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Abstract17

18

1. Popular frameworks for studying habitat selection include resource-selection19

functions (RSFs) and step-selection functions (SSFs), estimated using logistic20

and conditional logistic regression, respectively. Both frameworks compare21

environmental covariates associated with locations animals visit with envi-22

ronmental covariates at a set of locations assumed available to the animals.23

Conceptually, slopes that vary by individual, that is, random coefficient mod-24

els, could be used to accommodate inter-individual heterogeneity with either25

approach. While fitting such models for RSFs is possible with standard soft-26

ware for generalized linear mixed effects models (GLMMs), straightforward27

and efficient one-step procedures for fitting SSFs with random coefficients are28

currently lacking.29

2. To close this gap, we take advantage of the fact that the conditional logistic30

regression model (i. e., the SSF) is likelihood-equivalent to a Poisson model31

with stratum-specific fixed intercepts. By interpreting the intercepts as a ran-32

dom effect with a large (fixed) variance, inference for random-slope models33

becomes feasible with standard Bayesian techniques, or with frequentist meth-34

ods that allow one to fix the variance of a random effect. We compare this35

approach to other commonly applied alternatives, including models without36

random slopes and mixed conditional regression models fit using a two-step37

algorithm.38

3. Using data from mountain goats (Oreamnos americanus) and Eurasian39

otters (Lutra lutra), we illustrate that our models lead to valid and feasible40

inference. In addition, we conduct a simulation study to compare different41

estimation approaches for SSFs, and to demonstrate the importance of includ-42

ing individual-specific slopes when estimating individual- and population-level43

habitat-selection parameters.44
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4. By providing coded examples using integrated nested Laplace approxima-45

tions (INLA) and Template Model Builder (TMB) for Bayesian and frequen-46

tist analysis via the R packages R-INLA and glmmTMB, we hope to make effi-47

cient estimation of RSFs and SSFs with random effects accessible to anyone in48

the field. SSFs with individual-specific coefficients are particularly attractive49

since they can provide insights into movement and habitat-selection processes50

at fine-spatial and temporal scales, but these models had previously been very51

challenging to fit.52

Keywords: Conditional logistic regression, glmmTMB, integrated nested Laplace53

approximations (INLA), multinomial regression, random effects, resource-selection func-54

tions, step-selection functions55

1 Introduction56

Ecologists have long been interested in understanding how animals select habitat and the57

resulting fitness consequences from different space-use strategies (Gaillard et al., 2010).58

Importantly, optimal behavioral strategies may depend on intrinsic factors specific to the59

individual, such as its age, sex, and body condition (Lesmerises and St-Laurent, 2017),60

as well as extrinsic factors, including climatic conditions (Raynor et al., 2017), local61

predator communities (Heithaus, 2001), competition for resources (Rosenzweig, 1991), or62

local availability of different habitat types (Mysterud and Ims, 1998). Interestingly, indi-63

viduals from the same species often adopt different habitat-use strategies (e. g., Leclerc64

et al., 2016), suggestive of behavioral phenotypes or “personalities” (Stamps, 2007); these65

differences may also have a strong genetic component (Jaenike and Holt, 1991). Thus,66

understanding the causes and consequences of among-animal variation in habitat selec-67

tion is key to addressing fundamental questions in ecology and evolution, including the68

extent to which individuals develop specialized, individual niches that are narrower than69

that of the population (Bolnick et al., 2002; Sheppard et al., 2018).70
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Modern biotelemetry devices have made it possible to monitor habitat use of multiple71

animals at finer temporal and spatial scales, providing unique opportunities to study72

variation in individual behaviors and habitat-selection strategies (Cagnacci et al., 2010).73

Popular publications by Gillies et al. (2006) and Dingemanse and Dochtermann (2013)74

have argued for the use of random effects (i. e., random parameters drawn from a common75

statistical distribution) to model individual variation in the context of habitat-selection76

and behavioral studies, respectively. Random effects allow individual coefficients to be77

“tied together” via an assumption that they come from a common population. These78

models offer a powerful approach to studying inter-individual variability, because they79

explicitly allow intercepts and/or slopes in the respective regression models to vary by80

individual, while at the same time taking advantage of the shared information that is81

present in the data from different individuals (Fieberg et al., 2009). An added benefit of82

these models is that they can accommodate non-independent data arising from having83

multiple observations on the same individual. By contrast, treating all observations as84

though they are independent would result in optimistic standard errors and confidence85

intervals, leading to what Hurlbert (1984) referred to as pseudoreplication.86

1.1 Habitat-Selection Analyses Using Resource-Selection and Step-87

Selection Functions88

Habitat-selection analyses typically compare environmental covariates at locations vis-89

ited by an animal to environmental covariates at a set of locations assumed available to90

the animal (Manly et al., 2002). Historically, most analyses of animal telemetry data91

focused on what Johnson (1980) called 3rd order selection, with available points sam-92

pled randomly or systematically from within an animal’s estimated home range. In the93

wildlife literature, the combined observed and available locations are typically analyzed94

using logistic regression, with specific focus on estimating the exponential of the linear95

predictor (with the intercept removed) referred to as a resource-selection function (RSF).96
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Warton and Shepherd (2010) provided context for interpreting RSFs by showing that97

slope parameters in logistic regression models are asymptotically equivalent to slope pa-98

rameters in an inhomogeneous Poisson point process (IPP) model. The IPP assumes99

that the intensity function is a log-linear function of the covariates, thus regression pa-100

rameters describe relationships between environmental covariates and the relative density101

of observed locations in space, assuming all locations in the spatial domain are equally102

accessible or available to the animal. Fithian and Hastie (2013) further showed that103

equivalence between logistic regression and an IPP only holds when the model is cor-104

rectly specified or when available points are “infinitely” weighted. Interestingly, several105

other modelling approaches, including the maximum entropy method (Maxent, Phillips106

et al., 2006), weighted distribution theory (Lele and Keim, 2006), and resource utilization107

functions (Millspaugh et al., 2006) have also been shown to be equivalent to fitting an108

IPP model (Aarts et al., 2012; Fithian and Hastie, 2013; Hooten et al., 2013; Renner and109

