
June 2006
Peter Herrmann, ITEM
Frank Krämer, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

A Pattern-Based Approach for the
Consistent Design of Interaction
Interfaces

Sebjørn Sæther Birkeland

Problem Description
When we look at a number of service specifications, we observe that there often occur similar
interactions between the components executing a service. While, for example, the data
transferred may vary with the specific application, certain sequences of signal transmissions
between two service components may occur in several applications. This makes it possible to
improve the development of systems by storing such reoccurring interactions as patterns in a
library. Instead of reinventing solutions for interaction problems again and again, interaction
interfaces can then be combined by reusing these patterns.

In this work, an approach should be described that allows to compose interaction interfaces in an
editor from interaction patterns. For that purpose, first of all a number of interaction patterns
should be identified and described. Typical error situations or design flaws in interaction
interfaces should be described based on the work on role validation by Jacqueline Floch and rules
should be described how these situations can be detected, avoided, or resolved when interaction
patterns are composed together. To prove the effectiveness of the approach, a editor should be
implemented and integrated into the integrated tool suite Ramses.

Assignment given: 16. January 2006
Supervisor: Peter Herrmann, ITEM

...A hole had just appeared in the Galaxy. It was exactly a
nothingth of a second long, a nothingth of an inch wide, and
quite a lot of million light years from end to end. [...] Somewhere
in the deeply remote past it seriously traumatized a small random
group of atoms drifting through the empty sterility of space and
made them cling together in the most extraordinarily unlikely
patterns. These patterns quickly learnt to copy themselves (this
was part of what was so extraordinary of the patterns) and went
on to cause massive trouble on every planet they drifted on to.
That was how life began in the Universe...

- Douglas Adams: The Hitch Hiker’s Guide to the Galaxy (1979)

Abstract

We depend more and more on networked systems in our every day lives. The
functionality and correctness of such systems are thus becoming increasingly
important both for individuals and the society as a whole. At the same time,
people expect new services to be developed more rapidly than ever. These two
forces makes the design of these often complex services a difficult task.

Model-driven techniques are in widespread use for the design of distributed
services, and software tools can support the designer through the development
process. Our goal is to help the user of such modelling tools making it easier
to develop correct services more quickly.

When we take a closer look at existing services, we find great similarities in the
way two parts of the service interact. For instance, one part might request
for some information from another part or perhaps notify another part of
something. We identify them as so-called interaction patterns, which describe
these generic interactions at a high level of abstraction. They are modelled
using UML 2.0 collaboration templates.

We have defined an approach for using a number of interaction patterns to
describe the interaction interface between two parts, modelled by a UML 2.0
collaboration. The user of the tool selects, customises and applies a number
of patterns to the interaction interface. The applied patterns can then be
composed, meaning that the user determines their sequence of activation. The
composition technique defined is based on the use of UML 2.0 state machines
and submachine states. We have designed an algorithm which generates
the behaviour of the interaction interface based on the applied patterns and
their composition. The behaviour is expressed using two state machines
which describes the allowable sequence of signals for each participant in this
interaction.

To ensure the correctness of the behaviour of the interaction interface, we
have identified a number of common design flaws that might occur during the
composition of pattern instances based on the work by Jacqueline Floch. The
error situations are either prevented through reasonable constraints on the used
model elements or resolved when the behaviour of the interaction interface is
generated by the defined algorithm.

The approach has been implemented as an Eclipse plug-in and integrated with
Ramses, a modelling tool suite developed at the Department of Telematics. This
provides the possibility to get hands-on experience with using our approach for
the design of reactive services. We believe that our work can make it easier for
the user of such tools to design correct services more rapidly.

Preface

This master’s thesis was written at the Department of Telematics at the
Norwegian University of Science and Technology (NTNU) during the spring
semester 2006.

The help from my supervisor PhD Student Frank Alexander Krämer has been
essential in this work, and I thank him for always being available for assistance.
My acknowledgements also go to Professor Peter Hermann, the academically
responsible, for his comments and suggestions through the semester. I would
also like to thank Professor Rolv Bræk for valuable input in the starting phase
of my work. Finally, I appreciate the help from secretary Mona Nordaune in
finding the necessary background material.

I have specialised in service engineering, and this thesis concerns tool
development for modelling of telecommunication services. I hope the reader will
find my work interesting, and that it can be of importance for future research
within this area.

Trondheim, June 2006

Sebjørn Sæther Birkeland

iii

Contents

1 Introduction 1
1.1 Overview . 2
1.2 Example service . 5
1.3 Main contributions . 6
1.4 Reader’s guide . 8

2 Background 9
2.1 Patterns . 9

2.1.1 The origin of patterns . 10
2.1.2 Patterns in software . 11

2.2 UML 2.0 collaborations . 13
2.2.1 Collaboration uses . 14
2.2.2 Collaboration templates 15

2.3 The underlying meta model . 16
2.3.1 Collaborations . 16
2.3.2 Association point state machines 17
2.3.3 Interaction interfaces . 17

2.4 Interaction consistency . 18
2.4.1 What can go wrong? . 18
2.4.2 How can we prevent it? 19
2.4.3 Cases requiring special attention 20

2.5 Related software pattern tools . 25
2.5.1 IBM Rational Software Architect 25
2.5.2 SDL Pattern Tool . 27

2.6 Ramses tool suite . 28

3 Interaction patterns 29
3.1 Introduction . 29
3.2 Modelling . 30

3.2.1 Pattern parameters . 30
3.2.2 Pattern roles . 30
3.2.3 APSM fragments . 31
3.2.4 Interaction pattern descriptor 31

3.3 Well-formed patterns . 32
3.3.1 Consistent APSM fragments 32
3.3.2 Valid interaction pattern descriptor 33

v

vi CONTENTS

3.4 Pattern description . 33
3.5 Pattern library . 34

4 Applying and composing interaction patterns 37
4.1 Creating the interaction interface collaboration 37
4.2 Applying an interaction pattern 38

4.2.1 Select an interaction pattern 38
4.2.2 Decide between pattern alternatives 39
4.2.3 Bind pattern parameters 39
4.2.4 Use the interaction pattern instance in the interaction

interface collaboration . 41
4.3 Composing interaction pattern instances 42

4.3.1 Composition possibilities 42
4.3.2 The applied interaction pattern instances composer 43
4.3.3 How do we compose? . 44
4.3.4 On the usage of state machines for composition 45

5 Generating APSMs 47
5.1 Introduction . 47
5.2 Semantics . 48

5.2.1 Case 1: No succeeding interaction 48
5.2.2 Case 2: One succeeding interaction 48
5.2.3 Case 3: Two or more possible succeeding interactions . . 49

5.3 Ensuring correct APSMs . 51
5.3.1 Equivoque states . 53
5.3.2 Mixed initiatives . 56
5.3.3 Summary . 63

6 APSM composition algorithm 65
6.1 Introduction . 65
6.2 High-level explanation . 66
6.3 Selected details concerning error handling 68

6.3.1 Insertion of APSM fragments into the APSMs 69
6.3.2 Resolving ambiguities . 70
6.3.3 Resolving mixed initiatives 72

7 Implementation 75
7.1 Overview . 75
7.2 Interaction patterns . 76

7.2.1 Representing interaction patterns 76
7.2.2 Interface for patterns . 77
7.2.3 Extension point for patterns 77

7.3 Applying and composing interaction patterns 79
7.3.1 Defining the interaction interface 79
7.3.2 Applying an interaction pattern 80
7.3.3 Composing interaction pattern instances 85

7.4 Generating APSMs . 85

CONTENTS vii

7.5 Usability . 88

8 Discussion and conclusion 89
8.1 Discussion . 89

8.1.1 Assumption of sequential composition 89
8.1.2 Number of identified interaction patterns 90

8.2 Achievements . 90
8.3 The approach in a greater perspective 91
8.4 Future work . 92

Bibliography 93

A Metamodel 97
A.1 Interaction Pattern . 97
A.2 Association Point State Machine Fragment 98
A.3 Interaction Pattern Descriptor 99
A.4 Interaction Pattern Instance . 100
A.5 Interaction Pattern Instance Descriptor 101
A.6 Interaction Interface Collaboration 101
A.7 Applied Interaction Pattern Instances Composer 102
A.8 Association Point State Machine 103

B Pattern Library 107
B.1 Notify . 107
B.2 Request . 109
B.3 Subscribe . 111

C The plug-in 115

D Bookmark 117

List of Figures

1.1 Overview of the approach . 3
1.2 Overview of the example service 5
1.3 The example service expressed using collaborations 7

2.1 Graphical notation for a collaboration 14
2.2 Using collaborations . 15
2.3 From collaboration template to collaboration use 16
2.4 Describing the interaction interface using a collaboration 17
2.5 Violation of the safety properties 18
2.6 Containment and obligation . 20
2.7 Equivoque states and resulting ambiguities 21
2.8 Mixed initiatives describing concurrent behaviours: Input con-

sistency . 22
2.9 Mixed initiatives describing concurrent behaviours: Termination 23
2.10 Mixed initiatives describing alternative orderings 24

3.1 The interaction pattern Subscribe 30
3.2 The state machines attached to the Subscribe interaction pattern 32

4.1 The interaction interface collaboration Buddy Tracking 38
4.2 Obtaining an interaction pattern instance 40
4.3 The state machines attached to the TrackUser interaction

pattern instance . 40
4.4 Using the interaction pattern instance TrackUser in the interac-

tion interface collaboration BuddyTracking 42
4.5 A submachine state and its submachine 44
4.6 The AIPIC of BuddyTracking . 45
4.7 Syntax for modelling decision . 45

5.1 Selecting the correct APSM fragments using the knowledge from
the role binding . 48

5.2 APSM composition semantics: no succeeding interaction 49
5.3 APSM composition semantics: one succeeding interaction 49
5.4 APSM composition semantics: two or more possible succeeding

interactions . 50
5.5 The interaction interface collaboration Terminal Trace and its

AIPIC . 52

ix

x LIST OF FIGURES

5.6 Removing mixed ambiguity by merging 54
5.7 Preventing termination ambiguity and termination condition

ambiguity . 55
5.8 Alternative orderings during composition 57
5.9 Conflict resolution during composition using priority 58
5.10 Propagating input inconsistency 60
5.11 Removal of unwanted termination during composition 62
5.12 Removal of improper termination during composition 63

6.1 Composition algorithm: high-level flowchart 67
6.2 Composition algorithm: example traversal of an AIPIC 68
6.3 Composition algorithm: insertion of APSM fragments 69
6.4 Composition algorithm: handling ambiguities 71
6.5 Composition algorithm: determining when to resolve mixed

initiatives . 72

7.1 The schema for the pattern extension point 78
7.2 Creating an interaction interface collaboration 80
7.3 Applying an interaction pattern 82
7.4 How the apply pattern wizard works 84
7.5 Composing the applied pattern instances 86
7.6 Generate APSMs . 87

A.1 Element model for the Interaction Pattern (IP) 98
A.2 Element model for the Association Point State Machine Frag-

ment (APSMF) . 99
A.3 Element model for the Interaction Pattern Descriptor (IPD) . . . 100
A.4 Element model for the Interaction Pattern Instance (IPI) 100
A.5 Element model for the Interaction Pattern Instance Descriptor

(IPID) . 101
A.6 Element model for the Interaction Interface Collaboration (IIC) . 102
A.7 Element model for Applied Interaction Pattern Instances Com-

poser (AIPIC) . 104
A.8 Element model for the Association Point State Machine (APSM) 105

B.1 Notify: Sequence diagram for the example 108
B.2 Notify: The APSM fragments for the notifier and the recipient. 108
B.3 Request: Sequence diagram for the example. 110
B.4 Request: APSM fragments for the requestor and the responder. 110
B.5 Subscribe: Sequence diagram for the example 113
B.6 Subscribe: APSM fragments for the subscriber and the subscribee113

List of Tables

4.1 The combination cases in BuddyTracking 44

5.1 Summary of error handling during composition 64

Listings

7.1 The InteractionPattern interface 77
7.2 Declaration of the pattern extension point 78
7.3 Using the pattern extension point to add a category 78
7.4 Using the pattern extension point to add a pattern 79

xi

Chapter 1

Introduction

The task of developing advanced telecommunication services can be quite
complex. A number of distributed parts work together to realise the complete
service. The behaviour of the parts are described by state machines, which
communicate asynchronously with messages through a buffered medium. How
these parts work together in a cooperative matter makes up the total service.

The challenge for a designer of such systems is how to make sure that the parts
interact correctly. An error in the interaction between two parts of the service
will propagate and compromise the correctness of the entire service. It can
be a difficult job to make certain, that any two parts interact consistently, as
a real-life telecommunication service often consists of a fairly large number of
interacting parts.

Our goal is to make it easier for a designer to develop correct services more
quickly. But how can we do this? We start by searching in existing services.

When we take a closer look at present services we can see clear similarities in the
way the parts of the system interact. Both the intention behind the interactions
between two parts, as well as the message passing itself, is very often the same.
For instance, one part might ask another part about something, and the latter
responds with an answer or the requested information (later identified as the
Request-pattern). Another example is that one part tells another part that
it wants to be notified every time a specific event occurs (later named the
Subscribe-pattern).

This means that on a high level of abstraction, the same things happen over
and over again. This is true even for services from completely different domains
and with a great variety in the range of use. These re-occurring, abstract
interactions are what we call interaction patterns. If the total interaction, that
is all the messages exchanged between two parts of a service, can be put together
from these generic interaction patterns, then we can use this knowledge to ease
the job of making new services. We can collect and describe these common
interactions and use them as a template when specifying new interactions.

1

2 CHAPTER 1. INTRODUCTION

Equipped with a number of interaction patterns, we can construct the complete
interaction between two parts just by instantiating, customising and combining
them to suit the particular situation. And if something can be constructed by
putting together already defined and well-known pieces, it is quite unnecessary
to construct it from scratch every time. This will make the job easier for
the designer as he only needs to assemble pre-fabricated fragments into the
complete interaction. Consequently, it will also allow a service to be developed
more rapidly.

Some level of correctness can also be guaranteed, given that the interaction
patterns are correct and that they are assembled correctly. The designer is less
likely to make mistakes when all he needs to do is to combine a number of
already defined interaction patterns, in contrast to beginning from scratch.

In this work, we would like to find out how this could be supported within
a tool. A user should be able to select a number of pre-existing interaction
patterns, customise them to fit the specific service and determine how they
should be combined to realise the complete interaction between the two parts.
We can help the designer towards a correct service by restricting the number
of composition possibilities, and revolve common design flaws. We claim that
such an approach will make service development easier and quicker, and help
making the service correct.

1.1 Overview

Figure 1.1 shows the core of this work. We will go through the process in detail,
but let us first start by looking at the bottom of the figure to see what we want
as result.

When two parts of a system communicate (or interact) they will always do
so through what we call an interaction interface. We have illustrated this
as an ellipse in the figure. The interaction interface can be expressed by
a two-way collaboration. The behaviour of the interaction interface can be
described by two so-called association point state machines (APSMs), one for
each participating part, which defines the allowable sequence of messages in
the interaction. The aim of the whole approach is to be able to describe the
behaviour of this interaction interface, that is the APSMs, only by using a set
of pre-defined interaction patterns.

Pattern definition First of all we need a collection of interaction patterns.
We gather them in a so-called pattern library, as illustrated at the top of Fig. 1.1.
As explained earlier, the patterns are abstract pieces of interactions that emerge
from knowledge and experience drawn from existing services. Each interaction
pattern is described carefully, including a detailed explanation of what it does,
the messages exchanged in the pattern, and the intention behind the pattern.
The interaction patterns added to the library have to be well-formed, meaning

1.1. OVERVIEW 3

Part Part

Pattern

Library

Interaction

Pattern

Pattern

Instance

Select an interaction pattern from the pattern library

Customise the pattern to fit the specific situation

Pattern

Instance

Pattern

Instance

Combine the pattern instances

Generate the behaviour of the interaction interface

Interaction

Interface

Pattern

Instance

Pattern

Instance

Pattern

Instance

Pattern

Instance

Pattern

Instance

1

2

3

4

Interaction

Pattern

Interaction

Pattern

Interaction

Pattern

Figure 1.1: Overview of the approach. The behaviour of the interaction interface
can be obtained by selecting, customising and composing a number of
pre-defined interaction patterns from a library.

4 CHAPTER 1. INTRODUCTION

that they have to obey certain rules defined to ensure their correctness. This
validation effort only needs to be done once, before the pattern is added into
the library.

Pattern selection (step 1) The users first search through the pattern
library, trying to find a suitable pattern. They should focus on what they wants
the two collaborating parts to achieve, and not so much the messages needed to
realise this. The users glance through the description of the interaction patterns
in the library, investigate candidates more closely and select a suitable pattern.

Pattern customisation (step 2) Because the patterns are abstract and
can be used in a wide variety of settings, they have to be tailored before they
can be used in the concrete system. This means that the users specify the
information that is to be exchanged and concretise the pattern, yielding in
a so-called pattern instance. Some patterns might also have small variations
which can be decided upon instantiation.

Pattern composition (step 3) After a number of patterns instances have
been applied, the user can compose them. The pattern instances represent
pieces of the interface behaviour we want to define. We now have to decide how
these pieces are to be linked together to produce the desired overall behaviour
of the interface. This means to decide what will be the next pattern instance
to be activated after a pattern instance finalises with a certain result.

APSM generation (step 4) The tool can now automatically generate the
behaviour of the interaction interface between the two parts based on the
patterns applied and their composition. The behaviour is expressed using
one state machine for each of the participants, called an APSM. The APSMs
can be composed by an algorithm, without involving the users at all since the
information needed has been specified by the users in the previous steps. Several
error situations might occur during the composition of the APSMs, depending
on how the users composed the pattern instances. These errors have to be
identified and resolved to ensure correct APSMs, and thus a correct behaviour
of the interaction interface.

This approach allows the users of the tool to create the behaviour of an
interaction interface between two parts in a service by repeating the steps
described above. Selection and customisation of new patterns can be done
at any time. The composition of the pattern instances can be changed and new
pattern instances can be linked together with existing ones. After a change has
been made, the APSMs can be refreshed by telling the tool to generate them
again. This means that if the resulting interaction interface behaviour does not

1.2. EXAMPLE SERVICE 5

ua1:User

Agent

pm:Position

Manager

ut1:User

Terminal

ua2:User

Agent

uaN:User

Agent

ut2:User

Terminal

utM:User

Terminal

tsK:Tracking

Service

ua

pm

ut

ts2:Tracking

Service
ua

pm

ut

Figure 1.2: Overview of the example service. A central position manager allows
user agents to track the movements of their friends’ user terminals,
through a service called Tracking Service.

reflect what the users had in mind, they can always re-compose or change the
patterns applied and generate it once more.

1.2 Example service

Throughout this thesis we will illustrate our approach using a small, but still
realistic, example service. Figure 1.2 shows its overall structure.

The service is named Tracking Service and its purpose is to enable users to track
the location of their friends (buddies). This is done through a central server
named the Position Manager. When a user wants to track the movements of
a buddy, the position manager will start tracing the geographical position of
the terminal belonging to that buddy. We can have many user agents and
many terminal agents, but only one position manager. Note that the terminal
agents are not representing the terminals of the users that are tracking (which
are represented by the user agents), but they represent the terminals of the
buddies that are being tracked. To keep the example small, we have deliberately
omitted functionality such as managing buddy lists, relating users to terminals
and authentication.

The main functionality of the system is:

• User agents can start using the service by logging on to the position
manager.

• User agents can issue a request for tracking another user (a buddy).
• Provided that the request is accepted, the user agent can subscribe to the

movements of a buddy and is notified every time this buddy moves.
• User agents can log off from the position manager and end the service.
• The position manager can issue a trace request to a terminal, asking if

the terminal allows to be traced.

6 CHAPTER 1. INTRODUCTION

• The position manager periodically issues a request to the terminal about
its whereabouts.

• The terminal can at any time during tracing ask the position manager to
get a list of all the users that are currently tracing the terminal.

• The terminal can also choose to revoke the tracing allowance, and thus
stop the tracing, by notifying the position manager of this.

Figure 1.3 shows the structure of this service using the notation of UML 2.0
collaborations. The notation and meaning of the collaborations will be
explained in more details in the next chapter. In short, we use them to express
the communication and interaction between two participants in a system, and
their purpose can be understood rather intuitively. Part (a) of the figure shows
that the complete tracking service actually is made up of two “sub-services”.
The user agent and the position manager are involved in a collaboration
called Buddy Tracking, while the user terminals communicate with the position
manager through a collaboration named Terminal Trace.

In part (b) and (c) of the figure, we can see that Buddy Tracking and Terminal
Trace are in turn a combination of other, more fine-grained, collaborations. The
tracker and the tracking server of the Buddy Tracking-collaboration cooperate
to do the following tasks: logging in, requesting tracking, tracking a user and
logging out. The trace server and the terminal in Terminal Trace collaborate
in the following basic functions: requesting trace, location update, get trackers
(users tracking this terminal) and revoking trace allowance.

The collaborations used in Buddy Tracking and Terminal Trace stem from
interaction patterns, as shown in part (d) of the figure. We see that LogIn
and TrackRequest, contained in BuddyTracking, stem from a pattern called
Request, TrackUser comes from a pattern Subscribe, while LogOut stems
from the Notify-pattern. Similar, the figure also shows which interaction
patterns the collaborations used in Terminal Trace stem from.

The tracking service will be referred to and further elaborated throughout this
thesis to illustrate our approach.

1.3 Main contributions

These are the most important contributions of our work:

• We define a way of modelling interaction patterns using UML 2.0. This
is augmented with requirements for their correctness. We also identify a
number of interaction patterns which comply with these requirements.

• We describe an approach for composing interaction interfaces from
interaction patterns, relying on UML 2.0. This includes how to customise
the interaction patterns and apply them in a concrete service. We also
define a technique to compose the interaction patterns applied to an
interaction interface.

1.3. MAIN CONTRIBUTIONS 7

ua:User
Agent

pm:Position
Manager

bt:Buddy
Tracking

tracker

tracking

server

tt:Terminal
Trace

terminal trace

serverut:User
Terminal

(a)

tracker
tracking
server

li:LogIn

requestor
responder

tr:Track

Request
requestor responder

tu:Track

Usersubscriber subscribee

lo:LogOut

notifier recipient

(b)

terminal trace server

tr:Trace

Request

responder requestor
lu:Location

Update
responder requestor

gw:Get

Watchersrequestor responder

ra:Revoke

Allowance

notifier recipient

(c)

LogIn
Track

Request
LogOutTrackUser

Trace

Request

Location

Update

Revoke

Allowance

Get

Watchers

(d)

Figure 1.3: The example service expressed using collaborations. The service
Tracking Service (a) is composed from a Buddy Tracking service (b) and
a Terminal Trace service (c). These are in turn composed from more
fine-grained collaborations stemming from interaction patterns (d).

8 CHAPTER 1. INTRODUCTION

• We design an algorithm which can generate the behaviour of the
interaction interface based on the applied interaction patterns and their
composition. During this, some typical error situations might occur, and
we identify them and find reasonable ways of preventing or resolving them.

• We demonstrate the effectiveness of this approach by implementing and
integrating it in the Ramses modelling tool suite. The implementation
allows a user to apply and compose interaction patterns as well as
generating the behaviour of the interaction interface using the algorithm
defined.

1.4 Reader’s guide

The background of our work will be presented in Chapter 2. Next, Chapter
3 defines our interaction patterns, while Chapter 4 explains how to apply
and compose them. In Chapter 5 we describe how to generate the APSMs
of the interaction interface, and how to ensure their correctness. Chapter 6
then explains the algorithm designed for composing these APSMs. Chapter 7
describes our implementation of the approach. Finally, in Chapter 8, we discuss
some aspects of our work and conclude our thesis.

Chapter 2

Background

This chapter will first present and describe the concept of patterns. Next, we
will describe UML 2.0 collaborations and our underlying meta model. We will
then elaborate the idea of interaction consistency, before we discuss two existing
tools supporting software patterns. Finally, we give a brief introduction to the
Ramses tool suite.

2.1 Patterns

There are many opinions and definitions on patterns, as the term has increased
its popularity over the past decades. Before we try to define our own meaning
of a pattern, let us look at some of the things others have said.

In the Oxford English Dictionary, a pattern is defined as “[...] a model, design,
or set of instructions for making something, [or] an example for others to follow.
Origin from patron in the former sense something serving as a model, from the
idea of a patron giving an example to be copied.” [41]. Alexander, which we will
be acquainted with in the next section, thinks of a pattern as “[...] something
�in the world� [...] which repeats itself over and over again, in any given
place, always appearing each time in a slightly different manifestation” [2, p.
181].

Patterns help us to “[...] write down good ideas that have solved real problems.
The pattern form captures enough information about this solution so that when
you read it, you can use the solution to solve your problems” [45, p. 5]. In other
words, a pattern never describes something new or innovative. As J.O. Coplien
explains, a pattern “[...] captures a solution with a track record, not theories or
speculation” [9]. Coplien is one of the leading persons in the pattern community,
which has “[...] a unique culture that values stating the obvious and recording
known practices over inventing novel, possibly untested, solutions” [35].

