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Winterthurerstrasse 190, 8057 Zürich, Switzerland
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Abstract1

2

1. Measurement error and other forms of uncertainty are commonplace3

in ecology and evolution and may bias estimates of parameters of inter-4

est. Although a variety of approaches to obtain unbiased estimators are5

available, these usually require the formulation of an explicit (parametric)6

model for the error-prone variable, and a latent model for the unobserved7

(latent) error-free variable. In practice this is often difficult.8

2. We propose to generalize the simulation extrapolation (SIMEX) tech-9

nique, a heuristic approach to correct for measurement error, to situations10

where it is difficult to explicitly formulate an error model or latent model11

for a variable of interest. We illustrate the idea with the example of error12

in pedigrees. Pedigree errors cause error in estimates of inbreeding coef-13

ficients and the relatedness matrix, thus biasing estimates of inbreeding14

depression or heritability. Instead of formulating error models for inbreed-15

ing coefficients or the relatedness matrix, we directly apply the SIMEX16

idea to the pedigree. The initially known error proportion in the pedi-17

gree is progressively increased, all models are refitted, and the observed18

trend in the quantities of interest is extrapolated back to a hypotheti-19

cal error-free pedigree to obtain bias-corrected estimates. We tested this20

pedigree-SIMEX (PSIMEX) method with simulated pedigrees and with21

data from a free-living population of song sparrows.22

3. The simulation study indicates that the PSIMEX estimator is almost23

unbiased for inbreeding depression and heritability, and that it has a much24

lower mean squared error (MSE) than the naive estimator. In the appli-25

cation to the song sparrows, the error-corrected results could be validated26

against the actual values thanks to the availability of both an error-prone27

and an error-free pedigree. The results indicate that bias and MSE are28

reduced by PSIMEX. For easy accessibility of the method, we provide the29

R-package PSIMEX.30

4. By transferring the SIMEX philosophy to error in pedigrees, we have31

illustrated how this heuristic approach can be generalized to situations32

where explicit error models are difficult to formulate. Thanks to the sim-33

plicity of the idea, many other error problems in ecology and evolution34

might be amenable to SIMEX-like error correction methods.35

Keywords: Heritability, inbreeding coefficient, inbreeding depression, misassigned36

paternities, pedigree reconstruction, relatedness, SIMEX, uncertainty.37
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Introduction38

Measurement error and other forms of uncertainty in variables of interest are com-39

monplace in ecology and evolution, and there is thus a need for methods and practical40

tools to account for such errors in statistical models (see e. g ., Solow, 1998; Macgre-41

gor et al., 2006; Reid et al., 2014; Steinsland et al., 2014; Wright et al., 2017; Mason42

et al., 2018). Measurement error can arise from countless sources in a wide range43

of studies, for example in the form of location error in telemetry and animal move-44

ment research (Montgomery et al., 2011; McClintock et al., 2014), error during the45

collection of phenotypic data (Hoffmann, 2000; Dohm, 2002; Macgregor et al., 2006;46

van der Sluis et al., 2010; Ge et al., 2017), misclassification in detection models and47

capture-recapture studies (Guillera-Arroita et al., 2014; Guélat and Kéry, 2018), or48

error caused by spatial variability or uncertainty in the observation of climate vari-49

ables (Bishop and Beier, 2013; Stoklosa et al., 2014) or biodiversity metrics (Haila50

et al., 2014; Mason et al., 2018).51

When variables measured with error or estimated with uncertainty are used as ex-52

planatory variables in statistical analyses, parameter estimates may be biased (e. g .,53

Fuller, 1987). To obtain unbiased parameter estimates, statistical models need to54

account for measurement error (see for example Gustafson, 2004; Carroll et al., 2006;55

Buonaccorsi, 2010, for an extensive treatment of frequentist and Bayesian measure-56

ment error correction techniques). Error correction methods always require that the57

error mechanism is known, which typically means that the error distribution and its58

parameters (e. g ., the error variance or the misclassification rate) must be specified59

prior to correcting for the error. In addition, some techniques require that latent (so-60

called “exposure”) models specify the distributions of the unobserved (latent), true61

variables, in particular when errors are modeled in a Bayesian framework (Muff et al.,62

2015; Ponzi et al., 2018). However, the error-generating mechanisms that blur true63

variables can be rather complex, and specifying a model for the unobserved variables64

may also not be very straightforward. Consequently, it can be difficult or even practi-65

cally impossible to formulate and fit a fully parametric model to obtain error-corrected66

estimates.67

A general, heuristic method to correct for measurement error, which is also ap-68

plicable in situations where a latent model for the unobserved variable is missing, is69

the simulation extrapolation (SIMEX) method. SIMEX was originally introduced by70

Cook and Stefanski (1994) to correct for measurement error in continuous covariates71

of regression models, and was later expanded to account for a broader range of re-72

gression models and error structures, such as non-additive error models (Eckert et al.,73

1997), misclassification error in discrete covariates or the response of regression mod-74

els (Kuechenhoff et al., 2006), or to heteroschedastic error in covariates (Devanarayan75
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and Stefanski, 2002). SIMEX is based on the rationale that more error leads to more76

bias in the estimated regression coefficients, and that progressively adding more error77

can reveal a pattern of the magnitude of the bias in dependence of the magnitude of78

the error. Based on this pattern, the algorithm extrapolates in the direction of less79

error, until the error-free estimate is reached. Thanks to its straightforward imple-80

mentation without the need to formulate a model for the unobserved variable and81

its intuitive interpretation, SIMEX has been used extensively, with some applications82

also in ecology (e. g ., Solow, 1998; Gould et al., 1999; Hwang and Huang, 2003; Mel-83

bourne and Chesson, 2006). The possibility to cover a wide range of statistical models84

and error structures renders SIMEX a very general approach.85

The main goal of this paper is to illustrate how the SIMEX approach can be further86

generalized to situations where it is not only difficult to specify the latent model for87

the unobserved variable, but also to find an explicit (e. g ., parametric) model for the88

error in a specific covariate. This occurs, for example, when the error mechanism does89

not directly act on a certain variable, but on a lower level of the data. The example90

that provided the motivation for this work is error in individual-specific values of91

inbreeding, given by the inbreeding coefficient f . Inbreeding coefficients are often used92

as a covariate in regression models to estimate the magnitude of the (usually negative)93

effects of inbreeding on fitness-related traits, denoted as inbreeding depression (Keller94

and Waller, 2002; Charlesworth and Willis, 2009). Inbreeding coefficients can be95

derived from pedigrees, but pedigrees are often erroneous. In free-living organisms,96

one of the major sources of pedigree error are incorrect paternities, when observed97

(social) behavior is used as a basis to assess parentage, but extra-pair paternities98

obscure the actual (genetic) relationships, leading to misassigned paternities (Keller99

et al., 2001; Griffith et al., 2002; Senneke et al., 2004; Jensen et al., 2007). These100

misassignments do not only affect the relatedness estimates of parents with their101

offspring, but all relatedness estimates among their descendants and their relatives.102