Warton, 2013).110

Recent methodological development has focused on modelling habitat selection at111

finer temporal and spatial scales, in part driven by concerns associated with serial auto-112

correlation of animal locations, as points close in time are also expected to be close in113

space (Arthur et al., 1996; Rhodes et al., 2005; Fortin et al., 2005). Recognizing that not114

all areas of the availability domain (typically the home range of the animal) are equally115

available at all time points, Fortin et al. (2005) suggested resampling step lengths (dis-116

tances between successive observed locations) and turn angles (deviations from previous117

bearings) to generate random movements and hence available points conditional on the118

previously observed locations. This process results in stratified datasets with a different119

set of available points associated with each observed location. The combined (stratified)120

observed and available location data are typically analyzed using conditional logistic re-121

gression, with the exponential of the linear predictor referred to as a step-selection func-122

tion (SSF). Forester et al. (2009), Duchesne et al. (2015) and Avgar et al. (2016) further123
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refined this approach and demonstrated the utility of using common statistical distri-124

butions to model and simulate step lengths and turn angles. Specifically, they showed125

that it was possible to fit the equivalent of a biased random walk model when random126

points were generated using specific statistical distributions and when movement-related127

covariates (e. g., turn angles, step length, log-step-length) were included in conditional128

logistic regression models. These methods have recently been implemented in the amt129

R package (Signer et al., 2019), making SSFs an exciting and accessible approach for130

studying habitat selection at the scale of the movement step.131

1.2 Use of Random Effects in Resource-Selection and Step-Selection132

Functions133

Gillies et al. (2006) recommended using logistic regression models with individual-specific134

random intercepts to account for unequal sample sizes, and individual-specific random135

coefficients (briefly denoted as random coefficients or random slopes) to account for136

individual-specific differences when fitting RSFs. Similarly, Hebblewhite and Merrill137

(2008) recommended random intercepts to account for correlation within nested group-138

ings of locations from socially-structured populations (e. g., repeated observations from139

individual wolves and observations from wolves in the same pack). Gillies et al. (2006)140

and Hebblewhite and Merrill (2008) further emphasized that random coefficients could141

be used to model variation in habitat selection attributable to differences in habitat142

availability, referred to as a functional response (Mysterud and Ims, 1998; Beyer et al.,143

2010). Soon thereafter, Matthiopoulos et al. (2011) and Aarts et al. (2013) developed a144

formal framework for modelling functional responses using a combination of random ef-145

fects and fixed effects constructed from the first few moments (mean, variance) of habitat146

covariates.147

Most modern statistical software platforms provide methods for fitting generalized148

linear mixed effects models (e. g., logistic regression with random intercepts and slopes),149
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and therefore, allow for the possibility of studying individual-specific variation in studies150

focused on 3rd order habitat selection. However, a literature search that we carried151

out on all papers that cited Gillies et al. (2006), published between January 2016 and152

May 2018 and claiming to use random effects in an RSF (n = 69), revealed that less153

than 20% of all publications included individual-specific random slopes in their models,154

while the majority of them only specified an individual-specific random intercept. This is155

interesting because random intercept-only models are often not sufficient to account for156

pseudoreplication (Schielzeth and Forstmeier, 2009). Further, in applications of RSFs,157

the variability in the intercepts is largely driven by differences in the ratio of used to158

available points, which is under control of the analyst (Fieberg et al., 2010). We will159

come back to this point later in the paper.160

In the context of SSFs, Duchesne et al. (2010) argued for incorporating individual-161

specific slopes to allow the influence of habitat covariates to depend on what is locally162

available to the animal (i. e., for functional responses). Unfortunately, conditional logistic163

regression models that include individual-specific random slopes are extremely challenging164

to fit, especially with large numbers of strata (Craiu et al., 2011). To circumvent this165

problem Craiu et al. (2011) developed a two-step estimation approach to fitting mixed-166

effects models. This approach works well when the number of strata per individual167

is large, but frequently fails (or leads to numerical instabilities) when one or several168

individuals do not have enough variability in the encountered locations. As one of its169

main limitations, it is not possible to use this two-step approach in cases where one or170

more individuals do not encounter all factor levels of a categorical predictor.171

1.3 Objectives172

Our overarching goal of this paper is to provide both new and established users of RSFs173

and SSFs with a coherent framework to formulate and fit the respective statistical mod-174

els. In particular, the objectives are to: 1) reiterate the importance of including random175
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slopes in habitat-selection models, both for RSFs and SSFs; 2) reiterate the importance176

of weighting available points when fitting logistic regression models to estimate RSFs;177

and 3) present computationally efficient and consistent methods for fitting both RSFs178

and SSFs with random effects. To allow fitting of SSFs, we propose to reformulate the179

conditional logistic regression model as a (likelihood-equivalent) Poisson model, where180

stratum-specific intercepts are included and efficiently modeled as a random effect with a181

fixed large prior variance. We will explain why fixing the variance is important, and why,182

for the same reason, random intercept variances in RSFs should also be fixed at a large183

value, instead of estimated. We illustrate how all models discussed here can easily be fit184

using R (R Core Team, 2018), either employing a Bayesian approach via integrated nested185

Laplace approximations (INLA, Rue et al., 2009) using the R-interface R-INLA, or in a186

frequentist approach using Template Model Builder (TMB) via the glmmTMB R-package187

(Brooks et al., 2017; Magnusson et al., 2017). To illustrate the efficiency and accuracy188

of these methods, we reanalyzed data from a study on mountain goats (Oreamnos amer-189

icanus ; Lele and Keim, 2006) and Eurasian otters (Lutra lutra; Weinberger et al., 2016),190

and carried out a simulation study to compare the reformulated Poisson model for SSFs191

to existing two-step procedures. We provide ready-to-use R code to replicate all of our192

analyses (Muff et al., 2019).193

2 Background on analyzing RSFs and SSFs194

Both RSFs and SSFs quantify habitat selection by comparing environmental covariates195

associated with locations that animals visit (encoded as y = 1) with environmental196

covariates at a set of locations assumed available to the animal (encoded as y = 0). The197

main difference between the RSF and the SSF approach is that the latter conditions (i. e.,198

“matches”) the set of available points on the current location of the animal, resulting in a199

stratified dataset, whereas RSFs use a single set of (pooled) available locations for each200
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animal, with these locations usually generated by sampling randomly or systematically201

from within an animal’s home range (e. g., Manly et al., 2002). The sampling scheme202

used to generate available points dictates how the respective data should be analyzed203

