
June 2006
Rolv Bræk, ITEM
Geir Melby, Ericsson

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Bluetooth enabled Peer2Peer services
in ActorFrame

Stephan Søreng Kristiansen

Problem Description
ServiceFrame is a framework for developing and execution of services targeting both the internet
and mobile domain. The framework is implemented in Java and it runs on J2EE, J2SE and MIDlet
(Java enabled mobiles). It supports a PeerToPeer type of services with asynchronous
communication between the components running on the different platforms. The communication
between the mobile phone and servers or to other mobile phones uses IP over GPRS. Downloading
information such as media files is expensive and it takes too long time. A trend is that users of
mobile phones want to establish ad hoc network with other users or servers to exchange
information.

This thesis is a study of ServiceFrame and how ServiceFrame can be used in a beneficial way to
establish ad-hoc networks and service sessions between users of ServiceFrame based mobile
devices using Bluetooth. How a ServiceFrame based server acting as a Home Gateway can be used
to provide services such as playing music stored on mobile phones shall be studied. The thesis
should contain a study of how the different ServiceFrame based devices may exchange information
about available services. Existing routing protocol should be studied. Other protocols which could
work better in an ad-hoc network may be proposed.

A limitation of the Bluetooth technology is the distance factor between devices, and this study
shall look into how ServiceFrame based mobile phones can be used to extend the distance
between the source and the target in a communication using mobile devices as mediators.
Therefore a study of utilizing ServiceFrame as a base for multihop ad-hoc networking should be
done - where a prototype of a service to demonstrate the proposed solutions shall be developed
and demonstrated.

Assignment given: 16. January 2006
Supervisor: Rolv Bræk, ITEM

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

i

PREFACE

This master’s thesis was written at the Norwegian University of Science and Technology

(NTNU) as part of the Master of Technology study. It was carried out at the Department

of Telematics spring 2006.

I would like to thank my advisor Geir Melby for his involvement, especially with reading

through the thesis and giving important advice.

Trondheim, 09.06.2006

Stephan Søreng Kristiansen

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

ii

ABSTRACT

To make services for mobile devices more user friendly wireless communication is a very

helpful tool. Wireless communication normally requires no or very little user input, and

communication over a wireless interface is therefore in many cases preferred. A trend

today is for example that radio or TV shows are recorded to your mobile device during

the day. When arriving your home/office the media file can be transferred or streamed to

your desktop computer and/or stereo for better sound and larger screen. Normally this is

done using a docking station, but this could also be done through a wireless interface.

Combining wireless communication with more advanced service logic opens the

possibilities for easier file sharing between mobile devices in a peer-to-peer fashion.

This thesis evaluates ActorFrame as a framework for service creation in Bluetooth ad hoc

networks. Through the thesis limitations in the Bluetooth protocol and mobile devices

supporting the Bluetooth protocol are discovered. One of the known limitations of

Bluetooth is the range limitation, since Bluetooth only is a short range protocol. To

extend the range between Bluetooth enabled devices they must be able to function as

mediators. For this to be possible information regarding available services on the

different devices must be exchanged. This task is performed by routing protocols. The

existing routing protocol in ActorFrame is evaluated, and a study of alternative wired and

wireless routing protocols is also done.

Besides user friendliness a service should be as cheap as possible. This way as many

people as possible will use the service. The Bluetooth functionality integrated in the

framework evaluated in this thesis could be utilized in a beneficial way. For example the

functionality could be used in peer-to-peer kind of services mentioned above, where a

media file is transferred from the mobile device to the desktop computer. Other wireless

technologies could also be used for this purpose, namely GPRS or UMTS. As opposed to

Bluetooth transmission, which is free, data transmission using either of these two

technologies cost money to use. If ActorFrame could be used in a beneficial way depends

on the performance of the Bluetooth functionality. Performance below what a certain

service demands, where UMTS can offer the required performance quality, would imply

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

iii

that the framework could not be used in a beneficial way. To test this performance the

possibilities of streaming MP3’s via the Bluetooth interface using ActorFrame based

devices is studied, where a prototype is designed. Through this study limitations both

regarding mobile devices running applications based on the ActorFrame framework and

the framework itself are discovered.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

iv

TABLE OF CONTENTS

PREFACE .. I

ABSTRACT ... II

TABLE OF CONTENTS ... IV

LIST OF FIGURES...VII

LIST OF TABLES.. IX

ABBREVIATIONS...X

1 INTRODUCTION ..1

1.1 BACKGROUND ...1
1.2 THE THESIS ..4

1.2.1 The goals...4
1.2.2 Resources ..5

1.3 ASSUMPTIONS AND CONSTRAINTS ...6
1.4 AN OUTLINE OF THE THESIS ...6

2 THE SERVICE CREATION ENVIRONMENT...8

2.1 ACTORFRAME..8
2.1.1 General concepts...9
2.1.2 The communication architecture...10

2.1.2.1 Different parts of the architecture ..11
2.1.2.2 The SessionManager modules..12
2.1.2.3 How messages are handled ..13

2.2 MIDLETACTORFRAME ..14
2.2.1 Original router architecture for mobile devices ...14
2.2.2 The enhanced router architecture for mobile devices...15

2.3 SERVICEFRAME ...15
2.4 JAVAFRAME...17

3 BLUETOOTH AND JAVA ...19

3.1 BLUETOOTH...19
3.1.1 Comparison with other wireless protocols..19

3.1.1.1 Bluetooth versus infrared ...20
3.1.1.2 Bluetooth versus 802.11 standards ..20

3.1.2 Specifications ..20
3.1.3 Architectures ...21

3.1.3.1 Bluetooth piconet ..21
3.1.3.2 Bluetooth scatternet ..22

3.1.4 Bluetooth Scatternet Formation..22
3.1.4.1 Bluetooth scatternet formation in single-hop networks..24
3.1.4.2 Bluetooth scatternet formation in multihop networks ..25
3.1.4.3 Choose a scatternet formation protocol ...27

3.1.5 Bluetooth operations and states ..28
3.1.5.1 Simple state diagram...29
3.1.5.2 A more complex state diagram ..30
3.1.5.3 Where to put scatternet operations?...31

3.1.6 Protocol stack ...32
3.1.7 Bluetooth Profiles ...34
3.1.8 Bluetooth limitations ...35

3.2 THE JAVA TECHNOLOGY - J2ME (JAVA 2 MICRO EDITION) ...36
3.2.1 The architecture ..37
3.2.2 The profiles ...38

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

v

3.2.3 Record Management System (RMS)..40
3.2.4 More about the optional packages (APIs)...41

3.2.4.1 JSR 82 – The Bluetooth API..41
3.2.4.2 JSR 259 – Ad Hoc Networking API..42

4 ROUTING...44

4.1 ROUTING - TWO DIFFERENT OPERATIONS ...44
4.2 ROUTING PROTOCOLS FOR WIRED NETWORKS..46

4.2.1 Distance vector protocols (DVPs)...48
4.2.2 Link-state protocols (LSPs)...49
4.2.3 Specific routing protocols: RIP and OSPF ...50

4.2.3.1 Routing Information Protocol (RIP)..50
4.2.3.2 Open Shortest Path First (OSPF) ...51

4.3 ROUTING PROTOCOLS FOR WIRELESS NETWORKS ..54
4.3.1 Characteristics of wireless communication ..54
4.3.2 Mobile ad-hoc networks (MANETs)..55
4.3.3 The routing protocols..56

4.3.3.1 Proactive protocols ...58
4.3.3.2 Reactive protocols...58
4.3.3.3 Hybrid protocols ...59
4.3.3.4 Proactive protocols versus Reactive protocols..59

4.4 THE ACTORFRAME ROUTING PROTOCOL..61
4.4.1 The protocol ..62
4.4.2 Compared to other existing protocols...63

4.4.2.1 No route optimization ...63
4.4.2.2 Periodic updates and cleanup processes ..63
4.4.2.3 Good enough for wireless environments? ...64
4.4.2.3 Protocol suggestions ...65

5 PROTOTYPE ...66

5.1 STREAMING POSSIBILITIES ...67
5.1.1 Streaming in J2ME..67

5.1.1.1 Using an Inputstream to create a player ..68
5.1.1.2 Using media locators to create a player...70
5.1.1.3 ActorFrame and RTSP..71

5.1.2 Streaming in J2SE...72
5.1.3 J2ME or J2SE implementation?..72

5.2 DESIGN AND IMPLEMENTATION ...73
5.2.1 Mobile phone behavior ...73
5.2.2 Desktop computer behavior ..74

5.2.2.1 Buffering..75
5.2.2.2 The PlayThread ...75
5.2.2.3 Problems with the solution implemented in PlayThread..77

6 TESTING ..78

6.1 TESTING SCATTERNET OPERATION...78
6.2 STREAM AND PLAY SONG STORED ON MOBILE DEVICE ...79

6.2.1 Topology and configurations ..80
6.2.2 Testing performance ...80

6.2.2.1 Testing streaming prototype...81
6.2.2.2 Calculate actual transfer speed ...82
6.2.2.3 Device and J2ME limitations discovered ..82

6.2.3 Routing information distribution...83
6.3 DISCUSSION OF TEST RESULTS...84

7 DISCUSSION AND CONCLUSION ..86

7.1 TECHNOLOGY, PROTOTYPE DESIGN AND PERFORMANCE..86
7.1.1 The routing protocols..86

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

vi

7.1.2 Bluetooth ...86
7.1.3 Prototype design and performance ...87

7.2 FUTURE WORK ...89
7.3 CONCLUSION ...89

REFERENCES ..91

APPENDIX A: USER MANUAL...96

A-1 SOFTWARE NEEDED: ...96
A-2 STARTING THE JVM VERSION OF ACTORFRAME ON A PC ..96
A-3 STARTING THE MIDLETACTORFRAME VERSION ON THE MOBILE PHONE:...99

APPENDIX B: ENABLING MP3 SUPPORT IN J2SE ...101

APPENDIX C: SOFTWARE AND TOOLS ...103

C-1 MAKE A JAR FILE FROM JAVA CODE...103

APPENDIX D: CHANGES IN BLUETOOTHLISTENER.JAVA ...104

APPENDIX E: PRINTOUTS FROM TESTING..106

APPENDIX F: CALCULATIONS IN MEDIACLASS.JAVA AND ROUTERMSG.JAVA..............110

APPENDIX G: CODE SAMPLES FROM THE PROTOTYPE...112

APPENDIX H: ATTACHMENTS INCLUDED ON CD ...117

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

vii

LIST OF FIGURES

Figure 1: Mobile phone used to make multihop ad-hoc network[4] ...5
Figure 2: Illustration of the Class Actor with optional inner structure of actors [2]...............................9
Figure 3: The ActorFrame profile package...10
Figure 4: Components involved with the routing in ActorFrame ...11
Figure 5: Explaining differences in routing messages before and after Bluetooth integration15
Figure 6: Illustration of the ServiceFrame layers [8] ...16
Figure 7: Domain given Actors that mirror the environment provided by ServiceFrame [8]..............17
Figure 8: Illustration of Bluetooth network topology. An important point is that a master in one

piconet can be a slave in another. Another point is that a device can be master in at most one

piconet. [12] ..21
Figure 9: The result of the creation of a bluetree using the Bluetree BSF protocol described above

[21]...25
Figure 10: The state diagram showing how to establish a point-to-point piconet between one master

and one slave (figure 5.2, pp.193 [16]) ..29
Figure 11: A general state diagram for connecting Bluetooth devices (figure 5.3, pp.195 in [16]). In

the diagram the low-power modes sniff, hold and parked are removed. This diagram can be

used to establish point-to-multipoint connections. ..31
Figure 12: high-level view of the architecture of the Bluetooth protocol stack [24]32
Figure 13: An overview of the J2ME architecture [25]..37
Figure 14: The packages a MIDlet have access to [14]...39
Figure 15: Illustration of the states of a MIDlet and the transitions between them [27]......................40
Figure 16: Diagram showing that routers have a routing table updated by information carried by

routing protocols. ...45
Figure 17: Illustration that shows the separation of routing and forwarding. Packets enter the router

on an interface and the destination address is found and compared to known addresses in the

forwarding table. If a match is found the packet is forwarded on the correct interface. On top

of this the routing protocol ensures that the forwarding table is kept up to date at all times [31]

...46
Figure 18: A diagram showing an example of a wired network connecting different devices to the

Internet. ..47
Figure 19: Illustration of how the routing information in DVP can be used to make a decision of the

best next hop. (fig. 6.8, page 227 [29]) ..49
Figure 20: An illustration of a small ad-hoc network. Worth noting is the fact that there is no

predefined infrastructure. Because of this nodes are expected to behave as routers and take

part in discovery and maintenance of routes to other nodes..56
Figure 21: Categorization of ad hoc routing protocols...57
Figure 22: The multihop network that was originally planned to be tested...66
Figure 23: The scenario used in the thesis. Only one master node (device (3)), and two slaves (device

(1) and (3)). ...67
Figure 24: Illustration of a two player solution ..69
Figure 25: A diagram showing the different states of a Player. [from the API documentation located

at http://jcp.org/en/jsr/detail?id=135] ..69
Figure 26: RTP is most commonly used as the transport protocol when using RTSP [37]71
Figure 27: Diagram shows the behavior of the actor on both the mobile phone and the requesting

actor (which in this case is a desktop computer which has a user interface called

GetStreamWindow). Recalling figure 23 the stream of StreamMsg’s containing different parts

of the media file is first transmitted using a Bluetooth link, and then further transmitted using

either UDP or TCP to the destination. ...73
Figure 28: Illustration of how StreamMsg’s are handled when received ...74
Figure 29: Illustration of PlayThread functionality and the basic classes in Java Sound API.............76
Figure 30: A desktop computer acting as the master with two mobile phones acting as slaves in a

piconet ...79

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

viii

Figure 31: The song is streamed from device (1) to device (3) when testing the prototype...................80

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

ix

LIST OF TABLES

Table 1: The record store database..41
Table 2: A table summing up some of the differences between RIP and OSPF [31]53
Table 3: Test results from the streaming prototype ...81

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

x

ABBREVIATIONS

AS Autonomous System

IGP Interior Gateway Protocol

BN Border Node

BGP Border Gateway Protocol

EGP Exterior Gateway Protocol

IR Internal Router

DVP Distance Vector Protocol

LSP Link State Protocol

RIP Routing Information Protocol

IGRP Interior Gateway Routing Protocol

LSA Link State Advertisement

OSPF Open Shortest Path First

UDP User Datagram Protocol

JVM Java Virtual Machine

MIDP Mobile Information Device Profile

UML Unified Modeling Language

GSM Global System for Mobile Communications

UMTS Universal Mobile Telephone System

GPRS General Packet Radio Service

IP Internet Protocol

TCP Transmission Control Protocol

MANET Mobile Ad-hoc Network

J2ME Java 2 Micro Edition

J2EE Java 2 Enterprise Edition

J2SE Java 2 Standard Edition

AMS Application Management Software

MMAPI Mobile Media API

JSR Java Special Request

BSF Bluetooth Scatternet Formation

WLAN Wireless Local Area Network

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

1

1 Introduction

1.1 Background

The mobile phone technology and mobile phone usage from when it first came in the

early 1990’s, when the GSM (Global System for Mobile Communications) network was

up and running, to this date has had an quite extraordinary development. In less than

twenty years, mobile phones have gone from being rare and expensive pieces of

equipment used mainly by businesses to a pervasive low-cost personal item. The mobile

phones actually outnumber land-line telephones in many countries. Actually it is not

uncommon for many people to own a mobile phone instead of a land-line for their

residence. For many people a life without the mobile phone is unthinkable. The mobile

phone has been a very helpful tool in developing countries where little existing fixed-line

infrastructure exists, and has therefore become widespread in these countries.

The number of users and mobile phones sold has had an exploding development, and in

that respect development of new services has been very important. Services like SMS

(Short Message Service) and MMS (Multimedia Message Service) are services that have

caught on in most countries. In addition to different services for mobile phones, the

integration of many features on the mobile phone has been important. From being a

device only used for communication through speech the integration of digital cameras

and capabilities of playing (and displaying) several media files, both sound and video, has

turned the mobile phone into a multimedia device. The mobile phone is not only a phone

anymore – it is potentially also a digital camera and your portable media player. These

capabilities have been possible to realize since the size of the hardware components

needed for storage, cameras and playback is reduced “by the minute”. With regards to

this thesis the importance of making services that transfers media files to and from the

mobile device is highlighted. User friendliness and the time it takes to transfer media files

are two important aspects when considering services. Focus on how to get media files

transferred cheap, fast and easy is of great importance when designing such services,

since an average user does not want to use much money on it nor would he/she want to

use too much time.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

2

Transferring files from the mobile phone to a desktop computer or transferring files to the

mobile phone could easily be done just using a cable. Other more advanced services,

however, require other ways of communication. To enable the possibility to send

information to and from the mobile phone in a periodic manner or for example when

entering your home or office more advanced service logic is required, and using wireless

communication is much more practical and increases user friendliness. A trend today is

for example to download different radio shows to the mobile device, and listen to the

show on the radio on your way to work, on your way to the gym or wherever you are

going. The radio/TV show could also have been recorded to your mobile phone during

the day and one can come home and transfer the media file containing the show to the

desktop computer, enabling automatic playback on a better sound system/bigger screen.

This is now commonly done using a docking station connected to the desktop computer.

If this could be done automatically without using the docking station when entering your

home or office through a wireless interface user friendliness would increase, enabling

more people to use such a service. In addition services for peer-to-peer networking could

be developed, allowing easier file sharing between several users.

A wireless possibility which commonly is used when downloading information to and

from mobile phones is the Internet Protocol (IP) over General Packet Radio Services

(GPRS) or Universal Mobile Telephone System (UMTS). This technology can easily

send information periodically having some sort of agent realized in a software module

installed on the mobile device making a GPRS/UMTS connection periodically to

download or upload information. One of the greatest limitations with the technology is

economy, since GPRS/UMTS traffic is not free. Another limitation is the limited

bandwidth available for GPRS and UMTS, especially GPRS. Transferring media files of

a considerable size is then a time consuming process. To make services that respond to

location is also possible to realize by using GPRS, but also here the economy and time

are parameters that are limitations - making GPRS/UMTS a technology not optimal for

the mentioned type of services.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

3

On modern mobile phones one has other wireless communication possibilities such as

infrared and Bluetooth. Potentially these technologies can be both faster and cheaper than

IP over GPRS or UMTS, but have a significant range limitation that somehow must be

overcome. To make services that include networking one can make the services from

scratch, or one can utilize frameworks with already implemented modules for networking

and behavior. Such a framework exists, a framework called ActorFrame. The framework

has modules for networking through the Transmission Control Protocol (TCP) and the

User Datagram Protocol (UDP). As a result of the project assignment done by the author

fall 2005 the framework now has integrated Bluetooth functionality as well. In addition it

has built in behavior to make new objects, called Actors, which together can form

services. These objects have their own addresses that are unique global addresses making

it possible to send and receive information between different devices to the specified

objects.

By using the newly integrated Bluetooth capabilities, services using wireless

communication can be implemented. To overcome the range limitation a self-configuring

network of mobile devices acting as routers (and mediators) connected by wireless links,

called a multihop mobile ad-hoc network (MANET) can be formed. When comparing

wireless to wired communication there are issues of concern regarding for example

distribution of routing information. This issue comes quite naturally because devices

communicating over a wireless media without infrastructure will produce more

topological changes as the devices move in and out of range of each other, compared to

communication over wired lines. Communication over wired lines assumes that the

communicating devices are more or less stationary, compared to the mobile view of a

wireless communication protocol.