Patterns in software design “[...] describes the core structure of a solution at

9

10 CHAPTER 2. BACKGROUND

a level high enough to generalize to many specific situations. [...] Patterns
supplement general-purpose design by capturing expert solutions in a form that
helps developers solve difficult, recurring problems” [7]. We thus try to capture
the best practices within a field using the pattern form because they “[...] help
create a shared language for communicating insight and experience about these
problems and their solutions” [24].

A pattern is not universally applicable. In the words of Alexander: “Each
pattern is a three-part rule, which expresses a relation between a certain context,
a problem, and a solution” [2, p. 247]. This means that the pattern only
provides a good solution (and is often only meaningful) within a specific context.

Now, trying to compress all this into one sentence, we end up with our
explanation of what a pattern is: A pattern describes a useful and proven
solution to a reoccurring problem within a specific context, and this solution
is abstract and generic enough to be used over and over again. It focuses on
solving “real life”-problems and is not theoretical or experimental. A pattern
must have a certain structure making it easy to read and communicate to others.
In short, and a bit superficial, one might say that a pattern is just a structured
way of describing and storing best-practices within a domain.

2.1.1 The origin of patterns

The concept of patterns originates from the work of the architect and contractor
Christopher Alexander. Alexander searched for, collected and described
common solutions to the recurring problems architects were faced with when
creating structures like walls, houses, town squares, parks, and neighbourhoods.
This work resulted in two books, namely A pattern language [3] and The
timeless way of building [2], published in 1977 and 1979 respectively. His idea
was that there was a way, regardless of time, to build houses and other liveable
structures so that people feel alive and home [2, p. 7]. By following this
“timeless way”, the houses and towns created will be appealing to the people
living there. He talks about “a whole” and the “quality without a name” - that
there is something you cannot name precisely, but what differs a good building
from a bad one [2, p. 25]. There is a need for some heuristics for making
great towns and beautiful houses. We can reach, or come nearer, this goal by
documentation of the great existing buildings and the years of experience of
professionals.

Alexander’s explanation of a pattern is that it “[...] describes a problem which
occurs over and over again in our environment, and then describes a core
solution to that problem, in such a way that you can reuse this solution a million
times over, without ever doing it the same way twice” [3, p. x]. He also stresses
that patterns should have a clear structure to ease the job of looking through
many patterns to find the one that solves your problem. A pattern must define

2.1. PATTERNS 11

the context and the problem it solves, contain an illustration or example, and
explain and justify the solution provided.

Even though our domain is far from architecture and town planning, the basic
concepts and ideas from Alexander’s work are of use within software design as
well. As with buildings, there is undoubtedly something that separates good
software design from bad - and the more experienced software designers knows
the difference.

2.1.2 Patterns in software

Cunningham and Beck were the first to use Alexander’s thoughts on patterns
in software when they, in 1987, presented a small pattern language for linear
programming at the OOPSLA1-workshop [5]. This inspired others to collect
the best-practices in their software domains, but it was a book published seven
years later that still stand out as the book on software patterns.

The “Gang of Four”

The book Design Patterns [18] was published in 1994, and serves as both an
introduction to and a catalogue of design patterns in object-oriented software
design. This was the first time a large number of design patterns were collected
and presented this extensively and the work by these authors, nicknamed the
“Gang of Four”, gave attention to the usage of patterns in software engineering.

The goal was to catalogue and document design solutions that was used by
experienced object-oriented designers, which had evolved over time and proven
to be the best way to solve a common design problem [18, p. 351]. The
collection, with a total of 23 design patterns, provided reusable solutions to
the recurring problems object-oriented designers often are faced with. Novice
programmers can teach from the experiences of professionals and use the
patterns to find flexible and good solutions to their design problems.

Design patterns are explained as “[...] descriptions of communicating objects
and classes that are customized to solve a general design problem in a particular
context”[18, p. 3]. This means that the patterns involve several objects and
focuses on how to relate and arrange them to get the wanted result. General
solutions are defined by utilising well-known object-oriented techniques like
inheritance and polymorphism.

The patterns include careful descriptions of the solution. Class or sequence
diagrams are important to understand the structure of the pattern, so is an
explanation of how they collaborate. Example usage and code snips also amount
to a large part of the pattern description. Once a suitable pattern has been
selected, the solutions, of course, have to be implemented in software code

1Object-Oriented Programming: Systems, Languages and Applications [40]

12 CHAPTER 2. BACKGROUND

by the designer. Detailed knowledge about the solution and implementation
specific explanations is therefore a necessity.

Some other software patterns

After the great popularity of the design patterns from the “Gang of Four”, the
concept began spreading throughout the software community. The patterns and
pattern languages existing are far too many to elaborate, nor mention, here.
We will try to sketch a few examples to illustrate the diffusion of patterns to
various software areas.

Buschmann and his colleagues described a large collection of patterns for
software architecture in their book Pattern-Oriented Software Architecture
(popularly called “POSA”) from 1996 [8]. Patterns on different levels of
abstraction are presented, all the way from high-level architectural patterns to
design patterns and implementation-specific low-level patterns called idioms.
The intention was to describe and document large-scale applications, for
instance operating systems, through the use of these patterns with different
abstraction and focus [8, p. xi].

Patterns have also found its way into the world of Java programming and
Grand has captured design patterns for developing distributed and enterprise
applications [22]. The work includes patterns for transaction (such as ACID
and two-phase commit), distributed architecture and computing (such as object
request broker, registry and proxy), and concurrence (such as threads and
locking files). This yields in an extensive collection, where everything is
exemplified thoroughly in Java code, making it easy to apply the patterns to
concrete applications. Kuchana has done something similar, documenting 42
design patterns for Java, including “Java-versions” of the GoF-patterns [32].
Both authors use UML to model their patterns, which makes it easy to
understand for readers acquainted with this notation.

Software patterns has become so widespread and popular that a non-
profit community for software patterns, called the Hillside Group, has been
established [24]. This community encourages the use of patterns for describing
software best practices and also sponsors many conferences such as PLoP,
EuroPLoP, ChiliPLoP, VikingPLoP and so on2. The conferences are workshops
where people can learn about patterns and discuss and improve their ideas for
new patterns.

Telecom patterns

At the ChiliPLoP in 1999, one of the topics was called TelePLoP, where
experienced telecommunications software practitioners gathered to present and

2PLoP is of course an acronym and stands for Pattern Languages of Programming. More
information about the different conferences can be found at the Hillside Group website [24].

2.2. UML 2.0 COLLABORATIONS 13

discuss telecom patterns [11]. This resulted in a large collection of patterns
related to communications software [45]. Some are distribution patterns that
deal with the placement and replication of object throughout the distributed
network. The pattern Half Object Plus Protocol (HOPP) [35, p. 28] is an
example, which is used to replicate an object in each process of the network
that requires real-time access to it, and making sure that these replicas are
synchronised. The call object in a normal telephony call is replicated like this in
every switch, and state changes in the call are propagated through the network
to synchronise them. Other sets of patterns concerns the capacity [36, p. 63] and
fault-tolerance [1, p. 81] of real-time reactive systems, the interface between the
systems and humans [23, p. 95], as well as patterns on how to design distributed
systems in general [10, p. 41]. As we understand, all proven solutions which we
have become familiar with in the telecommunications domain can, of course,
be documented as patterns. However, these patterns mainly capture issues
regarding distribution and the network itself, and not the modelling of services
as we are concerned.

SDL [30] is a modelling language for real-time systems, such as telecommuni-
cation services, and patterns have been presented to being reuse to SDL-based
development by Geppert and Rössler [19]. Various SDL-patterns have been pre-
sented, from protocol related patterns (interactions and local management) to
basic service related patterns (for instance error handling) and architectural pat-
terns (for instance subsystems) [19]. The interaction patterns identified range
from the simple “Asynchronous Notification” [21] to more complicated patterns
including timers, such as “Watchdog’ and “Heartbeat” [54]. The patterns can
be used to construct the internal structure and behaviour of the components in
an SDL-based system.

As we understand, software patterns are mainly about how to relate objects,
and how they communicate or collaborate in order to do a desired task or
provide a certain functionality. We will now present a way to describe this
collaborative nature of software systems.

2.2 UML 2.0 collaborations

A UML 2.0 collaboration focuses on the interactions and relationships between
parts of a system and describes how they work together to achieve some
useful purpose or functionality [46, p. 227]. This fits well with our needs of
expressing the co-operation and interaction between the parts in our services.
A collaboration allows us to do exactly this without having to specify or worry
about the internal behaviour of the parts themselves [39, p. 157]. The focus is
not on what the parts can do in isolation, but what two or more parts can do
together when they interact.

The participants in a collaboration are described using so-called collaboration

14 CHAPTER 2. BACKGROUND

Track User

tracker trackee

collaboration

role

name

connector

Figure 2.1: Graphical notation for a collaboration. The collaboration named
Track User has two collaboration roles, the tracker and the trackee. They
are related through a connector.

roles. In the end, the task described by the collaboration will be performed
by parts in the system by exchanging signals. But, when designing the system
we want to focus on the behaviour needed to realise the functionality of the
collaboration, and not the behaviour of the actual parts. Using collaboration
roles we dismantle the definition of a collaboration and its behaviour, from the
task of determining which parts of the concrete system that are going to play
each of the collaboration roles.

A collaboration is both a structural and a behavioural classifier. We can express
how the collaboration roles relate to each other using so-called connectors.
Two roles are connected by a connector if they communicate. This describes
the structure of the collaboration and this structure is only valid within
the context of the collaboration. In addition, the collaboration can contain
behaviour specifications and one of these can describe the behaviour of the
collaboration itself [39, p. 419]. The behaviours can be described by activities,
interactions (shown as sequence diagrams or communication diagrams) or state
machines [46, p. 190].

Figure 2.1 shows an example of a collaboration called Track User. This
collaboration has two roles, namely the tracker and the trackee. They interact
because there is a connector between them. We see that this notation describes
the structural aspects good enough. However, it tells us nothing about the
behaviour of the collaboration, which we will return to in section 2.3.2 on
page 17.

2.2.1 Collaboration uses

A collaboration can be used by binding the collaboration roles to either
concrete parts in the service or to other roles within the definition of a larger
collaboration [46, p. 232]. The latter means that we can create a collaboration
by using other collaborations. With this technique we can express collaborations
on different layers of granularity and compose high-level collaborations from
minor collaborations [46, p. 229].

The collaborations used are defined independently and only related to each

2.2. UML 2.0 COLLABORATIONS 15

Tracking Service

ua:User
Agent

pm:Position
Manager

bt:Buddy
Tracking

tracker

tracking

server

tt:Terminal
Trace

terminal trace

serverut:User
Terminal

(a)

Buddy Tracking

tracker
tracking
server

li:LogIn

requestor
responder

tr:Track

Request
requestor responder

tu:Track

Usersubscriber subscribee

lo:LogOut

notifier recipient

(b)

Figure 2.2: Using collaborations. The collaboration Tracking Service (a) uses two
collaborations: Buddy Tracking and Terminal Trace. Buddy Tracking is
in turn constructed by using collaborations with more basic functionality
(b).

other within the context of the enclosing collaboration, the minute we decide
to bind the roles. This property is of great importance for our work, as it
provides a flexible way to compose and combine collaborations at different
levels of abstraction and granularity. Figure 2.2 taken from our example service,
illustrates this. In part (a) of the figure, the collaborations Buddy Tracking and
Terminal Trace have been used in the larger collaboration Tracking Service.
For instance, the role tracker of the collaboration Buddy Tracking is played
by the role User Agent in Tracking Service. Part (b) of the figure shows that
Buddy Tracking is in turn composed from several other collaboration uses. This
illustrates how we can compose collaborations at different levels, from more
basic to complex functionality.

Typically, the parameters are classifiers that represent attribute types, but they
can also be integers or even operations

2.2.2 Collaboration templates

A collaboration template describes a collaboration with at least one unbound
parameter [46, p. 638]. By specifying different values for these parameters,
we can derive several collaborations from one collaboration template. The
collaboration template is thus an abstract description of a collaboration, and
we can reuse it by binding the parameters to different values. A collaboration
template is a parametrized collaboration, and is what is called a pattern in
UML 2.0 [39, p. 164, 615].

16 CHAPTER 2. BACKGROUND

Collaboration
Template / Pattern

Bind the template parameters

Collaboration

Bind the collaboration roles

Collaboration

Collaboration UseCollaboration Use

Figure 2.3: From collaboration template to collaboration use. A collaboration
template (a pattern) can produce many collaborations by binding its
parameters, which in turn can be used many times by binding the
collaboration roles.

Figure 2.3 shows how collaboration templates, collaborations and collaboration
uses are related. One collaboration template (or pattern) can give many
collaborations by binding parameters. One collaboration can be used many
times by binding the roles.

2.3 The underlying meta model

In this work, we will make use of a restricted form of the UML 2.0 meta model
which is used in the PATS-Lab3 at NTNU. It is domain-specific for reactive
systems in general and telecommunication services in particular. This meta
model is described in a document called PAX Ramses [31], and the tool suite
Ramses (see section 2.6 on page 28), in which we are to integrate our approach,
comply with this model.

2.3.1 Collaborations

We introduce a terminology for collaborations. A two-way collaboration has
exactly two roles, while a multi-way collaboration has three or more roles [31].
An elementary collaboration does not contain collaboration uses, while a
composite collaboration is constructed from collaboration uses referring to other
collaborations [31].

An elementary collaboration contains one state machine for each collaboration
role as owned behaviours [31]. These are APSMs (explained below), and each
of the collaboration roles are typed with one of them. This means that, for

3The Program for Advanced Telecom Services (PATS), also known as the “Tele-service
Lab”, is a research agreement between NTNU and commercial partners, and provides
an environment for experimenting with the development of advanced telecommunication
services [42, 44]

2.3. THE UNDERLYING META MODEL 17

Part Part

«apsm» sm «apsm» sm

Figure 2.4: Describing the interaction interface using a collaboration. The
interaction interface is expressed by a two-way collaboration with two
valid APSMs.

instance, a two-way elementary collaboration always has two collaboration roles
and one APSM for each of them.

2.3.2 Association point state machines

An association point state machine (APSM) is a UML 2.0 state machine with
certain constraints, which describes the allowable sequence of signals to and
from one state machine during the interaction with another state machine. Two
communicating state machines will thus have one APSM each which describes
the valid order of the messages exchanged. The APSM expresses the externally
visible behaviour of a state machine in an interaction [6, p. 13]. They originate
from the projected association roles (a-roles) used for SDL [30] by Floch [16].
An APSM has the following constraints [31]:

• It has exactly one initial state and the initial transition has neither a
signal trigger or a send signal action.

• It can have one or more final states.
• All states, besides the initial and final states, are simple states.
• All transitions, besides the initial transition, have either a send signal

action or a signal trigger.

2.3.3 Interaction interfaces

Interaction interfaces describe a valid interface between two parts of a service.
The communication between the two parts is described using two compatible
APSMs, one for each side of the interaction. We say the APSMs are compatible
if they interact consistently, as defined by Floch [16]. This will be discussed
shortly.

A two-way collaboration can be used to model an interaction interface. The
participants in the interaction (the parts) are represented by the collaboration
roles, and they each have an APSM describing their behaviour. Figure 2.4
illustrates this.

The interaction interface is related to the concept of semantic interfaces [47, 48].
They both describe the interaction between two parts of a service using a two-
way collaboration. The semantic interfaces include the role behaviour of the

18 CHAPTER 2. BACKGROUND

s0

? X

s1

s0

! Y

s1

s0

? X

s1

s0

? Y

s1

s0

! X

s0 s0

! X

s0

? X

condition1 condition2

? X

s1

! Y

s2

(a) (b) (c) (d)

Figure 2.5: Violation of the safety properties. Two APSMs cannot interact
consistently unless unspecified signal reception (a), deadlock (b) and
improper termination (c)(d) are prevented.

participants in this interaction, just like the interaction interfaces have their
APSMs. However, in contrast to the interaction interface, the semantic interface
also incorporates the liveness of the interaction using progress goals [47, p. 88].
The interaction interface only encompasses safety properties.

2.4 Interaction consistency

Two APSMs interact consistently if unspecified signal reception, deadlock or
improper termination never occurs when they interact [16, p. 78]. These are
safety properties, and we can prevent “bad things” from happening if these
situations are avoided. We can ensure this by applying the rules of containment
and obligation [16, p. 211].

2.4.1 What can go wrong?

Let us take a quick look at the three situations which can hamper the
consistency of an interaction between two parts of a service.

Unspecified signal reception Unspecified signal reception happens when
an APSM receives a signal which it cannot handle in the current state [16, p.
77]. A simple example of this is shown in part (a) of Figure 2.5. A and B are
interacting APSMs, both starting in the initial state. Reaching state s0, we see
that A expects signal X to arrive, while B can only send signal Y. We thus say
that A has an unspecified signal reception in state s0, and that the two APSMs
do not interact consistently.

Deadlock Deadlock occurs when both APSMs are in a state where only signal
reception is defined [16, p. 78]. That is, they both expect the other one to send
a signal and cannot send a signal themselves. In part (b) of Fig. 2.5, in state s0,
we see that A waits for B to send signal Y, while B waits for A to send X. Since

2.4. INTERACTION CONSISTENCY 19

none of the two APSMs can send a signal in the current state, the interaction
can never go further.

Improper termination Improper termination happens when one of the two
interacting APSMs have terminated and the other one has not [16, p. 78]. We
do not want to have a situation where one APSM does not know if the APSM
it interacts with has terminated or not. No signal should ever be sent to a
terminated APSM. In part (c) of Fig. 2.5 we see that when A sends signal X
in state s0 it terminates. After receiving signal X, B proceeds to state s1 and
it will sometime later send signal Y. A and B does not interact consistently
because A terminates while B still thinks it is alive and tries to send a signal
to it.

A variant of improper termination can occur when we have conditions or labels
attached to the termination of an APSM, and the two APSMs do not terminate
with the same condition [16, p. 78]. Part (d) of Fig. 2.5 shows a quite trivial
example of this. Both A and B terminate at the same time, but with different
conditions. To be consistent, they should have terminate with equal conditions.

2.4.2 How can we prevent it?

As mentioned, the two APSMs can only interaction consistently if they are
related by containment and obligation [16, p. 214]. If we can guarantee both,
unspecified signal reception, deadlock or improper termination will never occur.

Containment A containment relation exists if any of the two APSMs, in
interaction step, can receive all signals that can be sent from the other
APSM [16, p. 212]. An APSM can be able to receive more signals, as
long as it contains the reception of the signals specified by the other APSM.
Containment ensures that unspecified signal reception never occurs. The
containment requirement is exemplified in Figure 2.6. In state s0, A can receive
both signal X and Y. B can send signal X in the corresponding state, and thus
A can handle all signals B can send. Similar, in state s1 in B, both the reception
of signal Z and W is specified. At this stage in the interaction, A can send
signal Z, and the input behaviour of B contains the output behaviour of A. We
can therefore confirm that A and B are related through containment.

Obligation Obligation exists between two APSM when, in each interaction
step, at least one of the two APSMs can send a signal [16, p. 213]. This means
that at any time during the interaction, one of the APSMs will eventually send
a signal to the other one, and this prevents deadlock. The example in Fig. 2.6
illustrates this property as well. We see that in each step in the interaction
between A and B, one of them is able to send a signal to the other. In state
s0 B will eventually send signal X to A and they will both proceed to state s1.

20 CHAPTER 2. BACKGROUND

s0

? X

s1

s0

! X

s1

? Y

s2

! Z

s3 s3

? W

s5

? Z! Q

s4

Figure 2.6: Containment and obligation. The APSMs A and B are related both
through containment and obligation.

In this state, A will at some time send signal Z to B. We can conclude that A
and B are related through obligation.

Containment prevents unspecified signal reception, obligation prevents dead-
locks and together they prevent improper termination. To explain the latter,
assume that one of the APSMs in an interaction terminates. Then the active
APSM cannot send any signal, or else the containment requirement is not en-
forced because the terminated APSM cannot receive it. The active APSM can
neither wait for a signal to arrive, as this would violate the obligation require-
ment because the terminated APSM cannot send a signal. The two APSMs
must necessary terminate coordinated if both requirements are enforced.

2.4.3 Cases requiring special attention

The examples of inconsistent interaction so far have been of the more trivial
kind. When so-called equivoque states or mixed initiatives comes into play, it
becomes a bit more difficult. These are situations that have to be taken special
care of to be able to ensure consistent interaction.

Equivoque states

A state is equivoque if two or more outgoing transitions are triggered by
the same signal reception or signal sending and the transitions lead to non-
equivalent states [16, p. 126]. This means that when an APSM is in a state and,
for instance, a signal arrives, the further behaviour can be one of possibly many
alternatives. This leads to ambiguous behaviour, since it not visible for the
other APSM which behaviour that was executed. In all the cases in Figure 2.7
we can see that when signal X is received in state s0, it is not uniquely defined
what will happen next. For instance, in part (a) of the figure, the APSM will
proceed to either state s1 or s2. The APSM it interacts with cannot know
which of these alternatives that was executed, and will not know if the APSM
in the figure expect a signal Z to arrive or if it is going to send signal Y.

2.4. INTERACTION CONSISTENCY 21

s0

? X

s1

? Y

s3

? X

s2

? Z

s4

s0

? X

s1

! Y

s3

? X

s2

? Z

s4

s0

? X

s1

! Y

s3

? X

s2

! Z

s4

s0

? X ? X

s2

! Z

s4

s0

? X ? X

condition1 condition2

(a) (b) (c)

(d) (e)

Figure 2.7: Equivoque states and resulting ambiguities. Equivoque states can
result in mixed ambiguity (a), input ambiguity (b), output divergence
(c), termination ambiguity (d) or termination condition ambiguity (e).

Ambiguities
The sort of ambiguity is characterised depending on the further behaviour
succeeding the equivoque state. Related to Fig. 2.7 we see that in (a) we have a
mixed ambiguity, since both signal sending and signal reception is possible after
the equivoque state s0, but an external observer cannot know which signals
the APSM expects to receive or send. Part (b) shows input ambiguity, since we
know that the APSM will send a signal, but we do not know which one. In (c) we
see a case of output divergence, as we know that only signal sending can occur,
but we do not know which signal that will be sent. The situation illustrated
in (d) shows termination ambiguity, where an external observer cannot know
if this APSM has terminated or not as a response to the reception of signal X
in state s0. Finally, in (e) we have termination condition ambiguity, because
we know that the APSM has terminated, but we do not know the condition
attached.

Mixed initiatives

Mixed initiative occurs when, at a certain step in the interaction between
two APSMs, both can take the initiative to send a signal [16, p. 178]. The
signals may cross, because we assume asynchronous signal transfer with a
buffered transmission medium. Mixed initiatives might lead to unspecified
signal reception or deadlock.

Mixed initiatives may describe concurrent behaviours or alternative orderings
of input and output [16, p. 134]. We will describe each case in more detail.

22 CHAPTER 2. BACKGROUND

s0

? X

s1

! Y

s2

(a)

! Z

s3

! Q

s4

(b)

s0

? X

s1

! Y

s2

! Z

s3

! Q

s4

? X

s5

s0

! X

s1

? Y

s2

? Z

s3

? Q

s4

A B

s0

! X

s1

? Y

s2

? Z

s3

? Q

s4

BA

? Y

s6

Figure 2.8: Mixed initiative describing concurrent behaviours: Input
consistency. Concurrent behaviours can lead to unspecified signal
reception (a) and must be handled to ensure input consistency (b).

Concurrent behaviours The mixed initiative describes concurrent be-
haviours when several “competing” behaviours might be started at some step
in the interaction, and both APSMs are allowed to start at least one of these
behaviours [16, p. 134].

Taking a look at part (a) of Figure 2.8, we see that the state s0 is a mixed
initiative state. It represents concurrent behaviours. The APSM A might
decide to send Y to start one behaviour, while the APSM it communicates
with, B, might send X to invoke another behaviour. If these two signals cross,
A will go to state s1 when it receives signal X, while B will proceed to state
s2 upon receiving signal Y. Consequently, A will sometime later send signal Z,
but B resides in state s2 and only waits for signal Q to arrive. This mixed
initiative leads to unspecified signal reception.

Input inconsistency
To avoid unspecified signal reception in the case of concurrent behaviours, we
must make sure that the signals that can be received in the mixed initiative
state also can be received in all states following the sending of a signal in the
mixed initiative state [16, p. 178]. If this is not the case, then we have input
inconsistency. To make the interaction in part (a) of Fig. 2.8 input consistent,
the reception of signal X should be added to state s2 of A, and the reception
of signal Y should be added to state s1 in B. This is shown in part (b) of
the figure. This action handles the input inconsistency caused by the mixed
initiative in state s0.

