is highly inspired by SQL. Cypher supports the use of all
CRUD-operations on a graph without having to explicitly describe how to do it. CRUD
stands for create, read, update and delete, and together they make up the basic operations of
a database. As mentioned earlier in this chapter, a graph consists of nodes and relationships.
Both nodes and relationships can have additional info known as labels. Figure 3.5 shows
a simple graph containing two nodes and one relationship. Cypher makes it possible to
ask and answer complex questions on datasets by lay or application users and not just
developers [31].

Figure 3.5: Relationship between two nodes

Cypher’s syntax is quite simple. Nodes are enclosed by parentheses, “(node)”, relationships
by straight brackets, “[relationship]” and properties by curly brackets, “{property}”. The
relationships must be directed, meaning they have to point from one node to another.
Arrows such as “->” and “<-” are used to indicate the direction of the relationship. Listing
3.1 shows how the graph in Figure 3.5 can be created.

1 CREATE(:John{name:"John Doe"})
2 -[:LIKES]->(:Julie{name:"Julie Doe"})

Listing 3.1: Cypher query used to create graph from Figure 3.5

The CREATE statement above displays a query that can be used to create the graph shown
in Figure 3.5. The graph contains two kinds of nodes (:John) and (:Julie). Each
node has been given the property name which is respectively set to “John Doe” and “Julie
Doe”. The node types are used for accessing and referencing the nodes. For example,
we can use MATCH(person:John), which gives all nodes of type (:John) the label
person. Then we can use RETURN person.name to access John Doe’s full name.
If the graph contained other nodes of the type (:John) representing different Johns, it
would also return their full names.

21

Chapter 3. Background

3.4.5 APOC

APOC stands for Awesome Procedures on Cypher and is a utility library for Neo4j based
on Cypher. It contains more than 450 different functions and procedures for different kinds
of tasks including:

• Graph algorithms

• Metadata

• Manual indexes and relationship indexes

• Full-text search

• Integration with other databases like MongoDB, ElasticSearch, Cassandra and relational
databases

• Loading of XML and JSON from APIs and files

• Collection and map utilities

• Date and time functions

• String and text functions

• Import and export

• Concurrent and batched Cypher execution

• Spatial functions

• Path expansion

Today, APOC is the largest literary developed for Neo4j. Before APOC was implemented,
developers had to write their own methods for all the functions and procedures mentioned
above, and the result was a lot of duplicated and poor quality code [22]. APOC made
it possible for developers to only focus on writing business-logic and use-case specific
code without having to deal with platform limitations. All functions and procedures are
well-supported and easy to use by themselves, or in combination with other methods [37].

3.5 Alternative Graph Database Management Systems

There are many providers of graph database management systems out on the market.
Some are open source, and public licensed and others are commercially licensed. The
next following sections will present a few other alternatives to Neo4j.

22

3.5 Alternative Graph Database Management Systems

3.5.1 Amazon Neptune

Amazon Neptune3 is a commercially licensed cloud-based GDBMS, and it is one of the
biggest providers of graph databases on the commercial market. Amazon released it 2017
so that users could create sophisticated, interactive graph applications that could query
billions of relationships with minimum latency. Amazon Neptune supports a variety of
the most popular graph models and their query languages. Along with complete ACID
compliance, Amazon Neptune is fully managed, which means that users do not have to
worry about database management tasks such as hardware provisioning, software patching,
setup, configuration or backups. All of these tasks are completed automatically [53][61].

Amazon created the database with a high focus on availability, recoverability and durability.
Amazon Neptune supports point-in-time recovery, which means an administrator can roll
back the database to any given timestamp. Continuous backups are made automatically
and stored using Amazon’s S3 cloud storage services. Highly secure and encrypted storage
is also offered using Amazon’s own encryption algorithms [53].

3.5.2 OrientDB

OrientDB is an open source NoSQL database management system, developed by OrientDB
Ltd and released in 2010. The database is a “multi-model” database, which means it
supports various models such as key/value, document, object and graph model. In OrientDB,
all connections between records are managed as relationships as in a graph database.
Orient is written in Java and is designed to perform very fast. With the ability to store
and process 220.000 records per second, it is according to their own website4, the graph
database with the highest performance available [44].

OrientDB comes in two different versions, a free community edition and an enterprise
edition with professional support service. Furthermore, OrientDB has an enormous capacity.
It can store up to 302,231,454,903,657 billion (278) records with the maximum capacity
of 19.807.040.628.566.084 Terabytes of data on a single server or multiple nodes [44].

3.5.3 ArangoDB

ArangoDB is also a native multi-model database developed by ArangoDB Inc. The database
was released in 2011 under the name AvocadoDB, but one year later in, 2012, it was
changed to ArangoDB. On their website5, they market themselves as a GDBMS with a
high focus on search and index algorithms. Natively integrated into ArangoDB, is a C++
based full-text search engine, with included similarity ranking capabilities. This search
engine utilizes two kinds of information retrieval techniques: boolean and generalized
ranking retrieval. It enables ArangoDB to perform complex federated searches over a
whole complex graph [1].

3https://aws.amazon.com/neptune/
4https://orientdb.com
5https://www.arangodb.com

23

https://aws.amazon.com/neptune/
https://orientdb.com
https://www.arangodb.com

Chapter 3. Background

The developers behind ArangoDB have also created a query language, ArangoDB Query
Language (AQL), which is similar to SQL. AQL supports CRUD, aggregations, complex
filter conditions, secondary indexes and real JOIN operations, which makes it possible for
the users to alter their data access strategy just by changing a query [2].

3.6 Oracle

Oracle is a world-leading software company. According to an analysis [47], by the advisory
firm PwC, Oracle was the second-largest software company by revenue in 2014 and is a
global corporation that develops software and applications used for business. The company
is best known for its relational database software. Oracle was founded in 1977 in the
United States in Santa Clara, California. Today, Oracle has its headquarters in Redwood
Shores, California [60]. They have about half a million customers in 173 different countries
and 25.000 partners [40].

3.6.1 MySQL

MySQL is the world’s most popular open source RDBMS [43]. It is based on SQL and can
run on many different platforms including Linux, UNIX and Windows. MySQL is used in
a wide range of applications, both small and large applications, but it is commonly found
in web applications. Originally MySQL was a Swedish product, but was acquired by Sun
Microsystems in 2008, and later taken over by Oracle in 2010. Today, MySQL is used in
many top large scale websites such as Facebook, Google, Twitter and YouTube [51].

MySQL is based on a client-server model. The core of MySQL is a server, which handles
all commands to the database. In order to communicate with the server, one typically
uses a MySQL client to send commands. The client can be downloaded and installed on
most computers today. Originally MySQL was designed to handle large databases quickly.
However, most users only install MySQL on one machine, but the client can be installed
on several machines and the database can be accessed through a broad range of client
interfaces. Through the client, users can send SQL statements to the server and have it
return the results.

3.6.2 Structured Query Language

SQL stands for Structured Query Language, which is the standard programming language
for relational data manipulation and data management. The language was developed in the
early 1970s at IBM by Raymond Boyce and Donald Chamberlin. Today, most RDBMS
support SQL, including MySQL, and it is used to query, insert, update and modify data in
relational databases. In 1979 Oracle adapted SQL and released its own modified version.
Since then, SQL has played an important role in modern database development [38].

24

3.6 Oracle

3.6.3 Support

An important aspect of MySQL is the fact that MySQL can store data across many different
storage engines. Furthermore, MySQL has algorithms for replicating data and partitioning
tables in order to increase performance and durability. Not only is MySQL free to download
and use, but equally important is the fact that Oracle has a large technical support team
focused just on MySQL. Oracle offers direct access to expert MySQL Support engineers
who are capable of helping with development, deployment, and management of MySQL
applications. Support is available 24 hours a day and 365 days a year [28]. Since MySQL
has been around for a decade, a large community around it has emerged. On Stack
Overflow6, one can find over half a million posts that are tagged with MySQL [12].

Through their website7, MySQL provides a broad array of different support and educational
services. Users of MySQL can sign up for comprehensive MySQL training courses, which
educate developers on how to build efficient database solutions. Followed by a certification
program that developers can take in order to prove their knowledge within MySQL.

On the support side, MySQL offers a consulting service, which can assist developers to
optimize or scale an existing solution, or it can be used to get help with setting up a
new project. Lastly, the MySQL technical support team aid developers with their specific
needs, helping them achieve higher levels of performance, reliability, and uptime.

3.6.4 Choosing MySQL

MySQL is the world’s most used database [4]. It is Neo4j biggest competitor, and it is also
the database that Sportradar primarily uses. Thus it was natural to select it as the relational
database to use for this project.

3.6.5 InnoDB

MySQL 8.0 is powered by InnoDB, a general purpose storage-engine created by Oracle.
Today, InnoDB is the storage-engine used by default in MySQL, unless other configurations
are made. Until December 2010, MySQL was powered by an engine called MyISAM, but
was replaced by InnoDB. InnoDB serves the purpose of balancing high reliability with
high performance within MySQL. In addition, InnoDB follows the standard ACID model,
which features transactions with commit, rollback, and crash-recovery capability in order
to protect user data. Based on primary keys, InnoDB arranges data on disk in order to
optimize queries. This means that each table has a primary key index that is used to
organize data so that the amount I/O lookups for primary keys are reduced [41].

6https://stackoverflow.com/
7https://www.mysql.com/services/

25

https://stackoverflow.com/
https://www.mysql.com/services/

Chapter 3. Background

3.6.6 B+-Tree

InnoDB uses the B+-tree data structure to index data in a MySQL database. A B+-tree
is a self-balancing tree structure that stores records in a sorted manner. The tree consists
of pages located on different levels with links between them. At the top, the root page is
located and at the bottom, the leaf page is located. Pages located between the root level
and the leaf level are referred to as internal pages. The leaf pages are where data is actually
stored. Pages located at the leaf level of the tree may hold complete records in a table, or
they may hold an indexed key pointing to a record located in a different file or tree. Figure
3.6 shows a B+-tree of three levels [11].

Figure 3.6: B+-tree of three levels

A B+-tree is a self-balancing tree, meaning that all branches always have the same depth.
This makes B+-trees particularly efficient for lookups because the depth of the tree limits
the number of reads required to access data. A lookup is done by traversing the tree from
the root level down to the leaf level. At the leaf level, a binary search is used to find
the desired record. For range scans, the same procedure applies, followed by a sideways
traversal of the linked leaf pages [11].