Consequently, the pedigree-based relatedness matrix A and the inbreeding coefficients103

of the individuals contain errors. We thus expect biased estimators for inbreeding104

depression (Keller et al., 2002; Visscher et al., 2002; Reid et al., 2014), but also for105

quantitative genetic measures that rely on the correctness of A, most prominently106

estimators of heritability (Keller et al., 2001; Senneke et al., 2004; Charmantier and107

Reale, 2005).108

While it is difficult to formulate explicit parametric error models for inbreeding109

coefficients or relatedness matrices when there are misassigned paternities, it is rel-110

atively straightforward to increase the error at the pedigree level and to repeatedly111

estimate the quantitative genetic measures with different levels of error. This is where112

the SIMEX idea enters: Instead of increasing the error variance of a continuous co-113

variate as in the traditional SIMEX, we start from a known proportion of misassigned114

4
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paternities and then successively increase this proportion in the pedigree to obtain115

information about the bias in quantitative genetic estimates (such as inbreeding de-116

pression or heritability) as the pedigree error is aggravated. In a second step, the117

observed trend upon increasing the error proportion is extrapolated back to that of a118

hypothetical error-free pedigree. This algorithm, which we will refer to as pedigree-119

SIMEX (PSIMEX) in the following, circumvents the formulation of an error model at120

the level of the inbreeding coefficients or the relatedness matrix. The only prerequisite121

to apply PSIMEX is that the proportion of misassigned paternities, as well as their122

distribution in the actual pedigree (e. g ., proportions varying over time), are known.123

Here, we test the validity of the PSIMEX approach with different simulated pedi-124

gree topologies, and show that the method can substantially reduce or eliminate125

the bias in estimates of heritability and inbreeding depression. We then apply the126

PSIMEX algorithm to an empirical data set from a population of song sparrows,127

where apparent paternities (observed from social behavior) and actual (genetic) pa-128

ternities are not always corresponding. Since paternities were determined both socially129

and genetically in this population, we were able to compare the PSIMEX estimates130

of heritability and inbreeding depression derived from the apparent pedigree to the131

estimates derived from the actual pedigree. Our application to the song sparrow data132

suggests that the PSIMEX method performs well not only in simulations but also133

with real field data. To facilitate the use of PSIMEX, we provide the novel R-package134

PSIMEX (Ponzi, 2017).135

Theory136

The original SIMEX algorithm137

We start by outlining how SIMEX works in its simplest form, as originally proposed

by Cook and Stefanski (1994). Assume that a continuous variable of interest x is

blurred by classical additive measurement error, such that only w = x + u can be

observed, where the measurement error u is assumed to be independent of the latent

variable x and distributed as u ∼ N(0, σ2
u) with error variance σ2

u. Further assume

that w instead of the unobservable x is used as a covariate in a simple linear regression

model, y = α + βww + ε. This is a typical measurement error, or errors-in-variables

problem, known to lead to a biased regression parameter estimate, whenever σ2
u > 0

(Fuller, 1987; Carroll et al., 2006). Using σ2
w = σ2

x + σ2
u and the assumption that

the error u is independent of x, it is quite straightforward to see that the error-prone

regression parameter βw is an estimator of

βw =
σ(w, y)

σ2
w

=
σ(x, y)

σ2
x + σ2

u

,

5
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which is less than the true slope βx (from the regression of y on x) by an attenuation138

factor λ = σ2
x/(σ

2
x + σ2

u), so that βw = λβx. Although measurement error leads to139

underestimated effect sizes in this simple linear regression case, attenuation is not140

a general pattern. Even relatively standard regression models may yield upwardly141

biased parameter estimates, for example when an error-prone covariate is correlated142

with another covariate, in the presence of interactions, or in probit regression (Carroll143

et al., 2006; Freckleton, 2011; Muff and Keller, 2015).144

To obtain estimates of the true slope βx instead of the biased βw, the SIMEX145

algorithm is based on the heuristic that more error will generally lead to more bias. By146

systematically increasing the error in a simulation (SIM) step and then extrapolating147

(EX) the pattern of change in parameter estimates with increasing error backward, one148

approximates the parameter that one would obtain if there was no error in the data.149

Fig. 1 depicts the SIMEX idea. In the case of classical additive measurement error in150

a continuous covariate introduced above, the error variance σ2
u is artificially increased151

by adding more random error to the covariate of interest. For each error level (i. e.,152

each predefined increase of the error variance), the procedure is iterated B times and153

regression parameters and standard errors are estimated and stored for each iteration.154

In the extrapolation phase, the observed trend upon increasing error is extrapolated in155

the direction of less error, and an error-corrected SIMEX estimate is obtained for zero156

error. The choice of the functional form for the extrapolation function is important,157

but it has been shown that, under rather general conditions, a function exists that158

leads to consistent estimators of the true parameters (Stefanski and Cook, 1995).159

Unfortunately, this function is rarely known, which is why SIMEX remains partially a160

heuristic method. In many applied problems, however, linear and quadratic functions161

have been shown to give approximately consistent and numerically stable results (e. g .,162

Kuechenhoff and Carroll, 1997; Carroll et al., 2006, pp. 108-110). Standard errors for163

error-corrected estimates are also obtained by an extrapolation step, using the same164

functional form for the extrapolation as for the point estimates, thereby accounting165

for the sampling error of the B simulations plus the standard errors that are obtained166

from each of the B regressions. Details about the computation of the standard error167

in the SIMEX algorithm are given in Appendix 1. In addition, the reader is referred to168

Stefanski and Cook (1995) and Apanasovich et al. (2009). Alternatively, the bootstrap169

could be used to obtain standard errors, but this is computationally extremely costly,170

because the application of SIMEX itself already requires that the model is iteratively171

refitted many times (Apanasovich et al., 2009).172

To apply the SIMEX algorithm and to know when zero error is reached, the initial173

error model (e. g ., u ∼ N(0, σ2
u)) and error model parameter(s) (e. g ., the value of σ2

u)174

must be known, while we do not need a latent model for the unobserved covariate x175

itself (e. g ., x ∼ N(0, σ2
x)). The error model defines the mechanism according to which176

6
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more error must be generated in the simulation phase, and the parameter value defines177

the fixed point from where back-extrapolation begins. Incorrect assumptions about178

the error model or error parameter(s) may result in a biased simulation mechanism179

and an incorrect extrapolation function and, therefore, may yield parameter estimates180

that are over or under-corrected. In the worst case, correction may be in the wrong181

direction. Thus, to use SIMEX – or, indeed, any measurement error correction tech-182

nique – it is crucial to have a good knowledge of the error model and the error model183

parameters, obtained for example through repeated measurements or validation data.184

SIMEX is a rather universal method that results in a substantial bias reduction185

in the estimators in the majority of applications. Successful bias reduction has been186

demonstrated for various error mechanisms in linear, logistic or log-linear mean mod-187

els, also in the presence of random effects (e. g ., Wang et al., 1998; Apanasovich et al.,188

