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Bjørn Skjetne* and Alex Hansen

Porelab, Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway

We study the effects realistic fracture criteria have on crack morphology obtained in

numerical simulations with a stochastic discrete element method. Results are obtained

with two criteria which are consistent with the theory of elasticity and compared with

previous results using the original criterion, chosen when the method was first published.

The conventional choice has been to consider the combined loading as an interaction

between bending and tensile forces only, leaving out shear forces altogether. Moreover

the combination of bending and tension used in the old criterion is correct only for plastic

deformations. Our results show that the inclusion of shear forces have a profound effect

on crack morphology. We consider two types of external loading, torsion applied to a

circular cylinder and tension applied to a cube. In the tensile case, the exponent which

characterizes scaling of crack roughness with system size is found to be very close to

the experimental value ζ ∼ 0.5 when realistic fracture criteria are used. In the present

calculations we obtain ζ = 0.52, a value which remains constant for all disorders. It is

proposed that the small-scale exponent ζ = 0.8 appears as a consequence of cleavage

between crystal planes and consequently requires a different fracture criterion than that

which is used on larger scales.

Keywords: brittle fracture, stochastic media, discrete element model (DEM), fracture criteria, crack roughness

PACS numbers: 81.40.Np, 62.20.mt, 05.40.-a

1. INTRODUCTION

Material properties have long been studied by regarding the material as a continuum, such as
in finite element analysis. Many real materials, however, cannot be adequately described as a
continuum. Examples are granular, fibrous or porous materials where multiscale discontinuous
features have a profound influence on the fracturing behavior. Concrete is a typical and commonly
occurring example [1, 2]. Such features cannot be included in a satisfactory way in a continuum
model [3]. An alternative approach was introduced four decades ago, the distinct element
method [4], which is particularly well suited to describe granular media [5]. This simulated the
mechanical behavior of unbonded disks and spheres of variable sizes, the equations of motion being
deduced from Newton’s second law with elements interacting directly via contact forces. Although
this system behaves like a granular material without cohesion, bonding was later introduced betwee
the elements [6] and the elements themselves have also been generalized to deformable polyhedral
blocks [7].

Another development took place within the statistical physics community, where the study
of complex problems [8] gave rise to other approaches such as the central-force elastic spring
model [9], the random fuse model [10], and the elastic beam lattice [11, 12]. Our model is based
on the latter approach, where a macroscopic material is though to be made up of discrete elements
arranged on a lattice or grid. Into this discretized version of the material random variations in
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structural properties are introduced at the scale of the discrete
elements. This can be done for the elastic properties of the
elements or, as is more common, such variations can be made
to affect the individual breaking strengths of the elements.
The resulting breakdown process, whether it takes the form
of electrical failure in a network of fuses or elastic breaking
of a discretized continuum, is complex and results in a rough
interface [8].

Consequently crack morphology as quantified by the
roughness exponent [13, 14] has been the focus of several studies.
It can be measured experimentally [15–24] and is therefore an
important quantity to be reproduced by theoretical models. The
typically rough crack surface that is obtained in materials with
a heterogeneous microstructure is due to a complex interplay
between stresses and local variations in material structure.
Variations can be due to a granular structure with different grain
sizes, with grains being randomly distributed and subject to
different bonding strengths, or it can be due to an underlying
fibrous structure. Structural heterogeneity can also be due
to pores and voids, or the presence of microscopic cracks,
inclusions and fault lines. Strength variations can therefore
manifest themselves in the form of weak spots or strong spots.

Fracturing in suchmedia is a coupled process whereby stresses
evolve according to how cracks grow while cracks develop
according to how stresses are distributed. At some point the
fracture process goes from being disorder dominated, where
new cracks appear randomly, to being stress dominated, where
smaller cracks merge into a large crack. A path is now forged
through the medium by the moving crack front. In this scenario,
the fracture criterion plays a decisive role in determining the
exact nature of the path taken. In other words, its role is to decide
the outcome of the interplay between stress and disorder. It is
therefore extremely important to study how different fracture
criteria influence the fracturing process. As we shall see the role
played by the fracture criterion is also affected by, and intimately
associated with, lattice morphology. A criterion which does not
allow for failure in transverse loading will display a tendency
toward fracturing along lattice planes.

In simple stochastic models of fracture, such as the random
fuse model, there is not much choice as far as the fracture
criterion is concerned. Here the ratio of the current which flows
through an element to the burn-out threshold of that element is
what constitutes the breaking criterion. There really is no other
choice. In elastic fracture, on the other hand, there are several
modes of loading and each of these can contribute to the breaking
of an element. This is especially so whenever forces are defined
in terms of “beams.” In the case of “springs” only axial forces
exist on the scale of the individual element. When the full elastic
response is included, however, an element breaks if the axial load
exceeds a certain limit or if the shear exceeds a certain limit. In
general the situation is a combined loading.

Griffith’s analysis of cracks in brittle materials is by many
considered to be the beginning of the field of fracture
mechanics [25]. Griffith was motivated by Inglis’ previous work
which indicated that stresses should approach infinity in the
vicinity of a sharp crack tip, causing brittle materials to fail
catastrophically upon the slightest application of an external

load [26]. Moreover, this result was independent of crack size and
thus contradictory to the observation that large cracks propagate
far more readily than short cracks. For the case of an infinite
plate under uniaxial tension Griffith computed the strain energy
release as a function of crack length and added this to the energy
absorbed by the newly created crack surfaces. The first of these
terms subtracts from the total strain energy and is thus negative,
decreasing with the square of the crack length. The second term is
positive since potential energy relevant to the breaking of atomic
bonds increases, in this case linearly. For short crack lengths
the positive linear term thus dominates, and stress has to be
increased for the crack to grow. At a certain critical value of
crack length, however, the quadratic dependency of the strain
energy release rate becomes dominating and consequently crack
growth becomes self-sustaining as the system seeks to globally
minimize its total energy. Crack growth can now only be arrested
by lowering the externally applied stress.

After initially computing the potential energy in an uncracked
specimen, Griffith’s approach was to fix the boundary to ensure
that the external load did no work, before introducing a small
crack. In our calculations the system is also subjected to
displacement control, whereupon fracture proceeds according to
where the system is most stressed. However, none of the fracture
criteria used by us in our discrete element method contains a
mechanism whereby cracks initially grow in a stable manner
before going unstable. Without the presence of disorder our
cracks grow in an unstable manner from the very beginning.
Griffith’s critical crack length in our model corresponds to the
lattice constant.

We do not believe this represents a serious discrepancy
with regard to Griffith’s theory, except perhaps should we
apply the model on very small scales. As we will conclude
from our calculations, it is the large scale roughness exponent
that is reproduced in discrete element modeling, provided the
correct meso-scopic fracture criterion is used. The roughness
exponent appearing at very small scales is probably characteristic
of cleavage between crystal planes, due to the plateau-like
morphology which (as we shall see) obtains in tensile-dominant
fracturing. Whether or not such a mechanism should make any
difference with regard to fracture surface morphology is, in our
opinion, a question that is more pertinent to these small scales.

On a very different level, much effort has been expended
within engineering communities to obtain simplified, yet
realistic, interaction formulae relevant to various loading
conditions within a wide range of fields. Typically, the nature
of these fracture criteria depend on the type of material used,
the shape or cross section of the element involved, and the
specific application concerned. They can be theoretically derived,
empirically deduced from laboratory tests, obtained from
numerical calculations, or they can be based on a combination of
approaches. Some of this is published in technical reports which
are not widely circulated outside their respective fields, but much
is to be found within specialized engineering journals.

Some examples of where load interactions have been
investigated are in the biomechanics of bone [27–29], anchor
bolts in concrete [30, 31], cylindrical shells or plates within
naval [32–35] or aeronautical [36–43] construction, aerospace
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engineering [44–47], strength of steel structures [48–54]
including beam columns [55–60], capacity of structures under
fire conditions [61–63], internally pressurized pipes [64, 65]
or tubular members under hydrostatic pressure [66, 67] in
marine structures, in the strength of brazed joints [68, 69], the
capacity of wood structures [70–73] or plate girders for use in
bridge constructions [74–76], and in the design of transmission
shafts [77]. Also, official guidelines exist as to the recommended
safe load combinations that should be heeded in engineering
designs [78–81].

In our model an elastic “beam” element is liable to break
whenever the stress exceeds a threshold value. This stress depends
on the combination of loads which act on the element and the
most natural way to quantify it is via some interaction formula
analogous to those mentioned above. Here we might also hastily
mention a different class of fracture criteria, beginning with
that developed by Tsai and Wu [82] for anisotropic materials.
These are more fundamental than interaction formulae, being
scalar functions of two strength tensors. Such fracture criteria are
typically applied in finite element analysis of composite materials.

Stochastic fracture models were developed within the
statistical physics community and consequently much interest
has been focused on the complex process of interaction between
stress and disorder. This is probably one reason why failure
criteria have received less attention than what would have been
the case within the engineering community.