(Warton and Aarts, 2013): While RSFs can be estimated by fitting a standard logistic204

regression model, SSFs need to account for the fact that a unique set of available points205

is chosen for (or “matched to”) each observed location, which can be accomplished by206

fitting a conditional logistic regression model. In the latter case, each observed location207

thus forms a stratum along with its set of matched available locations. We give a short208

overview of the two different regression models that are typically used to estimate RSFs209

and SSFs.210

2.1 RSFs: logistic regression model211

Assume we have n = 1, . . . , N individuals and a set j = 1, . . . , Jn of used and available212

locations for animal n. In the absence of any random effects, the probability that a point213

ynj with covariate vector xxxnj is used, Pr(ynj = 1 |xxxnj) = πnj, can then be modeled as214

logit(πnj) = βββ>xxxnj , ynj ∼ Bern(πnj) , (1)

with logistic (logit) link and covariate vector βββ that is the target of interest (Warton and215

Shepherd, 2010). Standard generalized linear model (GLM) software, such as the glm()216

function in R, can be used to estimate βββ. An extension of model (1) to include individual-217

specific random effects is conceptually straightforward, and the respective mixed model218

can for example be fit by the glmer() function from the lme4 package (Bates et al.,219

2015).220

It is important to note that, unlike prospective sampling designs involving a binary221

response variable, the ynj in RSF designs are not Bernoulli random variables. Rather, the222

Bernoulli likelihood formed by (1) results in a set of estimating equations that produce223
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consistent estimators of βββ in an equivalent log-linear IPP model (Warton and Shepherd,224

2010). This equivalence holds whenever the RSF model is correctly specified, or when225

the number of available points is sufficiently large (Warton and Shepherd, 2010). How-226

ever, using a sufficiently large number of available points is computationally inefficient,227

and in fact Fithian and Hastie (2013) elegantly show that the same convergence limit228

is obtained when instead infinite weights are assigned to all available points. For the229

respective weighted logistic regression approach, the likelihood for the available “back-230

ground” samples (i. e., y = 0) is weighted with a weight W , while the used points (y = 1)231

keep weight 1. Fithian and Hastie (2013) demonstrated how, for W → ∞, the likeli-232

hood converges to the IPP likelihood. In our experience values of W = 1000 typically233

lead to good approximations, but larger values may be tried to check for convergence.234

Weights are easily incorporated into most GLM software (e. g., glm() or glmer()). We235

do not reiterate the logistic regression likelihood here, but refer the reader to Hosmer and236

Lemeshow (2000) for more on logistic regression, and to Warton and Shepherd (2010)237

and Fithian and Hastie (2013) for a description and justification of its use for studying238

habitat selection.239

2.2 SSFs: conditional logistic regression model240

Assume we have n = 1, . . . , N individuals with realized steps at time points t = 1, . . . , Tn,241

with j = 1, . . . , Jn,t locations that were either used or available to animal n at time step242

t. Note that, for notational simplicity, we may replace Jn,t by J , because it is common243

practice to match a constant number of available points to each observed location (e. g.,244

10 available for 1 used location). Used and available locations associated with each step245

form a choice set or stratum. This implies that the probability the nth animal selects246

the jth unit with habitat-specific covariates xxxntj at time point t, given the set of possible247
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choices xxxnt· = {xxxnt1, . . . ,xxxntJ}, is248

Pr(yntj = 1 |xxxnt·) = πntj =
exp(βββ>xxxntj)∑J
i=1 exp(βββ>xxxnti)

, (2)

with covariate vector βββ that is the target of estimation. A popular and computationally249

efficient way to fit the discrete choice model (2) in the context of habitat-selection studies250

is by interpreting it as a specific version of the stratified proportional hazards model251

(Manly et al., 2002; McDonald et al., 2006). In the absence of random effects, this “Cox252

trick” provides a framework for efficient inference using Maximum Likelihood (ML), for253

instance by using the clogit() function from the survival package in R (Therneau,254

2015b), although any function to fit the Cox proportional hazard survival model can be255

used.256

3 Mixed effects modelling of RSFs and SSFs257

3.1 The importance of random slopes258

Virtually all habitat-selection studies monitor multiple animals, and the respective data259

are combined and modeled jointly. However, it is well known that such a sampling design260

generally leads to pseudoreplication due to non-independence among the data points from261

the same individual (see e. g., Gillies et al., 2006; Duchesne et al., 2010; Fieberg et al.,262

2010). Generalized linear mixed models (GLMM) offer a powerful approach to prop-263

erly account for correlated measurements taken on the same animal, while also allowing264

for differences in the intercepts and/or slopes among animals due to individual-specific265

preferences and/or differences in habitat availability that induce functional responses in266

habitat selection (Mysterud and Ims, 1998; Hebblewhite and Merrill, 2008; Matthiopoulos267

et al., 2011; Aarts et al., 2013; Matthiopoulos et al., 2015).268

Our literature review on the RSF papers mentioned in the introduction suggests that269
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it is common practice to include individual-specific random intercepts, but not random270

slopes when modelling habitat selection. This is remarkable for three reasons: First271

and most importantly, random intercept-only models cannot (by definition) account for272

among-individual variation in the regression slopes, that is, they cannot account for func-273

tional responses. Further, the slope estimator from a logistic model that omits random274

effects is a biased estimator of the mean slope in the population, a fact that has been275

discussed repeatedly in the statistical and ecological literature (e. g., Fieberg et al., 2009;276

Muff et al., 2016). Second, omitting individual-specific random slopes when they actually277

do vary between individuals induces too little uncertainty in the estimated parameters278

(e. g., Schielzeth and Forstmeier, 2009). Consequently, it is possible that researchers end279

up with too high confidence in their potentially biased estimators of effect sizes. The280

problem is particularly acute when there are lots of observations for each animal, which281

is typically the case in telemetry studies. And third, the intercept in RSF models reflects282

the probability of a location being used when all covariates are set equal to 0, and is283

thus heavily influenced by the ratio of used versus available points (Fieberg et al., 2010).284