Fixing input inconsistency may in fact also introduce new mixed initiative
states. If we return to APSM A in part (b) of Fig. 2.8, we see that we introduced
a new mixed initiative in state s2, when we added the reception of signal X
to this state. Given that the states s4 and s5 are non-equivalent states, we
are now faced with another input inconsistency. This “domino-effect” occurs
because of the successive signal sendings defined in APSM A. After it has sent
Y, it will go to state s2 and later send signal Q. It thus sends two signals
in sequence before it receives a signal from the communicating APSM. This
can lead to quite complex APSMs, and it is advised to avoid this by ensuring

2.4. INTERACTION CONSISTENCY 23

s0

? X ! Y

A

s0

! X

s1

? Y

B

? Z

s3

s1

! Z

s3

? Y

A

s0

! X ? Y

B

(a)

condition1 condition2

s0

? X ! Y

condition1 condition2

(b)

Figure 2.9: Mixed initiative describing concurrent behaviours: Termina-
tion. Concurrent behaviours can lead to unwanted termination (a) or
improper termination (b) when the APSMs are allowed to terminate di-
rectly after a mixed initiative state.

that signal reception and sending occurs alternatively in the case of concurrent
behaviours [16, p. 184]. If this is followed, such signal sending sequences will
not happen, and we will never introduce any new mixed initiative states as in
(b) in the figure.

Unwanted or improper termination
As discussed, the way to handle input consistency is to add signal reception to
the states succeeding signal sending in the mixed initiative state. But, if the
APSM terminates after sending a signal in a mixed initiative state, this “design
rule” cannot be followed [16, p. 188].

Figure 2.9 shows, in part (a), a situation where APSM A will terminate after
sending signal Y in state s0. We have added the reception of signal Y in state
s1 in B to avoid input inconsistency. APSM B should also terminate upon
receiving Y, both in state s0 and s1, to avoid improper termination. If the
signals X and Y cross, signal X will never be received by A and thus lost.
They are still consistent, as our definition of the concept does not take signal
loss into account [16, p. 188]. Still, one should aim at designing the APSMs in
such a way that signal loss does not happen because of mixed initiatives, and
we can denote this as unwanted, but not improper, termination.

Improper termination can occur if mixed initiatives may lead to termination
with different conditions [16, p. 189]. Part (b) of Fig. 2.9 illustrates this
scenario. In state s0 of the interaction between A and B, the signals X and
Y can cross. A will terminate with condition2 after sending Y, while B will
terminate with condition1 after sending X. As a consequence, the two APSMs
do not interact consistently.

To avoid both unwanted and improper termination, we can impose a restriction
saying that an APSM should not terminate directly after a mixed initiative [16,
p. 190].

24 CHAPTER 2. BACKGROUND

s0

? X

s1

! Y

s2

s0

! X

s1

? Y

s2

A B

! Y

s3

? X

s3

? Y

s3

! X

s3

s0

? X

s1

! Y

s2

s0

! X

s1

? Y

s2

A B

! Y

s3

? X

s4

? Y

s3

! X

s4

(a) (b)

Figure 2.10: Mixed initiative describing alternative orderings. Alternative
orderings have to end in equivalent states (a) or else they introduce
ambiguities (b).

Alternative orderings If the mixed initiative represents an alternative
ordering, it means that a signal may be sent indifferently before or after the
reception of another signal [16, p. 134]. In part (a) of Figure 2.10 we see an
example of this. In APSM A the sending of Y and the reception of X represent
alternative orderings, and the other way around in APSM B. If A receives signal
X in state s0, it will answer by sending Y. On the other hand, if it sends Y
it will wait for the reception of X in state s2. It does not matter whether A
and B perceives the input and output of the signals in the same sequence or
not. Both sequences lead to a common state, s3, and the alternative ordering
is handled properly.

Further behaviour ambiguity
The main task in the case of alternative orderings is to ensure that we eventually
reach a common state. In part (b) of Fig. 2.10 we have an example of the
contrary, where the alternative ordering leads to non-equivalent states. When
APSM A sends signal Y, it is not able to know the ordering in B. If B sends
X before it receives Y, A will receive X in s2 and proceed to s4. B, on the
other hand, continues to state s1 after sending X, and upon receiving Y it
proceeds to s3. A and B are now in different states. If the signals do not cross,
the behaviour shown will not lead to an error, but since there is always the
possibility of this happening, the further behaviour is not predictable. This
thus represents an ambiguity.

Alternative orderings can involve more than two signals, but eventually they
have to reach the same state [16, p. 186]. It is however advised not to
use multiple alternative orderings, as this makes the APSMs more complex
and it becomes more difficult to identify and handle the alternative orderings
correctly [16, p. 186].

2.5. RELATED SOFTWARE PATTERN TOOLS 25

2.5 Related software pattern tools

We will now make a leap from the details of interaction consistency, and take a
look at two existing software tools supporting the application of patterns. First
we describe a commercial product from IBM, and then a research effort from a
university supporting patterns for SDL.

2.5.1 IBM Rational Software Architect

IBM has released a collection of products called the IBM Rational Software
Development Platform, targeted at helping developers with requirements
analysis, architecture, design and deployment of software systems [26]. One
of the products in this portfolio is Rational Software Architect (RSA), a
construction tool for developers enabling model-driven development and code-
generation [27]. RSA is build on top of the Eclipse platform and provides
graphical modelling using UML 2.0. A more light-weight variant of RSA is
the Rational Software Modeller (RSM), intended for users that do not need to
generate or view the code. RSM thus supports the modelling and visualisation
aspects and is intended to be used by designers to define and communicate their
designs to the stakeholders [28]. Both RSM and RSA support the application
of design patterns.

Design Patterns The design patterns included are the patterns by the “Gang
of Four”, as explained in section 2.1.2 on page 11. The patterns are presented in
an own view called Pattern Explorer, and readers of the book will immediately
recognize the structure, names and explanations provided. These patterns
are concerned about classes and relationships between classes. Even though
RSA supports modelling of many various UML 2.0 diagrams, the only patterns
included are these design patterns which are restricted to class diagrams.

A pattern can be one of three types: a class, a package or a collaboration. In
the latter case, the pattern is modelled as a collaboration between the classes
involved in the pattern. All the design patterns are provided as collaborations.
RSA supports another view, Pattern Authoring, which enables the users to
create and customise their own patterns, and these can be of any of the three
types.

Pattern application A pattern can be applied using a wizard consisting of
two steps. The first step is to select a model element (normally a package) as
the collaboration instance target. The second step is to specify the pattern
parameter values. This means to choose or create the classes, interfaces
and operations needed for applying each pattern. The multiplicity of and
relationships between the classes can also be specified here. Applying the
pattern will result in that the collaboration instance (that is the pattern

26 CHAPTER 2. BACKGROUND

instance) is added to the model, and it can then be viewed graphically in a
diagram. The parameters of a pattern instance can also be changed afterwards.
RSA can generate code (Java, C++ and EJB) from classes, interfaces and
packages. Because the applied patterns are part of the class diagrams, the code
generated will reflect the applied design patterns.

Pattern implementation Looking at how the patterns are implemented in
the tool, we see that the patterns are structured as Eclipse plug-ins, packaged
as so-called Reusable Asset Specifications (RAS). The RAS is a way to archive,
search for, organise, document and share pattern assets [51, p. 81]. Each plug-
in can be a collection of patterns, denoted as a pattern library. The library
consists of a manifest file (in XML) and a Java class. For each pattern added to
the pattern library a new manifest and Java class will be added to represent that
pattern. The classes should not be edited, as they must be kept synchronised
with the manifest files.

Difference to our interaction patterns Applying patterns to classes
consists mainly of adding parameters and operations, as well as specifying the
relationships between them by implementing interfaces, extending classes and
instantiating parameters. Doing so will normally not affect the existing code
(except when the chosen names collide with existing ones). A class only defines
a list of operations, but it does not put any restrictions on the order they can
or should be executed. On the contrary, state machines rigidly determine the
sequence in which events can happen. This makes application of patterns to
services based on state machines quite different from the object-oriented design
patterns in RSA.

Embedding a pattern instance in a state diagram requires resolving more
parameters than when applying to a class diagram. Any element added to
a state diagram will influence the overall behaviour of the state machine. We
must decide where in the state machine the elements of the pattern instance
are to be embedded, identifying surrounding elements. The design patterns
in RSA do not need this specification, as elements can be added to a without
destroying the existing behaviour.

Concluding remarks Despite the somewhat more complex task of applying
patterns to state machines, looking at the tool can still be beneficial for us.
The way the pattern explorer is made, provides a intuitive way of learning
about and selecting patterns. The wizard for applying a pattern is simple, but
effective, and could be used as an inspiration when creating the user interface
for application of our interaction patterns.

2.5. RELATED SOFTWARE PATTERN TOOLS 27

2.5.2 SDL Pattern Tool

The computer networks group at the University of Kaiserslautern is developing
tool support for their SDL patterns4, an effort called the SDL Pattern Tool
(SPT) [19]. SPT is integrated with Telelogic Tau Developer Generation 2 (TTD
G2), a developer tool suite mainly targeted at UML 2.0, but also with some
support for SDL [52].

Patterns supported The SPT supports a sub-set of the SDL patterns
defined. In 2005, when the latest paper on SPT was published, the structural
pattern “Service Architecture”, and the interaction patterns “Asynchronous
Notification” and “Synchronous Request Response” were implemented [13].

Pattern application Pattern application is a four-step process in SPT:
pattern selection, identification of the design context, pattern adaptation and
embedding into the design context [13, 12]. Pattern selection is done using a
pull-down menu with all the supplied patterns. The user then has to identify
the design context. This includes the components of the system the pattern is
to be applied to, the ports the components are to communicate through and
where in the state machines of the components the pattern is to be placed. The
latter can, for instance, involve specifying states preceding and succeeding the
pattern instance. This design context is identified through a series of simple
dialogue windows. The third step is pattern adaptation, where the user gives
names to the states and signals contained in the pattern. Finally, the pattern
can be embedded automatically by the tool.

Pattern implementation TTD G2 provides the possibility to add new
features through an application-specific API, and the patterns in the SPT
are realised as pattern-specific scripts which can alter the model through this
interface [13, p. 60]. This means that the SPT is bound to be used with TTD
G2. The SDL patterns are, of course, defined for SDL, while the TTD G2 is
mainly targeted at using UML 2.0. The SDL-patterns have thus actually been
converted to UML 2.0 in order to implement them.

Difference to our interaction patterns The SDL-patterns describe
message sequences, just like our interaction patterns. The main difference is
that the SDL patterns focus on the internal behaviour of the state machines,
while we only want to look at them from the outside. This makes the job of
inserting, adapting and composing patterns quite different.

Concluding remarks We can use the SPT as an inspiration for our tool
approach, even though the scope of the patterns differs and the patterns need

4We briefly discussed SDL patterns in section 2.1.2 on page 12.

28 CHAPTER 2. BACKGROUND

to be embedded by the user in a different way. The SDL state machines and
UML 2.0 state machines are very similar, and we the SDL patterns and the
SPT as inspiration for our approach.

2.6 Ramses tool suite

Ramses is a service engineering suite developed at the Department of Telematics
at NTNU. It is a prototype made to exemplify and demonstrate the ongoing
research on different model-driven development techniques at the department.
The aim of the Ramses tool suite is to make it easier to develop advanced
telecommunication services [44].

Ramses is based on the Eclipse platform, which is an open source platform for
tool integration [14]. Eclipse has a small run-time kernel, and everything else
are contributions which each realise a certain functionality. The contributions
are called plug-ins or extensions, and they are attached to so-called extension
points. In the words of Gamma and Beck: “Eclipse is a collection of places-
to-plug-things-in (extension points) and things-plugged-in (extensions).” [17, p.
5]. This enables everyone to contribute with their own plug-ins by just hooking
on to the defined extension points.

A lot of different projects work on extending Eclipse with new functionality, and
one of them is the UML2 project. This team implements a repository for the
Eclipse platform based on the UML 2.0 meta model [15]. The UML2 repository
stores the model elements using XML Metadata Interchange (XMI), which
is a format for storing and exchanging models, including UML, standardized
by OMG [38]. Using this repository, we have a way of creating, storing and
accessing UML model elements. The UML2 repository is a part of the Eclipse
Modelling Framework (EMF).

The Ramses tool suite is realised as a number of Eclipse plug-ins, and
is constructed in such a way that it is easy to add new functionality by
developing and integrating new plug-ins. Ramses makes use of the UML2
repository for managing model elements. Up until now, Ramses has mainly
supported modelling of services using state machines, but this is currently being
augmented with collaborations. It offers editing and visualisation of model
elements, as well as validation and verification using so-called inspectors that
check the model for unwanted properties. Ramses also includes code generation
and trace visualisation of the system at run-time. The tool suite is constantly
being added with new functionality to gain experience on different ways of
modelling reactive, real-time systems.

Chapter 3

Interaction patterns

In this chapter, we introduce our interaction patterns. We define how to model
them using UML 2.0, and determine the requirements of well-formed interaction
patterns. We also present a way to describe the patterns textual and introduce
the pattern library containing the interaction patterns identified in our work.

3.1 Introduction

An interaction pattern provides a proven solution to a re-occurring problem
within the context of an interaction interface. At a high level of abstraction,
we can observe that the sequences of messages exchanged between two parts
of a service, and the intention behind them, have great similarities. The
interaction patterns describe these re-occurring, abstract interactions and
provide a solution that can be reused. It is worth emphasising that we want
to find similarities in the purpose or motive behind an interaction between two
parts. The signal exchanges just the way the distributed parts of our system
exchange information.

Our interaction patterns can be regarded as basic building blocks for specifying
an interaction interface. The complete interaction between two parts can be
described and constructed from the generic interaction patterns. The abstract
nature of the patterns provides the possibility to tailor them to fit the needs of a
particular service. By using and combining many different interaction patterns
(and of course perhaps using the same interaction pattern several times), we
are able to define the interaction interface from a set of pre-defined interaction
patterns which have proven to work in the past.

29

30 CHAPTER 3. INTERACTION PATTERNS

Subscribe

subscriber subscribee

Subscribe, Event, Unsubscribe,

UnsubscribeCnf > Signal

«apsmf» sm «apsmf» sm
«ipd» sm

Figure 3.1: The interaction pattern Subscribe. The pattern has one APSMF
describing the behaviour of each role, and an IPD describing its complete
behaviour.

3.2 Modelling

The interaction patterns are modelled as UML 2.0 collaboration templates
with two collaboration roles. They contain three state machines; two
APSM fragments and one interaction pattern descriptor (IPD). The unbound
parameters of the collaboration template are called pattern parameters. The
interaction pattern Subscribe shown in Figure 3.1 will be used to exemplify
the contents of the interaction patterns. We also refer to Appendix A on
page 97 which summarises the constraints of the model elements described
in this section.

3.2.1 Pattern parameters

The parameters of the interaction patterns are signals. The pattern will define
the sequences of messages necessary to realise its purpose, but the information
to be contained in each signal have to be specified by the user when the
pattern is instantiated. The reason for this is that the information to be
exchanged depends on each situation and can never be captured in a pattern.
Concrete signals are assigned to the pattern parameters for each application
of the pattern, and these signals can have signal parameters1, which are used
to transport the information. In Fig. 3.1 we see that the Subscribe-pattern
has four parameters, which are the signals Subscribe, Event, Unsubscribe and
UnsubscribeCnf.

3.2.2 Pattern roles

The roles describe the participants in the pattern and correspond to
collaboration roles, as explained in section 2.2 on page 13. In the Subscribe-
pattern, the two roles are named subscriber (the one who subscribes to a certain

1Signal parameters are properties of the signal, and have nothing to do with the pattern
parameters.

3.2. MODELLING 31

event) and the subscribee (who pushes the event updates).

3.2.3 APSM fragments

Each pattern role is typed with a so-called APSM fragment (APSMF), which
is a state machine with certain constraints. It defines the behaviour of the
participant necessary to realise the intention of the pattern. We call them
fragments to indicate that they will be assembled into APSMs when the pattern
instances are composed to form the behaviour of the interaction interface.

An APSM fragment is quite similar to an APSM, but there are some differences:

1. The state succeeding the initial transition in an APSM fragment has
exactly one outgoing transition2. This is not a requirement for an APSM.

2. An APSM fragment can not have any final states.
3. An APSM fragment must have least one uniquely labelled exit point.

Figure 3.2 shows the two APSM fragments defined for the Subscribe-pattern.
Part (a) shows the fragment attached to the role named subscriber and part (b)
the fragment for the subscribee. The two APSMF’s obey to the constraints given
above. We might think that because the two APSMF’s describe the behaviour
of the participants on each side of an interaction, they would be mirror images
of one another. But, as we also can see from the figure, this is not always
the case. This has to do with ensuring interaction consistency between the
fragments, and will be discussed later in section 3.3 on the following page when
we lay out the requirements for well-formed patterns.

3.2.4 Interaction pattern descriptor

The interaction pattern descriptor (IPD) is a state machine which defines how
an instantiated interaction pattern can be related to other pattern instances.
The IPD is the classifier behaviour of an interaction pattern. It reflects the exit
points of the APSM fragments, and restrictions for this is given in section 3.3
on the next page. The IPD thus represents how an instantiated pattern can be
activated and deactivated and is to be used as a building block when composing
pattern instances. Section 4.3.4 on page 45 will discuss how the composition
is done and why we have chosen to describe the behaviour of the interaction
pattern as a state machine.

The constraints of an interaction pattern descriptor are:

1. It contains one or more uniquely labelled exit points.
2. It never contains any transitions or other vertices.

The interaction pattern descriptor of the Subscribe-pattern is shown in part
(c) of Fig. 3.2. It reflects the exit points of the APSM fragments in (a) and (b).

2There is always one unique signal that starts the communication in a collaboration.

32 CHAPTER 3. INTERACTION PATTERNS

«apsmf» sm subscriber

s0

! subscribe

s1

? event

s1

! unsubscribe

s2

? unsubscribe

s3

? unsubscribeCnf

[unsubscribeCnf]

? event

s2

? unsubscribe

s2

! unsubscribeCnf

«apsmf» sm subscribee

s0

? subscribe

s1

! event

s1

? unsubscribe

s2

! unsubscribe

s3

! unsubscribeCnf

[unsubscribeCnf]

? unsubscribeCnf

? unsubscribe

s2

(a) (b)

(c)

«apsmf» ipd subscribe

[unsubscribeCnf]

Figure 3.2: The state machines attached to the Subscribe interaction
pattern. The two APSMFs describe the behaviour of the subscriber
(a) and the subscribee (b) role. The IPD reflects the exit points of the
APSMFs (c).

3.3 Well-formed patterns

An interaction pattern is well-formed when it enforces a set of rules ensuring
its correctness. We must always make sure that the patterns contained in the
pattern library are correct, or else they can result to errors during composition
of APSMs and possibly ambiguous behaviour in the resulting APSMs. For an
interaction pattern to be well-formed, we impose two requirements:

1. The pair of APSM fragments in the interaction pattern need to interact
consistently.

2. The interaction pattern descriptor of an interaction pattern must be valid.

3.3.1 Consistent APSM fragments

To ensure that two APSM fragments interact in a consistent matter, we must
apply the principles of containment and obligation to prevent unspecified signal
reception, deadlock or improper termination when they interact (as explained in
section 2.4 on page 18). In particular, we must make sure to handle equivoque
states and mixed initiatives properly. All errors and ambiguities that might
appear in an APSM, can also occur in an APSM fragment. When the two
APSM fragments are found to be consistent, this will also ensure that they
terminate in a coordinated matter.

If we return to Fig. 3.2, we see that the two APSM fragments actually contains
a mixed initiative state, namely state s1. In this step in the interaction,
the subscriber can send unsubscribe and the subscribee can send an event or

3.4. PATTERN DESCRIPTION 33

unsubscribe. This is an example of concurrent behaviours (see section 2.4.3 on
page 21).

In the APSMF of the subscriber role in part (a) of the figure, we see that the
reception of event and the reception of unsubscribe are in conflict with the
sending of unsubscribe. We handle this by specifying the reception of the two
signals in the state we reach after sending unsubscribe. The action chosen is to
ignore these receptions after we have sent unsubscribe, and we remain in state
s2.

Part (b) of the same figure shows how the APSMF of the subscribee role is
defined to handle this conflict. Here, we might receive unsubscribe both after
we have sent event and after we have sent unsubscribe. Since we return to the
same state, s1, after sending the event signal, we do not have to add anything in
this case. However, when we have sent unsubscribe, we must add the reception
of unsubscribe to state s3. Following the choice made for the subscriber role,
we then have to proceed to state s2 or else the two APSMFs will not interact
consistently. Both APSMFs are now input consistent.

It is not important for us how one chooses to secure that the two APSMFs
are consistent. Any suitable approach can be chosen to avoid ambiguities and
conflicts. As long as the two APSMFs are related through both containment
and obligation, they interact consistently, and are thus well-formed.

3.3.2 Valid interaction pattern descriptor

An interaction pattern descriptor is considered to be valid if is reflects the exit
points of the APSM fragments in its interaction pattern. Assuming that the
APSM fragments interact consistently, they will have the same exit points. The
interaction pattern descriptor will then have one exit point for each exit point
in the fragment, resulting in a one-to-one relationship between an exit point in
the descriptor and each of the fragments.

In Fig. 3.2 the descriptor in part (c) has one exit point labelled unsubscribeCnf.
This reflects the exit points of the fragments in part (a) and (b) correctly, and
the descriptor is therefore valid.

3.4 Pattern description

We have so far only discussed the modelling aspects of an interaction
pattern. To become a pattern, in the true sense of the term, the UML 2.0
pattern definition has to be supplied with a textual description to explain
other properties of the pattern. The pattern description is important for
understanding what the pattern is for and when to use it.

The pattern should be described in such a way that it is easy to communicate it

34 CHAPTER 3. INTERACTION PATTERNS

to others. It is therefore important to include enough information to understand
the pattern, but not to swamp the pattern description with a lot of unnecessary
information [34]. There is no single format suited to describe all types of
patterns, and we have chosen to include the properties we feel are sufficient for
understanding what our interaction patterns are about. The emphasis of our
pattern description is to help understand the details of the interaction pattern
and ease the pattern selection process. Each interaction pattern is described
using the following elements:

Name First of all, each pattern must have a good name which makes it easy
to refer to and communicate the pattern to others. The name should
capture the essence of the pattern and the result it creates [34]. Without
a descriptive pattern name, the pattern can never become a part of the
daily vocabulary [18, p. 6].

Problem The specific problem to be addressed by the interaction pattern. It
gives a short explanation to the user about when the pattern can be of
interest.

Solution A short explanation on how the interaction pattern solves the
problem identified. It will thus be a brief explanation of what the pattern
does. (The succeeding sections will explain the solution in more detail.)

Example usage A concrete example to make it easier to relate the abstract
pattern to real-life services, illustrated with a sequence diagram.

Pattern roles A short description of the participants in the interaction
pattern.

Pattern alternatives Some patterns might have variation possibilities. The
alternatives are described in this section.

Pattern parameters A list of the parameters of the pattern together with a
short explanation of each of them.

APSM fragments A graphical illustration of the APSM fragments of the two
pattern roles.

Known uses Examples of the pattern being used in existing services.
Related patterns A list of patterns which are closely related to the current

pattern. Included to help the user to find possible alternatives and/or
complementary patterns.

We have omitted defining the context for each pattern. This will always be
the services we are concerned about, namely telecommunication services where
parts communicate asynchronously with messages through a buffered medium.

3.5 Pattern library

The pattern library is, not surprisingly, the place where we store our interaction
patterns. By gathering all patterns in a single library, we ease the job of finding
and selecting patterns. The library thus acts as a repository where users can
search for a suitable interaction pattern to solve their design problem. The
interaction patterns in the library have to be well-formed.

3.5. PATTERN LIBRARY 35

The library currently contains three generic interaction patterns:

• Notify - Single message from A to B.
• Request - Request from A to B, followed by a response in the opposite

direction.
• Subscribe - A receives notifications from B each time a specific event

occurs.

We have manually ensured the well-formedness of these three patterns. They
are further described in Appendix B on page 107.

The three interaction patterns identified in this work are quite basic and generic,
and they can be found in nearly all telecommunication services. The library
can also be augmented with new interaction patterns in the future, including
service and domain specific patterns.

Chapter 4

Applying and composing
interaction patterns

This chapter first describes how we express the interaction interface. The
process of applying an interaction pattern is then described, before we explain
how to compose the applied interaction pattern instances of the interaction
interface.

4.1 Creating the interaction interface collaboration

We describe the interaction interface using a two-way collaboration. It is simply
called an interaction interface collaboration, and is constructed in its entirety
from a number of pattern instances.

An interaction interface collaboration has the following constraints:

1. An interaction interface collaboration has one state machine as classifier
behaviour that is a so-called applied interaction pattern instances
composer (AIPIC).

2. An interaction interface collaboration has two state machines as owned
behaviours that are association point state machines (APSMs). Each of
the collaboration roles are typed with one of the APSMs.

3. All collaboration uses of an interaction interface collaboration must be
typed with an interaction pattern instance.

The AIPIC is a special state machine where we define the execution order
of the applied pattern instances, and we will describe this element further in
section 4.3.2 on page 43.

In Figure 4.1 we have defined the interaction interface collaboration Buddy
Tracking of our example service. We see that each role has an APSM attached
to it. The collaboration also has an AIPIC, where we define the sequence of
the interaction patterns we are to apply.