In section 2 we introduce our discrete element model, while
in section 3 we briefly outline how scale-invariant disorder is
included in the model. The main purpose of the paper is outlined
in section 4, where we derive and discuss the fracture criteria
to be used in the calculations. Here we consider the various
combined loadings such as axial force and bending, torsion and
shear, and axial force and shear. Finally we rationalize how, in
the context of our model, axial force, shear, bending and torsion
should be combined. This gives us two slightly different fracture
criteria, which we in section 5 apply in calculations for the
fracturing of a cube under uniaxial tension. The results are then
compared with results obtained in previous calculations with the
old criterion. Visually, the most profound difference is seen in
cases of intermediate disorder strength. Here samples are seen to
become more rough due to the inclusion of shear forces in the
fracture criterion. At the same disorders crack surfaces obtained
with the old criterion have a plateau-like appearance, dominated
by flat sections. We argue that the old criterion, without being
relevant as a small-scale fracture criterion but simply due to being
overly tensile-dominant, emulates the separation of atomic bonds
between crystal planes. Such separation is what characterizes
brittle fracture on very small scales, and the roughness exponent
obtained experimentally on small scales, ζ ∼ 0.8, happens to
be close to that obtained in our own previous results using
the old fracture criterion. Only as the disorder is increased to
an unrealistically strong level can we obtain a decrease in the
roughness exponent with the old criterion (the flat sections
disappear). In marked contrast to this, both the new fracture
criteria are shown to produce a roughness exponent which agrees
with the large-scale experimental result, ζ ∼ 0.5. Moreover,
this result remains constant for all the disorders included in the

current study. In order to further illustrate differences between
the old criterion and the new criteria we study in section 6 the
fracturing of cylindrical shafts. Here it is shown that the overly
tensile-dominant old criterion produces helical fracture surfaces
that are somewhat steeper with respect to the torsional axis than
the expected 45-degree angle. More importantly, the inclusion of
shear in the new criteria enables an adjustment to be made in
the relative strength of shear vs. tensile thresholds. Thus, for a
material stronger in tension than in shear, the fracture surface
is seen to be perpendicular to the torsional axis. As soon as the
material becomes weaker in tension than in shear (as is typical
of brittle materials), the inclination of the fracture surface quite
rapidly adopts the expected 45-degree angle. Finally, in section 7
we summarize our results.

An Appendix has also been included to further illustrate
how combined loadings interact. To this end, square cross-
sectionmacroscopic “real” beams have been constructed from the
discrete lattice elements. Calculations here employ slightly more
complicated equations than those used to obtain the results of
sections 5 and 6, since the various loadings are best visualized
when deformations are large. Although the equations involved
are non-linear and thus computationally more expensive, we
only calculate the resulting deformation of an intact structure
here - due to an external combined loading - not the entire
fracture surface.

2. DISCRETE ELEMENT MODEL

Before describing our model we brielfy address the terminology
used, i.e., by “discrete element model” we do not mean the
model that was introduced by Cundall et al. [4], nor any of the
many refined bonded-particle models that it has spawned over
the years. These models comprise what is commonly referred
to as distinct or discrete element models. Presently we refer
to our model also as a discrete element model. Outside of
the bonded-particle approach there have been mainly two ways
to model forces within discontinuous media, either in terms
of “springs” [83, 84] or in terms of “beams” [11, 12]. The
former approach is simpler and less requiring of computational
resources since in this case bending and shear forces are absent
in the individual element (the spring) [9]. The latter approach is
computationally more demanding but is also more realistic since
it better approximates the mechanical response of a real solid, i.e.,
each “beam” element transmits axial forces, bending moments,
transverse shear and torsion to its adjoining neighbors.

Our model is a deformable lattice in the form of a regular cube
with size L × L × L, where forces between nodes are defined
as if they were connected by thick elastic beams [85, 86]. A
coordinate system is placed on each node, and the enumeration
of connecting “beams” follows an anti-clockwise scheme within
the XY-plane, i.e., beginning with the beam which lies along the
positive X-axis and ending with that which extends up along the
positive Z-axis, see Figure 1.

At each stage of the breaking process, updated displacements
for each node are obtained with the conjugate gradient
method [87, 88]. The steps involved in the calculation correspond
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FIGURE 1 | Enumeration scheme for the discrete “beam” elements of a cube

lattice connecting node i to its nearest neighbors j = 1 to j = 6, showing the

coordinate system with node i as its origin. Although cross-sections have been

shown as square we do not intend to imply any specific geometry for the

discrete elements.

to Equations (40–46) in Batrouni and Hansen [89], replacing the
kernelDij in that paper by

∑

j

Dij




xj
yj
zj
uj
vj
wj




=




Xi

Yi

Zi
Ui

Vi

Wi



, (1)

where Xi ... Wi are the components of force, to be outlined
shortly. This approach minimizes the elastic energy by obtaining
those displacements for which the sum of forces andmoments on
each node vanish, i.e., mechanical equilibrium. In Equation (1),
xi, yi, and zi are the coordinate displacements of node i relative
to its starting position before fracturing is initiated. Likewise, ui,
vi, and wi are the angular displacements around the X-, Y-, and
Z-axes, respectively (see Figure 1).

In the expressions for force and moment we have

α =
ℓ

EA
, β =

ℓ

GA
, γ =

ℓ3

EI
, (2)

where E and G are Young’s modulus and the shear modulus,
respectively, A is the area of the discrete element cross section,
ℓ is its length and I the moment of inertia about the centroidal
axis. Our choice of these parameters mirrors that of Herrmann
et al. [12], i.e., the length is set to ℓ = 1 and we use α = 1,
β = 30/7 and γ = 60/7. Additionally, we define the quantity

η =
ℓ

JG
, (3)

where J is the moment of inertia for torsion. Here we have
arbitrarily chosen η = 1.

Since we do not currently wish to explore the parameter space
relevant to different materials constants, we simply adopt the
choice originally made for α, β and γ by Herrmann et al. [12],
and later used by ourselves in Skjetne et al. [90], Skjetne et al. [91],
and Skjetne et al. [92]. In the context of crack morphology,
this has the advantage of enabling comparisons to be made
between current and previous results that are solely based on
differences in fracture criteria. As will be reiterated a few times
throughout this paper, we do not wish the reader to think of
the “beam” elements as entities with a given length-to-width
ratio or with any specific cross-sectional shape. The “beam” is
simply a concept whereby we define axial, flexural, torsional
and shear forces between discretely chosen points within a
continuous material. The current choice of parameters α, β , γ ,
and η in Equations (2) and (3) should, however, be thought of as
representing “thick” beams.

In the following it will be convenient to define

δxj ≡ xi − xj, (4)

for the relative displacements betweeen node i and its nearest
neighbors, and similarly for the other five coordinates. Six terms
contribute to each of the force components in Equation (1). For
instance, if we imagined the neighboring nodes to be fixed, a
translation xi of the central node i would induce axial forces in
beams 1 and 3 and transverse forces in beams 2, 4, 5, and 6. If we
take into account the displacements of the neighboring nodes as
well, the axial force on node i from beam 1 is

A
(1)
i = −

1

α
δx1, (5)

while the transverse force on node i from beam 2, along the
X-axis, is given by

xS
(2)
i = −

1

β +
γ
12

[
δx2 −

1

2

(
wi + w2

)]
. (6)

In each case j refers to the neighbor depicted in
Figure 1. Consequently,

Xi = A
(1)
i + A

(3)
i +

6∑

j 6=1,3

xS
(j)
i (7)

is how the force on node i along the X-axis depends on the
displacements and rotations of its six nearest neighboring nodes.
Similar expressions are deduced for Yi or Zi by considering
translations along the Y-axis or the Z-axis, respectively.

An angular displacement ui about the X-axis with the
neighboring nodes fixed would create torque in beams 1 and 3,
and bending in beams 2, 4, 5 and 6. More generally, the torque in
node i from beam 1 is

T
(1)
i = −

1

η
δu1, (8)

while the bending moment from beam 2 is

uM
(2)
i = −

1

β +
γ
12

[β

γ
δu2+

1

2

(
δz2+

2

3
ui+

1

3
u2

)]
. (9)
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For the angular force on node i about the X-axis and its
dependence on the displacements of the six neighboring nodes,
we have

Ui = T
(1)
i + T

(3)
i +

6∑

j 6=1,3

uM
(j)
i , (10)

now with similar expressions for Vi andWi.
To express the thirty-six force components in Equation (1)

more compactly,

rj =

j−1∏

n=0

(
−1

)n
(11)

and

sj =
(
−1

)j
rj (12)

are quantities which we define for notational convenience, to
keep track of the signs and contributions from neighboring
beams. The j in each case refers to the neighboring beams as
shown in Figure 1. The Kronecker delta, moreover, has been used
to construct

λ̂s,t = δsj + δtj, (13)

i.e., an operator which includes s and t in the sum over neighbors
(excluding the other four), and

χ̂s,t =
(
1− δsj

)(
1− δtj

)
, (14)

which instead excludes s and t from the sum over neighbors
(including the other four).

For the six components making up the force on node i along
the X-axis, i.e., Equation (7), we can now state this on a compact
form as

Xi = −
1

α

6∑

j=1

λ̂1,3δxj −
1

β +
γ
12

6∑

j=1

χ̂1,3

{
δxj +

rj

2

[
λ̂5,6

(
vi + vj

)
+ λ̂2,4

(
wi + wj

)]}
, (15)

and Yi as

Yi = −
1

α

6∑

j=1

λ̂2,4δyj −
1

β +
γ
12

6∑

j=1

χ̂2,4

{
δyj +

rj

2

[
λ̂5,6

(
ui + uj

)
+ λ̂1,3

(
wi + wj

)]}
. (16)

In the same way, Zi becomes

Zi = −
1

α

6∑

j=1

λ̂5,6δzj −
1

β +
γ
12

6∑

j=1

χ̂5,6

{
δzj −

sj

2

[
λ̂2,4

(
ui + uj

)
+ λ̂1,3

(
vi + vj

)]}
, (17)

Next, Equation (10) for angular displacements about the X-axis
is written out in full as

Ui = −
1

η

6∑

j=1

λ̂1,3δuj −
1

β +
γ
12

6∑

j=1

χ̂1,3

{
β

γ
δuj +

rj

2

[
λ̂5,6δyj − λ̂2,4δzj

]
+

1

3

(
ui +

1

2
uj

)}
,

(18)

and Vi, for angular displacements about the Y-axis, becomes

Vi = −
1

η

6∑

j=1

λ̂2,4δvj −
1

β +
γ
12

6∑

j=1

χ̂2,4

{
β

γ
δvj +

rj

2

[
λ̂5,6δxj − λ̂1,3δzj

]
+

1

3

(
vi +

1

2
vj

)}
.