2009). However, there are some particular cases, such as regression in the presence of189

collinearity among predictors or correlation among errors, where the bias reduction190

is not considered sufficient and other methods might be preferable (e. g ., Fung and191

Krewski, 1999; Hwang and Huang, 2003).192

Extensions of SIMEX193

Since the original contribution by Cook and Stefanski (1994), SIMEX has been ex-194

tended to account for different types of errors and models. Examples include non-195

additive error models (Eckert et al., 1997), heteroschedastic error variances (Deva-196

narayan and Stefanski, 2002), the mixture of classical and Berkson error models (Car-197

roll et al., 2006), clustered data (Lin and Carroll, 2000), or frailty models (Li and Lin,198

2003). Another extension is the so-called misclassification-SIMEX (Kuechenhoff et al.,199

2006), which accounts for error in discrete variables by increasing the misclassification200

probabilities in the simulation phase, and extrapolating back to zero misclassification.201

These extensions highlight the flexibility of SIMEX in situations where standard error202

modelling procedures are challenging to implement. The extension we suggest here203

covers the case when the error mechanism does not act on the variable itself, but on204

an underlying structure as in the case of error in the pedigree of a study population.205

SIMEX for pedigrees: PSIMEX206

We now describe the extension of the SIMEX idea to the case of pedigree error,207

denoted as PSIMEX. The procedure starts from an initial, known proportion of208

misassigned parentages that occur in the pedigree, denoted as ζI (e. g ., ζI = 0.1209

for 10% error), and then randomly generates additional misassigned parentages to210

obtain error levels ζ > ζI . To this end, randomly selected parents are replaced by211

connecting the offspring to another individual according to a known error-generating212

7
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mechanism (e. g ., some parents might be more likely to be chosen than others, see213

below). Importantly, to achieve a desired error proportion ζ > ζI of misassigned214

parents, we cannot simply pick a proportion of ζ − ζI parents and replace them,215

because this may include parents that were already incorrectly assigned, so that the216

effective proportion of error would be too low. To account for this circumstance, the217

actual proportion of additional misassignments needed at each step is calculated from218

the equation219

1 − ζX =
1 − ζ

1 − ζI
, (1)

where ζX is the effective error proportion that has to be added to obtain a nominal220

error level of ζ. As an example, assume that the initial parentage error rate is ζI = 0.17221

and that the aim is to increase this proportion to ζ = 0.30 (0.17+0.13). If only222

a proportion of 0.13 of the parental relations is randomly picked and reassigned,223

some parents that were already misassigned will be randomly misassigned again. The224

effective error proportion is then less than 0.30. Equation (1) shows that we need to225

pick and re-assign ζX = 1 − 1−0.30
1−0.17 = 0.16 of the parents to obtain an expected error226

proportion of 0.30.227

For each error proportion ζ the procedure is repeated a fixed number of B (e. g .,228

100) times, and for each b = 1, 2, . . . , B, the pedigree is recalculated including the229

newly misassigned connections. All the relevant quantities, such as inbreeding coef-230

ficients and the relatedness matrix, are newly derived each time from the pedigree231

and are then used to fit a model that estimates the quantity of interest Θ̂b(ζ), such232

as inbreeding depression or heritability. The algorithm then averages over the B233

values of Θ̂b(ζ) to obtain the estimate Θ̂(ζ) = B−1
∑B

b=1 Θ̂b(ζ) for error proportion234

ζ. The procedure is repeated for a sequence of values ζ > ζI , which thus allows235

to estimate a functional dependence between Θ̂(ζ) and ζ. The estimate at zero er-236

ror Θ̂(0), obtained by extrapolating in the direction of decreasing error, corresponds237

to the error-corrected estimate denoted as Θ̂simex. Algorithm 1 reports a schematic238

explanation of the method.239

Knowledge of the initial error proportion ζI and the mechanisms leading to this240

value are necessary when applying PSIMEX. An intrinsic assumption of the simu-241

lation phase, when additional error is generated, is that the same error-generating242

mechanism is used as in the observed data. As an example, the percentage of misas-243

signed parents may fluctuate over time with fluctuating population size or sex ratio.244

Or misassignments might affect solely fathers and occur within the same generation,245

so it might be logical to assume replacement of only fathers with random individu-246

als chosen from the same generation. Such structural aspects of the error-generating247

mechanisms must be taken into account in the PSIMEX procedure, because the rela-248

tionship between error and bias may otherwise not reflect the true trend. Examples249

8
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of the effects of incorrect assumptions about the initial error proportion or the error250

structure are given in Appendix 1 (Sections 6 and 7).251

In PSIMEX, it is even less straightforward than in the standard SIMEX to derive252

a theoretical justification for a functional form of the extrapolation function. We253

therefore rely here on polynomial extrapolation functions that have been found to254

give stable and approximately consistent results in many setups (e. g ., Kuechenhoff255

and Carroll, 1997; Kuechenhoff et al., 2006). We describe how we select among them256

in later sections of the manuscript.257

258

Simulation step:

for each paternity error rate ζ do

for B number of simulations do
select a proportion of ζX individuals in the pedigree according to (1);

replace their parents with random individuals according to the assumed

error mechanism;

recalculate the new pedigree;

derive quantities of interest from the new pedigree;

estimate Θ̂b(ζ) using the quantities from the new pedigree;

end

average across simulations Θ̂(ζ) = B−1
∑B

b=1 Θ̂b(ζ);

end

Extrapolation step:

Estimate the functional dependency between Θ̂(ζ) and ζ;

Θ̂simex = Θ̂(0)

Algorithm 1: PSIMEX procedure

259

Quantitative genetic measures260

To illustrate how the PSIMEX idea works, we apply it to the estimation of two261

important quantitative genetic parameters, heritability and inbreeding depression.262

Heritability quantifies the proportion of phenotypic variance in a trait that is due263

to additive genetic factors, which is for example relevant to predict the response to264

selection (Lynch and Walsh, 1998). Inbreeding depression quantifies the reduction in265

fitness of offspring resulting from matings among relatives, which is key to understand-266

ing mating system evolution and dispersal (Keller and Waller, 2002; Charlesworth and267

Willis, 2009).268

Both quantities can be estimated by fitting (generalized) linear mixed models269

to phenotypic or fitness data, using the so called animal model (Henderson, 1976;270

Lynch and Walsh, 1998; Kruuk, 2004). For a continuous trait yij with (repeated)271

9

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
measurements j for individuals i, the animal model can be written as272

yij = µ+ x>ijβ + βffi + ai + idi +Rij , (2)

where µ is the population mean, xij is the vector of covariates for individual i at the jth273

measurement occasion, β is a vector of fixed effects, fi is the inbreeding coefficient of274

individual i, which reflects how related an animal’s parents are, and βf is the respective275

fixed effect, with a negative slope indicating the presence of inbreeding depression276