37

38CHAPTER 4. APPLYING AND COMPOSING INTERACTION PATTERNS

Buddy Tracking

tracker
tracking

server

«apsm» sm «apsm» sm«aipic» sm

Figure 4.1: The interaction interface collaboration Buddy Tracking. The
collaboration has one APSM attached to each collaboration role, as well
as an AIPIC as classifier behaviour.

4.2 Applying an interaction pattern

To apply an interaction pattern, we select a pattern from the library and
customise it so it suits our needs. We recognise this as step one and two in
Fig. 1.1 on page 3. More precisely, we first have to select a pattern, and then
decide on any pattern alternatives, before we can bind the pattern parameters
and the pattern roles. This will be explained in detail in this section.

Let us exemplify this process by illustrating how we can apply a pattern to
our interaction interface collaboration Buddy Tracking from Fig. 4.1. One of
the things we want to happen in the interaction between the tracker and the
tracking server, is that the tracker is notified by the tracking server every time
a buddy moves1. Throughout this section we will explain how we can apply a
pattern to solve this.

4.2.1 Select an interaction pattern

First, we select the appropriate interaction pattern by looking through the
pattern library. Based on the pattern description, we can find a pattern that
solves our problem and results in the interaction we want to happen.

Searching through the pattern library, we find that the suitable pattern to apply
to Buddy Tracking is the pattern named Subscribe. This pattern allows us
to subscribe to a certain event, and receive update messages every time this
event happens. We can use this interaction pattern to subscribe to the position
changes of the buddy we want to track.

1The requirements of the service was elaborated in 1.2 on page 5.

4.2. APPLYING AN INTERACTION PATTERN 39

4.2.2 Decide between pattern alternatives

When we have found the right interaction pattern, we have to decide on the
pattern alternatives, if the selected pattern has any. As explained in section 3.4
on page 33, these alternatives are small variations of an interaction pattern and
we have to choose which alternative we want to use in the particular situation.

The Subscribe-pattern has in fact a pattern alternative, which concerns which
of the two participants that can end the subscription. It is possible that either
the subscriber or the subscribee can end the subscription, or both. We decide
that we want both participants to be able to end the subscription. The tracker
can stop receiving the position updates, and the tracking server can stop sending
them, for instance if the buddy revokes the allowance to trace him, or if the
buddy goes off-line.

4.2.3 Bind pattern parameters

To be able to use an interaction pattern in a concrete system, we have to
instantiate it by binding its parameters to specific values. As we know from
section 3.2.1 on page 30, the parameters are signals.

Interaction pattern instance

When all parameters are bound to concrete signals, we obtain an interaction
pattern instance, which is a two-way elementary collaboration.

In Figure 4.2 we have illustrated how the Subscribe-pattern is instantiated,
obtaining the interaction pattern instance Track User of our example service.
We see that the pattern parameters have been bound to signals. For instance,
a signal StartTracking is assigned to the parameter Subscribe.

The interaction pattern instance contains three state machines; two APSM
fragments and an interaction pattern instance descriptor. Appendix A on
page 97 defines these model element, and we will also quickly go through them
here.

APSM fragments Just like the interaction pattern, the interaction pattern
instance contains two APSM fragments, one for each pattern role. They now
make use of the concrete signals assigned to the parameters and are adjusted
according to what the user decided regarding the pattern alternatives.

In Figure 4.3 we see the APSM fragments of the pattern instance Track User.
Part (a) shows the APSM fragment of the role subscriber and part (b) of the
subscribee. Compared to the APSM fragments of the Subscribe-pattern, as
shown in Fig. 3.2 on page 32, we see that they are almost the same, only the
signals used are different.

40CHAPTER 4. APPLYING AND COMPOSING INTERACTION PATTERNS

Track User

subscriber subscribee

Subscribe

subscriber subscribee

Subscribe, Event, Unsubscribe,

UnsubscribeCnf > Signal

<<bind>>

< Subscribe StartTracking,

Event UserPositionUpdate,

Unsubscribe StopTracking,

UnsunscribeCnf TrackingStopped

> Signal

«apsmf» sm «apsmf» sm«ipid» sm

«apsmf» sm «apsmf» sm
«ipd» sm

Figure 4.2: Obtaining an interaction pattern instance. The interaction pattern
instance Track User is obtained by instantiating the Subscriber pattern.

«apsmf» sm subscriber

s0

! startTracking

s1

? userPosition
Update

s1

! stopTracking

s2

? stopTracking

s3

? trackingStopped

[trackingStopped]

? userPosition
Update

s2

? stopTracking

s2

! trackingStopped

«apsmf» sm subscribee

s0

? startTracking

s1

! userPosition
Update

s1

? stopTracking

s2

! stopTracking

s3

! trackingStopped

[trackingStopped]

? trackingStopped ?stopTracking

s2

«apsmf» ipid trackUser

[trackingStopped]

(a) (b)

(c)

Figure 4.3: The state machines attached to the TrackUser interaction
pattern instance. The two APSMFs describe the behaviour of the
subscriber (a) and the subscribee (b) role. The IPID reflects the exit
points of the APSMFs (c).

4.2. APPLYING AN INTERACTION PATTERN 41

Interaction pattern instance descriptor The interaction pattern instance
descriptor (IPID) is the same as the interaction pattern descriptor from
section 3.2.4 on page 31, only that it is attached to an instantiated interaction
pattern. It reflects the exit points of the APSM fragments of the interaction
pattern instance, and describes how this interaction pattern instance can
be composed with other interaction pattern instances. The IPID is used
during composition of interaction pattern instances, which will be described
in section 4.3.3 on page 44.

Fig. 4.3, part (c), shows the interaction pattern instance descriptor of Track
User. We see that it has one exit point, Tracking Stopped, which correctly
reflects the exit points of the APSM fragments shown in part (a) and (b) of the
same figure.

The interaction pattern instance has almost the same elements as an interaction
pattern. We can thus state that the constraints of an interaction pattern
instance are:

1. An interaction pattern instance has one state machine as classifier
behaviour that is an interaction pattern instance descriptor (IPID).

2. An interaction pattern instance has two state machine as owned behaviour
that are association point state machine fragments (APSM fragments).

3. An interaction pattern instance has exactly two collaboration roles.
4. Each of the two collaboration roles in an interaction pattern instance is

typed with one of the APSM fragments.

The interaction pattern instances must have distinct signal sets, meaning that
signals used by one pattern instance cannot be used by another one. This
restriction can be found in the meta model we obey to, which defines that a
signal can be assigned to only one elementary collaboration [31]. This means
that we have to create new signals, or use existing signals that are not used in
other pattern instances, for each pattern parameter.

4.2.4 Use the interaction pattern instance in the interaction
interface collaboration

The newly obtained interaction pattern instance must now be used in the
interaction interface collaboration. We have to decide which of our collaboration
roles in the interaction interface collaboration that should play the roles of the
pattern instance. Because we deal with two-way collaborations, this is quite a
simple decision, as we only have two possibilities.

An interaction pattern instance can only be used once. We reuse the interaction
patterns, and not the interaction pattern instances. Since the pattern instances
have distinct signal sets, this implies that all pattern instances applied to an
interaction interface collaboration will make use of different signals. This makes

42CHAPTER 4. APPLYING AND COMPOSING INTERACTION PATTERNS

Buddy Tracking

tracker
tracking

server

tu:Track

Usersubscriber subscribee

«apsm» sm «apsm» sm«aipic» sm

Figure 4.4: Using the interaction pattern instance TrackUser in the
interaction interface collaboration BuddyTracking. Track User
is used by binding its pattern roles to the collaboration roles of Buddy
Tracking.

it easy to separate the applied pattern instances and make sure that they cannot
interfere with each other.

Returning to our example, we must determine which of the collaboration roles
in Buddy Tracking that are to play which roles of the instantiation of the
Subscribe-pattern we just have created, named Track User. Figure 4.4 shows
how the subscriber role of Track User is bound to the tracker role of Buddy
Tracking, and similar for the subscribee role.

4.3 Composing interaction pattern instances

After applying a number of interaction pattern instances to the interaction
interface collaboration, we can start composing them. In other words, it is time
to decide how they relate to one another and when they can be activated.

4.3.1 Composition possibilities

The pattern instances can only be activated sequentially, and can never
interleave. We assume that only one elementary collaboration can be active
at an association point at a time, which also is assumed in our underlying meta
model [31]. This means that only one pattern instance will be active at a time
and that they will be activated in sequence. If two parts need to communicate
different things at the same time, they can do so through an extra pair of
association points. This will yield in a new interaction interface, completely
independent of the first one.

A pattern instance always terminates with a description (a label) indicating
the result of the interaction of the pattern instance. After the interaction of a
pattern instance has ended with a certain result, one of three things can happen:

4.3. COMPOSING INTERACTION PATTERN INSTANCES 43

No succeeding interaction The interaction of the interaction interface
collaboration finishes. This means that after the pattern instance
has terminated with a certain result, nothing else can happen in the
interaction between the two parts. No other pattern instance can ever
be activated.

One succeeding interaction Another pattern instance is to follow the one
that has just terminated, and we know exactly which one. There is one,
and only one, possible pattern instance to be activated.

Two or more possible succeeding interactions One out of two or more
candidate pattern instances can be activated. Internal decisions in the
parts determine the succeeding interaction. As our focus is on the
interaction interface between the parts, we only know that there will be a
decision, but we do not know how the choice is made. From our viewpoint,
we thus have a number of candidates for the succeeding interaction, and
we know that one of them will happen.

4.3.2 The applied interaction pattern instances composer

The composition is done inside the applied interaction pattern instances
composer (AIPIC) of the interaction interface collaboration. This is a state
machine with certain constraints which is solely used to specify how the pattern
instances applied to the interaction interface collaboration are related to each
another. Appendix A on page 97 defines the model element. The constraints
of the AIPIC are:

1. An AIPIC has exactly one initial state, and exactly one initial transition.
2. All states in an AIPIC are submachine states.

(a) For each applied interaction pattern instance, a submachine state
exists referring to the interaction pattern instance descriptor (IPID)
as its submachine.

(b) The submachine state has one exit connection point reference for
each exit point in its submachine. This exit connection point
reference has the same name (that is, the same label) as the exit
point.

3. A transition in an AIPIC has no send signal actions or signal triggers.
4. The source of a transition in an AIPIC is always either the initial state

or an exit connection point reference of a submachine state.
5. The target of a transition in an AIPIC is always a submachine state.

The vertices in the AIPIC are thus submachine states pointing to the interaction
pattern instance descriptor (IPID) of the pattern instance if represents.
Figure 4.5 illustrates this. As we know, the IPID describes how a pattern
instance can relate to other pattern instances. The exit points of the
submachine, in our case the IPID, are reflected as exit connection point
references of the submachine state [46, p. 628].

44CHAPTER 4. APPLYING AND COMPOSING INTERACTION PATTERNS

«ipid» sm trackUser

[TrackingStopped]
tu:TrackUser

[TrackingStopped]

Submachine state Submachine

Figure 4.5: A submachine state and its submachine. A submachine state in the
AIPIC refers to an interaction pattern instance descriptor (IPID) as its
submachine. The exit points of the IPID are reflected as exit connection
point references in the submachine state.

Exit connection point reference Combination case
LogIn.LogInDenied No succeeding interaction
LogIn.LogInOK One succeeding interaction
TrackRequest.TrackingAccepted One succeeding interaction
TrackRequest.TrackingDenied Two or more possible succeeding interactions
TrackUser.TrackingStopped Two or more possible succeeding interactions
LogOut.LogOut No succeeding interaction

Table 4.1: The combination cases in BuddyTracking. The combination cases of
the exit connection point references in the AIPIC in Fig. 4.6 on the facing
page

4.3.3 How do we compose?

We compose by linking the exit connection point references of the submachine
states in the AIPIC to other submachine states. Let us return to our example
service to exemplify this.

Figure 4.6 illustrates how we compose the pattern instances of the interaction
interface collaboration Buddy Tracking. The figure shows four submachine
states in the AIPIC, one for each applied pattern instance, and the links defined
between the exit connection point references and the submachine states. The
AIPIC shows all three combination cases explained in 4.3.1 on page 42. We
see that the first pattern instance to be activated is LogIn. If this results in
a LogInDenied, no succeeding interaction is defined. This will result in the
termination of BuddyTracking. If the log in is accepted, then Track Request is
the only possible succeeding interaction. If Track Request terminates with a
TrackingDenied, the succeeding interaction can be both a new track request
(possibly to track another user), or we log out. One of these two things
can happen, and we have two possibilities for further interaction. Table 4.1
summarises the composition cases.

A note on the syntax used
Figure 4.6 on the next page shows that we choose to model a decision without
any decision symbol (choice). The reason for this is, as stated earlier, that
we have no knowledge of what the decision is based on. This is part of the
internal behaviour of the parts. To keep it simple we therefore omit the choice
that otherwise would have been included to describe that a decision has to be
made about the further interaction. Figure 4.7 shows how the a link would have

4.3. COMPOSING INTERACTION PATTERN INSTANCES 45

li:LogIn

[LogInOK] [LogInDenied]

«aipic» sm buddyTracking

no

succeeding

interaction
tr:Track
Request

[Tracking
Accepted]

[Tracking
Denied]

tu:TrackUser

[TrackingStopped]

lo:LogOut

[LogOut]

one

succeeding

interaction

two

possible

succeeding

interactions

Figure 4.6: The AIPIC of BuddyTracking. We compose the applied interaction
pattern instances of BuddyTracking by linking the submachine states of
its AIPIC.

equivalent

Figure 4.7: Syntax for modelling decision. Because the actual decision is hidden
from the interface behaviour, a decision is modelled without a choice
state. The meaning is equivalent.

looked like with a decision symbol (at the left), in contrast to how we model
a decision (at the right). Only the syntax differs, and they are semantically
equivalent.

4.3.4 On the usage of state machines for composition

The behaviour of the pattern instances could be modelled as interactions, and
composed using an interaction overview diagram [39, p. 499], which is used
to get an overview of the control flow between interactions [46, p. 410]. This
resembles what we want to do: to describe the control flow between the pattern
instances. We need to be able to describe different termination possibilities of
a pattern instance, meaning specifying different outcomes of the interactions
in the interaction overview diagram. The UML 2.0 specification [39] does
not show this possibility in an interaction overview diagram explicitly, but
continuations [39, p. 459] could perhaps be used for this purpose.

Composition of the pattern instances (which are collaboration uses of the

46CHAPTER 4. APPLYING AND COMPOSING INTERACTION PATTERNS

interaction interface collaboration) could also be modelled using UML 2.0
activities [39, p. 285]. The behaviour of a collaboration use is represented
by an activity. The actual composition is done inside another activity, referring
to these former activities through so-called call behaviour actions [39, p. 337].
These activities and call behaviour actions can have so-called output pins [39,
p. 383], making it possible to describe different termination possibilities of
a collaboration use. This could be used to model the different termination
possibilities of a pattern instance. Activities also allow us to describe parallel
execution of collaboration uses, but this is not necessary in our case as we only
consider sequential composition.

State machines were chosen mainly due to the experience we have with
modelling and understanding them. In addition, the behaviour of the
participants in a pattern instance are described with APSM fragments, which
are state machines. Together they make up the total behaviour of the pattern
instance, and is it therefore convenient and natural to use a state machine as well
for representing the whole pattern instance. Because we only consider sequential
composition, it is easy to express this inside a state machine by drawing
transitions between submachine states referring to the pattern instances. With
all model elements involved in the composition being state machines, it is fairly
easy to understand how they relate to each other and this results in a quite
coherent approach.

Chapter 5

Generating APSMs

After a brief introduction, this chapter will present the semantics of the APSM
composition. We then explain how to ensure correct APSMs by handling error
situations in a reasonable way.

5.1 Introduction

The APSMs are generated by assembling APSM fragments from the pattern
instances. One APSM fragment from each pattern instance is used to create the
APSM of one of the collaboration roles of the interaction interface collaboration.
There are two main questions when doing so: how to select which of the APSM
fragments of a pattern instance to use when creating which APSM, and how
these APSM fragments should be combined.

Which APSM fragment? The role bindings determine which of the two
APSM fragments of a pattern instance to use in what APSM. Once more, we
return to the interaction interface collaboration Buddy Tracking in Figure 5.1.
We know that the collaboration role tracker plays the following roles: the
requestor of the LogIn pattern instance, the requestor of TrackRequest, the
subscriber of TrackUser and the notifier of LogOut. This, of course, means
that the APSM we are going to create for the tracker -role, will be composed
from the APSM fragments of these four pattern roles. Correspondingly, the
APSM of tracking server will be put together from the APSM fragments of the
roles it plays in each pattern instance.

Which sequence? How the APSM fragments are to be combined is already
defined by the composition done inside the applied interaction pattern instances
composer (AIPIC). The composition of Buddy Tracking was shown in Fig. 4.6
on page 45. From this composition we know which order the pattern instances
are to be activated, and we thus know in what order to assemble the APSM

47

48 CHAPTER 5. GENERATING APSMS

Buddy Tracking

tracker
tracking

server

li:LogIn

requestor
responder

tr:Track

Request
requestor responder

tu:Track

Usersubscriber subscribee

lo:LogOut

notifier recipient

Figure 5.1: Selecting the correct APSMF using the knowledge from the
role binding. To compose the APSM of a collaboration role of Buddy
Tracker, we retrieve the APSM fragments of the pattern roles it plays in
each applied interaction pattern instance.

fragments. The AIPIC is our road map for composing the APSM fragments
into one APSM.

5.2 Semantics

We will now define the semantics of combining several APSM fragments into
one APSM. That is, how the APSM fragments should be assembled in each of
the combination cases identified in section 4.3.1 on page 42. Extracts from the
composition of the pattern instances in BuddyTracker, as previously shown in
Fig. 4.6 on page 45, will be used to exemplify this.

5.2.1 Case 1: No succeeding interaction

When no succeeding interaction is specified in the AIPIC, the incoming
transitions of the exit point in the fragments are targeted in a final state when
constructing the APSMs. As we remember from section 4.3.1 on page 42, the
interaction between the two parts is finished. This implies that the APSMs of
the interaction interface collaboration should terminate, which is done through
a final state.

Part (a) of Figure 5.2 shows a portion of the AIPIC of BuddyTracking. The exit
connection point reference LogInDenied has no succeeding interaction. Part (b)
shows extracts from the APSM fragments of the pattern instance in question.
In part (c) we show the result when this is spelled out in the APSMs. After
the exchange of the signal LogInDenied, the APSMs terminate in a final state.

5.2.2 Case 2: One succeeding interaction

In the case of only one succeeding interaction, we have to combine the APSM
fragments of the two pattern instances. The incoming transitions of the exit

5.2. SEMANTICS 49

«aipic» sm buddyTracking «apsm» sm tracker

li:LogIn

[LogInDenied]

li.s1

? LogIn
Denied

«apsm» sm trackingServer

li.s1

! LogIn
Denied

«apsmf» sm requestor

li.s1

? LogIn
Denied

[LogInDenied]

«apsmf» sm responder

li.s1

! LogIn
Denied

[LogInDenied]

(a) (b) (c)

Figure 5.2: APSM composition semantics: no succeeding interaction. When
no succeeding interaction is specified in the AIPIC (a), the exit points of
the APSM fragments (b) are replaced by final states when inserted into
the APSMs (c).

«apsmf» sm responder«apsmf» sm requestor

«aipic» sm buddyTracking «apsm» sm tracker

li.s1

? LogIn
OK

li:LogIn

[LogIn
OK]

tr:Track
Request

tr.s0

! TrackBuddy
Request

«apsm» sm trackingServer

li.s1

! LogIn
OK

tr.s0

? TrackBuddy
Request

(c)

«apsmf» sm requestor

li.s1

? LogInOK

[LogInOK]

«apsmf» sm responder

li.s1

! LogInOK

[LogInOK]

!Track
Buddy

Request

tr.s0

?Track
Buddy
Request

tr.s0

(a) (b)

Figure 5.3: APSM composition semantics: one succeeding interaction. In
the case of one succeeding interaction in the AIPIC (a), the APSM
fragments (b) are combined as shown in (c).

point in the preceding fragment are attached to the state succeeding the initial
state in the next fragment.

Figure 5.3 illustrates how we compose APSMs in this situation. Part (a) shows
a part of the BuddyTracking AIPIC, where the exit connection point reference
LogInOK is connected to TrackRequest. In part (b) we have shown the relevant
APSM fragments that are to be combined and part (c) shows the resulting
APSMs. After the exchange of LogInOK, the APSMs proceed to a state tr.s0,
awaiting the exchange of TrackBuddyRequest.

5.2.3 Case 3: Two or more possible succeeding interactions

When two or more pattern instances are candidates for the further interaction,
each transition preceding the exit point of the preceding fragment has to be
connected to the state succeeding the initial transition of each of the succeeding
fragments.

Part (a) of Figure 5.4 shows an extract from the AIPIC of BuddyTracking

50 CHAPTER 5. GENERATING APSMS

«aipic» sm buddyTracking

«apsm» sm tracker «apsm» sm trackingServer

tr:Track
Request

tu:TrackUser

[TrackingStopped]

lo:LogOut

!Tracking
Stopped

!TrackBuddy
Request

tr.s0

tu.s2 tu.s3

!LogOut

lo.s0

?Tracking
Stopped

?Tracking
Stopped

?TrackBuddy
Request

tr.s0

tu.s2 tu.s3

?LogOut

lo.s0

!Tracking
Stopped

«apsmf» sm subscriber

?Tracking
Stopped

[TrackingStopped]

!Tracking
Stopped

tu.s2 tu.s3

«apsmf» sm subscribee

!Tracking
Stopped

[TrackingStopped]

?Tracking
Stopped

tu.s2 tu.s3

«apsmf» sm requestor«apsmf» sm requestor

!Track
Buddy

Request

tr.s0

!LogOut

lo.s0

«apsmf» sm responder«apsmf» sm responder

?Track
Buddy

Request

tr.s0

?LogOut

lo.s0

(a) (b)

(c)

Figure 5.4: APSM composition semantics: two or more possible succeeding
interactions. When two or more succeeding interactions are specified in
the AIPIC (a), the APSM fragments (b) are combined as shown in (c).

5.3. ENSURING CORRECT APSMS 51

illustrating this scenario. In part (b) we see the different APSM fragments
involved in this example. We see that the signals TrackBuddyRequest and
LogOut are candidates for exchange after the TrackUser pattern instance has
terminated. The APSMs are shown in part (c). If we look at the APSM for
the tracker role, we see that after receiving TrackingStopped in tu.s2, we can
either proceed to tr.s0 to send TrackBuddyRequest or to state lo.s0 and send
LogOut. The similar happens for the sending of TrackingStopped in tu.s3.

This example also illustrates that an exit point of an fragment may have more
than only one incoming transition. Here, the signal TrackingStopped can go in
any direction. We have to take this into account in all three combination cases.

Two or more possible succeeding interactions will always yield in equivoque
states and thus ambiguities. In the APSM of the tracker in part (c) of
Fig. 5.4 we see that when receiving TrackingStopped in tu.s2 we can either
proceed to tr.s0 or to lo.s0. In tu.s3, the same ambiguity arises upon sending
TrackingStopped. The situation is reverse for the APSM of the trackingServer.
Generally speaking, any state preceding the exit point of a fragment will become
an equivoque state when two or more pattern instances are candidates for the
succeeding interaction.

5.3 Ensuring correct APSMs

We now know how to combine the APSM fragments into one APSM. Before we
can set off with generating APSMs, however, we need to find out how to ensure
that the APSMs we create interact consistently. There are three prerequisites
for correct APSMs:

• Well-formed patterns
• Correct composition of applied pattern instances
• Correct composition of APSMs from APSM fragments

The first two requirements are assumed to be fulfilled at this stage. The
patterns in the pattern library are expected to be well-formed, as discussed
in section 3.3 on page 32. The pattern instances have also been composed
correctly if the AIPIC of the interaction interface collaboration is in accordance
with the constraints defined in section 4.3.2 on page 43. Now, we have to explore
and identify the errors and ambiguities that might occur when the APSMs are
composed.

The situations that might jeopardise the consistency of the APSMs are the
ones involving equivoque states and mixed initiative states, as identified and
described in section 2.4 on page 18. We will go through each of the errors they
might produce, identify whether it can occur during the APSM composition or
not, and find a way to handle them so we can produce correct APSMs.

We will use our Tracking Service to exemplify the different situations that
might arise. Figure 5.5, part (a), shows the interaction interface collaboration

52 CHAPTER 5. GENERATING APSMS

Terminal Trace

terminal trace server

tr:Trace

Request

responder requestor
lu:Location

Update
responder requestor

gw:Get

Watchersrequestor responder

ra:Revoke

Allowance

notifier recipient

tr:Trace
Request[Tracing

Accepted]

[Tracing
Denied]

«aipic» sm terminalTrace

lu:Location
Update

[NewLocation]

ra:Revoke
Allowance

[TracingAllowanceRevoked]

gw:Get
Watchers

[Watchers]

(a)

(b)

Initiator:

terminal

Initiator:

trace server

Figure 5.5: The interaction interface collaboration Terminal Trace and its
AIPIC. The structure of Terminal Trace (a) and the AIPIC (b). Note
that the interaction pattern instances Location Update and Get Watchers
can be activated at the same time, but have different initiators.