(19)

Lastly, for angular displacements about the Z-axis, we get

Wi = −
1

η

6∑

j=1

λ̂5,6δwj −
1

β +
γ
12

6∑

j=1

χ̂5,6

{
β

γ
δwj +

rj

2

[
λ̂2,4δxj + λ̂1,3δyj

]
+

1

3

(
wi +

1

2
wj

)}
. (20)

3. DISORDER

To include structural disorder we generate a random number r
on the unit interval [0, 1] and let this represent the cumulative
threshold distribution. We assign thresholds according to tF =

rD, where D > 0 is a power law with a maximum threshold
of 1 and a tail extending toward zero. The cumulative distribution
function is then given by

P(tF) = t
1/D
F , (21)

where 0 ≤ tF ≤ 1. The case of D = 0 corresponds
to all thresholds being the same (tF = 1), i.e., we have a
homogeneous medium without structural disorder. An increase
in the magnitude of the exponent |D| causes the coefficient
of vari ation with respect to any two random numbers r and
r′ on the interval [0, 1] to increase. Therefore large values
of |D| correspond to strong disorders and small values to
weak disorders.

Such a power-law distribution is a very simple and
straightforward way to ensure that breaking thresholds are
generated within a scale-invariant range [93–95]. Many other
distributions are possible, but the main thing is that zero or
infinity (or both) is included within the range of thresholds.
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4. FRACTURE CRITERIA

The original fracture criterion introduced by Herrmann et al.
[12] considers a combination of bending and axial force, where
beams fail when

(
F

tF

)2
+

|M|

tM
> 1, (22)

that is, using a squared term for the axial force and a linear
term for the bending moment. The quantities tF and tM are
thresholds for the amount of bending the element can support
before failing. In applications other than stochastic modeling,
there are two scenarios where this particular fracture criterion is
frequently used. One is in connection with combined loadings
for slender beams in compression [96]. The other is for materials
where plastic yielding occurs, in which case the loading can be
either tensile or compressive [97]. Presently we consider brittle
fracture only.

4.1. Combined Axial Force and Bending
In wood constructions the region of safe loading for beam
columns with rectangular cross sections, when subjected to a
combination of axial tension and bending [81], is given as

F

tF
+

M

tM
> 1 (23)

in the unixial case, and

F

tF
+

Mx

tMx

+
My

tMy

> 1 (24)

in the biaxial case, while the criterion for failure in compression is

(
F

tF

)2
+

M

tM
> 1 (25)

in the uniaxial case, and

(
F

tF

)2
+

Mx

tMx

+
My

tMy

> 1 (26)

in the biaxial case. Deflection of the beam in the presence of a
compressive force tends to magnify the moment that causes it,
and consequently more emphasis is lent to the axial term. This
distinction between tensile and compressive loading, however,
is irrelevant to applications in the discrete element model. The
reason is that the model is meant to describe a continuum rather
than a physical lattice. In order to emulate the behavior of a
continuum, elements defining forces between nodes should not
be considered to be slender. In fact, they should not in any
way buckle within the structure of the material! Interaction
formulas relevant to compression should therefore have the same
functional form as those relevant to tension.

This choice is easy to justify using standard elastic theory. In
the two-dimensional case, we use the superposition principle for
combined loadings. For a beam with its axis lying along the X-
axis, and with a cross-section perpendicular to this, the normal

stress caused by axial loading in the direction of the positive
X-axis (tension) is given by

σx,t =
P

A
, (27)

where P is the force and A is the cross-sectional area,
see Figure 2A. Normal stresses also arise in bending. Assuming
the beam is bent within theXZ-plane (upper surface tensile) these
stresses are

σx,b = −
Mz

I
(28)

where the bending moment is M and I is the moment of inertia
of the cross-sectional area about the neutral axis. Normal stresses
are seen to depend linearly upon the vertical distance z from
the neutral axis, see Figure 2B. Adding Equations (27) and
(28) we get

σx = σx,t + σx,b (29)

for the normal stress of the combined loading, that is,

σx =
P

A
−

Mz

I
, (30)

and the maximum |σx| occurs along the top surface of the beam,
as can be seen from Figure 2C. In contrast, below the neutral axis
(negative z) the normal stress due to the axial load is reduced
since Equation (28) becomes negative here. It is at its lowest along
the bottom surface. If we reverse the sign on P and consider
compressive axial forces, we find |σx| to be largest along the
bottom surface for a beam bent like this.

A positive moment is defined as one where the beam is
concave up, i.e., with the bottom surface in tension. Hence, with
z = −c representing the outermost fiber on the cross section,

σ =
F

A
+

Mc

I
, (31)

is the combined stress of axial tension and bending at this
particular location. Dividing through Equation (31) by the
maximum value of the normal stress within the elastic range, σp,
we obtain

σ

σp
=

F

Fy
+

M

My
, (32)

FIGURE 2 | Superposition of stress in a beam subject to combined axial

load P and bending moment M. The cross-sectional area is A, on which the

stress distribution due to P alone is shown in (A), that due to M is shown

in (B), and the superposition of the two is shown in (C).
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where

Fy = σpA (33)

is the axial force at its elastic limit, and

My =
I

c
σp (34)

is the bending moment at its elastic limit. Modeling a material
which cannot deform plastically, i.e., which fails beyond the
elastic limit, we can then identify Fy and My as breaking
thresholds in F andM. If these thresholds are denoted tF and tM ,
one has to remove from the calculations those elements for which

σ > σp, (35)

and therefore, according to Equation (32), we must remove those
elements for which the combination of F andM are such that

F

tF
+

M

tM
> 1 (36)

In our calculations we will not be interested in the details of
where a “beam” is most stressed. What we require is to identify
the maximum stress that occurs in a combined loading. In the
case of axial tension Equation (23) selects those beams where the
most stressedmaterial fiber is beyond the breaking threshold (this
will be on the convex side of the beam, be that on the upper
or lower surface). In the case of compression, a beam in the
same bent configuration would be most stressed on the opposite
surface (the concave side), and this maximum stress is still given
by Equation (23). We therefore need not distinguish between the
convex and the concave sides in our application. In the discrete
element model each element is either kept or removed depending
on the magnitude of its greatest combined stress. The sign on F
orM then becomes irrelevant.

For our purposes, then, elements that fail can be identified in
three dimensions using

|F|

tF
+

|M|

tM
> 1, (37)

where the biaxial moment is given by

M =

√
M2

x +M2
y (38)

and the same thresholds tM apply in all planes of bending.

4.2. Combined Torsion and Shear
We next consider torsion combined with transverse shear.
For generality and simplicity of illustration we regard circular
cross-sections. As with bending and axial force, we use the
superposition principle to obtain the stress distribution for the
two loads combined. From the relationship between stress and
strain, generalized Hooke’s law, we have

γ =
1

G
τ (39)

We further assume for the stress distribution that

τ =
ρ

R
τmax (40)

and for the shear strains that

γ =
ρ

R
γmax, (41)

where R is the maximum radius of the circular cross section and

0 < ρ < R (42)

is the radial distance from the center of the cross section.
Hence stress and strain increase linearly toward the outer surface
where the maximum value is attained for both. The relationship
between applied torque T and shear stress on the cross section is

τ =
T

J
ρ (43)

where J is the polarmoment of inertia.We see fromEquation (43)
that the relationship between T and τ is analogous to the
relationship between M and σ in Equation (28). For the average
shear due to a vertical force we have

τ =
V

A
, (44)

see Figure 3B. Combining Equations (43) and (44),

τ =
V

A
+

Tρ

J
(45)

is the total shear force acting on the cross section. In Figure 3C

the two quantities are seen to oppose each other on the
extreme left, while they add up on the extreme right. Torque
is taken to be positive as shown, i.e., when it is a vector in the
positive X-direction.

As before, we are not concerned with where on any particular
“beam” the stress is highest. Instead we simply identify the
maximum stress that occurs with the aim to decide whether
this is above or below the breaking threshold. If the element
exceeds this threshold then it is removed as a carrier of force
in the elastic equations. We see that Equation (45) is analogous
to Equation (32) for combined bending and axial force. We
therefore proceed by dividing through Equation (45) by the
maximum allowable shear stress τy within the elastic range. We
then obtain

τ

τy
=

V

Vy
+

T

Ty
, (46)

where

Vy = τyA (47)

is the maximum of the transverse forceV in pure loading without
a torque, and, from Equation (43),

Ty =
J

ρ
τy (48)
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is the maximum torque the element can sustain in pure rotational
displacements. Assuming the element fails when

τ > τy (49)

our criterion for failure under combined torque and
shear becomes

V

tV
+

T

tT
> 1 (50)

Here we have defined tV = Vy and tT = Ty as breaking
thresholds. Requiring only the maximum stress,

|V|

tV
+

|T|

tT
> 1 (51)

is our fracture criterion.
As for the breaking thresholds we use one threshold for each

element in our calculations. Otherwise one might be led to make
inferences about the detailed structure of each “beam,” i.e., such
as where flaws are located. For instance, stress due to applied
torque T is at its greatest furthest away from the axis of the
element, see Equation (40), while shear stress due to a top-to-
bottom vertical force V , according to Jourawski’s formula, is at
its greatest across the center of the section, midway between
the top and bottom surfaces [98, 99]. Hence, whereas a flaw
at the top or bottom surface will reduce the torque strength
substantially, it will not to any great extent adversely affect the
strength with which the element opposes vertical force. If one
chooses to specify different thresholds for the two terms there are
two obvious options. One is to assume a “realistic” distribution
of thresholds whereby tV and tT are correlated so as to take into
account different categories of flaws, the other is to simply assume
that the thresholds are independently random for both types of
loading. In our calculations we presently use the same threshold
for both terms. This is based on the notion that “beam” elements
are the basic building blocks in our system, i.e., they define the

FIGURE 3 | Distribution of shear stress on the cross section of a beam

subjected to a transverse load V in the direction of the positive Z-axis and an

anti-clockwise torque T about the X-axis. In (A) the radial distribution of stress

due exclusively to torque is shown along the Y- and Z-axes, in (B) the uniform

stress due to the vertical force V is shown along the Y-axis, and in (C) the

superposition of those stresses on the Y-axis is shown.

smallest length-scale. All heterogeneity pertaining to material
flaws and/or variations in elastic properties are assumed to occur
on scales at or above that of the individual discrete element.