(Lynch and Walsh, 1998). The last three components of Equation (2) are random277

effects, namely the additive genetic effects (or breeding values) ai with dependency278

structure (a1, . . . , an)T ∼ N(0, σ2
AA), the independent effects for the animal identity279

idi ∼ N(0, σ2
PE) accounting for the permanent environmentally-induced differences280

among individuals, and an independent Gaussian residual term Rij ∼ N(0, σ2
R) that281

captures the remaining (unexplained) variability. The dependency structure of the282

breeding values ai is given by the additive genetic relatedness matrix A (Lynch and283

Walsh, 1998), which, four our purposes here, is derived from the pedigree. The entry284

(i, j) of A is 2 · θij, where θij is the probability that an allele drawn at random from285

individual i will be identical by descent to an allele drawn at random from individual j,286

also known as the coefficient of co-ancestry. In the same framework, the narrow-sense287

heritability h2 is defined as288

h2 =
σ2
A

σ2
A + σ2

PE + σ2
R

. (3)

Not all components of the animal model (2) are always necessary. For example,289

the breeding values ai are often omitted when estimating inbreeding depression, al-290

though this can result in biased estimates of inbreeding depression and is thus not291

recommended (Reid et al., 2008; Becker et al., 2016). Also, inbreeding fi is not always292

included as a covariate when estimating heritability, although it is generally recom-293

mended to account for potentially higher phenotypic similarity between individuals294

with similar levels of inbreeding (Reid et al., 2006; Reid and Keller, 2010), but also295

because ignoring the effects of inbreeding may lead to biases in estimates of the addi-296

tive genetic variance σ2
A (Wolak and Keller, 2014). On the other hand, model (2) can297

be further expanded to include additional variance components, such as the maternal298

variance σ2
M , or nest or time effects (Kruuk and Hadfield, 2007; Wilson et al., 2010).299

Moreover, it can be formulated as a generalized linear mixed model (GLMM), for300

example for binary or count traits. We will use a binary GLMM in our application to301

the song sparrow data below.302

In the presence of misassigned parentages in the pedigree, the relatedness matrix303

A will necessarily suffer from error, which, in turn, may bias the estimates of the304

variance components and thus the estimates of heritability h2. Similarly, the accurate305

10
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quantification of the individual-specific inbreeding coefficients fi will be hampered306

by misassigned parentages in the pedigree, which will result in biased estimates of307

inbreeding depression βf . Note that, for the scope of this paper, we assume the308

error to be present solely in the form of pedigree error. Therefore, the only entities309

in model (2) that suffer from error are the covariate fi and the matrix A, while310

all covariates that are not depending on knowledge of the pedigree are assumed to311

be observed correctly. Without the PSIMEX approach we would need to formulate312

error models for fi and A, which may be very challenging. In fact, the error in the313

inbreeding coefficients does not follow any standard distribution, and the direction314

and magnitude of the error seems to depend on the true value of fi (see Section 2.1 in315

Appendix 1), which is in contrast to the standard assumptions of most error modeling316

techniques. It is even less clear how an error model for the entries in A would look317

like. Increasing the error in the pedigree via the PSIMEX algorithm is therefore a318

very convenient and practical alternative.319

Simulation study320

To illustrate and test the PSIMEX procedure we carried out a simulation study with321

a set of simulated pedigrees, generated using the function generatePedigree() from322

the R package GeneticsPed (Gorjanic and Henderson, 2007). We then introduced in-323

creasing proportions of misassignments of fathers, which we replaced with a randomly324

chosen male individual from the same generation, using a constant misassignment325

probability across all generations in the pedigree. After quantifying the effects of the326

errors on estimates of heritability and inbreeding depression, we applied the PSIMEX327

procedure to obtain error-corrected estimates of the two measures, starting from dif-328

ferent initial error proportions.329

Effects on heritability330

To understand the effect of pedigree error on heritability, we generated a total of 50331

different pedigrees, each with 50 mothers and 50 fathers in a total of 30 generations.332

We simulated phenotypic traits yi for each individual i in each pedigree using the333

animal model334

yi = µ+ βsexsexi + ai +Ri , (4)

with µ = 10, βsex = 2, (a1, . . . , an)> ∼ N(0, σ2
AA) and independent Ri ∼ N(0, σ2

R),335

using σ2
A = 0.3 and σ2

R = 0.1, which corresponds to a heritability of h2 = σ2
A/(σ

2
A +336

σ2
R) = 0.75. Breeding values ai were generated with the rbv() function from the R337

package MCMCglmm (Hadfield, 2010) that accounts for the dependency structure given338

by the relatedness matrix A from the pedigree.339
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For each pedigree, we then disrupted paternal assignments to obtain error pro-340

portions ζ ranging from 0 to 1.0 in steps of 0.1, and the procedure was repeated 100341

times for each error level and each pedigree. Estimates (posterior modes) of h2 were342

obtained by fitting model (4) with a Bayesian approach. For efficiency reasons, we343

used integrated nested Laplace approximations (INLA, Rue et al., 2009; Holand et al.,344

2013), but posterior distributions could alternatively be obtained from Markov chain345

Monte Carlo (MCMC) samples, for example by using the popular MCMCglmm package.346

For each pedigree and each error level, the naive ĥ2 was extracted together with its347

standard error. Following Wilson et al. (2010, Supplementary File 5), inverse gamma348

priors were used for all variance components, namely IG(1/2, σ2
P/2), where σ2

P is the349

total phenotypic variance of the trait, but the results were not sensitive to the prior350

choice. For example, we obtained the same results when assigning σ2
A ∼ IG(1/2, σ2

P/3)351

and σ2
R ∼ IG(1/2, σ2

P/6), which reflects a prior belief that a larger proportion of vari-352

ance is captured by the additive genetic component rather than by the environment.353

We also repeated the whole procedure with different heritabilities, namely h2 = 0.50354

and h2 = 0.25, by increasing the values of the environmental variance to σ2
E = 0.3355

and σ2
E = 0.9, respectively, while holding the remaining parameters constant.356

