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Abstract
An optimal control problem for the production of multiphase steel is investigated
that takes into account phase transformations in the steel slab. The state equations
are a semilinear heat equation coupled with an ordinary differential equation, that
describes the evolution of the steel microstructure. The time-dependent heat transfer
coefficient serves as a control function. Necessary and sufficient optimality conditions
for the control problem are derived. For the numerical solution of the control
problem, a reduced sequential quadratic programming method with a primal-dual
active set strategy is developed. The numerical results are presented for the optimal
control of a cooling line in the production of hot-rolled Mo–Mn dual phase steel.
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1 Introduction
We consider an optimal control problem that describes the hot rolling process of multi-
phase steel, in particular dual phase (DP) steel. Dual phase steels have shown high poten-
tial for automotive applications due to their remarkable property combination with high
strength and good formability. The microstructure of DP steel typically consists of a soft
ferrite phase with dispersed islands of a hard martensite as the secondary phase [3]. The
essential industrial process route for the production of DP steel consists of the hot rolling
and subsequent controlled cooling on the run out table (ROT) which is located behind the
finishing mill.

The hot rolling process of dual phase steel consists of 4 steps as shown in Fig. 1: Rolling in
roughing and finishing stands, which results in the refinement of austenite (initial phase)
grain size due to the repeating static recrystallization (1), laminar cooling into two phase
region (2), isothermal holding at ferrite transformation region temperatures, where the
temperatures remain relatively constant (3), and finally, fast continuous cooling to the re-
quired coiling temperature, during which martensite transformation takes place and bai-
nite transformation can be avoided (4).

The controlled cooling of stages (2)–(4) happens on the run out table. Here, the most
important control parameters are the flow-rate of water and the feed velocity of the strip.
Since the process window for the adjustment of the phase composition is very tight, the
computation of optimal process parameters is an important task. The goal of this paper
is the analysis of a mathematical optimal control problem to compute the desired ferrite
fraction and temperature at the end of step 3 of the process.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13362-019-0063-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13362-019-0063-x&domain=pdf
http://orcid.org/0000-0002-9490-2368
mailto:nataliya.togobytska@htw-berlin.de


Hömberg et al. Journal of Mathematics in Industry             (2019) 9:6 Page 2 of 32

Figure 1 A sketch of the processing scheme for
hot-rolled dual phase steel

The controlled cooling of steel is a well-studied topic in engineering science and math-
ematics. There are a variety of methods used for the control approaches. An algorithm
for the computation of optimal strategies for the cooling of steel strips in hot strip mills
was proposed by Landl et al. [17]. The authors considered the problem of determina-
tion of suitable cooling strategy as a discrete optimization problem and demonstrated
the numerical results for the real hot rolling mill. While they considered an integer op-
timization problem for switching on and off cooling sections, the goal of this study is
to optimize the amount of coolant in a single cooling section. Lezius and Tröltzsch [18]
considered a simplified numerical approach for the controlled cooling of steel profiles.
A method of model predictive control for the temperature evolution of the strip has been
proposed by Hashimoto, Yoshioka and Ohtsuka [10]. In Zheng and Li [26] a control strat-
egy based on Kalman filter and model predictive control is discussed for the hot-rolled
strip laminar cooling process. Wang et al. [25] discussed the method to calculate the con-
vective heat transfer coefficient by combining a mathematical model with a back prop-
agation neural network. While previous optimal control approaches for run out tables
solely focus on the evolution of temperature, the main novelty of this paper is that we put
a special emphasis on the microstructure, i.e., the composition of steel phases produced
upon cooling. As mentioned earlier, from application point of view this is of high rele-
vance, especially for the production of modern multiphase steels such as dual phase or
trip steels.

We formulate an optimal control problem which consists in obtaining the cooling strat-
egy such that the desired dual phase microstructure in steel is reached most accurately.
This problem is a nonlinear boundary control problem, in which the state system consists
of a semilinear heat equation coupled with an ordinary differential equation. The latter
describes the evolution of the ferrite phase fraction. The heat transfer coefficient in the
Newton type cooling boundary condition acts as the control parameter. In a previous pa-
per [4], we have shown how to relate this coefficient to the flow-rate of coolant in a real
cooling process. The scope of this paper is to analyze the resulting boundary coefficient
control problem subject to a semilinear heat equation and rate law to describe the evolu-
tion of ferrite phase. Due to the nonlinearity in the coupling term on the right-hand side
of the heat equation, the state system requires a detailed analysis, especially concerning
the regularity of the solutions, which is of crucial importance for the derivation of second-
order sufficient optimality conditions.
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We investigate the existence of a solution and derive the first-order necessary and
second-order sufficient optimality conditions, which form the basis for the convergence of
the second-order optimization algorithms. Second-order optimality conditions for con-
trol problems governed by parabolic equations have been discussed, e.g., in Goldberg and
Tröltzsch [7] and Raymond and Tröltzsch [20]. In comparison to the very general and
abstract setting of the latter contribution, the main novelty of this paper is twofold, we
consider a control in coefficient problem and we add an additional evolution equation to
the state system to account for the evolution of steel microstructure.

To solve the control problem numerically, we use a reduced sequential quadratic pro-
gramming (rSQP) method. This method has proven to be very effective in many areas
of application, such as optimal control. A successful numerical application of the rSQP
method to parabolic control problems has been reported by Hintermüller, Volkwein and
Diwoky [12], Kupfer and Sachs [16].

In each iteration of rSQP method, the quadratic optimal control problem (QPk) with
control constraints has to be solved. To treat the (QPk) problems, we apply a primal-dual
active set strategy as, for instance, proposed by Bergonioux, Ito and Kunisch [2] for control
constrained optimal control problems.

The paper is organized as follows: In Sect. 2, we analyze the optimal control problem and
derive optimality conditions. In Sect. 3, we discuss the numerical optimization algorithms,
i.e., the reduced SQP method with the active set strategy. The last section is devoted to
numerical results.

2 The optimal control problem
2.1 Problem formulation and assumptions
We consider an optimal control problem for the controlled cooling of steel profiles in order
to obtain a desired temperature and phase distribution in the steel slab. After the last
deformation step, the steel sheet is cooled by water jets on the run out table, where the
steel undergoes the austenite-ferrite phase transformation, see, e.g., [3]. The evolution of
ferrite can be described in general form by the following initial value problem

ft = G(f , θ ),

f (0) = 0.

Here, f denotes the volume fraction of ferrite and θ refers to the temperature. Typically,
the function G can be a nonlinear function in its arguments f and θ . For an example of
concrete model for the austenite-ferrite phase transformation in the hot rolling process,
we refer to [22]. The temperature distribution in the steel slab is described by the heat
equation

ρcpθt – κ�θ = ρLft .

The density ρ , the heat capacity cp, the heat conductivity κ and the latent heat L are as-
sumed to be positive constants. The term ρLft describes the release of heat due to the
phase transformation of ferrite. The boundary condition for the temperature imposed on
the top and the bottom boundary of the domain Ω is given as Newton’s law of cooling

–κ
∂θ

∂n
= u(t)β(x)(θ – θw),
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Figure 2 The scheme of the cooling of steel profiles

where θw is the temperature of the coolant. The proportionality factor is the heat transfer
coefficient, which is split into two parts, one depending only on time and the other only on
the space variable. The function β can describe, for instance, a profile of cooling medium
distribution on the surface of the steel slab, see Fig. 2. The function u can be expressed
through a coolant flow-rate during the cooling and serves as the control variable in our
problem.

We seek an optimal cooling strategy ū = ū(t) such that a desired final phase distribution
fd(x) is reached. At the same time, we want the temperature θd(x, t) to be realized during
the cooling process. Thus, the control problem (P) to obtain an optimal time-dependent
heat transfer coefficient u(t) can be formulated as follows:

min
θ ,f ,u

J(θ , f , u) =
α1

2

∫
Ω

(
f (x, T) – fd(x)

)2 dx +
α2

2

∫∫
Q

(θ – θd)2 dx dt +
α3

2

∫ T

0
u2 dt (1)

subject to

ft = G(θ , f ), in Q = Ω × (0, T), (2a)

f (0) = 0, in Ω , (2b)

ρcpθt – k�θ = ρLft , in Q, (2c)

–k
∂θ

∂n
= u(t)β(x)(θ – θw), on Σ1 = Γ1 × (0, T), (2d)

–k
∂θ

∂n
= 0, on Σ2 = (∂Ω \ Γ1) × (0, T), (2e)

θ (0) = θ0, in Ω (2f)

and

u ∈ Uad =
{

u ∈ L∞(0, T) : ua ≤ u ≤ ub, ua, ub ≥ 0
}

,

where Γ1 denotes the top and the bottom boundary of the domain Ω (see Fig. 2). The fac-
tors αi, i = 1, . . . , 3, are positive constants. The third term in the cost functional represents
a Tikhonov regularization term that can also be interpreted as a measure of the costs of
the control. The control is bounded by two positive constants ua and ub since we consider
only the cooling process and due to the restrictions on the maximal amount of coolant.

Further, we make some assumptions on the quantities of the optimal control problem
that we need for the analysis.
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Assumptions
(A1) Ω ⊂R

3 denotes a bounded domain with Lipschitz boundary ∂Ω .
(A2) The function G = G(θ , f ) is twice continuously differentiable with respect to θ

and f . There is a constant M > 0, such that

∣∣G(θ , f )
∣∣ ≤ M, ∀(θ , f ) ∈R

2.