Given that it is common to use a predefined, constant ratio of used to available points285

for all animals (for example 10 available points per used point), it is not surprising that286

random intercept estimators will sometimes return an among-animal variance component287

of 0. We demonstrate all of these issues by comparing RSF models with and without288

random slopes that we fit to data from mountain goats in Section 4.1. Moreover, the289

first two issues are also relevant for SSF models, as pointed out by e. g., Duchesne et al.290

(2010), and are illustrated here with an analysis of Eurasian otters and with a simulation291

study in Sections 4.2 and 4.3, respectively.292

3.2 Computational challenges for SSFs293

Fitting a GLMM is generally known to be a difficult and computationally demanding task,294

and the user can choose among various model fitting procedures (an overview is given295
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by e. g., Bolker et al., 2009, Table I). Note, however, that while standard logistic mixed296

models (i. e., RSFs) can be fit with several available software packages and functions (such297

as lme4::glmer()), random effects modelling is even more challenging for SSFs, that is,298

for conditional logistic regression, especially when the number of cases per stratum is299

greater than 1, or when the strata are unbalanced (Craiu et al., 2011). Given that300

proportional hazard (i. e., survival) models are commonly used to analyse SSFs with only301

fixed effects, it seems natural to interpret random-effects SSF models as survival models302

with random effects (denoted as frailty models), for which R solutions, for example coxme303

or mclogit, exist (e. g. Therneau, 2015a; Elff, 2016). Unfortunately, computation quickly304

becomes prohibitive for telemetry data with large numbers of strata.305

To address these challenges, several approaches to circumvent direct random effects es-306

timation have been proposed, such as the use of generalized estimating equations (GEEs,307

Craiu et al., 2008) or a two-step estimation approach (Craiu et al., 2011). GEEs, how-308

ever, provide marginal parameter estimates that are analogous to those obtained from309

models without random effects, which are known to underestimate the true effect sizes310

experienced by individual animals (Lee and Nelder, 2004; Fieberg et al., 2009; Muff311

et al., 2016); thus, we do not generally recommend them for habitat-selection studies.312

The two-step approach is an efficient alternative that combines estimates of individual-313

specific regression parameters from standard ML methods for independent data with an314

expectation-maximization algorithm in conjunction with conditional restricted maximum315

likelihood (REML). It is available via the Ts.estim() function from the TwoStepCLogit316

package in R (Craiu et al., 2016). This approach is an approximate method that works317

best when the number of strata per animal is large (Craiu et al., 2011). However, the318

data must fulfill certain regularity conditions, namely all animals must have encountered319

all levels of a categorical covariate, as it is otherwise not possible to obtain the individual-320

specific estimates from the first step that are needed for the second step of the procedure.321

Despite this major limitation of the two-step estimation method, it is one of the most322
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popular approaches for fitting SSFs with random effects, while fitting such models is323

currently considered unfeasible with standard GLM or GLMM software.324

3.3 An efficient alternative for SSFs325

We will now illustrate how relatively simple model reformulations allow one to fit mixed326

conditional logistic regression models in a standard GLMM. Starting (for notational327

simplicity) with the fixed effects-only model introduced in equation (2), we take advantage328

of the fact that the conditional logistic regression model is a special case of a multinomial329

model (e. g., McCullagh and Nelder, 1989), and that as such it is likelihood-equivalent to330

the Poisson model331

E(yntj) = µntj = exp(αnt + βββ>xxxntj) , with yntj ∼ Po(µntj) (3)

(Whitehead, 1980; McCullagh and Nelder, 1989; Chen and Kuo, 2001), where αnt is the332

stratum-specific intercept of animal n at time point t. Since a predefined fixed number of333

used points (usually one) is allowed within a stratum, the probability of use, conditional334

on the used and available locations in the stratum, is335

Pr(yntj = 1 |xxxnt·) = πntj =
exp(αnt + βββ>xxxntj)∑J
i=1 exp(αnt + βββ>xxxnti)

=
exp(βββ>xxxntj)∑J
i=1 exp(βββ>xxxnti)

, (4)

where the second equality holds because the stratum-specific intercepts αnt cancel out.336

This illustrates that model (3) is maximizing the same likelihood-kernel as the condi-337

tional logistic model given in (2). Thus model (3), which is sometimes denoted as the338

conditional Poisson model, and conditional logistic regression models give equivalent pa-339

rameter estimates, β̂ββ, and also the same standard errors (for a mathematical derivation340

see e. g., McCullagh and Nelder, 1989, Chapter 6.4.2). Note that these considerations are341

not limited to the presence of only one used point per stratum, but are valid for multi-342

nomial data with any number of cases per stratum, and even hold when the different343
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strata in a dataset contain an unequal number of cases. In addition, the reformulation344

also works when random effects are added to the linear predictors in (3), in which case345

any convenient GLMM software can be used to fit the resulting mixed Poisson model.346

This option to fit SSFs has already been pointed out by Duchesne et al. (2010), but it347

has only rarely been used to analyze mixed conditional logistic regression models that348

arise from habitat-selection studies (but see Bruun and Smith, 2003).349

The obvious disadvantage of formulation (3) – and a potential reason why the ap-350

proach is rarely used – is that a large number of stratum-specific fixed intercepts αnt351

must be estimated, which might again make the procedure prohibitive for movement352

data with tens of thousands of realized steps, given that each step induces a stratum and353

thus a separate intercept. Luckily, the αnt are not actually of interest, and it is computa-354

tionally more convenient and efficient to interpret them as a random effect αnt ∼ N(0, σ2
α).355

However, it is well known that estimates of random effects will, on average, be too small356

in absolute terms, a phenomenon that is known as “shrinkage towards an overall mean” in357

the statistics literature (e. g., Robinson, 1991; Snijders and Bosker, 1999). While shrink-358

age has, in general, many desirable properties, it would introduce a bias into the SSF359

analysis (see illustration in Section 4.3). The trick to avoid shrinkage in the αnt values,360

while still taking advantage of the efficiency of a random effects model, is to not allow361

the variance σ2
α to be freely estimated, but instead to fix it at a large value to ensure362

that stratum-specific intercepts are not pulled towards 0, but are estimated essentially363

like fixed-effects parameters.364

This idea is easy to implement in a Bayesian approach, where such information can be365

specified in the priors. In fact, exactly such models with fixed intercept variance have been366

previously implemented in a Bayesian setting under the multinomial modelling framework367

see e. g., the WinBUGS manual section 9.7 (Lunn et al., 2000). Adding random effects368
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to the linear predictor leads to the mixed Poisson model369