Effects on inbreeding depression357

Given that the relatedness structure and inbreeding in a population depend – among358

other things – on the effective population size and the variance in reproductive suc-359

cess (Reid and Keller, 2010), it seemed likely that the topology of the pedigree would360

influence the effects of pedigree error on inbreeding depression. We therefore consid-361

ered three different pedigree topologies that differed in reproductive skew and, hence,362

induced different levels of inbreeding in a population by simulating pedigrees with363

varying Ne/Nc ratios, where Ne is the effective population size and Nc is the census364

size (Frankham, 1995; Palstra and Fraser, 2012). The Ne/Nc ratios was modified by365

changing the number of reproductive males and females per generation, while keeping366

the population size in each generation constant at 100. In the first case, both num-367

bers of fathers and mothers per generation were set to 50, which led to Ne/Nc = 1,368

so that all individuals had offspring. As a consequence, the average degree of relat-369

edness among individuals was comparatively low, implying a low average inbreeding370

coefficient throughout generations. The second case corresponded to pedigrees with371

only 15 mothers and fathers per generation (Ne/Nc = 0.3) and the third case to pedi-372

grees with only 5 mothers and fathers per generation (Ne/Nc = 0.1). As the 100373

individuals of a generation thus originated from only 30 or 10 parents, respectively,374

the mean relatedness among individuals increased, and their matings thus led to more375

highly inbred offspring. Note that this change in pedigree structure does not affect376
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heritability estimates, which only depend on the initial variance components and not377

on the topology of the pedigree.378

Inbreeding coefficients fi were derived from the pedigree using the calcInbreeding()379

function from the R package pedigree (Coster, 2013). Fitness traits yi for individual380

i were then simulated according to381

yi = µ+ βsexsexi + βffi +Ri , (5)

with a population mean of µ = 10, sex effect of βsex = 2, coefficient for inbreeding382

depression βf = −7, and a residual term Ri ∼ N(0, 0.1). We generated 100 distinct383

error-free pedigrees for each of the three pedigree topologies, and each pedigree was384

then disrupted with error proportions ranging from ζ = 0 to 1.0 in steps of 0.1. This385

procedure was repeated 100 times for each error level and each originally generated386

pedigree, and in each iteration, the linear regression model (5) was fitted in a stan-387

dard likelihood framework, using as covariates the inbreeding coefficients fi that were388

derived from the erroneous pedigrees. The estimated inbreeding depression β̂f was389

stored in each iteration.390

Application of PSIMEX to simulated pedigrees391

To assess the performance of the PSIMEX algorithm in recovering error-free estimates392

of heritability and inbreeding depression, we selected one erroneous pedigree for each393

of the 100 that were initially generated for the analyses of the previous two subsections,394

and applied PSIMEX to the selected pedigree starting from initial error proportions395

of ζI = 0.1, 0.2, 0.3 and 0.4.396

In each case, we provided the algorithm with the known initial error proportion ζI397

and correct assumptions about the error mechanism, that is, random replacement of398

fathers with male individuals from the same generations and with constant misassign-399

ment probability across all generations in the pedigree. During the simulation phase,400

error was increased according to error proportions ranging from ζI to 1 in steps of 0.1,401

and inbreeding coefficients and the relatedness matrix were derived each time from402

the respective (erroneous) pedigree and then used to fit the model to estimate the403

quantity of interest with B = 100 iterations per error level. Error-corrected estimates404

Θ̂simex for h2 and βf were obtained by fitting a linear, a quadratic and a cubic ex-405

trapolation function to the trend upon increasing error proportions, and the function406

with the lowest AICc was retained. The results were compared to the corresponding407

naive estimates Θ̂naive that were obtained using the error-prone pedigrees to derive fi408

and A. The code for all simulations is given in Appendices 2 and 3.409
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Simulation results410

The effects of pedigree error on heritability411

Misassigned paternity error caused a clear decreasing trend in estimates of heritability,412

irrespective of the actual value of the heritability (h2 = 0.75, 0.50, or 0.25), with a413

continuous decline in the estimates as the error proportions increased (see Fig. 2 for414

h2 = 0.75 and Figs S4 and S5 in Appendix 1 for the other cases). This is a consequence415

of the decrease in the estimates of σ2
A due to the increasing pedigree error, which causes416

information loss in the relatedness matrix A.417

In our simulations, all mothers were always correctly assigned to their offspring.418

Thus, even when all paternities were assigned randomly (ζ = 1), we do not expect419

heritability estimates of h2 = 0, since at least half of the parent-offspring pairs in the420

pedigree were still correct. With all mothers assigned correctly and all fathers assigned421

incorrectly, one would expect heritability estimates to equal half the true heritability422

(the heritability estimate from a mother-offspring regression, Lynch and Walsh, 1998).423

This expectation was confirmed in the case of h2 = 0.50 and h2 = 0.25, where replacing424

all fathers led to average estimates of heritability equal to h2 = 0.26 and h2 = 0.11,425

respectively. However, for h2 = 0.75, we obtained an average heritability of h2 =426

0.44 (95% quantile interval from 0.40 to 0.49) for ζ = 1. This is higher than the427

expected h2 = 0.375, presumably because the misassigned fathers were, on average,428

still related to the true fathers due to the small population size (100 individuals per429

generation). We confirmed this interpretation by reducing the relatedness between430

true and randomly assigned fathers through increasing the number of individuals in431

each generation to 1000 in each pedigree. Doing so resulted in an average heritability432

estimate close to expectations (h2 = 0.37, 95% quantile interval from 0.34 to 0.40).433

The effects of pedigree error on inbreeding depression434

Interestingly, the trend in estimates of inbreeding depression depended on the struc-435

ture of the simulated pedigree (Fig. 3). Adding misassigned paternities to pedigrees436

with Ne/Nc = 1 (low average inbreeding) led to underestimation of inbreeding depres-437

sion, with a trend towards zero as the error proportion increased (Fig. 3a). An oppo-438

site pattern was observed in pedigrees with Ne/Nc = 0.1 (high average inbreeding),439

where the estimated inbreeding depression became stronger with increasing paternity440

error (Fig. 3c). Intermediate pedigrees with Ne/Nc = 0.3 showed an initial trend441

of increased inbreeding depression, followed by a decrease and a trend towards zero,442

resulting in a U-shaped pattern (Fig. 3b). The differences among these patterns may443

be due to the fact that the pedigree structure affects the consequences of randomly444

replacing fathers in a pedigree. In a pedigree that is characterized by few breeding445
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individuals in the population (i. e., Ne/Nc = 0.1) and, hence, high reproductive skew,446

randomly replacing fathers causes, on average, a decrease in estimated inbreeding447

coefficients. On the other hand, when reproductive skew is low (i. e., Ne/Nc = 1),448

random replacement of fathers leads to both higher and lower estimates of inbreed-449

ing. Consequently, the way in which pedigree error affects estimates of inbreeding450

depression may depend in complex ways on the pedigree structure.451

PSIMEX estimates of heritability and inbreeding depression452

The PSIMEX procedure yielded heritability estimates that were essentially unbiased453

for initial error proportions of ζI ≤ 0.3, irrespective of the true value of h2 (Fig. 4a454

and Tables 1a and S1). Even when starting from an initial error proportion as high as455

ζI = 0.4, the PSIMEX estimators were much less biased than the naive estimators that456

did not account for the error. Moreover, the PSIMEX estimators had a considerably457

lower mean squared error (MSE) compared to the naive estimators for all three cases458

and irrespective of the starting error (Tables 1a and S1). The quadratic extrapolation459

function had the smallest AICc in 96% of the cases for h2 = 0.75, 47% for h2 = 0.50460

and 32% for h2 = 0.25, respectively, and was thus chosen to obtain the PSIMEX461

estimate. The linear function was selected in in no case for h2 = 0.75, 47% of the462

cases for h2 = 0.50 and 62% for h2 = 0.25. The cubic function was selected in the463

remaining cases.464

PSIMEX also yielded estimates of inbreeding depression that were much closer to465

the simulated true values for all three pedigree topologies and initial error propor-466

tions (Fig. 4b and Tables 1b and S2). Even though the PSIMEX estimators were less467

consistent for larger ζI , they always considerably reduced the bias with respect to the468

corresponding naive estimators that ignored the error. As with estimates of heritabil-469

ity, the MSE was always much lower for the PSIMEX than for the naive estimators470