The second derivative of G w.r.t. (θ , f ) is uniformly Lipschitz on bounded sets, i.e.,
for all M > 0 there exists LM > 0 such that G satisfies

∣∣G′′(θ1, f1) – G′′(θ2, f2)
∣∣ ≤ LM

(|θ1 – θ2| + |f1 – f2|
)

for all θi, fi ∈R with |θi|, |fi| ≤ M, i = 1, 2.
(A3) β ∈ L∞(Σ1), θw ∈ L∞(Σ1), θ0 ∈ C(Ω̄) and θd ∈ L∞(Q).
(A4) fd ∈ L∞(Ω), 0 ≤ fd ≤ 1 a.e. in Ω .

Remark 1 Assumption (A2) can be relaxed and has been chosen only to avoid technicali-
ties when computing the derivatives. For more realistic phase transformation models we
refer to [6].

Remark 2 The choice of the cost functional in (1) is somewhat arbitrary. Mutatis mutan-
dis, also a control of the temperature at end-time and/or a control of the distributed ferrite
fraction is possible.

2.2 Analysis of the state system
Let us start with the discussion of the initial value problem (2a)–(2b) in the state system.
In view of the assumptions, the following result can be proven by standard arguments. For
a detailed proof, we refer to [13] or [14].

Lemma 1 Suppose that (A2) holds true. Then, we have the following:
(a) Let θ ∈ L1(Q) be given, then (2a), (2b) has a unique solution f ∈ W 1,∞(0, T ; L∞(Ω))

and

‖f ‖W 1,∞(0,T ;L∞(Ω)) ≤ M1

with a constant independent of θ .
(b) Let θ1, θ2 ∈ Lp(Q), 1 ≤ p < ∞ and let f1, f2 be the corresponding solutions of (2a),

(2b), then there exists a constant M2 > 0 such that

‖f1 – f2‖W 1,p(0,T ;Lp(Ω)) ≤ M2‖θ1 – θ2‖Lp(Q).

Before considering the heat equation, we recall the following results from the theory of
linear parabolic equations. We consider the following linear parabolic problem

ρcpθt – k�θ = r, in Q, (3a)

–k
∂θ

∂n
= u(t)β(x)(θ – θw), on Σ1, (3b)
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–k
∂θ

∂n
= 0, on Σ2, (3c)

θ (0) = θ0, in Ω . (3d)

It is well known that a suitable function space for the solution of linear parabolic partial
differential equations is

W (0, T) =
{
θ ∈ L2(0, T ; H1(Ω)

)
: θt ∈ L2(0, T ; H1(Ω)∗

}
.

Under additional assumptions on the data r, u, θw, θ0, the following result can be obtained
from Theorem 5.5 in Tröltzsch [24]:

Lemma 2 Suppose that (A3) holds true, and r ∈ Ls1 (Q), u ∈ L∞(0, T), u ≥ 0. Let s1 > 5/2,
s2 > 4, then the initial value problem (3a)–(3d) admits a unique solution θ ∈ W (0, T)∩C(Q̄)
satisfying the a priori estimate with a constant C > 0

‖θ‖W (0,T) + ‖θ‖C(Q̄) ≤ C
(‖r‖Ls1 (Q) + ‖u‖Ls2 (0,T) + ‖θ0‖C(Q̄)

)
. (4)

It is a useful result for the proof of solvability of the state system (2a)–(2f), which is
discussed below.

Theorem 1 Let (A1)–(A4) be satisfied. Then, the state system (2a)–(2f) admits for every
control u ∈ Uad a unique solution

(θ , f ) ∈ W (0, T) ∩ C(Q̄) × W 1,∞(
0, T ; L∞(Ω)

)

satisfying

‖θ‖W (0,T) + ‖θ‖C(Q̄) + ‖f ‖W 1,∞(0,T ;L∞(Ω)) ≤ M3.

Proof If not otherwise stated, c denotes a generic constant, not to be confused with the
heat capacity cp. To prove the existence of a local unique solution to (2c)–(2f), we apply the
Banach’s fixed point theorem. For that purpose, we define an operator F : K ⊂ W (0, T) →
W (0, T) that maps θ̂ ∈ W (0, T) to the solution θ of

ρcpθt – k�θ = ρLf̂t , in Q, (5a)

–k
∂θ

∂n
= uβ(θ – θw), on Σ1, (5b)

–k
∂θ

∂n
= 0, on Σ2, (5c)

θ (0) = θ0 in Ω , (5d)

where f̂ solves (2a)–(2b) with θ̂ .
From Lemma 1 we find that f̂ ∈ W 1,∞(0, T ; L∞(Ω)) is uniquely determined. It follows

from the theory of the linear parabolic equations that the problem (5a)–(5d) possesses a
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unique solution in W (0, T) (see, e.g., [24], Chap. 3.4.4). Hence, we can conclude that F is
well-defined. Furthermore, the following a priori estimate with a constant C1 > 0 is valid

‖θ‖W (0,T) ≤ C1
(‖f̂ ‖L2(Q) + ‖uβθw‖L2(Σ1) + ‖θ0‖L2(Ω)

) ≤ C2,

where C2 depends only on θ0 and the constant M1 from Lemma 1. Hence, if M is chosen
big enough, F is a self mapping on

K =
{
η ∈ W (0, T) : ‖η‖W (0,T) ≤ M

}
.

Now, we want to show that F is a contraction. Let θ̂i ∈ K , i = 1, 2, θi = F(θ̂i) and θ̂ = θ̂1 – θ̂2.
Then, θ = θ1 – θ2 solves

ρcpθt – k�θ = ρL
(
G(θ̂1, f1) – G(θ̂2, f2)

)
, in Q,

–k
∂θ

∂n
= u(t)β(x)θ , on Σ1,

–k
∂θ

∂n
= 0, on Σ2,

θ (0) = 0 in Ω .

Here again, we use the a priori estimate

‖θ‖W (0,T) ≤ c
∥∥G(θ̂1, f1) – G(θ̂2, f2)

∥∥
L2(Q). (6)

Due to the Lipschitz continuity of G in both variables (Assumption (A2)) and Lemma 1(b),
we obtain

‖θ‖W (0,T) ≤ c
(‖θ̂‖L2(Q) + ‖f1 – f2‖L2(Q)

) ≤ c‖θ̂‖L2(Q). (7)

Further, we use the fact that W (0, T) ↪→ C(0, T , L2(Ω))

‖θ‖W (0,T) ≤ c‖θ̂‖L2(Q) ≤ cT1/2‖θ̂‖L∞(0,T ;L2(Ω)) ≤ cT1/2‖θ̂‖W (0,T). (8)

Hence, choosing T+ < T small enough, we conclude that F is a contraction on W (0, T+).
Since F is also a self-mapping on K , we can apply the Banach’s fixed point theorem to
conclude that F has a unique fixed point θ , which is a local solution to (2c)–(2f). By a
bootstrapping argument, the solution can be extended to the time interval [0, T].

Moreover, in view of Lemma 1 we can apply Lemma 2 and obtain the additional regu-
larity for θ . �

In view of the analysis of the state system, we define

Y = W (0, T) ∩ C(Q̄)

and introduce the control-to-state mapping

S = (Sθ , Sf ) : L∞(0, T) → Y × W 1,p(0, T ; Lp(Ω)
)
, 1 ≤ p < ∞, (9)
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which assigns to every control u(t) ∈ L∞(0, T) the solution of the state system (2a)–(2f).
Moreover, the mapping is Lipschitz continuous:

Corollary 1 Suppose that (A1)–(A4) hold true and let (θ1, f1), (θ2, f2) be the solutions of
(2a)–(2f) corresponding to u1, u2 ∈ L∞(0, T). Then, there exists a constant C > 0, such that

‖θ1 – θ2‖C(Q̄) + ‖f1 – f2‖W 1,p(0,T ;Lp(Ω)) ≤ C‖u1 – u2‖L∞(0,T).