E(yntj) = µntj = exp(αnt + βββ>xxxntj + uuu>nzzzntj) , with yntj ∼ Po(µntj) , (5)

with individual-specific random slopes uuu>n , design vector zzzntj (typically a sub-vector of370

xxxntj), and αnt ∼ N(0, σ2
α) with σ2

α fixed at a large value, for example 106. It may be371

prudent to verify that the results are robust when even larger values of σ2
α are used.372

For the Bayesian analyses presented here, we will take advantage of INLA via its R373

interface R-INLA. INLA avoids sampling by accurately approximating posterior marginal374

distributions (Rue et al., 2009), and it has therefore become a popular and efficient alter-375

native to Markov chain Monte Carlo (MCMC) or likelihood-based inference, in particular376

for GLMMs (Fong et al., 2010). Importantly, while fixing a variance in a Bayesian anal-377

ysis is straightforward and natural, it is of course also possible in a likelihood framework.378

Model (5) can therefore also be fit with a frequentist GLMM software, provided that379

there is an option to constrain σ2
α to a fixed, large value to avoid shrinkage of the in-380

tercepts. To our knowledge, this is currently not implemented in glmer() in the lme4381

package in R, but it is possible with the glmmTMB package (Brooks et al., 2017; Magnusson382

et al., 2017). Consequently, we will fit frequentist GLMMs using glmmTMB::glmmTMB()383

to estimate SSFs according to model (5).384

It may seem a logical consequence to suggest infinitely weighted Poisson regression to385

estimate the model parameters of equation (5) for SSFs, given that infinitely weighted386

logistic regression is recommended for RSFs. However, the assumptions that hold for387

RSFs are violated because strata (which are the sampling-units of SSFs) only contain388

very few available points (y = 0), thus the large-sample properties of RSFs do not apply389

to the case of SSFs, and convergence to the IPP is therefore not guaranteed (see e. g.,390

assumptions of Theorems 3.2 and 3.3 in Warton and Shepherd, 2010). As a consequence,391

weighting introduces a bias, unless the use to availability ratio is very small. We will392

illustrate this point with a simulation (see Section 4.3 and Figure S1 in the Appendix).393
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3.4 Individual-specific intercepts in RSFs394

As mentioned in Section 3.1, the (individual-specific) intercept term in an RSF is largely395

determined by the sampling ratio of used and available points for each individual (Warton396

and Shepherd, 2010, Theorem 3.2). However, the intercept is also influenced by the397

probability that a point is used (versus available) for the case when all covariates are398

set equal to 0. If all covariates x in equation (1) have been mean-centered, for example,399

this reflects an “average” point in the habitat ensemble of all individuals. Thus, even400

in the presence of equal sampling ratios for all individuals, individual-specific intercepts401

may still vary due to differences in the distribution of habitat covariates within each402

individual’s home range (e. g., varying availability of woodland). Importantly, in the403

same way that the intercept is used to condition on habitat availability at the current404

position of an individual in an SSF, the intercept conditions on the habitat availability in405

the home range of the respective individual in an RSF. As a consequence, we recommend406

that individual-specific intercepts should not be shrunk towards an overall mean, but407

instead should also be given a large, fixed prior variance just like the stratum-specific408

intercepts in SSF models in Section 3.3.409

4 Applications410

The code and data for all analyses in this Section are available at the Data Repository411

of the University of Minnesota (Muff et al., 2019).412

4.1 Habitat selection of mountain goats: an RSF analysis413

To reiterate the problems with fitting random intercept-only models, we considered data414

collected from GPS-collared mountain goats in British Columbia, previously analyzed415

by Lele and Keim (2006) with fixed-effects-only models, and available in the Resource-416

Selection R package (Lele et al., 2017). This dataset consists of use and availability417
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locations for each of 10 different mountain goats, with a use to available ratio of 1:2 for418

each goat, and a total number of 6338 used points. Although such a low use to available419

ratio is generally considered inadequate (see e. g., Northrup et al., 2013), we employ the420

example here purely for illustration purposes. We first fit a RSF containing a single421

predictor, elevation (centered and scaled to have mean 0 and sd 1) along with a random422

intercept (variance not fixed) for each goat. The model was fit with an unweighted lo-423

gistic regression using glmmTMB::glmmTMB(), and returned a variance estimate for the424

among-animal variability in intercepts very close to 0 (Table 1, model M1), reflecting425

that the differences in the intercepts are mainly determined by the use to available ratio,426

as pointed out in Sections 3.1 and 3.4. Interestingly, a variance estimate of exactly 0 was427

obtained when using default settings in the lme4::glmer() function (results not shown),428

reflecting the challenge of estimating such a small variance.429

We next considered RSFs that included elevation plus a centered and scaled measure430

of aspect, and compared the estimates from a random intercept-only model (model M2)431

to those from a model containing independent random intercepts and slopes (model M3),432

both fit with glmmTMB(). In model M3, the standard errors associated with the slope433

coefficients for aspect and elevation were an order of magnitude larger than when they434

were not allowed to vary by individual in model M2. These results clearly demonstrate435

the problems noted by Schielzeth and Forstmeier (2009), namely that random intercept-436

only models tend to underestimate standard errors of (potentially biased) fixed effects437

parameters. Finally, we fit the weighted logistic regression model (using W = 1000) with438

random intercept and slopes, with fixed intercept variance at 106 (model M4), because439

this is the procedure we recommend. Weighting the likelihood and fixing the variance of440

the intercepts in M4 led to a noticeable increase in the estimate of βele and a decrease in441

the estimate of σ2
ele with respect to the unweighted model, while it had little effect on the442

estimated values of βasp and σ2
asp. Very similar results to model M4 were obtained when443

we carried out a Bayesian analysis using R-INLA, and also when the model was fit with444
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an intercept variance that could be freely estimated (results therefore not shown, but see445

data and code for all analyses).446

4.2 Habitat selection of otters: an SSF analysis447

We reanalyzed data collected and presented by Weinberger et al. (2016) involving nine448

radio-collared otters that were tracked between six months and three years in the Eu-449

ropean Alps. To fit SSFs to these data, each observed location was matched with nine450