Insertions are handled similarly as lookups. First, a search for the leaf page which should
contain the new key is performed. If the page has room for another key, the key is inserted.
If the page is full before insertion, a page split operation is performed. A page split is an
operation that splits a page into two, making room for additional records [46].

3.6.7 MySQL Workbench

MySQL Workbench is a visual database management tool developed by the MySQL
team. The tool is used by developers, administrators and architects when working with
a SQL database. MySQL Workbench provides data modeling, SQL development, and
comprehensive administration tools for server configuration, user administration, backup,
and much more [42].

26

3.7 Python

3.7 Python

Python is a high-level programming language. It is an interpreted language which means
that its code is executed directly without the need of a compiler to first translate or compile
the program into machine language instructions. Python was released in 1990 and has
been continuously updated and improved ever since. The language is easy to learn and has
many areas of use. Most programming paradigms such as object-oriented, functional and
procedural programming are well supported [48].

3.8 Premier League

The Premier League is the top level of English soccer. The league was founded in 1992
after numerous conflicts and discussions between soccer authorities, players, television
broadcasters and the previous top-level league management [62]. This season, the 2018/2019
season, is the 27th season of the Premier League. Today the league consists of 20 competing
teams, and is the most followed sports league in the world. The League is broadcasted in
212 territories and to 643 million homes which potentially can reach 4.7 billion people. A
season starts in August and lasts until May. In the course of that time period, 387 soccer
matches are played [13]. According to BBC [57] the television rights for a three year
period 2016-2019 are worth £5.14bn.

27

Chapter 3. Background

28

Chapter 4
Design & Implementation

This chapter will describe how we designed and implemented our solution in order to
address the proposed research questions from Chapter 1, which were the following:

• RQ1: Identify a use case which is representative for the data and applications of
Sportradar.

• RQ2: How does the Neo4j graph database management system compare against
Oracle’s MySQL relational database management system, in regard to target the
problem?

4.1 Approach

We chose the problem of analyzing the performance of a home team in a soccer match
with respect to the number of match events that the home team produced and the score of
the match, by using Sportradar’s Premier League soccer data. To do this, we identified the
following soccer events that are relevant to a team’s performance:

• corner kick

• free kick

• goal kick

• injury

• injury return

• offside

• penalty awarded

29

Chapter 4. Design & Implementation

• penalty missed

• red card

• score change

• shot off target

• shot on target

• shot saved

• throw in

• yellow card

• yellow red card

For each event type, we calculated the number of events created per minute for each of the
three possible states a soccer match can be in with respect to home team score:

• Score is tied

• Home team is winning

• Home team is losing

In order to performance test Neo4j and MySQL, we developed two databases, one graph
database and one relational database. Both databases contained the exact same data, but
structured differently. With all this information, we developed an application that retrieved
event information from a database, and analyzed it according to our preferences. We
defined three test cases, described below, in order to compare performance between the
graph and the relational database. The application was by turn connected to each of the
databases, and for each database, each test case was executed 25 times.

• Single Match - Select a random soccer match and calculate events produced per
minute by the home team based on score.

• Team Season - Calculate events produced per minute based on the score for all
soccer matches played on home ground during the season for a specific team.

• Complete Season - Calculate events produced per minute based on the score for the
home team for all matches that have been played during the season.

Figure 4.1 shows a complete overview of the system design. The remainder of this chapter
will describe what the different elements in the figure are, and how they work together.

30

4.1 Approach

Figure 4.1: System design

31

Chapter 4. Design & Implementation

4.2 Database Design

As previously mentioned, we created two databases for this project. To retrieve the necessary
data to populate our databases, we used four specific Sportradar API calls:

• Tournament List API

• Tournament Info API

• Tournament Schedule API

• Match Timeline API

These API calls are represented in Figure 4.1 as the purple cloud on top named “Sportradar
Developer API”.

The Tournament List API returns a list of all major soccer tournaments in Europe. We
called that first to retrieve the necessary information regarding the Premier League, here
identified by the “tournament id” field, shown in Listing 4.1, which is a fragment of the
results we received when we called the Tournament List API.

1 {
2 "id": "sr:tournament:17",
3 "name": "Premier League",
4 "sport": {
5 "id": "sr:sport:1",
6 "name": "Soccer"
7 },
8 "category": {
9 "id": "sr:category:1",

10 "name": "England",
11 "country_code": "ENG"
12 },
13 "current_season": {
14 "id": "sr:season:54571",
15 "name": "Premier League 18/19",
16 "start_date": "2018-08-10",
17 "end_date": "2019-05-13",
18 "year": "18/19"
19 }

Listing 4.1: Result from calling the Tournament List API

The Tournament Info API returns a complete overview of all teams that participate in a
specific tournament, along with information about the tournament such as season, name
and start and end date. Listing 4.2 shows a selection of the result from calling the Tournament
Info API using the “tournament id” received from the Tournament List API.

32

4.2 Database Design

1 {
2 "season": {
3 "id": "sr:season:54571",
4 "name": "Premier League 18/19",
5 "start_date": "2018-08-10",
6 "end_date": "2019-05-13",
7 "year": "18/19",
8 "tournament_id": "sr:tournament:17"
9 },

10 "groups": [
11 {
12 "teams": [
13 {
14 "id": "sr:competitor:35",
15 "name": "Manchester United",
16 "country": "England",
17 "country_code": "ENG",
18 "abbreviation": "MUN"
19 },
20 {
21 "id": "sr:competitor:37",
22 "name": "West Ham United",
23 "country": "England",
24 "country_code": "ENG",
25 "abbreviation": "WHU"
26 },
27 {
28 "id": "sr:competitor:48",
29 "name": "Everton FC",
30 "country": "England",
31 "country_code": "ENG",
32 "abbreviation": "EVE"
33 }
34]
35 }
36 }

Listing 4.2: Result from calling the Tournament Info API

The Tournament Schedule API returns date and time information for specific matches.
We iterated over the results of the Tournament Info API to create representations of the
teams in our databases, nodes for the graph database and rows for the relational database,
and then imported all matches played in the season using the Tournament Schedule API.
Listing 4.3 displays the result from calling the Tournament Info API.

33

Chapter 4. Design & Implementation

1
2 {
3 "sport_evnts": {
4 "id": "sr:match:14735957",
5 "scheduled": "2018-08-10T19:00:00+00:00",
6 "tournament": {
7 "id": "sr:tournament:17"
8 }
9 "competitors": [

10 {
11 "id": "sr:competitor:35",
12 "name": "Manchester United",
13 "country": "England",
14 "country_code": "ENG",
15 "abbreviation": "MUN",
16 "qualifier": "home"
17 },
18 {
19 "id": "sr:competitor:31",
20 "name": "Leicester City",
21 "country": "England",
22 "country_code": "ENG",
23 "abbreviation": "LEI",
24 "qualifier": "away"
25 }
26]
27 }

Listing 4.3: Result from calling the Tournament Schedule API

The Match Timeline API returns information regarding each soccer event for a given match
or game: event type, clock time, period and team type (home or visiting). Listing 4.3 above
displays the results for a single soccer match. We received the results for 387 matches, and
each one resulted in a new match node or row in our databases. For each match, we called
the Match Timeline API in order to collect all its game events, and each individual event
resulted in a new node or row in our databases. Listing 4.4 shows parts of a timeline from
calling the Match Timeline API.

34

4.2 Database Design

1 {
2 "sport_event": {
3 "id": "sr:match:14735957"
4 },
5 "competitors": [
6 {
7 "id": "sr:competitor:35",
8 "name": "Manchester United"
9 },

10 {
11 "id": "sr:competitor:31",
12 "name": "Leicester City"
13 }
14],
15 "timeline": [
16 {
17 "id": 447784954,
18 "type": "match_started",
19 "time": "2018-08-10T19:00:10+00:00"
20 },
21 {
22 "id": 447785488,
23 "type": "penalty_awarded",
24 "match_clock": "1:27",
25 "team": "home",
26 "period": 1
27 },
28 {
29 "id": 447785902,
30 "type": "score_change",
31 "match_clock": "2:28",
32 "team": "home",
33 "period": 1
34 },
35 {
36 "id": 447786246,
37 "type": "throw_in",
38 "match_clock": "3:16",
39 "team": "home",
40 "period": 1
41 }
42]
43 }

Listing 4.4: Result from calling the Match Timeline API

35

Chapter 4. Design & Implementation

With the information from Listing 4.3, we iterated through each event in the timeline,
for every match played in the season, and created rows and nodes for each game event.
We then combined all the information we had retrieved from calling the four different
APIs, which resulted in databases containing information regarding all teams and matches
played in the Premier League season 18/19. The two squared yellow boxes in Figure 4.1
represents this process.

4.3 Neo4j Graph Database

Figure 4.2 is a visualization of the graph database we created to hold the soccer data. Each
red node represents a team playing in the Premier League during the 2018/2019 season.
The red nodes are connected to many blue nodes that represent individual soccer matches.
Each blue node connects to exactly two red nodes, connecting teams with the matches they
have played. Each blue node is connected to many pink nodes where each one represents
an event that occurred during the soccer match. Figure 4.2 displays a small subset of the
database. It displays 2.000 nodes, whereas the actual database contains over 40.000 nodes.

36

4.3 Neo4j Graph Database

Figure 4.2: Visualized subset of the graph database

When creating our database, we started with importing all the data that we needed. In
order to import data from the APIs, we had to use the APOC plugin, described in Section
3.4.5. APOC contained a function that let us directly import JSON formatted data into

37

Chapter 4. Design & Implementation

our graph database. This process was wrapped inside a script which is represented by the
yellow box called “Graph Database Population Scrip” in Figure 4.1.