Proof Defining θ = θ1 – θ2 and f = f1 – f2, one finds that (θ , f ) solves

ft = G(θ1, f1) – G(θ2, f2), in Q, (10a)

f (0) = 0, in Ω , (10b)

ρcpθt – k�θ = ρLft , in Q, (10c)

–k
∂θ

∂n
= u1(t)β(x)θ + (u1 – u2)(t)β(x)(θ2 – θw), on Σ1, (10d)

–k
∂θ

∂n
= 0, on Σ2, (10e)

θ (0) = 0, in Ω . (10f)

Further, we prove the Lipschitz continuity regarding the L∞(Q)-norm. The multiplication
of (10c) by θ2k–1, for an arbitrary k ∈N and integration over Ω and over (0, t) yields

ρcp

2k

∫
Ω

θ2k(t) dx + κ(2k – 1)
∫ t

0

∫
Ω

θ2k–2|∇θ |2 dx ds +
∫ t

0

∫
Γ1

u1(t)β(σ )θ2k dσ ds

= –
∫ t

0

∫
Γ1

(u1 – u2)β(σ )(θ2 – θw)θ2k–1 dσ ds +
∫ t

0

∫
Ω

ftθ
2k–1 dx ds. (11)

Applying Lemma 1(b) and Hölder’s inequality gives

∫ t

0

∫
Ω

∣∣ftθ
2k–1∣∣dx ds ≤ C1

∫ t

0

∫
Ω

θ2k dx ds. (12)

In order to estimate the first term on the right hand side of (11), we apply Young’s inequal-
ity

|ab| ≤ εp|a|p
p

+
ε–q|b|q

q
,

1
p

+
1
p

= 1

with a = θ2k–1, b = (θ2 – θw)(u1 – u2)β , p = 2k
2k–1 , q = 2k and ε > 0

∫ t

0

∫
Γ1

∣∣(u1 – u2)β(σ )(θ2 – θw)θ2k–1∣∣dσ ds

≤ εp

p

∫ t

0

∫
Γ1

θ2k dσ ds

+
ε–q

q

∫ t

0

∫
Γ1

(u1 – u2)2kβ2k(θ2 – θw)2k dσ ds
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≤ C2
εp

p

∫ t

0

∫
Ω

θ2k dx ds + C2k
εp

p

∫ t

0

∫
Ω

θ2k–2|∇θ |2 dx ds

+ C3
ε–q

q
‖u1 – u2‖2k

L∞(0,T)
∥∥β(θ2 – θw)

∥∥2k
L∞(Σ1). (13)

The second inequality in (13) is valid due to the trace theorem. Further, we aim at ensuring
that (κ(2k –1)–C2k εp

p )
∫ t

0
∫
Ω

θ2k–2|∇θ |2 dx ds ≥ 0 for all k ∈N. For this purpose, we choose
ε = ( pκ

2C2
)1/p. The inequality (13) reduces to

∫ t

0

∫
Γ1

∣∣(u1 – u2)β(θ2 – θw)θ2k–1∣∣dσ ds

≤ κ

2

∫ t

0

∫
Ω

θ2k dx ds

+
κk
2

∫ t

0

∫
Ω

θ2k–2|∇θ |2 dx ds +
C5

2k
C2k

4 ‖u1 – u2‖2k
L∞(0,T). (14)

Inserting (12) and (14) into (11) we conclude

∫
Ω

θ2k(t) dx ≤ C5C2k
4 ‖u1 – u2‖2k

L∞(0,T) + C62k
∫ t

0

∫
Ω

θ2k dx ds. (15)

Gronwall’s Lemma yields

∥∥θ (t)
∥∥2k

L2k ≤ C5C2k
4 ‖u1 – u2‖2k

L∞(0,T) exp(C62kt), ∀t ∈ [0, T].

Taking the (2k)-th root,

sup
0≤t≤T

∥∥θ (t)
∥∥

L2k ≤ C7‖u1 – u2‖L∞(0,T).

Letting k → ∞, we obtain the Lipschitz continuity of the solution operator in L∞-norm.
The coincidence of L∞(Q)- and C(Q̄)-norms implies the Lipschitz stability of the solution
operator in C(Q̄) space. The estimate for ‖f1 – f2‖W 1,p(0,T ;Lp(Ω)) is deduced from Lemma 1.�

Now, let us discuss the differentiability of the solution operator that we need for the
derivation of first-order and second-order optimality conditions.

Theorem 2 Let Assumptions (A1)–(A4) be satisfied. Then, the solution operator S is twice
Frechét-differentiable from L∞(0, T) to Y × W 1,p(0, T ; Lp(Ω)), 1 ≤ p < ∞. The directional
derivative (θh, fh) = S′(u)h = (S′

θ (u)h, S′
f (u)h) at point u ∈ L∞(0, T) in direction h ∈ L∞(0, T)

is given by the solution of

(fh)t = Gθ (θ , f )θh + Gf (θ , f )fh, in Q, (16a)

fh(0) = 0, in Ω , (16b)

ρcp(θh)t – k�θh = ρL(fh)t , in Q, (16c)

–k
∂θh

∂n
= u(t)β(x)θh + h(t)β(x)(θ – θw), on Σ1, (16d)
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–k
∂θh

∂n
= 0, on Σ2, (16e)

θh(0) = 0, in Ω , (16f)

with (θ , f ) = S(u). Furthermore, (θh1h2 , fh1h2 ) = S′′(u)[h1, h2] is the solution of

(fh1h2 )t = Gθ (θ , f )θh1h2 + Gf (θ , f )fh1h2

+ G′′(θ , f )
[
(θh1 , fh1 ), (θh2 , fh2 )

]
, in Q, (17a)

fh1h2 (0) = 0, in Ω , (17b)

ρcp(θh1h2 )t – k�θh1h2 = ρL(fh1h2 )t , in Q, (17c)

– k
∂θh1h2

∂n
= u(t)β(x)θh1h2 + h1(t)β(x)θh2

+ h2(t)β(x)θh1 , on Σ1, (17d)

– k
∂θh1h2

∂n
= 0, on Σ2, (17e)

θh1h2 (0) = 0, in Ω , (17f)

with (θhi , fhi ) = S′(u)hi, i = 1, 2.

Proof The existence of a unique solution (θh, fh) of the linearized state system (16a)–(16f)
in W (0, T)×W 1,∞(0, T ; L10/3(Ω)) can be shown similarly to the proof of Theorem 1. More-
over, the terms on the right-hand side of (16c), (16d) have enough regularity, namely

h(t)β(x)(θ – θw) ∈ L∞(Σ1), Gf (θ , f )fh ∈ L∞(
0, T ; L10/3(Ω)

)
,

Gθ (θ , f )θh ∈ L10/3(Q).

The latter is true due to the fact that Gθ (θ , f ) ∈ L∞(Q), θh ∈ W (0, T) and therefore θh ∈
L10/3(Q) (see Lemma 6.7 in [13]). Then, the continuity of θh follows from Lemma 2.

For a given control u ∈ L∞(0, T) and a direction h ∈ L∞(0, T), we define (θ , f ) = S(u) and
(θh, f h) = S(u + h), respectively. Furthermore, let (θh, fh) be the unique solution of (16a)–
(16f). Considering the remainder terms

rθ = θh – θ – θh, rf = f h – f – fh,

it remains to verify that

‖rθ‖C(Q̄) + ‖rf ‖W 1,p(0,T ;Lp(Ω)) = o
(‖h‖L∞(0,T)

)
.

In view of Assumption (A2), this can be proven similarly to the estimates in Corol-
lary 1 using a first-order Taylor expansion of the function G. Furthermore, one can analo-
gously show Lipschitz continuity of the first derivative of the solution operator, i.e., for all
u1, u2, h ∈ L∞(0, T), there exist a constant C > 0 such that

∥∥(S′
θ (u1) – S′

θ (u2)
)
h
∥∥

C(Q̄) +
∥∥(S′

f (u1) – S′
f (u2)

)
h
∥∥

W 1,p(0,T ;Lp(Ω))

≤ C‖u1 – u2‖L∞(0,T)
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holds true. By means of this and again Assumption (A2), one can show that the unique
solution of the linear system (17a)–(17f) represents the second derivative of the solution
operator. To prove this, one has to derive the remainder term of second order and proceed
as before, which we omit here for reasons of space. �

2.3 Existence and optimality conditions of optimal solutions
Since the state system is nonlinear, we cannot expect uniqueness of an optimal control
and we have to deal with local optimal controls. We have the following result.

Theorem 3 (Existence of optimal controls) Let Assumptions (A1)–(A4) be satisfied. Then,
there exists at least one solution of the optimal control problem (P).

To prove Theorem 3, we need the following auxiliary result:

Lemma 3 Assume {θk} is bounded in L2(0, T ; H1(Ω)) ∩ L∞(Q) and

θk → θ strongly in L2(0, T ; L2(Ω)
)

(18)

and weakly in L2(0, T ; H1(Ω)
)
. (19)

Then, it also holds

θk → θ strongly in L2(0, T ; L2(∂Ω)
)
.

Proof We define the operator A : L2(0, T ; H1(Ω)) → L2(0, T) by

Aθ =
∫

∂Ω

θ (σ , t) dσ .

A is linear and also continuous, since the application of the trace theorem yields

‖Aθ‖2
L2(0,T) =

∫ T

0

(∫
∂Ω

θ (σ , t) dσ

)2

dt

≤ |∂Ω|
∫ T

0

∫
∂Ω

θ2(σ , t) dσ dt ≤ c‖θ‖2
L2(0,T ;H1(Ω)).

In view of (19), we can infer

Aθk ⇀ Aθ in L2(0, T).

Utilizing the boundedness of {θk} in L∞(Q) ∩ L2(0, T ; H1(Ω)), we observe that

∥∥θ2
k
∥∥2

L2(0,T ;H1(Ω)) =
∫ T

0

∫
Ω

θ4
k dx dt + 2

∫ T

0

∫
Ω

|θk∇θk|2 dx dt ≤ c. (20)

Now we take smooth functions ϕ(x) and χ (t), then

∫ T

0

(∫
Ω

θ2
k ϕ dx

)
χ (t) dt +

∫ T

0

(∫
Ω

∇(
θ2

k
)∇ϕ dx

)
χ (t) dt

=
∫ T

0

(∫
Ω

θ2
k ϕ dx

)
χ (t) dt + 2

∫ T

0

(∫
Ω

θk∇θk∇ϕ dx
)

χ (t) dt.
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Since ϕ and χ are smooth, using (18) and (19) we deduce that

〈
θ2

k ,ϕχ
〉
L2(0,T ;H1(Ω)) → 〈

θ2,ϕχ
〉
L2(0,T ;H1(Ω)).