4.3. Combined Axial Force and Shear
We regard a body element under biaxial stress, such as that shown
in Figure 4. This body element is in a uniform state of stress.
Stress being a second-order tensor, however, stress vectors vary
according to the surface on which they act. In the following we
regard a plane which intersects the body element at a given angle
and observe how components vary as the angle is varied [100],
see Figure 5. Here the X′Y ′-coordinate system has been rotated
through an angle α, such that the X′-axis coincides with the
normal to the inclined plane. For a body element in equilibrium,
the stress vector p acting on this plane is obtained by requiring
the sum of forces to be zero. If we resolve the vector p in
the XY-coordinate system, we obtain

p = px + py, (52)

FIGURE 4 | Elastic body element showing components of normal stress, σx

and σy , and components of shear, τxy and τyx , on those surfaces that are

parallel to the Z-axis.

FIGURE 5 | Free body with stress components on all surfaces. Decomposition

of the stress vector p relative to the X ′Y ′-coordinate system is shown in red,

decomposition relative to the XY-coordinate system is shown in black. The

surface area of the inclined plane is A.
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the components of which are found to be

px = σx cosα + τxy sinα (53)

and

py = σy sinα + τxy cosα (54)

However, p can also be resolved in the X′Y ′-coordinate system.
Expressing first σx′ and τx′y′ in terms of px and py, as shown on
the right in Figure 5, Equations (53) and (54) are next used to
obtain σx′ , σy′ and τx′y′ in terms of σx, σy and τxy. We thus obtain

σx′ =
σx + σy

2
+

σx − σy

2
cos 2α + τxy sin 2α (55)

and

σy′ =
σx + σy

2
−

σx − σy

2
cos 2α − τxy sin 2α (56)

for the normal stresses, and

τx′y′ =
σy − σx

2
sin 2α + τxy cos 2α (57)

for the shear stress in the X′Y ′-system. These are known as
the transformation of stress equations [100], and allow us to
determine the stress on any plane when the angle α and the
stresses σx, σy, and τxy are known.

We next seek the extreme values of stress by varying the
orientation of the inclined plane. Assuming structural integrity
to be exceeded when the normal stress reaches a critical value,
we evaluate

dσx′

dα
= 0 (58)

to obtain

tan 2α =
2τxy

σx − σy
(59)

This expression implies two solutions for α which are 90◦ apart.
We also see that Equation (59) is identical to Equation (57),
provided that τx′y′ = 0. Extreme values of normal stress are
therefore obtained where shear stress vanishes.

Substituting the angles which satisfy Equation (59) into
Equation (55) we obtain, after a few manipulations,

σx′ =
σx + σy

2
+

√
(σx − σy

2

)2
+ τ 2xy (60)

for the maximum normal stress. “Beam” elements in our model
are force carriers between lattice nodes, hence there is no normal
stress perpendicular to the connecting line between these and
Equation (60) becomes

σm =
σx

2
+

√(σx

2

)2
+ τ 2xy, (61)

where the maximum value of σx′ has been denoted σm. This
expression is divided through by the failure threshold σf for the
normal stress obtained in pure axial loading, to give

σm

σf
=

Rσ

2
+

√
(Rσ

2

)2
+

(
kRτ

)2
, (62)

where we have introduced the dimensionless ratios of normal and
shear stress to their respective failure thresholds,

Rσ =
σx

σf
, Rτ =

τxy

τf
, (63)

as well as the parameter

k =
τf

σf
(64)

for the ratio of the shear and normal failure stresses. This ratio,
for steel, is often taken to be in the range 0.5− 0.75. For rocks the
ratio of tensile to shear strength corresponds to roughly k ∼ 1,
while compressive strength is at least ten times higher than tensile
strength [101]. Assuming that our material fails when

σm > σf, (65)

our criterion for when a “beam” element fails is

F

2tF
+

√
( F

2tF

)2
+

(
k
V

tV

)2
> 1, (66)

where in Equation (62) loads and failure loads have been
substituted for stresses and failure stresses.

Assuming instead that material integrity is exceeded when
shear stress reaches a critical value,

dτx′y′

dα
= 0 (67)

is evaluated to obtain

tan 2α = −
σx − σy

2τxy
, (68)

the right-hand side of which is the negative reciprocal of
Equation (59). This implies that the planes of maximum shear are
at an angle of 45◦ with respect to the planes of maximum normal
stress [100].

From Equation (68) expressions for cos 2α and sin 2α are
obtained which are substituted into Equation (57). This gives

τx′y′ =

√
(σx − σy

2

)2
+ τ 2xy (69)

for the maximum shear stress. As with Equation (60) there is
no normal stress perpendicular to the connecting line between
nodes and

τm =

√(σx

2

)2
+ τ 2xy (70)
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is obtained by setting σy = 0. Assuming the material fails for

τm > τf, (71)

where τf is the failure threshold for the shear stress, and dividing
through Equation (70) by this quantity, we get

τm =

√
(Rσ

2k

)2
+ R2τ (72)

using the first of Equations (63), and Equation (64). The criterion
for when a “beam” element should break is then

√
( F

2ktF

)2
+

( V
tV

)2
> 1, (73)

where in Equation (72) we have substituted loads and failure
loads for stresses and failure stresses.

Plotting Equations (66) and (73) for different values of k it is
seen that Equation (66) with k = 1 and Equation (73) with k =

0.5 provide interaction curves where the expressions

F

tF
< 1,

V

tV
< 1 (74)

are both satisfied, see Figure 6. For values of k between 0.5
and 1 the failure envelope is a combination of Equations (66)
and (73), corresponding to the innermost region bounded by the
yellow and blue curves in Figure 6 (these have been shaded in
gray). Equation (73) with k = 0.5, according to NASA TM X-
73305 [44] and Steeve and Wingate [47], provides a convenient
and conservative interaction curve when considering combined
shear and axial loading, this is the shaded region enclosed entirely
by the blue curve in the upper left pane of Figure 6. Hence, we
choose

√
( F
tF

)2
+

( V
tV

)2
> 1 (75)

as our criterion. For k → 0.5 we see from Figure 6 that the
shaded region approaches this criterion, while it approaches

F

2tF
+

√
( F

2tF

)2
+

( V
tV

)2
> 1 (76)

when k → 1 (the yellow curve in the bottom right window).
From Figure 6 it is also evident that Equation (75) is a good fit
within the greater part of the range 0.5 < k < 1, deviating
the most for values above k ≃ 0.9. For comparison, we will
nonetheless also include results obtained with Equation (76)
to see if this slightly more conservative alternative makes
any difference.

4.4. Combined Axial Force, Shear, Torsion,
and Bending
Finally we seek an interaction formula which combines axial
force, shear, bending and torsion. The basic form of the fracture

FIGURE 6 | Failure envelopes corresponding of Equations (66) and (73),

presently denoted FC-1 and FC-2, shown for k = 0.5, k = 0.6, k = 0.7,

k = 0.8, k = 0.9 and k = 1.0. The gray-shaded regions correspond to load

combinations for which “beam” elements do not break, i.e., safe loading

regions.

criterion is taken to be the interaction between axial force and
shear, as given by Equation (75) or Equation (76). Within this
prescription, bending is considered in combination with axial
force, and torsion is considered as a contribution to shear.

With Equation (75) as our basic expression, the fracture
criterion is then

√
( F̂
t

)2
+

( V̂
t

)2
> 1 (77)

where

F̂ = |F| + |M| (78)
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is the total stress due to deformations which cause elongation, as
shown in Figure 2, and

V̂ = |V| + |T| (79)

is the total stress from deformations contributing to shear, as
shown in Figure 3. Note that in Equation (77) we have also
assumed the same breaking threshold for loading in shear and
tension, that is

t = tF = tV (80)

In three dimensions the shear force V in Equation (79) acts
within two perpendicular planes. If we consider beam 1 in
Figure 1, extending along the positive X-axis, shear within
the XZ- and XY-planes are combined into a bi-planar expression
in Equation (79). Hence, we have

|V| =

√
V2
XY + V2

XZ , (81)

where VXY and VXZ are the respective contributions acting
within the two planes. Likewise, in Equation (78) axial force F
is combined with the largest of the moments at the ends of the
“beam” element, i.e.,

|M| = max
(
Mi,Mj

)
(82)

where i is the near (node) end and j is the far (neighboring
node) end of the “beam” element. If we again consider beam 1
in Figure 1 we now have

Mi =

√
M2

y,i +M2
z,i, (83)

with My,i and Mz,i representing the contributions from bending
obtained within the XZ- and XY-planes, respectively (My is the
bending moment about the cross-sectional centroidal axis Y).
The expression forMj is similar.