1
2 :param tournament_info:"https://api.sportradar.us
3 /soccer-t3/eu/en/tournaments/sr:tournament:17/info.json?
4 api_key={your_api_key}"
5
6 CALL apoc.load.json(tournament_info,'.groups')
7 YIELD value unwind value.teams as t
8 CREATE (team:Team)
9 SET team.name = t.name, team.id = t.id, team.abbreviation

10 = t.abbreviation

Listing 4.5: Query for importing all teams to the graph database

Listing 4.5 shows how we used APOC in a Cypher query to populate the database with all
the teams. First, we declared the parameter tournament_info and assigned it to the
API call, which returned information regarding all soccer teams competing in the Premier
League. Then we called APOC’s load procedure and passed in our newly created
tournament_info parameter together with a parameter called .groups. We included
the .groups parameter because we were only interested in the contents of the groups
property shown on line 10 in Listing 4.2. Next, we used the YIELD keyword, which
enabled us to create new internal variables for fields that were within the groups property.
By using the unwind clause, we reduced the newly created variables into a list consisting
of team-objects. Finally, we used the CREATE statement together with the SET statement
to create “(team:Team)”-nodes containing information for each team.

In order to populate the database with nodes representing soccer matches and in-game
events, we set the Tournament Schedule API and the Match Timeline API as parameters,
and executed very similar procedures as the one explained above with the new parameters.

The final part of populating the database was to create relationships between the nodes.
After all the nodes where created, we made sure that they had a unique identification and
that they had an identifier that pointed to either their parent or child node. Team nodes
contained the team’s name, abbreviation and an identification number. The Match nodes
were given an identifier that consisted of the playing team’s abbreviations. For example,
the match between Newcastle and Chelsea FC was identified with “NEW-CHE”, where
the team listed first was also the home team. Listing 4.6 and Listing 4.7 shows how the
Cypher statements connected teams to matches and matches to events.

1 MATCH (t:Team), (s:SportEvent) WHERE t.name = s.homeTeam
2 CREATE (t)-[played:PLAYED]->(s)

Listing 4.6: Cypher statement for connecting home teams with matches

38

4.4 MySQL Relational Database

1 MATCH (se:SportEvent),(ge:GameEvent) WHERE se.sportEventId
2 = ge.sportEventId CREATE (ge)-[part_of:PART_OF]->(se)

Listing 4.7: Cypher statement for connecting a match with its corresponding events

4.3.1 Neo4j Driver

There are many ways to interact with a Neo4j database and many different drivers to
choose from. For this research, we chose Neo4j’s official driver, as this was the one
recommended when working with Python as a programming language, according to the
community on Neo4j’s own Slack workspace. The driver is built on the “Bolt-protocol”,
which is a binary protocol used for communication between client applications and database
servers [34]. The driver provided us with a connection setup, which we needed to use
when connecting to the database. Additionally, the driver gave us access to functions that
we used to read and write to the database.

4.3.2 Neo4j Configuration

The graph database solution was created by using version 3.5.3 of Neo4j, together with
version 3.5.0.2 of the APOC plugin. Not all versions of Neo4j and APOC are compatible
with each other, so it is important to be sure that the correct versions are being used. For
visualization and administration of the graph database, we used version 1.1.13 of Neo4j’s
desktop application.

4.4 MySQL Relational Database

To better evaluate our graph database results, we created a relational MySQL database for
comparison, and populated with the same data from the same Sportradar APIs.

4.4.1 Design

The MySQL database was designed similarly to the Neo4j database. The schema consisted
of three tables shown in figure 4.3. The “Team” table contained a row for each team that
played in Premier League 18/19. The “SportEvent” table contained a row for all soccer
matches that had been played during the season. The “GameEvent” table contained a row
for each event that took place in a match.

39

Chapter 4. Design & Implementation

Figure 4.3: Relational database design

To populate the different tables we wrote scripts in Python. They imported data from
the APIs, retrieved relevant information and applied string operations to clean the data.
Lastly, the scripts wrote the data into the correct tables. In order to write data to the
database, we created an SQL statement similar to the Cypher statement from Listing 4.5.
Populating the Team table in MySQL was, however, a more complex process. Instead
of writing to the database directly from the Tournament Info API, we had to store all
data temporarily. This was done in our Python scripts. To import the teams we defined
the function getTeamInformation(jsonObject) seen in Listing 4.8. Receiving
the results from the Tournament Info API (Listing 4.2) as input, the function temporarily
stored each team’s details in different lists.

tempTeamId = []
tempTeamName = []
tempTeamAbbreviation = []
def getTeamInformation(jsonObject):
groups = jsonObject["groups"]
for group in groups:

teams = (group["teams"])
for team in teams:

tempTeam.append(team["id"])
tempTeamName.append(team["name"])
tempTeamAbbreviation.append(team["abbreviation"])

Listing 4.8: Python function that temporary stores team attributes

Upon completion of getTeamInformation(jsonObject), we were able to populate
the Team table using the function updateTeamTable(db) shown in Listing 4.9. It
iteratively wrote the contents of each temporary attribute list to the table. The variable
sqlString, was the actual SQL statement that was processed by the database.

40

4.5 Data Mapper Application

def populateTeamTable(db):
cursor = db.cursor()
for x in range(0, len(teamId)):

idTeam = tempTeamId[x]
name = tempTeamName[x]
abbreviation = tempTeamAbbreviation[x]
sqlString = "INSERT INTO Team VALUES
(" + "'" + str(idTeam) + "'" + ", " + '"' +
str(name) + '"' + ", " + '"' +
str(abbreviation) + '"' + ")"
cursor.execute(sqlString)

print("Team table updated")

Listing 4.9: Python function that writes each team with attributes to database

This procedure was repeated in a similar way for writing soccer matches and in-game
events to the database. The table population is indicated by the yellow box named “Relational
Database Population Script” in Figure 4.1.

4.4.2 MySQL Server

We used MySQL version 8.0.15 for the database. The database was hosted on localhost.
Having the database hosted locally made it simple to handle, and we were not dependent
on third-party vendors, which gave us complete control over the database.

4.4.3 MySQL Workbench

When creating the database, we used Oracle’s MySQL Workbench version 8.0.15. MySQL
Workbench provided us with a graphical user interface for our relational database. This
was a useful tool for testing and debugging the database. Also, MySQL Workbench was
used to define the schema for the relational database.

4.5 Data Mapper Application

A mapper is a layer that moves or separates data between an object and a database [18].
In this case, we needed an application that could calculate the score and number of events
occurring in each match, based on data returned from querying the databases. We wrote
our mapping application in Python. The application consisted of two parts; the first
part separately performed the mapping for databases and the second part aggregated the
mapping results. This part is illustrated in Figure 4.1 as the yellow box with rounded
edges.

41

Chapter 4. Design & Implementation

4.5.1 Neo4j Data Mapper

To get the game events for a given soccer match (SportEvent), we used each match’s
own unique match identification “matchId”. Each event (GameEvent) that took place in a
soccer match was a single node. All GameEvents were connected to a SportEvent with the
relation [PART OF]. With this structure, we used the “matchId” for the match we wanted,
and got the corresponding node which represented that match. Furthermore, we followed
the [PART OF] relation and retrieved all events that took place in that given match. Listing
4.10 shows what the query looked like.

1 MATCH (ge:GameEvent)-[PART_OF]->(se:SportEvent)
2 WHERE se.sportEventId = "matchId"
3 RETURN ge.team, ge.type, ge.matchTime, ge.matchClock,
4 ge.gameEventId

Listing 4.10: Cypher query that returns relevant information for a given matchId

Different teams played each soccer match, and the node that represented a soccer match
(SportEvent) held the name of both the home and the visiting team. The query in Listing
4.11 was used to retrieve the name of the teams that played each other for a given “matchId”.

1 MATCH (se:SportEvent) WHERE se.sportEventId = "matchId"
2 RETURN se.homeTeam, se.awayTeam, se.sportEventId"

Listing 4.11: Cypher query that returns name for home and away team for a given matchId

4.5.2 MySQL Data Mapper

The MySQL data mapper functioned similarly as the Neo4j data mapper. They both
queried their respective databases to retrieve the same information. Naturally, the query
language was different. For the MySQL mapper, all soccer matches stored in the
“SportEvent”-table were identified with the same “matchId” as in the graph database.
Events that occurred in soccer matches were stored in the table called “GameEvent”.
Each record in the “GameEvent”-table used “matchId” as foreign key, and pointed to
the “SportEvent”-table, which held all the soccer matches. This way we could query
the “GameEvent”-table for a given “matchId” and return the properties we wanted for an
in-game event. Listing 4.12 shows the query we used for this operation.

1 SELECT team, type, matchTime, matchClock
2 FROM GameEvent
3 WHERE idSportEvent = "matchId"

Listing 4.12: SQL query that returns relevant information for a given matchId

42

4.5 Data Mapper Application

The query in Listing 4.13 served the same purpose as the query in Listing 4.11, retrieving
the names of the competing teams. However, this operation was performed in two rounds.
First retrieving the name of the home team, then the name of the visiting team.

1 SELECT name
2 FROM Team INNER JOIN SportEvent
3 ON Team.idTeam = SportEvent.idHomeTeam
4 WHERE SportEvent.idSportEvent = "matchId"

Listing 4.13: SQL query used to retrieve name of home team

4.5.3 Data Aggregation

The second part of the data mapping phase was the actual aggregation of the data that was
returned after querying both databases. A Python script also handled this part. For each
match, the script iterated through all the belonging game events, and kept track of them.
While keeping track of the score during the game, the script counted all game events that
occurred. This way, the script could keep track of how many game events that occurred
while the score was in favor of the home team, the visiting team or if the score was tied. In
addition to counting events, the script also kept track of time. With all this information, we
could easily find out how many events such as goals scored, free kicks, offsides or shots
on target a team produced based on the current score. This created a result that could be
used to analyze trends in soccer matches based on how a team’s performance. This script
did not access the databases directly, so it had no influence on their performances. It was
used to aggregate their results, and was used in all three test cases, “Single Match”, “Team
Season” and “Complete Season”. The output with results in seconds for each case are
shown in respectively Figure 4.4, Figure 4.4b and Figure 4.4c.