Together with (20), we have shown that

θ2
k ⇀ θ2 weakly in L2(0, T ; H1(Ω)

)
.

Since the limit does not depend on the extracted subsequence the whole sequence con-
verges. From this, we infer

Aθ2
k ⇀ Aθ2 which means

‖θk‖L2(0,T ;L2(∂Ω)) → ‖θk‖L2(0,T ;L2(∂Ω))

and thus θk → θ strongly in L2(0, T ; L2(∂Ω)). �

With Lemma 3 at hand, we are now able to prove the existence of optimal solution of
control problem (P).

Proof of Theorem 3 Due to Theorem 1, there exist a unique solution

(θ , f ) ∈ W (0, T) ∩ C(Q̄) × W 1,p(0, T ; Lp(Ω)
)

of the state system (2a)–(2f) for every control u ∈ Uad. Since the set of admissible con-
trols is bounded in L∞(0, T), the set of respective solutions (θ , f ) of the state system is
bounded in W (0, T) ∩ C(Q̄) × W 1,p(0, T ; Lp(Ω)), see Lemma 1 and Theorem 1. By means
of boundedness of the cost functional, there exists a minimizing sequence {θk , fk , uk} such
that

j = lim
k→∞

J(θk , fk , uk) = inf J(θ , f , u),

where (θk , fk) = S(un) is the solution of the state system w.r.t. to the control uk .
Since Uad is bounded, closed and convex, there exists a subsequence {uk′ } such that

uk′ ⇀ ū weakly in L2(0, T).

In view of Theorem 1, extracting possibly a further subsequence still indexed by k′, we
have

θk′ ⇀ θ weakly in W (0, T) (21)

strongly in L2(Q). (22)

Applying Lemma 1 we obtain

fk′ → f strongly in W 1,2(0, T ; L2(Ω)
)
,
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where f is the solution corresponding to θ . We use test functions ϕ ∈ H1(Ω) and
χ ∈ C1[0, T] such that χ (T) = 0 and consider the weak formulation of (2c)–(2f) for
(θk′ , fn′ , un′ )

ρcp

∫ T

0

∫
Ω

θk′ ,tϕχ dx dt + k
∫ T

0

∫
Ω

∇θk′∇ϕχ dx dt

+
∫ T

0

(∫
Γ1

θk′β(σ )ϕ dσ

)
uk′ (t)χ dt

=
∫ T

0

(∫
Γ1

θwβ(σ )ϕ dσ

)
uk′ (t)χ dt +

∫ T

0

∫
Ω

fk′ϕχ dx dt. (23)

Except of the third term in (23) we can pass to the limit by standard arguments. To pass
to the limit in the remaining term we define

αk(t) =
(∫

Γ1

θkβ(σ )ϕ dσ

)
χ (t)

and estimate

∫ T

0
(αk′ – α)2 dt =

∫ T

0

(∫
Γ1

(θk′ – θ )β(σ )ϕ dσ

)2

χ2(t) dt ≤ c
∫ T

0
‖θk′ – θ‖2

L2(Γ1) dt.

Now we apply Lemma 3 and obtain

αk′ → α strongly in L2(Γ1),

which enables us to pass to the limit in the remaining term in (23). Since the solution to
the state equation is unique, we can infer

θ = θ (ū) =: θ̄ and f = f (θ̄ ) =: f̄ .

The optimality of (θ̄ , f̄ , ū) follows by standard arguments using the lower semicontinuity
of the cost functional w.r.t. u. �

In the following theorem first-order necessary optimality conditions are characterized
by respective adjoint equations.

Theorem 4 (Necessary optimality conditions) Let ū ∈ Uad be an optimal control of prob-
lem (P) and (θ̄ , f̄ ) = S(ū) the associated solution of the state system (2a)–(2f). Then there
exists a unique solution (p̄, q̄) ∈ Y × W 1,∞(0, T ; L∞(Ω)) such that

–q̄t = Gf (θ̄ , f̄ )(q̄ + ρLp̄), in Q, (24a)

q̄(T) = α1
(
f̄ (T) – fd

)
, in Ω , (24b)

–ρcpp̄t – k�p̄ = Gθ (θ̄ , f̄ )(ρLp̄ + q̄) + α2(θ̄ – θd), in Q, (24c)

–k
∂p̄
∂n

= ū(t)β(x)p̄, on Σ1, (24d)
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–k
∂p̄
∂n

= 0, on Σ2, (24e)

p̄(T) = 0, in Ω . (24f)

Moreover, the following variational inequality is valid

∫∫
Σ1

(
–p̄β(σ )(θ̄ – θw) +

α3

|Γ1| ū
)

(u – ū) dσ dt ≥ 0 ∀u ∈ Uad. (25)

Proof First observe that the system (24a)–(24f) is a linear backward-in-time system of the
parabolic equation and ODE. After the time transformation t �→ T – t one can proceed as
in the proof of Theorem 2 in order to prove the existence of the unique solution (p̄, q̄) ∈
W (0, T) ∩ C(Q̄) × W 1,∞(0, T ; L∞(Ω)) of the system (24a)–(24f).

By means of the control to state mapping (9), the reduced cost functional of problem (P)
is given by

min
u∈Uad

j(u) = J
(
S(u), u

)
=

α1

2

∫
Ω

(
Sf (u)(T) – fd

)2 dx

+
α2

2

∫∫
Q

(
Sθ (u) – θd

)2 dx dt +
α3

2

∫ T

0
u2 dt.

Due to Theorem 2, j is differentiable and the set of admissible controls Uad bounded, closed
and convex. Hence, the first-order necessary optimality conditions for a (local) optimal
solution ū ∈ Uad is given by j′(ū)(u – ū) ≥ 0, ∀u ∈ Uad. For given direction h ∈ L∞(0, T) we
have

j′(ū)h = α1

∫
Ω

(
Sf (ū)(T) – fd

)
S′

f (ū)h dx

+ α2

∫∫
Q

(
Sθ (ū) – θd

)
S′

θ (ū)h dx dt + α3

∫ T

0
ūh dt. (26)

We will rewrite the directional derivative with the help of (p̄, q̄) which solves the adjoint
system (24a)–(24f). The existence of a unique solution of (24a)–(24f) can be proven similar
to Theorem 1. For brevity we introduce fh = S′

f (ū)h and θh = S′
θ (ū)h as the solution of the

linearized system (16a)–(16f). We start by multiplying (16a) with q̄ and integrate over Q:

0 =
∫∫

Q

(
(fh)t – Gθ (θ̄ , f̄ )θh – Gf (θ̄ , f̄ )fh

)
q̄ dx dt

=
∫∫

Q
–q̄t fh – q̄

(
Gθ (θ̄ , f̄ )θh + Gf (θ̄ , f̄ )fh

)
dx dt +

∫
Ω

fh(T)q̄(T) dx.

Due to end-time condition for q̄, one can obtain for the first term in (26)

α1

∫
Ω

(
fh(T) – fd

)
fh(T) dx =

∫∫
Q

q̄tfh + q̄
(
Gθ (θ̄ , f̄ )θh + Gf (θ̄ , f̄ )fh

)
dx dt

=
∫∫

Q
–ρLGf (θ̄ , f̄ )p̄fh + q̄Gθ (θ̄ , f̄ )θh.
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Next, we test (24c) with θh, integrate over Q such that

α2

∫∫
Q

(θ̄ – θd)θh dx dt = –
∫ T

0
ρcpp̄tθh dt – κ

∫∫
Q

�p̄θh dx dt

–
∫∫

Q
Gθ (θ̄ , f̄ )(ρLp̄ + q̄)θh dx dt

=
∫ T

0
ρcpp̄(θh)t dt – κ

∫∫
Q

�θhp̄ dx dt

–
∫∫

Q
Gθ (θ̄ , f̄ )(ρLp̄ + q̄)θh dx dt –

∫∫
Σ2

hβ(θ̄ – θw)p̄ dσ dt

= –
∫∫

Σ1

hβ(θ̄ – θw)p̄ dσ dt –
∫∫

Q
Gθ (θ̄ , f̄ )(ρLp̄ + q̄)θh dx dt

+
∫∫

Q
ρL

(
Gθ (θ̄ , f̄ )θh + Gf (θ̄ , f̄ )fh

)
p̄ dx dt.

Summarizing, one replace (26) by

j′(ū)h = –
∫∫

Σ1

hβ(θ̄ – θw)p̄ dσ dt + α3

∫ T

0
ūh dt.