Finally, for the sake of comparison, the k = 1 criterion
based on maximum normal stress is also included. Hence,
Equation (76) reads

F̂

2t
+

√
( F̂
2t

)2
+

( V̂
t

)2
> 1, (84)

where the quantities F̂, V̂ and t are given by the same expressions
as those in Equation (77) above.

Although a “beam” element, when regarded as a separate
entity, can be strained, twisted and deformed in all manner of
ways, we regard independent couplings between torsion and
bending as less significant. Interaction between these two effects
is still included, but only indirectly in the sense that bending
contributes to axial stress, and torsion to shear, before the two
are combined via Equations (75) or (76). This also applies to the
combination of shear and bending, and to the combination of
axial deformation and torsion – any direct interaction between
these effects is assumed negligible. Indeed, it has been questioned
whether a moment-shear interaction is at all relevant. Published

results considering only these two deformation modes indicate
a very weak interaction [102]. A curve with no interaction in
Figure 6 would comprise two straight lines, describing a square
where an upper-right vertex (1, 1) of the gray-shaded area would
be the intersection of these lines. Basler [74], Sinur and Beg [75],
and Sinur and Beg [76] display only a very weak “rounding” of
this corner.

Also our assumption of a fracture criterion taking this
form is not unreasonable considering that we intend to
model a continuum, within which the “beam” is embedded
and thereby considerably constrained by the surrounding
medium. The situation would be different in considering an
isolated beam which can move freely, and even more so if
this beam is of the slender type or has a cross-sectional
geometry that is important in the overall context. Moreover,
in modeling a discretized continuum, realistic forces between
nodes should preclude the use of discrete elements based on
slender beams.

5. EXTERNAL UNIAXIAL TENSION ON A
CUBE

Using themodel described in section 2, tensile fracture is initiated
by imposing a uniform displacement vertically (along the Z-
axis) on the top surface of the lattice. The edges of the cube are
taken to be parallel with the coordinate axes. Discrete elements
are removed one at a time, and at any stage in the fracturing
process Equation (1) is used to calculate new displacements after
a discrete element has been removed. The resulting distribution
of stress, in conjunction with the breaking thresholds assigned, is
used to identify which discrete element will break next. Exactly
how this identification is made relies on the nature of the
fracture criterion.

Fracture surfaces obtained for three different samples of
size L = 32 are shown in Figure 7. The disorder used is
one of intermediate strength, corresponding to D = 1 in the
prescription outlined in section 3. For each sample the only
difference between the one on the left and its counterpart on
the right is the fracture criterion used. Samples on the left have
been broken with the original fracture criterion, Equation(22),
while Equation (77) has been used for those on the right. For
the three samples shown the fracture surfaces appear roughly at
the same position vertically on the lattice. Slopes, elevated areas
and depressions sometimes also appear in the same locations.
Although some samples appear superficially similar for the
two fracture criteria, others again differ substantially. A closer
look at the three samples in Figure 7, however, reveals an
important difference between fracture surfaces obtained with
these two criteria. This difference, moreover, pertains to all
samples. Specifically, those obtained with Equation (77) display
a pronounced roughness, in stark contrast with those obtained
with Equation (22). In the latter case fracture surfaces are seen
to consist of flat sections that are stepped up or down relative to
each other – reminiscent of a landscape of “plateaus.” Fracture
surfaces evidently look very different depending on which of the
two criteria one uses.
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Such a difference in appearance could, however, also be
obtained with the same fracture criterion by increasing or
decreasing the magnitude of structural disorder [92]. The
question is: does the morphology change in more fundamental
ways than just to provide an offset in the roughness with respect
to disorder strength? To answer this we turn to a standard
yardstick in brittle fracture calculations, i.e., the exponent which
characterizes how surface roughness scales with system size [8,
13, 15, 103]. Fracture surfaces have been found to be self-affine,
meaning that if lengths within the fracture plane are scaled by a
factor λ then lengths perpendicular to this plane scale by a factor
λζ , where ζ is the roughness exponent. A self-affine relationship
W ∼ Lζ is therefore obtained, and this appears as a straight
line in a log-log plot. Results have been obtained for ζ with
various models, such as the random fuse model in 2D [104–
106] and in 3D [107–110], and in 3D with networks of elastic
springs [111]. Results have also been obtained with the beam
lattice in 2D [90, 112]. The first result in 3D appeared in Skjetne
et al. [113] and later in Skjetne et al. [92] and [114], with ζ

varying according to the fracture criterion used, and possibly also
with other parameters involved, such as strength of disorder and
choice of materials constants.

FIGURE 7 | Comparison of fracture surfaces obtained with different fracture

criteria. Three different samples are shown, S-134, S-135, and S-136. FC-0

denotes the “original” criterion, Equation (22), and FC-2 denotes the

“maximum shear stress” criterion, Equation (77). Fracture interfaces are red on

the underside and blue on top.

Quantification of surface roughness is done in the same way
as in Skjetne et al. [92], i.e., as the root-mean-square variance
perpendicular to the fracture plane,

Wx(L) =

〈
1

L

L∑

i=1

zx(i)
2 −

[
1

L

L∑

i=1

zx(i)

]2〉1/2
, (85)

where zx(i) is the vertical height of the first intact node
encountered when moving down toward the lower remaining
part of the structure (shown in Figure 7).

Previous calculations made with the “original” criterion,
Equation (22), indicates a roughness exponent ζ which varies
considerably with the magnitude of the disorder [92], i.e., 0.59 <

ζ < 0.78. Here smaller values ζ ∼ 0.6 correspond to strong
disorder, |D| ≥ 2, and larger values ζ ∼ 0.8 to intermediate
disorder, D = 1. These exponents are therefore somewhat high
compared with the large-scale experimental result, ζ ≃ 0.5 [24,
115]. In Figure 8 we show the roughness exponent obtained
with the “original” criterion Equation (22), using D = 1.5.
Not surprisingly the result, ζ = 0.72, lies between the results
obtained for D = 1 and D = 2 in Skjetne et al. [92], that is,
it lies between ζ = 0.78 and ζ = 0.62. Using Equation (77),
however, the value of the exponent reduces to the much lower
value of ζ = 0.52, very close to the experimentally reported
value for large length scales. This is notable in light of the fact
that the original criterion is wrong insofar as it only applies
to fracture with plastic deformations. Furthermore, the result
obtained with Equation (84), ζ = 0.54, is similar to that
obtained with Equation (77). Both results are shown in Figure 9.
A comparison of fracture surfaces obtained with Equations (77)
and (84) is shown in Figure 10. The surfaces are seen to be
very similar in this case, close examination reveals only minor
differences between the three samples. Evidently, the inclusion of

FIGURE 8 | Log-log plot showing average roughness, W, as a function of

system size, L, for a large number of fractured samples of each size. Disorder

magnitude is D = 1.5. (FC-0) denotes the result obtained with the “original”

fracture criterion, Equation (22). Black dots indicate those values to which the

straight line has been fit using linear regression.
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FIGURE 9 | Log-log plots for average roughness, W, as a function of system

size, L, for a large number of fractured samples. Disorder magnitude is

D = 1.5. Shown at the top (FC-1) is the result obtained with the “maximum

normal stress” criterion, Equation (84). Shown below (FC-2) is the result

obtained with the “maximum shear stress” criterion, Equation (77). Black dots

indicate those values to which the straight line has been fit using linear

regression.

shear forces in the fracture criterion fundamentally changes the
detailed morphology of the crack surface.

Brittle fracture on very small scales corresponds to the
breaking of atomic bonds, thereby separating crystal planes. The
resulting fracture surface is flat until the crack front encounters
an obstacle, such as a grain boundary or a lattice defect. On
small scales, therefore, it is not unreasonable to expect fracture
surfaces akin to those shown on the left in Figure 7. These
were obtained with the “erroneous” criterion, Equation (22),
which, while lending much weight to axial force, has only weak
contributions from bending and none from shear.

Equation (22) should, of course, not be regarded as an
adequate criterion for brittle fracture on small scales. While the
large scale fracture criteria, Equations (77) and (84), were derived
from the theory of elasticity, a small scale criterion would require
an analysis which takes into account the microscopic nature
of the structure, such as, for instance, binding by interatomic

FIGURE 10 | Comparison of fracture surfaces obtained with different fracture

criteria. Three different samples are shown, S-134, S-135, and S-136. FC-1

denotes the “maximum normal stress” criterion, Equation (84), and FC-2

denotes the “maximum shear stress” criterion, Equation (77). Fracture

interfaces are red on the underside and blue on top.

potentials. From this a relevant functional form could be devised
for a fracture criterion to be used in discrete element modeling at
small scales. This should lend appropriate weight to the tensile
breaking which gives rise to the cleavage process that takes
place between crystal planes. At the same time it should include
a less dominating mechanism (based on bending or shear or
both) that emulates encounters with grain boundaries and other
discontinuities within the crystal structure of the material.

This picture goes a long way toward explaining why
two different exponents are obtained in the experiments. In
numerical modeling with an appropriate fracture criterion which
includes breaking due to shear, we obtain ζ ∼ 0.5 on scales large
enough for shear to play an important role. Contarary to this,
ζ ∼ 0.8 is expected on scales sufficiently small to be dominated
by the crystal structure, as indicated by an “erroneous” criterion,
such as Equation (22), which lends a disproportionally strong
weight to tensile breaking.

In previous calculations with Equation (22) it was seen that the
large scale roughness exponent ζ ∼ 0.5 is approached from above
when the disorder strength is considerably increased, resulting in
ζ = 0.62 being obtained for D = 2 and ζ = 0.59 for D = 4 [92].
The latter case, however, represents a material structure with
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quite extreme variations in local strength properties, perhaps
unrealistically so for most materials.