random (available) points generated by resampling step lengths and turning angles from451

their empirical distribution (Fortin et al., 2005). Due to the absence of an efficient alter-452

native, the original analysis was performed with a two-step estimation method provided453

by the TwoStepCLogit::Ts.estim() function. The original model included 12 covariates454

and random effects for all of them. Here, however, we only included the variables of main455

interest, namely the factorial covariate habitat type (with levels main discharge, reservoir456

and residual water), and the continuous variable river width. Moreover, because Forester457

et al. (2009) showed that the addition of a distance function to the linear predictor is458

required to reduce bias in the parameter estimators, we included step length as an ad-459

ditional covariate. The data contained a total of 41 670 data points with 4 167 realized460

steps, where the latter thus corresponds to the number of strata.461

For illustration, we started by fitting fixed effects-only models. To this end, the well462

established stratified Cox model was fit via the survival::clogit() function. The463

respective results were compared to the outcome from the conditional Poisson model as464

given by equation (3), where the stratum-specific intercepts are implicitly estimated by465

modelling them as a random intercept with a fixed variance αnt ∼ N(0, 106); we also466

re-ran the models with αnt ∼ N(0, 1012) to verify that results were robust to this choice.467

We estimated the parameters both with the frequentist approach using glmmTMB, and468

with the Bayesian approach using R-INLA, with independent βββ ∼ N(0, 104) priors for all469

components in the vector of slope parameters. This led to parameter estimates that were470
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essentially indistinguishable from those obtained via the stratified Cox model (Table 2),471

illustrating that the conditional Poisson model is equivalent to the conditional logistic472

model, and that we can circumvent the estimation of the stratum-specific fixed intercepts473

by a random effect with large fixed variance. Note that this equivalence does not hold474

when σ2
α is freely estimated instead, and that this would lead to invalid results, as will be475

illustrated in the simulation below (Section 4.3). Computation times were on the order476

of a few seconds for all procedures.477

Next, we included independent individual-specific random slopes for all covariates478

(except for step length). We again estimated parameters with glmmTMB and R-INLA, using479

the conditional Poisson model (5). For the Bayesian model, the same priors as above were480

used for the fixed effects and the intercept αnt. In addition, penalized complexity (PC)481

priors PC(3, 0.05) were assigned to the precisions of the remaining random slopes (note482

that priors in the Bayesian framework are typically given to precisions, not variances),483

but results were insensitive to this choice. PC priors were recently proposed as robust484

and intuitive alternatives to inverse gamma priors, and were shown to have excellent485

robustness properties with respect to the choice of their hyperprior parameters (Simpson486

et al., 2017). PC priors are parameterized as PC(u, α), where the interpretation of the487

parameters (u, α) is that Pr(σ > u) = α for the standard deviation σ, thus the user can488

specify how likely it is (0 < α < 1) that σ is larger than a specific value u > 0.489

Results from the conditional Poisson models were compared to the outcome of the490

two-step procedure via Ts.estim(), where it was also assumed that the random effects491

were independent. These results (Table 2) illustrate two important points: First, the492

inclusion of individual-specific random slopes in the Poisson regression model leads to493

different parameter estimates and to much larger standard errors for the slope estimates494

than when fixed effects-only models are used, which again confirms that fixed effects-only495

models tend to give overly precise standard errors and biased estimators of regression pa-496

rameters in the presence of inter-individual heterogeneity. And second, the reformulation497
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of the conditional logistic regression model as a Poisson model with random stratum-498

specific intercept, as given in (5), leads to feasible estimation of mixed effects parameters499

in a single modelling step. While computations with other single-step R procedures,500

such as adding random effects (frailties) to survival models using coxme::coxme(), were501

unfeasible even when only 1 000 out of the more than 4 000 strata were used (we inter-502

rupted the sessions after 24h of non-convergence), glmmTMB() terminated in roughly 5503

seconds and R-INLA in 70 seconds on an Intel Core i7-6500U 4 x 2.50GHz processor for504

the full dataset. On the other hand the Ts.estim() procedure was still considerably505

faster (about 0.5 seconds), but we note that the parameter estimates from the approxi-506

mate two-step procedure are not in very good agreement with those from the (correctly507

specified) Poisson model, especially for βREST and σ2
REST. Finally, to illustrate that the508

two-step procedure fails when at least one individual does not encounter all levels of a509

factorial variable, we artificially removed all strata that contained either used or available510

points falling in residual water for the individual that had the fewest visits to this habitat511

type (a total of 12 strata were removed). As expected, the Ts.estim() procedure could512

not be run, while stable results were obtained from fitting the Poisson model.513

4.3 Simulation analysis of an SSF design514

To more systematically compare different estimation approaches for SSFs, we simulated515

and analyzed data with known true coefficient values. The simulation of movement tracks516

involved two continuous covariates: elevation and habitat. We simulated elevation and517

habitat as independent unconditional Gaussian Random Fields (GRF; as implemented518

in Ribeiro Jr and Diggle, 2016) with range σ2 = 0.1 and a partial sill of φ = 50 to obtain519

smooth and realistic surfaces for the two covariates. Each setup was replicated 500 times520

to obtain a sampling distribution of the estimated coefficients and to investigate bias and521

variance of the different estimators.522

We simulated movements of 20 animals according to a biased random walk starting at523
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the center of the landscape at time t = 0. To find the position at time t+1, each animal n524

was given 200 candidate locations, where the coordinates for each candidate location were525

determined by drawing a random step length from an exponential distribution with rate526

parameter λ = 1, and a random turning-angle from a uniform distribution. One candidate527

location was then selected at random with probability proportional to exp(βββ>xxx), where528

xxx are the covariate values at the end point of each potential step, and βββ> = (−4, 4)529

was the vector of selection coefficients. Animals were assigned individual-specific slopes530

for both variables, generated from uncorrelated Gaussian distributions with mean βββ and531

variances σ2
ele = 10 and σ2

hab = 5. For each animal, we simulated 200 time steps, and each532

observed step was paired with 9 random (control) steps. Following Forester et al. (2009),533

we generated random steps with step lengths from an exponential distribution with rate534

λ = 1/(2l̄), with l̄ equal to the mean realized step length, and with the direction of535

random steps drawn from a uniform distribution distribution of turning angles between536