5.3. ENSURING CORRECT APSMS 53

Terminal Trace, a part of our example service. Part (b) shows its AIPIC which
has been constructed based on the requirements given in section 1.2 on page 5.

5.3.1 Equivoque states

Equivoque states will always appear then two or more pattern instances are
candidates for the succeeding interaction. The sort of ambiguity introduced is
based on the contents of the succeeding APSM fragments.

Input and mixed ambiguity

Both input and mixed ambiguity are removed in the same manner. We will
thus illustrate with the situation of mixed ambiguity, but the technique applies
to both situations.

Consider Figure 5.6, where part (a) shows a portion of the AIPIC of
TerminalTrace. Both LocationUpdate and GetWatchers can be activated, and
they have different initiators. Part (b) shows the APSM fragments from these
pattern instances which we are going to combine and insert into the APSMs of
the terminal and traceServer roles. We use the semantic defined in section 5.2
on page 48, yielding in APSMs shown in part (c) of the figure. The tr.s1 -
states of both APSMs can quickly be identified as equivoque states. Because
both signal sending and signal reception is possible in the equivoque state, it
represents a mixed ambiguity.

Ambiguities can be removed by a transformation called merging [16, p. 164].
More precisely, we merge (that is combine) the states succeeding the outgoing
transitions which define equal signal reception or signal sending. We return to
Fig. 5.6, and see that in part (d) the states lu.s0 and gw.s0 have been merged
in both APSMs. This is done by creating a new state which contains all the
outgoing transitions of the two states, and define this to be the next state after
the exchange of TracingAccepted. We have now removed the ambiguity and
tr.s1 is no longer an equivoque state.

Removing input ambiguity is done the same way. The only difference to the
case of mixed ambiguity is that the same collaboration role initiates all the
possible succeeding interactions. Output divergence will always come in pair
with input ambiguity. If we experience input ambiguity in one of the APSMs,
we will always have output divergence in the other one. This follows directly
from the fact that every signal sent from one APSM is received in the other
APSM.

If we take a closer look at the APSMs in part (d) of Fig. 5.6, we see that the
new merged state, lu.s0/gw.s0, actually is a mixed initiative state. In fact, the
only time mixed initiative states can be introduced in the APSMs are when
we remove mixed ambiguities. How to handle this will be explored in section
5.3.2.

54 CHAPTER 5. GENERATING APSMS

«aipic» sm terminalTrace

«apsm» sm terminal «apsm» sm traceServer

lu:Location
Update

tr:Trace
Request

[TracingAccepted]

gw:Get
Watchers

«apsmf» sm requestor

? Tracing
Accepted

[TrackingAccepted]

tr.s1

«apsmf» sm requestor«apsmf» sm responder

? Location
Request

lu.s0

! Get
Watchers

gw.s0

«apsmf» sm responder«apsmf» sm requestor

! Location
Request

lu.s0

? Get
Watchers

gw.s0

(a) (b)

(c)

Initiator:

trace server

Initiator:

terminal

The APSMFs for the APSM terminal The APSMFs for the APSM traceServer

? Tracing
Accepted

?Location
Request

lu.s0

tr.s1

!Get
Watchers

gw.s0

! Tracing
Accepted

! Location
Request

lu.s0

tr.s1

? Get
Watchers

gw.s0

«apsm» sm terminal «apsm» sm traceServer

? Tracing
Accepted

?Location
Request

lu.s0 /
gw.s0

tr.s1

!Get
Watchers

! Tracing
Accepted

! Location
Request

lu.s0 /
gw.s0

tr.s1

? Get
Watchers

(d)

«apsmf» sm responder

! Tracing
Accepted

tr.s1

[TrackingAccepted]

Mixed initiative

state introduced

Figure 5.6: Removing mixed ambiguity by merging. Two pattern instances can
be activated at the same time (a), with the APSM fragments shown in
(b). The resulting APSMs (c) will contain an ambiguity, which can be
removed by merging (d). Note that, in the case of mixed ambiguity, the
merged state will have a mixed initiative.

5.3. ENSURING CORRECT APSMS 55

«aipic» sm illegalAipic

piB:Pattern
InstanceB

piA:Pattern
InstanceA

[labelA]

«aipic» sm illegalAipic

piA:Pattern
InstanceA

[labelA]

[condition1] [condition2]

(a) (b)

Figure 5.7: Preventing termination ambiguity and termination condition
ambiguity. Due to the constraints defined for the AIPIC, the user
is never allowed to introduce termination ambiguity (a) or termination
condition ambiguity (b).

Termination ambiguity and termination condition ambiguity

In section 2.4.3 on page 20, we explained that termination ambiguity occurs
when an external observer is unable to decide whether an APSM has terminated
or not. This means that sending (or receiving) the same signal can result in
both a termination of the APSM or that it proceeds to another state and stays
active. Termination condition ambiguity occurs when the APSM can terminate
with different conditions when the same signal is sent or received.

Termination ambiguity can never occur during composition of APSMs. This
is prevented by restricting the composition possibilities for the user inside the
AIPIC: To indicate no succeeding interaction, that is termination, the exit
connection point reference is not linked to any submachine state. To indicate
succeeding interaction, the exit connection point reference is linked to one or
more submachine states. It is obvious that both these things cannot be present
at the same time. There is thus no way of specifying both termination and
further interaction when a pattern instance finalises with a certain result, and
we can never experience termination ambiguity.

Termination condition ambiguity can neither happen during composition, also
due to the constraints of the AIPIC. Termination of the APSMs after a pattern
instance has finished with a certain result can only be defined by no links
from the exit connection points reference in the AIPIC. Thus, in the case of
no succeeding interaction, the APSMs terminate with the condition attached
to the current exit connection point reference. It is impossible to introduce
different conditions, and this ambiguity is prevented.

Let us briefly discuss how these ambiguities could have appeared, if the
constraints of the AIPIC were different. Assume that final states were allowed
in the AIPIC, and that the way to specify no succeeding interaction was to
draw a link from an exit connection point reference to a final state. This seems
quite intuitive: if the interaction between the two parts should terminate after
a pattern instance is finished, then connect it to a final state. However, this
could easily introduce ambiguities if a user decides to draw links both to a final

56 CHAPTER 5. GENERATING APSMS

state and a submachine state from the same exit connection point reference.
This is illustrated in part (a) of Figure 5.7. The user has defined that after
PatternInstanceA terminates through labelA, the interaction can both terminate
or it can continue with PatternInstanceB. This seems quite unnatural, and
would introduce termination ambiguities. Similarly, part (b) of the same figure
shows an illegal AIPIC where termination condition ambiguity would emerge
during composition. This is the same as saying that after PatternInstanceA
terminates with labelA, we either terminate with condition1 or condition2,
which is pretty illogical. It is best to prevent the user from defining such
erroneous situations, which is done through the restrictions on the composition
possibilities.

5.3.2 Mixed initiatives

During composition of APSMs, mixed initiatives occur when two or more
succeeding interactions are possible and these have different initiators. This
is what we called concurrent behaviours in section 2.4.3 on page 21, which can
lead to conflicts if the signals cross. But, as we remember from the same section,
mixed initiatives can also occur due to alternative orderings.

Alternative orderings

Alternative orderings can actually never happen as a result of the composition.
This is because we have defined that each pattern instance has its own distinct
set of signals (section 4.2.3 on page 39) and that a pattern instance can be
used inside a interaction interface collaboration exactly once (section 4.2.4 on
page 41).

Consider Figure 5.8, where part (a) shows an example AIPIC. Part (b)
shows the APSM fragments to be inserted into the APSM of one of the
two collaboration roles in part (c). We see that the mixed initiative state
piB.s0/piC.s0 in the APSM of role1 emerges due to alternative orderings.
However, the APSM fragments in part (b) are not valid. They cannot both
make use of the signals B and C. Consequently, alternative orderings can never
occur during composition of APSMs, and we do not have to consider the possible
further behaviour ambiguities emerging from this situation.

We still have to take care of the concurrent behaviours. When we assemble
APSM fragments, mixed ambiguity is removed by merging, and the merged
state introduced will always be a mixed initiative state, as described in 5.3.1
on page 53. We have to ensure input consistency to avoid a mixed initiative
conflict. In some special cases, termination might prevent us from doing so, and
our composition has to take this into consideration as well. We will examine
these two possible errors in turn.

5.3. ENSURING CORRECT APSMS 57

«aipic» sm exampleAipic

piB:Pattern
InstanceB

piA:Pattern
InstanceA

[labelA]

(a)

«apsmf» sm piA.role1

? msgA

[labelA]

piA.s2

«apsmf» sm piC.role1«apsmf» sm piB.role1

! msgB

piB.s0

? msgC

piC.s0

(b)

piC:Pattern
InstanceC

piB.s1

? msgC

piC.s1

! msgB

«apsm» sm role1

? msgA

piB.s0/
piC.s0

piA.s2

! msgB

piB.s1

? msgC

? msgC

piC.s1

! msgB

(c)

Figure 5.8: Alternative orderings during composition. A composition (a) with
pattern instances using the same set of signals (b) would have introduced
alternative orderings in the APSM (c). However, this is not allowed.

Input inconsistency

Mixed initiative states emerging due to concurrent behaviours need some sort
of conflict resolution. The two APSMs have each initiated a new behaviour,
and we need a way of determining which of these behaviours that should be
allowed to continue. Both APSMs can detect this conflict when they, in a state
following signal sending in the mixed initiative state, receives a signal that is
also defined as an input in the mixed initiative state [16, p. 181]. We need a
way of determining which of the behaviours initiated that should survive and
which should be suppressed.

Floch presents a conflict resolution scheme where one of the two APSMs acts
as a coordinator to resolve the conflict [16, p. 180]. The coordinator can either
be selected at design time or run-time, in the latter possibly after a negotiation
phase [16, p. 180f]. The further behaviour of the interaction is decided by the
exchange of an extra signal from the coordinator to the other APSM. We choose
to solve this sort of conflict a bit different.

Conflict resolution using priorities To resolve a mixed initiative conflict,
the further behaviour can be decided by giving the pattern instances involved
in the conflict a unique priority. As stated earlier, the mixed initiative conflict
during composition emerges because two or more pattern instances, with
different initiators, are candidates for activation. The goal of conflict resolution
will in this case be to decide which of these pattern instances that should be
allowed to continue, and which one to abort. Every pattern instance can be
assigned a priority, and we can decide on the further behaviour after a mixed

58 CHAPTER 5. GENERATING APSMS

«aipic» sm terminalTrace

lu:Location
Update

tr:Trace
Request

[TracingAccepted]

gw:Get
Watchers

(a)

Initiator:

trace server

Initiator:

terminal

«apsm» sm terminal «apsm» sm traceServer

? Tracing
Accepted

?Location
Request

lu.s0 /
gw.s0

tr.s1

!Get
Watchers

! Tracing
Accepted

! Location
Request

lu.s0 /
gw.s0

tr.s1

? Get
Watchers

(b)

lu.s1 gw.s1 lu.s1 gw.s1

«apsm» sm terminal «apsm» sm traceServer

? Tracing
Accepted

?Location
Request

lu.s0 /
gw.s0

tr.s1

!Get
Watchers

! Tracing
Accepted

! Location
Request

lu.s0 /
gw.s0

tr.s1

? Get
Watchers

lu.s1 gw.s1 lu.s1 gw.s1

lu.s1

?Location
Request

lu.s1

?Get
Watchers

(c)

Priority: 1
Priority: 2

Figure 5.9: Conflict resolution during composition using priority. The
combination defined in the AIPIC (a) will result in mixed initiative states
in the APSMs after merging (b). This can be resolved through enforcing
input consistency (c) and deciding the further behaviour based on the
priority of the pattern instances.

initiative conflict based on this priority. The pattern instance with the highest
priority “wins”. This way we avoid having a coordinator and agreeing on the
further behaviour at run-time, because this can be determined based on a fixed
priority stated by the user at design-time.

Figure 5.9 is a continuation of Fig. 5.6 on page 54. In part (a) we have repeated
the extract from the AIPIC, and part (b) shows the APSMs of the terminal
and traceServer roles as we left them after the merging transformation. In the
AIPIC we have indicated the priority given to the two pattern instances, and we
have chosen to give LocationUpdate the highest priority. The following situation
will cause a mixed initiative conflict: Consider that both APSMs reside in
the mixed initiative state lu.s0/gw.s0. Then, the terminal decides to ask for
which users it is currently being traced by, and starts the GetWatchers pattern
instance by sending the signal (which also happens to be called) GetWatchers.
However, before the tracing server receives this signal, it decides to request a
location update from the terminal, and sends LocationRequest. As a result, the
APSM of the terminal continues to state gw.s1, while the APSM of the trace
server proceeds to lu.s1.

5.3. ENSURING CORRECT APSMS 59

Part (c) of the figure shows the APSMs after the mixed initiative conflict has
been resolved. Input consistency is enforced in the APSM of the terminal role
by adding the reception of LocationUpdate to state gw.s1. We proceed to state
lu.s1 because we want to keep the effect of this received signal. In the APSM
of traceServer, the reception of GetWatchers is added to state lu.s1. Because
this signal belongs to the pattern instance with the lower priority, we ignore it
and remain in the same state. The two APSMs will now interact consistently,
as they reach the same state, lu.s1, after they have received the crossed signals.

The described solution to conflict resolution using priority is in fact quite
satisfying. Due to the distributed nature of the services in our domain, it
is impossible to synchronise the parts of the system and situations can occur
where concurrent behaviours are initiated. During the design-phase of these
services, we are very much aware of this characteristic. If, at a certain step
in the interaction, two or more different things can be started in two different
parts of the service, it stands to reason that the one who designs the service
also prioritises them. There is no reason to develop sophisticated negotiation
mechanisms to resolve the conflict during run-time, when the designer himself
knows (or at least should know) the intention behind every interaction. Thus,
we feel that this resolution scheme is both reasonable and sufficient.

Note that even though we only have two pattern instances involved in the
conflict in this example, the number of pattern instances can be greater in
general. As long as they all are prioritised, the resolving can be done similarly.
If any of the pattern instances involved are assigned equal priority (or any of
them lack a priority), it is considered to be a design flaw committed by the
user. This can be identified and the user can be warned and requested to do
the prioritising correctly.

Propagating input inconsistency As pointed out in section 2.4.3 on
page 21, when we add signal reception to ensure input consistency after a mixed
initiative state, we may actually introduce a new mixed initiative state. This
can also happen during the APSM composition, and have consequences for the
composition done in succeeding exit connection point references in the AIPIC.

Figure 5.10 shows an example of a situation where we have to repeatedly add
new transitions to ensure input consistency. We illustrate a general concept,
and thus only show the composition of one APSM. Part (a) shows an example
AIPIC, while part (b) shows the APSM fragments of the pattern instances
involved. We see that PatternInstanceB and PatternInstanceC has different
initiators. Part (c) shows the composed APSM for the role named role1. We
have removed ambiguities as previously explained, resulting in the merged state
piB.s0/piC.s0. In piB.s1 we have added the reception of signal X to ensure
input consistency. The target state of this transition is not of importance.
However, now we see that state piB.s1 is a mixed initiative state. We added
a signal reception, and it already defined two signal sendings. Because the
interaction is to terminate after the sending of signal H, this will lead to

60 CHAPTER 5. GENERATING APSMS

«aipic» sm exampleAipic

piB:Pattern
InstanceB

piA:Pattern
InstanceA

[label1]

(a)

piC:Pattern
InstanceC

[label2] [label3]

piD:Pattern
InstanceD

«apsmf» sm piA.role1

? A

[label1]

piA.s1

«apsmf» sm piC.role2«apsmf» sm piB.role1

! G

piB.s0

? X

piC.s0

piB.s1

! H

piC.s1

[label2] [label3]

! I

! Y

«apsmf» sm piD.role1

? M

piD.s0

piD.s1

! N

(b)

«apsm» sm role1

? A

piB.s0/
piC.s0

piA.s1

! G

piB.s1

! H

? X

piC.s1

! Y
! I

? X

piD.s0

? M ? X

(c)

Initiator:

role1

Initiator:

role2

Figure 5.10: Propagating input inconsistency. The combination shown in (a)
with the APSM fragments shown in (b) will result in propagating
input inconsistency in the APSM (c). This can effect the composition
in succeeding exit connection point references of the AIPIC or in an
unwanted termination.

5.3. ENSURING CORRECT APSMS 61

improper termination, which will be discussed shortly. After sending signal
I in piB.s1 we reach the state piD.s0 where the reception of signal M from the
fragment of PatternInstanceD is defined. We have to add the reception of signal
X also here, because it is possible that role1 sends both signal G and signal I
before it receives signal X. In this latter situation, we see that the handling of
the mixed initiative between PatternInstanceB and PatternInstanceC actually
affects the insertion of the fragment of PatternInstanceD.

This phenomenon, which we call propagating input inconsistency, has to be
taken into consideration when composing the APSMs from APSM fragments.
When we add a new fragment, like piD.role1 in the example above, we have to
check if there are unresolved input inconsistencies in the preceding state. Since
we require well-formed pattern instances, we know that any unresolved input
inconsistency in the APSM has been introduced during composition because of
this propagating phenomenon.

In section 2.4.3 on page 21 it was advised not to define successive signal sendings,
but it is not illegal. It just makes the conflict resolution a bit more complicated
and the resulting APSMs uglier and harder to understand. Especially when
the input inconsistency propagates to succeeding APSM fragments, the final
APSM will become less intuitive. We thus recommend avoiding this situation,
but we do not forbid it.

Eventually, the input inconsistency will stop propagating. Most of the time this
will happen when we reach a state where only signal reception is defined, like
state piD.s0 in Fig. 5.10. If not, it will cause an unwanted termination, like in
state piB.s1 in the same figure.

Unwanted or improper termination

Unwanted or improper termination occurs when we cannot refine the APSM to
ensure input consistency after a mixed initiative, because the APSM terminates.
This was elaborated in section 2.4.3 on page 21. During composition, we would
like to handle this in such a way that both APSMs agree on terminating at the
same time, and with the same termination condition.

Figure 5.11 shows an example of unwanted termination. Part (a) shows a
portion of the AIPIC of TerminalTrace, where both RevokeAllowance and
LocationUpdate can be started after GetWatchers has finished. The relevant
APSM fragments are shown in part (b). In part (c) the two APSMs have been
put together from these fragments. The state ra.s0/lu.s0 is a mixed initiative
state in both APSMs, but we cannot enforce input consistency to fix it. After
receiving RevokeAllowance in the APSM of the terminal role, we cannot specify
the reception of LocationRequest because the APSM terminates.

We solve the problem of unwanted termination by adding the exchange of
another signal which will notify the other APSM of the termination. Floch
uses such a notification signal to solve termination ambiguity after equivoque

62 CHAPTER 5. GENERATING APSMS

«apsmf» sm requestor

? Watchers

[Watchers]

gw.s1

«apsmf» sm responder«apsmf» sm requestor

! Revoke
Allowance

ra.s0

? Location
Request

lu.s0

«apsmf» sm requestor«apsmf» sm responder

ra.s0

(a) (b)

The APSMFs for the APSM terminal The APSMFs for the APSM traceServer

«apsmf» sm responder

! Watchers

gw.s1

[Watchers]

«aipic» sm terminalTrace

gw:Get
Watchers

[Watchers]

ra: Revoke
Allowance

[RevokeAllowance]

Initiator:

terminal

Initiator:

trace server

lu:Location
Update

«apsm» sm terminal

! Revoke
Allowance

? Location
Request

lu.s1

? New
Location

[Revoke Allowance]

? Revoke
Allowance

[Revoke Allowance]

! Location
Request

lu.s0

ra.s0/
lu.s0

«apsm» sm traceServer

? Revoke
Allowance

! Location
Request

lu.s1

! New
Location

ra.s0/
lu.s0

«apsm» sm terminal

! Revoke
Allowance

? Location
Request

lu.s1

? New
Location

ra.s0/
lu.s0

«apsm» sm traceServer

? Revoke
Allowance

! Location
Request

lu.s1

! New
Location

ra.s0/
lu.s0

await..

? Revoke
AllowanceCnf

await..

! Revoke
AllowanceCnf

(c) (d)

Figure 5.11: Removal of unwanted termination during composition. The
combination in the AIPIC in (a), with the APSM fragments shown in
(b), will result in an unwanted termination when composing the APSMs
(c). This can be resolved by adding the exchange of a new signal to
ensure that both APSMs terminate coordinated (d). Input consistency
can now be enforced as normal.

5.3. ENSURING CORRECT APSMS 63

«apsm» sm role1

! A
? B

s0

(a)

«apsm» sm role2

? A
! B

s0

«apsm» sm role1

! A ? B

s0

await..

? ACnf

await..

! BCnf

«apsm» sm role2

? A ! B

s0

await..

! ACnf

await..

? BCnf

[condition2] [condition2]

[condition2] [condition2]

[condition1] [condition1]

[condition1] [condition1]

(b)

Figure 5.12: Removal of improper termination during composition. The case
of improper termination in the APSMs (a) can be removed by adding
the exchange of an extra signal for each of the termination possibilities
(b). Input consistency can now be enforced as normal, and the APSMs
will terminate with the same condition.

states [16, p. 176], but we use it to handle unwanted termination after mixed
initiatives. Part (d) of Fig. 5.11 shows how we solve the unwanted termination
in the APSMs of the two roles. A new state and the sending of a new signal
have been added. The APSM of the terminal role will await a confirmation
for RevokeAllowance before it terminates. The APSM of the traceServer
will consequently send a new RevokeAllowanceCnf -signal to indicate that it
terminates. The unwanted termination is now removed, because the APSMs
no longer terminate directly after the mixed initiative. Input consistency can
now be enforced and the mixed initiative conflict resolved.

Improper termination can be resolved similarly to the case of unwanted
termination. The APSMs can terminate in more than one way, meaning with
different conditions, after a mixed initiative. This can only happen if more
than one of the pattern instances contains the exchange of one exactly one signal
(like RevokeAllowance in Fig. 5.11). Figure 5.12 shows a general example of how
improper termination is removed. In part (a) we see two example APSMs where
the exchange of signals A and B lead to different termination conditions. If these
two signals cross, then the APSMs will terminate with different conditions,
resulting in an improper termination. To resolve this, we add the exchange of
an additional signal for each of the termination possibilities, as shown in part
(b) of the figure. This is quite similar to what we did to resolve unwanted
termination, just “repeated” for each termination possibility succeeding the
mixed initiative state. Input consistency can now be enforced to remove the
mixed initiative conflict in state s0.

5.3.3 Summary

We have now completed a detailed study of the possible ambiguities and
conflicts that we have to take into consideration when composing APSMs from
APSM fragments. Table 5.1 sums up the main points of this discussion. The

64 CHAPTER 5. GENERATING APSMS

Error Error handling References

Equivoque states

Input
ambiguity

Resolved during composition
Removed by the merging transformation.

Theory: 2.4.3 on page 20
Handling: 5.3.1 on page 53

Output
divergence

Resolved during composition
Removed by the merging transformation.

Theory: 2.4.3 on page 20
Handling: 5.3.1 on page 53

Mixed
ambiguity

Resolved during composition
Removed by the merging transformation.

Theory: 2.4.3 on page 20
Handling: 5.3.1 on page 53

Termination
ambiguity

Prevented
Avoided by restricting the composition
possibilities of the pattern instances.

Theory: 2.4.3 on page 20
Handling: 5.3.1 on page 55

Termination
condition
ambiguity

Prevented
Avoided by restricting the composition
possibilities of the pattern instances.

Theory: 2.4.3 on page 20
Handling: 5.3.1 on page 55

Mixed initiatives: Concurrent behaviours

Input
inconsistency

Resolved during composition
Removed by enforcing input consistency
and resolving conflicts based on prioritised
pattern instances.

Theory: 2.4.3 on page 22
Handling: 5.3.2 on page 57

Unwanted or
improper
termination

Resolved during composition
Removed by adding the exchange of an ad-
ditional confirmation signal. Then enforc-
ing input consistency through prioritised
pattern instances.

Theory: 2.4.3 on page 23
Handling: 5.3.2 on page 61

Mixed initiatives: Alternative orderings

Further
behaviour
ambiguity

Prevented
Avoided due to the requirement of distinct
signal sets in the used pattern instances.

Theory: 2.4.3 on page 23
Handling: 5.3.2 on page 56

Table 5.1: Summary of error handling during composition. The table
summarizes how the different errors are prevented or resolved, including
references to more detailed discussions.

table shows which errors that are prevented, and which that are resolved during
composition. In addition, it includes a reference to the theory of the error case,
as well as to where the handling has been elaborated.

Chapter 6

APSM composition algorithm

This chapter will describe how we have designed the algorithm composing
the APSMs, based on the discussion in the previous chapter. After a brief
introduction, we will give a high-level overview of how the algorithm works,
before we describe some details of the algorithm concerning how the error
situations are resolved.

6.1 Introduction

The input of the composition algorithm is the interaction interface collabora-
tion. It constructs the APSMs based on the applied interaction patterns and
the desired composition of them as described in the AIPIC.