It is worth noting that, with the new criteria given by
Equations (77) and (84), the roughness exponent remains in the
vicinity of ζ = 0.5 for all disorders included in the present
study. In other words, the roughness appears to be universal with
respect to disorder strength, in contrast with what was found in
Skjetne et al. [92]. With D = 2 the exponents obtained with
Equations (77) and (84) are ζ = 0.54 and ζ = 0.53, respectively.
The result is shown in Figure 11. At D = 3 we obtain ζ = 0.53
with both criteria, this is shown in Figure 12. Finally, atD = 4 we
obtain ζ = 0.52 using Equation (84), in this case we did not take
the trouble to run an extra set of simulations for Equation (77).
The result is shown in Figure 13. The apparently constant value
which, within the uncertainties of the straight-line fit, seems to
fit all disorder strengths currently investigated with new fracture
criteria is ζ = 0.53.

FIGURE 11 | Log-log plots for average roughness, W, as a function of system

size, L, for a large number of fractured samples. Disorder magnitude is D = 2.

Shown at the top (FC-1) is the result obtained with the “maximum normal

stress” criterion, Equation (84). Shown below (FC-2) is the result obtained with

the “maximum shear stress” criterion, Equation (77). Black dots indicate those

values to which the straight line has been fit using linear regression.

6. EXTERNALLY APPLIED TORQUE ON A
CYLINDRICAL SHAFT

A typical property of brittle materials is that they are stronger
in shear than in tension. As such, the criterion given by
Equation (22) does capture one essential feature of brittle
fracture, namely the preference toward failure in axially tensile
loading. If this was the only requirement a fracture criterion even
more simple than Equation (22) might have been sufficient, e.g.,
one that contains a single term only – the ratio of the axial load
to the failure load.

In discrete element modeling there is, however, another
feature which influences crack propagation and, ultimately,
crack morphology: the geometry of the lattice discretization.
Our current model is a cube lattice with nodes arranged as
shown in Figure 1. For a crack to propagate obliquely with
respect to the alignment of “beams,” breaks will have to occur

FIGURE 12 | Log-log plots for average roughness, W, as a function of system

size, L, for a large number of fractured samples. Disorder magnitude is D = 3.

Shown at the top (FC-1) is the result obtained with the “maximum normal

stress” criterion, Equation (84). Shown below (FC-2) is the result obtained with

the “maximum shear stress” criterion, Equation (77). Black dots indicate those

values to which the straight line has been fit using linear regression.
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FIGURE 13 | Log-log plot showing average roughness, W, as a function of

system size, L, for a large number of fractured samples of each size. Disorder

magnitude is D = 4 and FC-2 denotes the result obtained with the “original”

fracture criterion, Equation (22). Black dots indicate those values to which the

straight line has been fit using linear regression.

by lateral (transverse) deformation as well as by longitudinal
(axial) deformation. For a cube lattice strained in the Z-
direction lateral breaks are those that occur within the XY-
plane due to deformations transverse to the “beam” axis,
i.e., shear deformations normal to (or bending deformations
out of) this plane. In other words, a fracture plane which
intersects the XZ-plane at an angle of exactly 45 degrees
will require an equal number of transverse and longitudinal
breaks. In localized fracture (very weak or no disorder) these
two types of breaking events should alternate as the line
of intersection between the crack front and the XZ-plane
advances. For a fracture plane which advances at a steeper
angle, the ratio of horizontal to vertical breaks increases, while
a more shallow fracture plane likewise requires relatively fewer
horizontal breaks.

Without providing for the possibility of shear failure, crack
propagation would instead display a preference toward either
the vertical or the horizonal plane, depending on the direction
of the external loading. A situation requiring propagation along
a plane inclined at 45 degrees is the fracture of a cylindrical
shaft due to torque, see Figure 14. Directional inhomogeneity
in the elastic properties of the cylinder (other than disorder)
could modify the angle of the fracture surface, but in the case
of a shaft with homogeneous material properties the emerging
fracture angle should be 45 degrees in brittle fracture. Any
deviation from this should instead be obtained by controlling
the strength ratio of shear to tension in the thresholds. For a
discrete element model such a freedom of choice is essential
in order to obtain a crack which correctly reflects both the
underlying structural disorder as well as other assumed
material properties.

We therefore next compare the new fracture criteria with the
old criterion by considering torsional fracture in a cylindrical

FIGURE 14 | A positive valued torque T is applied on the right end of a

cylindrical shaft, with the left end being held fixed. Shown in blue is an

intersecting plane on which the shear stresses are at their highest. The

associated material element is one of pure shear, with the largest values

obtained vertically or horizontally. Shown in red is an intersecting helical

surface perpendicular to which tensile forces are highest. The associated

material element indicates the direction and value of the maximum tensile and

compressive normal stresses. This element is contained within the lattice

discretization on the right, with a numerical realization of the helical surface

depicted in yellow.

shaft. To construct such an object we first regard a rectangular
column of discrete element “beams” using the cube lattice
discretization. From this a cylindrical body is obtained by
inscribing a circle within the limits of the square cross-section,
before cutting away all discrete elements connected to nodes lying
outside this circle. This is shown in Figure 15, for a structure
subject to external torque. On the left the characteristic out-of-
plane warping of non-circular cross sections is shown for a square
cross-section in the XY-plane, while on the right a circular cross-
section is shown. The amount of torsion involved is the same in
both cases, and the vertical displacements have been exaggerated
by a factor of fifty. Although it is unlikely that the warping of the
square cross-section influences the nature of the fracture surface,
we only consider circular cross-sections in the following. (The
very minimal slanting seen at some of the edges of the circular
cross-section on the right in Figure 15 are probably finite-size
lattice effects).

Shear and bending stresses on the cross-section of a cylindrical
shaft induced by torque is shown in Figure 16. At the top, (1)
and (2) displays X6 and Y6, i.e., shear forces in the X- and Y-
directions. These are obtained from the j = 6 components of
Equations (15) and (16), respectively. Also shown, (3) is

Vxy =

√
X2
6 + Y2

6 , (86)

i.e., the bi-planar shear of Equation (81). Below the shear stresses
are shown bending stresses. These, (4) and (5), are V6 and U6,
respectively. Also, (6) represents

Mxy =

√
V2
6 + U2

6 , (87)

or the biaxial bending moment of Equation (83). This combines
bending within the XZ- and YZ-planes. Figure 16 shows that
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FIGURE 15 | Mid-point sections in a body subject to torsion. On the left is a

square cross-section, showing the characteristic out-of-plane warping

obtained for non-circular cross-sections. On the right is a circular

cross-section obtained by cutting elements outside a circle inscribed within

the square. Vertical displacements have been magnified by a factor of 50.

FIGURE 16 | Stresses on the central cross-section of a cylinder subjected to

an external torque. Shown are stresses in discrete element “beams” which

connect horizontal layers in the cylinder, i.e., “beam” 6 in Figure 1. Shear

stresses are displayed at the top and bending stresses at the bottom. See

main text for more information.

(with Equations (2) and (3) for the elastic constants) shear
stresses are about twice as large as bending stresses. The
necessity of using Equations (86) and (87), i.e., Equations (81)
and (83), for consistency with rotational symmetry is
also apparent.

Using the old criterion, Equation (22), a typical example
of the helical fracture surfaces obtained is shown from five
slightly different angles of rotation in Figure 17. The sample
has been subjected to a counter-clockwise rotation at the
top and a clockwise rotation at the bottom. All samples
considered currently have weak disorder, i.e., using D = 0.4
in Equation (21). What is immediately apparent is that the
angle of the fracture surface is rather steep. This is a reflection
on the fact that Equation (22) is dominated by the axial term
while having only a weak contribution from bending. It is this
bending which provides the first local fractures since the main
forces are due to displacements transverse to the vertical axis.
At some point, however, breaking due to horizontal tension
becomes important. Crack propagation in the form of separation
along vertical lattice planes now becomes more dominant than
breaking induced by bending within the horizontal plane. The
resulting fracture surfaces tend to be very steep, significantly
exceeding the 45 degree angle in Figure 14, as is evident
in Figure 17.

If instead we use our new criterion, Equation (84), we have
the option to vary the strength relationship between shear and

FIGURE 17 | A cylindrical shaft with diameter d = 25 and height H = 201

which has been broken on the application of torque. The fracture criterion

used is Equation (22). The shaft is shown from five slightly different angles.

tension. Assuming the material is stronger in tension than in
shear we should expect “flat” fracture surfaces. Indeed, fracture
surfaces obtained for a shear/tension ratio of 0.5 are quite flat
and five samples are shown at top left in Figure 18. Such a
strength ratio is typical of many metals, including steel [116].
These materials display less resistance toward the movement of
dislocations within crystal planes and are thus more susceptible
to failure due to shear deformations.

Increasing the stochastically generated shear strength to
the point where it equals the stochastically generated tensile
strength changes the appearance of the fracture surfaces.
Some of the samples now display a slanting surface while
others are reminiscent of a cup-and-cone type surface
(common in ductile fracture), see the five samples at top right
in Figure 18.

Helical fracture surfaces of the type expected in Figure 14

appear as soon as the shear strength is increased beyond the
tensile strength. For the five samples at mid left in Figure 18

shear is one and a half times stronger than tension. A single
sample where shear is twice as strong as tension is shown from
five slightly different angles at mid right in Figure 18. Strength
ratios where shear is stronger than tension is typical of many rock
types [117].

A further increase of shear strength relative to tensile strength
causes the angle of fracture to become progressively steeper. At
bottom left and bottom right in Figure 18 the ratios are four and
eight, respectively.

