@ NTNU

Norwegian University of
Science and Technology

Routing and load balancing in Internet
of Things (loT]

Ole Marius Steinkjer

Master of Science in Communication Technology
Submission date: July 2009
Supervisor: Poul Einar Heegaard, ITEM

Norwegian University of Science and Technology
Department of Telematics

Problem Description

The Internet of Things (loT) will connect heterogeneous objects through many different network
providers and different network technologies, providing a large variation of new services.

This heterogeneity imposes great challenges on the management of network resources and
Service Level Agreements.

Telenor is developing a Connected Objects Operating System (CO0S]) which aims at integrating and
managing the interconnection of objects providing diversified services.

The assignment includes the following tasks

1. Study the Telenor Connected Object (COJ infrastructure

2. Study existing load balancing techniques that are relevant for CO0S

3. Make a model of COOS in order to investigate load balancing techniques

4. Propose usage scenarios for COOS which need performance differentiation and load balancing
5. Conduct load balancing experiments on scenarios with different techniques

6. Propose principles for load balancing in CO0S

Assignment given: 15. January 2009
Supervisor: Poul Einar Heegaard, ITEM

ROUTING AND LOAD BALANCING IN “THE
INTERNET OF THINGS”

MASTER THESIS
BY

OLE MARIUS STEINKJER

JuLy 16, 2009

SUPERVISOR:
PrROF. PouL HEEGAARD
HALDOR SAMSET

THE NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INFORMATION TECHNOLOGY, MATHEMATICS AND
ELECTRICAL ENGINEERING

DEPARTMENT OF TELEMATICS

SUMMARY

The Internet of Things (IoT) is growing rapidly. It is also expected to keep up
this growth in the coming years. This rapid growth, not only in size, but also
in the large variation of services, requirements and variation of equipment
calls a platform to wield the future IoT. Telenor is working on a solution
called Connected Objects platform. This is a layer of its own in the network
stack using underlying connectivity and transport, but also adding several
features.

This new layer calls for its own routers, routing policy and specialization
to handle the added features. The Connected Object Operating System
(COOS) routers are developed for this task. These are purely software based
with both the pros and cons this involve. One of the cons is the performance.
The delay through these nodes greatly increase as the traffic increases. This
performance issue on the COOS routers decreases the effect of load balancing
across several underlying links. Adding router nodes to split the load across
several routers do not give a convincing result. The added hops each packet
does due to the restriction to a gateway being connected to only one router
decreases the performance drastically. The most effective manner, both on
reducing the delay, but also robustness on handling failures, is shown to
increase the mesh ratio of the network.

FOREWORD

This report is my final work through my education at NTNU. The mix be-
tween network architecture and the performance that follows illustrates my
main interest in my field of study. This is something that shines through
both on courses, several internships through my studies and my choice in
finishing projects and thesis. Telenors development early caught my inter-
est. Both the expansion in internationally, but also the technological services
they have developed during the years.

The development and the thought that “Everything is on the net,” is both
something I have been looking forward to and also something that has aston-
ished me. Will my food, my pets and if we go a few years back, even myself
always be connected? With the platform Telenor is working on along with
the growth in connectivity around the world makes it all more plausible. Not
in a distant future, but today!

I would like to thank my professor Poul Heegaard at NTNU for the techni-
cal support throughout my work with the project. Both his guidelines and
reassurance during my work has been motivation to continue.

I would also like to thank Haldor Samset at Telenor and Knut Eilif Husa
at tellU AS. They has been very helpful in both answering vagueness’ and
supporting me with access to critical data needed for my research.

Ole Marius Steinkjer

Contents

SUMMARY i
FOREWORD ii
CONTENT iv
FIGURES vi
TABLES vii
1 INTRODUCTION 1
2 LOAD BALANCING 3
2.1 Round Robin 4
2.2 Weighted Round Robin 4
2.3 Deficit Round Robin 6
24 Fair Queuing 6
2.5 Weighted fair queuing 7
3 LSAROUTING 7
3.1 Djikstra’s Algorithm 7
4 COOS 9
4.1 Addressing 11
4.2 Architecture 13
5 SCENARIO 17
5.1 Case 1- Animal herds 17
5.2 Case 2 - Patient supervision 18

5.2.1 Case characteristics - Patient notifications 18

5.2.2 Case characteristics - Alarm messages 19

6 SIMULATION 19
6.1 Goals of simulation 0L 20
6.1.1 Simulation tools 20

6.2 Simulator logics 21
6.2.1 Delay in router 24

6.2.2 Load Balancing 26

6.3 Simulation Runs oL 26
6.3.1 Adding load balancing nodes 28

6.3.2 Increasing mesh level 30

7 CONCLUSION 30

7.1

Future Work 32

List of Figures

10

11

12

13
14

15

16

The main area of focus in my research.

Step-by-step illustration of Djikstra’s Algorithm during calcu-
lation.

COOS should be able to connect objects regardless of what
underlying connectivity type isused.

CO-leaf as used in the CO platform

The CO platform contains of several routers divided in seg-
ments for addressing. Components are then connected to the
routers, often via gateways.

COOS router processes v v vt

Each router contains of channels which again is made up of
filters, links and a transporter.

Messages going through a router is handled differently depend-
ing on where in the router they are.

The Load Balancing component as thought in two different
situations of use.o

Simplified logics of a packet. The stippled tasks are done for
each hop the packet does through the network.

All of the router logics is placed into procedures in the packet
entity of performance reasons. The packets are simulated ac-
cording to statistical defined boundaries.

The delay in ms. in the topology the simulator was performed
OIL. o v vt e e e

Test 1 Topology - Test load balancing over multiple links. . . .

Delay for Type 2 traffic for a Round Robin setting on topology
2 and a normal in topology 1.