The thesis will look into the issue of routing protocols used in communication over wired

lines versus wireless environments, and will also look into the routing protocol used in

the ActorFrame framework for distributing routing information. Since the objects that

perform services are addressable a routing protocol actually is as a way of exchanging

information about available services in the network. The question of whether or not the

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

4

ActorFrame framework is suitable for ad hoc networking using the newly integrated

Bluetooth functionality is also an important part of this thesis. Generally speaking this

thesis is an evaluation of ActorFrame performance in a wireless ad-hoc environment.

1.2 The thesis

In this part the goals of the thesis will be outlined. In addition the resources used during

the work on the thesis are presented.

1.2.1 The goals

This assignment is given by Ericsson AS and it mainly proposes a study of ServiceFrame

and how ServiceFrame can be used “in a beneficial way to establish ad-hoc networks and

service sessions between users of ServiceFrame based mobile devices using Bluetooth”.

To easily show the main goals of this thesis a list of goals can be given:

1. Study of the routing protocol used to distribute routing information between

ServiceFrame based devices. In addition a study of alternative ways of

exchanging information on available services should be done.

2. A prototype of a service to demonstrate proposed solutions shall be developed and

demonstrated. Since a study on how playback of a song stored on a mobile phone

could be possible on a ServiceFrame based device acting as a Home Gateway

should be done, the prototype will demonstrate this. Included in this study

possible ways to realize the playback functionality is implied as an additional

study.

3. Decide whether or not ServiceFrame can be used “in a beneficial way to establish

ad-hoc networks and service sessions between users of ServiceFrame based

mobile devices using Bluetooth”.

4. A study of whether or not ServiceFrame can be used to extend the range

limitation that Bluetooth implies using ServiceFrame based devices as mediators.

The original assignment description giving a more thorough outline of the given goals is

given on the front page of the thesis.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

5

1.2.2 Resources

The assignment will be carried out at the PATS lab (Program for Advanced Telecom

Service) [1] located at the department of Telematics at NTNU, which was opened

November 2001. It is a teleservice laboratory that aims to “provide a setting in which

students and researchers can experiment with the development of advanced

telecommunication services“[1]. The assignment will use the ActorFrame and

MIDletActorFrame framework [2], which together with the Java Bluetooth API

(Application Programming Interface) [3] will provide communication both using

Bluetooth and more “normal” wired communication using TCP and UDP.

To do a study of a multihop ad-hoc network possible, multiple mobile devices were

required. Therefore two Sony Ericsson P900 [4] were used:

Figure 1: Mobile phone used to make multihop ad-hoc network[4]

The P900 supports a lot of features described in [4], but especially important is support

for Bluetooth, Java 2 Micro Edition (J2ME) and Java Special Request 82 (JSR82) – since

this is required to run MIDletActorFrame on the device. The Bluetooth technology will

be further described in chapter 3, along with J2ME and JSR82.

To Bluetooth-enable the desktop computer a Universal Serial Bus (USB) Bluetooth

dongle was used. This was a Belkin class 2 device, which means that the Bluetooth

dongle gives the desktop a Bluetooth-range of approximately 10 meters.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

6

In addition access to the newest updates of both ActorFrame and MIDletActorFrame was

acquired through Ericsson.

1.3 Assumptions and constraints

One obvious assumption is that the mobile phone that runs the MIDletActorFrame

framework needs to have support for the Java Bluetooth API, also known as JSR82. As it

turns out, this is not the case for all mobile devices which support Java and Bluetooth.

The P900 only have support for Bluetooth v1.1 and this is a huge constraint regarding

bandwidth. This should be kept in mind when examining speed issues later on in the

thesis. Testing the Bluetooth functionality with Bluetooth v2.0 compatible devices should

have been done, but such devices were not available.

1.4 An outline of the thesis

Chapter 1 gives a short introduction and presents the problem background and

assignment description.

Chapter 2 describes Ericsson’s service creation environment: ServiceFrame,

ActorFrame, JavaFrame and MIDletActorFrame. Special attention is given to

ActorFrames’ and MIDletActorFrames’ router implementation called ActorRouter in

ActorFrame and MIDletRouter in MIDletActorFrame.

Chapter 3 introduces the most important technologies concerning the thesis. A brief

introduction to the Bluetooth network topology, the Bluetooth protocol stack and

Bluetooth profiles is given. Emphasis here will be on Bluetooth functionality in

scatternets – what is commonly supported by mobile devices and what should be

implemented to realize ad hoc capabilities. In addition Java for small devices, J2ME, is

described along with a short outline of Bluetooth for Java and a new optional package for

J2ME based devices which will specialize on ad hoc networking.

Chapter 4 describes the issue of routing. Routing protocols both for “normal” wired

communication with infrastructure and wireless communication without infrastructure,

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

7

also known as mobile ad-hoc networking, will presented here. In this chapter the

implemented routing protocol in ActorFrame and MIDletActorFrame will be discussed,

along with usability in Bluetooth networking.

Chapter 5 presents the design and implementation of the prototype made to test

Bluetooth functionality. Also an outline of different possibilities regarding prototype

implementation is given.

Chapter 6 deals with testing of various aspects of ActorFrame.

Chapter 7 discusses the knowledge acquired through the work on this thesis. There is

also a brief note on possible future work.

To show how to get the prototype running some notes about this is given in Appendix A,

along with Appendix H containing the code to actually be able to run the prototype made

in this thesis. In addition other Appendixes containing information important for the

thesis, but not appropriate to include in the main text are included.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

8

2 The service creation environment

Telecommunication is by nature asynchronous and for this reason the frameworks

JavaFrame [2, 5, 6] and ActorFrame [2, 7] have been developed by Ericsson. In these

frameworks state machines and asynchronous communication with messages is

important. On top of these frameworks one finds ServiceFrame [2, 8, 9]. This framework

uses the mechanisms offered by ActorFrame and JavaFrame to provide “support for

service creation, service deployment and service execution” [8]. In addition to these

frameworks the MIDletActorFrame framework which corresponds to ActorFrame,

designed for small mobile devices, has been developed. MIDletActorFrame has only

quite recently been developed and, because of this, documentation for MIDletActorFrame

is lacking. In this thesis the routing protocol implemented for both ActorFrame and

MIDletActorFrame is in focus and therefore mechanisms and classes handling routing

will receive special attention. In that respect some of the following will serve as

documentation of undocumented parts of both ActorFrame and MIDletActorFrame.

In this thesis ActorFrame and MIDletActorFrame is most relevant and therefore they will

be described first, leaving a smaller description of JavaFrame for the end of this chapter.

ServiceFrame is also relevant for this thesis, but as will be explained in chapter 2.4

ServiceFrame is an application of ActorFrame. To fully understand the concepts of

ActorFrame and ServiceFrame it is recommended to study [2, 7, 8, 9] as this chapter

mostly describes how the network communication modules are built.

2.1 ActorFrame

Since ActorFrame first came in 2002 [2] it has come several new versions with updates

coming quite frequently. This thesis will focus on the ActorRouter which deals with

routing information in the framework, and also the modules that handles network

communication.

ActorFrame is implemented in three different Java packages [7], meant to be used on

three different platforms. For the Java Virtual Machine (JVM) platform the regular

ActorFrame package exists. EJBActorFrame is a package that runs on a J2EE application

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

9

server, and the MIDletActorFrame package runs on small handheld devices that run

Mobile Information Device Profile 2.0 (MIDP) on the J2ME platform.

In 2.1.1 general concepts for ActorFrame is given and in the subchapter following 2.1.1

the network communication architecture in ActorFrame is described. Although the

concepts and the routing in MIDletActorFrame are very much the same, some points are

worth mentioning, given in chapter 2.2.

2.1.1 General concepts

The core concept of ActorFrame is the Actor. Actors are objects with a state machine and

an optional inner structure of actors. This is illustrated in figure 2:

 Figure 2: Illustration of the Class Actor with optional inner structure of actors [2]

These inner actors can be static, with the same lifetime as the enclosing actor, and other

actors can be dynamically created and deleted during the lifetime of the enclosing actor.

The concept that “actors play roles” is supported by ActorFrame. If the actor is to play

several roles this is done by creating several inner actors each playing a role.

Communication between actors is done by passing messages through the in and out ports,

whereas all messages are routed between actors using the ActorRouter.

Actors support the ActorFrame protocol, including protocols such as role request and role

release. The main idea is that an actor can request another actor to initiate new roles to do

a requested service.

<<actor>>

Actor

innerActor:Actor[*]

in

out

out

in

<<actor>>

Actor

innerActor:Actor[*]innerActor:Actor[*]

in

out

out

in

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

10

ActorFrame can be described by a Unified Modeling Language (UML) 2.0 profile. The

figure below shows the profile package with the stereotypes needed to model

ActorFrame:

 cd ActorFrame

Actor

+ myActorAddress: ActorAddress
+ context: ActorContext*

«metaclass»
Class

ActorMsg

+ ReceiverRole: ActorAddress
+ SenderRo,le: ActorAddress

ActorAddress

+ ActorId: String
+ ActorType: String
+ ActorDomain: String

«metaclass»
Signal

Agent

+ myprofile:
Role «metaclass»

Composite

0..*

Figure 3: The ActorFrame profile package

The concept of the actor is represented as the stereotype actor. All messages that an actor

may send and receive have to be a subtype of the superclass ActorMsg. This message has

a sender and a receiver attached, represented by ActorAddresses, which is a unique

identifier of an instance of an Actor.

2.1.2 The communication architecture

A complete overview of ActorFrame is not the intent with this subchapter. It is a brief

description of the parts of the system concerning the network communication and routing

functionality in ActorFrame.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

11

Figure 4: Components involved with the routing in ActorFrame

2.1.2.1 Different parts of the architecture

From the figure above we see the Scheduler, which is connected to one or many Threads

from a Threadpool. Each Thread is allocated to an Actor (with an associated state

machine) and the Scheduler unit schedules the different actors (and state machines) in the

framework - deciding which ones to be active at all times. Information between Actors in

one ActorDomain (locally) is passed on through messages, called ActorMsg’s, and put in

the input queue of the receiving Actor. The Scheduler decides which input queue to put

the message in, since the Scheduler can find the references to the correct input queue

belonging to the receiving Actor. The input queue is called a mailbox, and every Actor

has a mailbox. When messages are put in the mailbox the Actor reads the messages in a

first in first out manner.

When the receiving Actor is located on a different ActorDomain (which in most cases

also imply that it has a different physical location) messages must be routed and sent

Scheduler
(1…N)

A B

ActorRouter

Actors
(1...N)

Threadpool with
1...N Threads

ActorDomain inMailBox

from
Scheduler

from
Scheduler

from
Scheduler

Actors form
applications

BTSessionManager

TCPSessionManager

UDPManager

BluetoothListener

ServerBT

Forward

Session

Session

Session

Receive
ActorMsg

Send
ActorMsg

mailBox mailBox mailBox

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

12

using the networking modules. The knowledge of where other Actors are located is

received through the routing protocol implemented in ActorFrame, which realizes

exchange of routing information between ActorRouters. To give an accurate description

of how a message is handled in the Scheduler when messages are sent between

ActorDomains, an elaborate outline of the Scheduler module is required – this is not the

intent here. It is more appropriate to describe the handling of messages from the moment

the message is added, either internally from actors on the same machine or externally

from actors on other machines/devices, to the inMailBox (the input queue) of the

ActorRouter.

2.1.2.2 The SessionManager modules

Before an outline of how messages are handled in ActorRouter will be given, the internal

structure of the SessionManager modules shown in figure 4 should be explained. The

ActorRouter contains SessionManagers for TCP, UDP and Bluetooth connections, where

the main objective of the SessionManagers is to create sessions. The SessionManager

classes are explained below.

TCPSessionManager includes the following inner classes: Session, SessionServer,

Reader and Writer. The SessionServer is the module accepting new TCP-connections,

running a normal accept() method that kicks in when a request for a new connection is

received. Session contains a Mailbox, Reader and Writer, and this class represents a

Session that will be open/running as long as the TCP connection is needed. The Reader

class receives messages sent from the externally located actors reachable through this

TCP connection. The opposite functionality is found in the Writer class, which takes care

of transmitting messages. Messages transmitted by a session are put in the Mailbox by the

ActorRouter.

BTSessionManager basically includes the same as TCPSessionManager, namely the inner

classes SessionBT, ReceiverBT and SenderBT. The server functionality is separated from

the inner structure of the BTSessionManager. BluetoothListener and ServerBT are the

classes responsible for the Bluetooth functionality. The BluetoothListener listens for new

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

13

Bluetooth devices in addition to connect to them. When the BluetoothListener connects it

sends a connect message that is received by the ServerBT on the receiving device, which

creates a new session. These sessions will, as TCP sessions, be running as long as the

Bluetooth device is in range.

The UDPManager have similar functionality as the two manager modules mentioned

above.

2.1.2.3 How messages are handled

Having dealt with the various parts of the architecture a rough description of how

messages are handled in the ActorRouter is appropriate.

1. When an actor calls the sendMessage() method the Scheduler adds the message to

the input queue (inMailBox) of the ActorRouter if the receiver is not located on

the same device. Messages are also put in this input queue if the message is

received from actors on other ActorDomains, but then the message is added to the

queue via the reader module of a UDP, TCP or Bluetooth session object.

2. If the actor to receive the message is known (stored in the forward table belonging

to the ActorRouter, shown in figure 4), the ActorRouter checks if the receiver IP-

address is the local IP-address; in case it is, the message is put in the message

queue belonging to the state machine of the receiving actor. This task is done by

calling the output-method of the Scheduler, since it is the Scheduler that has the

complete overview of existing state machines in this ActorDomain. This would

only happen if the message is received by the TCP/UDP/BT receiving units.

Messages internally in the ActorFrame installation are “routed” by the Scheduler,

without including the ActorRouter.

If the IP-address of the receiver differs from the local IP-address the message is

forwarded to the actor using the transmitting units located within the session

objects controlled by the SessionManagers. If the receiving actor exists in the

forward table of the ActorRouter the correct SessionManager and name of the

session is extracted from information in the forward element of the forward table.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

14

This enables the SessionManager to find the correct session and thereby letting

this sessions’ transmitting module send the message to the receiving actor.

If no forward element exists in the forward table for the given receiver the

message is sent to the default gateway.

Note that the description of message handling is coarse. Despite the description being

coarse important aspects are discovered. Among these discoveries are usage of default

routes, mechanisms to prevent messages from floating around in the network forever and

there exists different ActorDomains.

The Forward table is built exchanging information between ActorRouters (MidletRouters

for devices running MIDletActorFrame). A more elaborate outline of the routing protocol

used in ActorFrame will be given in chapter 4.

2.2 MIDletActorFrame

The MIDletActorFrame package makes it possible to use the concepts of ActorFrame on

a mobile device. The outline given in 2.1 in connection with figure 4 also applies for

MIDletActorFrame. Although there are small differences, the router architecture is now

more or less the same for both ActorFrame and MIDletActorFrame. This was not

however the case before the Bluetooth functionality was integrated. To clarify this point

an outline of this development follows.

2.2.1 Original router architecture for mobile devices

Before the integration of Bluetooth was done the routing architecture in the

MIDletActorFrame package was very simple. The router only sent periodical updates of

actors located on the mobile device using UDP. Therefore the mobile device did not

include any routing table, so that using the mobile device as a mediator was not possible.

As figure 5 shows a message then had to be sent to an ActorFrame based machine

(typically a desktop computer) which knows the location of the receiver, or a default

gateway which hopefully knows the location. If one already have a mobile device in

between which has a Bluetooth connection to both Sender and Receiver, this device could

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

15

work as a mediator for the message. This way the range limitation of Bluetooth can be

overcome.

2.2.2 The enhanced router architecture for mobile devices

Bluetooth functionality introduced the idea of using ServiceFrame based mobile devices

in ad hoc networks. For this to be possible the mobile device would have to have

common router functionality - like having a routing table and gathering routing

information, enabling it to function as a mediator. The figure below shows how a

message could be sent through the device acting as the mediator, in a way overcoming

the range limitation of Bluetooth. This configuration demands that the device can send

and receive routing information and also keep a routing table so that forwarding can be

done. The device must also support multiple simultaneous Bluetooth connections, a

functionality not supported by all mobile devices (see chapter 6.1)

Figure 5: Explaining differences in routing messages before and after Bluetooth integration

2.3 ServiceFrame

This thesis focuses on how ServiceFrame can be used in a “beneficial way to establish

ad-hoc networks and service sessions between users of ServiceFrame based mobile

devices using Bluetooth”. Therefore a brief presentation of ServiceFrame is given.

Mobile
device
(1)

Mobile
device
(X)

Mobile
device
(3)

Mobile
device
(1)

Mobile
device
(2)

Mobile
device
(3)

Before:

Now:

Desktop
computer
(2)

Sender Receiver

Sender Receiver

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

16

According to [8] ServiceFrame provides architectural support for service creation, service

deployment and service execution, but with no provision of any end user services.

Services are realized by ServiceFrame applications that are defined by specializing and

instantiating framework classes.

Application:
MyUserAgent, MyTerminalAgent,
MyCommunityAgent,…. My Roles

ServiceFrame:
UserAgents, TerminalAgents, CommunityAgents,
ApplicationActors, ….

ActoFrame:
Actors, Roles, Plays, Patterns, ….

JavaFrame:
CompositeObjects, StateMachines, Mediators,
CompositeStates, Asynchronous communication,

Java VM

Provides Application
domain concepts

Provides Role modeling
concepts

Provides UML2.0
concepts

 Figure 6: Illustration of the ServiceFrame layers [8]

As can be seen from figure 6 ServiceFrame is layered on top of ActorFrame and

JavaFrame, meaning that ServiceFrame actually is an application of ActorFrame.

Because of this it is not a fine line between focusing on ServiceFrame or ActorFrame.

ServiceFrame is an application server in the service network [10] and it provides

functionality for communication with users connected through different types of

terminals such as phones, PC’s or PDA’s. Access to network resources through the OSA

API (Open Services Architecture Application Programming Interface), which enable

services to set up phone calls between users, is also provided.

What ServiceFrame provides is the domain given actors in figure 7 shown below, with

generic attributes and behavior. These are concrete components that give access to the

telecommunication network, through GSM, GPRS, IP-zones and other accesses.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

17

Figure 7: Domain given Actors that mirror the environment provided by ServiceFrame [8]

2.4 JavaFrame

As the title of [5] implies, JavaFrame is a framework for Java enabled modeling. More

precise it is “a Modeling Development Kit (MDK) for development and execution of

state machines in Java” [2]. The system model should be possible to model in a language

independent way, so that it can be analyzed and to get the system model right. In addition

implementation should be done in Java. With JavaFrame it is possible to apply modeling

techniques and still work in Java, having a one-to-one relationship between the Java

source and the model.

In addition to being an execution environment JavaFrame is a library of classes used to

implement state machines and asynchronous communication between state machines [2].

The behavior of active objects in the system is described by either state machines or by a

structure of interacting state machines.

ActorFrame is an extension of JavaFrame that uses state machines and asynchronous

communication provided by JavaFrame. Ports, parts, connectors and the ActorFrame

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

18

protocol are some of the additions made in the ActorFrame implementation. This is

illustrated in chapter 2.3, figure 6.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

19

3 Bluetooth and Java

There are mainly two technologies involved in this thesis – Bluetooth and J2ME. This

chapter will present the technologies and will also unveil some of the constraints

concerning both technologies. Some of the text in this chapter is also given in [11] and is

included in this thesis for the sense of completeness. This goes especially for chapter

3.1.1, 3.1.6 and 3.1.7. Also chapter 3.2.1 through 3.2.3 is mostly from [11].