Even when compared with these rather extreme cases,
however, fracture surfaces obtained with the original criterion,
Equation (22), are even more steep, as can be seen from
Figure 17. In fact, they almost traverse the entire length of the
sample. Such separation along vertical planes would perhaps
be similar to the sort of fracture taking place when a broom
stick is twisted until it breaks. Fracture then occurs as a
separation of wood fibers parallel to the length axis of the
shaft rather than as a breaking of such fibers in a direction
normal to the length axis, as would be expected in shear
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FIGURE 18 | Cylindrical shafts with diameter d = 25 and height H = 101 broken by the application of torque, using different strength levels in the randomly generated

breaking thresholds. The disorder used in all cases is D = 0.4, using Equation (21). At top left five different samples are shown having tensile thresholds twice as

strong as those in shear. At top right tensile and shear thresholds are equal, also showing five different samples. At left in the middle row are shown five different

samples with shear thresholds one and a half times as strong as the tensile thresholds, these samples have been rotated so as to display more or less the same view.

At right in the middle row shear thresholds are twice as strong as tensile thresholds. A typical sample is shown from five slightly different angles in this case. At bottom

left are shown five samples with shear thresholds four times stronger than tensile thresholds, these have been rotated to display more or less the same view. Finally, at

bottom right a typical sample where shear thresholds are eight times stronger than tensile thresholds is included, this has been shown from five slightly different

angles. In all cases the fracture criterion used is Equation (84).

fracture. This is especially the case in hardwoods, in softwoods
fractures will also to some extent propagate across lengthwise
fibers [118].

7. CONCLUDING REMARKS

The choice of fracture criterion is shown to have a profound
effect on the crack morphology which obtains in calculations
with a discrete element model for brittle fracture. The new
fracture criteria are based on well known and long established
relations and principles from the theory of elasticity, and
replace a criterion which is really only relevant to plastic
(rather than brittle) fracture. Modes of deformation such as

axial strain, bending, shear and torsion are all included in the
criteria used.

It is especially the inclusion of shear which most affects
the results obtained. Visually, the most conspicuous change
is observed at the weak end of the currently included range
of disorders. Here the resulting fracture surfaces appear
considerably more rough. The way this influences the self-
affine properties of the crack is to lower the roughness
exponent to a value consistent with experimental findings, i.e.,
ζ = 0.52. What is more, the roughness exponent remains
at this value for all disorders currently included, indicating
a universal value. An additional gain produced by allowing
breaking in other deformation modes, notably shear, is to
enable the crack front to move more freely with respect to
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the lattice topology. Otherwise, for a criterion with an axially
dominant breaking mechanism, crack propagation will display
a tendency to align itself in parallel with symmetry planes in
the lattice. We have used a cube lattice, although this does
not strictly reproduce the correct macroscopic response to an
external loading. It is, however, less demanding on numerical
resources than would be, say, an hexagonal close-packed
lattice configuration.

A larger roughness exponent ζ ≈ 0.7− 0.8 has been reported
in experiments on small scale [14]. We do not see this in our
numerical data. The existence of a small-scale larger roughness
exponent and a large-scale smaller roughness exponent has also
been reported in experiments on crack fronts constrained to
move along two-dimensional planes [119]. Bouchaud et al. [120]
suggested that the large roughness exponent on small scales
would be due to damage coalescence on small scales. That is, the
crack surface wouldmerge with the cloud of damage surrounding
it, thus roughening it. Gjerden et al. [121] demonstrated using
the fiber bundle model [122] that this is indeed a mechanism
for a crack front constrained to move along a two-dimensional
plane. In this case, the damage cloud appears in front of the
crack front, which then on small scales grows though it merging
with the damage cloud. In three dimensions, the mechanism by
which merger roughens the fracture surface would be different.
We will follow up the present study by investigating whether this
mechanism also is present in three-dimensional unconstrained
crack growth.

Two new fracture criteria were included in this study, one
based on maximum normal stress and the other on maximum
shear stress. Both criteria give the same results for the roughness
exponent and, based on the systems currently studied we
could not see any difference in crack surface morphology,
quantitatively or in visual appearance. A criterion which does
not include shear breakage tends to promote the breaking of
“beam” elements aligned in parallel with the direction of the
applied load. Hence a majority of fracture surfaces perpendicular
to the externally applied load are rendered flat. The inclusion
of shear acts as a roughening mechanism in that breaking
now also happens in elements that are perpendicular to the
direction of the applied load and consequently the crack front
can more readily move at an angle with respect to these flat
regions. This means that the path taken by the crack, and thus
its morphological properties, now more correctly reflects the
underlying material inhomogeneities.

The sort of discrete element modeling that we have presented
in this paper should be useful in many applications, for

instance in modeling concrete structures or in biomechanics
applications. We have included simple cylindrical structures
in the current study but any cross-section can be easily
made and the body of the structure in question can also
be modified lengthwise to give a wide variety of shapes.
Furthermore, the introduction of anisotropy in either
strength or elastic properties is easily accomplished with
such a model.

The current model does not include friction or contact
after elements have been removed. We do not believe this
seriously affects the results obtained for a system loaded in
external tension or for breaking in torsion when elements are
weaker in tension than in shear. Very large overhangs in a
tensile situation would, of course, be broken away by friction
forces but these overhangs are neglected anyway in the way
we measure the roughness. This is done by looking straight
down toward the surface and identifying the first intact element.
For the disorder strengths included, even at the high end,
we cannot see any overhangs in 3D, although such may be
present in 2D where the effect of strong disorder tends to
produce more sinuous crack lines. In 3D such 2D lines would
be constrained by the neighboring lines to produce a less rough
surface. Nevertheless, such effects are strong candidates for
inclusion in future improvements of the model. In scenarios
involving externally compressive loads, contact and friction are
certainly important.

No investigation into how results depend on the chosen elastic
constants has been made in this study, this should probably be
addressed in a future study.
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A. APPENDIX

A.1. Illustration of Stresses in Combined
Loads
In order to substantiate how stresses are distributed throughout a
structure when combined loadings are applied we can construct
“macroscopic” beams from discrete elements. Based on a cubic
lattice morphology, the simplest such structure is a square prism.
Structures with other cross-sections are obtained by cutting
away “beam” elements that lie outside the required geometric
profile. Circular or elliptic cross-sections, for instance, are easily
obtained in this way. Presently we regard beams with square
cross-sections and marked outlines, since it is easier to visualize
deformations (especially torsion) this way. No units are given
with the stresses shown in Figures A2–A8 since forces have
not been calibrated against any real material. Values shown are
therefore dimensionless.

Deformations are best visualized when they are sizeable. The
displacements involved in our calculations for the roughness
exponent, on the other hand, are quite small. This is appropriate
in a brittle fracture study, since the external displacements
involved are usually small. Large deformations are more
commonly associated with ductile materials. However, in order
to illustrate a few cases of how stresses are altered as different
modes of external loading are combined, we employ large
displacements for visual effect. If we use Equations (15)–(20)
for this purpose a “warping” effect is obtained when angular
displacements become large. This is shown on the left in
Figure A1, where the top and bottom surfaces have been rotated
in opposite directions. Edges near the top and bottom are seen
to turn inwards after a gradual swelling develops as the ends
are approached. The reason why the effect is most marked
near the ends is because it is here that rotational displacements
are largest.

In contrast to this is the version shown on the right in
Figure A1. Here, the axial contributions from the beams have
been corrected to take into account the rotations about three
axes. Components of shear and bending moment should also
be adjusted in this way, leading to equations which involve a
large number of terms. However, provided deformations are not
too extreme, corrections applied to the axial terms are the most
important. In Figure A1 the rotation of the top and bottom
surfaces is 45 degrees, for a total rotation of 90 degrees between
top and bottom. For such a large deformation the version on the
right represents a dramatic improvement over the one on the left.
The relevant modifications to Equations (15–17) are

Xi =−
1

α

6∑

j=1

λ̂1,3
(
1−

√
Aj

)
sj8j

−
1

β+
γ
12
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{
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rj

2

[
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(
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)
+ λ̂2,4

(
wi + wj

)]}
,

(A1)

for the X-component of force on node i,

FIGURE A1 | The end of a square beam deformed in torsion. The upper

surface has been rotated 45◦ clockwise and the bottom surface 45◦

counter-clockwise. Version based on linear equations is shown on the left, and

version based on non-linear equations is shown on the right.
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for the Y-component, and
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for the Z-component. Here

Aj= χ̂1,3 δx2j + λ̂1,3
(
1− rjδxj

)2
+χ̂2,4 δy2j

+̂λ2,4
(
1+ rjδyj
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)2

is the squared length of the discrete element between nodes i and j
(disregarding curvature). Furthermore,

8j = λ̂1,3 cos vi coswi + λ̂2,4 cos ui coswi + λ̂5,6 cos ui cos vi
(A4)

is the angular displacement of node i. As can be seen from
Figure A1, the version on the right is clearly free of the warping
seen in the version on the left.

The importance of taking into account local rotations for large
deformations is made even more clear if we regard the stresses
involved. In Figure A2 the shear stresses involved in the two cases
are shown, and the color scales included with the beams illustrate
the point. Evidently, when using linear equations, the stresses
involved near the ends of the beam become quite extreme, almost
10 times higher than elsewhere in the beam. Away from the
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FIGURE A2 | Shear stresses in a square beam with large torsionl

deformations (the same 90◦ rotation as in Figure A1). Version based on linear

equations is shown on the left, and version based on non-linear equations is

shown on the right.

ends, however, the stresses are comparable, as can be seen from
the color scales. In contrast, a uniform distribution of shear is
obtained with Equations (A1–A3) in place of Equations (15–17).