43

Chapter 4. Design & Implementation

(a) Results of data aggregation for a single match (Cardiff City - Wolverhampton Wanderers)

(b) Results of data aggregation for all of Liverpool’s home matches

(c) Results of data aggregation of all home matches played so far at the time in the Premier League
season 18/19

Figure 4.4: Output from executing each of the test cases

44

4.6 Hardware

4.6 Hardware

All development and test case execution were conducted on a single computer, a MacBook
Pro Early 2013, running macOS Mojave Version 10.14.4 with these components:

• Processor: 2.6 Ghz Intel Core i5 (2 cores)

• Memory: 8 GB 1600 MHz DDR3

• Storage: Apple SSD 256 GB

• Graphics: Intel HD Graphics 4000 1536 MB

45

Chapter 4. Design & Implementation

46

Chapter 5
Results & Discussion

Our research project consisted of three different test cases. The test cases were each
performed on a graph database and a relational database. This chapter will first present
the results of our research. It will then analyze and discuss them in light of previous work
and our own expectations.

5.1 Expectations

Based on the project description from Sportradar, we had high expectations for Neo4j.
In addition, most of the related work we studied indicated that Neo4j would outperform
MySQL for most of our test cases. The index-free adjacency property was also a factor
that contributed to raising the expectations of Neo4j. We therefore assumed that our graph
database would tackle the three test cases without any problems. Based on the long lifetime
of MySQL and its widespread use, we assumed that MySQL also would perform well all
over.

5.2 Results

We produced the results in this project by measuring the time it took to complete each of
the three test cases for each of the two databases. To ensure accurate and unbiased timing
results, the test cases were executed one at a time on the same computer, described in
Section 4.6, with only the most minimal services running. The database servers were also
both hosted locally so that there would not be bias from network irregularities.

The processing time was different for every individual execution. Therefore all experiments
were performed 25 times for each test case in order to give representative results, and

47

Chapter 5. Results & Discussion

further reduce the possibilities that other run time factors could distort the overall trends.

5.2.1 Execution Time Neo4j

Table 5.1 shows all the results for the three test cases executed on the Neo4j graph database.
From the table, we see that Neo4j performed quite stable for all 25 iterations for all the
cases, except for the very first iteration.

No. of
Iteration Single Match Team Season Complete Season

1 0,5711 1,2080 15,6887
2 0,1633 0,4387 6,0042
3 0,1339 0,5542 6,1819
4 0,1365 0,4257 5,8944
5 0,1318 0,4396 6,4219
6 0,1146 0,4179 6,6423
7 0,1254 0,4422 5,6963
8 0,1632 0,3821 5,4230
9 0,1410 0,3395 5,3633

10 0,1134 0,2941 5,2624
11 0,1030 0,3111 5,2404
12 0,0945 0,3285 5,3711
13 0,1103 0,3162 5,3995
14 0,1103 0,3381 5,5641
15 0,0950 0,3846 6,4124
16 0,0641 0,2869 4,4618
17 0,1028 0,3040 5,2319
18 0,0960 0,3398 5,1829
19 0,1129 0,2998 5,2770
20 0,1063 0,3946 5,2770
21 0,1107 0,3459 5,5037
22 0,1094 0,2911 5,0510
23 0,0840 0,2940 4,5883
24 0,0843 0,3323 4,5249
25 0,1198 0,2912 4,4731

Table 5.1: Execution times for Neo4j database in seconds

In Table 5.2 we have collected the most interesting findings from Table 5.1. We see that
maximum values are all from the same first outlier row in Table 5.1. The minimum values
in Table 5.2 does not correspond to any specific row on Table 5.1. The average processing
time for each query is also presented in Table 5.2, as well as the median average processing
time.

48

5.2 Results

Single Match Team Season Complete Season
Maximum 0,5711 1,2080 15,6887
Minimum 0,0641 0,2869 4,4618
Average 0,1319 0,3920 5,8455
Median 0,1107 0,3395 5,3711

Table 5.2: Neo4j test case results in seconds

5.2.2 Execution Time MySQL

Table 5.2 contains the results of the experiments done with the relational database. In this
table, we see that MySQL also performs very stable, and that there are no big spikes in
any of the test cases results.

No. of
Iteration Single Match Team Season Complete Season

1 0,0775 0,5514 11,1797
2 0,0345 0,5455 11,8369
3 0,0349 0,5823 12,0251
4 0,0346 0,5457 11,9445
5 0,0366 0,5455 11,5366
6 0,0360 0,5407 11,0441
7 0,0378 0,5355 11,5504
8 0,0342 0,5516 11,9572
9 0,0349 0,5447 12,1375

10 0,0381 0,5742 11,7290
11 0,0382 0,5533 11,1312
12 0,0374 0,6088 11,9183
13 0,0365 0,5601 11,8979
14 0,0342 0,5524 10,9915
15 0,0340 0,5485 11,1725
16 0,0334 0,5463 11,8509
17 0,0365 0,5378 11,7444
18 0,0343 0,5352 11,8615
19 0,0342 0,5509 11,1268
20 0,0343 0,5301 12,1206
21 0,0347 0,5404 11,8579
22 0,0357 0,5382 11,5187
23 0,0374 0,5467 11,8180
24 0,0349 0,5285 11,7048
25 0,0331 0,6135 11,2135

Table 5.3: Execution times for MySQL database in seconds

49

Chapter 5. Results & Discussion

Table 5.4 sums up the most interesting findings from Table 5.3, presenting the fastest
and slowest processing time for each test case. In addition, the table presents the regular
average and median average for processing time.

Single Match Team Season Complete Season
Maximum 0,0775 0,6135 12,1375
Minimum 0,0331 0,5285 10,9915
Average 0,0371 0,5523 11,6348
Median 0,0349 0,5463 11,7444

Table 5.4: MySQL test case results in seconds

5.3 Analysis

With the results presented in the previous section we have created three graphs, one for
each test case. The graphs consist of two plots showing how the two databases compared
with respect to each other. In this section, we will use the plots to analyze these results.

5.3.1 Single Match

The “Single Match” test case computed the number of events produced by the home team
per minute based on the score of a single soccer match.

Figure 5.1: Graphed results of the first test case

50

5.3 Analysis

Figure 5.1 is a performance graph of all 25 iterations for the “Single Match” test case, and
shows how Neo4j and MySQL performed with respect to each other. From the graph, we
see the same as Table 5.1 shows that the first iteration for Neo4j was much slower than the
remaining 24 iterations. The Figure also shows that there was almost a 0.1 second time
difference on average between querying the Neo4j database and the MySQL database,
making MySQL perform more than 250% faster than Neo4j. Furthermore, we see a big
difference in stability between the two databases. The blue line is much flatter than the
orange, indicating that MySQL has a more predictable run time than Neo4j.

5.3.2 Team Season

The “Team Season” test case computed the total number of events per minute for a given
single team playing on its home ground for a single season. Meaning we analyzed 19
soccer matches.

Figure 5.2: Graphed results of the second test case

Here we see that Neo4j performed better than MySQL for all iterations except the first
which we noted as an outlier earlier. Neo4j performed, on average, 0,16 seconds faster
than MySQL, but it is noteworthy that MySQL performance was more stable. As we can
see, the blue line is much flatter than the orange line in Figure 5.2.

51

Chapter 5. Results & Discussion

5.3.3 Complete Season

For the last and two experiments, we examined the performance based on the number of
events per minute, for the home team of all matches that took place that season. That
means our test case consisted of examining 387 soccer matches.

The “Complete Season” test case computed the number of events per minute, for the home
team for all matches that took place in the season. In total, that was 387 soccer matches.

Figure 5.3: Graphed results of the third test case

Here again, in Figure 5.3 we see that Neo4j performed better than MySQL for all iterations
except the first. Neo4j performed, on average, 10 seconds faster than MySQL. In this case,
however, ignoring the first iteration, Neo4j was not less stable than MySQL.

5.4 Discussion

From the experiments we conducted, we discovered a few trends. The first trend we
discovered was the fact that Neo4j performed very poorly on the first iteration for all
three test cases. The processing time for the first iteration was, on average, 300% longer
than the remaining 24 iterations. This was not very unexpected, because Neo4j is known
to be affected by a cold start. Cold start is a reference from the automotive world. It refers
to the challenges when starting the engine of a car that has not been driven for a very long
time. This analogy is applied to databases that perform slowly when being accessed for
the first time after being idle for a longer period.

52

5.4 Discussion

An article written by the developers of Neo4j [35] revealed that cold start is a known
challenge when utilizing graph databases in Neo4j. Cold start occurs when the database
has just recently been booted up, and indexes have not yet been cached. When this is
the case, the database needs to look up all records directly on the disk which is a costly
operation. However, after the first disk lookup, all indices are cached, which makes
upcoming queries much faster. Because cold start has become a common phenomenon,
there now exists workarounds and patches that keep the database warm, reducing the
impact of cold start.

Another interesting finding was the fact that MySQL performed better than Neo4j for the
first test case, but not in the two other. By looking at this in the light of the study by Medhi
presented in Chapter 2 this result was on one side unexpected. Medhi’s study concluded
that Neo4j perform better when querying densely connected sports related data. However,
the difference in performance between the two databases increases as the dataset grows.
The same trend we can see in our results, but the significant difference is the fact that
MySQL performed best for the most uncomplicated query.

On the other side, it was not unexpected that MySQL performed better than Neo4j for the
“Single Match” test case. MySQL utilizes B+-trees in order to index its data. B+-tree
indexation facilitates for very fast read operations. For queries on small tables or queries
that require most of the rows in a larger table, it is often faster to read sequentially through
the table instead of working through an index. This can explain why MySQL performs
better than Neo4j for the test case that required the lookup of the smallest amount of data.
Neo4j utilizes index-free adjacency, which provides lightning-fast lookups. This means
that only the index for the starting node of the query needs to be looked up. From there on,
each node has a pointer pointing to its neighboring node, supporting a time complexity of
O(n), where “n” equals the number of nodes in the graph. This lets Neo4j perform better
for the last two test cases, which required the lookup of larger amounts of data.

5.4.1 Response time

A trend that was harder to account for was the fact that MySQL’s response time seemed
to be much more stable than Neo4j’s. Especially in Figure 5.1 and Figure 5.2, the blue
lines are smoother than the orange ones. This could be explained by the fact that MySQL
is more memory efficient than Neo4j because MySQL does not cache indices in the same
way as Neo4j. Keeping all pointers in memory as Neo4j does, requires a lot of memory.
A lack of memory will affect Neo4j’s performance. On the other hand we noticed that
MySQL performed very stable for the first test case, but as the the test cases became more
challenging, the blue line became more and more rocky. For the “Complete Season” it is
hard to tell which database performed the most stable by looking at the plots in Figure 5.3.