The APSM composition algorithm has the following preconditions to guarantee
correct APSMs:

• The algorithm must be invoked with a valid interaction interface
collaboration as input, as defined in section 4.1 on page 37.

• The AIPIC of the interaction interface collaboration is constructed based
on the constraints defined in section 4.3.2 on page 43.

• The pattern instances applied stem from well-formed patterns, as defined
in section 3.3 on page 32.

• The pattern instances make use of distinct sets of signals, as defined in
section 4.2.3 on page 39.

These assumptions and constraints have been discussed earlier in this thesis,
and the composition algorithm relies on that these have been obeyed.

65

66 CHAPTER 6. APSM COMPOSITION ALGORITHM

6.2 High-level explanation

The composition algorithm traverses the AIPIC of the interaction interface
collaboration recursively and builds the two APSMs. In its basic idea, the
algorithm is quite simple. What makes it difficult is to be able to handle all
the possible combinations and conflicts that may arise, as explained in 5.3 on
page 51. In this high-level explanation we go through the overall flow of the
algorithm without concerning special cases or errors. In the next section we
will go deeper into some selected details of the algorithm.

We will call the initial state and the exit connection point references of the
AIPIC composition nodes. Each such composition node is processed in turn and
the APSM fragments related to the submachine states linked to this composition
node are inserted into the APSMs. Let us go through how the algorithm works,
referring to the numbering in Figure 6.1.

1. We start traversing the AIPIC from its initial state.
2. Process composition node in AIPIC is executed for each composition node

in the AIPIC, which in the algorithm is named aipicvertex. The first
time it is called with the initial state as aipicvertex, the remaining times
the aipicvertex is an exit connection point reference.

3. We first get all submachine states attached to aipicvertex.
4. The number of submachine states determine the further action. If no

submachine states are attached to the aipicvertex, then we handle the
case of no succeeding interaction (see 5). Else, we handle succeeding
interaction (see 6).

5. In the case of no succeeding interaction, we are finished with handling
this aipicvertex.

6. If submachine states are found, we handle them one by one. An arbitrary
of them is picked and called sms.

7. We find the pattern instance the submachine state sms represents, and
retrieve its APSM fragments.

8. These fragments are inserted into the APSMs, while ensuring that error
situations are identified and resolved.

9. This pattern instance has now been visited, and the exit connection point
references of sms are fetched to start the recursive processing of them.

10. An arbitrary ecpr is picked from the list of exit connection point
references of the sms.

11. We now call Process composition node in AIPIC with ecpr being the
aipicvertex. This will trigger the processing of that ecpr (see 3).

12. When the processing of the ecpr is finished (either through 5 or 14), we
check to see if there are more exit connection point references of this sms
that have not been processed. If so, we return to 10.

13. When all exit connection point references of an sms are processed, we
check to see if there still are unvisited submachine states attached to the
aipicvertex. If yes, we return to 6.

14. When all submachine states attached to an aipicvertex are visited, the

6.2. HIGH-LEVEL EXPLANATION 67

APSM composition algorithm:

Main flow

Process composition

node in AIPIC

[aipicvertex := initial state]

Get the initial
state of the AIPIC

Get all submachine
states attached to

aipicvertex

number

of submachine

states

larger than zero

sms := next submachine state

Get APSM fragments from
the pattern instance the sms

represents

Insert the APSM fragments
into the APSM’s, while
ensuring correctness.

Get all the exit connection
point references of sms

exit

connection point

references in sms not

proecessed?

ecpr := next exit connection
point reference

Process composition

node in AIPIC

[aipicvertex := ecpr]

yes no

sub-

machine states

attached to

aipicvertex not

visited?

yes no

zero

1

2

3

4 5

6

7

8

9

11

12

13

14

10

15

Figure 6.1: Composition algorithm: high-level flowchart. The recursive
composition algorithm traverses the AIPIC and gradually builds the
APSMs of the interaction interface collaboration.

68 CHAPTER 6. APSM COMPOSITION ALGORITHM

li:LogIn

[LogInOK] [LogInDenied]

«aipic» sm buddyTracking

tr:Track
Request

[Tracking
Accepted]

[Tracking
Denied]

tu:TrackUser

[TrackingStopped]

lo:LogOut

[LogOut]

1
aipicvertex :=

initial state

2

3

4

5

6

7

aipicvertex :=
LogInOK

aipicvertex :=
Tracking
Accepted

aipicvertex :=
Tracking
Stopped

aipicvertex :=
LogInDenied

aipicvertex :=
TrackingDenied

aipicvertex :=
LogOut

Figure 6.2: Composition algorithm: example traversal of an AIPIC. The
AIPIC of Buddy Tracker will be traversed in a depth-first manner.

processing of this aipicvertex is done.
15. The whole algorithm stops when all the composition nodes in the AIPIC

have been processed, and thus all the submachine states have been visited.

The composition algorithm is a depth-first search (DFS) algorithm [33, p. 165].
We also remember which submachine states we have visited in order to handle
loops in the AIPIC. Figure 6.2 illustrates how the composition algorithm could
traverse the AIPIC of Buddy Tracking. This is only one of many possible traces
of the algorithm, since we arbitrary select which submachine state to visit first,
and which exit connection point reference to process first. The numbers in the
figure shows a possible sequence of processing the composition nodes1. We see
that the sequence reflects the depth-first-nature of the algorithm.

During the traversal of the AIPIC, and insertion of the APSM fragments, we
always keep track of where in the APSMs the fragments of the succeeding
interactions are to be attached. This is done by keeping a reference to a state
in each APSM where the first signal exchanges in the succeeding fragments are
to be started. This, and more, will be elaborated next.

6.3 Selected details concerning error handling

In the following we will explain some details of the composition algorithm based
on the overview presented in the previous section. We will extract portions
from the complete algorithm to explain how we resolve the ambiguities and
conflicts we have seen can occur during the composition of the APSMs. First,
we explain how we insert the actual APSM fragments into the APSMs, as this
will influence how the error situations are identified and resolved. Then, we

1Please note that the numbering in this figure has nothing to do with the numbering in
Fig. 6.1.

6.3. SELECTED DETAILS CONCERNING ERROR HANDLING 69

«aipic» sm terminalTrace

tr:Trace
Request

(a)

[Tracing
Accepted]

[TracingDenied]

«apsmf» sm requestor

s0

! Trace
Request

s1? Tracing
Accepted

[TracingAccepted]

? Tracing
Denied

[TracingDenied]

«apsmf» sm responder

s0

? Trace
Request

s1! Tracing
Accepted

[TracingAccepted]

! Tracing
Denied

[TracingDenied]

«apsm» sm traceServer

! Trace
Request

tr.s1

? Tracing
 Accepted

Tracing

Accepted

? Tracing
Denied

«apsm» sm terminal

? Trace
Request

tr.s1

! Trace
 Accepted

Tracing

Accepted

! Tracing
Denied

[TracingDenied] [TracingDenied]

(b)

«aipic» sm terminalTrace

tr:Trace
Request

[Tracing
Accepted]

[TracingDenied]

Figure 6.3: Composition algorithm: insertion of APSM fragments. The
APSM fragments of TraceRequest are inserted into the APSMs depending
on the composition in the exit connection point references in the AIPIC
(a). The TracingAccepted exit point is inserted as a simple state due to
further interaction in the AIPIC, while TracingDenied is inserted as a
final state because no succeeding interaction is defined in the AIPIC (b).

will explore how the algorithm resolves ambiguities and how we identify and
resolve mixed initiative conflicts.

6.3.1 Insertion of APSM fragments into the APSMs

Each APSM fragment will consist of a number of simple states and transitions,
and eventually end with one or more exit points. As we know, these exit
points are reflected as exit connection point references in the AIPIC. Adding
transitions and simple states to the APSMs is a rather simple task. However,
what we choose to do when we reach the exit point(s) of the APSM fragments
is very important for the way we resolve the ambiguities and conflicts in our
algorithm. This is because it is where the pattern instances, and thus the
fragments, terminate that the composition will be done and the composition
error situations occur.

When we reach an exit point in the APSM fragment, we determine what kind
of vertex to insert into the APSMs based on the information contained in the
AIPIC. This depends on the composition case of the exit connection point
reference corresponding to the exit point in question. Let us illustrate this
with an example. Figure 6.3 shows how we insert the APSM fragments of the

70 CHAPTER 6. APSM COMPOSITION ALGORITHM

TraceRequest pattern instance into the APSMs of the TerminalTrace interaction
interface collaboration. In part (a) show an extract from the AIPIC showing the
submachine state of this pattern instance. The exit connection point reference
TracingAccepted leads to succeeding interaction, while TracingDenied has no
succeeding interaction. The APSM fragments of the pattern instance are also
shown. In part (b), we see the APSMs of the two collaboration roles of
TerminalTrace after the fragments in (a) has been inserted. The exit point
TracingAccepted from the APSM fragments of (a) have been inserted as a
simple state in the APSMs. This is because we know from the AIPIC that
we sometime later are going to attach additional fragments at this point in the
APSM. We thus create a simple state with the name of the exit point, and the
fragments of succeeding pattern instances can later be attached to this state.
The exit point TracingDenied is inserted into the APSMs as a final state. We
do so because we know that the APSMs are to terminate due to the lack of
succeeding interactions, and no other fragments are ever going to be inserted
here.

The method implies scowling at the succeeding interaction of the pattern
instance during the insertion of its APSM fragments. A more coarse approach
of inserting all exit points as either final states or simple states would mean
that we have to replace them when additional fragments are to be added later,
or we are to terminate the APSMs, respectively. In the following, we will see
that the chosen method will make things easier when we are faced with error
situations during the APSM composition.

6.3.2 Resolving ambiguities

Ambiguities are in fact removed as a consequence of the chosen way of adding
the exit points of the APSM fragments. Figure 6.4 exemplifies this. In part
(a) we continue where we left off in Fig. 6.3. The fragments of TraceRequest
have been added to the APSMs traceServer and terminal. The composition
algorithm is currently in the exit connection point reference TracingAccepted
in the AIPIC, and the states named TracingAccepted in the APSMs are where
the succeeding fragments are to be attached. This follows from the discussion
above. We also note that the initiators of LocationUpdate and GetWatchers
are different, which means that the ambiguity we deal with is mixed ambiguity.
In part (b), the algorithm inserts the fragments of the LocationUpdate pattern
instance into the APSMs. They are attached to the TracingAccepted -states.
In part (c), we add the fragments of GetWatchers. They are also attached to
the same state in the APSMs. We see that we have avoided the ambiguity.
Our algorithm actually merges implicitly due to the way we insert the APSM
fragments and traverse the AIPIC.

6.3. SELECTED DETAILS CONCERNING ERROR HANDLING 71

«aipic» sm terminalTrace

tr:Trace
Request

[Tracing
Accepted]

lu:Location
Update

gw:Get
Watchers

Initiator:

terminal

Initiator:

trace server

«apsm» sm traceServer

Tracing

Accepted

«apsm» sm terminal

Tracing

Accepted

[NewLocation] [Watchers]

(a)

«aipic» sm terminalTrace

tr:Trace
Request

[Tracing
Accepted]

lu:Location
Update

gw:Get
Watchers

«apsm» sm traceServer

Tracing

Accepted

«apsm» sm terminal

Tracing

Accepted

[NewLocation] [Watchers]

! Location
Request

lu.s1

? New
Location

New

Location

? Location
Request

lu.s1

! New
Location

New

Location

«aipic» sm terminalTrace

tr:Trace
Request

[Tracing
Accepted]

lu:Location
Update

gw:Get
Watchers

«apsm» sm traceServer

Tracing

Accepted

«apsm» sm terminal

Tracing

Accepted

[NewLocation] [Watchers]

! Location
Request

lu.s1

? New
Location

New

Location

? Location
Request

lu.s1

! New
Location

New

Location

? Get Watchers

gw.s1

! Watchers

Watchers

! Get Watchers

gw.s1

? Watchers

Watchers

(b)

(c)

Figure 6.4: Composition algorithm: handling ambiguities. The figure shows
how the algorithm handles ambiguities during the insertion of the
fragments into the APSMs. In (a) the algorithm has processed
TracingAccepted in the AIPIC and the further interaction is to be
attached to states TracingAccepted in the APSMs. In (b) we add the
fragments of LocationUpdate, attached to these states. The fragments
of GetWatchers are then inserted in (c), attached to the same state.
No ambiguity is present in the APSMs due to the way the algorithm is
defined.

72 CHAPTER 6. APSM COMPOSITION ALGORITHM

«aipic» sm exampleAipic

pia:Pattern
InstanceA

[labelA]

pib:Pattern
InstanceB

pic:Pattern
InstanceC

Initiator:

Role1

pid:Pattern
InstanceD

Initiator:

Role2

Initiator:

Role1

«aipic» sm exampleAipic

pia:Pattern
InstanceA

[labelA]

pib:Pattern
InstanceB

pic:Pattern
InstanceC

Initiator:

Role1

pid:Pattern
InstanceD

Initiator:

Role2

Initiator:

Role1

«aipic» sm exampleAipic

pia:Pattern
InstanceA

[labelA]

pib:Pattern
InstanceB

pic:Pattern
InstanceC

Initiator:

Role1

pid:Pattern
InstanceD

Initiator:

Role2

Initiator:

Role1

(a) (b) (c)

Figure 6.5: Composition algorithm: determining when to resolve mixed
initiatives. When visiting PatternInstanceB (a), the algorithm will
identify the mixed initiative but not handle it. When PatternInstanceC
is inserted (b), the mixed initiative with the visited PatternInstanceB
will be resolved, but not the conflict with PatternInstanceD. The latter
will be resolved later when inserting the fragments of PatternInstanceD
(c).

6.3.3 Resolving mixed initiatives

To resolve mixed initiatives in our algorithm, we first have to identify when
they occur and when we can do something about it. Every time we insert
the APSM fragments of a pattern instance into the APSMs, we check for mixed
initiatives between that pattern instance and each of the other pattern instances
that might be activated at the same time. But, we can only resolve the mixed
initiative if the submachine state in the AIPIC representing the other pattern
instance has been visited. The reason for this is that to resolve the mixed
initiative conflict between two pattern instances, the fragments of both of them
have to be inserted into the APSMs. If the other pattern instance has not been
visited yet, we delay the handling of the mixed initiative conflict until then.

In Figure 6.5 we have a situation where three pattern instances can be
activated at the same time. The algorithm is processing the exit connection
point reference labelA in the AIPIC. In part (a) we have inserted the
fragments of PatternInstanceB. Now, we check for a mixed initiative conflict.
PatternInstanceC is initiated by Role2, and we therefore have a mixed initiative
between these two. But, PatternInstanceC has not been visited yet and we
ignore it. In part (b) the time has come to PatternInstanceC. It is in conflict
with both PatternInstanceB and PatternInstanceD. Since PatternInstanceB has
been visited, we resolve the conflict now. Finally, in part (c), we have inserted
the fragments of PatternInstanceD, and discover that it has a mixed initiative
conflict with PatternInstanceC. This can be resolved now, because the latter
pattern instance has been visited.

One might find it a bit strange that we speak of “delaying the handling of the
mixed initiative conflict”. Let us return to Fig. 6.4 to explain why this really

6.3. SELECTED DETAILS CONCERNING ERROR HANDLING 73

is quite natural. When we visit LocationUpdate (part (b)), and have inserted
its fragments into the APSMs, we can identify a mixed initiative conflict with
GetWatchers. Following the procedure just described, we do nothing about
this. We see from the APSMs in the figure that this is completely legitimate,
as we have not introduced any mixed initiative in the APSMs yet. This does
not happen before we visit GetWatchers in part (c) of the same figure. When
we insert the fragments of the second of the two pattern instances involved in
a conflict, the mixed initiative is introduced in the APSMs. This is therefore
when we need to resolve the conflict.

We have now identified the mixed initiatives and also determined if we can
handle the conflict at this point in the algorithm. Now we have to check if we
can enforce input consistency, or if termination is involved and prevents us from
doing so. If a final state succeeds directly after the mixed initiative state in the
APSMs, the exchange of an extra signal is inserted as described in section 5.3.2
on page 61.

Based on the priority of the pattern instances involved in the conflict, we insert
additional transitions to ensure input consistency and thus resolve the mixed
initiative. This is done according to the procedure previously elaborated, and
we refer to section 5.3.2 on page 57 for an explanation of the procedure.

The case of so-called propagating input inconsistency is also taken into account
in the algorithm. After the fragments have been inserted, and any mixed
initiative caused by the pattern instance composition have been resolved, we
check for propagating input inconsistency and handle this according to the
procedure presented earlier in section 5.3.2 on page 59.

This concludes the discussion of the designed composition algorithm. If further
details are desirable, we refer to the actual implementation of the algorithm,
which includes explanatory comments to ease the understanding of its mode of
operation2. The implementation done in our work is also the next stop in this
thesis.

2See appendix C on page 115 for information on how to get hold of the source code.

Chapter 7

Implementation

In this chapter, we describe the implementation done in our work, starting with
a brief overview. Next, we explain the realisation of the interaction patterns,
before the tasks of applying and composing interaction patterns in the tool are
described. The composition of the APSMs is then described, before we say
some words about the usability of the implemented approach.

7.1 Overview

The implementation is realised as an Eclipse plug-in named no.ntnu.item.-
ramses.interactionpattern. It extends the functionality of the Ramses tool suite
with the pattern-based approach for creating interaction interfaces. Appendix C
on page 115 lists its requirements.

The plug-in is organised into sub-packages. These are:

Algorithms - the algorithm defined for APSM composition
Exceptions - exceptions that can be thrown by the plug-in
Genericpatterns - the interaction patterns identified and described in our work
Helpers - helper classes for accessing and creating UML elements
Internal - further divided into:

Actions - menu actions for invoking the wizards and the composition algorithm
Plugin - plug-in information needed by Eclipse
Wizards - even further divided into:

Collaboration - creating a new interaction interface collaboration
Link - composing pattern instances applied to the interaction interface

collaboration
Patterninstance - applying patterns to the interaction interface collabo-

ration
Patternframework - the pattern library, the interface for interaction patterns and

other classes related to patterns in general

The rest of this chapter will explain the plug-in in more detail. We will go

75

76 CHAPTER 7. IMPLEMENTATION

through the implementation in roughly the same order as with the modelling
in the previous chapters. This means that we first start with the definition
of interaction patterns, then continue with how to apply and compose them,
before we describe the APSM composition.

7.2 Interaction patterns

This section will describe the implementation of the interaction patterns. First,
we discuss how the interaction patterns are represented, before we describe the
interface and extension point we have defined.

7.2.1 Representing interaction patterns

The interaction patterns can either be implemented as model resources or Java
code. The first alternative is totally in line with the modelling of the interaction
patterns as presented in chapter 3 on page 29. The patterns are represented in
XMI and thus stored as UML model elements. Each interaction pattern will
consist of an XMI-file defining it as a collaboration template. Using Java code,
the pattern itself is not stored as a model element, but we create the pattern
instances element for element using the UML2 repository of Eclipse. This means
that we have a piece of code that constructs a pattern instance based on the
user input using the factory methods of the repository. The interaction patterns
are thus only a recipe for constructing the pattern instances of that particular
interaction pattern.

We have chosen to implement the interaction patterns in Java code. This
makes us independent of the actual representation of the model elements. Using
the UML2 repository we can create and change model elements through Java
methods, and do not need to know that they are actually stored in XMI. If
the patterns were defined as model resources, they would be vulnerable to any
changes affecting the XMI format which we have no control over. Accessing and
managing model resources are also a complicated task, and it is therefore better
to utilise the UML2 repository which can do exactly this for us. Customisation
of the pattern instances based on the user input is also easier with the chosen
solution, because the input can be taken into account when building a pattern
instance element for element. If the patterns were stored as model resources
we would have to read them and use them as a foundation for creating the
tailored pattern instances. Because we cannot simply copy a pattern and use
it in any situation, some Java code will always be necessary for customisation.
With the pattern described in Java code as well, we only need one Java file for
each pattern.

7.2. INTERACTION PATTERNS 77

1 public interface InteractionPattern{

2
3 public PatternDescription getPatternDescription ();

4 public List getPatternParameters(String instanceName);

5 public Collaboration getPatternInstance(Package inThisPackage);

6
7 public Property getRole1 ();

8 public Property getRole2 ();

9
10 public String getName ();

11 public String getNameOfRole1 ();

12 public String getNameOfRole2 ();

13 }

Listing 7.1: The InteractionPattern interface. The listing shows the methods of
the interface all interaction patterns have to implement

7.2.2 Interface for patterns

We have defined the interface InteractionPattern, which all interaction patterns
must implement. Listing 7.1 shows the methods declared for this interface. The
method getPatternDescription retrieves the description of the interaction
pattern. An own class called PatternDescription has been defined to contain
the elements of this description. Next, getPatternParameters will return a
list with the pattern parameters. The input parameter instanceName is the
name of the pattern instance the user is about to create, and is stored until the
actual pattern instance is created. Through the method getPatternInstance,
the pattern instance is retrieved, which is a Collaboration. The package
which the pattern instance is to be contained in has to be included as an
input parameter. This follows from the way the UML2 repository creates
model elements, requiring them to be associated with a package when they
are constructed. The remaining five methods in the interface are rather self-
explanatory, and are plain getter methods. In section 7.3.2 on page 83 we
will see how we use the interface when selecting, customising and instantiating
interaction patterns.

An abstract class AbstractInteractionPattern has also been defined, which
implements InteractionPattern. When defining the Java code for new
interaction patterns this class can be extended, instead of implementing the
interface directly. This will make it easier to construct the code, as a
lot of variables and methods relevant for all interaction patterns have been
implemented already. This allows one to concentrate on making the code
specific for each interaction pattern.

7.2.3 Extension point for patterns

To provide flexibility and extensibility, we have defined a so-called extension
point in Eclipse for interaction patterns. This means that additional interaction
patterns can be defined in own plug-ins. They just have to be attached to the
extension point, and implement the interface InteractionPattern. This gives a

78 CHAPTER 7. IMPLEMENTATION

1 <extension -point id="pattern" name="Pattern" schema="schema/pattern.exsd"/>

Listing 7.2: Declaration of the pattern extension point. Extract from the
plugin.xml defining the extension point Pattern, which is further defined
in the schema in Figure 7.1.

Figure 7.1: The schema for the pattern extension point. Two elements are
defined in the extension point, namely category and pattern.

loose coupling between the pattern-based approach, and the actual interaction
patterns. We thus allow other people to add their own, possibly domain or
service specific, interaction patterns to the pattern library.

Listing 7.2 shows how the extension point is defined in the plugin.xml-file (the
manifest file) of our plug-in. We see that the extension point is given the id
pattern, and it is further defined in a so-called extension point schema named
pattern.exsd. A schema specifies the elements and attributes of an extension
point, and thus prevents users from making errors when they attach extensions
to the extension point [17, p. 269]. Figure 7.1 gives an overview of our schema.
We have defined two elements, a category and a pattern, each described below.

It is possible to contribute categories for the interaction patterns. This element
of the extension point has the attributes id and name. Listing 7.3 shows how to
use this element of the extension point. First, in line 1, we declare the extension
point we are going to attach to. Then, we specify a new category with the ID
generic and named Generic Patterns. The category is now added.

1 <extension id="pattern" point="no.ntnu.item.ramses.interactionpattern.pattern">

2 <category id="generic" name="Generic patterns"/>

3 </extension >

Listing 7.3: Using the pattern extension point to add a category. A new
category Generic Patterns is added to the library through the defined
extension point.

7.3. APPLYING AND COMPOSING INTERACTION PATTERNS 79

1 <extension id="pattern" point="no.ntnu.item.ramses.interactionpattern.pattern">

2 <pattern category = "generic"

3 class="no.ntnu.item.ramses.interactionpattern.genericpatterns.SubscribePattern"

4 name="Subscribe"/>

5 </extension >

Listing 7.4: Using the pattern extension point to add a pattern. A new
interaction pattern Subscribe is added to the library through the
extension point.

Returning to Fig. 7.1, we see that the pattern element has three attributes.
First we have the category and the name of the pattern. The class attribute
is used to specify the actual Java class with the code that makes up the
interaction pattern. Listing 7.4 shows how we use the extension point to add
the Subscriber-pattern to the library. Again, first we have to declare the
extension point in question. Then we say that this pattern is to be included in
the generic category (referring to its ID). The value of the class-attribute is
the path of the Java class of the pattern. Finally, we name it Subscribe. As we
can see from these examples, it is quite easy to contribute with new interaction
patterns to the pattern library through this extension point.

The extensions (that is the patterns and the categories) are loaded the first
time a user wants to apply a pattern. This way we delay the loading as much
as possible, and we avoid loading them at all if the user is not going to create
any pattern instances.

7.3 Applying and composing interaction patterns

Now that we know how the interaction patterns are implemented, we can start
explaining how we have implemented the process of applying and composing
them. The last step of the approach, generating the APSMs, will be described
in the next section.