3.1 Bluetooth

Bluetooth is a radio communication protocol that was originally envisioned in 1994 by

Ericsson as a short range communication protocol for mobile devices [13]. Ericsson

teamed up with IBM, Intel, Nokia, and Toshiba and formed a Special Interest Group

(SIG) to “develop a royalty-free, open specification for short-range wireless

connectivity”. The protocol is named after King Harald Blåtand of Denmark, because of

his accomplishment of uniting Denmark and Norway.

Bluetooth can act as a replacement for cable, infrared and other connection media, but it

also offers a large selection of other services. For example it is a good technology for

synchronizing devices. Since routing in mobile ad-hoc networks is an important part of

this thesis there will be some emphasis on different network topologies in which

Bluetooth takes part. This chapter gives an overview of the Bluetooth protocol and

extensions necessary to utilize Bluetooth in multihop networking. The parts taken from

[11] are based mostly on chapter 1, 2 and 3 in [13], and also on [12] and [14].

3.1.1 Comparison with other wireless protocols

It is not obvious why one chooses to focus on Bluetooth as the wireless protocol.

Therefore, to get a of perspective on the advantages of Bluetooth in small devices, such

as mobile phones, this subchapter compares Bluetooth to two of the most known wireless

communication protocols besides Bluetooth.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

20

3.1.1.1 Bluetooth versus infrared

Devices communicating over an infrared link must be only a few feet apart, in line-of-

sight of each other. The range-limitation is overcome by Bluetooth by having a range of

10 meters for the most common devices. Bluetooth works like a radio and is omni

directional, and therefore any line-of-sight issues disappear. A range of 100 meters is

achieved by Bluetooth technology, but this requires a much greater power source than the

battery of small mobile devices.

3.1.1.2 Bluetooth versus 802.11 standards

802.11 is a collection of standard protocols for wireless LANs (Local Area Network).

The design goals for Bluetooth and 802.11 are different although they both operate in the

same frequency band (2.4GHz). The 802.11 standard connects larger devices (laptops,

desktops) that have a more powerful source at high speeds (11 Mb/s for 802.11b) over

larger distances, while Bluetooth is intended to connect smaller devices like mobile

phones and PDAs (Personal Digital Assistant) with connection speed up to 2-3 Mb/s and

distances of up to 10 meters. This allows Bluetooth to be a low power technology, which

make a huge difference in the battery life time of mobile devices. Despite these

advantages Bluetooth cannot replace 802.11 in large file transfers and long-range

communication.

3.1.2 Specifications

Bluetooth operates, as mentioned, in the same frequency band as the 802.11 standards.

The radio frequency is centered at 2.45 GHz, with 79 channels spaced with 1 MHz. This

means that the radio frequency (RF) channels are 2420+k MHz, where k = 0 to 78 [15].

Devices that could cause interference with Bluetooth operation are devices operating in

the same radio band, which could be other Bluetooth devices, devices following the IEEE

802.11 standard, Microwave ovens, cordless phones, licensed users and microwave

lighting [16]. To reduce interference Bluetooth utilizes a frequency hopping scheme.

Bluetooth uses adaptive frequency-hopping spread spectrum (AFH) to avoid using

crowded frequencies in the hopping sequence.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

21

Bluetooth can support three full-duplex voice channels simultaneously in each piconet,

which is a collection of Bluetooth devices that is synchronized to the same hopping

sequence [17]. Data rates using Bluetooth depends on which version of Bluetooth that is

used. Using v1.2 a maximum data rate of 721 kbps (kilobits per second) is supported. If

version 2.0 is supported data rates up to 3 times faster is supported giving a data rate of 2-

3 Mbps (Megabit per second). [18].

3.1.3 Architectures

There are two important terms regarding Bluetooth network architecture, namely piconets

and scatternets. An important aspect of ad hoc networking with Bluetooth devices is

connectivity. The Bluetooth standard allows creation of collections of piconets, which is

called scatternets. Creation of scatternets is not, however, specified with a specific

protocol in the Bluetooth specification. This issue will be dealt with in the subchapter

concerning scatternets.

3.1.3.1 Bluetooth piconet

As mentioned in 3.1.2 a Bluetooth piconet is a collection of Bluetooth devices

synchronized to the same hopping frequency. This collection could also be called a

cluster or a grouping of Bluetooth devices. By having this clustering, strategy

coordination at the media access layer and routing is allowed.

Figure 8: Illustration of Bluetooth network topology. An important point is that a master in one piconet can
be a slave in another. Another point is that a device can be master in at most one piconet. [12]

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

22

The illustration from figure 8 shows that each piconet has a cluster head, which is called

the master (m), which acts as the central controller. All other devices within the piconet

become slaves (s). In a piconet there can be no more than 8 active devices, thus there will

be at most 7 slaves in addition to the master. If there are other devices associated by the

piconet in addition to these 8 devices, they can not be active – hence they will be

considered “parked”.

The piconet adheres to the same hopping frequency and timing as the master. Slaves of

the piconet only have links to the master, meaning that all communication in a piconet

goes through the master.

A slave can act as a master in another piconet, whereas a master only can act as a master

in one piconet at a time. If a Bluetooth device is within the locality of two piconets the

formation of a scatternet can occur.

 3.1.3.2 Bluetooth scatternet

Although the Bluetooth standard allows creation of a collection of connected piconets,

also known as scatternets, it does not give any particular protocol for doing so [19].

Scatternet support is also optional for vendors to implement. Mobile phone vendors have

to this date chosen to not implement scatternet support in their chipsets, but for vendors

of other Bluetooth products, such as USB dongles, scatternet support is more widespread.

In 3.1.5 it is outlined what vendors must implement to realize scatternet support. In 3.1.4

protocols for creating (and maintaining) scatternet formations are presented, and hence

the subchapter describes one of the things that must be implemented to create and

maintain a multihop ad hoc network of Bluetooth enabled devices.

3.1.4 Bluetooth Scatternet Formation

To be able to create a connected multihop ad hoc network of Bluetooth devices a

Bluetooth scatternet formation (BSF) protocol must be implemented. Without a well

implemented BSF protocol traffic throughput will be low and network topology change

will be poorly handled. In ActorFrame the only “protocol” handling this task is that a

device running the framework and which is Bluetooth enabled will try to connect to every

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

23

other ActorFrame based device in range. This is not a very sophisticated protocol, and it

does not scale well. Therefore a more sophisticated protocol should be implemented, like

one of the protocols discussed in this subchapter. No implementation of a BSF protocol

has been done on mobile devices because scatternet operation is yet to be included in the

chipsets.

Among the main decisions necessary for such a protocol is the question of which role a

node should play, which is whether a node should be a master, a slave or both. Since an

important aspect of this thesis is to study how ServiceFrame can be utilized as a base for

multihop ad networking, and as mentioned above there does not exist any sophisticated

protocol for forming and maintaining the Bluetooth network topology created by the

framework, BSF protocols should be studied and described.

There exist many BSF algorithms whose main goal is to provide a connected and degree

limited scatternet topology [19]. Degree limited means that the protocol always makes

topologies where the master never has more than seven slaves. A protocol can also be

centralized, where one node distributes master-slave decisions. Another possibility is to

use a distributed algorithm, which can be further classified into globalized and localized

protocols. In localized protocols each node make formation decisions based only on the

information from its neighbors, whereas the globalized ones use information for the

complete topology. A scatternet formation protocol should also have a self-healing

process involved, so that information about nodes leaving and entering the network is

updated whenever a change is detected.

The design criteria for the formation protocols vary, but it is anticipated that scatternet

formation protocols should have at least the following goals in mind [19]:

- minimization of the number of piconets, and therefore also minimization of the

number of master nodes

- minimize the number of slave roles each node has (be a slave in a minimum

number of piconets inside the scatternet formation)

- minimize the number of master-slave nodes (nodes that are both master and slave)

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

24

There exists various metrics that can be used for scatternet evaluation, depending on the

main performance goal of this scatternet. It could depend on maximum capacity, path

lengths, node availability and many other factors, and would change depending on what

the scatternet would be used for.

[19] present possible solutions available as scatternet formation protocols. There are

different solutions depending on whether scatternet formation is to take place in single-

hop networks or multihop networks. Some of the solutions will be presented to more

detail than others.

3.1.4.1 Bluetooth scatternet formation in single-hop networks

In a single-hop network all the wireless devices are in the radio vicinity of each other.

When the scatternet is formed the single-hop network is converted into a multihop

scatternet. An article given by Stojmenovic and Zaguia ([19]) presents many possible

BSF protocols. Below several types of protocols are mentioned, mostly to show how

many different kinds of protocols one potentially can choose from.

Centralized BSF protocols

- Traffic and capacity based scatternets

- Super-master election for central decisions

- Ring topology

Distributed BSF protocols

- Tree scatternet structure

- Mimicking known topologies

- Minimal spanning tree based scatternets

- Loop scatternet structure

- On-demand scatternet formation and maintenance

The ring topology [20] for scatternet formation in single-hop networks is very simple and

can easily create scatternets. A ring is created by the master nodes and slave-slave bridges

(like the slave in on the borderline between piconet A and piconet C in figure 8). Because

the protocol is centralized it is not scalable, which limits the number of nodes that can be

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

25

involved in the scatternet formation. It is beyond the scope of this thesis to go into detail

of all the different types of protocols, hence BSF protocols for multihop networks (which

are more interesting for this thesis) are presented next.

3.1.4.2 Bluetooth scatternet formation in multihop networks

In multihop networks some of the wireless devices are not in range of each other. As for

BSF in single-hop networks there are some centralized protocols with one central node

making all the decisions. Centralized scatternet formation does, as mentioned, not scale

well and therefore little focus on these protocols will be given.

There exist what is called growing tree based distributed BSF. In this category there are

different sorts of Bluetree protocols. [21] proposes two such protocols, where the

resulting scatternet is called a Bluetree. In these protocols the number of roles each node

can assume is limited to two or three. A role here takes the meaning of whether the node

is a master or a slave in a piconet. The initiation in the first protocol given by [21] comes

from a single node, the Blueroot, which also will be the root of the bluetree. To build a

rooted spanning tree the first thing that happens is that the root will be assigned the role

of a master node. Now all the one hop neighbors of the root will be its slave. The children

of the root is now assigned an additional master role and all their neighbors that are not

assigned any roles yet will become slaves of these newly created masters. This procedure

will be recursively repeated until all nodes are assigned.

Figure 9: The result of the creation of a bluetree using the Bluetree BSF protocol described above [21]

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

26

As can be seen in figure 9 (above) each node is a slave for only one master, which is the

first that paged it. Each internal node of the tree is a master in one piconet, and a slave of

another master.

In the second protocol suggested by [21] several roots are initially selected, and each of

them creates its own scatternet. This protocol has two phases and in the second phase

subtree scatternets are connected into one scatternet spanning the entire network.

The main drawback pointed out by [22] with tree based formation protocols is the fact

that the topology created has a hierarchical structure. Because of this the created

scatternet lacks reliability. If one parent node is lost, all the children and grandchildren

nodes below it will be separated from the network and part of or the whole tree has to be

rebuilt to retain connectivity. Since nodes are lost quite frequently in mobile networks

this makes the Bluetree protocol somewhat vulnerable. In addition there are other

drawbacks, such as communication overhead due to maintenance procedures.

In addition there exists other growing tree algorithms, but all of them have drawbacks in

common, and that is the above mentioned problem with hierarchical structures in mobile

networks and also communication overhead which is can be significant – especially when

maintenance procedures are designed and added to the protocol.

In [22] a solution under the Clustering based BSF category is presented. As for all

protocols drawbacks are found in this protocol category too, namely the fact that the

protocol does not always lead to a connected structure. However, on the positive side,

two great measures for scatternet performance are proposed; the average shortest-path

length and maximum traffic flow.

Context, on-demand and QoS based distributed BSF is the third category of protocols in

multihop networks. An example of a Context based BSF is a protocol called BlueScouts,

which is an on-demand BSF based on mobile agents [23]. This protocol runs in an

asynchronous fashion, and device discovery is decoupled from actual topology formation.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

27

The proposed approach introduces unmatched flexibility by allowing context-aware

topology formation. Other kinds of protocols in this category are pure on-demand

scatternet formation and QoS based scatternet formation.

The best algorithm among all the methods that do not use position information is

(according to [19]) the BlueMesh algorithm which comes under the Connected out-

degree limited scatternets category. BlueMesh guarantees connectivity and limits the

number of slaves in each piconet. The scatternet formation proceeds in iterations. Initially

all nodes are undecided. Init-nodes (having the largest weight among immediate

undecided neighbors) create piconets in all iterations by choosing at most seven

neighbors as slaves, and deleting the remaining edges. Iteration stops when all nodes are

decided. All the masters that are created and the slaves not selected for links with slaves

from other piconets withdraw from the next iteration. According to [19] the number of

iterations grows slowly with number of nodes. Some weaknesses show on some other

metrics, especially on the worst-case number of slave roles a node can assume.

In addition there are Position based connected and degree limited BSF protocols. Position

based BSF schemes require that all neighboring devices are discovered before the

scatternet is created. When this is done degree limiting is done along with preserving

connectivity (assigning master and slave roles). Degree limitation is done using graph

theory, for example using minimum spanning trees (MST’s).

3.1.4.3 Choose a scatternet formation protocol

As one can see there are quite a lot of options when it comes to which scatternet

formation protocol to use. First of all there are centralized protocols that do not scale

well, as opposed to distributed protocols that works better in large networks. There are

the complex, quite accurate protocols, like the protocols based on the BlueMesh

algorithm. On the other hand there are the less complex ones based on some bluetree

algorithm, which unfortunately does not work too well in dynamic environments. As [19]

states, a number of protocols are proposed in the literature, in which very few of them

satisfy most of the desirable characteristics. Relatively few of these proposed protocols

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

28

are actually implemented and compared. Papers that have compared protocols have

concluded that it is the Bluetooth device discovery process that is the most time

consuming process, hence scatternet formation is a huge task because of the potential

large number of devices.

Nevertheless, BSF is a necessary process if one wants to establish mobile multihop ad

hoc networks using Bluetooth devices. When the Bluetooth specification adopts a BSF

protocol in an effort to make multihop ad hoc networking easier for the average user of a

Bluetooth device is not decided, if it ever will be adopted. It could be that adopting a BSF

protocol is a wrong move since different BSF protocols are based on different measures;

hence the BSF protocol implementation should be based on the individual needs of the

different ad hoc networks. It seems as if the question of BSF protocols is quite open, and

decisions regarding this issue are bound to be made in the future.

No definitive correct recommendation can be given towards which BSF protocol should

be used in ServiceFrame environments. There is the question of how many devices there

will be in the network. If there normally are only a few devices in ServiceFrame

environments there is perhaps no need for a distributed protocol, giving room for ring

topology solutions which are, as mentioned, relatively easy to implement. On the other

hand the number of devices could be quite large, and perhaps one should take this into

account when implementing a BSF protocol. In this case maybe a BlueMesh protocol is

the most promising alternative.

3.1.5 Bluetooth operations and states

The Bluetooth link controller/baseband layer (presented in 3.1.6) is a state machine –

which in other words means that it operates like a computer and usually only do one thing

at a time. The Bluetooth devices’ radio should be cheap, hence receiving and transmitting

simultaneously is not possible [16]. Therefore state diagrams can be made, and this is

given in the following subchapter. Not everything in the Bluetooth specification (given in

[18]) is implemented on real devices – which is indicated in this chapter.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

29

3.1.5.1 Simple state diagram

To be able to find and connect to other devices some functionality must be supported -

namely inquiry and paging. Inquiry is the process of discovering other Bluetooth enabled

devices and paging is the process of establishing a connection with a Bluetooth device.

Because of limitations on processing capabilities the link controller can not, for example,

both listen for its page and partake in a piconet at the same time. Therefore multiplexing

between these activities must be done.

A state diagram containing a set of states associated with each step of establishing a

piconet, and a set of allowable state transitions is given below:

Figure 10: The state diagram showing how to establish a point-to-point piconet between one master and one
slave (figure 5.2, pp.193 [16])

When a Bluetooth device is powered up it enters the standby state, where hardware and

software is initialized. Depending on whether or not the paged units’ Bluetooth address

(BD_ADDR) is known the device enters either the page or inquiry state. The inquiry state

enables discovery of the BD_ADDR of all respondents, from where it can either enter

standby again or go to the page state to establish point-to-point connections with the

respondents. A successful page results in a master and a slave device, and the devices

STANDBY

PAGE INQUIRY

CONNECT

Park
Hold

Sniff

DETACH

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

30

starts to exchange network setup parameters – in which they both have entered the

connect state.

While a device is in the connect state the slave may arrange with its master to enter a

low-power mode; either sniff, hold or park. In the sniff mode the slave checks for a

master transmission less often than in every even-numbered slot. The hold mode is a time

during which the slave temporarily exits the established piconet without disconnecting

from the master. When the hold time is expired the slave can perform normal piconet

operations. If a slave enters the park mode it only activates its receiver periodically to

resynchronize with its master. To resume communication the master must unpark the

slave.

3.1.5.2 A more complex state diagram

The diagram presented before only applies to a point-to-point link between a master and

one slave. This is because the master in the diagram can not return to the page or inquiry

states from the connect state. Using this state diagram no new slaves can be brought into

the piconet. Some older chipsets used in mobile phones actually have this limitation. The

state diagram shown in figure 11 supports behavior needed for normal piconet and

scatternet support. Unfortunately vendors have chosen not to include some of the states

described in this subchapter, making scatternet operation impossible.

Having the capabilities of this state diagram a master of a piconet can easily bring a new

slave into the piconet. This is done by having the possibility to move from the connect

state back into the page or inquiry state.

With this diagram we see that a device enters one of four states after being powered up in

the standby state. If a master knows the BD_ADDR of a particular slave it enters the page

state to establish a piconet with this slave. Page scan is used by a slave to listen for its

page, whereas the inquiry scan is used to listen for an inquiry. The inquiry state is used by

a master to discover the BD_ADDR and other information of devices in range.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

31

Figure 11: A general state diagram for connecting Bluetooth devices (figure 5.3, pp.195 in [16]). In the
diagram the low-power modes sniff, hold and parked are removed. This diagram can be used to establish
point-to-multipoint connections.

Three of the states mentioned have responses associated with them. If a slave hears its

page while in the page scan state, it responds with its own device access code (DAC) and

the slave response state is used. If the master hears the slave’s DAC response it responds

giving the slave enough information to hop with the frequency of the master during

piconet operation. Here the master response state is used. When a slave hears an inquiry

while still in the inquiry scan state, it will respond with some information.

Inquiry scan and page scan are the two states that are missing in the Bluetooth chipset

implementations used on mobile devices. This makes it impossible to do scatternet

operations.

3.1.5.3 Where to put scatternet operations?

A regular Java programmer can not do anything about the lack of scatternet operation.

However a programmer with access to the Bluetooth Host stack can enable scatternet

support, but as will be outlined this is not recommended.

STANDBY

Inquiry

CONNECT

Inquiry
scan

Slave
response

Page Inquiry Page
scan

Slave
response

Master
response

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

32

The scatternet operation support can be put on the Host stack or to the Bluetooth control

layers below the Host Controller Interface (HCI). The risks by putting these operations to

the Host stack is shown in [34] and hence argues why such operations should be located

with the control layers of the Bluetooth implementation. A risk mentioned in [34] is an

interoperability issue like the fact that the host stack does not have a complete overview

when two master clocks overlap, and hence does not know when to adjust the sniff

window causing timing difficulties. To work around this a number of manufacturer

specific HCI commands that makes it possible for the host stack to receive the necessary

timing information from the baseband layers can be implemented.