Thus, the first-order optimality conditions for a (local) optimal solution ū are represented
by the variational inequality (25). �

Next, we will formulate second-order sufficient optimality conditions regarding the op-
timal control problem (P). Therefore, we provide the second derivative of the reduced
cost functional j(u) = J(S(u), u). Straightforward computation and the use of the adjoint
variables introduced in Theorem 4 yields

j′′(u)[h1, h2] = α1

∫
Ω

fh1 (T)fh2 (T) dx + α2

∫∫
Q

θh1θh2 dx dt

+ α3

∫ T

0
h1h2 dt –

∫∫
Σ1

(θh1 h2 + θh2 h1)p dσ dt

+
∫∫

Q
G′′(θ (u), f (u)

)[
(θh1 , fh1 ), (θh2 , fh2 )

]
(ρLp + q) dx dt, (27)

with (θhi , fhi ) = S′(u)hi, i = 1, 2 and (p, q) is the solution of the adjoint system (24a)–(24f).
In all what follows we denote by ū an admissible control of problem (P) with associated

solution (θ̄ , f̄ ) = S(ū) of the state system (2a)–(2f). We suppose that the first-order opti-
mality conditions given in Theorem 4 are satisfied with respective adjoint states (p̄, q̄). Let
us define the strongly active set associated to ū. For fixed τ > 0 we set

Aτ (ū) =
{

t ∈ (0, T) :
∣∣∣∣
∫

Γ1

–p̄(σ , t)
(
θ̄ (σ , t) – θw(σ , t)

)
dσ + α3ū(t)

∣∣∣∣ > τ

}
.

Next, we shall assume a coercivity condition on the second derivative of the cost functional
for directions associated to the previous strongly active set, henceforth called second-
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order sufficient optimality conditions:

There exist τ > 0 and δ > 0 such that

j′′(ū)h2 ≥ δ‖h‖2
L2(0,T)

holds for all h = ū – u, u ∈ Uad with h = 0 on Aτ (ū)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (SSC)

Theorem 5 Let ū be an admissible control of problem (P) with associated state (θ̄ , f̄ ) = S(ū)
satisfying the first-order necessary optimality conditions given in Theorem 4 with associ-
ated adjoint states (p̄, q̄). Further, it is assumed that (SSC) holds at ū. Then there exist a
δ̃ > 0 and ρ > 0 such that

J(θ , f , u) ≥ J(θ̄ , f̄ , ū) + δ̃‖u – ū‖2
L2(0,T) (28)

holds for all u ∈ Uad with ‖u – ū‖L∞(0,T) ≤ ρ with associated states (θ , f ) = S(u).

Proof The proof closely resembles that of Theorem 5.17 in [24], therefore we will not give
here all details and refer to [24]. We only indicate some important arguments that need a
bit more explanation.

The crutial point in the proof is the fact that the quadratic form j′′(u)[h1, h2] has to de-
pend continiously on hi, i = 1, 2 in the L2-norm, i.e we have to ensure the following conti-
nuity estimate

∣∣j′′(u)[h1, h2]
∣∣ ≤ c‖h1‖L2(0,T)‖h2‖L2(0,T). (29)

The first two terms in j′′(u)[h1, h2] (see (27)) can be estimated with respect to the L2-norm
of hi, i = 1, 2 by applying standard a priori estimates and Lemma 1(b), e.g.

‖θhi‖L∞(Q) ≤ c‖θ̄‖C(Q̄)‖hi‖L2(0,T),

‖fhi‖L∞(Q) ≤ c‖θ̄‖C(Q̄)‖hi‖L2(0,T).

The other terms are more delicate. Here we take advantage of the regularity of the adjoint
state. Using trace theorem we estimate

∣∣∣∣
∫∫

Σ1

θhi hjp dσ dt
∣∣∣∣ ≤ c‖p‖C(Q̄)‖θhi‖L2(0,T ;H1(Ω))‖hj‖L2(0,T)

≤ c‖p‖C(Q̄)‖θhi‖W (0,T)‖hj‖L2(0,T) ≤ c‖p‖C(Q̄)‖hi‖L2(0,T)‖hj‖L2(0,T)

for i, j = 1, 2, i �= j. For the last term in (27) we need to estimate the second derivative of
G(θ , f )

∣∣G′′(θ , f )
[
(θh1 , fh1 ), (θh2 , fh2 )

]∣∣
=
∣∣Gθθ [θh1 , θh2 ] + Gθ f [θh1 , fh2 ] + Gf θ [fh1 , θh2 ] + Gff [fh1 , fh2 ]

∣∣
≤ c

(‖θh1‖C(Q̄)‖θh2‖C(Q̄) + ‖θh1‖C(Q̄)‖fh2‖C(Q̄)

+ ‖fh1‖C(Q̄)‖θh2‖C(Q̄) + ‖fh1‖C(Q̄)‖fh2‖C(Q̄)
)
.
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The last step of the estimation is valid due to the uniformly boundedness of the partial
derivatives of G(θ , f ) up to the order two on the bounded sets (it follows from Assump-
tion (A2)).

The next important issue is to estimate the second-order remainder term of the reduced
cost functional j. We denote h = u – ū. It follows from Taylor’s theorem with integral re-
mainder (see, e.g., Theorem 8.14.3, p. 186 in [5]) that

j(u) = j(ū) + j′(ū)h +
1
2

j′′(ū)h2 + rj
2(ū, h)

with the remainder

rj
2(ū, h) =

∫ 1

0
(1 – s)

(
j′′(ū + sh) – j′′(ū)

)
h2 ds.

Let (θ̄ , f̄ ) = S(ū), (θ , f ) = S(ū + sh) and (θ̄h, f̄h) = S′(ū)h, (θh, fh) = S′(ū + sh)h. Further, we
consider

(
j′′(ū + sh) – j′′(ū)

)
h2

= α1

∫
Ω

f 2
h (T) – f̄ 2

h (T) dx + α2

∫
Ω

θ2
h (T) – θ̄2

h (T) dx

– 2
∫∫

Σ1

(θhp – θ̄hp̄)h dσ dt

+
∫∫

Q
G′′(θ , f )(θh, fh)2(ρLp + q) – G′′(θ̄ , f̄ )(θ̄h, f̄h)2(ρLp̄ + q̄) dx dt. (30)

In order to estimate the terms in (30), we need the following estimates

‖fh – f̄h‖W 1,p(0,T ;Lp(Ω)) + ‖θh – θ̄h‖C(Q̄) ≤ cs‖h‖L∞(0,T)‖h‖L2(0,T),

‖q – q̄‖W 1,p(0,T ;Lp(Ω)) + ‖p – p̄‖C(Q̄) ≤ cs‖h‖L∞(0,T),
(31)

which can be obtained by the standard a priori estimates and Lipschitz continuity of the
solution operator. Using (31) and Lipschitz continuity of G′′(θ , f ), we can estimate the re-
mainder term rj

2 as follows

∣∣rj
2(ū, h)

∣∣ ≤ c
∫ 1

0
(1 – s)s‖h‖L∞(0,T)‖h‖2

L2(0,T) ds ≤ c‖h‖L∞(0,T)‖h‖2
L2(0,T).

From this point, we can argue along exactly the same lines as on pp. 292–294 in the proof
of Theorem 5.17 in [24] to conclude the validity of the assertion. �

Such kind of sufficient optimality conditions is an indispensable tool basis for carry-
ing out numerical analysis of optimal control problems, e.g., convergence analysis of the
sequential quadratic programming method in order to solve optimal control problems
numerically.

3 Numerical implementation
In this section we introduce numerical algorithms for the solution of optimal control prob-
lem (P) analyzed in the previous section. This problem belongs to the class of the nonlinear
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boundary control problems with control constraints. The SQP (Sequential Quadratic Pro-
gramming) method has turned out to be one of the most successful methods in nonlinear
optimization (see, e.g., [1, 19]). The principal idea is to linearize the nonlinear equality
constraints and to replace the cost functional by a quadratic approximation of the La-
grangian. It is well known that the SQP algorithm exhibits local quadratic convergence
in finite-dimensional spaces. The convergence analysis for nonlinear parabolic boundary
control problems was presented in the works of Tröltzsch [8, 23].

In this work we focus on the reduced SQP method (rSQP), where the reduction onto
the control space takes place when solving the (QPk)-subproblems. We also introduce
the primal-dual active set (PDAS) strategy, used for the treatment of the quadratic (QPk)
problems in each iteration of rSQP method. The conjugate gradient (CG) method has been
applied to solve the linear system of equations arising in the (PDAS) algorithm.

3.1 Reduced SQP method
The main idea of reduced SQP methods in contrast to usual SQP methods is to use only an
approximation of the projected Hessian of the Lagrangian onto the kernel of the linearized
constraint, instead of an approximation of the full Hessian of the Lagrangian.

We introduce the Lagrange functional

L(θ , f , u, p, q) : Y × W 1,∞(
0, T ; L∞)× L∞(0, T) × Y × W 1,∞(

0, T ; L∞) →R

with Y := W (0, T) ∩ C(Q̄) and

L(θ , f , u, p, q) = J(θ , f , u) –
(∫ T

0
ρcp〈θt , p〉H1(Ω)∗ ,H1(Ω) dt + a(u)[θ , p]

–
(
u(t)βθw, p

)
Σ1

–
(
ρLG(θ , f ), p

)
Q +

(
ft – G(θ , f ), q

)
Q

)
,

with a bilinear form

a(u)[θ , v] :=
∫∫

Q
k∇θ · ∇v dx dt +

∫∫
Σ1

uβθv dσ dt,

and (·, ·)Q, (·, ·)Σ1 denote the scalar products in L2(Q) and L2(Σ1), respectively.
At each iteration of the SQP method a quadratic approximation of the Lagrangian is

minimized under linearized constraints, where it is assumed that the current iterate xk =
(θ k , f k , uk) is sufficiently close to a local optimal solution (θ̄ , f̄ , ū):

min
1
2
L′′(xk , pk , qk)[δx, δx] + J ′(xk)δx

s.t.