(Tables 1b and S2). The cubic extrapolation function had the smallest AICc and471

was thus chosen in 58%, 19% and 100% of the cases for pedigrees with Ne/Nc = 1,472

Ne/Nc = 0.3, and Ne/Nc = 0.1, respectively, whereas a quadratic extrapolation func-473

tion was selected in the remaining cases.474

Empirical example: Song sparrows475

Study population476

We also applied the PSIMEX approach to data from empirical study of a population477

of free-living song sparrows (Melospiza melodia) on Mandarte Island, Canada. Over478

more than 40 years, 31 generations of song sparrows have been monitored, yielding479

a pedigree of 6095 individuals, together with data on morphological and life history480
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traits. In our analyses we focused exclusively on adult birds and used only pedigree481

data from 1993 onwards, because individuals were not genotyped in the years before.482

For details on data collection and methods see Smith and Keller (2006).483

Thanks to the small population size (roughly 30 breeding pairs per season), pedi-484

gree data are essentially complete. However, because extra-pair matings are common485

(e. g ., Reid et al., 2014), the so-called apparent pedigree, which was inferred from ob-486

servations of parental care, is prone to misassigned paternities (wrong assignments487

of fathers), while maternities are correct, since all mothers are the genetic parents of488

the offspring they feed (Reid et al., 2014; Germain et al., 2016). Genetic information489

from 13 microsatellite loci has been used to assign each offspring its genetic father,490

yielding an almost exact reconstruction of the actual pedigree (Sardell et al., 2010).491

A comparison of the apparent and actual pedigrees used in our study here yielded an492

estimated proportion of 0.17 misassigned paternities. Note that this proportion differs493

from extra-pair paternity rates reported elsewhere, because we restricted the analysis494

to individuals with records of tarsus length and juvenile survival (2883 observations on495

1056 individuals for tarsus length, and 3472 individuals with one measurement each496

for survival, respectively). The circumstance that we have both an error-prone and497

an essentially error-free (actual) version of the same pedigree renders the song spar-498

rows an ideal study system to test the PSIMEX algorithm, because we can directly499

compare the naive (from the observed pedigree), actual (from the actual pedigree)500

and error-corrected estimates.501

PSIMEX for the song sparrow analyses502

Our analyses focused on the heritability of tarsus length and on inbreeding depression503

in juvenile survival, which is known to exhibit inbreeding depression in this population504

(e. g ., Reid et al., 2014). We applied PSIMEX to obtain error-corrected estimates505

of the heritability of tarsus length and the magnitude of inbreeding depression in506

juvenile survival from the apparent (error-prone) pedigree with a paternity error rate507

of ζI = 0.17. We assumed this proportion to be constant across generations, and508

that misassigned fathers were randomly selected from the same generation, although509

there is weak indication that extra-pair paternities over-proportionally involved paired510

territorial males (Sardell et al., 2010), and that the value of the focal trait itself may511

play a role (Firth et al., 2015). We assumed that matings were random, although512

relatively inbred animals might be slightly more likely to mate with closely related513

individuals (Reid et al., 2006). The corresponding estimates from the actual (error-514

free) pedigree served as a benchmark for the error-corrected estimates Θ̂SIMEX.515

To estimate heritability of tarsus length we fitted the model516

yij = µ+ βsexsexi + βffi + ai + idi +Rij , (6)
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where yij was the jth measurement of tarsus length for individual i, and sexi and517

inbreeding coefficient fi were fixed effects. Random effects were as defined in Equation518

(2). The model was fitted with INLA, and inverse gamma priors IG(1/2, 1/6σ2
P ) were519

used for the three variance components σ2
A, σ2

PE and σ2
R, and heritability was estimated520

as in Equation (3).521

On the other hand, juvenile survival is a binary trait indicating survival of an

individual from the age of six days to one year (1=yes, 0=no). We therefore used

a GLMM with the binary survival variable yi as outcome to estimate inbreeding

depression βf . The binary survival variable can be interpreted as the realization of a

slow count process, thus we used a complementary log-log (cloglog) link. The model

was thus given as

g[E(yi)] = µ+ βffi + βsexsexi + βyearyeari ,

where the expected value E(yi) = pi is the survival probability of individual i, and522

g is the complementary log-log link function. Besides the inbreeding coefficient fi523

and the sex of the individual, we also included the year a bird was born as a cate-524

gorical covariate. More complex models can be formulated, for example including an525

interaction term between sex and inbreeding (see Reid et al., 2014), but we ignored526

these extensions for the purpose of this paper. The model was fitted in a likelihood527

framework using lme4 in R, as in Reid et al. (2014).528

To obtain error-corrected PSIMEX estimates of h2 and βf , we set the number of529

iterations per error level to B = 100 and used error proportions ζ ranging from 0.2530

to 1.0 in steps of 0.1. Linear, quadratic and cubic functions were used to extrapolate531

to error-corrected estimates Θ̂simex of h2 and βf , respectively, and the function with532

lowest AICc was chosen as the “best” extrapolation function. In order to assess533

the quality of the standard errors derived from the extrapolation via the PSIMEX534

(as described in Appendix 1), we also ran a bootstrap with 50 iterations for the535

best fitting extrapolation function. We restricted the bootstrap to the analysis of536

inbreeding depression, since bootstrapping the animal model given in Equation (6) was537

too computationally intensive. The code for this application is given in Appendices 6538

and 7.539

Song sparrows results540

For both, heritability and inbreeding depression, bias and MSE were reduced by the541

PSIMEX estimators obtained from the best fitting (i. e., minimum AICc) extrapolat-542

ing functions. In both cases, the AICc-criterion suggested that a linear extrapolation543

function fitted the error trend best (Tables 2 and 3). Fig. 5 shows the trend of the544

simulated values for increasing error proportions, as well as the extrapolation to zero545
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error given by PSIMEX. Different extrapolation functions yielded quite different es-546

timates, which underlines the importance of the choice of the extrapolation function.547