The greatest risk according to [34] is the fact that this is a breakdown of interoperability,

where seamless use of a Bluetooth host stack from one manufacturer together with a

Bluetooth baseband of another manufacturer might not be possible because of the

manufacturer special commands.

3.1.6 Protocol stack

For application developers, the Bluetooth protocol can be split up into two main items:

layers and profiles. All the layers of the Bluetooth protocol form the protocol stack,

which will be described here. Profiles are described in the next subchapter. Both this and

the next subchapter are given for the sake of completeness.

Figure 12: high-level view of the architecture of the Bluetooth protocol stack [24]

More on this and the technical specifications is given in [12] and [13].

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

33

The radio layer

This is the physical wireless connection. Fast frequency hopping is used to avoid

interference with other devices that also communicate in the ISM (industrial, scientific,

and medical) band.

The baseband layer

The layer is responsible for controlling and sending data packets over the radio link.

Through this layer transmission channels for both data and voice is provided. According

to [34] vendors of Bluetooth chipsets should put support for scatternet operations into this

layer.

The link management layer

Here the links set up by the baseband are used to establish connections and to manage

piconets. Channel access control is an important task, as well as link-level access control.

For this Time Division Multiplexing (TDM) is used, where each time slot is 625 µsecs.

The slots toggle between the master and slaves, meaning that when the master uses the

slot for transmission, the slave is receiving and cannot transmit. Other tasks for this layer

are authentication, security services and monitoring of service quality.

The Host Controller Interface (HCI) layer

The HCI is a layer of software that passes data from the computer to the attached

Bluetooth device. If one uses a Bluetooth device attached to the USB port one needs a

layer that can understand the USB calls and send that information to the layers above HCI

in the stack.

The logical link control and adaptation protocol (L2CAP) layer

This layer is a core layer of the stack. All data must pass this layer, where packet

segmentation and reassembling is done. In other words this layer receives and adapts data

to the Bluetooth format.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

34

RFCOMM

RFCOMM is known as the wireless serial port, or the cable replacement protocol. The

protocol simulates the functionality of a standard serial port. This is the protocol in which

the Bluetooth modules of ActorFrame and MIDletActorFrame are based on.

Service Discovery Protocol (SDP)

In order to be able to discover services provided by units which are Bluetooth-enabled

Bluetooth uses SDP.

Telephony Control Protocol Specification (TCS)

For devices that want to employ the audio capabilities within Bluetooth TCS is used to

send control signals.

Object Exchange (OBEX)

OBEX is a communication protocol, which is quite useful when transfer of objects like

files between Bluetooth devices is needed.

Wireless Application Protocol (WAP)

WAP is used on Internet-enabled wireless phones, and in Bluetooth this is an adopted

protocol incorporated into the Bluetooth protocol to fit Bluetooth’s needs.

AT protocol

This protocol allows the device to be configured to cable replacement mode.

3.1.7 Bluetooth Profiles

To decide whether two Bluetooth-enabled devices can interact properly there are different

Bluetooth profiles. For the devices to interact without error both devices must support the

profile. In the following the most used and important profiles for this project is described.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

35

Generic Access Profile

This profile is the most common Bluetooth profile, and at a minimum all devices must

support it. In the profile connection procedures, device discovery and link management is

described.

Service Discovery Application Profile

The definition of features and procedures needed for an application to do service

discovery is described in this profile. To do this, direct interaction with the SDP layer in

the protocol stack is needed.

Serial Port Profile

The Serial Port Profile interacts directly with the RFCOMM layer in the Bluetooth

protocol stack. The profile is used to create a virtual serial port on a Bluetooth-enabled

device. This means that one communicate over the virtual serial port as if it actually were

a serial port.

In addition there are several other profiles; FAX Profile, Headset Profile, LAN Access

Profile, Personal Area Networking Profile, Object Push Profile and File Transfer Profile.

The different profiles are dependent on each other, whereas every profile is dependent on

the Generic Access Profile, there exist other dependencies for other profiles. The reason

for this is that the Bluetooth profiles where designed to be building blocks, where a

higher level profile is dependent upon the functionality of the lower profiles.

3.1.8 Bluetooth limitations

An important issue in respect to this thesis is how routing is performed in networks

consisting of several Bluetooth piconets – also known as scatternets. Bluetooth itself

actually does not address routing, and this is a great limitation [15]. Which unicast or

multicast ad hoc routing schemes to use are not specified in the Bluetooth specification.

Actually most network functions are pushed into the link layer. As described in 3.1.4 the

Bluetooth standard does not specify a BSF protocol, so this will have to be implemented

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

36

to be able to utilize Bluetooth devices in mobile ad hoc networks. Which BSF that is best

depends on what purpose the ad hoc network will serve. The BSF protocol can be

designed on several different criteria: maximum capacity, minimal average load, minimal

average path length, node availability, communication overhead and so on.

In addition to the issue with routing other limitations exist as well. For example there is

an upper bound of 8 active devices in a piconet. Another limitation is the device acting as

the master. This device will be a limitation because all communication in a piconet goes

via the master – which potentially can give trouble with processing power.

Different Bluetooth devices like mobile phones can have different hardware

implementation of the Bluetooth specification, meaning they have different Bluetooth

chipsets. Among the most important properties that vary among the different chipsets is

support for master/slave switching – important for scatternet creation, and if the device

can enter the inquiry, page, inquiry-scan, page-scan states described in 3.1.5. These last

properties are important for scatternet formation, and hence a requirement to make ad hoc

networks. Most devices/chipsets support inquiry and page, but inquiry-scan and page-

scan are not as common. [35, 36] give a strong indication that scatternet operation is not

implemented on mobile phones. These lacks in implementation make mobile phones

unsuited for Bluetooth ad hoc networking at the present time.

3.2 The Java technology - J2ME (Java 2 Micro Edition)

For developing applications for small devices such as pagers, mobile phones and PDAs

the Java family can offer J2ME. J2ME was the reaction to the explosion of small-devices

that needed Java [14]. In this subchapter an introduction to J2ME is given. To present

J2ME a description of the architecture, configuration and profiles is given. In addition

MIDP 2.0 will be elaborated to some extent. The MIDletActorFrame package is based on

J2ME, and this is why an elaboration of this technology is important.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

37

3.2.1 The architecture

According to [25] the J2ME architecture defines configurations, profiles and optional

packages. This provides specific information about APIs and different families of

devices. An overview of this architecture is also found it [25].

Figure 13: An overview of the

J2ME architecture [25]

The configurations

A configuration specifies a Java Virtual Machine (JVM) (see [26] for elaboration on this)

and some set of core APIs for a specific family of devices. There are currently two

configurations; the Connected Device Configuration (CDC) and the Connected, Limited

Device Configuration (CLDC) [25], [14].

I. Connected Device Configuration

At a minimum, a connected device has 512KB of read-only memory (ROM), 256KB of

random access memory (RAM), and also a network connection. CDC is designed for

devices like TV set-top boxes, car navigation systems and high end PDAs. For CDC it is

specified that a full JVM must be supported. Because of this, the configuration is targeted

for devices with a minimum of 2 MB of memory available for the Java platform.

II. Connected, Limited Device Configuration

More interesting for this thesis is the CLDC, because it encompasses mobile phones,

pagers, PDAs, and other devices of the similar size. CLDC is designed for devices with

160 KB - 520 KB of memory available for the Java platform. The “limited” word in the

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

38

name points to the fact that the devices have limited network connections which are

intermittent and not very fast.

CLDC is not specified for a full JVM implementation. It is based around a small JVM

called KVM, where the name comes from the fact that it is a JVM whose size is

measured in kilobytes rather than megabytes (K = Kilo). The configuration comes in

different versions, with CLDC 1.0 containing less functionality than CLDC 1.1, which is

more adapted with for example support for floating points important for doing

mathematical calculations.

3.2.2 The profiles

A profile is layered on top of a configuration, adding higher level APIs in order to

provide a complete runtime environment targeted at specific devices. There are several

different profiles available today: Mobile Information Device Profile (MIDP),

Foundation Profile (FP), Personal Profile (PP) and Personal Basis Profile (PBP).

Mobile Information Device Profile

The profile has to this date come in two versions, MIDP 1.0 and MIDP 2.0.

MIDletActorFrame runs on MIDP 2.0, thus the focus will be on this version.

According to the specifications, MIDP has the following characteristics [14]:

• 128KB of non-volatile memory for the MIDP implementation

• 32KB of volatile memory for the runtime heap

• 8KB of non-volatile memory for persistent data

• A screen of at least 96 x 54 pixels

• Some capacity for input, either by keypad, keyboard, or touch screen

• Two-way network connection, possibly intermittent

A MIDP application is called a MIDlet, and has APIs from both CLDC and MIDP

available [14]:

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

39

Figure 14: The packages a MIDlet have access to [14]

From this figure we see that CLDC defines a core mostly taken from J2SE (Java 2

Standard Edition).

An important aspect of MIDlets is their life cycle. The life cycle is reflected in the

methods and behavior of the MIDlet class. A MIDlet is installed by moving its class files

to a device, where the class files will be packaged in a Java Archive (JAR) with a .jar

extension. Along with this archive a descriptor file (with a .jad extension) follows, which

describes the contents of the archive file. The JAD file actually allows the application

management software (AMS) on the device to identify what it is installing prior to

actually installing the MIDlet. Instead of having a main method, the AMS which is part

of the operating environment, execute methods allowing the MIDlet to enter different

states [27].

 CLDC MIDP

java.lang

 java.io

 java.util

 javax.microedition.io

 javax.microedition.lcdui

 javax.microedition.media

 javax.microedition.midlet

 javax.microedition.rms

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

40

Figure 15: Illustration of the states of a MIDlet and the transitions between them [27]

There also exist one additional method in the MIDlet class, namely resumerequest (),

which can be used from a paused state to signal to the AMS that the MIDlet wants to

become Active.

3.2.3 Record Management System (RMS)

Since MIDP applications have to run seamlessly on many devices there are some

challenges, for example in user-interfaces and persistent storage. To solve the challenges

concerning storage, MIDlets do not care about what kind of storage it is run on. The

MIDlet only care about small databases called record stores. In the record stores pieces of

data called records are present. This storage system is called Record Management System

[14]. In MIDP 2.0 a MIDlet can access record stores created by other MIDlets, which was

not possible with MIDP 1.0.

In detail a record store consists of records, where each record is a byte of data of varying

size depending on the data stored. This is shown in table 1:

Destroyed

Active Paused

startApp()

pauseApp()

destroyApp()
destroyApp()

create ()

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

41

Table 1: The record store database

 int id byte[] data

1 [data]

2 [data]

3 [data]

etc. etc.

As can be seen each record in a record store has a unique integer identification number

starting the numbering at 1. When a record is deleted the identifier will not be reused. To

get access to the record store the RecordStore API provides methods for adding, deleting

and changing records.

3.2.4 More about the optional packages (APIs)

As one could see in the overview of the J2ME architecture in 3.2.1, there exist optional

packages, or optional APIs. The most relevant optional API for this project is the Java

Bluetooth API (JSR82) and MMAPI (JSR135). MMAPI is mainly explained in 5.1.1

JSR82 is an additional API that consists of two packages; the Bluetooth API

(javax.bluetooth) and the OBEX API (javax.obex). These APIs do not implement the

Bluetooth specification, but provide a set of APIs to access and control a Bluetooth-

enabled device [13].

3.2.4.1 JSR 82 – The Bluetooth API

The main capabilities that JSR82 is intended to provide are according to [13]:

• Register services

• Discover devices and services

• Establish RFCOMM, L2CAP, and OBEX connections between devices

• Using those connections, send and receive data (voice communication not

supported)

• Manage and control the communication connections

• Provide security for these activities

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

42

To be able to use JSR 82, it is required that the Bluetooth stack underlying the JSR 82

implementation is qualified for the Generic Access Profile, the Service Discovery

Application Profile, and the Serial Port Profile. These profiles are mentioned in 3.1.7 as

part of the Bluetooth protocol specification. The stack must also provide access to its

Service Discovery Protocol, and to the RFCOMM and L2CAP layers.

Bluetooth Scatternet Formation protocols depend on the devices they are implemented on

to support switches between master and slave. For the BSF algorithms to work a device

must be able to dynamically change its role from a slave to a master or vice versa, if it is

needed. Old mobile phones that have JSR82 support (like SE P900) does not support

master/slave switching. Sony Ericsson phones with JSR82 support announced later than

the first quarter of 2005, like the K750, are suspected to have support for master/slave

switching according to [28]. As indicated in 3.1.8 this is not enough for scatternet

operation. The source of this information ([28]) only shows how difficult it is to find

information about what the different devices support. Eventually all the specifications in

[18] will probably be implemented, but until that is guaranteed it is very difficult to say

what the different mobile devices support.

3.2.4.2 JSR 259 – Ad Hoc Networking API

The optional API JSR 259 is a Java Community Process (JCP) that was initiated by

Siemens (Ben-Q) together with some other vendors (Nokia, Panasonic). This API is

mentioned here because it is an API that will provide a lot of the functionality discussed

in this thesis. The scope of JSR 259 is to provide a generic mobile ad hoc communication

mechanism between nodes in an ad hoc network implemented in J2ME, which hide the

actual architecture and complexity from the developers [42].

Concrete ad hoc networking implementation and mechanisms will not be defined, but it

will be generic enough to support different implementations. Some of the supported

methods that JSR 259 will support are:

• Service Discovery

• Service Registration

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

43

• Service Availability Alert

• Service Consumption

• Service and Service Capability Inquiry

Through this optional API third party vendors can make P2P applications for mobile

phones. This means that JSR 259 has some overlapping goals with ServiceFrame, which

already has implemented a framework for most the functionality mentioned above.

The first draft of JSR 259 came in March 2006 and hence there will be some time before

a commercially available version of this optional package is available.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

44

4 Routing

In this thesis the evaluation of the existing networking modules in ActorFrame is

important, and in focus is the issue of whether the routing protocol used in ActorFrame is

suited for use in multihop ad-hoc networks – a term used several times already in this

thesis without being properly explained, hence it will be explained in chapter 4.3.2. Basic

theory about routing in general and specific routing protocols both for wired networks

and wireless ad-hoc networks will be given to support evaluation of the ActorFrame

routing protocol.

The routing protocol in ActorFrame exchanges information about available services, and

therefore is a routing protocol between applications. Although the routing protocols

described in 4.2 are most commonly used in Internet IP routing, the principles can be

used for routing between applications – as the ActorFrame routing protocol described in

4.4 will show. Routing between applications is relatively new. Another technology that

provides routing between applications is the Simple Object Access Protocol (SOAP), a

protocol that allows communication between applications using HTTP. Routing between

applications in wireless multihop ad hoc networks is an even less treated subject.

4.1 Routing - two different operations

In general one can say that routing is split in two different operations. One of the

operations is forwarding, which is the passing of logically addressed packets or messages

from their source toward their ultimate destination through intermediate nodes, called

routers or gateways [29, 30]. The routers or gateways looks at the destination address in

the packet/message header and from this and its routing table/forward table the route or

next hop towards the destination is determined, and accordingly forwards the

packet/message.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

45

Figure 16: Diagram showing that routers have a routing table updated by information carried by routing

protocols.

Routing tables contain information to forward packets to their next hops. The operation

that builds and updates the routing tables is called routing. How the routing tables are

constructed is therefore of great importance for efficient forwarding of packets/messages.

Manual construction of routing tables (also known as static routing) is possible if the

network is small, but for larger networks manual construction is impractical. The reason

for this is that large networks may involve complex topologies and constant changes,

making it very hard to keep the routing table updated.

Routing
table 3

Router 1 Router 2

Router 3

Routing
table 2

Routing
table 1

Routing protocol

Routing protocol

Routing protocol

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

46

Figure 17: Illustration that shows the separation of routing and forwarding. Packets enter the router on an

interface and the destination address is found and compared to known addresses in the forwarding table. If

a match is found the packet is forwarded on the correct interface. On top of this the routing protocol ensures

that the forwarding table is kept up to date at all times [31]

The alternative to static routing is dynamic routing, in which the routers/gateways are

responsible for automatically creating and maintaining the routing table entries.

Information required for the automated approach is carried by routing protocols. To make

it possible for routers to have an updated routing table that represents the ever-changing

network topology routing information must be gathered. This routing information is

exchanged between routers by means of a routing protocol.

Since routing in the Internet is dominated by the dynamic approach, this will be the focus

in this text.

4.2 Routing protocols for wired networks

Wired networks can consist of many different devices interconnected through wire lines.

By using wire lines transmission rates can be quite high. Depending on the various wire

lines used as transmission medium (fiber, copper, coax or twisted pair) the transmission

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

47

rates and available bandwidth vary. For fiber transmission rates of several gigabits per

second (Gb/s) is possible, and for the other transmission mediums the rates are lower, but

still relatively high. A common characteristic for wired networks no matter what

transmission medium is used is that there are no or very infrequent topology changes.

This is something that is reflected in the routing protocols constructed for wired

networks. Other metrics that routing protocols are adapted to could be for example

bandwidth, delay, traffic load and reliability.

Figure 18: A diagram showing an example of a wired network connecting different devices to the Internet.

To distribute routing information around a network, a complete topology of routing

protocol “connections” between neighboring routers in the network must be established.

This topology often reflects the topology of the actual physical links between the routers,

but this is not necessarily true. To make it simpler and less complex to distribute

information and calculate routing tables, dividing large complex networks into smaller

areas, subnetworks or domains and to create a hierarchy among the different routers is

customary. This way specialized routing protocols can be used on the different network

hierarchies, dealing with the different problems that arise on the different levels.

The rest of this subchapter will concentrate on presenting different Internal Gateway

Protocols (IGP); routing protocols used to exchange routing information between routers

in the Internet. The reason for concentrating on these routing protocols is that

ActorFrames’ routing protocol is based on principles found in these protocols. There are

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

48

two categories which the routing protocols can be split into – according to whether they

are distance vector protocols (DVP) or link state protocols (LSP). Differences between

the two types of protocol categories is the way routing information is stored and

advertised, and also in the way routes are calculated.

4.2.1 Distance vector protocols (DVPs)

A DVP works by calculating distance and direction from every possible source router to

every possible destination. When the distance and vector is determined it can be

advertised as routing information to neighboring routers within the network – so that

these routers can calculate their routing tables. The process is iterative, and continues

until the routes in the routing domain stabilize [30].

There are two main advantages of DVPs. First of all the algorithms required to calculate

routing tables from the received routing information are simple. For example a simple

hop count algorithm can be used as the routing algorithm (see figure 19). Second there is

a low amount of processing effort and data storage involved in creating routing

information in preparation for advertising, where the router actually just advertises the

contents of its routing table.

Put in another way – DVPs are not demanding in their use of router processor power or

data storage capacity. The drawback is that they are crude in their derivation of routes

and each router has to keep on advertising its entire routing table periodically, which can

make a considerable additional traffic load for the network. Also it may take some time

before the best routes to be made known to all.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

49

Figure 19: Illustration of how the routing information in DVP can be used to make a decision of the best

next hop. (fig. 6.8, page 227 [29])

Examples of DVPs are the Routing Information Protocol (RIP), Cisco’s interior gateway

routing protocol (IGRP) and BGP (Border Gateway Protocol). An elaboration of RIP will

be given in chapter 4.2.3.1.

4.2.2 Link-state protocols (LSPs)

LSPs operate by distributing routing information about the state of the individual links of

the network. A router is able to build a complete network topology database of the

topology of the network by listening to the routing protocol advertisements of other

routers, which are broadcast or flooded to all routers throughout the network. Using this

topology database all routers can work out their shortest paths to every individual

destination – making it possible to build an optimal routing table.