δft = Gf
(
θ k , f k)δf + Gθ

(
θ k , f k)δθ

– f k
t + G

(
θ k , f k), in Q,

δf (0) = –f k(0), in Ω ,

ρcpδθt – k�δθ = ρLδft –
(
ρcpθ

k
t – k�θ k – ρLf k

t
)
, in Q, (QPk)
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–k
∂δθ

∂n
– uk(t)β(x)δθ = δu(t)

(
θ k – θw

)

+ k
∂θ k

∂n
+ uk(t)β(x)

(
θ k – θw

)
, on Σ1,

–k
∂δθ

∂n
= k

∂θ k

∂n
, on Σ2,

δθ (0) = θ0 – θ k(0), in Ω ,

ua ≤ δu + uk ≤ ub in (0, T).

Note that

J ′(xk)δx = α1
(
f k(T) – fd, δf

)
Ω

+ α2
(
θ k – θd, δθ

)
Q + α3

(
uk , δu

)
(0,T)

and

L′′(xk , pk , qk)[δx, δx] = α1(δf , δf )Ω + α2(δθ , δθ )Q + α3(δu, δu)(0,T)

– 2
(
δuβδθ , pk)

Σ1
+
(
G′′(θ k , f k)[δθ , δf ]2,ρLpk + qk)

Q. (32)

In order to prescribe the resulting optimality system in a preferably compact way, we will
introduce an abstract description of the state equation and its linearization. The state sys-
tem can be written as a mapping

e(θ , f , u) =

(
e1(θ , f , u)
e2(θ , f , u)

)
: Y × L∞(0, T) → L2(0, T ; H1(Ω)∗

)× Lr(Q)

and

e(θ , f , u) = 0.

Moreover, the mapping is defined by using test functions p ∈ L2(0, T ; H1(Ω)), q ∈ Ls(Q):

e1(θ , f , u)(p) :=
∫ T

0
ρcp〈θt , p〉H1(Ω)∗ ,H1(Ω) dt + a(u)[θ , p] –

(
ρLG(θ , f ), p

)
Q

–
(
u(t)β(x)θw, p

)
Σ1

, (33)

e2(θ , f , u)(q) :=
∫∫

Q
ftq – G(θ , f )q dx dt. (34)

By means of this, the linearized state system in problem (QPk) is given by

ex
(
xk)(δθ , δf , δu) =

(
e1,θ (xk)δθ + e1,f (xk)δf + e1,u(xk)δu

e2,θ (xk)δθ + e2,f (xk)δf

)
= –e

(
xk).

Note that e2,u(·) is zero. The partial derivatives are defined as follows:

(
e1,θ

(
θ k , f k , uk)δθ)(v) =

∫ T

0
ρcp〈δθt , v〉H1(Ω)∗ ,H1(Ω) dt + a

(
uk)[δθ , v]

–
(
ρLGθ

(
θ k , f k)δθ , v

)
Q,
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(
e1,f

(
θ k , f k , uk)δf

)
(v) = –

(
ρLGf

(
θ k , f k)δf , v

)
Q, (35)

(
e1,u

(
θ k , f k , uk)δu

)
(v) =

(
δu(t)β(x)

(
θ k – θw

)
, v
)
Σ1

,
(
e2,θ

(
θ k , f k , uk)δθ)(q) =

(
–Gθ

(
θ k , f k)δθ , q

)
Q,

(
e2,f

(
θ k , f k , uk)δf

)
(q) =

(
δft – Gf

(
θ k , f k)δf , q

)
Q.

Hence, problem (QPk) can be written as

min
1
2
L′′(xk , pk , qk)[δx, δx] + J ′(xk)δx

s.t. ex
(
xk)(δθ , δf , δu) = –e

(
xk), (QPk)

δu ∈ Uad –
{

uk}.

Introducing adjoint variables with respect to the linearized state system and neglecting
the inequality constraints for a moment, the optimality system is given in the following
compact form

⎛
⎜⎜⎜⎜⎜⎜⎝

L′′
θθ L′′

θ f L′′
θu e∗

1,θ e∗
2,θ

L′′
f θ L′′

ff L′′
fu e∗

1,f e∗
2,f

L′′
uθ L′′

uf L′′
uu e∗

1,u 0
e1,θ e1,f e1,u 0 0
e2,θ e2,f 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

δθ

δf
δu
p
q

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

–Jθ
–Jf

–Ju

–e

⎞
⎟⎟⎟⎠ . (36)

For simlicity, function arguments are now omitted. Unless otherwise stated, all functions
are to be evaluated at k-th iterate. Introducing the notation L′′

(θ ,f )—the second derivative
of the Lagrangian L with respect to the state pair variable (θ , f ), we can rewrite the KKT
matrix as 3 × 3 block matrix. Since the linearized state system is uniquely solvable for
every right hand side (it can be shown along the lines of Theorem 1), we can derive the
following decomposition of the full KKT matrix in (36) by Gaussian block elimination

⎛
⎜⎝
L′′

(θ ,f ) L′′
(θ ,f )u e∗

(θ ,f )

L′′
u(θ ,f ) L′′

uu e∗
u

e(θ ,f ) eu 0

⎞
⎟⎠ =

⎛
⎜⎝
L′′

(θ ,f )e
–1
(θ ,f ) 0 I

L′′
u(θ ,f )e

–1
(θ ,f ) I e∗

ue–∗
(θ ,f )

I 0 0

⎞
⎟⎠

⎛
⎜⎝

e(θ ,f ) eu 0
0 H 0
0 W e∗

(θ ,f )

⎞
⎟⎠ .

The so called reduced Hessian H is defined by

H = L′′
u + e∗

ue–∗
(θ ,f )

(
L′′

(θ ,f )e
–1
(θ ,f )eu – L′′

(θ ,f )u
)

– L′′
u(θ ,f )e

–1
(θ ,f )eu. (37)

Moreover, we have

W = –L′′
(θ ,f )e

–1
(θ ,f )eu + L′′

(θ ,f )u.

By means of this decomposition, (36) can be treated by:
(i) Solve the reduced Hessian system:

Hδu = –Ju + e∗
ue–∗

(θ ,f )
(
J(θ ,f ) – L′′

(θ ,f )e
–1
(θ ,f )e

)
+ L′′

u(θ ,f )e
–1
(θ ,f )e︸ ︷︷ ︸

:=r

; (38)
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(ii) Solve the linearized state system, i.e.

e(θ ,f )

(
δθ

δf

)
= –euδu – e;

(iii) Solve the adjoint state system, i.e.

e∗
(θ ,f )

(
p
q

)
= –J(θ ,f ) – L′′

(θ ,f )

(
δθ

δf

)
– L′′

(θ ,f )uδu.

Based on this arguments and taking the control constraints into account, the reduced op-
timality conditions of the linear quadratic problem (QPk) are given by

(
H
(
xk , pk , qk)δu – r

(
xk , pk , qk), δv – δu

)
(0,T) ≥ 0 ∀δv ∈ Uad –

{
uk}, (39)

where H is defined as in (37) and the residuum r has to be evaluated by

r := –Ju + e∗
ue–∗

(θ ,f )
(
J(θ ,f ) – L′′

(θ ,f )e
–1
(θ ,f )e

)
+ L′′

u(θ ,f )e
–1
(θ ,f )e.

Concluding, we state the rSQP algorithm for tackling the problem (P) in Algorithm 1.

3.2 Primal-dual active set (PDAS) strategy
In a next step we have to specify how to solve the reduced linear quadratic optimal control
problems arising in the iterations of the above SQP method. To this end, we will use an
Primal-dual active set strategy. Let us assume that the active sets of the optimal solution
of problem (QPk) are known, i.e. we can define

A– =
{

t ∈ (0, T) | δu = ua – uk},

A+ =
{

t ∈ (0, T) | δu = ub – uk},

I = (0, T) \ (
A– ∪ A+).

Furthermore, we decompose the control δu = δuI + δuA in an active part δuA and inactive
part δuI according to the previous sets:

δuA =

⎧⎪⎪⎨
⎪⎪⎩

ua – uk , t ∈ A–,

ub – uk , t ∈ A+,

0, else,

δuI =

⎧⎪⎪⎨
⎪⎪⎩

0, t ∈ A–,

0, t ∈ A+,

unknown, t ∈ I.

The problem (QPk) can be interpreted as an free optimal control problem, where δuI

serves as control variable. For a given active part δuA, then the variational inequality (39)
simplifies to:

H
(
xk , pk , qk)δuI = r

(
xk , pk , qk) – H

(
xk , pk , qk)δuA.