−π and π. We then included step length (l) in the linear predictor to correct for the537

bias due to the way we generated random step lengths (i. e., exponential with λ = 1/(2l̄)538

rather than λ = 1).539

These data were analyzed with the mixed conditional Poisson model of equation540

(5) using R-INLA and glmmTMB including random slopes for elevation and habitat. The541

variance of the stratum-specific intercept was fixed to σ2
α = 106. To illustrate that fixing542

this variance is important, we also fit the same model with σ2
α estimated instead (only543

with glmmTMB to avoid redundancy). For INLA we used N(0, 103) priors on the fixed544

effects, and 1/σ2
ele ∼ PC(10, 0.01) and 1/σ2

hab ∼ PC(5, 0.01) priors on the precisions of545

the random effects. As a comparison, we also estimated regression parameters using546

the two-step approach implemented in Ts.estim() assuming independent slopes, and fit547

fixed-effects models with Cox models using the clogit() function.548

The Poisson models with fixed σ2
α fit with R-INLA and glmmTMB retrieved consistent549

estimators of the fixed-effects parameters, and the two-step estimator was also nearly550

23



unbiased (Figure 1). This was not true, however, when the stratum-specific intercept551

variance was estimated by the model rather than fixed at 106, in which case all estima-552

tors were heavily biased. Importantly, we also observe that ignoring random effects leads553

to biased estimators of fixed-effects parameters when, like here, there is inter-individual554

heterogeneity in the slopes. All variance estimators were slightly underestimated for all555

methods, namely because the step-length variable in the predictor absorbs some of the556

variability in the selection coefficients. In fact, we were able to obtain less biased variance557

estimators when we omitted the step-length variable (see Figure S2 in the Appendix).558

The impact of including step-length in the linear predictor on the variance estimators559

is interesting and unexpected, and it is an apparent contrast to Forester et al. (2009),560

where the inclusion of step-length is recommended to avoid bias in fixed-effect param-561

eters. This trade-off between bias in the estimators of fixed effect parameters and the562

variance parameters deserves more attention in future research. Finally, as pointed out in563

Section 3.3, weighted regression models resulted in biased estimators except for very large564

numbers of random steps per stratum (Figure S1 in the Appendix); therefore, weighted565

alternatives were not further investigated here.566

5 Discussion567

Recent technological advances have made it possible track a wider range of species for568

longer durations, leading to an explosion of high-temporal resolution location data (Kays569

et al., 2015). For example, Movebank, an online platform for storing, managing, and shar-570

ing data now includes about 1.2 billion locations from over 5500 studies of 850 different571

taxa (Kranstauber et al., 2011; Wikelski and Kays, 2018). The widespread availability572

of fine-scale temporal data is fueling the development of new statistical approaches for573

modelling animal movement data (e. g., Hooten et al., 2017; Jonsen et al., 2018) and also574

provides unique opportunities to study among-individual variability in movement and575
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habitat-selection patterns. Step-selection functions are appealing because they provide576

an objective approach to determining habitat availability based on movement character-577

istics of the study species (Fortin et al., 2005; Thurfjell et al., 2014). Although fitting578

step-selection models to individual animals is straightforward, efficient estimation proce-579

dures for models fit to multiple animals have been lacking, hindering our ability to quan-580

tify among-animal variability in their habitat-selection patterns. Mixed-effects models581

are an attractive option, but these models are well acknowledged to be computationally582

challenging to fit in this context (Duchesne et al., 2010).583

We proposed to fit RSFs and SSFs in a unified, standard GLMM framework, which584

is possible by combining three statistical results. First, we make use of the fact that the585

conditional logistic regression model, which needs to be fit to derive SSFs, is actually586

a multinomial model, and as such it is likelihood-equivalent to a Poisson model. This587

renders mixed-effects modelling for SSFs equivalent to fitting any Poisson GLMM, which588

implies that incorporating individual-specific variation in SSFs is no more challenging589

than doing so for RSFs. Second, because individual- or stratum-specific intercepts are not590

actually of interest in RSFs or SSFs, and because they are determined by sampling ratios591

and habitat availability, these intercepts should be treated as fixed effects, or equivalently592

and more efficiently, as random effects with large, fixed variance. Doing so prevents these593

intercept parameters from being shrunk towards the overall mean. The magnitude of the594

shrinkage, and hence bias, may be minimal for RSFs that include many observations for595

each individual (as in the goat example of Section 4.1), but can be substantial for SSFs596

which tend to include only a few observations in each stratum (Figure 1). And third,597

we reiterated that the logistic regression likelihood to estimate RSFs should always be598

weighted with a large weight W on the available points, in order to ensure convergence599

to the IPP likelihood which is guaranteed for W →∞ (Fithian and Hastie, 2013).600

Fixing the individual- or stratum-specific intercept variance is particularly straightfor-601

ward in a Bayesian framework, where the user is required to specify priors on all unknown602
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parameters. To ensure efficient Bayesian inference we have relied on the INLA approach603

via the R-INLA interface. Of course, all models discussed here can also be approached via604

MCMC sampling, although this may be very inefficient. We include an MCMC imple-605

mentation of an SSF analysis to fisher (Pekania pennanti) data using the Stan language606

(Carpenter et al., 2017) in the data repository that accompanies this article. For that607

example, Stan required an order of mangnitude more time to converge than INLA (Stan608

≈ 38 min for two parallel chains with 2 000 iterations each, INLA ≈ 1 min). Users that609

prefer frequentist inference should choose a software package that allows to fix a random610

effect variance to a prespecified value. Here, we fit these models using glmmTMB, which611

provides fast inference, and has previously proven useful for analyzing large telemetry612

data sets (Jonsen et al., 2018). Table 3 gives an overview of models and procedures that613

we recommend for efficient and accurate inference on either fixed-effects or random-effects614

RSFs and SSFs.615

Prior to now, fitting random coefficient SSFs was often only computationally feasible616

via two-step procedures that combine estimates of individual-specific habitat-selection in-617

ference (Craiu et al., 2011), a strategy what was proposed for habitat-selection inference618

more generally (e. g., Fieberg et al., 2010; Hooten et al., 2016). An advantage of using619