The bootstrap on the error-corrected estimator of βf indicates that PSIMEX yields548

standard errors that are not too dissimilar from the true values, with a standard error549

of 0.80 derived from the linear extrapolation function, and a standard error of 1.02550

from the bootstrap, although it is of course difficult to draw definite conclusions from551

a single case.552

In line with the simulations, the naive h2 estimator was found to be an attenuated553

version of the actual value. A closer inspection of the estimates of the additive (σ2
A),554

residual (σ2
R) and permanent environmental (σ2

PE) variance components indicates that555

this is a consequence of a higher estimate of σ2
PE and a lower estimate of σ2

A when556

the apparent pedigree is used (Fig. S3 in Appendix 1). For inbreeding depression, the557

error in the apparent pedigree induced an attenuation bias in βf that was comparable558

to the case with Ne/Nc = 1 in the simulations (Fig. 5b). The song sparrow pedigree559

has an architecture with Ne/Nc ≈ 0.6, which corresponds to a value between the560

simulated cases with Ne/Nc = 1 and Ne/Nc = 0.3. It is, however, unclear if the561

patterns observed in the simulations are universal, in particular when traits are not562

continuous, like the binary juvenile survival trait studied here.563

Interestingly, pedigree error seemed to bias estimators of inbreeding depression564

more severely (in relative terms) than estimates of heritability. A potential reason565

for this difference is that information about inbreeding requires both parents to be566

known correctly, while at least some information about additive genetic effects can be567

obtained from a single correctly assigned parent.568

Discussion569

We have employed the case of pedigree error to promote a very general strategy to570

account for measurement error in ecology and evolution. By adapting the philoso-571

phy of the SIMEX approach, originally proposed to account for measurement error572

in continuous regression covariates (Cook and Stefanski, 1994), we illustrate how in-573

creasing error in the assignment of parents to their offspring in the pedigree can yield574

information about the resulting bias in parameters that are estimated in downstream575

statistical analyses, such as inbreeding depression or heritability. The observed trend576

with increasing error is then back-extrapolated to the hypothetical situation of zero577

error, yielding error-corrected, approximately consistent estimators for the parame-578

ters of interest. SIMEX is an intuitive way to assess and correct for the effects of579

any type of error in very general applications, especially when an explicit model for580

the unobserved component is difficult to formulate, and when it is thus not possible581

to embed an explicit error model directly in the statistical analysis. To facilitate the582

18

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
accessibility of the PSIMEX method, the code to perform all the analyses is provided583

via the novel R package PSIMEX, which is available from the CRAN repository (Ponzi,584

2017).585

We used simulation studies and a dataset from wild-living song sparrows to il-586

lustrate that the approach is successful in recovering error-corrected estimates of in-587

breeding depression and heritability in the presence of pedigree error. Interestingly,588

the simulations also revealed that pedigree error does not necessarily lead to atten-589

uated versions of quantitative genetic measures. In fact, inbreeding depression was590

over- or underestimated with increasing misassigned paternity error, and the direction591

of the bias depended on the pedigree topology. This result indicates that, without592

observing or simulating the actual effect of the error, the direction of the bias in593

the naive estimator cannot be known a priori, even in the simple case of completely594

random error. Encouragingly, the Θ̂simex estimates obtained through the PSIMEX595

procedure captured these effects correctly and had smaller bias and MSE than the596

naive estimates that ignore pedigree error. In the simulation study, the MSE was597

even considerably lower for PSIMEX than for the naive estimators, in particular for598

heritability, although it should be noted that the true standard errors are smaller than599

in most realistic situations. The application of the method to a wild population of600

song sparrows, where PSIMEX estimators could be compared to actual values derived601

from error-free pedigrees, confirmed that the method is performing well, with a reduc-602

tion in bias and MSE, and approximately correct standard errors (as verified with a603

bootstrap procedure for inbreeding depression), although with a bit more uncertainty604

in the estimators than the naive versions. This tradeoff between bias and variance is605

well known in measurement error theory (e. g ., Carroll et al., 2006, p. 62–63). Our606

view on this is that the lower uncertainty in the naive estimators is actually too op-607

timistic, because the information loss due to the error is not accounted for. Error608

correction yields less biased point estimates and more correct (i. e., wider) estimators609

of the actual uncertainty.610

An important prerequisite for error correction, not only in the context discussed611

here, is knowledge of the error-generating mechanism and the error model parame-612

ter(s), as otherwise error models are nonidentifiable (Fuller, 1987; Gustafson, 2005;613

Carroll et al., 2006). Unlike in the case of other error-correction techniques, however,614

the SIMEX approach does not require that an explicit model for the unobserved, true615

covariate without measurement error is formulated. Moreover, we have illustrated in616

this paper that the specification of an error model for the variable of interest can be617

circumvented by knowing the error generating mechanism at the lowest level of the618

data-generating process. In the case of PSIMEX, both the relatedness matrix A and619

the inbreeding coefficients fi of individuals are deduced from the pedigree, thus we did620

not have to formulate error models for A or fi, which would have been challenging,621
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as illustrated in Appendix 1 (Section 2.1). Instead, we could directly work with the622

error structure in the pedigree. Of course, this required that information about the623

underlying error generating mechanism and the error proportion in the pedigree was624

available. In our application to the song sparrows, we could approximately estimate625

the proportion of erroneously assigned fathers in the pedigree from a comparison of626

the error-prone and the error-free pedigree, and we assumed a random error mecha-627

nism where fathers are replaced with random individuals from the same generation628

(Reid et al., 2015).629

To obtain information about the error mechanism and error model parameters, it630

is crucial to collect data that allow the quantification of the error. False assumptions631

may lead to biased SIMEX estimators, as illustrated in Appendix 1 (Sections 6 and632

7). Ideally, error estimation should be part of the study design, because it is much633

harder to obtain error estimates retrospectively. Quite often it will be sufficient to634

take error-prone and error-free measurements on a small subset of all study subjects.635

In the case of pedigrees, for example, it can be useful to genetically verify a subset636

of all parents in order to estimate the error proportion. In the absence of precise637

information about the error, similar studies or comparable populations might provide638

useful information, which can be used as prior knowledge. Of course, transportation639

of such information across study systems bears the risk that potentially inappropriate640

but untestable assumptions enter the modelling process, and it is therefore advisable641

to obtain some error estimates in the actual study system for comparison.642

An important aspect of SIMEX procedures is the choice of the extrapolation func-643

tion. Since it is not straightforward to derive a theoretical justification for a functional644

form of the extrapolation function for PSIMEX, we used polynomial extrapolation645

functions, because these are known as stable and approximately consistent alterna-646

tives to more complicated functions (e. g ., Kuechenhoff et al., 2006, p. 109). We647

suggest to select the “best” extrapolant via the AICc criterion, which should balance648

between model complexity and model fit to obtain good predictions.649

The PSIMEX methodology can be adapted to correct for different error mecha-650

nisms in the pedigree, for example when misassignments do not only affect fathers but651

also mothers, when the proportion of misassigned paternities varies across the study652

period, or when the replacement of fathers is more likely to occur with phenotypically653

or genotypically similar individuals. These error generating mechanisms can easily be654

handled by the PSIMEX algorithm; see Appendix 1 (Section 7) for some examples.655