Because of the way we chose to model our databases, using three different tables for the
relational database and using three different types of nodes. The number of records in the
relational database equaled the number of nodes in the graph database. With this in mind,
we discovered some interesting findings regarding the overall response time. We used the
average processing time and the number of records accessed for each of the three test cases

53

Chapter 5. Results & Discussion

to estimate the difference in performance between the two databases. Table 5.4a shows the
estimation of how Neo4j and MySQL compare to each other with regard to execution
time. We see that it corresponds with Table 5.2 and Table 5.4. Although the graphs only
consisted of three points each, we can still see a clear difference in performance. From
Table 5.4b, which is an enlarged selected area from Table 5.4a, we see that the blue and
orange lines intersect after 0.236 seconds when the amount of records is about 1670. This
means that Neo4j and MySQL performed equally well when the number of records that
had to be processed approached 1670.

54

5.4 Discussion

(a) Execution time

(b) Selected section of execution time

Figure 5.4: Complete overview of execution times

55

Chapter 5. Results & Discussion

5.5 Database Querying

As expected, our results show that it took a longer time for both databases to process the
“Complete Season” test case, than it took to process the “Single Match” test case. The
execution of “Complete Season” requires much more data retrieval than “Single Match”.

Another relevant observation concerns the difference in how the queries are expressed. As
mentioned in Chapter 3, Neo4j and MySQL use two different query languages which have
their own linguistic differences. In Chapter 4 there are many examples of Neo4j-specific
queries and MySQL-specific queries that retrieve the same kind of data, but as we see,
they are expressed quite differently.

Using the SQL language, it is easy to query a relational database, and it is excellent when
used together with a database management tool such as MySQL Workbench. However,
SQL struggles with performance when the data becomes too connected. That is the case
in the Extended Friends Experiment from Section 1.3.1. Querying densely connected data
using SQL requires the use of many JOIN operations, which are costly with regard to time
and computational power. Also, the queries quickly become quite long, which increases
the probability of human error. Listing 5.1 shows an SQL query that returns all offsides
that Chelsea FC has created when playing on their home ground for the season. Although
this kind of data is not very advanced, we still see that the query quickly becomes long and
it contains many JOIN statements. Listing 5.2 is a graph query written in Cypher, which
returns the same data as the query in Listing 5.1.

1 SELECT HomeTeam.name AS HomeTeam, AwayTeam.name AS
2 AwayTeam, SportEvent.idSportEvent, GameEvent.team,
3 GameEvent.type
4 FROM soccerDB.SportEvent AS SportEvent
5 INNER JOIN soccerDB.Team AS HomeTeam ON
6 SportEvent.idHomeTeam = HomeTeam.idTeam
7 INNER JOIN soccerDB.Team AS AwayTeam ON
8 SportEvent.idAwayTeam = AwayTeam.idTeam
9 INNER JOIN soccerDB.GameEvent AS GameEvent ON

10 SportEvent.idSportEvent = GameEvent.idSportEvent
11 WHERE HomeTeam.name = "Chelsea FC" AND
12 GameEvent.team = "home" AND GameEvent.type = "offside"

Listing 5.1: SQL query that returns all offsides that Chelsea have produced on home ground

56

5.5 Database Querying

1 MATCH result = (t:Team)-[:PLAYED]->(se:SportEvent)
2 <-[:PART_OF]-(ge:GameEvent)
3 WHERE t.name = "Chelsea FC" <> ge.type = "offside" <>
4 se.homeTeam = t.name <> ge.team = "home"
5 RETURN result

Listing 5.2: Cypher query that returns all offsides that Chelsea have produced on home ground

From the listings above, it is quite clear that the Cypher query is simpler to read and
write. The utilization of relationships inside the query makes it much easier to follow
and understand precisely what the query does. This also reflects the fact that when the
developers created Neo4j and Cypher, they focused on making it as understandable as
possible, for both technical and non-technical users.

As the developers behind the “World Cup As a Graph” project from Section 2.1 suggest,
Neo4j is very useful when being used to analyze and explore sports data that is already
modeled as a graph. The APOC library contains many well-documented graph procedures
that can easily be utilized in order to examine a graph. Our query comparison of using
Cypher and SQL to find offside events created by the home team for a gives soccer match
(Listing 5.1 and Listing 5.2), shows how Neo4j has advantages when it comes to writing
and processing certain kinds of specific data lookups.

Another difference between the two query language is how the return statements are
expressed. A SQL query always begins with stating which fields or columns it is going
to return, and does not end with a return statement. Cypher is the opposite. Cypher first
declares which nodes and relationships it is going to use, then ends with specifying which
fields or labels it will return. In other words, Cypher lets the user design custom and
patterns and returns all nodes that match the specified pattern.

5.5.1 Query Performance

When we had almost finished with the development and were examining the first results,
we saw that the graph database performed much worse than the relational database. This
was unexpected so we decided to review how our queries were written. That is when
we realized that our Cypher query was not utilizing the benefits of relations in a graph
database. Listing 5.3 shows how the original query for returning all events that took place
in a match looked like.

1 MATCH (ge:GameEvent) WHERE ge.sportEventId = "matchId"
2 RETURN ge.team, ge.type, ge.matchTime, ge.matchClock,
3 ge.gameEventId

Listing 5.3: Un-optimized cypher query not utilizing relationships

57

Chapter 5. Results & Discussion

The query produced the results shown in Table 5.5. After updating to our final query
(Listing 4.10), we achieved the much better results displayed earlier in Table 5.2.

Single Match Team Season Complete Season
Maximum 0,1842 1,9833 38,7823
Minimum 0,0973 0,7915 15,1158
Average 0,1349 1,0626 21,0334
Median 0,1302 0,9065 16,8275

Table 5.5: Results for Neo4j un-optimized Neo4j queries in seconds

Table 5.5 shows the result of writing Cyber queries with an SQL mindset. The un-optimized
query had to iterate through all the GameEvent-nodes in order to join them with a matchId.
When the graph database consisted of 40.0000 GameEvent-nodes, the query was destined
to take a long time with almost 400 soccer matches. However, our final query took
advantage of the [PART OF] relation between SportEvents and GameEvents. By that,
it was utilizing the properties of index-free adjacency. This meant that when requesting
the same data, the only thing that needed to be looked up was the SportEvent-node which
contained the corresponding matchId. This was because all the GameEvents were connected
to that SportEvent-node through the [PART OF] relation. By making this change in the
query, we were able to reduce the average execution time by 360%. Results for all 25
iterations of the three test-cases with the un-optimized query can be found in a table located
in the appendix.

5.6 Visualization

When working with queries and databases, it is beneficial to see the data that one is
working with. Also other people involved in the project, such as stakeholders, business
owners and analysts, can benefit greatly from good data visualization. Then they can
use the visualization to determine areas of interest or assess easily the current state and
organization of the data [32]. Neo4j provides with its desktop application a browser that
is excellent for data visualization along with query creation. MySQL Workbench provides
many of the query creation tools, but the data visualization is limited to table format.
Figure 5.5 illustrates how MySQL Workbench returns the Listing 5.1 query. Figure 5.6
shows the Neo4j browser results for the same query.

The graph visualization is simple and makes it intuitive for most people to understand
what data is returned and how it is connected. The process of creating the graph, however,
is very costly. Whenever the results are more than 100 nodes, for instance, our computer
struggled to render the graph and it took a very long time. With more than 1000 nodes,
there was no point of even trying to render the graph. That would not be a problem,
however, with MySQL Workbench.

58

5.6 Visualization

Note that Neo4j also provides the option to return data in table format as well as in XML
or JSON.

Figure 5.5: Returned results from SQL query

59

Chapter 5. Results & Discussion

Figure 5.6: Returned results from Cypher query

5.7 Data Import

When evaluating different database technologies and database management systems, data
import can be an important aspect. In the study by Pandey [45], presented in Chapter 2,
we see that there are big differences in how MySQL and Neo4j perform with respect to
data size and time. Neo4j clearly outperforms MySQL as the size of the dataset grows.

The time aspect of data import does not always have to play such an important role. It is
very dependent on how the database is used and what it is being used for. If a company
wanted to migrate their database from their existing solution to either MySQL or Neo4j,
the time aspect of data import would probably not be a decisive factor. Because such a
migration is usually a one-time thing and other factors would play a more important role.
Nonetheless, if the database were to be used as explained in the World Cup Model from
Chapter 2, import time can be an essential factor. With projects where the database is
continuously being updated or expanded with new records, it is more important that the
database can perform well while importing data. The same issue would be applicable

60

5.8 Data Model

to our experiment as well, if we were to expand the scope of our project. It would be
interesting to conduct the same experiments, as explained in Chapter 4, with significantly
larger datasets. Then more would be required from the database technologies with regard
to import time.

5.8 Data Model

With the property graph model that Neo4j provides, it is simple to alter the graph database’s
data model. Nodes, relationships and properties can continually be added without affecting
the performance of the database. This makes Neo4j suitable for handling a database that
may often change its data model. On the other hand, MySQL’s data model is much stricter
in order to guarantee ACID properties. This makes MySQL less flexible with regard to
data model alterations.

For databases containing live updates, historical data and other sports related data, it may
be hard to predict how the database should be modeled. The methods for generating such
data are constantly changing, and the requirements from clients who are using the data are
also changing. Thus it is hard to determine in advance how the data model should look
like. This is an important aspect where Neo4j has a great advantage with its flexible model.

61

Chapter 5. Results & Discussion

62

Chapter 6
Conclusion & Future Work

This chapter summarizes the thesis, and presents pros and cons with using Neo4j and
MySQL for the application we developed. The goal of our research was to explore how
graph databases can be used together with the Sportradar developer API, and to investigate
potential advantages or disadvantages. In order to approach this problem we formulated
the two following research questions:

• RQ1: Identify a use case which is representative for the data and applications of
Sportradar.

• RQ2: How does the Neo4j graph database management system compare against
Oracle’s MySQL relational database management system, in regard to target the
problem?