Ts.estim is that it is typically much faster than glmmTMB or R-INLA, as illustrated by620

the computation times of the otter data analysis in Section 4.2. However, it must be kept621

in mind that Ts.estim is an approximate procedure that does not guarantee consistent622

results, and that it may fail to converge or even does not run, for example when at least623

one animal does not encounter all habitat types. Moreover, it might be worth noting that624

Ts.estim does not return any information-theoretic measures like AIC, BIC, or DIC to625

help guide model selection. Still, for very large datasets and models, where GLMMs may626

demand too much computational power, it certainly remains a convenient and efficient al-627

ternative. Regarding efficiency, we have also seen that frequentist analyses with glmmTMB628

can be considerably faster than the Bayesian route using R-INLA. In fact, efficiency gain629
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will rarely be the reason to choose Bayesian over likelihood inference. An interesting630

benefit of Bayesian procedures is that they give (marginal) posterior distributions of631

all parameters, whereas frequentist approaches usually only return point estimates and632

standard errors for fixed effect parameters, but no measures of uncertainty for variance633

parameters (although glmmTMB is a notable exception). In addition, various modelling634

extensions, such as spatial or temporal dependencies (e. g., Lindgren et al., 2011) or mea-635

surement error in covariates (e. g., Muff et al., 2015) are often much more straightforward636

to incorporate, or even only computationally feasible, in a Bayesian setup.637

Although the importance of including random coefficients in regression models of638

habitat-selection studies has been stressed repeatedly (Gillies et al., 2006; Duchesne et al.,639

2010), our literature review suggests that random-effects models are often understood as640

models that merely include a random intercept. Here we have reiterated and illustrated641

that such practice may lead to too high confidence in results that are potentially biased.642

By providing coded examples using R-INLA and glmmTMB, we hope to make efficient esti-643

mation of RSFs and SSFs with random effects accessible to anyone in the field. SSFs with644

individual-specific coefficients are particularly attractive since they can provide insights645

into movement and habitat-selection processes at fine-spatial and temporal scales (Avgar646

et al., 2016; Signer et al., 2019), but these models had previously been very challenging647

to fit.648
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Model β̂ele β̂asp σ̂2
intercept σ̂2

ele σ̂2
asp

M1 (Random intercept) 0.12 (0.05) 0.008
M2 (Random intercept) 0.14 (0.03) 0.52 (0.02) 0.013

M3 (Random intercept + slopes) 0.07 (0.38) 0.66 (0.11) 0.96 1.40 0.10
M4 (Random intercept + slopes) 0.12 (0.31) 0.65 (0.11) 0.93 0.12

Table 1: Estimates for the slopes of elevation (β̂ele) and aspect (β̂asp), and for the variances
of the random effects (σ̂2

intercept, σ̂
2
ele, σ̂

2
asp) from four models fit to data from 10 GPS-

collared mountain goats. Models M1 – M3 were fit with an unweighted likelihood. Model
M4, which is the recommended model, was fit with weighted logistic regression (W =
1000) and fixed intercept variance (σ2

int = 106). All models were fit using glmmTMB().
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Slope estimates β̂RESE β̂REST β̂Width

I. Fixed effects models

clogit −0.07 (0.07) −0.38 (0.10) 0.16 (0.04)

cPois (INLA) −0.07 (0.07) −0.38 (0.10) 0.16 (0.04)

cPois (glmmTMB) −0.07 (0.07) −0.39 (0.10) 0.16 (0.04)

II. Mixed effects models (random intercept & slopes)

Two-step 0.04 (0.17) −0.24 (0.24) 0.10 (0.12)

cPois (INLA) 0.02 (0.18) −0.33 (0.22) 0.11 (0.14)

cPois (glmmTMB) −0.004 (0.14) −0.35 (0.16) 0.12 (0.11)

Variance estimates σ̂2
RESE σ̂2

REST σ̂2
Width

(Mixed models only)

Two-step 0.17 0.35 0.08

cPois (INLA) 0.08 0.10 0.05

(0.02,0.78) (0.03,1.02) (0.02,0.47)

cPois (glmmTMB) 0.07 0.10 0.07

(0.01,0.64) (0.01,1.12) (0.02,0.28)

Table 2: Estimated slopes for reservoir (β̂RESE), residual water (β̂REST) and river width
(β̂width) and for the corresponding variance parameters of the Eurasian otter example
when using the Cox model (clogit), the Poisson model with stratum-specific intercept
(cPois) fit with R-INLA or glmmTMB(), and the two-step procedure Ts.estim() (Two-
step). For the INLA output, posterior means are given for the slope estimates, and
posterior modes for the variances. Values in parentheses are standard errors (for the
slope estimates) and 95% credible intervals (for the variances); Ts.estim() does not
provide measures of uncertainty for variance parameters.
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RSF designs SSF designs

Example Mountain goats (sec. 6.1) Eurasian otters (sec. 6.2)

F
ix

e
d

e
ff

e
ct

s Models: Logistic regression Conditional Poisson regression

(model (3) in text)

R procedures: inla(), glm(), glmmTMB() clogit() function
or inla()/glmmTMB() for Poisson models
with stratum-specific random effect
and large fixed variance σ2

α.

M
ix

e
d

e
ff

e
ct

s Models: Mixed logistic regression Mixed conditional Poisson
regression (model (5) in text)

R procedures: inla(), glmer(), glmmTMB() inla(), glmmTMB(), Ts.estim()

Table 3: Overview of sampling designs and procedures in R that we recommend for
efficient computation. Note that we recommend to carry out RSF analyses using the
infinitely weighted version, while unweighted regression is recommended for SSFs.
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Figure 1: Sampling distribution for estimated SSF coefficients from conditional logis-
tic regression without random effects using the clogit() function, from the conditional
Poisson regression model with random coefficients using either a frequentist (glmmTMB)
or a Bayesian approach (R-INLA), and from a two-step approach implemented in the
Ts.estim() function. In the Bayesian case, the estimates are the posterior means for
the fixed effects and the posterior modes for the variances. The frequentist approach
was implemented both with σ2

α = 106 fixed (as recommended) or by estimating σ2
α (for

illustration). Boxplots show the distribution of the estimates from 500 replications. Vari-
ance estimates σ̂2

hab > 20 were removed for better visibility (only affects frequentist with
σ2
α estimated). The horizontal red dashed lines indicated the true value used for the

simulations.
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