Now, the idea of the active set strategy is to iterate with respect to the active sets based
on initial sets A–

0 , A+
0 and I0. Suppose that for given active sets A–

l and A+
l the solution of

the respective free optimal control problem is denoted by δul
I and we set δul = δul

I + δul
A.
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Algorithm 1 Reduced SQP method (outer loop)
1: Choose initial variables x0 = (θ0, f 0, u0) sufficiently close to (θ̄ , f̄ , ū) and set k := 0
2: Evaluate (pk , qk) as the solution of the adjoint system of (P)
3: repeat
4: Primal-dual active set strategy (inner loop)

Solve (QPk), i.e. determine δu such that

(
H
(
xk , pk , qk)δu – r

(
xk , pk , qk), δv – δu

)
(0,T) ≥ 0 ∀δv ∈ Uad –

{
uk}

is satisfied
5: Solve linearized state system

e(θ ,f )
(
xk)

(
δθ

δf

)
= –eu

(
xk)δu – e

(
xk)

6: Solve the adjoint state system of (QPk), i.e.

e∗
(θ ,f )

(
xk)

(
p
q

)
= –J(θ ,f )

(
xk) – L′′

(θ ,f )
(
xk , pk , qk)

(
δθ

δf

)
– L′′

(θ ,f )u
(
xk , pk , qk)δu

7: Update iterates

uk+1 = uk + δu, θ k+1 = θ k + δθ , f k+1 = f k + δf , pk+1 := p, qk+1 := q

8: Set k := k + 1
9: until

τ :=
1
5

(‖uk+1 – uk‖L2(0,T)

‖uk‖L2(0,T)
+

‖θ k+1 – θ k‖L2(Q)

‖θ k‖L2(Q)
+

‖f k+1 – f k‖L2(Q)

‖f k‖L2(Q)

+
‖pk+1 – pk‖L2(Q)

‖pk‖L2(Q)
+

‖qk+1 – qk‖L2(Q)

‖qk‖L2(Q)

)
< tol

Based on the variational inequality, an update of the active sets for a fixed constant c > 0
can be defined as follows

A–
l+1 :=

{
t ∈ (0, T) | c

(
δul

I – ua + uk) – H
(
xk , pk , qk)δul

I + r
(
xk , pk , qk) < 0

}
,

A+
l+1 :=

{
t ∈ (0, T) | c

(
δul

I – ub + uk) – H
(
xk , pk , qk)δul

I + r
(
xk , pk , qk) > 0

}
,

Il+1 = (0, T) \ (
A–

l+1 ∪ A+
l+1

)
.

A usual stopping criterion is the coincidence of subsequent active sets A–
l+1 = A–

l and A+
l+1 =

A+
l . One can easily check, that if the previous condition is satisfied the optimal active sets

are determined such that the variational inequality (39) is fulfilled and problem (QPk) is
solved. Summarized, the active set strategy for solving the linear quadratic subproblems
(QPk) of the SQP method is in Algorithm 2.
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Algorithm 2 Primal-dual active set strategy for solving (QPk) (inner loop)
1: Choose initial active sets according to current iterate of SQP method, i.e.

A–
0 =

{
t | uk(t) = ua

}
, A+

0 =
{

t | uk(t) = ub
}

, I0 = (0, T) \ (
A–

0 ∪ A+
0
)
.

2: Set l = 0 and

δu0,A =

⎧⎪⎨
⎪⎩

ua – uk , t ∈ A–
0 ,

ub – uk , t ∈ A+
0 ,

0, else

3: Define operators EIl : L∞(0, T) → L∞(0, T), u �→ χIl u and EAl := I – EIl , where χIl is the
characteristic function w.r.t. Il

4: Determine δul,I by solving

(
EIl H

(
xk , pk , qk)EIl + EAl

)
δul,I = EIl

(
r
(
xk , pk , qk) – H

(
xk , pk , qk)δul,A

)

and set δul = δul,I + δul,A
5: Determine state variables (δθl, δfl)

e(θ ,f )
(
xk , pk , qk)(δθl

δfl

)
= –eu

(
xk , pk , qk)δul – e

(
xk , pk , qk)

6: Evaluate adjoint variables (pl, ql) by

e∗
(θ ,f )

(
xk , pk , qk)(pl

ql

)
= –J(θ ,f )

(
xk , pk , qk)–L′′

(θ ,f )
(
xk , pk , qk)(δθl

δfl

)
–L′′

(θ ,f )u
(
xk , pk , qk)δul

7: Determine

λ– := δul – ua + uk –
(
L′′

uδul + e∗
1,upl + L′′

u(θ ,f )

(
δθl
δfl

)
+ Ju

)
,

λ+ := δul – ub + uk –
(
L′′

uδul + e∗
1,upl + L′′

u(θ ,f )

(
δθl
δfl

)
+ Ju

)

and update active sets

A–
l+1 =

{
t | λ–(t) < 0

}
, A+

l+1 =
{

t | λ+(t) > 0
}

, Il+1 = (0, T) \ (
A–

0 ∪ A+
0
)
.

8: if A–
l+1 = A–

l and A+
l+1 = A+

l then
9: STOP

10: else
11:

δu(l+1),A =

⎧⎪⎨
⎪⎩

ua – uk , t ∈ A–
l+1,

ub – uk , t ∈ A+
l+1,

0, else

set l = l + 1 and GOTO 3
12: end if
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In a last step, we have to provide a method for solving the linear system of equations in
step 4 of the primal dual active set strategy. Due to the definition of the reduced Hessian
in (37), the system matrix H is not explicitly given after choosing a discretization strat-
egy for the underlying partial differential equations. Hence, an iterative solver has to be
established for tackling the reduced Hessian system, e.g. Conjugate gradient method (CG
method) or Generalized minimal residual method (GMRES). In view of second-order suf-
ficient optimality conditions for the original problem, we have applied the CG method for
solving

H̃δul = (EIl HEIl + EAl )δul,I = EIl (r – Hδul,A) =: b.

4 Numerical results
In this section we discuss the numerical solution of the control problem (P). Firstly, we
construct a test control problem in order to check the convergence of the reduced SQP
method with a primal-dual active set strategy described above. Then we solve the opti-
mal control problem for the hot rolling of DP steel. Here, for a globalization of the rSQP
method, we use a projected gradient algorithm (see e.g. [15]) with a line search according
to the Armijo rule to find suitable initial values for the rSQP method.

The numerical algorithms have been implemented in WIAS-pdelib software. For the
solving the state and adjoint system the finite element toolbox pdelib was used.

4.1 A test problem
Let Ω = (0, 1)× (0, 1), Γ denotes the boundary of Ω and T > 0. We apply the rSQP method
discussed above to the semilinear parabolic boundary control problem

min J(θ , u) =
1
2

∫ T

0

∫
Ω

(θ – θd,Ω )2 dx dt +
1
2

∫ T

0

∫
Γ

(θ – θd,Γ )2 dx dt +
1
2

∫ T

0
(u – ud)2 dt

subject to

θt – �θ = –θ5 + f (x, t), in Ω × (0, T),

∂θ

∂ν
+ θ =

(
ũ(t) – u(t)

)
g(x), on Γ × (0, T),

θ (x, 0) = θ0(x), in Ω ,

and

ua ≤ u(t) ≤ ub a.e. in [0, T],

where

f (x, t) = e–5t cos5 πx1 · cos5 πx2 + e–t(2π2 – 1
)

cosπx1 · cosπx2,

ũ(t) = ū + e–t ,

g(x) = cosπx1 · cosπx2,

θd,Ω = –5e–4t(t – T) cos5 πx1 · cos5 πx2 –
(
2π2(t – T) – e–t – 1

)
cosπx1 · cosπx2,
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θd,Γ =
(
e–t – t + T

)
cosπx1 · cosπx2,

ud = –e–t – 2(t – T),

θ0 = cosπx1 · cosπx2,

T = 1, ua = –0.85, ub = –0.4.

The optimal solution to this problem with corresponding state and adjoint variables θ̄ , p̄
is given by

ū = Π[ua ,ub]
(
–e–t),

θ̄ = e–t cosπx1 · cosπx2,

p̄ = (t – T) cosπx1 · cosπx2.

The triple of functions (ū, θ̄ , p̄) is chosen a priori, such that the first-order necessary opti-
mality conditions are fulfilled.

To prove local optimality, we show that the second-order sufficient optimality conditions
are satisfied. The formal Lagrange function is given by

L(θ , u, p) = J(θ , u) –
∫ T

0

∫
Ω

(
θt – �θ + θ5 – f (x, t)

)
p dx dt

–
∫ T

0

∫
Γ

(
∂θ

∂t
+ θ – (ũ – u)g(x)

)
p ds dt –

∫
Ω

(
θ (x, 0) – θ0

)
p dx

with

L′′(θ̄ , ū, p̄)(θ , u) =
∫ T

0

∫
Ω

θ2 dx dt +
∫ T

0

∫
Γ

θ2 ds dt +
∫ T

0
u2 dt

– 20
∫ T

0

∫
Ω

θ̄3θ2p̄ dx dt. (41)

The last term in (41) is non-negative due to θ̄3p̄ = (t – T) cos4 πx1 cos4 πx2 ≤ 0 for all t ∈
[0, T]. Hence,

L′′(θ̄ , ū, p̄)(θ , u) ≥ ‖u‖2
L2(0,T).

The sufficient optimality condition holds even in the entire control-state space, i.e. it is
satisfied in a strong form. Following the lines of the proof of Theorem 5.19 in Tröltzsch
[24], it can be shown that (ū, θ̄ ) is in fact a global optimal solution of the control problem
formulated above. Hence, we can expect the global convergence of the rSQP method for
arbitrary starting points.

We choose an initial point for the rSQP method

u0(t) ≡ –0.8, θ0(x, t) = p0(x, t) ≡ 1.