Moreover, the PSIMEX idea can be applied to virtually any quantity that is derived656

from pedigrees, for example to error-correct the estimates of variance parameters, but657

also to estimates of sexual selection, linkage, penetrance, the response to selection,658

genetic correlations, etc. Note, however, that we assumed that only pedigree error659

is present and that all variables that are not related to information derived from660
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the pedigree are error-free. If measurement error in other variables is present at the661

same time, a possible strategy would be to apply the PSIMEX approach to a model662

that accounts for the (parametric) error in such covariates, for example to a Bayesian663

hierarchical error model (see e. g ., Ponzi et al., 2018).664

Although we have employed and illustrated the SIMEX algorithm only for the665

particular application to pedigree error, the same generic principle can be adapted666

to many other situations. As an example, the SIMEX procedure could be used to667

account for location error in habitat selection studies, where parameters of interest,668

such as measures of distance and velocity, classifications of an animal’s activities, or669

an animal’s presence or absence at a given location may be erroneous (Ganskopp670

and Johnson, 2007; McKenzie et al., 2009). Instead of formulating an error model671

for the biased covariates themselves, it might often be easier to focus directly on the672

location error, using information on the accuracy of the measurements (e. g ., GPS673

error) and the mechanisms that might obscure it, which can be used to obtain error674

model parameters for a SIMEX correction.675

Conclusions676

The conceptual simplicity of the SIMEX philosophy allows its implementation even677

in situations when it is difficult or impossible to formulate or incorporate an explicit678

error model for an erroneous variable. The only prerequisites to apply the SIMEX679

algorithm are that the error-generating mechanism is known, and that it is possi-680

ble to make the error “worse” in a controllable, quantitative way. We believe that681

many other applications in ecology and evolution will benefit from this simple and682

practical approach to obtain error-corrected parameter estimates in the presence of683

measurement error.684
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Figure 1: Illustration of the SIMEX procedure. The error level is increased in pre-
defined interval steps, the parameter of interest is estimated at each error level, and
a function is fitted on the observed trend upon increasing error. An error-corrected
estimate is obtained by extrapolating the function back to an error level of zero.
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Figure 2: Effect of increasing the paternity error proportion on heritability in the
simulated pedigrees with actual heritability h2 = 0.75. Mean estimates of heritability
ĥ2 from 100 simulations for each pedigree with increasing error rates ζ = 0.1, ..., 1 are
shown with their 5% to 95% sample quantile intervals at each error proportion. A
clear decreasing trend is observed in the estimate as the error proportion increases.

30

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le

0.0 0.2 0.4 0.6 0.8

−10

−9

−8

−7

−6

−5

−4

−3

−2

(a)

0.0 0.2 0.4 0.6 0.8

(b)

0.0 0.2 0.4 0.6 0.8

(c)

1

Ne Nc = 1 Ne Nc = 0.3 Ne Nc = 0.1

Error proportion(ζ)

β̂f

Figure 3: Effects of increasing paternity error proportion on inbreeding depression in
simulated pedigrees with each of the three different pedigree topologies (Ne/Nc = 1,
0.3, and 0.1). Mean estimates of inbreeding depression β̂f from 100 simulations with
increasing error rates ζ = 0.1, ..., 1 are shown with their 5% to 95% sample quantile
intervals at each error proportion.
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a) Heritability

h2 = 0.75 h2 = 0.5 h2 = 0.25

Estimator Bias MSE Bias MSE Bias MSE

Naive −0.039 0.0016 −0.038 0.0016 −0.030 0.0010
PSIMEX −0.003 0.0002 0.011 0.0003 0.0002 0.0002

b) Inbreeding depression

Ne/Nc = 1 Ne/Nc = 0.3 Ne/Nc = 0.1

Estimator Bias MSE Bias MSE Bias MSE

Naive 0.919 0.864 −0.394 0.183 −0.463 0.243
PSIMEX −0.031 0.031 0.041 0.032 −0.003 0.037

Table 1: Mean bias and MSE in the naive and PSIMEX estimates from all simulations
for the three levels of heritability (a), and the three pedigree topologies for inbreeding
depression (b). The initial error proportion was ζI = 0.2, and the PSIMEX estimate
was always extracted using the extrapolating function with minimal AICc.
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Figure 4: Naive (Θ̂naive) and error-corrected (Θ̂simex) estimates of heritability and in-
breeding depression from one simulated pedigree per case. For the error-corrected
PSIMEX estimates, means and 95% confidence intervals from the simulations for
PSIMEX and naive estimates are reported. The dashed line represents the actual
simulated value for the respective pedigree. Four different estimates are given, corre-
sponding to four initial error proportions (ζI = 0.1, 0.2, 0.3 and 0.4). For heritability
(a), results are reported for values of heritability (i) h2 = 0.75, (ii) h2 = 0.5 and (iii)
h2 = 0.25. For inbreeding depression (b), results are reported for pedigree topologies
(i) Ne/Nc = 1, (ii) Ne/Nc = 0.3 and (iii) Ne/Nc = 0.1.
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Figure 5: Results of the PSIMEX procedure when error-correcting heritability of
tarsus length (a) and inbreeding depression of juvenile survival (b) in the song sparrow
dataset. The initial error proportion was ζI = 0.17. The trend upon increasing error
proportions is shown together with the extrapolated values obtained from the best
extrapolation function (linear). The naive and the actual estimates from the genetic
pedigree are also shown. PSIMEX estimates are much closer to the actual values than
the naive estimates both for heritability and inbreeding depression.
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Estimator ĥ2 95% CI Bias MSE AICc
Actual 0.503 0.401 to 0.596 - - -
Naive 0.469 0.371 to 0.571 −0.032 0.0036 -
PSIMEX (linear) 0.510 0.409 to 0.611 0.007 0.0026 −56.6
PSIMEX (quadratic) 0.522 0.423 to 0.622 0.0195 0.0035 −55.6
PSIMEX (cubic) 0.523 0.421 to 0.625 0.021 0.0041 −37.0

Table 2: Estimates of heritability (ĥ2) of tarsus length in the song sparrow dataset.
Actual, naive and PSIMEX estimates (using linear, quadratic and cubic extrapolation
functions) are reported together with their 95% credible intervals (CIs), as well as bias
and MSE with respect to the actual value. The linear extrapolation function was the
one with lowest AICc (in bold).

Estimator β̂f 95% CI Bias MSE AICc
Actual −4.90 −6.26 to −3.53 - - -
Naive −3.87 −5.33 to −2.40 1.03 1.62 -
PSIMEX (linear) −4.51 −6.07 to −2.95 0.39 0.79 −15.1
PSIMEX (quadratic) −4.58 −7.18 to −1.97 0.32 1.86 −6.7
PSIMEX (cubic) −4.13 −6.92 to −1.34 0.77 2.61 1.7

Table 3: Estimates of inbreeding depression (β̂f ) in juvenile survival in the song
sparrow dataset. Actual, naive and PSIMEX estimates (using linear, quadratic and
cubic extrapolation functions) are reported together with their 95% confidence in-
tervals (CIs), as well as bias and MSE with respect to the actual value. The linear
extrapolation function was the one with lowest AICc (in bold).
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