Source

Router
B Router

E

Router
A

Router
C

 Router
F

Router
D

Destination

Routing info:
3 hops; next E

Routing info:
3 hops; next C

Routing info:
2 hops; next F

Assumption: All routers, except for A, have calculated their routing tables for the shortest path to
reach the destination and they are all advertising their routing information to A by means of the
routing protocol.

For router A to calculate the best route to the destination it needs to:

- know that the destination is not directly reachable, and then can
- find the best next hop based on the lowest advertised hop count for reaching the

destination
In this example router A will choose the next hop to be via router C.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

50

For LSPs there are three main advantages over DSPs. To start with the quality and

efficiency of routes selected across a network is better. There is also better ability to

provide for reliable routing even in very large, complex networks. The third advantage is

that the amount of routing information (link state advertisements (LSAs)) which has to be

advertised by each router is greatly reduced.

Of course there are drawbacks to LSPs too. The routers, for example, must be equipped

with large amounts of data storage capacity to store the entire network topology database.

Another requirement is the high power processing capability to manage the complex

mathematics associated with deriving the shortest path to every possible destination.

Examples of LSPs are IS-IS (intermediate system-intermediate system) and OSPF (Open

Shortest Path First). In the next subchapter both a DVP and an LSP is presented, namely

RIP and OSPF. This is to give a better understanding of the two types of routing

protocols.

4.2.3 Specific routing protocols: RIP and OSPF

Many different routing protocols have been developed and used during the lifetime of the

Internet. Two of the most important and most used protocols are RIP and OSPF. In the

two following subchapters the two protocols will be presented.

4.2.3.1 Routing Information Protocol (RIP)

In addition to being one of the oldest routing protocols, RIP is also one of the simplest

interior gateway protocols. It is a DVP and works by determining the shortest path

distance from router to destination as measured in terms of the hop count. RIP runs over

UDP (User Datagram Protocol), so its messages (routing information) are encapsulated

into UDP segments.

RIP exists in two versions, which both still are in use. Version 2 extends version 1 to

cope with classless inter-domain routing (CIDR) and variable length subnet masks. Most

importantly RIPv2 includes the option for authentication of routing protocol messages.

Authentication prevents “untrusted” third parties from manipulating network routing.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

51

The basics of RIP

The calculation of routing tables and advertising of routing tables in RIP is done the way

explained in figure 19 in chapter 4.2.1. This means that all the neighbors of a given router

advertise their entire routing table to the router, giving information about which

destinations that are reachable and how many hops need to be transited in order to reach

them. Then the router chooses the shortest route of those advertised to it and sets it as its

preferred route to the given destination and sets its own next hop choice accordingly. This

router then advertises this route as part of its routing table to all its neighbors.

By making all routers share their entire routing table with its neighbors it is sufficient to

enable all routers’ routing tables to be developed. In addition RIP has guards against

circular routing and network instability (route flapping).

To ensure that routes and destinations that are withdrawn are removed from routing

tables, RIP uses the principle of ageing. This means that even if there have been no

changes in the routing table, routers using RIP must advertise their entire routing table to

all neighbors once every 30 seconds. This is done to prevent correct routing table entries

from being deleted. If no update of a route currently appearing in the routing table is

received within a period of 180 seconds the routing table entries are marked invalid. After

240 seconds (additional 60 seconds) the route is deleted if no update has been received in

the meantime.

Triggered updates are used when topology changes occur between two 30 second periods.

This means that an update is advertised because it is triggered by a routing change at the

router sending it.

4.2.3.2 Open Shortest Path First (OSPF)

OSPF is a link state routing protocol, and like RIP it also comes in two versions –

OSPFv1 and OSPFv2. From the name one can derive that it is based on the shortest path

first (SPF) routing algorithm, also known as the Dijkstra algorithm. The word open

reflects the fact that the standard is an open standard rather than a proprietary standard.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

52

The outline of OSPF will not be comprehensive. It will be concentrating on the most

important aspects, like how routing information is distributed.

The basics of OSPF

The maintenance of a link state database is the most important task done by the routers

employing link state routing protocols. In this database information about the network as

a whole and the link cost (the “state”) of all links, is stored. Using the database each

router can separately calculate a shortest path tree with itself as the root. The shortest path

tree is calculated using the Dijkstra algorithm. Doing this calculation the routers can

determine its routing table by working out the shortest path route to every destination.

Routing information updates in link state protocols is realized through link state

advertisements (LSAs). Each router restricts the origination of routing information which

it floods to all other OSPF routers to its router-LSA. Here only information on directly

connected routers, networks and hosts is contained.

OSPF relies on each router maintaining an up-to-date copy of the link state database. Any

changes in network topology must be updated to all other routers by means of link state

updates (LSUs) containing LSAs. The process by which this is done is called flooding.

This flooding differs from normal multicasting in that OSPF packets are processed by

each successive router before being flooded to all adjacent routers. Flooding ensures that

each LSA in each update is acknowledged by each router. It is therefore a somewhat

more secure way of keeping all link state databases synchronized than using multicasting.

The flooding process is more accurately referred to as “reliable flooding”. [32]

If one collects all LSAs the complete link state database can be created. This link state

database is collected by all the routers using OSPF, giving them identical link state

databases.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

53

Benefits of OSPF over RIP [29]

As mentioned in 4.2.3.1 OSPF is the “IGP of choice”. Some of the reasons for this are

given below.

The calculations of the shortest path in OSPF are based on link cost. Whereas RIP only

depends on one parameter, namely hop count, OSPF is more sophisticated and the link

cost can be weighted to accommodate several other metrics such as link bandwidth,

delay, load and reliability. This is a benefit because it gives routing schemes that not only

adapt to routing topology changes, but also according to network operational conditions.

Table 2: A table summing up some of the differences between RIP and OSPF [31]

Network traffic load is reduced using a link state routing protocol and also by limiting

routing information messages by only sending “real” update messages. This means that

routing information is only sent on updates. One exception is when no topology change is

registered in 30 minutes – then a timer will trigger sending of LSA. Further reduction in

routing protocol traffic is achieved through subdivision of OSPF routing domains into

separate routing areas providing hierarchical routing.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

54

Other functionality giving benefits are load sharing of traffic between alternative paths

and that OSPF traffic always is authenticated, so that only trusted routers can take part in

the routing process. As opposed to RIP which is a rather slow converging protocol, OSPF

is a fast converging protocol requiring minimum routing message traffic. The drawback is

that OSPF demands much more router processing power and memory capacity. More

processing is needed because the complexity of the calculations necessary to determine

the shortest path tree is very complex. Memory capacity must be quite large because in

addition to the routing table the routers must store the link state database.

4.3 Routing protocols for wireless networks

So far this chapter has given an outline on routing protocols only valid for wired

networks. Bluetooth, however, is a wireless communication protocol and has together

with other wireless communication protocols characteristics that are different from wired

communication. There exist different kinds of wireless communication, both based on

infrared and radio frequency signals. Among these are Bluetooth, infrared transmission,

Hiperlan and the 802.11 protocols, which are also called Wireless Local Area Network

protocols (WLANs) [33].

4.3.1 Characteristics of wireless communication

Wireless networking is generally speaking the use of infrared or radio frequency signals

to share information and resources between devices. Examples of such wireless devices

could be mobile terminals, laptops, mobile phones, Personal Digital Assistants (PDA’s)

or wireless sensors [33].

There are differences in the characteristics of wireless and wired communication. First of

all there is usually lower bandwidth availability and much lower power transmission rates

in wireless communication. The bandwidth is usually so much lower that the slow-speed

introduces additional jitter, delays and longer connection setup times. The network

conditions are typically highly variable. For example data loss is higher due to the high

interference introduced by wireless communication. Wireless transmission has a

broadcast nature and therefore all devices are potentially interfering with each other.

Radio signals can be interfered by other electrical devices operating in the same

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

55

frequency band, like for example Bluetooth enabled devices and microwave ovens (see

chapter 3.1.2). The data loss introduced by interference causes wireless networks to be

less reliable compared to wired networks. Another factor that causes variable network

conditions is the fact that users are mobile and can potentially be on the move at all times,

which cause frequent connect and disconnect operations.

Devices used in wireless networks have limited computing and energy resources, which

gives them limitations on computing power, battery capacity and also device size, weight

and cost.

Another important aspect is security. Although security is not an issue in this thesis it is

well worth mentioning that wireless communication has weaker security. The

transmissions are not limited to the confines of a cable [16]. Implementing network

security in wireless networks is more difficult than in wired environments where

transmission interception is harder because access to the wire lines is required, as

opposed to wireless communication which can be intercepted by “everyone” with the

“right” equipment.

4.3.2 Mobile ad-hoc networks (MANETs)

There are basically two types of wireless networks. Infrastructure-based networks are

networks with preconstructed infrastructure made of fixed and wired network nodes and

gateways. As an example mobile phone networks are of this type because they are built

from Public Switched Telephone Network (PSTN) backbone switches, Mobile Switching

Centers (MSC), base stations and mobile hosts. Also WLANs fall into this category.

The counterpart of such a network type is the infrastructureless (ad hoc) network,

illustrated by figure 20. This type of network is formed dynamically through

collaboration of an arbitrary set of independent nodes.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

56

Figure 20: An illustration of a small ad-hoc network. Worth noting is the fact that there is no predefined
infrastructure. Because of this nodes are expected to behave as routers and take part in discovery and
maintenance of routes to other nodes.

As opposed to the first wireless network type mentioned, the nodes have no prearranged

specific role it should assume (like the MSC or the base station). Each node makes its

decision independently, based on the network situation – not taking into consideration

preexisting network infrastructure.

Ad hoc wireless networks are self-organizing and adaptive [15]. In other words a formed

network can be formed on-the-fly without any system administration. “Ad-hoc” actually

tends to imply “can take different forms” and “can be mobile, standalone or networked”.

4.3.3 The routing protocols

In wireless networks mobility is a dominating factor and this implies that links are tore

down and set up again quite often [15]. Since mobile phones and other small, portable

and highly integrated mobile devices exist, the nodes in an ad hoc network can move very

freely, which results in a dynamically changing topology. The distance-vector and link-

state based routing protocols presented in chapter 4.2 are not able to catch up with the

frequent link changes in ad hoc wireless networks. Using these protocols would result in

poor route convergence and very low communication throughput. This is why other

protocols are needed in wireless networks.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

57

There are basically two different kinds of ad hoc routing protocols. The proactive, table-

driven, approach attempts to maintain consistent, up-to-date routing information from

each node to every other node in the network. This approach require the nodes to

maintain one or more tables to store routing information, and changes in network

topology is responded by propagating route updates throughout the network to maintain a

consistent network view.

The second approach is the reactive (on-demand) protocols. These protocols only create

routes when the source has something to send. When a node need a route to a given

destination a route discovery process is initiated within the network. After a route is

discovered and established, it is maintained by some route maintenance procedure until

the destination is unreachable from the source or the route is no longer needed. There are

a great number of different protocols:

Figure 21: Categorization of ad hoc routing protocols

In the next subchapters some of the protocols will be given some extra attention.

Ad-hoc mobile routing
protocols

Table
driven/proactive

On-demand
driven/reactive

Hybrid

DSDV, WRP,
CGSR, STAR,
OLSR

ABR, DSR,
TORA, AODV,
CBRP, RDMAR

DSDV – Destination Seqenced Vector
WRP – Wireless Routing Protocol
CGSR – Cluster Switch Gateway Routing
STAR - Source Tree Adaptive Routing Protocol
OLSR – Optimized Link State Routing
ABR - Associativity Based Routing
DSR – Dynamic Source Routing
AODV – Ad Hoc On-Demand Distance Vector
Routing
TORA – Temporally Ordered Routing Algorithm
CBRP – Cluster Based Routing Protocol
RDMAR - Relative Distance Micro discovery Ad
Hoc Routing
ZRP – Zone-Based Hierarchical Link State Routing
Protocol

ZRP

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

58

4.3.3.1 Proactive protocols

The Destination-Sequenced Distance-Vector (DSDV) protocol is a distance vector

protocol with extensions making it more suitable for MANETs [33]. All nodes maintain a

routing table with one route entry for each destination (shortest path route recorded), and

routing table updates are sent periodically. Loops are avoided by using sequence

numbers. Cluster Switch Gateway Routing (CGSR) extends DSDV with a cluster

framework concept improving scalability. The Wireless Routing Protocol (WRP) is

another loop-free proactive protocol which uses four tables to maintain distance, link

cost, routes, and message retransmission information. Route updates are sent among

neighboring nodes with distance and second-to-last hop information resulting in faster

convergence.

Although DSDV, CGSR and WRP have their differences, like the number of routing

tables and the different routing information kept in these tables – all the protocols have

the same degree of complexity during link failures and additions.

The Optimized Link State Routing (OLSR) protocol does as one can suspect from the

name; it optimizes the Link State protocol, which was mentioned in 4.2.3.2. In OLSR the

node’s complete link state information is not flooded to all nodes in the network. Only

link information from a subset of links to the neighboring Multipoint Relay Selectors

(MRS) is flooded to other MRSs which are responsible for flooding the information to its

neighbor nodes. Doing this reduces routing overhead and improves bandwidth efficiency.

4.3.3.2 Reactive protocols

Dynamic Source Routing (DSR) is a loop free on-demand routing protocol, where every

node maintain route caches that contain the source routes learned by the node and the

route discovery process is only initiated when a source node does not have a valid route

to the destination in its route cache. Entries in the cache are continually updated as new

routes are learned. In Bluetooth one must discover and connect to all neighbor nodes to

be able to flood route requests. Therefore routing protocols must be specialized to work

optimally in a Bluetooth environment.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

59

The Ad-hoc On-Demand Distance Vector (AODV) protocol improves DSDV. The

number of route broadcasts are minimized in AODV by creating routes on an on-demand

basis, versus maintaining a complete list of routes as in DSDV. Route discovery is, as in

DSR, on-demand based. The route request is forwarded to the neighbors, and so on, until

either the destination node or an intermediate node with a fresh route to the destination

node is located. Each DSR packet must contain the full routing path information and

therefore has potentially larger control overhead and memory requirements than AODV.

AODV packets only contain the destination address. On the other hand DSR works with

both asymmetric and symmetric links during routing, where AODV only work with

symmetric links. Also DSR maintain multiple routes to a destination in the cache, which

is helpful during link failures.

Both DSR and AODV work well in small-to-medium-sized networks with moderate

mobility.

4.3.3.3 Hybrid protocols

Hybrid protocols utilize aspects from both proactive and reactive protocols. The Zone-

Based Hierarchical Link State Routing Protocol (ZRP) divides the network into

nonoverlapping zones based on nodes’ geolocation. Neighboring zone connectivity

information is propagated by dedicated gateway nodes. Internally in the local zones

proactive protocols are used, while between zones reactive routing protocols are used.

Such an approach is bandwidth efficient and scalable [33], but the extra cost to maintain

the structure can be prohibitive, especially in mobile ad hoc environments – where

constant changes can result in unstable structures.

4.3.3.4 Proactive protocols versus Reactive protocols

Generally speaking, on-demand reactive protocols are more efficient than proactive

routing protocols in terms of control overhead and power consumption since routes are

only established when required [33]. Proactive protocols require periodic route updates to

be able to keep information current and consistent. Many routes that might never be

needed are maintained – adding quite a significant routing overhead in a bandwidth

constrained network, which Bluetooth certainly is. Actually routing overhead grows

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

60

exponentially with network size and prevents application of proactive protocols in large-

scaled networks.

If one considers quality of service the proactive routing protocols generally are better

than on-demand protocols [33]. In proactive protocols routing information is constantly

updated and hence routes to every destination are always available and up-to-date, which

in turn can minimize the end-to-end delay. The source has to wait for the route discovery

in on-demand protocols, and this latency might be intolerable for real-time

communication.

Since streaming of media, for example, not actually is real-time communication, it seems

as if an on-demand routing protocol would be the most efficient routing protocol in the

Bluetooth/ServiceFrame environment that this thesis deals with. Since Bluetooth have a

relatively limited theoretical bandwidth of from about 700 kbps to 3 Mbps depending on

which version of Bluetooth is used, the proactive protocols might imply too much control

overhead. If too much overhead is present there might be little bandwidth left for the

actual information sent between applications, which potentially could demand quite a lot

of bandwidth to work optimally.

On the other hand, [33] claims that proactive protocols are sufficient for a small-scale

static networks and reactive protocols work well for medium sized networks. So one

should perhaps also take into consideration the size of the network in which it is realistic

that Bluetooth enabled ServiceFrame based devices are present. Assumed that the

ServiceFrame based devices are only used inside a house there is a limitation on how

many Bluetooth nodes that will be present, and hence the proactive approach might be

applicable, as there is a limited amount of routing information in small networks. One can

in addition to using the ServiceFrame based device at home in quite limited surroundings

also imagine that such a device can be used in more public areas where many people have

their own ServiceFrame based device activated. Now the proactive approach has its

shortcomings and a reactive approach might be preferable.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

61

Another issue pointed out by [41] are the limitations of Bluetooth compared to for

example 802.11 (WLAN). Bluetooth is a connection oriented protocol, so to be able to

send data to another Bluetooth device a connection must be set up. As mentioned in 3.1.8

Bluetooth has no broadcast capability, so to flood a route request (like in a reactive

protocol) one need to connect to all the neighbors first. The inquiry time and connection

set up times in Bluetooth are very long so any routing protocol used in a Bluetooth

network must take this into consideration. To overcome the limitations given by

Bluetooth [41] gives a routing protocol suggestion called Bluetooth Scatternet Routing

(BSR). This routing protocol is a reactive protocol like AODV and DSR, but to avoid

long delays due to long connection set up and inquiry additional information on the state

of the links are kept.

No matter what protocol one chooses to implement in the ServiceFrame/ActorFrame

environment one has to take into consideration the shortcomings of Bluetooth. That

means that both the reactive and proactive routing protocols can be used, but they must

most likely be adapted for use in a Bluetooth environment. Nevertheless there are, as

outlined, pros and cons with both proactive and reactive routing protocols.

4.4 The ActorFrame routing protocol

The Bluetooth functionality integrated only recently to ActorFrame changed the routing

architecture in the package made for small mobile devices (MIDletActorFrame, chapter

2.2). This change was done so that also these small devices could act as routers and

mediators. However, the routing protocol was not changed, so no changes have been

made in the routing protocol despite the introduction of Bluetooth, which is a wireless

protocol. There are some small differences when it comes to the timers used in the

ActorFrame and MIDletActorFrame package, besides that the protocols are very much

the same. As explained earlier in this chapter routing is actually two separate operations.

The forwarding operation in ActorFrame, which is not a part of building and maintaining

the forwarding table, is explained in more detail in chapter 2.1.2.3. Building and

maintaining the forwarding table is done by the routing protocol explained in this chapter.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

62

4.4.1 The protocol

The routing protocol in ActorFrame is actually quite simple. Briefly said there are two

main processes involved in the protocol; the periodic transmission of update messages to

build the forwarding tables on other connected devices and the maintenance process of

periodic cleanups of the forward table.

To realize these two processes different interval timers exist. There is one timer which

decides how often the scheduler shall be run, and in ActorFrame this interval timer is

100. This means that every 100 ms there is a check whether it is time to transmit update

messages to other routers or whether it is time to update the router. Update messages are

transmitted every 100 * 100 ms, which is every 10 seconds (30 seconds in

MIDletActorFrame). This message contains routing information gathered from the

forward table which is useful for other routers; giving information on actors located on

the machine where the router runs, actors on mobile devices connected to this machine

and also routing information of all routers known to this router. Routers have their own

type of address, namely the RouterAddress. These addresses are always included in the

update message – the ActorRouterRegMsg. The message is sent to all reachable routers

(known routers).