The relevant equations are more complicated, and involve
non-linear terms which necessitate an iterative adaption of
conjugate gradients. In this approach the decreasing residuals of
each successive solution are adopted as a starting point for a new
tentative solution. Hence, at each stage in the breaking process a
loop produces a sequence of tentative solutions. Within this loop,
the number of iterations required for each successive solution
decreases rapidly until the solution has converged. Although
computational time increases significantly in comparison with
the linear set of equations, it is still a only a matter of a minute or
two to obtain stress distributions for relatively large structures.
Such structures may be intact or at a pre-determined stage of
breaking. However, for the purpose of studying the entire fracture
process it is more practical to use linear equations in conjunction
with small deformations.

We consider a beam in the form of a square prism, where
all edges have been drawn black as an aid to emphasize
body shape and displacements. External loads are imposed by
rotating or translating the top and bottom surfaces of the body.
The combination of bending and axial tension discussed in
section 4 is illustrated in Figure A3 in the case of a beam with
length 4L. Additional black lines in the figure delineate cubes
with sides L = 25. On the left is a beam that is loaded in the
vertical direction (stretched along the Z-axis), in the middle is the
same beam in a bent configuration only (bending within the XZ-
plane), and on the right the two loadings are combined. Stresses
shown are axial stresses in discrete elements aligned along the
vertical axis (the Z-axis). Referring to the color scale (the same
scale relates to all three loadings) axial stresses of the tensile and
bending cases are clearly seen to be additive, as expected from the
superposition of forces in Equation (37).

In the figure, positive values are tensile while negative values
are compressive. Average axial forces, obtained by summing from
top to bottom along the middle of the vertical faces of the beam

FIGURE A3 | A square prism beam structure, sides L=25, and height

H=101, loaded in tension (Z), pure bending (V ), and the two combined (ZV ).

are included in Table A1. Here,
∑

F090 and
∑

F270 refer to the
convex and concave sides of the beam, respectively, in Figure A3

The reason we consider average values of axial force is because
we presently regard the 25× 25× 101 square prism as a model of
a discrete element “beam.” In a fracture criterion we will not be
interested in details pertaining to scales smaller than that of each
element.

Table A1 shows that values obtained by adding “Z” and “V ,”
as dictated by Equation (78), agree well with the actual values
obtained in the combined loading, denoted “ZV” in Figure A31.
To what extent will additional loadings alter this picture?
Instead of carrying out a systematic investigation involving
many data points, a few extra loads added onto the “ZV”
combinations have been included in the last three lines of
Table A1. These are torsion, “ZVW,” as well as torsion and shear,
“YZVW” and “XZVW.” In the latter cases the top surface has
been translated along the positive Y- and X-axes, respectively.
Although the displacements and rotations involving all the
loadings are quite sizeable the average axial forces on the convex
(
∑

F090) and concave (
∑

F270) sides do not change much,
relatively speaking, as can be seen from the values in Table A1.
Hence, the task of identifying the largest contribution from
axial forces seems to be adequately taken care of by the first
term, F̂/t, in Equation (77). Had we considered the detailed
distribution of forces rather than the averages, the highest axial
force in the “YZVW” and “XZVW” cases would have been
found to occur in discrete elements that are situated in the
corners of the cross-section, near the top and bottom surfaces,
on the concave side of the structure (see the color scale in
Figure A4). Numerical values in these two cases are about
20% higher than the averages quoted in Table A1. Maximum
axial stress in the “ZVW” case is only about 5% higher and

1The discrepancy is mostly due to the fact that the small vertical shrinkage required
in a pure bending in case “V” has not been taken into account. This would be
necessary for the arc-length in the middle of the beam to equal the length of the
beam in its relaxed state. The remaining discrepancy is due to the moment, being
applied at the top and bottom ends, not being constant throughout the length of
what is essentially a thick beam.
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TABLE A1 | Average forces summed from top to bottom along the middle of the vertical sides of a structure with square cross-section, sides L = 25 and height H = 101,

with the structure having been subjected to different external loadings.

Axial averagea Shear averageb

Loading
∑

Z F090
∑

Z F270 Loading
∑

Z V000
∑

Z V180

Z 10.00 10.00 X 5.07 5.07

V 9.15 −5.93 W 9.67 9.67

Equation (78) 19.15 4.07 Equation (79) 4.60 14.74

ZV 19.00 3.93 XW 4.76 14.57

ZVW 19.49 4.03 XWV 6.42 12.96

YZVW 20.52 3.78 XZWU 6.25 13.14

XZVW 19.92 4.46 XWUV 4.77 14.60

Loading types denoted X, Y, and Z represent translations of the upper surface along said positive axes. Size of the translations in all cases corresponds to 10 discrete element lengths.

Loadings denoted U, V, and W are rotations about axes parallel with the X-, Y-, and Z-axes, respectively. In all such cases the bottom surface has been rotated +0.1π while the top

surface has been rotated −0.1π . The side facing the viewer is denoted “000,” other sides being “090” (right), “180” (opposite) and “270” (left).
aAverage along vertical elements.
bUsing Equation (81) to combine shear in the XZ- and YZ-planes.

FIGURE A4 | A square prism beam, with sides L=25, and height H=101,

loaded in tension and bending (ZV ), with added torsion (ZVW) and shear

(XZVW and YZVW).

occurs in a corner about three quarters of the way toward
the top surface. In this context we also have to keep in mind
that these values refer to cross-sections that are square rather
than circular.

Table A1 also includes average shear forces calculated along
the vertical faces of the square prism structure. Hence, the
combination of shear and torsion, and to what extent this
is affected by other loading modes, is investigated next. In
Figure A5 is shown a beam under pure shear, pure torsion
and the combination of these two loadings. The combined
loading has been shown from three different angles, illustrating
how shear on one side increases while that on the other side
decreases, in accordance with the superposition of forces in
Equation (79).

On the extreme left is a beam where the top surface has been
translated along the positive X-axis. The shear force is seen to be
at its largest in the middle of the cross-section and decreases to

zero at the edges. This is an example of Jourawski’s formula, i.e.,

τ =
VxQy

IyL
, (A5)

where

Qy =

∫

A
xdA (A6)

is the first, or static, moment of area about the axis of bending (the
Y-axis in this case), Iy is the moment of inertia about the same
axis, and L is the width of the cross-section. For a square cross-
section the distribution of forces across the width is in the shape
of a parabola. This is so because the external transverse force Vx

produces a bending moment which varies along the length of
the structure [98], i.e., the Z-axis in this case. The distribution
of shear forces is shown in Figure A6 for a structure which has
sides L = 25 and vertical length (or height) 8L. The external
force Vx arises from a horizontal translation of the top surface
a distance of 15 discrete elements. Numerical values are shown
as solid squares and have been obtained along a line through the
center of the cross-section, midway between the top and bottom
surfaces. A parabola, shown in red, has been fit to these values.
Apart from at the very edges, the numerical values are seen to
conform very well to the shape predicted by Jourawski’s formula.
The discrepancy at the edges are finite-size effects, as can be seen
by making finer the resolution of the discretization. Increasing
proportionally the dimensions of the sample and the magnitude
of the external deformation, the effect obtained is analogous to
such a refinement of numerical resolution. One example of this
is included in Figure A7, which shows the distribution of shear
forces in a structure with sides L = 51 and height 8L. Here the
external transverse displacement used corresponds to 30 discrete
elements, and the discrepancy at the edges between the numerical
values and the parabola is now seen to be much smaller.

The next beam in Figure A5, denoted “W,” is under pure
torsion, and following this is the “XW” case where the two
loadings “X” and “W” are combined. As expected, values in
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FIGURE A5 | Beam of square cross-section, sides L = 25 and height

H = 101, made up of discrete elements. The structure has been subjected to

shear (X ), torsion (W) and both these loadings combined (XW). Here, φ 6= 0 is

a counter-clockwise rotation of the structure. Hence φ = 90 has turned the

side corresponding to
∑

Z V090 toward the viewer.

FIGURE A6 | Shear force variation across the width of the mid-section of a

25× 25× 201 square beam, with parabola expression included for

comparison shown in red.

Table A1 obtained for the average forces on the sides where shear
increases or decreases compare favorably with values expected
from Equation (79), i.e., shear intensifies on one side and is
alleviated on the other. The interesting question is to what extent
other deformations influence this relationship. Adding a bending
moment “V” or a biaxial bending moment “UV” changes the
values somewhat (see Table A1, but not anywhere near what
would be required to invalidate the relationship between “X”
and “W” as incorporated into Equation (77) by the term V̂/t.
The distribution of forces involved when adding the biaxial
moment “UV” are shown in Figure A8.

The breaking thresholds for the two terms in Equation (77)
have been set to the same value in Equation (80) since we
wish to avoid making inferences about the detailed structure

FIGURE A7 | Shear force variation across the width of the mid-section of a

51× 51× 409 square beam, with parabola expression included for

comparison shown in red.

FIGURE A8 | A square prism beam, with sides L = 25 and height H = 101,

subject to shear (X ), torsion (W) and biaxial bending (U and V ).

of each “beam.” If a “beam” is axially weak we also assume
that it will be weak in shear, bending and torsion. We will
not devise individual threshold distributions based on where
“flaws” in a “beam” might be located. Otherwise one might, for
instance, expect a “beam” with an edge crack to be unaffected
in strength when bent such that the edge crack is compressed
(closed) while weakened when it is bent the other way. Likewise,
a “beam” with a central flaw might be expected to show
structural resilience toward bending in either plane while being
weakend in axial strength. We may still adjust the thresholds
so that the “beam” is proportionally weaker in tension than in
shear. This can be done, for instance, by multiplication with a
constant factor. The main point is that all thresholds relevant
to any given “beam” is chosen from a single value in the
stochastic distribution.
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