To answer RQ1, we created an application that calculated how the home team performed
in a soccer match, from the English Premier League, based on the score. The application
calculated performance based on how many events the home team produced. The following
events were defined:

• corner kick

• free kick

• goal kick

• injury

• injury return

• offside

• penalty awarded

• penalty missed

63

Chapter 6. Conclusion & Future Work

• red card

• score change

• shot off target

• shot on target

• shot saved

• throw in

• yellow card

• yellow red card

For the application, we created two databases; a Neo4j graph database and a MySQL
relational database. The databases varied in structure, but contained the exact same data.
The application retrieved the event information from the databases. During runtime, the
application kept track of occurred events based on score and time played. For each soccer
match, the application returned the total number of events that the home team produced.
In addition, the application calculated events produced per minute while the match was
tied or if the home team was either winning or losing.

To address RQ2, we created three different test cases for our application, which we used
to performance test our databases. First, we executed and timed each test case 25 times
having the application connected to the graph database. Then we disconnected the graph
database and connected the relational database, and executed all three test cases another
25 times. The test cases were defined as the following:

• Single Match - Select a random soccer match and calculate events produced per
minute by the home team based on score.

• Team Season - Calculate events produced per minute based on the score for all
soccer matches played on home ground during the season for a specific team.

• Complete Season - Calculate events produced per minute based on the score for the
home team for all matches that have been played during the season.

6.1 Conclusion

We found that both Neo4j and MySQL were suitable for our application to measure soccer
teams’ performance with respect to match events. Both databases have their advantages
and disadvantages, but for this project, none of them serious enough to play a major role.
If the dataset was significantly larger, however, our research indicates that Neo4j would be
a better choice of a database management system with regard to processing time.

Table 6.2 shows the average processing of out test cases, while Table 6.1 shows the
median processing time. The median processing time is more interesting than the average
processing time because it is not affected by cold start.

64

6.1 Conclusion

Test Case Neo4j MySQL
Single Match 0,1107 0,0349
Team Season 0,3395 0,5463

Complete Season 5,3711 11,7444

Table 6.1: The median processing time in seconds

Test Case Neo4j MySQL
Single Match 0,1319 0,0371
Team Season 0,3920 0,5523

Complete Season 5,8455 11,6348

Table 6.2: The average processing time in seconds

Our results indicate that MySQL performs better for queries that require the lookup of
about 1670 or fewer records, in databases based on our design. When the amount of
required records that need to be looked up exceeds 1670, Neo4j performs much better.
This explains why MySQL performs better for the “Single Match” test case than Neo4j,
but Neo4j outperforms MySQL for the other two test cases. Besides, previous work
also suggests that the more connected the data is, the better a graph database performs
compared to a relational database. This corresponds with our results indicating that the
more advanced a query is, requiring the lookup of denser connected data, the better a
graph database performs compared to a relational database.

When setting up and populating the databases with data from Sportradar’s API, MySQL
has a significant advantage because it is so widely used. MySQL is heavily documented
and is a more stable database, whereas Neo4j has some issues with compatibility and
integration with other frameworks and services.

Regarding query languages, both databases have strong and well-functioning query languages.
SQL is a traditional, well-known land widely used language. Cypher is Neo4j specific
and much less used, but is intuitive and easy to learn. Where SQL uses advanced JOIN
statements, Cypher takes advantage of relationships instead, which are less complicated,
easier to understand and require shorter queries, reducing the possibility of human error.
It is important that Cypher statements are expressed in the correct way, in order to fully
utilize the power of a graph database.

With regard to data administration and data visualization, both providers have powerful
tools. The Neo4j Browser is an excellent tool for visualizing a graph database. However,
it is highly demanding regarding hardware. MySQL Workbench is a useful tool when
it comes to monitoring a database, and designing a data model. However, it does not
visualize data as neat as the Neo4j Browser.

65

Chapter 6. Conclusion & Future Work

6.2 Future work

There are a lot of areas in this project that could benefit from further research. First of all,
it would be interesting if more studies similar to this one were conducted to see if they
identified the same or different trends than this project found. Using other studies as a
form of verification, we could feel more confident about our results.

This project only compared performance between the two databases that we have created,
based on data from Sportradar’s API. The next step for Sportradar would be to conduct a
similar study on Sportradar’s internal data storage, where the API gets its data from. Our
results give an indication of which prerequisites that are important in order for a database
to function optimally. Such a study could also verify if our design and implementation are
applicable to a real-world scenarios.

6.2.1 Hardware & Architecture

Since the design and experiments described Chapter 4 and Chapter 5 in this project, all
have been completed on one single computer, it would be interesting to perform the same
experiments on different hardware, both less and more powerful. This would generate
results that are more representative.

A typical architecture for this kind application is the client-server architecture [58]. By
hosting our database on one or more external servers instead of hosting it locally, we
would achieve this architecture. The application and database would then run on different
resources, which could impact the results of our experiments.

6.2.2 Memory Consumption

Graph databases are known to require a lot of memory to function optimally [27]. This
research does not investigate how the use of memory affects the performance of Neo4j.
Memory consumption is an essential factor when choosing database technology. Therefore,
researching how the amount of available memory affects the performance of Neo4j and
MySQL would be very helpful.

6.2.3 Import time

Limitations on how often we were allowed to call Sportradar’s API per second, made it
impossible for us to investigate how our two databases compared to each other regarding
import time. Even though previous work indicates that there is a big difference between
Neo4j and MySQL regarding import time [45], it would be useful to see if that applies to
our databases as well when populated with sports data from Sportradar.

66

6.3 Threats to Validity & Limitations

6.2.4 Different dataset

Another way to validate our results would be to perform similar experiments on a different,
but similar dataset. For example, using data from the National Hockey League (NHL). The
league is structured differently from the Premier League, consisting of a different match
setup, more teams and more players. The difference between the sports is significant
enough to create a completely different data model with regard to connections and relationships
between the data. In addition, one could do even heavier performance testing by designing
test cases that are more complex in terms of queries.

6.2.5 Mitigate Cold Start

Cold start is a well-known challenge with Neo4j, and there exist many ways to work
around it. Modern implementations of Neo4j, depending on use, usually have implemented
workarounds keeping the database warm. Implementing such a workaround could make
the database perform different, thus affecting the results.

6.3 Threats to Validity & Limitations

Both databases have been modeled to the best of our abilities. We have followed the
standards in the field of our research when modeling both the relational database and the
graph database. As with most research, there exists a possibility for human error. There is
always a chance that we have misinterpreted something when it comes to database design
or query design, which may have affected our results.

Since we only conducted experiments on three different test cases. It was hard to determine
exact for how many records the two databases performed equally well. Therefore, the
number 1670, which we presented earlier, must be considered as an estimate for when
Neo4j and MySQL perform evenly.

6.4 Contribution

This thesis has identified a relevant field of use for Sportradar’s Developer API, and
developed an application for analysis of soccer matches. The application alternated between
using a graph database and relational database as a means of data source. The application
was used to do a performance test and a comparison of the two databases. Three test cases
were developed for the application in order to measure the databases’ performance. Other
aspects such as maintainability, compatibility and query language were also taken into
consideration.

We have presented a solution to how the two databases can be structured and organized to
serve the purpose of the application. In addition, we have identified which circumstances

67

Chapter 6. Conclusion & Future Work

the different databases require in order to perform best, based on theory, previous work
and our own results with regard to the target problem.

68

Bibliography

[1] ArangoDB, Unknown. Arangosearch: Full-text search engine including similarity
ranking capabilities. Accessed May 6, 2019.
URL https://www.arangodb.com/why-arangodb/full-text-
search-engine-arangosearch/

[2] ArangoDB, Unknown. Sql / aql - comparison. Accessed May 6, 2019.
URL https://www.arangodb.com/why-arangodb/sql-aql-
comparison/

[3] Babbie, R., 2012. The Practice of Social Research. Cengage Learning, pp. 414–416.
URL https://books.google.no/books?id=k-aza3qSULoC

[4] Babeni, S., 2019. https://ormuco.com/blog/most-popular-databases. Accessed May
31, 2019.
URL https://ormuco.com/blog/most-popular-databases

[5] Bazilchuk, N., 2005. Student programming project becomes multi-million dollar
company. Accessed September 19, 2018.
URL https://www.ercim.eu/publication/Ercim News/enw61/
bazilchuk.html

[6] Berlind, D., 2015. Why did they put the web in web apis? Accessed April 19, 2019.
URL https://www.programmableweb.com/news/why-did-they-
put-web-web-apis/analysis/2015/12/03

[7] Bettilyon, E., 2019. Breadth first search and depth first search. Accessed May 14,
2019.
URL https://medium.com/tebs-lab/breadth-first-search-
and-depth-first-search-4310f3bf8416

[8] bitn!ne, 2016. History of databases and graph database. Accessed 8 May, 2019.
URL https://bitnine.net/blog-graph-database/history-of-
databases-and-graph-database/

69

https://www.arangodb.com/why-arangodb/full-text-search-engine-arangosearch/
https://www.arangodb.com/why-arangodb/full-text-search-engine-arangosearch/
https://www.arangodb.com/why-arangodb/sql-aql-comparison/
https://www.arangodb.com/why-arangodb/sql-aql-comparison/
https://books.google.no/books?id=k-aza3qSULoC
https://ormuco.com/blog/most-popular-databases
https://www.ercim.eu/publication/Ercim_News/enw61/bazilchuk.html
https://www.ercim.eu/publication/Ercim_News/enw61/bazilchuk.html
https://www.programmableweb.com/news/why-did-they-put-web-web-apis/analysis/2015/12/03
https://www.programmableweb.com/news/why-did-they-put-web-web-apis/analysis/2015/12/03
https://medium.com/tebs-lab/breadth-first-search-and-depth-first-search-4310f3bf8416
https://medium.com/tebs-lab/breadth-first-search-and-depth-first-search-4310f3bf8416
https://bitnine.net/blog-graph-database/history-of-databases-and-graph-database/
https://bitnine.net/blog-graph-database/history-of-databases-and-graph-database/

[9] Chao, J., 2018. Graph databases for beginners: Native vs. non-native graph
technology. Accessed March 11, 2019.
URL https://neo4j.com/blog/native-vs-non-native-graph-
technology/?ref=blog

[10] Chiou, L., 2019. Graph theory. Accessed May 14, 2019.
URL https://brilliant.org/wiki/graph-theory/

[11] Cole, J., 2014. B+tree index structures in innodb. Accessed June 1, 2019.
URL https://blog.jcole.us/2013/01/10/btree-index-
structures-in-innodb/

[12] Community, S. O., 2018. Questions tagged [mysql]. Accessed November 7, 2018.
URL https://stackoverflow.com/questions/tagged/mysql

[13] Ebner, S., 2013. History and time are key to power of football, says premier league
chief. Accessed March 27, 2019.
URL https://www.thetimes.co.uk/article/history-and-time-
are-key-to-power-of-football-says-premier-league-chief-
3d3zf5kb35m

[14] EQT, 2018. Sportradar. Accessed September 19, 2018.
URL http://www.eqtpartners.com/Investments/Current-
Portfolio/Sportradar/

[15] Ernst & Young, A., 2017. Big Data: Beyond the buzzword. Ernst & Young Australia,
p. 3.