Every 100 seconds the router is updated. This process can also be called the “cleanup”-

process. When this timer expires it is time to remove entries in the forward table which is

too old. Too old is in this protocol defined to be “since the last cleanup process”, which

implies that all entries in the forward table older than 100 seconds is removed. Not

having received routing information on a forward table entry in 100 seconds is therefore

interpreted like the route no longer exists. An entry is done in the forward table every

time a message is received by the router and every time a routing update message is

received. Through this and the cleanup process the forward table is built and kept up to

date.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

63

4.4.2 Compared to other existing protocols

Comparing the routing protocol to more standard distance vector and link state routing

protocols some points are worth mentioning.

4.4.2.1 No route optimization

First of all, there is no route optimization in ActorFrame. This task is left for the IP

routing protocol used in the Internet. Messages are forwarded to the destination by

sending the message to the Internet Service Provider (ISP) gateway, and from that point

ActorFrame has no saying.

In an ActorFrame environment where only wired communication is needed there is no

problem with not having route optimization. This is because route optimization is

implemented in protocols used in the Internet, either if it is a distance vector protocol like

RIP (chapter 4.2.3.1) or a link state protocol like OSPF (chapter 4.2.3.2). The problem is,

however, when wireless communication is used – like in our case, when Bluetooth

communication is used. If a large MANET is built route optimization might be necessary

to reduce end-to-end delay in the network.

4.4.2.2 Periodic updates and cleanup processes

Every 10 seconds (every 30 seconds in MIDletActorFrame) routing information is sent to

all known routers. However, not all the information in the forward table is distributed.

Only routing information regarding local actors and actors residing on mobile devices

connected to the device is distributed to all the known ActorRouters. This way there is

limitation on the amount of routing information passed on to other routers in the network

from devices running ActorFrame. Routing information about services on a device is

therefore only distributed to connected neighbors, which means that devices that are not

directly connected do not receive routing information updates on these services. Doing it

this way information about how to reach a router is distributed, but information about

services offered by a router is only distributed a few hops in the network.

To reach these services despite the fact that the devices are not “connected”, a default

gateway is used. This means that if a service (an actor) is not known the messages are

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

64

sent to a default gateway. If the default gateway is not directly connected to the target

device providing the service the messages will be routed even further to the next default

gateway. From this one realize that the default gateways should be chosen wisely to allow

messages to reach their target as soon as possible.

MIDletActorFrame based devices distribute the complete forward table to all known

Bluetooth, UDP and TCP sessions every 30 seconds.

Periodic updates are most common in distance vector protocols like RIP. In OSPF update

messages are sent only when topology changes occur, reducing routing information flow

compared to RIP. This kind of algorithm works best in wired communication since

frequent topology change is not very common. In MANETs based on Bluetooth routes

can go up and down quite frequently, so here the OSPF update algorithm might cause the

information flow to increase compared to an algorithm similar to the one found in RIP.

Every 100 seconds a cleanup process is run and routes that are not updated since the last

cleanup are deleted. This cleanup process is also found in RIP, although implemented a

little different.

4.4.2.3 Good enough for wireless environments?

As have been shown the ActorFrame routing protocol is originally made for wired

communication. The question remains; is the protocol suitable for a wireless

environment? According to [15] protocols designed for wired environments, with

infrequent topology changes and little mobility, are not suitable for ad hoc networking

environments. As stated in chapter 4.3.3 these distance vector and link state based routing

protocols can not quite catch up with all the link changes, which in turn results in poor

convergence and low communication throughput. As the routing protocol in ActorFrame

has a lot of similarities with RIP, which is a distance vector protocol, ActorFrames’

routing protocol will have the same problems in an ad hoc environment as RIP.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

65

4.4.2.3 Protocol suggestions

In chapter 4.3.3.4 a discussion concerning which kind of wireless routing protocol would

best suite ServiceFrame/ActorFrame was done. The discussion outlined that one would

have to know more exact what kind of ad hoc network the ServiceFrame based devices

would operate in. Considering implementation, two separate routing protocols could run

on a ServiceFrame based device; one protocol on the wired interface and a wireless

protocol on the wireless interface. This way routing information could be optimally

distributed on both the wired and wireless interface. On the wired interface the existing

protocol could very well be used. The wireless interface would probably have to

implement a variant of either a proactive or reactive routing protocol with some

adjustments making the protocol more suitable for a Bluetooth environment.

Using the existing routing protocol will work to some degree, as long as the frequency of

the route changes is low, but in a realistic ad hoc network this can not be assumed. In

4.4.2.2 a potential problem with the default gateway solution was mentioned. If all

connected devices send routing information to one dedicated default gateway this device

would have a complete set of routing information. Now any message will reach its target

through this default gateway. If this solution is good depends on network size, since one

central default gateway will not scale well.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

66

5 Prototype

The prototype that should be included in this thesis had two main “requirements”. First of

all it should show how services such as for example playing music stored on mobile

phones could be implemented on ServiceFrame based servers acting as Home Gateways.

Secondly, the prototype should show how these ServiceFrame based devices could be

used to extend the range between the target and source by using the devices as mediators

in a multihop ad hoc network.

As discussed earlier in the thesis (chapter 3.1.3.2 and 3.1.5) mobile phones do not support

scatternet operation, and hence utilizing the P900 used in this thesis in a multihop ad hoc

Bluetooth network was not possible. Since the original plan (figure 22) could not be

realized, another approach had to be taken.

 Figure 22: The multihop network that was originally planned to be tested

Device (2) must in this scenario act as a master to device (1) and as a slave to device (3).

This is not possible without support for scatternet operation. Therefore an alternative

approach, shown in figure 23, had to be used.

Mobile
phone

Mobile
phone

Desktop
computer

Desktop
computer

Bluetooth Bluetooth

(1) (2) (3)

(4)

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

67

Figure 23: The scenario used in the thesis. Only one master node (device (3)), and two slaves (device (1)
and (3)).

The alternative approach is a traditional piconet configuration. This test configuration

can, however, still show how a ServiceFrame based device can act as a Home Gateway

that can play music stored on a mobile device. From the figure above, this Home

Gateway device is device (4).

There are two main solutions to playing music not stored on the local device. One can

either download the whole song and play it, or one can stream the song playing it while

downloading the file. If one can stream a song, downloading is of course possible. To

make a prototype that is a challenge to implement the streaming approach receives most

focus. In the following subchapter streaming possibilities are explored.

5.1 Streaming possibilities

There are differences between how streaming possibilities are implemented in J2ME and

J2SE, and therefore this chapter will point out some of these.

5.1.1 Streaming in J2ME

Although this thesis should study the possibilities of how a ServiceFrame based server

can be used as a Home Gateway playing music stored on mobile phones, the possibilities

Mobile
phone

Mobile
phone

Desktop
computer

Desktop
computer

Bluetooth

Bluetooth

(1)

(2)

(3)

(4)

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

68

of doing the playback on mobile devices should be explored. This is because a mobile

device actually can act as a ServiceFrame based server, although it would have quite

limited processing capability.

It is possible to play back many types of media files on a J2ME based device. However,

real-time streaming of media is not easy combined with ActorFrame. In the next two

subchapters two ways of realizing real-time media playback in J2ME is presented.

5.1.1.1 Using an Inputstream to create a player

To play media in J2ME one need to use functionality provided by the optional package

JSR135, also known as the Mobile Media API (MMAPI). In this API the Manager

module is central. Using the Manager one can create a media player by specifying which

media file one want to play. Audio data received through streaming is read into an

InputStream, and the player can be created:

Player myMP3Player = Manager.createPlayer(InputStream, “audio/mpeg”)

Players for other media formats than mp3’s are also available. Examples are wave (.wav)

audio files, AU (.au) audio files, MIDI files and video files like for example 3gpp and

mp4.

One problem with the J2ME implementation of the media player is that it does not

support continuous streams, unless the stream is an rtsp stream. This means that the

stream the player receives must be fully read before playback can start. To make

applications that stream a raw byte stream (not a RTP stream), which the messages in

ActorFrame are, to the J2ME device is therefore relatively difficult. One possibility is to

have multiple players, where one player starts to play and another player simultaneously

loads data to play. This can be illustrated:

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

69

Figure 24: Illustration of a two player solution

The performance of such an implementation, however, is not altogether satisfactory.

Every time there is a switch between players there is a glitch, and because of limited

processing power on mobile devices this glitch can be substantial.

To explain further why streaming audio, using ActorMsg’s, to J2ME using the Player

does not work too well, a more detailed outline of the Player implementation is given.

Figure 25: A diagram showing the different states of a Player. [from the API documentation located at
http://jcp.org/en/jsr/detail?id=135]

When creating the Player it goes into the UNREALIZED state. An unrealized Player does

not have enough information to acquire all the resources it needs to work properly. When

it has obtained the information required to acquire the media resources, the Player enters

the REALIZED state. The Player may have to communicate with a server, read a file, or

interact with a set of objects. This means that the Player reads the Inputstream from the

unrealized state to the realized state. Returning to an unrealized state is not possible

- Player 1 plays
back media
- Player 2 is
preparing to play
back media

Player 1 is
prepared to
play media Player 1 done

playing media - Player 2 plays
back media
- Player 1 is
preparing to play
back media

Player 2 done
playing media

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

70

unless the realization is not complete. If the realization is complete, which means the

Inputstream is fully read, one can never return to an unrealized state. This is the reason

why one can not achieve smooth playback without the glitches created by the player

switches mentioned above – one simply cannot read the same Inputstream over again to

read data received while playing the media.

Before a Player is ready to be started, a Player may still need to perform a number of

time-consuming tasks. For example, it may need to acquire scarce or exclusive resources,

fill buffers with media data, or perform other start-up processing. This is done by calling

the prefetch method on the Player. Calling start() on the Player starts the playback of the

media file.

5.1.1.2 Using media locators to create a player

Another option when creating the player is to use media locators. Amongst the media

locators supported are file:\\, http:\\ and rtsp:\\. The file protocol is used to play back a

media file stored on the local device, and is not relevant for real-time streaming. Using

the http protocol is not really real-time streaming since using this protocol actually

downloads the entire media file from a web server before it is played. Using the http

protocol therefore does not reduce delay from when the user wants to play back the media

file to when it actually starts to play. Http is implemented on practically all mobile

devices with GPRS/UMTS and J2ME support.

The rtsp protocol is a real-time streaming protocol which actually uses a continuous

stream. When using rtsp as the control protocol the most common transport protocol is

the Real-Time Protocol (RTP) [37]. This means that playback of the media file starts

before the entire media file is downloaded from a server supporting RTP simultaneously

as the rest of the file is transferred. This protocol is more and more common on most new

mobile devices, enabling them to provide smooth playback of media over a GPRS or

UMTS connection.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

71

5.1.1.3 ActorFrame and RTSP

As mentioned in the previous subchapter a possible solution to streaming could be to use

the rtsp media locator.

Figure 26: RTP is most commonly used as the transport protocol when using RTSP [37]

However, to be able to realize this solution the ServiceFrame based device must act as an

RTP streaming server. Examples of open source streaming servers are Darwin Streaming

Server [38] and Helix DNA Server [39]. If one instead of the topology in figure 26

imagines the topology in figure 23 some issues appear. First of all the mobile phone is not

likely to run a streaming server like Darwin or Helix, so that streaming can only be made

from a desktop computer (acting as a server) to another desktop computer (acting as a

client) or mobile phone (acting as a client).

Another problem is the fact that the mobile phone acting as a client is not necessarily

directly connected to the streaming server. The reason why this is a problem can be seen

on the format of the rtsp locator: rtsp://host:port/mediafile. As can be seen use of a

locator implies a direct connection. In ActorFrame one must have a dedicated RTP

streaming actor, but how to enable the rtsp protocol in Java without using the rtsp locator

is an unresolved issue (if even possible), which must be solved to enable ServiceFrame

based devices for RTP streaming.

This thesis does not try to solve the issues mentioned above because such a task would be

to time consuming considering the other aspects of the thesis. A task like implementing a

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

72

streaming server in the ActorFrame framework or integrating existing streaming servers

like the ones shown in [38] and [39] could very well be a project assignment in itself.

5.1.2 Streaming in J2SE

Playing media on desktop computers using Java 2 Standard Edition (J2SE) can be done

using the Java Media Framework (JMF) elaborated to some detail in 5.1.1.1. In J2SE the

same player as presented there is found. There are some differences of course, where the

most important one is that the JMF player can not be created using an Inputstream – only

media locators (mentioned above in 5.1.1.2). This makes it very hard to realize playback

of media using JMF in cooperation with ActorFrame, since ActorFrame messages are

serialized and are received as a raw byte stream, and not like a prearranged RTP or HTTP

stream.

There is, however, another J2SE API that can be used to play back media received as a

raw byte stream, namely the Java Sound API. The playback is done quite similar to the

“two player solution” mentioned earlier; where some piece of the media file is played

while another piece of it is prepared for playback. Because desktop computers have better

processing power than small mobile devices it is suspected that the performance of such

an implementation is better than the two player solution for mobile devices. Therefore the

glitch which was mentioned when the two player solution was presented in 5.1.1.1 is

suspected to be shorter and not as recognizable. This solution and the Java Sound API

will be outlined in more detail in chapter 5.2.

5.1.3 J2ME or J2SE implementation?

Since an optimal solution with RTP streaming seemingly is not possible when using

ActorFrame, it is not possible to play back an mp3 without some glitches. The best

solution would be to have the possibility to both stream to a mobile phone from either a

mobile or a desktop computer, and to stream to a desktop computer from a mobile phone

or another desktop computer. Therefore this was the intention, but unfortunately playback

of mp3 files was not possible with the P900 which was used. The two player solution

presented in 5.1.1.1 therefore could not be tested on real devices.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

73

Hence, in this thesis a J2SE solution was designed and implemented. More elaboration on

this solution is given in 5.2. Since the solution is not in any way optimal it will be used

more as a pointer on ActorFrame performance regarding distribution of routing

information and transfer speed. The prototype does of course also provide an indication

on whether or not ServiceFrame based devices can play songs stored on other devices,

especially mobile devices.

5.2 Design and implementation

The prototype was made quite easy with one actor on the mobile device responding to a

streaming request made from a desktop computer, and one actor on a desktop computer

requesting and receiving the mp3 file as a stream of ActorMsg’s and starting a playback

of the media file. First an outline of the actor on the mobile device is done, followed by

the description of the design and implementation on the desktop computer. Playback of

mp3 files is not originally supported in J2SE. How to enable mp3 support in J2SE is

described in Appendix B. Appendix C gives an outline of software and tools used in the

implementation.

5.2.1 Mobile phone behavior

The behavior of the actor on the mobile phone, called “Stream”, actually only need to

react to a request for an mp3 file, divide the file to smaller pieces suitable for streaming

and send the file as a stream of messages back to the actor requesting the media file.

Figure 27: Diagram shows the behavior of the actor on both the mobile phone and the requesting actor
(which in this case is a desktop computer which has a user interface called GetStreamWindow). Recalling
figure 23 the stream of StreamMsg’s containing different parts of the media file is first transmitted using a
Bluetooth link, and then further transmitted using either UDP or TCP to the destination.

Stream Requesting actor

GetStreamMsg()

StreamMsg()

StreamMsg()

StreamMsg()

GetStreamWindow

SendGetStreamMsg()

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

74

The division of the file into smaller pieces is done by only reading chunks of data. First

the mp3 had to be wrapped into a DataInputStream:

DataInputStream input = getClass().getResourceAsStream("/musicfile.mp3");

After this operation has taken place a series of operations are done to send StreamMsg’s

containing audio data:

1. Read chunk of data

2. Make StreamMsg

3. Add chunk of data to the StreamMsg

4. Send the StreamMsg

This procedure is repeated until the whole file is read and transmitted, making a stream of

StreamMsg’s. Appendix G shows code samples of this behavior.

5.2.2 Desktop computer behavior

The behavior of the desktop computer is also quite simple, and is naturally the reverse of

the behavior on the mobile phone. This means that the actor, which is called

“TestBluetooth”, sends a request for an mp3 stream. A simple user interface was made –

shown in figure 27 as GetStreamWindow. Three mp3’s can be chosen from (with 56, 128

and 320 kbps quality, providing a rather static solution. This is not an important

limitation in this case, since the prototype is only supposed to be a test application that

shows that playing songs stored on a mobile phone is possible.

Figure 28: Illustration of how StreamMsg’s are handled when received

When this is done a stream of StreamMsg’s are received. The task of playing the mp3 file

is handled by a class called “MediaClass”. Messages are stored in a Vector until a

TestBluetooth

StreamMsg()

StreamMsg()

StreamMsg()

When the predefined number of messages are
received a PlayThread is started

MediaClass

StreamMsg() stored in a vector

StreamMsg() stored in a vector

StreamMsg() stored in a vector

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

75

predefined number of packets are received, making a sort of buffer system. This behavior

can be further studied in the code samples provided by Appendix G.

5.2.2.1 Buffering

Having a buffer is useful when the transfer speed is below the playback rate of the mp3

file. According to [40] the de facto standard bitrate on mp3 files is 128 kbps. If one try to

stream an mp3 file with this bitrate, but the transfer speed is slower, starting the playback

immediately after receiving the first StreamMsg is not a good solution. This would most

likely cause the playback to stop relatively fast because the data is “consumed” (played

back) faster than it is received, eventually causing audio data shortage. With a vector

storing data from a predefined number of StreamMsg’s the bitrate of the mp3 can actually

exceed the transfer rate for some time without causing the playback to stop.

If the playback should stop because the buffer is too small to even out the difference of

the transfer speed and bitrate of the mp3 song, there will be a pause (buffer period) before

one once again try to read the buffer. In the prototype a buffer period of 12 seconds is

used. No study of optimal buffering time has been done, so this is chosen quite arbitrary.

Nevertheless, any longer buffer period might cause the sense of streaming to disappear

and a shorter buffer period does not allow a sufficient amount of data to be received.

When the predefined number of packets has been received a Thread handling playback of

the media file is started.

5.2.2.2 The PlayThread

Playback of the mp3 file is done making a PlayThread. First of all data from the vector

containing the audio data received via the StreamMsg’s is wrapped into an inputstream.

In the Java Sound API there are some central classes; AudioSystem, AudioInputStream,

AudioFormat, DataLine.Info and SourceDataLine (shown in the code samples provided

by Appendix G). Together these classes can play back the mp3.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

76

To illustrate how the different classes interact when playback is performed the diagram in

figure 29 can be used:

1. From the Inputstream that the audio data in the vector was wrapped in, an

AudioInputStream is made using the central AudioSystem module.

2. The format of the audio that just was wrapped into an AudioInputStream must be

known.

3. A DataLine.Info object is created using the audio format found in 2.

Figure 29: Illustration of PlayThread functionality and the basic classes in Java Sound API

4. The DataLine.Info object created in 3 is used to check whether or not the audio

format is supported. If the format is not supported transcoding into a known

format can be done, so that playback is possible.

5. Now that it has been made sure that the audio format of the AudioInputStream is

known a SourceDataLine object can be created. The mp3 will be played by this

object (called “line” below) writing data that is read from the AudioInputStream:

while ((bytesRead = audioinputstream.read(data, 0, data.length)) != -1){

 line.write(data, 0, bytesRead);

 }

AudioSystem AudioInputStream (1)AudioSystem.getAudioInputStream(input)

AudioFormat

(2)audioinputstream.
getFormat()

DataLine.
Info

(3) new DataLine.Info (
SourceDataLine.class,
AudioFormat);

(4)
AudioSystem.isLineSupported(
DataLine.info)

SourceDataLine
(5)AudioSystem.getLine(DataLine.info)

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

77

The while loop in (5) plays back all the audio data contained in one StreamMsg. When all

this data is played back the whole procedure from 1-5 is repeated.