7.3.1 Defining the interaction interface

A user can define the interaction interface using a small wizard page. The
wizard is started from a menu action, and will produce an interaction interface
collaboration with all required elements based on the user input. This wizard,
and all other wizards we have made, is implemented using a standard framework
provided by Eclipse. The menu actions are integrated through an extension
point org.eclipse.ui.popupMenus of Eclipse.

Figure 7.2 shows several screenshots from the implemented tool support for
creating interaction interfaces. Part (a) shows the menu item that triggers the
wizard. It is enabled for elements in the model view of the type Package, and

80 CHAPTER 7. IMPLEMENTATION

(a)

(b) (c)

Figure 7.2: Creating an interaction interface collaboration. The user can make
a new interaction interface collaboration through the pop-up menu when
selecting a package in the model view (a). The name of the collaboration
and its roles are entered in a small wizard (b), and the collaboration is
created with all the correct elements (c).

added to the sub menu New. The package selected defines where the interaction
interface collaboration is to be added. Part (b) shows the wizard window. The
user has to provide the name of the collaboration, as well as the names of the
two roles. Once this is finished, a new interaction interface collaboration will
be created inside the package, as shown in part (c). The wizard has created the
collaboration buddyTracking and its three state machines. The AIPIC is just
called aipic, while the APSMs are given the same name as the roles they are
tied to, prefixed with apsm. Tracker and trackingServer are the collaboration
roles of the interaction interface collaboration and are typed with each of the
APSMs.

7.3.2 Applying an interaction pattern

An interaction pattern is applied using a three-page wizard:

• Page 1 - Selecting pattern: The user selects the desired interaction
pattern from a categorised list of installed patterns.

• Page 2 - Customising pattern: The user provides the name of the
pattern instance and binds the pattern roles to the collaboration roles of
the interaction interface collaboration. If the selected pattern has any

7.3. APPLYING AND COMPOSING INTERACTION PATTERNS 81

pattern alternatives, the user has to decide on these.
• Page 3 - Binding pattern parameters: The pattern parameters of

the selected pattern are assigned values. Signals are created using a small
pop-up window.

Figure 7.3 shows a series of screenshots from the process of applying an
interaction pattern instance in the tool. In part (a) we see that a new pattern
instance can be added by selecting an interaction interface collaboration and
choosing from the pop-up menu: New → Pattern Instance. This identifies the
context and the new pattern instance we are to create will be applied to this
collaboration.

Page 1 - Selecting interaction pattern. The first page of the wizard
displays all installed interaction patterns, as shown in part (b) of the figure.
This is done in a simple tree-structure where the patterns are sorted according
to their category. If more information about a pattern is desired, the link at the
bottom of the wizard can be used to retrieve an explanation (for instance the
complete or parts of the pattern description) of the currently selected pattern1.
The user chooses the interaction pattern to apply proceeds to the next page.

Page 2 - Customising pattern. The customisation page is shown in part
(c) of the figure. The user is first asked to provide a name for this pattern
instance. As the user types, we check if the name is in line with Java name
conventions and that the name is not equal to an already existing pattern
instance. Second, the pattern roles are to be bound to the roles of the interaction
interface collaboration. We have chosen to do this rather simple using radio
buttons, since we only have two possibilities. In this case, the collaboration
role tracker can either be the subscriber or the subscribee of the pattern,
and the tracking server has to be the opposite. The last thing we have to
do on this page is to specify the pattern alternatives. Since the Subscribe-
pattern has one alternative, it is displayed in the list. If a pattern has many
alternatives they are added to the list and can be selected and specified one at
a time. For a pattern with no alternatives, this page ends with the role binding
section. In the Subscribe-pattern we have defined the alternative “Who can
end the subscription” as a number, which can be assigned the values 1, 2 or
3 as described at the bottom of the wizard page. The user inputs the desired
alternative, before pressing Next to enter the last page of the wizard.

Page 3 - Binding pattern parameters. Page three of the wizard is shown
in part (d) of the figure and concerns assigning values to the pattern parameters.
All parameters are displayed in a table, and can be selected one-by-one to assign
values. Pressing the Create Signal -button causes a simple pop-up wizard to
appear, where the name of the signal can be entered (not shown in the figure).

1We have only prepared for this functionality, and not implemented it due to time
constraints.

82 CHAPTER 7. IMPLEMENTATION

(a)

(b) (c)

(d) (e)

Figure 7.3: Applying an interaction pattern. The wizard for adding a new
pattern instance can be invoked from the pop-up menu of the interaction
interface collaboration (a). On the first page of the wizard (b), the desired
interaction pattern is selected. Then the pattern instance is customised
(c), before the pattern parameters are bound to newly created signals (d).
The pattern instance is now created and used properly in the interaction
interface collaboration (e).

7.3. APPLYING AND COMPOSING INTERACTION PATTERNS 83

The signals can also be given signal parameters, using the Add signal parameter -
button, but this can also be specified any time later. After creating a signal for
each of the parameters, the Finish-button will be enabled and the customised
pattern instance can be applied.

The last piece of the figure, part (e), shows the model view of after this pattern
instance has been applied. As we can see, the pattern instance TrackUser
has been created with its three state machines. The IPID is simply called ipid,
while the APSM fragments are given the same name as the roles they type. The
contents of these state machines is not shown in the figure. In buddyTracking,
we see that a collaboration use trackUser, pointing to the pattern instance
TrackUser, is added, and it contains the binding of the roles as we specified
in the wizard. In the AIPIC, a submachine state trackuser has been added,
containing an exit connection point reference TrackingStopped. This reflects
the IPID of trackuser, as we argued in section 4.2.3 on page 41. Finally, we
see that the signals are added to the same package as the interaction interface
collaboration. If wanted, signal parameters can now be added to these signals,
as with any other signal in Ramses.

The wizard for applying a pattern is shared for all interaction patterns, and
contents of the pages of this wizard can change according to each pattern. The
opposite solution is to equip every pattern with its own little pattern-specific
wizard, which was done for instance in the SPT (section 2.5.2 on page 27).
However, we do not find this satisfying, as this means that when we define a new
interaction pattern, we also have to create a new wizard. This is not necessary
when we have a standard format for the interaction patterns, and a wizard
smart enough to prepare the pages according to the information contained in
the description of each pattern. This is in line with our goal of separating the
pattern-based approach from the actual interaction patterns.

How the wizard works

Up to now, we have shown the process of applying a pattern from the user’s
point of view. We will now describe some main points concerning how
this wizard is implemented. Figure 7.4 tries to illustrate how the wizard
retrieves the information it displays to the user. It also shows how we use
the InteractionPattern interface described in section 7.2.2 on page 77. To the
left we show the user actions triggering the method calls. The PatternLibrary
is a singleton containing all the installed patterns, organised into categories.
The interaction pattern object selectedPattern is used to illustrate the selected
pattern.

Page 1 - Selecting interaction pattern. When the wizard is invoked,
the pattern library is asked for all its categories. Then, we retrieve the

84 CHAPTER 7. IMPLEMENTATION

Page 2

Page 3

Page 1

selectedPattern:
InteractionPattern

apw; Apply
Pattern Wizard

getPatternDescription()

myDescription:PatternDescription

getPatternInstance(package:Package)

patternInstance:Collaboration

Start wizard

Next page

Select pattern

PatternLibrary

getCategories()

categories:Set

getPatternParameters(instanceName:String)

myParameters:List

Finish

getPatternsFrom
Category(categoryID:String)

patterns:Set

Next page

loop

for each category

Figure 7.4: How the apply pattern wizard works. The wizard prepares and
shows its pages based on the information received from the Pattern library
and the selectedPattern through a series of method calls.

set of patterns for each of the categories, which we display in the tree
structure in the wizard window. When the user selects a pattern, the pattern
description is retrieved through the method getPatternDescription of the
InteractionPattern interface. The PatternDescription-object in return will
contain any pattern alternatives and other textual information about the
pattern. This enables viewing the description to understand the pattern better
before applying it. When the desired pattern is found, the user flips to the next
page.

Page 2 - Customising pattern. Page two can now be displayed, and the
user inputs the desired values. The information in the pattern description of
the selected pattern, which is already retrieved, is used to construct the wizard
page. Because the pattern alternatives might affect the pattern parameters,
the user first have to decide on the alternatives, before the parameters can
be bound in the third page of the wizard. Upon pressing Next, we call
the method getPatternParameters which returns a list with the pattern
parameters according to the alternative chosen.

Page 3 - Binding pattern parameters. When all parameters have been
assigned a value, the method getPatternInstance will be invoked upon
pressing Finish. This causes the code of the selected interaction pattern to

7.4. GENERATING APSMS 85

create a new pattern instance with the correct signals and elements, based
on the user input. This collaboration is then returned. Finally, even though
not shown in the figure, the wizard uses the pattern instance in the interaction
interface collaboration and binds the roles correctly, resulting in what was shown
in part (e) of Fig. 7.3.

7.3.3 Composing interaction pattern instances

Yet another wizard is used for the composition of the pattern instances. To
keep it simple, the user defines the links of the AIPIC one at a time.

Figure 7.5 shows three screen shots from the implemented functionality for this.
A menu action invokes a simple one-page wizard. The interaction interface
collaboration, here buddyTracker, is selected and New → Pattern Instance Link
is chosen from the pop-up menu, as shown in part (a) of the figure. The wizard
in part (b) will then appear. Here, the source and the target for the link are
selected. The choices available have been filtered according to the constraints
described in section 4.3.2 on page 43. This means that as source vertex, the
user can select either the initial state or an exit connection point reference. The
latter is displayed in the format: 〈nameOfPatternInstance〉.〈nameOfExitPoint〉.
The target vertex is always one of the submachine states. In the figure, we
create a link from the exit connection point reference TrackingAccepted of
TrackRequest to TrackUser. The link is just a normal transition without any
signal trigger or send signal action, but we have chosen to call it a link to
separate it from the wizard of adding transitions. Upon pressing Finish, the
link is stored as a transition in the AIPIC. The wizard is used repeatedly to
declare all links wanted between the applied pattern instances.

Part (c) of the figure shows the AIPIC of buddyTracker after we have composed
all its interaction patterns. This is how it looks in the model view of Ramses,
but the AIPIC can also be viewed in the state machine editor. The composition
of the applied interaction pattern instances of this interaction interface is now
completed. The last step is then to let the tool generate the APSMs.

7.4 Generating APSMs

Composing the APSMs of the interaction interface collaboration is a completely
automatic process. Our tool will thus generate them without demanding any
user involvement.

Part (a) of Figure 7.6 shows that the composition of the APSMs is invoked
by selecting the menu item named Generate APSMs from the pop-up menu
of the interaction interface collaboration. This triggers the implementation of
the composition algorithm which was described in chapter 6 on page 65. The
algorithm is defined through the class ApsmGenerator.java in the algorithms-
package of the plug-in.

86 CHAPTER 7. IMPLEMENTATION

(a)

(b) (c)

Figure 7.5: Composing the applied pattern instances. The wizard is invoked
from the pop-up menu of the interaction interface collaboration (a). The
source and target of the link are selected from a list of possible alternatives
(b). Part (c) shows the links added to the AIPIC of the Buddy Tracker.

7.4. GENERATING APSMS 87

(a)

(b)

Figure 7.6: Generate APSMs. The algorithm for generating the APSMs of the
interaction interface collaboration is invoked from the pop-up menu (a).
The resulting APSMs for Buddy Tracker is shown in (b).

88 CHAPTER 7. IMPLEMENTATION

The result of the algorithm can be viewed by expanding the APSMs in the
model view or by opening them in the state machine editor, as shown in part
(b) of the same figure. This is just one way of viewing the APSMs, another
might be using the APSM editor of Ramses (not shown). The APSMs are
stored as any other state machine in Ramses.

Tool support for assigning priority to pattern instances, which is used by the
algorithm to resolve mixed initiative conflicts, is currently not implemented
due to time constraints. The algorithm implemented solves mixed initiatives
according to the priority scheme, but the priority is currently decided
alphabetically. However, this can easily be implemented by defining a
stereotype for interaction pattern instances. Eclipse provides a simple way
of assigning values to stereotypes, and this makes it no problem adding
functionality for this.

7.5 Usability

In the implementation we have tried to hide as much details of the approach as
possible. For instance, we never ask the user to compose submachine states
in the AIPIC using transitions from an exit connection point reference to
another submachine state. Instead, we ask to link the applied pattern instances
together. Actually, nothing in the wizard unveil how we actually compose the
pattern instances. We have emphasised implementing the approach at this level
to make it easy to use without understanding all the little things in the approach
we have created. This also means that the actual composition technique can
be replaced without having to change the interface towards the user.

The approach can be carried out just concentrating on the interaction interface
collaboration. All wizards are invoked from menu items by selecting this
collaboration in the model view of Ramses. We do add several elements both
inside the collaboration (such as the AIPIC and the dependencies determining
the role bindings) and next to it in its package (such as the pattern instances).
But, the user does not need to look inside these elements, unless he wants
to. Just focus on the interaction interface collaboration and use the rather
self-explanatory menu choices for adding new pattern instances and links, in
addition to invoking the APSM composition.

The tasks of adding new pattern instances, composing applied patterns and
generating APSMs can be invoked at any time and in any order. For instance,
after adding and composing a number of pattern instances, one can always
sometime later add additional instances and compose them. The APSMs can
be generated over and over again, as the algorithm each time will remove any
existing behaviour in the APSMs and construct new behaviour based on the
currently composed pattern instances. This results in a flexible approach for
the user of the tool, as he can try and fail when constructing the interaction
interface collaboration.

Chapter 8

Discussion and conclusion

This chapter starts with a discussion of the assumption on sequential
composition, before we say some words about the number of interaction patterns
identified. Next, we summarise the achievements of our work and look at the
approach in a wider context. Finally, we give some suggestions regarding future
work.

8.1 Discussion

We have already discussed some modelling choices in its respective chapters.
Sequential composition within an interaction interface is a prerequisite for our
work, and we now will briefly discuss this assumption. We will also discuss why
we only managed to identify three interaction patterns while searching through
existing services.

8.1.1 Assumption of sequential composition

Our work is founded on the assumption of sequential composition of pattern
instances, meaning that only one pattern instance can be active in an interaction
interface at a time. If we allow parallel execution or interleaving of pattern
instances, it would yield in a much more complicated composition. For
instance, assume that one instantiation of the Subscribe-pattern (sub1), and
two instantiations of the Request-pattern (req1, req2) can be active at the
same time. To be able to define consistent APSMs, we probably have to be
able to handle all the messages exchanged in req1 and req2 in all the states
of sub1, all messages exchanged in req2 and sub1 in all states of req1, and so
on. The signals of the different pattern instances can be sent and received in
any order and this leads to a very APSMs. Mixed initiatives and ambiguities
become even more difficult to both identify and resolve.

By restricting the composition to sequential, we can keep the composition

89

90 CHAPTER 8. DISCUSSION AND CONCLUSION

semantics and the resulting APSMs quite comprehensive. If two parts of the
system wants to do two things together at the same time, they can communicate
through an additional pair of association points and an additional interaction
interface. We think this is a satisfying solution, and also believe that two parts
usually will communicate about one thing at a time.

8.1.2 Number of identified interaction patterns

We managed to identify three two-way interaction patterns, two of them with
small variations. Originally we expected to find more patterns. Surprisingly,
the interactions in all the services of the PATS-lab we analysed could be
expressed using the three identified patterns1. The services mainly build on
notifications and request-response-pairs, and a lot of them also contain some
sort of subscription.

Our interaction patterns only deal with the external behaviour of the parts. If
one also consider the internal behaviour of the parts, more patterns emerge.
These will be more service-specific as they are closer to the actual functionality
of the particular service. The interactions between the parts, however, can only
involve message sequences. This makes them very generic, but also restricts the
number of possible patterns.

Instead of defining a lot of closely related interaction patterns, we allowed
them to have alternatives to represent the small variations in their behaviour.
For instance, the Subscribe-pattern has three alternatives regarding the
termination of the subscription. We could easily have created three patterns
instead, one for each alternative. We felt that this was a bit unnecessary
though, as the intention behind a subscription is the same, regardless of which
participant that is allowed to unsubscribe. It is just a variation of the same
thing.

It is also of importance that we have focused on defining a generic approach.
Additional interaction patterns can easily be added in the future if desired.
New interaction patterns that obey the restrictions defined can be included in
the library and used in the approach. The number of patterns can thus grow
in the future.

8.2 Achievements

Our motivation was to make it easier to design correct services more rapidly.
We think that our pattern-based approach helps doing exactly this.

We have modelled interaction patterns as two-way collaboration templates, with
signals as unbound parameters that need to be specified upon instantiation.

1Of course, the Notify-pattern is truly fundamental and we can build any interaction by
applying it repeatedly.

8.3. THE APPROACH IN A GREATER PERSPECTIVE 91

The interaction patterns also contains two APSM fragments which describe the
behaviour of each of the participants in the interaction, and in a well-formed
interaction pattern, the APSM fragments interact consistently. An additional
state machine describes the termination possibilities of the interaction as a
whole. We have also identified three fundamental interaction patterns: Notify,
Request and Subscribe.

The interaction interface between two parts is expressed as a two-way
collaboration with one APSM for each participant. The approach starts with
applying interaction patterns to this collaboration. The composition of the
applied interaction patterns relies on the use of state machines and is performed
by creating transitions between submachine states referring to each applied
pattern instance inside the AIPIC state machine.

A composition algorithm generates the APSMs of the interaction interface
collaboration based on the applied patterns and their composition. The
algorithm builds the APSMs gradually from the APSM fragments of each
applied pattern. Error situations that might occur concerning equivoque states
and mixed initiatives are taken special care of. Termination ambiguities and
termination condition ambiguities are prevented by composition constraints,
and input and mixed ambiguities are resolved by the algorithm. Mixed
initiatives due to alternative orderings can never occur due to restrictions
imposed, while conflicts due to concurrent behaviours are resolved by
prioritising the pattern instances involved. Unwanted or improper termination
is removed through the exchange of an additional signal between the APSMs.

We have implemented this approach as an Eclipse plug-in and integrated it
with the Ramses tool suite. The interaction patterns are implemented in Java
code, because this makes it easier to create customised pattern instances using
the UML2 repository from Eclipse. An extension point has also been defined
to allow easy adding of additional interaction patterns. The user of the tool
performs the approach through menu actions and simple wizards and the details
of the actual approach are hidden. The interaction interface is constructed from
interaction patterns through a series of simple, comprehensive tasks.

We feel that this approach has the potential to increase the speed of developing
correct, advanced telecommunication services and it will be interesting to see
how our approach will be welcomed by service designers and users of the tool.

8.3 The approach in a greater perspective

The pattern-approach we have presented can be used within a more extensive
approach for the design a large service. The interaction interfaces constructed
through our approach represent the basic interactions in a complex service,
namely the interactions between two and two parts. These can be used

92 CHAPTER 8. DISCUSSION AND CONCLUSION

as building blocks for more complicated interactions, involving several parts.
Through the nesting property of collaborations, the interaction interfaces can
be used in larger multi-way collaborations. In fact, it is possible to describe a
complete service from interaction interfaces using our pattern-based approach.
We just have to combine them in a hierarchy of collaborations. However, this
requires that we compose the interaction interfaces inside a larger collaboration,
and these relationships are often not sequential. Another composition technique
than the one we have used is therefore needed, and this is being addressed by
ongoing work at the department.

8.4 Future work

Experience with using this approach in the tool is required. It should be made
available to the users of Ramses to gain knowledge about how they grasp and
utilise it.

Support for prioritising pattern instances should be implemented. A stereotype
with a value for this can easily be integrated with the approach and the
composition algorithm. One should also check if priority is assigned to all
pattern instances involved in a combination which can result in a mixed
initiative conflict. If not, the user should be warned. The so-called inspectors
in Ramses can be used for this.

The approach presented and its model elements have constraints and
restrictions attached to them. These should be checked for in the tool, using
the inspectors in Ramses. This is a fairy easy task, and would result in a quite
large number of inspectors, each checking one property or restriction. We might
also need to implement stereotypes for the various elements in the approach, so
that the inspectors can separate the state machines and collaborations used in
our approach from ordinary model elements. These checks will ensure that the
elements of the approach are valid at any time, and warn the user if he does
something breaking with the approach.

For making the selection of patterns easier for the user, and especially if more
complicated patterns are included in the future, the selection process should be
supported with more information about each pattern. Parts of, or the complete,
pattern description could be embedded in the tool. This can for instance be
provided through the so-called help labels in Ramses.

Bibliography

[1] M. Adams, J. Coplien, R. Gamoke, R. Hanmer, F. Keeve, and
K. Nicodemus. Fault-tolerant telecommunication system patterns. In
Rising [45], pages 81–94.

[2] C. Alexander. The Timeless Way of Building. Oxford University Press,
1979.

[3] C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, 1977.

[4] J. Askgaard. Using positioning technology to guide the blind and visually
impaired. Project assignment, Department of Telematics, NTNU, January
2006.

[5] K. Beck and W. Cunningham. Using Pattern Languages for Object-
Oriented Programs. Submitted to the OOPSLA-87 workshop on the
Specification and Design for Object-Oriented Programming., September
17 1987. Available at: http://c2.com/doc/oopsla87.html.

[6] S. S. Birkeland. Behavioural Projections and Validation from UML 2.0
State Machines. Project Thesis, NTNU, December 2005.

[7] J. A. van den Broecke and J. O. Coplien. Using design patterns to build a
framework for multimedia networking. In Rising [45], pages 259–292.

[8] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-Oriented Software Architecture: A System Of Patterns. Wiley,
1996.

[9] J. O. Coplien. A pattern definition - software patterns. Website: http:
//hillside.net/.

[10] D. L. DeBruler. A generative pattern language for distributed processing.
In Rising [45], pages 41–61.

[11] J. Doble. TelePLoP Summary, 1998. Available at: http://hillside.
net/chiliplop/1998/98_teleplop.htm.

[12] J. Dorsch. SPT - The SDL Pattern Tool. Presentation, June 2004.
Presented at System Analysis and Modeling, 4th International SDL and
MSC Workshop, SAM 2004, Ottawa, Canada, June 1-4, 2004.

93

http://c2.com/doc/oopsla87.html
http://hillside.net/
http://hillside.net/
http://hillside.net/chiliplop/1998/98_teleplop.htm
http://hillside.net/chiliplop/1998/98_teleplop.htm

94 BIBLIOGRAPHY

[13] J. Dorsch, A. Ek, and R. Gotzhein. SPT - The SDL Pattern Tool. In
D. Amyot and A.W. Williams, editors, SAM, volume 3319 of Lecture Notes
in Computer Science, pages 50–64. Springer, 2004.

[14] The Eclipse Foundation. Website: http://www.eclipse.org.

[15] The Eclipse Foundation. UML2 Project. Website: http://www.eclipse.
org/uml2/.

[16] J. Floch. Towards Plug-and-Play Services: Design and Validation using
Roles. PhD thesis, NTNU, 2003.

[17] E. Gamma and K. Beck. Contibuting to Eclipse - Principles, Patterns and
Plug-ins. Addison-Wesley, 2004.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[19] B. Geppert and F. Rössler. The SDL pattern approach - a reuse-driven
SDL design methodology. Computer Networks, 35(6):627–645, May 2001.

[20] D. N. Goins. SOA: The Subscriber-Publisher Model, Introduction and
Implementation, 2005. Available at: http://www.codeproject.com/
soap/SOA_PublisherSubscriber.asp.

[21] R. Gotzhein. The SDL Pattern Pool. Technical report, Computer Networks
Group, University of Kaiserslautern, 2002.

[22] M. Grand. Java enterprise design patterns. Wiley, 2002.

[23] R. Hanmer and G. Stymfal. An input and output pattern language:
Lessions from telecommunications. In Rising [45], pages 95–129.

[24] The Hillside Group. Website: http://hillside.net/.

[25] K. E. Husa, R. Braek, and G. Melby. ServiceFrame and ActorFrame,
September 2002. Presentation given to the course TTM4160 at NTNU,
autumn 2004. Available at: http://www.item.ntnu.no/fag/ttm4160/
ServicePlatforms/ServiceFrame2002.pdf.

[26] IBM. IBM Rational Software Development Platform. Available at: http:
//www-128.ibm.com/developerworks/platform/products.html.

[27] IBM. IBM Rational Software Architect. Datasheet. Published at
IBM Website: http://www3.software.ibm.com/ibmdl/pub/software/
rational/web/datasheets/rsa.pdf, 2004.

[28] IBM. IBM Rational Software Modeler. Datasheet. Published at
IBM Website: http://www3.software.ibm.com/ibmdl/pub/software/
rational/web/datasheets/rsm.pdf, 2004.

http://www.eclipse.org
http://www.eclipse.org/uml2/
http://www.eclipse.org/uml2/
http://www.codeproject.com/soap/SOA_PublisherSubscriber.asp
http://www.codeproject.com/soap/SOA_PublisherSubscriber.asp
http://hillside.net/
http://www.item.ntnu.no/fag/ttm4160/ServicePlatforms/ServiceFrame2002.pdf
http://www.item.ntnu.no/fag/ttm4160/ServicePlatforms/ServiceFrame2002.pdf
http://www-128.ibm.com/developerworks/platform/products.html
http://www-128.ibm.com/developerworks/platform/products.html
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/datasheets/rsa.pdf
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/datasheets/rsa.pdf
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/datasheets/rsm.pdf
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/datasheets/rsm.pdf

BIBLIOGRAPHY 95

[29] Ø. Isaksen. Designing a group communiation service to be used by nurses
in a hospital ward. Project assignment, Department of Telematics, NTNU,
November 2004.