[16] Foote, K. D., 2017. A brief history of database management. Accessed May 8, 2019.
URL https://www.dataversity.net/brief-history-database-
management/#

[17] for Geeks, G., 2018. Bellman–ford algorithm — dp-23. Accessed May 14, 2019.
URL https://www.geeksforgeeks.org/bellman-ford-algorithm-
dp-23/

[18] Fowler, M., Rice, D., 2003. Patterns of Enterprise Application Architecture. A Martin
Fowler signature book. Addison-Wesley, pp. 165–167.
URL https://books.google.no/books?id=FyWZt5DdvFkC

[19] Garbade, D. M. J., 2018. Understanding k-means clustering in machine learning.
Accessed May 14, 2019.
URL https://towardsdatascience.com/understanding-k-
means-clustering-in-machine-learning-6a6e67336aa1

[20] Goodrich, M. T., Tamassia, R., Goldwasser, M. H., 2004. Data structures and
algorithms in Java Fourth Edition. John Wiley & Sons, p. 793.

[21] GraphGrid, 2016. Native graph databases versus non-native graph databases.
Accessed March 28, 2019.

70

https://neo4j.com/blog/native-vs-non-native-graph-technology/?ref=blog
https://neo4j.com/blog/native-vs-non-native-graph-technology/?ref=blog
https://brilliant.org/wiki/graph-theory/
https://blog.jcole.us/2013/01/10/btree-index-structures-in-innodb/
https://blog.jcole.us/2013/01/10/btree-index-structures-in-innodb/
https://stackoverflow.com/questions/tagged/mysql
https://www.thetimes.co.uk/article/history-and-time-are-key-to-power-of-football-says-premier-league-chief-3d3zf5kb35m
https://www.thetimes.co.uk/article/history-and-time-are-key-to-power-of-football-says-premier-league-chief-3d3zf5kb35m
https://www.thetimes.co.uk/article/history-and-time-are-key-to-power-of-football-says-premier-league-chief-3d3zf5kb35m
http://www.eqtpartners.com/Investments/Current-Portfolio/Sportradar/
http://www.eqtpartners.com/Investments/Current-Portfolio/Sportradar/
https://www.dataversity.net/brief-history-database-management/#
https://www.dataversity.net/brief-history-database-management/#
https://www.geeksforgeeks.org/bellman-ford-algorithm-dp-23/
https://www.geeksforgeeks.org/bellman-ford-algorithm-dp-23/
https://books.google.no/books?id=FyWZt5DdvFkC
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1

URL https://www.graphgrid.com/native-graph-databases-
versus-non-native-graph-databases/

[22] Hunger, M., 2016. Apoc: An introduction to user-defined procedures and apoc.
Accessed October 7, 2018.
URL https://neo4j.com/blog/intro-user-defined-
procedures-apoc/

[23] Jones, C., 2014. How to visualize your facebook friend network. Accessed May 6,
2019.
URL http://allthingsgraphed.com/2014/08/28/facebook-
friends-network/

[24] Joshi, V., 2017. Finding the shortest path, with a little help from dijkstra. Accessed
May 14, 2019.
URL https://medium.com/basecs/finding-the-shortest-path-
with-a-little-help-from-dijkstra-613149fbdc8e

[25] Marr, B., 2018. How much data do we create every day? the mind-blowing stats
everyone should read. Accessed September 20, 2018.
URL https://www.forbes.com/sites/bernardmarr/2018/05/21/
how-much-data-do-we-create-every-day-the-mind-blowing-
stats-everyone-should-read/#7bbb1ccd60ba

[26] Medhi, S., Baruah, H. K., 2017. Relational database and graph database: A
comparative analysis. Journal of Process Management. New Technologies 5 (2), 1–9.

[27] Mendel-Gleason, G., 2018. Databases of the future: How changes in hardware are
driving a revolution. Accessed May 28, 2019.
URL https://www.datachemist.com/blog/databases-of-the-
future-how-changes-in-hardware-are-driving-a-revolution

[28] MySQL, 2018. Mysql technical support. Accessed November 6, 2018.
URL https://www.mysql.com/support/

[29] Neo4j-Team, 2014. 5 things you didn’t know about the world cup. Accessed March
8, 2019.
URL http://worldcup.neo4j.org/5-things-you-didnt-know-
about-the-world-cup/

[30] Neo4j-Team, 2014. The world cup graph domain model. Accessed March 9, 2019.
URL http://worldcup.neo4j.org/the-world-cup-graph-domain-
model/

[31] Neo4j-Team, 2019. Cypher basics i. Accessed May 28, 2019.
URL https://neo4j.com/developer/cypher-query-language/

[32] Neo4j-Team, 2019. Graph visualization. Accessed April 28, 2019.
URL https://neo4j.com/developer/graph-visualization/

71

https://www.graphgrid.com/native-graph-databases-versus-non-native-graph-databases/
https://www.graphgrid.com/native-graph-databases-versus-non-native-graph-databases/
https://neo4j.com/blog/intro-user-defined-procedures-apoc/
https://neo4j.com/blog/intro-user-defined-procedures-apoc/
http://allthingsgraphed.com/2014/08/28/facebook-friends-network/
http://allthingsgraphed.com/2014/08/28/facebook-friends-network/
https://medium.com/basecs/finding-the-shortest-path-with-a-little-help-from-dijkstra-613149fbdc8e
https://medium.com/basecs/finding-the-shortest-path-with-a-little-help-from-dijkstra-613149fbdc8e
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#7bbb1ccd60ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#7bbb1ccd60ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#7bbb1ccd60ba
https://www.datachemist.com/blog/databases-of-the-future-how-changes-in-hardware-are-driving-a-revolution
https://www.datachemist.com/blog/databases-of-the-future-how-changes-in-hardware-are-driving-a-revolution
https://www.mysql.com/support/
http://worldcup.neo4j.org/5-things-you-didnt-know-about-the-world-cup/
http://worldcup.neo4j.org/5-things-you-didnt-know-about-the-world-cup/
http://worldcup.neo4j.org/the-world-cup-graph-domain-model/
http://worldcup.neo4j.org/the-world-cup-graph-domain-model/
https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/graph-visualization/

[33] Neo4j-Team, 2019. Neo4j customers. Accessed April 28, 2019.
URL https://neo4j.com/customers/

[34] Neo4j-Team, 2019. The neo4j drivers manual v1.7 for python. Accessed April 19,
2019.
URL https://neo4j.com/docs/pdf/neo4j-driver-manual-1.7-
python.pdf

[35] Neo4j-Team, 2019. Warm the cache to improve performance from cold start.
Accessed May 26, 2019.
URL https://neo4j.com/developer/kb/warm-the-cache-to-
improve-performance-from-cold-start/

[36] Neo4j-Team, 2019. What is a graph database? Accessed May 6, 2019.
URL https://neo4j.com/developer/graph-database/

[37] Neo4j-Team, Unknown. Neo4j apoc library. Accessed October 7, 2018.
URL https://neo4j.com/developer/apoc/

[38] {ntc}, 2019. Sql (structured query language). Accessed May 9, 2019.
URL https://www.ntchosting.com/encyclopedia/databases/
structured-query-language/

[39] Oates, B. J., 2005. Researching information systems and computing. Sage, pp.
32–33.
URL https://books.google.no/books?id=ztrj8aph-4sC

[40] Oracle, 2018. Create tomorrow, today. Accessed November 5, 2018.
URL http://www.oracle.com/us/corporate/oracle-fact-sheet-
079219.pdf

[41] Oracle, 2019. Introduction to innodb. Accessed April 26, 2019.
URL https://dev.mysql.com/doc/refman/8.0/en/innodb-
introduction.html

[42] Oracle, 2019. Mysql workbench. Accessed March 28, 2019.
URL https://www.mysql.com/products/workbench/

[43] Oralce, 2019. Top 10 reasons to choose mysql for next generation web applications.
Accessed May 7, 2019.
URL https://www.mysql.com/why-mysql/white-papers/top-
10-reasons-to-choose-mysql-for-next-generation-web-
applications/

[44] Orientechnologies, 2016. Orientdb. Accessed November 13, 2018.
URL https://github.com/orientechnologies/orientdb

[45] Pandey, S., Joshi, E., Maharjan, M., Karki, N., 08 2018. A research on architectural
and performance comparison of relational database, nosql and graph database
(neo4j).