5.2.2.3 Problems with the solution implemented in PlayThread

One soon realizes that the solution presented in 5.2.2.2 is not optimal. Data is not loaded

into the AudioInputStream while playing the mp3 and this is a big weakness with the

solution. Unfortunately one can not load new data into an inputstream that has already

been created. This is the same problem that made it necessary to have two players in the

JMF solution in J2ME (chapter 5.1.1.1). The difference here is that there is no player, so

that making the same sort of solution is not possible.

Although the solution presented does not provide the optimal playback of an mp3 file, it

will work as a pointer on the Bluetooth transfer speed achieved using ActorFrame and it

will be able to show that one can use a ServiceFrame based server acting as a Home

Gateway to play music stored on a mobile device.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

78

6 Testing

There are several things that should be tested. First of all it should be tested that scatternet

operation is not possible as outlined earlier in this thesis (throughout chapter 3). Secondly

one should test if the streaming prototype works – to see if a ServiceFrame based desktop

computer can play music stored on a mobile phone. Testing whether or not routing

information is exchanged properly between devices should also be done. Other things

useful to test when evaluating the Bluetooth functionality in ActorFrame is the transfer

speed achieved.

6.1 Testing scatternet operation

As [35], [36] and [41] suggests, mobile devices does not support scatternet operation. In

addition most mobile devices only support a few active connections at a time. [28]

suggests that the newest models from Sony Ericsson only support up to 3 active

connections. The P900 actually only support one active connection. When connected to

another device the P900 is no longer discoverable for other devices. Some mobile phones

from Nokia are supposed to support up to 7 active connections, but this is not confirmed.

Considering these facts there is really no point testing scatternet operation. Multihop ad

hoc networking with Bluetooth enabled mobile phones is just not possible. Ad hoc

networking is in some degree supported, but only if one can call a piconet an ad hoc

network. USB dongles usually have full Bluetooth support with capability of having 7

active connections and where the newest ones actually have support for scatternet

operation as well.

With two mobile phones available testing connectivity between a desktop computer

acting as a master and two slaves is possible, as shown in figure 31.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

79

Figure 30: A desktop computer acting as the master with two mobile phones acting as slaves in a piconet

The topology in figure 31 was tested quite a few times, but did not work properly at first.

Although a connection was made with both of mobile phones, the listening process

implemented could only find and connect to one device. This had to be changed, and this

is showed in Appendix D.

It was discovered that the discovery/listening process in both ActorFrame and

MIDletActorFrame was ended as soon as a connection was established with a device.

Appendix D shows how this had to be changed to allow the discovery/listening process to

continue also after a connection is established with a device.

In addition to the connectivity test above connectivity between two mobile phones was

tested. This worked, and messages could be exchanged between the mobile phones. None

of the phones could now, however, connect two the desktop computer because the P900

only supports one active connection.

6.2 Stream and play song stored on mobile device

A considerable part of this thesis is to see if and how it is possible to play music stored on

a mobile device on a ServiceFrame based server.

Mobile
phone

Mobile
phone

Desktop
computer

Bluetooth Bluetooth

(1)

(2) (3)

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

80

6.2.1 Topology and configurations

The network topology used to test this is shown in the figure 31. As mentioned in 5.2 the

prototype is comprised of the actor called Stream on the mobile device (1) and the actor

TestBluetooth on the desktop computer (3). Desktop computer (2) will in this topology

only work as a router/mediator.

Figure 31: The song is streamed from device (1) to device (3) when testing the prototype

Some property configurations had to be done:

• GATEWAY_IP_ADDRESS (in the property file AFProperties.properties) for

device (3) was set to the IP address of device (2). This way device (2) and (3)

discover know of each other so that routing information is sent between them.

(this was just a choice – could have been done the other way around too)

• Device (2) had to be Bluetooth enabled, which is done by setting the property

value of “Bluetooth” to “true” (in the property file AFProperties.properties).

• On device (1) the Bluetooth functionality had to be turned on in

MidletContainer.java in the MIDletActorFrame package by setting

btSessionEnabled = true

6.2.2 Testing performance

When testing the prototype one expects the mp3 file stored on the mobile phone to be

played back on the desktop computer (device (3)). Depending on the quality of the mp3

Mobile
phone

Desktop
computer

Desktop
computer

Bluetooth

(1)
(2)

(3)

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

81

the streaming will or will not work. In this thesis mp3’s with the following bitrates were

tested: 56 kbps, 128 kbps and 320 kbps.

The fact that Bluetooth v1.2 supports up to 721 kbps one could expect all these mp3’s to

be successfully streamed. Some different sizes of the buffers before playback could start

were also tested. A buffersize of for example 20 implies that audio data contained in 20

StreamMsg’s are buffered. Every StreamMsg contains 58000 bytes of audio data. This

means that a buffersize of 20 implies that 58000 * 20 = 1160000 bytes are stored before

playback can start.

6.2.2.1 Testing streaming prototype

As can be seen in table 3 playback of the mp3 with a bitrate of 56 kbps was played back

successfully. When the bitrate was increased to 128 kbps performance was not too good,

and the prototype was next to useless when the bitrate was 320 kbps. This indicates a

transfer speed below 128 kbps.

Table 3: Test results from the streaming prototype

Bitrate Buffersize = 20 Buffersize = 10 Buffersize = 5

56 kbps (file size:

1.65 MB)

Playback is ok Playback is ok Playback is ok

128 kbps (file size:

3.0 MB)

Playback is seemingly

ok. *

Playback is ok up to a

certain point (about 22-

26 StreamMsg’s) where

the buffer is empty.

After this buffering is

frequent and

performance is poor. *

Playback performance is

poor. Must frequently

stop to buffer. *

320 kbps (file size:

5.56 MB)

Playback performance is

poor. Must frequently

stop to buffer. *

Same as previous Same as previous

* The complete file is not received, so an evaluation of this is incomplete (elaborated in 6.2.2.3)

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

82

6.2.2.2 Calculate actual transfer speed

Average transfer speed:

In 6.2.3.1 it was discovered that the transfer rate had to be below 128 kbps (because

playback stopped to buffer after some StreamMsg’s when the mp3 quality was 128 kbps).

To discover the average transfer speed from the mobile phone to the desktop computer

(device (3) in figure 31), the System.currentTimeMillis() property could be used.

Registering the time after the first StreamMsg is received and after the last StreamMsg is

received makes it possible to calculate the transfer speed. These calculations were done in

MediaClass.java (shown in Appendix F).

The average transfer speed is, as can be seen in figure E-3 in Appendix E, quite low

compared to what could be expected from Bluetooth. Comparing the speed to the UMTS

technology the speed is rather poor as well.

Transfer speed per StreamMsg:

The transfer speed of each StreamMsg fluctuates, especially in the beginning of a

transfer. Figure E-1 in Appendix E show printouts from the beginning of a transfer. Here

transfer speed of 80 kbps, 100 kbps and 44.4 kbps is observed. After some time the

transfer speed stabilizes around 133 kbps, as can be seen in figure E-2 in Appendix E.

The calculations were done in RouterMsg.java (shown in Appendix F)

6.2.2.3 Device and J2ME limitations discovered

A few more limitations with the P900 were discovered during testing of the prototype.

One limitation is that to be able to wrap the mp3 into a DataInputStream, as described in

5.2.1, the mp3 had to be split into several files. The reason for this is that the P900 can

not make a DataInputStream of a file with size larger than approx 1MB. Therefore a tool

called “Easy MP3 Split (trial version is included in Appendix H) had to be used, splitting

the mp3. This way the mp3 could be wrapped into a DataInputStream and read into

smaller chunks of data, making StreamMsg’s containing these chunks of data.

When transmitting the chunks of data from the mobile device a sleep period had to be put

in after each chunk was sent, or else the application on the mobile phone would crash.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

83

Also a sleep period had to be put in after a part of the split mp3 was sent (shown in

Appendix G). The reason why these sleeps periods had to be put in is unknown, but most

likely it is because of memory limitations on the mobile device. If too many StreamMsg’s

are buffered before transmission the virtual memory capacity is most likely exceeded and

the application crashes.

Another limitation with the P900 was revealed. What happened was actually that the

application on the mobile phone crashed after transmitting a certain number of

StreamMsg’s, causing the mp3 to be only partially transmitted. These messages contained

a total of approximately 2.5 MB of audio data, with each StreamMsg containing 58000

bytes of audio data. Exactly what caused this error is unknown, but it probably has

something to do with limited memory capacity on the mobile device. Therefore the

prototype is made so that less than 2.5 MB of audio data is opened. In Appendix A it is

shown how this can be changed, if other (newer) mobile devices are available.

6.2.3 Routing information distribution

There is no special way to test if the routing information is distributed. What can be done

is to print out actors included in the ActorRouterRegMsg’s received (which are the

update messages used in ActorFrame). When the topology in 6.2.1 (figure 31) is used the

printouts below are available via device (2). In the following the printouts from this

figure is outlined. The printouts are shown in Appendix E.

From the mobile phone:

Actors: [/stream@Stream, arts@ActorDomain]

Information about the actors located on the mobile phone is successfully sent and

received.

From device (3):

Actors: [129.241.208.90:5557/testbluetooth@TestBluetooth,

129.241.208.221:5557/arts2@ActorRouter,

129.241.208.221:5557/arts@MidletRouter]

Information about the actor located on device (3) is successfully sent and received as the

first entry shows. The last two entries are included because they are RouterAddresses,

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

84

and hence they will always be included in an ActorRouterRegMsg. Entry number two

shows that routing information from device (2) has been received, and entry number three

shows that routing information from the mobile device has been received.

The printout from the second desktop (device (3)) in the topology shown in figure 31 is

shown below.

Actors: [129.241.208.90:5557/arts3@ActorRouter, /stream@Stream,

arts@MidletRouter, arts@ActorDomain,

129.241.208.221:5557/arts2@ActorDomain]

Entry number 1 and 3 are RouterAddresses and are always included in

ActorRouterRegMsg’s. Entry number 2 shows that routing information from the mobile

phone has reached device (3). The 4th entry shows that routing information on actors

locally on device (1) is received. Entry 5 is routing info on actor locally on device (2).

These printouts show that routing information is distributed as outlined in chapter 4.4.

One also can see that routing information is not sent from a desktop computer to a mobile

phone, since the following entries were missing in the ActorRouterRegMsg received by

device (2) from the mobile phone: arts2@ActorRouter, 129.241.208.90:5557/

arts3@ActorRouter. These entries should have been included if routing information from

(2) was sent to the mobile phone, because RouterAddresses are always included in an

ActorRouterRegMsg. Routing information is not, however, distributed from an

ActorRouter (residing on a desktop computer) to a MIDletRouter (residing on a mobile

phone) via a Bluetooth link. This is something that should be implemented.

6.3 Discussion of test results

Connectivity worked as suspected. Two mobile phones could connect as slaves to the

master device (the desktop computer), and two mobile phones could connect (but then

not to the desktop computer). Since this first topology was possible it could be possible to

send data to/from the mobile phone to device (3) in figure 32 with device (2) as a

mediator. This could only be possible if routing information was properly distributed, and

as shown in 6.2 routing information was indeed distributed. The only drawback is that

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

85

routing information is not sent from a desktop running ActorFrame to a mobile phone

running MIDletActorFrame, but for the prototype this was not necessary.

The prototype did not work very well, mostly because the transfer speed was too low to

get a satisfactory playback of the high quality mp3’s, but also because the quality of the

playback was not optimal. One could have separated the size of the audio data included in

the StreamMsg’s and the size of the audio data read from the buffering Vector. This way

one could have limited the number of reads done from the buffer. In this thesis things

were kept very simple, and therefore such a solution was not implemented. Although

smooth playback was not accomplished it was shown that it is possible to play a song

stored on a mobile device on a desktop computer using ServiceFrame.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

86

7 Discussion and conclusion

In this chapter the accomplished results doing this thesis will be discussed, along with a

discussion of the used technology and the prototype.

7.1 Technology, prototype design and performance

In the thesis the implemented routing protocol in ActorFrame was studied, as well as

alternative protocols for wireless ad hoc networking. Also through this thesis, it has been

discovered shortcomings in both mobile phones implementing J2ME and the Bluetooth

standard.

7.1.1 The routing protocols

ActorFrame implements a routing protocol with similarities to more known IP routing

protocols. There is however a difference in that the ActorFrame routing protocol does not

implement route optimization, a fact that reduces needed processing power. With periodic

updates and cleanup processes deleting stale routes the protocol works satisfactory in

regular wired communication, in which environment ActorFrame has been used up to

now. With the integrated Bluetooth functionality and theoretically possible formations of

ad hoc networks this protocol does not satisfy wireless routing protocol specifications.

However, as shown through the thesis multihop ad hoc networking is not possible at the

present time. This limits the possible topologies to standard piconet solutions, where the

need for a special wireless routing protocol is limited; hence the existing ActorFrame

protocol actually could work for piconet solutions.

7.1.2 Bluetooth

The Bluetooth specification allows for multiple piconets to connect and form scatternets.

This functionality, however, is optional for vendors of Bluetooth chips to implement.

Therefore scatternet operation has not yet been included in any Bluetooth chips made for

mobile phones, partially because this functionality would demand quite a lot of

processing power. Another part of the explanation is that scatternet operation really is not

necessary to enable Bluetooth to function as a cable replacement protocol, which is the

main goal of Bluetooth [18]. In addition no protocols for neither Bluetooth scatternet

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

87

formation nor routing in Bluetooth networks have been standardized (and hence not

included in the Bluetooth standard), although many suggestions have been made.

Actually most mobile phones do not even support multiple simultaneous Bluetooth

connections, which is one of the main requirements for forming scatternets. Putting all

these facts together one realizes that forming multihop ad hoc networks is just not

possible with today’s technology.

7.1.3 Prototype design and performance

The shortcomings in the Bluetooth technology and mobile phone technology made it

impossible to test whether or not ServiceFrame based devices works well in a multihop

ad hoc network environment. Having that in mind the prototype had to focus on

something else. The thesis was to include a study of how music stored on a mobile phone

could be played on ServiceFrame based devices and how ServiceFrame based devices

could act as mediators. These facts opened the possibility to make a prototype that

streams an mp3 from a mobile device to a desktop computer running a ServiceFrame

based application.

Studying the streaming possibilities available the prototype design is quite limited. The

design does not imply optimal performance since no standard real-time streaming

protocol is used. ActorFrame does not integrate any streaming server capability, and

hence using the RTSP protocol which is supported in J2ME is not possible through

ActorFrame. The design therefore serves more as an example of the fact that music can

be streamed from one device and played back on another using ServiceFrame as a

framework.

The performance of the prototype was not very good, but as a pointer it works

satisfactory. Using the prototype it is possible to test how the performance of the

Bluetooth functionality is integrated with the ActorFrame framework. As shown in

6.2.2.2 the average transfer speed was only a little over 100 kbps, which is very bad

compared to what could be expected from Bluetooth. The theoretical maximum of

Bluetooth v1.2 is 721 kbps. The main reason for the slow transfer speed of only

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

88

approximately 1/7 of theoretical maximum is probably that the P900 has quite limited

processing power. There is a considerable amount of Threads running in the

MIDletActorFrame package; the Bluetooth device and service discovery threads, the

Scheduler processes and the router all take up a lot of the processing power that the

Bluetooth sending processes needs to work optimally.

If one assumes that Bluetooth v2.0 will experience the same degrading of performance,

the transfer speed will be approximately 300 kbps when running ServiceFrame on newer

mobile devices with v2.0 support. This is still not enough to stream high quality mp3’s,

but will stream the “de facto” mp3 quality of 128 kbps without any problems. All in all

one can not be satisfied with the performance of the Bluetooth functionality.

Since one of the main objectives of this thesis was to study how ServiceFrame can be

used in “a beneficial way to establish ad hoc networks and service sessions”, the

discovery of the poor performance of the Bluetooth functionality is important. According

to Telenor Mobil [43] the highest expected transfer speed in their UMTS network will be

384 kbps. Taking this into consideration there is probably a close race in performance of

Bluetooth v2.0 and UMTS, although v2.0 performance is yet to be tested.

UMTS enabled devices can be used wherever you are provided that there is UMTS

coverage, as opposed to Bluetooth that has a very short range and needs other Bluetooth

enabled devices in the near vicinity. One can therefore most likely limit the use of

Bluetooth to indoor use connecting a desktop computer to one or more mobile devices,

using the desktop computer almost as an access point. Without scatternet support one can

not really use Bluetooth to much more than this. UMTS does indeed cost money to use,

but is much more flexible. There is no range limitation giving the possibility to have

access to media streaming wherever you are. Streaming services for UMTS already exists

and work quite well. These things considered it is possible that the Bluetooth

performance is just too poor to use for streaming purposes. For downloading services

however, where real-time performance is not that important, Bluetooth functionality

could be beneficial compared to UMTS.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

89

7.2 Future work

First of all testing the Bluetooth functionality provided by ServiceFrame with Bluetooth

v2.0 compatible devices is of a great importance. To really be able to compare Bluetooth

performance with UTMS performance this is necessary.

The prototype can be extended. Now there is a possibility for choosing which mp3 to

stream, but it must be done from a predefined list of mp3’s; which is a very static

solution. A better solution is for example first to request a list of available mp3’s. From

this list one can choose which mp3 to stream. This would be a much more user-friendly

solution.

To enable multihop ad hoc networks using Bluetooth enabled mobile devices scatternet

operation must be implemented by the Bluetooth chip vendors. One can hope that this

functionality will be implemented as soon as possible, but first a larger part of the

consumers must demand scatternet operation functionality.

A more thorough study of the environments in which ServiceFrame based devices would

operate could be useful. This way the choice and design Bluetooth scatternet formation

protocols and routing protocols would be made on a more substantial ground.

There exist several open source streaming servers (Darwin [38], Helix [39]) which

implements standardized real-time streaming protocols – enabling smooth playback of

media. A study of how servers like these could be combined with ActorFrame to enable

streaming server capabilities to an ActorRouter would be interesting. If an ActorRouter

could act as a streaming server new streaming services could be developed.

7.3 Conclusion

Through the work on this thesis it has been discovered that there exists a lot of limitations

in the implemented functionality on mobile devices, first of all regarding Bluetooth

functionality. Before multihop ad hoc networking is possible with mobile devices using

Bluetooth as the communication protocol there is some functionality that has to be

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

90

implemented by the vendors. Among this functionality is for example support for

multiple simultaneous Bluetooth connections, support for master/slave switching and

support for scatternet operation.

Bluetooth scatternet formation protocols were also studied in the thesis. When support for

the functionality mentioned above is implemented a choice regarding which formation

protocol to implement must be made. The same goes for which routing protocol to

implement on the wireless interface of ServiceFrame based devices. For now the routing

protocol implemented can be sufficient as the network topology is limited to piconets,

which implies a limited amount of routing information.

With a more thorough study of streaming and streaming servers more optimal streaming

services can surely be made using the ServiceFrame framework. This thesis showed

successfully that songs stored on a mobile phone could be streamed and played back on a

desktop computer running a ServiceFrame based applications. The drawback with

ServiceFrame is the processing power required to run applications based on the

framework, causing the transfer speed of Bluetooth to be unreasonably low.