The parabolic problem was solved numerically by applying the semi-discretization ap-
proach, where the elliptic system in each time increment was solved by the Finite Element
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Figure 3 Controls uk(t)

Figure 4 State variable θ̄ (left) and adjoint variable p̄ (right) at the end time T = 1

Table 1 Iterations history of the rSQP method with primal-dual active set strategy

Iter Jk ek τk #PDAS-loops

1 21.8504 0.94 0.22 3
2 20.3691 0.45 0.33 4
3 20.3517 0.0085 0.0938 3
4 20.3515 140.7 5 · 10–4 1

Method (FEM). The controls were chosen as piecewise constant functions on the time
grid. The spatial domain is discretized with triangular finite elements with a maximal edge
length of h = 0.0125. The time interval is discretized uniformly with stepsize �t = 0.001.

The sequence of controls uk produced by the rSQP algorithm is depicted in Fig. 3. The
corresponding state and adjoint variables are displayed in Fig. 4.

Table 1 illustrates the convergence behavior of the rSQP method. It contains the value
of the objective function Jk , the rate of convergence ek and the error τk that was used for
the termination criterion,

ek =
‖uk – ū‖L2(0,T) + ‖θ k – θ̄‖L2(Q) + ‖pk – p̄‖L2(Q)

‖uk–1 – ū‖2
L2(0,T) + ‖θ k–1 – θ̄‖2

L2(Q) + ‖pk–1 – p̄‖2
L2(Q)

,

τk =
∥∥uk – uk–1∥∥

L2(0,T),
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and the number of PDAS-Loops in the kth iteration of the rSQP method. The rSQP
method shows a good convergence to the exact optimal solution ū.

As reported in [8, 9], the quadratic convergence of the SQP methods is assured, if the
quadratic subproblems (QPk) are solved with a quite high precision. The time-space dis-
cretization has to match the current accuracy of the SQP step. In our test example, we
observe that the speed of convergence of the rSQP method is limited after the third iter-
ation by the time-space discretization error.

4.2 Optimal control problem for dual phase steel
In this subsection we present a numerical solution of the optimal control problem (P)
formulated for the production of Mo–Mn dual phase (DP) steel.

Let us choose a two-dimensional domain Ω = (0, 7.5) × (0, 0.69) cm2. This corresponds
to the vertical cross section of the steel slab moving through the cooling segment with a
fixed strip speed. The aim is to compute the optimal cooling strategy for the DP steel with
a desired ferrite fraction fd(x) = 85% and a temperature θd(x) = 660oC at the final time
T = 7 s. Thus, the optimal control problem reads as follows

min J(θ , f , u) =
α1

2

∫
Ω

(
f (x, T) – fd(x)

)2 dx +
α2

2

∫
Ω

(
θ (x, T) – θd(x)

)2 dx

+
α3

2

∫ T

0
u2 dt

s.t. (θ , f , u) satisfies (2a)–(2f) and 0 ≤ u(t) ≤ 0.3 a.e. in [0, T].

The function G(θ , f ), which describes the ferrite growth is given by

G(θ , f ) =
(
feq(θ ) – f

)
H
(
feq(θ ) – f

)
g1(θ )g2, (42)

where H is a monotone approximation of the Heaviside function

H(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, for x ≥ δ,

10( x
δ
)6 – 24( x

δ
)5 + 15( x

δ
)4, for δ > x ≥ 0,

0, for x < 0.

The arguments for the Heaviside function are in (–1, 1), hence we found a realistic choice
for δ to be δ = 10–2. The equilibrium volume fraction of ferrite feq(θ ) and the tempera-
ture dependent factor g1(θ ) are cubic spline functions interpolating the pointwise data as
shown in Fig. 5. The factor representing the preconditioning of the initial phase austenite
is given by g2 = 10. The model (42) for the austenite-ferrite phase transformation in the hot
rolling process has been discussed in [22]. For further details about the modeling we refer
to this article. We note, that Assumption (A2) is too strong for the function G(θ , f ). Never-
theless, the existence and uniqueness of the solution to state system can be also shown for
this function and all other theoretical and numerical considerations remain unchanged.

We use the following physical parameters for the heat equation (2c). The reference den-
sity at 20◦C is chosen to be ρ = 7.85 g

cm3 . The values for the heat conductivity κ and specific
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Figure 5 The functions feq(θ ) (left) and g1(θ ) (right)

heat cp are set to

cp = 0.5096
J

g · K
, κ = 0.5

J
s · cm · K

.

These values only represent a rough approximation by a constant function for the temper-
ature dependent functions κ(θ ), cp(κ). More details on the thermal physical parameters
can be found, e.g., in [21]. The latent heat L of the austenite-ferrite phase transformation
is specified according to [11] as L = 77.0 J

g .
The initial condition for the temperature is θ0 = 860◦C and θw = 20◦C. Notice that (A3)

is satisfied. The water profile in the cooling segment is given by

β(x) = e–0.01(x–3.75)2
.

It should be mentioned that a choice of weighting factors α1, α2, α3 in the cost functional
of optimal control problem (P) is of crucial importance for the numerical computations.
The volume phase fraction f ∈ [0, 1], while the temperature θ is in the range of 20◦C–
1200◦C. Therefore, in order to obtain useful results, an equilibrating of this two terms in
cost functional is necessary. In the subsequent computations we set α1 = 1, α2 = 5 · 10–6.
The factor α3 is a Tikhonov regularization parameter and is chosen as 0.1.

The nonlinear state system (2a)–(2f) as well the corresponding adjoint system in each
iteration of projected gradient method can be solved numerically using semi-implicit Euler
scheme. The rSQP method requires a solving of the linearized problems (QPk). Here, the
linear parabolic equation was discretized in a standard way using method of lines and ODE
for the phase transition was treated numerically by explicit Euler scheme.

The FE triangulation of the computational domain Ω is done by a uniform mesh with
N = 561 degrees of freedom. For the time step, we take �t = 0.0125. We approximate the
control function u(t) with piecewise constant functions on the time grid such that the
unknown control function is represented as u = (u1, . . . , un–1)T , ui = u(ti), i = 1, . . . , n – 1.

As explained above, we use the gradient projection method for the globalization of
the rSQP algorithm. As an initial guess for the gradient projection method we take
u0 ≡ 0. The algorithm was terminated after 7 iterations, provided the relative error
‖uk+1 – uk‖L2(0,T)/‖uk‖L2(0,T) is smaller then 0.01. The obtained control function û with
corresponding state variables θ̂ , f̂ and adjoint variables p̂, q̂ serve as the initial iteration of
the rSQP method.
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Table 2 Value of objective function Jk , relative error τk and number of PDAS loops in kth-iteration of
the rSQP method

Iter Jk τk # PDAS-loops

1 0.01669 0.1350 8
2 0.01438 0.01077 4
3 0.01434 6 · 10–4 2

Figure 6 Some iterations of optimization procedure

Figure 7 Optimal control u(t)

Table 2 shows the convergence history of the rSQP steps. As expected, the rSQP method
converges in a few steps to the optimal solution with tol = 10–3 in termination condition.
In Fig. 6, some iterations of the gradient projection algorithm and the rSQP method are
represented.

The optimal control u(t) is depicted in Fig. 7. Closer to the end of the time interval the
optimal control decreases to zero, which is the lower bound of the control. This fact also
reflects the presence of the box constraints and the functioning of the active set method.

Figure 8 shows the simulated final temperature (left) and phase distribution (right) in
the cross section of the steel slab in selected iterations of the optimization procedure. In
each iteration of the rSQP method, the temperature distribution in the steel slab becomes
more homogeneous and closer to the desired value θd = 660◦C. On the other hand, the
maximal difference between the ferrite values at the final time is about of 17%. However,
in each iteration of rSQP method, the ferrite phase fraction in the largest part of the cross
section is close to 85%.

We additionally plot the temperature and ferrite growth during the cooling in the middle
of the cross section of the steel slab. The simulation results are shown in Fig. 9. The desired
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Figure 8 The simulated final temperature (left) and phase distribution (right) in the cross section of the steel
slab in certain number of iterations of the optimization procedure. In both pictures the 1st and 7th (final)
iteration of the gradient projection method, and 1st and 3rd (final) iterations of the rSQP method are depicted
in order from top to bottom

Figure 9 The simulated temperature (left) and ferrite fraction evolution (right) in the middle of the cross
section of the steel slab

temperature of 660◦C and ferrite fraction of 85% are reached very accurately in the middle
of the cross section.

5 Conclusions
We have studied the optimal control problem that describes the hot rolling process of mul-
tiphase steel. The nonlinear boundary control problem was analyzed and the first-order
necessary and second-order sufficient optimality conditions were derived. The control
problem was solved numerically by a reduced SQP method with active set strategy.

The approach has already been tested in an industrial setting. The results of the optimal
control of the cooling line have been verified in hot rolling experiments at the pilot hot
rolling mill at the Institute for Metal Forming (IMF), TU Bergakademie Freiberg. For more
details we refer to a recent paper [4].

The challenging topic for the future research will be the real time control of the hot
rolling process, which is an important task for the industrial employment of this approach.
Here, recent developments in model reduction techniques seem to be a promising tool and
will be subject of further work of the authors.
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