72

https://neo4j.com/customers/
https://neo4j.com/docs/pdf/neo4j-driver-manual-1.7-python.pdf
https://neo4j.com/docs/pdf/neo4j-driver-manual-1.7-python.pdf
https://neo4j.com/developer/kb/warm-the-cache-to-improve-performance-from-cold-start/
https://neo4j.com/developer/kb/warm-the-cache-to-improve-performance-from-cold-start/
https://neo4j.com/developer/graph-database/
https://neo4j.com/developer/apoc/
https://www.ntchosting.com/encyclopedia/databases/structured-query-language/
https://www.ntchosting.com/encyclopedia/databases/structured-query-language/
https://books.google.no/books?id=ztrj8aph-4sC
http://www.oracle.com/us/corporate/oracle-fact-sheet-079219.pdf
http://www.oracle.com/us/corporate/oracle-fact-sheet-079219.pdf
https://dev.mysql.com/doc/refman/8.0/en/innodb-introduction.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-introduction.html
https://www.mysql.com/products/workbench/
https://www.mysql.com/why-mysql/white-papers/top-10-reasons-to-choose-mysql-for-next-generation-web-applications/
https://www.mysql.com/why-mysql/white-papers/top-10-reasons-to-choose-mysql-for-next-generation-web-applications/
https://www.mysql.com/why-mysql/white-papers/top-10-reasons-to-choose-mysql-for-next-generation-web-applications/
https://github.com/orientechnologies/orientdb

[46] Pollari-Malmi, K., 2010. B+-trees. Accessed June 1, 2019.
URL https://www.cs.helsinki.fi/u/mluukkai/tirak2010/B-
tree.pdf

[47] Pwc, 2014. Global 100 software leaders by revenue. Accessed May 31, 2019.
URL https://www.pwc.com/gx/en/industries/technology/
publications/global-100-software-leaders/explore-the-
data.html

[48] Python-Software-Foundation, 2019. What is python? executive summary. Accessed
March 28, 2019.
URL https://www.python.org/doc/essays/blurb/

[49] Rathle, G. S. . P., 2017. Fraud detection: Discovering connections with graph
databases. Accessed May 6, 2019.

[50] Robinson, I., Webber, J., Eifrem, E., 2015. Graph databases: new opportunities for
connected data. ” O’Reilly Media, Inc.”, pp. 105–109.
URL https://books.google.no/books?id=
RTvcCQAAQBAJ&printsec=frontcover&redir esc=y#v=
onepage&q&f=false

[51] Rouse, M., 2081. Mysql. Accessed November 5, 2018.
URL https://searchoracle.techtarget.com/definition/MySQL

[52] Sellæg, A., 2011. Perleporten åpen for petter smart. Accessed September 19, 2018.
URL https://www.ntnu.no/documents/304978/0/IG+i+
Ukeadressa+08+10+11+(3).pdf/b7900abd-c0d5-4e62-bfee-
e17b32b1c6e7

[53] Services, A. W., 2018. Amazon neptune. Accessed November 12, 2018.
URL https://aws.amazon.com/neptune/

[54] Soft, M., 2019. What is an api? (application programming interface). Accessed April
19, 2019.
URL https://www.mulesoft.com/resources/api/what-is-an-api

[55] Soshnick, S., 2015. Jordan, cuban, leonsis put millions on sports betting’s future.
Accessed September 19, 2018.
URL https://www.bloomberg.com/news/articles/2015-10-27/
jordan-cuban-leonsis-put-millions-on-sports-betting-s-
future

[56] Sportradar, 2019. Soccer extended v3. Accessed May 15, 2019.
URL https://developer.sportradar.com/docs/read/
football soccer/Soccer Extended v3#soccer-extended-v3-
api-map

[57] Sports, B., 2018. Premier league tv rights: Five of seven live packages sold for
£4.464bn. Accessed March 27, 2019.
URL https://www.bbc.com/sport/football/43002985

73

https://www.cs.helsinki.fi/u/mluukkai/tirak2010/B-tree.pdf
https://www.cs.helsinki.fi/u/mluukkai/tirak2010/B-tree.pdf
https://www.pwc.com/gx/en/industries/technology/publications/global-100-software-leaders/explore-the-data.html
https://www.pwc.com/gx/en/industries/technology/publications/global-100-software-leaders/explore-the-data.html
https://www.pwc.com/gx/en/industries/technology/publications/global-100-software-leaders/explore-the-data.html
https://www.python.org/doc/essays/blurb/
https://books.google.no/books?id=RTvcCQAAQBAJ&printsec=frontcover&redir_esc=y#v=onepage&q&f=false
https://books.google.no/books?id=RTvcCQAAQBAJ&printsec=frontcover&redir_esc=y#v=onepage&q&f=false
https://books.google.no/books?id=RTvcCQAAQBAJ&printsec=frontcover&redir_esc=y#v=onepage&q&f=false
https://searchoracle.techtarget.com/definition/MySQL
https://www.ntnu.no/documents/304978/0/IG+i+Ukeadressa+08+10+11+(3).pdf/b7900abd-c0d5-4e62-bfee-e17b32b1c6e7
https://www.ntnu.no/documents/304978/0/IG+i+Ukeadressa+08+10+11+(3).pdf/b7900abd-c0d5-4e62-bfee-e17b32b1c6e7
https://www.ntnu.no/documents/304978/0/IG+i+Ukeadressa+08+10+11+(3).pdf/b7900abd-c0d5-4e62-bfee-e17b32b1c6e7
https://aws.amazon.com/neptune/
https://www.mulesoft.com/resources/api/what-is-an-api
https://www.bloomberg.com/news/articles/2015-10-27/jordan-cuban-leonsis-put-millions-on-sports-betting-s-future
https://www.bloomberg.com/news/articles/2015-10-27/jordan-cuban-leonsis-put-millions-on-sports-betting-s-future
https://www.bloomberg.com/news/articles/2015-10-27/jordan-cuban-leonsis-put-millions-on-sports-betting-s-future
https://developer.sportradar.com/docs/read/football_soccer/Soccer_Extended_v3#soccer-extended-v3-api-map
https://developer.sportradar.com/docs/read/football_soccer/Soccer_Extended_v3#soccer-extended-v3-api-map
https://developer.sportradar.com/docs/read/football_soccer/Soccer_Extended_v3#soccer-extended-v3-api-map
https://www.bbc.com/sport/football/43002985

[58] Techopedia, 2019. Client/server architecture. Accessed May 12, 2019.
URL https://www.techopedia.com/definition/438/
clientserver-architecture

[59] Trondheimsregionen, N., 2017. Sportradar ble Årets bedrift! Accessed September
19, 2018.
URL https://www.nitr.no/no/aktuelt/sportradar+ble+arets+
bedrift+2017.html

[60] Unknon, 2017. Oracle corporation. Accessed November 5, 2018.
URL http://www.orafaq.com/wiki/Oracle Corporation#WHO

[61] Unknown, 2018. System properties comparison amazon neptune vs. neo4j. Accessed
November 12, 2018.
URL https://db-engines.com/en/system/Amazon+Neptune%
3BNeo4j

[62] Unknown, 2019. Discover the origins and history of the top tier of english football.
Accessed March 27, 2019.
URL https://www.premierleague.com/history

[63] Vukotic, A., Watt, N., Abedrabbo, T., Fox, D., Partner, J., 2014. Neo4j in action.
Manning Publications Co., pp. 12–13.
URL https://books.google.no/books?id=61GdmgEACAAJ

[64] Webber, J., 2018. Powering real-time recommendations with graph database
technology. Accessed May 6, 2019.

74

https://www.techopedia.com/definition/438/clientserver-architecture
https://www.techopedia.com/definition/438/clientserver-architecture
https://www.nitr.no/no/aktuelt/sportradar+ble+arets+bedrift+2017.html
https://www.nitr.no/no/aktuelt/sportradar+ble+arets+bedrift+2017.html
http://www.orafaq.com/wiki/Oracle_Corporation#WHO
https://db-engines.com/en/system/Amazon+Neptune%3BNeo4j
https://db-engines.com/en/system/Amazon+Neptune%3BNeo4j
https://www.premierleague.com/history
https://books.google.no/books?id=61GdmgEACAAJ

Appendix

Below is a table containing execution times in seconds from querying the graph database
using un-optimized queries.

No. of
Iteration Single match Team Season Complete Season

1 0,1386 1,9833 38,7823
2 0,1392 1,5113 31,0692
3 0,1302 1,4360 30,7304
4 0,1541 1,2986 29,8388
5 0,1334 1,3195 28,6499
6 0,1317 1,3570 25,5633
7 0,1277 1,2485 25,6966
8 0,1373 1,1795 24,4926
9 0,1439 1,4090 24,2195

10 0,1287 0,9569 22,5575
11 0,1299 0,8489 20,3340
12 0,1359 0,8491 16,7012
13 0,1280 0,8377 16,8002
14 0,1278 0,8545 16,8275
15 0,1034 0,8262 15,5818
16 0,1842 0,8711 16,3460
17 0,1671 0,9101 15,1158
18 0,1488 0,8292 15,5701
19 0,1297 0,8587 15,2688
20 0,1286 0,8529 15,4075
21 0,1247 0,8249 16,2094
22 0,1216 0,7915 17,0890
23 0,0973 0,9065 16,2204
24 0,1565 0,9317 15,1809
25 0,1243 0,8721 15,5813

75

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Oscar Thån Conrad

Database Solutions to Sports
Applications

A Comparison and Performance Test of Graph
Databases and Relational Databases

Master’s thesis in Master of Informatics
Supervisor: Svein Erik Bratsberg

June 2019

	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	Abbreviations
	Introduction
	Project Description
	Background
	Motivation
	Extended Friends Experiment

	Personal Motivation
	Sportradar AG
	Scope
	Research Strategy
	Structure

	Related Work
	World Cup As a Graph
	The World Cup Graph Domain Model

	Medhi's Study
	Import Time

	Background
	Application Programming Interface
	Sportradar Developer API

	Graph
	Use Cases

	Graph Storage
	Neo4j
	Choosing Neo4j
	The Property Graph Model
	Neo4j Browser
	Cypher
	APOC

	Alternative Graph Database Management Systems
	Amazon Neptune
	OrientDB
	ArangoDB

	Oracle
	MySQL
	Structured Query Language
	Support
	Choosing MySQL
	InnoDB
	B+-Tree
	MySQL Workbench

	Python
	Premier League

	Design & Implementation
	Approach
	Database Design
	Neo4j Graph Database
	Neo4j Driver
	Neo4j Configuration

	MySQL Relational Database
	Design
	MySQL Server
	MySQL Workbench

	Data Mapper Application
	Neo4j Data Mapper
	MySQL Data Mapper
	Data Aggregation

	Hardware

	Results & Discussion
	Expectations
	Results
	Execution Time Neo4j
	Execution Time MySQL

	Analysis
	Single Match
	Team Season
	Complete Season

	Discussion
	Response time

	Database Querying
	Query Performance

	Visualization
	Data Import
	Data Model

	Conclusion & Future Work
	Conclusion
	Future work
	Hardware & Architecture
	Memory Consumption
	Import time
	Different dataset
	Mitigate Cold Start

	Threats to Validity & Limitations
	Contribution

	Bibliography
	Appendix