With more time the mobile devices will surely be more powerful and support the required

functionality, and when this time comes ServiceFrame and Bluetooth will be a good

combination for streaming services. Right now, however, the mobile devices have limited

processing power and the support for Bluetooth functionality is also limited. This causes

the applications made for this combination to be limited by the boundaries given by these

technologies.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

91

References

 [1] Teleservice lab, Item, NTNU, (URL:

http://www.item.ntnu.no/lab/nettint1/index.html)

[2] G. Melby, “ActorFrame Developers Guide”, NorARC, ARTS, august 2004

(included in Appendix H as “References/ActorFrame Developers Guide.doc”)

 [3] Sun Microsystems,”Java APIs for Bluetooth – Wireless Technology (JSR-82)”,

version 1.1, 2005 (included in Appendix H as “References/JSR82spec.pdf”)

[4] Sony Ericsson, P900 Whitepaper (URL:

http://developer.sonyericsson.com/getDocument.do?docId=65064, and included in

Appendix H as “References/p900Whitepaper.pdf”)

 [5] Ø.Haugen, ”JavaFrame Modelling Guidelines 2.5”, Ericsson NorARC, 2001

(included in Appendix H as “References/JFGuidelines.pdf”)

 [6] Ø.Haugen, B. Møller-Pedersen, ”JavaFrame: Framework for Java Enabled

Modelling”, (URL:

http://www.item.ntnu.no/fag/ttm4160/Implementation/ECSE2000JavaFrame.pdf,

and included in Appendix H as “References/javaframe.pdf”)

 [7] G. Melby, Presentasjon av ActorFrame for ITEM-studenter – ”ActorFrame – Et

Java basert miljø fro modulære nettverksapplikasjoner”, NorARC, 2004 (URL:

http://www.item.ntnu.no/lab/nettint1/activities/prosjekter/host2004/overview.html

and included in Appendix H as “References/modular.pdf”)

 [8] K.E. Husa, R.Bræk, G. Melby,”ServiceFrame Whitepaper”, Ericsson NorARC,

2002 (included in Appendix H as “References/ServiceFrameWhitepaperv8.pdf”)

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

92

 [9] K.E. Husa, R.Bræk, G. Melby,”ServiceFrame and ActorFrame”, Ericsson

NorARC, 2002 (URL:

http://www.item.ntnu.no/fag/ttm4160/ServicePlatforms/ServiceFrame2002.pdf

and included in Appendix H as “References/serviceframe2002.pdf”)

[10] A. Herstad, G. Melby, ”ServiceFrame”, 2004 (included in Appendix H as

“References/ServiceFrame.doc”)

[11] S. S. Kristiansen, ”Transparent Communication over Bluetooth”, Project

assignment, 2005 (included in Appendix H as “References/rapport v1.0.pdf”)

[12] Wireless Application Programming with J2ME and Bluetooth (URL:

http://developers.sun.com/techtopics/mobility/midp/articles/bluetooth1 and

included in Appendix H as “References/j2meProg.pdf”)

[13] B. Hopkins & R. Antony, ”Bluetooth for Java”, Apress, 2003

[14] J. Knudsen, “Wireless Java: Developing with J2ME”, Apress, 2003

[15] C.K Toh, ”Ad Hoc Mobile Wireless Networks”, Prentice Hall, 2002

[16] R. Morrow, ”Bluetooth Operation and Use”, McGraw Hill, 2002

[17] J. Schiller, ”Mobile Communications”, Addison-Wesley, 2nd edition, 2003

[18] Bluetooth Special Interest Group, ”Specification of the Bluetooth system”, v2.0 +

EDR, 4.november 2004 (included in Appendix H as “References/ Core v2.0 +

EDR”)

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

93

[19] I. Stojmenovic, N.Zaguia, ”Bluetooth scatternet formation in ad hoc wireless

networks”, Chapter 9 in: Performance Modeling and Analysis of Bluetooth

Networks: Network Formation, Polling, Scheduling, and Traffic Control (J. Misic

and V. Misic), Auerbach Publications (Taylor & Francis Group), 2006, 147-171

(included in Appendix H as “References/BSF-survey.pdf”)

[20] T.Y Lin, Y.C Tseng, K.M Chang, ”A new BlueRing scatternet topology for

Bluetooth with its formation , routing and maintenance protocols”, John Wiley &

Sons Ltd, 2003 (included in Appendix H as “References/bluering.pdf”)

[21] G.V Zàruba, S. Basagni, I. Chlamtac, ”Bluetrees – Scatternet formation to enable

Bluetooth-based Ad hoc networks”, University of Dallas, Texas, Center for

Advanced Telecommunications Systems and Services (CATSS), Proc. IEEE ICC,

2001, pp.273-277 (included in Appendix H as “References/blutrees.pdf”)

[22] Z.Wang, R.J Thomas, Z. Haas, ”Bluenet, a new scatternet formation scheme”,

Proc. Hawaii Int’l Conf System Sciences, 2002, pp. 721-736 (included in

Appendix H as “References/bluenet.pdf”)

[23] S.G Valenzuela, S.T Vuong, C.C.M Leung, ”Mobile BlueScouts: A scatternet

formation protocol based on mobile agents”, 4th Workshop on Applications and

Services in Wireless Networks, Boston, Aug. 2004 (included in Appendix H as

“References/bluescout.pdf”)

[24] Self configuring systems, lecture from students, (URL:

http://www.item.ntnu.no/fag/ttm47ac/topics/Bluetooth.ppt and included in

Appendix H as “References/Bluetooth.ppt”)

[25] Sun Microsystems, “The Java platform for consumer and embedded devices”

(URL: http://java.sun.com/j2me/docs/j2me-ds.pdf and included in Appendix H as

“References/j2me-ds.pdf”)

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

94

[26] Tim Lindholm & Frank Yellin, The Java Virtual Machine Specifications, Second

edition (URL: http://java.sun.com/docs/books/vmspec/2nd-

edition/html/VMSpecTOC.doc.html)

[27] J2ME tutorial, “Part 1, Creating MIDlets”

(url:http://today.java.net/pub/a/today/2005/02/09/j2me1.html?page=last and

included in Appendix H as “References/j2meTut.pdf”)

[28] Link to forum for developers using mobile phones from Sony Ericsson:

http://developer.sonyericsson.com/thread.jspa?threadID=18866&tstart=0’

[29] M. P. Clark, ”Data Networks, IP and the Internet”, Wiley, 2003

[30] U. Black, ”IP Routing Protocols”, Prentice Hall, 2000

[31] K. Moldeklev, lecture notes TTM4150, 31.08.2004

[32] J. Moy, “OSPF protocol analysis”, July 1991

[33] S. Basagni, M.Conti, S. Giordano, I. Stojmenovic, ”Mobile Ad-hoc networking”,

IEEE Press, 2004

[34] Ericsson, “Baseband vs. Host Stack Implementation, Scatternet Part1”, June 2004

(included in Appendix H as “References/

ericsson_scatternet_whitepaper_040624.pdf”)

[35] L.Strand, A.Tønnesen, “Blåtann/802.15 (WPAN)”, 2004 (included in Appendix H

as “References/scatternetErTeori.pdf”)

[36] Sony Ericsson Developer Forum, 2006

(http://developer.sonyericsson.com/thread.jspa?messageID=76945𒲑)

[37] C.Perkins, ”RTP – Audio and video for the Internet”, Addison-Wesley, 2003

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

95

[38] Apple Developer Connection, ”QuickTime Streaming Guide”, 2006 (included in

Appendix H as “References/StreamingGuide.pdf”)

[39] Helix DNA Server Architecture, 2006 (URL: https://helix-

server.helixcommunity.org/2003/devdocs/architecture.html)

[40] Wikipedia - the free encyclopedia, 2006 (http://en.wikipedia.org/wiki/Mp3)

[41] F.Kargl, S.Ribhegge, S.Schlott, M.Weber, ”Bluetooth-based Ad-hoc networks for

voice transmission”, Proceedings of the 36th Hawaii International Conference on

System Sciences, 2003 (included in Appendix H as “References/BTAdHoc.pdf”)

[42] Java Community Process, ”JSR 259 Ad Hoc Networking API”, Draft 0.1.0, 2006

(included in Appendix H as “References/JSR259.pdf”)

[43] Telenor Mobil, UMTS performance, (URL:

http://telenormobil.no/tjenester/3g/merom.do) and Wikipedia: (URL:

http://en.wikipedia.org/wiki/Umts)

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

96

Appendix A: User manual

A-1 Software needed:

- Eclipse IDE, can be downloaded from

http://www.eclipse.org/downloads/index.php

- Java Bluetooth API, can be downloaded from

http://sourceforge.net/projects/bluecove/, but is included in Appendix H in

commonLib/ext

A-2 Starting the JVM version of ActorFrame on a PC

Below a list of things that must be done is order to get the prototype running. This list is

valid for both starting the part of the prototype just handling routing and also the part

playing the streamed mp3. Enabling MP3 support is outlined in Appendix B and this

must be done to get the streaming of the mp3 to work.

- Follow the instructions in Appendix A in [11] to install the Java Bluetooth API

- Open Eclipse and make a new workspace, for example “ActorFrame”.

- Right click on white field in the “Package explorer” and choose “Import..”.

Import the file called “EclipseRouting.zip” to install the part that handles routing

or import “EclipseStreaming.zip” (essentially the same packages, except that

EclipseStreaming is configured to act as the device receiving the StreamMsg’s

and has enabled the graphical user interface used to send requests for an MP3) to

install the part handling playback from Appendix H and click next. Your screen

should then look something like this:

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

97

Figure A-1: Screenshot that shows how the screen should look like

If there are build path errors:

- Right click on the project called no.ntnu.item.prosjekt2005, click on properties,

and choose “Java Build Path”. The paths to the Libraries need to be edited.

Choose the correct path to each of the libraries (“Edit..”): j2ee.jar, jdom.jar, log4j-

1.2.12.jar, org.mortbay.jetty.jar and BlueCoveJSR82-Patched-By-Benhui-net.jar,

included in Appendix H (commonLib).

- Right click on the project called no.ntnu.item.test, click on properties, and choose

“Java Build Path”. The paths to the j2ee.jar library need to be edited. Choose the

correct path to /commonLib/ext/j2ee.jar (from commonLib included in Appendix

H)

To run the prototype - find the folder called se.ericsson.eto.norarc.standalone in the

project called no.ntnu.item.prosjekt2005. Right click on StandAlone.java, choose

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

98

“Run as” and click on “Run...”. Double-click on “Java-application”, which appears

as an alternative under “Configurations”. Then this is what you should see:

Figure A-2: Screenshot showing how the screen should look like

Now you must click on “Browse…” under “Project”. Choose no.ntnu.item.test, click

“OK” and click “Run”. The prototype should now start. Remember that the mobile device

and the router should be connected before the streaming module is started. This way one

ensures that all routing information is available for the streaming module, so that

streaming can start 60 seconds after the module is started.

To enable exchanging of routing information the GATEWAY_IP_ADDRESS in

AFProperties.properties included must be changed. The desktop computer which installs

the “EclipseStreaming.zip” package must set this field to the IP address of the desktop

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

99

computer that installed the “EclipseRouting.zip” package. To do this open

AFProperties.properties and change the GATEWAY_IP_ADDRESS field:

Figure A-3: Screenshot showing which field to change in AFProperties.properties

A-3 Starting the MIDletActorFrame version on the mobile phone:

This does not necessarily require as much configuration, but it requires that you can

transfer a JAR file to the mobile phone and install the MIDlet.

Procedure:

- Extract the zip file called “StreamMIDlet.zip” in Appendix H on your computer.

Transfer “NyMAF.jar” from <<your path>>/ NyMAF /bin/ NyMAF.jar to the

mobile, and install it.

- Start the installed MIDlet (StreamMIDlet)

If the router part of the prototype is running the desktop computer running the router and

the mobile device running the installed MIDlet should connect. When connected the

streaming module of the prototype can request an mp3 from the mobile phone.

If one wants to test if the mobile device at hand can handle more audio data than the P900

one can try to change the code in StreamCS.java in <<your path>>/

NyMAF/src/actor/stream/StreamCS.java. Here instructions are included as to what

variables can be changed to test if the device can handle more audio data.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

100

To run this new edited version of the code a new MIDlet has to be made. In this thesis

Wireless Toolkit was used, and in Appendix C an example on how to make a MIDlet is

shown.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

101

Appendix B: Enabling MP3 support in J2SE

To enable MP3 support three libraries must be available: jl1.0.jar (Java Layer 1.0),

mp3spi1.9.4.jar and tritonus_share.jar (all included in Appendix H). These are all

libraries made to enable playback of mp3 files in J2SE, and they are all freeware.

Enabling mp3 support is done by including the jar files in the CLASSPATH. In Windows

XP this is done by the following steps: “Control Panel” � “Performance and

maintenance”�“System” � the tab called “Advanced” � “Environmental variables.

This screen looks like this:

Figure B-1: Changing the environment variables

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

102

Now mark the CLASSPATH field and press the “Edit” button:

Figure B-2: Changing the classpath

Add the following to the classpath: <<your path>>/<<filename.jar>>, where filename is

either jl1.0, mp3spi1.9.4 or tritonus_share. <<Your path>> is where the .jar files are

stored on the computer.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

103

Appendix C: Software and tools

Mainly two tools were used: Eclipse IDE and Sony Ericsson Wireless Toolkit. In addition

a text editor was used to write the code for the mobile application, which was compiled

and packed into a MIDlet using Wireless Toolkit. Below an outline on how to make a .jar

file from the code included in Appendix H is given.

C-1 Make a JAR file from java code

Follow the steps:

1. Install the Sony Ericsson Wireless Toolkit (download from:

http://developer.sonyericsson.com/site/global/docstools/java/p_java.jsp)

2. Open the KToolbar by following these steps (Windows XP): “Start”�”All

programs”�”Sony Ericsson”�”J2ME SDK”�”WTK 2”�”KToolbar”.

3. Choose “New project…”. Set project name to whatever you want, and set MIDlet

class name to “application.Stream.StreamMIDlet”. Create project.

4. Extract “StreamMIDlet.zip” from Appendix H. Copy the src from <<extracted

path>>/NyMAF/ to <<path where Sony Ericssson WTK is installed>>/

SonyEricsson/J2ME_SDK/PC_Emulation/WTK2/apps/NyMAF. Now the project

created in 3 has java code. Do changes in code mentioned in A-3.

5. In KToolbar, choose “Project”�”Package”�”Create package”

6. Now the .jar file is made and is located here: <<path where Sony Ericssson WTK

is installed>>/

SonyEricsson/J2ME_SDK/PC_Emulation/WTK2/apps/NyMAF/bin/NyMAF.jar

Following these steps the code can be changed to for example test if the mobile device at

hand can handle more audio data than the P900, as explained in Appendix A-3.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

104

Appendix D: Changes in BluetoothListener.java

Some changes were made in BluetoothListener.java in both ActorFrame and

MIDletActorFrame. This was done to make sure that device discovery/service discovery

continued after having connected to one device. A complete outline is not given here –

only a brief look at the changes.

When the work on this thesis started the search for devices in BluetoothListener.java did

not continue when a connection to a device was established. This had to be changed so

that although a service was found and a connection was established a device discovery

process must be started. By comparing the serviceSearchCompleted method of

BluetoothListener.java this change is illustrated.

Before:

public void serviceSearchCompleted(int transId, int complete){

 log("service discovery completed with return code:"+complete);

 log(""+services.size()+" services are discovered");

 serviceReturnCode = complete;

 if(!serviceDiscoveryOK){

 btlistener.wakeup();

 }

 else{

 searchIndex = 0;

 }

 }

As can be seen here the device discovery process stops if services have been discovered.

This and some other things were changed, as shown in figure D-1. For example if all the

devices have been searched for services and no service has been discovered a new device

discovery is started. If a service has been found (serviceDiscoveryOK=true) and all

devices has been searched for services a new device discovery starts – this makes sure

device/service discovery is continuously running on the device.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

105

Figure D-1: New code for BluetoothListener.java

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

106

Appendix E: Printouts from testing

Below figures belonging to chapter 6.2.2 is given:

The beginning of a streaming session:

Figure E-1: Transfer speed per StreamMsg fluctuates

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

107

Transfer speed stabilizes after some StreamMsg’s:

Figure E-2: Transfer speed stabilizes after some StreamMsg’s have been received

Average transfer speed:

Figure E-3: The average transfer speed is calculated to approximately 103 kbps

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

108

Printouts from the desktop computer (device(2) in figure 31, chapter 6.2.1):

Figure E-4: Printouts available on device (2) (figure 31, chapter 6.2.1)

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

109

Printouts from the second desktop computer (device(3) in figure 31, chapter 6.2.1):

Figure E-5: Printouts available on device (3) (figure 32)

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

110

Appendix F: Calculations in MediaClass.java and

RouterMsg.java

The calculations are really quite simple, and have been made valid only if the mp3

streamed is split in two.

Calculation of average transfer speed (MediaClass.java):

Figure F-1: The calculations of average transfer speed in MediaClass.java (only in the ActorFrame

package)

As can be seen time is stored after the first StreamMsg is received and after the last

StreamMsg is received. The length of part 1 and part 2 of the split mp3 is also stored.

Knowing data length and transfer time allows us to calculate the average transfer speed.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

111

Transfer speed per StreamMsg (RouterMsg.java):

Figure F-2: The calculations of transfer speed per StreamMsg in RouterMsg.java (only in the ActorFrame

package)

Here the same principle is used. We know how much data one StreamMsg contains and

the transfer time can be calculated. This way the transfer speed is calculated.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

112

Appendix G: Code samples from the prototype

 Code from StreamCS.java on the mobile phone; shows how a request for an MP3 is

handled:

Figure G-1: Screenshot shows instantiation of variables and how a part of the mp3 is read into an
InputStream

Here instantiation of variables is shown. In addition it is shown that some wait periods

had to be put in to avoid the prototype application from crashing. Also how to read a part

of the mp3 into an InputStream is shown.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

113

Figure G-2: Screenshot shows how messages audio data is put into StreamMsg’s and sent to the requestor

Normally audio data the size of the defined chunk size is read into the audio byte array,

and thereafter put into a StreamMsg and sent to the requestor. If there is less than the

chunk size available (the rest of the file has been sent) one must take this into

consideration.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

114

Code from TestBluetoothCS.java and MediaClass.java (with inner class

PlayThread) on the desktop computer:

Figure G-3: The StreamMsg’s are received and handled by the MediaClass (from TestBluetoothCS.java)

Shows how the StreamMsg’s are received and how they are passed on to the MediaClass.

Figure G-4: Messages are added to the buffer vector (from PlayThread, inner class of MediaClass.java)

After receiving the StreamMsg it is added to the buffer vector. If a big enough buffer is
ready one can start to play back the mp3.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

115

Figure G-5: Must retrieve audio data from the buffer vector. If no audio data – buffering is done (from
PlayThread, inner class of MediaClass.java)

When starting playback one must retrieve the audio data from the buffer vector and make

an InputStream. If the buffer vector does not contain any audio data buffering is done.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

116

Figure G-7: After audio data is retrieved and read into an InputStream the InputStream is wrapped into an

AudioInputStream. (from MediaClass.java)

This screenshot shows how one wraps the InputStream from the previous screenshot into

an AudioInputStream and converts the audio format if it is unknown. Thereafter some

operations are done and one is ready to play back the audio data.

NTNU 2006 Bluetooth enabled Peer2Peer services in ActorFrame

117

Appendix H: Attachments included on CD

• EclipseRouting.zip – Needed to run a desktop computer purely as a router

• EclipseStreaming.zip – Includes configurations that enables the desktop computer
to stream mp3 files

• The MP3 files – not split

• References – references used in the thesis

• commonLib - .jar files necessary to run ActorFrame

• mp3support - .jar files necessary to enable mp3 support in J2SE

• intellbth.dll - .dll file necessary to enable Bluetooth

• mp3split – trial version of “Easy MP3 split”; a software used to split mp3’s to
several parts