[30] ITU-T. Rec. Z.100 (08/2002) Specification and Description Language
(SDL). Standard. Available at: http://www.itu.int/rec/T-REC-z/en.

[31] F. A. Kraemer. Pax Ramses – Constraints on UML 2.0 Models for the Use
with Ramses. Internal Note, March 2006.

[32] P. Kuchana. Software architecture design patterns in Java. Auerbach,
2004.

[33] A. Levitin. Introduction to The Design and Analysis of Algorithms.
Addison-Wesley, 2nd edition, 2007.

[34] G. Meszaros and J. Doble. Metapatterns: A pattern language for pattern
writing, September 1996. The 3rd Pattern Languages of Programming
conference, Monticello, Illinois.

[35] G. Mezaros. Design patterns in telecommunications system architecture.
In Rising [45], pages 21–37.

[36] G. Mezaros. Improving the capacity of reactive systems. In Rising [45],
pages 63–80.

[37] F. Ødegaard. Location-based services using WLAN. Project assignment,
Department of Telematics, NTNU, December 2005.

[38] OMG. MOF 2.0 / XMI Mapping Specification, v2.1. Available at:
http://www.omg.org/.

[39] OMG. Unified Modeling Language: Superstructure. Version 2.0. Available
at: http://www.omg.org/docs/formal/05-07-04.pdf.

[40] OOPSLA. Object-Oriented Programming: Systems, Languages and
Applications. Website: http://www.oopsla.org/.

[41] Oxford University Press. Compact Oxford English Dictionary. Website:
http://www.askoxford.com/.

[42] PATS. Program for Advanced Telecom Services. Website: http://www.
pats.no/.

[43] S. F. Pedersen. Micro Positioning. Master’s Thesis, Department of
Telematics, NTNU, June 2004.

[44] Ramses Online Documentation. Website: http://www.item.ntnu.no/
lab/pats.

[45] L. Rising, editor. Design patterns in communications software. Cambridge
University Press, 2001.

http://www.itu.int/rec/T-REC-z/en
http://www.omg.org/
http://www.omg.org/docs/formal/05-07-04.pdf
http://www.oopsla.org/
http://www.askoxford.com/
http://www.pats.no/
http://www.pats.no/
http://www.item.ntnu.no/lab/pats
http://www.item.ntnu.no/lab/pats

96 BIBLIOGRAPHY

[46] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 2. edition, 2005.

[47] R. Sanders, R. Bræk, G. von Bochmann, and D. Amyot. Service Discovery
and Component Reuse with Semantic Interfaces. In A. Prinz, R. Reed,
and J. Reed, editors, 12th International SDL Forum, Grimstad, Norway,
volume 3530 of Lecture Notes in Computer Science, pages 85–102. Springer,
June 2005.

[48] R. T. Sanders, H. N. Castejón, F. A. Kraemer, and R. Bræk. Using UML
2.0 Collaborations for Compositional Service Specification. In L. Briand
and C. Williams, editors, ACM/IEEE 8th International Conference on
Model Driven Engineering Languages and Systems (MoDELS), volume
3713 of LNCS, pages 460–475, Montego Bay, Jamaica, October 2005.
Springer-Verlag.

[49] T. Senneset. WLAN positioning service. Project assignment, Department
of Telematics, NTNU, December 2005.

[50] RougeWave Software. Web Services Development Guide: Section 5.2
Message Patterns in WSDL. Available at: http://www.roguewave.com/
support/docs/leif/leif/html/webservicesug/5-2.html.

[51] P. Swithinbank, M. Chessel, Dr. T. Gardner, C. Griffin, J. Man, H. Wylie,
and L. Yusuf. Patterns: Model-Driven Development Using IBM Rational
Software Architect. IBM, 2005. IBM Redbook.

[52] Telelogic. TAU Generation2 2.2. Website: http://www.telelogic.com/
campaigns/2003/global/taug22_launch/index.cfm.

[53] W3R. SOAP Version 1.2 Part 2: Adjuncts - W3C Recommendation 24
June 2003. Available at: http://www.w3.org/TR/soap12-part2/.

[54] C. Webel and I. Fliege. SDL Design Patterns and Components - Watchdog
and Heartbeat. Technical report, Computer Science Department,
University of Kaiserslautern, 2004.

http://www.roguewave.com/support/docs/leif/leif/html/webservicesug/5-2.html
http://www.roguewave.com/support/docs/leif/leif/html/webservicesug/5-2.html
http://www.telelogic.com/campaigns/2003/global/taug22_launch/index.cfm
http://www.telelogic.com/campaigns/2003/global/taug22_launch/index.cfm
http://www.w3.org/TR/soap12-part2/

Appendix A

Metamodel

This appendix defines our meta model, which is based on, and a subset of, the
UML 2.0 meta model [39]. The document describes the elements used in our
approach, including constraints and illustration of the element structures.

A.1 Interaction Pattern

An interaction pattern (IP) is a parametrized two-way elementary collaboration,
also called a collaboration template. The template parameters are always
signals.

Constraints

1. An interaction pattern has one state machine as classifier behaviour that
is an interaction pattern descriptor.

2. An interaction pattern has two state machine as owned behaviours that
are association point state machine fragments.

3. An interaction pattern has exactly two collaboration roles.
4. Each of the two collaboration roles in an interaction pattern is typed with

one of the association point state machine fragments.

Stereotype

� ip �

Repository model

Figure A.1 on the next page shows the repository model of this element.

97

98 APPENDIX A. METAMODEL

TemplateableElementTemplateSignature

ownedTemplateSignature

{subsets ownedElement}

*

«ip»
Collaboration

ownedParameter

{subsets ownedMember,

parameter}

0..1

TemplateParameter

1

1

«apsmf»
State Machine

«ipd»
StateMachine

ownedBehaviour

2

classifierBehaviour

{subsets ownedBehaviour}

1

1

2

Property

type

collaborationRole

{subsets role}

Figure A.1: Element model for the Interaction Pattern (IP)

A.2 Association Point State Machine Fragment

An association point state machine fragment (APSM fragment / APSMF)
defines the behaviour of one of the collaboration roles in an interaction pattern
or an interaction pattern instance. The APSMFs are attached to the interaction
pattern or the interaction pattern instance as owned behaviours.

Constraints

1. An APSM fragment has exactly one initial state and one initial transition.
2. The initial transition of an APSM fragment has neither a trigger nor

effect.
3. The state succeeding the initial transition in an APSM fragment has

exactly one outgoing transition.
4. An APSM fragment has at least one labelled exit point.
5. All transitions in an APSM fragment, besides the initial transition, have

either a send signal action or a signal trigger.
6. All states in an APSM fragment, besides the initial state and exit points,

are simple states.

Stereotype

� apsmf �

Repository model

Figure A.2 on the facing page shows the repository model of this element.

A.3. INTERACTION PATTERN DESCRIPTOR 99

«apsmf»
State Machine

subvertex

{subsets ownedMember}

Vertex

kind: initial

Pseudostate

kind: exitPoint

Pseudostate
1 1..*

2..*

isSimple: true

State
*

Transition
1 source

1 target

outgoing *

incoming *

Trigger

Region

trigger

0..1

deferrableTrigger

*

transition

{subsets ownedMember}

*

SendSignalAction

effect

{subsets ownedElement}

0..1

*

region

1

Activity

1

SignalEvent

event

1

Figure A.2: Element model for the Association Point State Machine Fragment
(APSMF)

A.3 Interaction Pattern Descriptor

The interaction pattern instance descriptor (IPD) specifies how the interaction
pattern, when instantiated, can be interconnected to other interaction pattern
instances. It is a state machine which is attached to the interaction pattern
as the classifier behaviour. It does not have any actual behaviour, but simply
defines the activation and deactivation possibilities of the interaction pattern.

Constraints

1. An interaction pattern descriptor contains one or more uniquely labelled
exit points.

2. An interaction pattern descriptor never contains any transitions or
vertices besides exit points.

Stereotype

� ipd �

Repository model

Figure A.3 on the next page shows the repository model of this element.

100 APPENDIX A. METAMODEL

«ipd»
State Machine

subvertex

{subsets ownedMember}

kind: exitPoint

Pseudostate

1..*

Region

region

1

Figure A.3: Element model for the Interaction Pattern Descriptor (IPD)

«ipi»
Collaboration

«apsmf»
State Machine

«ipid»
StateMachine

ownedBehaviour

2

classifierBehaviour

{subsets ownedBehaviour}

1

1

2

Property

type

collaborationRole

{subsets role}

Figure A.4: Element model for the Interaction Pattern Instance (IPI)

A.4 Interaction Pattern Instance

An interaction pattern is instantiated by binding its parameters. An interaction
pattern instance (IPI) is a two-way elementary collaboration. The constraints
of an interaction pattern instance are similar to those of an interaction pattern.

Constraints

1. An interaction pattern instance has one state machine as classifier
behaviour that is an interaction pattern instance descriptor.

2. An interaction pattern instance has two state machine as owned
behaviours that are association point state machine fragments.

3. An interaction pattern instance has exactly two collaboration roles.
4. Each of the two collaboration roles in an interaction pattern instance is

typed with one of the association point state machine fragments.

Stereotype

� ipi �

Repository model

Figure A.4 shows the repository model of this element.

A.5. INTERACTION PATTERN INSTANCE DESCRIPTOR 101

«ipid»
State Machine

subvertex

{subsets ownedMember}

kind: exitPoint

Pseudostate

1..*

Region

region

1

Figure A.5: Element model for the Interaction Pattern Instance Descriptor (IPID)

A.5 Interaction Pattern Instance Descriptor

The interaction pattern instance descriptor (IPID) is the same as an interaction
pattern descriptor (IPD), only that it is attached to an interaction pattern
instance. They both share the same constraints.

Constraints

The same constraints as for the interaction pattern descriptor (IPD), see A.3
on page 99.

Stereotype

� ipid �

Repository model

Figure A.5 shows the repository model of this element.

A.6 Interaction Interface Collaboration

An interaction interface collaboration (IIC) is a two-way composite collabora-
tion. It is constructed entirely from interaction pattern instances.

Constraints

1. An interaction interface collaboration has one state machine as classifier
behaviour that is an applied interaction pattern instances composer.

2. An interaction interface collaboration has two state machine as owned
behaviour that are association point state machines.

3. An interaction interface collaboration has exactly two collaboration roles,
each typed with one of the association point state machines.

102 APPENDIX A. METAMODEL

«iic»
Collaboration

«apsmf»
State Machine

«aipic»
StateMachine

ownedBehaviour

2

classifierBehaviour

{subsets ownedBehaviour}1

1

collaborationRole

{subsets role}

2

Property

type

CollaborationUse

collaborationUse

{subsets ownedElement}

*

Dependency

roleBindings

{subsets ownedElement}

2

supplier

client

type

NamedElement

1

*

*

1

«ipi»
Collaboration Property

1

from «ipi»

Figure A.6: Element model for the Interaction Interface Collaboration (IIC)

4. An interaction interface collaboration has at least one collaboration use,
and all collaboration uses must be typed with an interaction pattern
instance.

5. An interaction interface collaboration has exactly two dependencies for
each used interaction pattern instance, where each dependency specifies
how one of the collaboration roles of the used interaction pattern instance
are bound to a collaboration role of the interaction pattern based
collaboration.

Stereotype

� iic �

Repository model

Figure A.6 shows the repository model of this element.

A.7 Applied Interaction Pattern Instances Com-
poser

An applied interaction pattern instances composer (AIPIC) is used to define
how the applied interaction pattern instances relate to one another, meaning
in what sequence they should be combined. It is a state machine owned by the
interaction interface collaboration.

A.8. ASSOCIATION POINT STATE MACHINE 103

Constraints

1. An applied interaction pattern instances composer has exactly one initial
state, and exactly one initial transition.

2. All vertices in an applied interaction pattern instances composer are
submachine states.
(a) For each applied interaction pattern instance, a submachine state

exists referring to the interaction pattern instance descriptor as its
submachine.

(b) The submachine state has one exit connection point reference for
each exit point in its submachine. This exit connection point
reference has the same name (that is, the same label) as the exit
point.

3. A transition in an applied interaction pattern instances composer has no
trigger or effect.

4. The source of a transition in an applied interaction pattern instances
composer is always either the initial state or an exit connection point
reference of a submachine state.

5. The target of a transition in an applied interaction pattern instances
composer is always a submachine state.

Stereotype

� aipic �

Repository model

Figure A.7 on the following page shows the repository model of this element.

A.8 Association Point State Machine

In this context, an association point state machine (APSM) defines the
behaviour of one of the collaboration roles in an interaction pattern based
collaboration. The APSM is modelled as a state machine, and generated
from the association point state machine fragments of the interaction pattern
instances used in the collaboration.

Constraints

1. An association point state machine has exactly one initial state and one
empty initial transition.

2. An association point state machine can have one of more final states.
3. All states in an association point state machine, besides the initial and

final state, are simple states.

104 APPENDIX A. METAMODEL

«aipic»
State Machine

subvertex

{subsets ownedMember}

Vertex
*

isSubmachineState: true

State

Transition

1

source

1 target

* outgoing

incoming *

Region
transition

{subsets ownedMember}

*

region

1

submachine 1

*
submachineState

connection

{subsets ownedMember}

1..*
ConnectionPointReference

exit

«ipid»
State Machine

kind: exitPoint

Pseudostate

kind: initial

Pseudostate

1

source

from «ipid»

1

Figure A.7: Element model for Applied Interaction Pattern Instances Composer
(AIPIC)

4. The transitions of an association point state machine, besides the initial
transition, contain either a send signal action or a signal trigger.

Stereotype

� apsm �

Repository model

Figure A.8 on the next page shows the repository model of this element.

A.8. ASSOCIATION POINT STATE MACHINE 105

«apsm»
State Machine

subvertex

{subsets ownedMember}

Vertex

kind: initial

Pseudostate FinalState
1 0..*

2..*

isSimple: true

State
*

Transition
1 source

1 target

outgoing *

incoming *

Trigger

Region

trigger

0..1

deferrableTrigger

*

transition

{subsets ownedMember}

*

SendSignalAction

effect

{subsets ownedElement}

0..1

*

region

1

Activity

1

SignalEvent

event

1

Figure A.8: Element model for the Association Point State Machine (APSM)

Appendix B

Pattern Library

B.1 Notify

Notify

Problem: Consider two parts, A and B, of a distributed system. A needs to
inform B of something. This can either be (a) to indicate that something
has happened that B should know about, or that (b) it has some data (or
information) that should be passed to B.

Solution: A sends a single message to Notify B of the thing that happened,
and includes any necessary data in this message.

Example usage: Two users want to send messages to each other through their
user terminals. This is, for instance, the case in a service called the
“Hospital Ward Group Service” [29, p. 44], where nurses in a hospital
are equipped with portable terminals. Information messages can be sent
between them to communicate. This is shown in Figure B.1 on the
following page, where terminal A sends an InformationMsg to terminal
B.

Pattern roles: The notifier notifies the recipient. The notifier is the initiator
of this pattern.

Pattern alternatives: No alternatives are defined for this pattern.

Pattern parameters: The pattern parameter is:

• Notification: The message sent from the notifier to the recipient.

APSM fragments: Figure B.2 on the next page shows the APSM fragments
for the notifier and the recipient in this pattern.

107

108 APPENDIX B. PATTERN LIBRARY

Known uses: This pattern is truly fundamental. These are just a few
examples, and the pattern reader can probably name a handful of
additional examples.

• Using positioning technology to guide the blind and visually
impaired [4, p. 48]: The user can be guided through a number
of routes. From a list of possible routes at the current location, the
user sends a RouteChoice(routeID)-message to the system to indicate
which route it would like to be helped with.

• WLAN Positioning Service [49, p. 37]: Users update their contact
lists by sending SaveNewContact or DeleteContact messages to the
central system.

• Micro Positioning [43, p. 77]: Objects in a hospital environment
can trigger off alarms by sending a notification message to a central
server indicating the reason for the alarm.

Related patterns: Some related patterns are:

• The SDL-pattern AsynchronousNotification [21].
• Message Exchange Patterns One-Way and Notification from Web-

services [50].

If you need a confirmation of the reception of the notification message,
use the REQUEST-pattern.

a :T e rm in a l b :T e rm in a l

In fo rm ationM sg

Figure B.1: Notify: Sequence diagram for the example

«apsmf» sm notifier

s0

! notification

[notification]

«apsmf» sm recipient

s0

? notification

[notification]

Figure B.2: Notify: The APSM fragments for the notifier and the recipient.

B.2. REQUEST 109

B.2 Request

Request

Problem: Part A of a distributed service needs to get some information from
another part, B. A either (a) wants to get some data or information, or
(b) needs to ask permission to do something.

Solution: A sends a message to Request the permission or wanted data. B
will respond with an answer and possibly the data requested.

Example usage: In “Location-based services using WLAN” [37], a UserPo-
sition server receives the position updates from a tracking service when
the user moves, but has to ask a LocationRegister to translate this into
physical locations such as rooms or buildings [37, p. 54]. This is done
by issuing a request with the position coordinates (which so-called zone
the user is in) to the location register, which maps this to the registered
locations in its database and returns the actual location.

Pattern roles: A requestor sends the request, which a responder replies to it.
The requestor is the initiator of this pattern.

Pattern alternatives: This pattern has an alternative. The number of
possible reply’s to the request can be changed. The default value is one
reply.

Pattern parameters: The pattern parameters are:

• Request: The message sent from the requestor to the responder with
the question.

• Reply1: The answer, sent from the responder back to the requestor.

Note that, because the number of possible reply messages is a pattern
alternative, the number of pattern parameters can vary. One pattern
parameter will exist for each possible reply signal, and they are named
Reply2, Reply3, and so on.

APSM fragments: Figure B.4 on the following page shows the APSM
fragment for each of the pattern roles, with the default value of the pattern
alternative.

Known uses: The pattern can be found in a lot of distributed services. It
is one of the basic building blocks for such systems. The following list
provides a taste of some of the services where the pattern can be found:

• ActorFrame [25, p. 12]: The so-called role request protocol allows
objects in the system to request certain functionality from other
objects, which will be either replied with a confirmation or denial.

110 APPENDIX B. PATTERN LIBRARY

• Hospital Ward Group Service [29, p. 41]: Nurses in a hospital
can request other nurses to help them. The reply will be either
“confirmed” or “not confirmed”.

• Using positioning technology to guide the blind and visually
impaired [4, p. 45]: In this service, the users can start guidance
sessions to help them find their way in unfamiliar places. To select
a route, a request is issued to a route agent, which will return all
available routes at the present location.

Related patterns: Some related patterns are:

• The SDL-pattern SynchronousInquiry [21].
• Message Exchange Pattern Request/Response (Remote Procedure

Call) from Webservices [53].

UserPosition LocationRegister

GetLocation(zone)

Location(location)

Figure B.3: Request: Sequence diagram for the example.

«apsmf» sm requestor

s0

! request

s1

? reply1

[reply1]

«apsmf» sm responder

s0

? request

s1

! reply1

[reply1]

Figure B.4: Request: APSM fragments for the requestor and the responder.

B.3. SUBSCRIBE 111

B.3 Subscribe

Subscribe

Problem: Part A of a service wants to be notified every time some data
changes in part B. There is no way to know exactly when this change
of information occurs in B. If A requests the information periodically, it
might result in loss of updates or unnecessary requests.

Solution: Part A should Subscribe to this event. Whenever a change occurs
in B, a message will be sent with the updated information, until the
subscription is ended.

Example usage: In “Using positioning technology to guide the blind and
visually impaired” [4], one can commence guidance sessions to help the
visually impaired navigate in unknown places. Doing so, we must always
know the position of the user and use this to tell him where to go next.
During the establishment of a guidance session, the terminal, through its
TerminalAgent, asks a PositionAgent to start tracking the terminal [4,
p. 46]. Figure B.5 on page 113 shows a sequence diagram for this.
The PositionAgent polls another object for the position of the user.
A PositionUpdate-message is sent to the TerminalAgent with the new
location coordinates [4, p. 47]. When the user reaches the wanted
destination, the guidance session ends, and the position updates are
stopped.

Pattern roles: The subscriber subscribes to the event, while the subscribee
notifies the subscriber when this event occurs. The subscriber is the
initiator of the pattern.

Pattern alternatives: This pattern has an alternative which deals with who
that should have the power to stop the subscription. Either the subscriber,
subscribee or both can be allowed to unsubscribe. The default is that both
parts can unsubscribe.

Pattern parameters: The pattern has the following parameters:

• Subscribe: The message starting the subscription, sent from the
subscriber to the subscribee.

• Event: Sent from the subscribee to the subscriber each time the
specified event occurs.

• Unsubscribe: Sent when one of the parts wants to end the
subscription.

• UnsubscribeCnf: A confirmation to the unsubscription from the
other part.

Note that, due to the pattern alternative, the messages unsubscribe and
unsubscribeCnf messages can be sent in any direction.

112 APPENDIX B. PATTERN LIBRARY

APSM fragments: Figure B.6 on the facing page shows the APSM fragments
for each of the pattern roles, with the default value of the pattern
alternative.

Known uses: The pattern can be found in the following designs or systems:

• WLAN Positioning Service [49, p. 38f]: In this service users can track
other users in their contact list. A TrackContact-message triggers the
receptions of position updates whenever the other user moves. This
continues until the user being tracked does not want to be tracked
any more and stops the updates.

• Micro Positioning [43, p. 78f]: Users can monitor the location of
moveable objects (for instance doctors, patients, equipment) inside a
hospital. A TerminalAgent sends a message to a LocationAgent with
a list of the objects its user wants to monitor. When one of these
objects move, the LocationAgent, with the help of a map system,
draws the new location of the objects in a map and returns this to
the user’s terminal. The user can stop the monitoring when it no
longer is of interest.

• Location-based services using WLAN [37, p. 54]: Users can store
reminders which can be triggered by changes in their geographical
location. A UserAgent subscribes to these changes in location from
a positioning device. When the user reaches a location which he has
registered a reminder for, for instance when he reaches the office,
the reminder will be pushed to his terminal. When a user has no
registered reminders, it can unsubscribe to the location changes of
the user.

Related patterns: Some related patterns are:

• The design pattern Observer from the “Gang of Four” [18, p. 293].
• The Java enterprise design pattern Publish-Subscribe [22, p. 175].
• Message Exchange Pattern Publisher-Subscriber from Webser-

vices [20].
• Publisher-Subscriber-pattern from POSA [8, p. 339].

If permission needs to be given before subscription can commence, use
the Request-pattern and only allow to Subscribe if the permission is
granted.

B.3. SUBSCRIBE 113

ta: Terminal Agent pa: Position Agent

TrackTerminal (termID)

PositionUpdate(x,y)

StopTracking

loop

Figure B.5: Subscribe: Sequence diagram for the example

«apsmf» sm subscriber

s0

! subscribe

s1

? event

s1

! unsubscribe

s2

? unsubscribe

s3

? unsubscribeCnf

[unsubscribeCnf]

? event

s2

? unsubscribe

s2

! unsubscribeCnf

«apsmf» sm subscribee

s0

? subscribe

s1

! event

s1

? unsubscribe

s2

! unsubscribe

s3

! unsubscribeCnf

[unsubscribeCnf]

? unsubscribeCnf

? unsubscribe

s2

Figure B.6: Subscribe: APSM fragments for the subscriber and the subscribee

Appendix C

The plug-in

Our plug-in no.ntnu.item.ramses.interactionpattern depends on the following
configuration:

• Eclipse 3.2.RC1
• GEF 3.2 M6
• EMF 2.2.0 M6
• UML2 2.0 M4
• Ramses III

Eclipse, GEF, EMF and UML2 can be found at the Eclipse website: http:
//www.eclipse.org. Ramses III is under development, and we refer to http:
//www.item.ntnu.no/lab/pats for further information about the Ramses tool
suite.

The plug-in is stored on the CVS-server of Ramses.

115

http://www.eclipse.org
http://www.eclipse.org
http://www.item.ntnu.no/lab/pats
http://www.item.ntnu.no/lab/pats

Appendix D

Bookmark

We have summarised the model elements introduced in our approach in the
shape of a bookmark. It can be used while reading the thesis, making it easier
to remember the different model elements we have presented in our work.

117

118 APPENDIX D. BOOKMARK

Name

role1 role2

Name

role1 role2

pattern parameters

«apsmf» sm «apsmf» sm«ipid» sm

«apsmf» sm «apsmf» sm
«ipd» sm

Interaction Interface Collaboration

Interaction Pattern

Interaction Pattern Instance

Name

role1 role2

«apsm» sm
«apsm» sm«aipic» sm

The essential model elements of the

pattern-based approach

c
u
t
o
u
t
a
n
d
 u
s
e
 a
s
 b
o
o
k
m
a
rk