Cumulative distribution of delay for prioritized packets when
traffic increases with 0%, 33% and 55% running without load
balancing. The two first have identical distribution.

Test 2 Topology - Simulation to test the effect of adding ad-
ditional nodes.o

28

17

18

Test 3 Topology - Simulation to test the effect increasing the
mesh-level of the network.

Each packet has to traverse through the network layers for each
hop through the network. This increases load on each COOS
router which again will affect the performance and experienced

QOS. . .

List of Tables

1 Fair Queuing dividing ten packets, step by step. Allocations

are symboled by Allocated packets size / Total allocated 6
2 Dijkstra’s Algorithm executed on Figure 2, step by step. . . . 8
P 12

4 Difference between packet types and their QoS values used in
simulation. 19

ACRONYMS

e AS is short for Autonomous System. An AS is a collection of connected
IP routing prefixes under the control of one or more network operators
that presents a common, clearly defined routing policy to the Internet.
[20]

e CO Connected Object

e COOS CO Operating System. A deployed system running on the plat-
form Telenor is developing.

e DICO Deployed Infrastructure for Connected Objects. A system con-
taining of several COOS on Telenors platform.

e FQ is a load balancing algorithm called Fair Queuing.

o GPS Generalized Processor Sharing is a term within computer science
of how several entities share the same resource.

e HI Host Identity. An identity tag in COOS.
e HIT Host Identity Tag. An identity tag in COOS.
e [0T Internet of Things

e Posix Portable Operating System Interface for Linux “POSIX (pro-
nounced /'p?z?ks/) or “Portable Operating System Interface for Unix”
is the collective name of a family of related standards specified by the
IEEE to define the application programming interface (API), along
with shell and utilities interfaces for software compatible with variants
of the Unix operating system, although the standard can apply to any
operating system. [7]

e RR Round Robin balances load on different resources packet based
where each resource gets one packet each in turn.

e URI Universal Resource Identifier. An identity tag in COOS.

o WFQ Weighted Fair Queuing. A load balancing scheme like FQ, but
with possibility to weight different connections.

e WRR Weighted Round Robin. A balancing policy like RR, but with
possibility to weight connections.

1 INTRODUCTION

The following years we will see a drastical growth in connected objects. As
[17] shows, the number of connected objects and the value-adding applica-
tions following will increase the coming years. Analysts see several changes
to cope with this new trend. The connected devices will more and more
be connecting through different connections, also be connected via different
technologies at the same time. Users will demand more agile, adaptable and
available platforms for solution development to again meet their tailored de-
mands. On the top of this, connectivity and bandwidth will only become
cheaper and cheaper. This low cost will, as early 90s futuristic visions pre-
dicted, get your refrigerator, groceries and toaster online.

Both networks and applications to handle this growth in both size and vari-
ation is needed. Telenor is launching a Connected Object (CO) platform in
the near future. It is designed to work as a middle layer in the network,
creating another graph structure [2]. In addition, the platform seeks to ease
deployment of services through ease of addressing, standarized components
and Application Programming Interfaces (APIs).

On a shared system like this there will be a large difference in the QoS
demands from the different customers. Some customers might need as good
as real time updates and minimal packet loss where others barely needs
connectivity. Some sort of differentiated services [15] is needed to shape the
traffic. To cope with the growing customer base, the network also needs to be
scalable. How the network will be affected by growth in pure traffic growth,
geographical and structural size or if it can scale with new technologies are
all important questions in this new platform.

The focus of this paper however, is at the core of the CO platforms net-
work. The focus in my research is on load balancing and the topology within
networks like this platform (see Figure 1. I will investigate different load
balancing strategies and look at the routing policy used in COOS. Compari-
son on the different policies up against variation of network topology is done
to look for an effective solution. To investigate different effects a simulation
will be run on different topologies with different settings. As little to no
assumptions is made on traffic pattern, two case scenarios is set up to easier
give a realistic traffic low compared to a total randomized. The cases are
set to generate traffic with a variety in arrival intensity, QoS demands and
forwarding.

There are several points which could be of interest on this topic, that is not

Figure 1: The main area of focus in my research.

handled in my research. Gateways connecting COOS routers to underlying
network segments are not investigated. The reason for this is that litle work
has been done from the projects part on these, and their behavior is still
unknown or unavailable. Load Balancing from the component to different
gateways is of the same reason excluded from the research. Load balancing
can also be done between identical service platforms, which falls outside the
scope of my research.

2 LOAD BALANCING

Everyone is affected by load balancing as good as every day. It can be calling
to a call center where several callers are divided between several operators.
Another example is when driving on a multilane road home from work. Here
all the cars are divided on the different lanes, some may be for for all cars and
some only for public transport. It can also be several friends wanting your
attention in a chat application where you have to divide it in some manner.

In IKT systems, load balancing also plays an important role in making things
run smoothly. A personal computer normally has only one processor (at
least until the latest years). On each computer there are, however, several
applications competing for the processors time. Different operating systems
have different solutions to most fairly divide the resource. Each with different
pros or cons making it suitable for different systems requirements. [18]

Electronic communication is also highly colored by load balancing. Cellular
telephone technology takes use of both sharing of time slots, on different
frequency domains and by use of different codes. In traditional network
topology load balancing is also important. In a web of network links con-
necting different routers, each link may have different delay, capacity and
other characteristics. TODQO: Hvilke tre ord bruke her? Some links
or routers might be congested. This can for example be solved by moving
some load over to other resources following defined rules. These rules can
tell IP packets to follow a certain path through the network or choose certain
routers as a next hop.

Max-min fairness is a term in load balancing which refers to which re-
source is chosen next. If max-min fairness is obtained, the resource with the
lowest rate is always chosen next.

Not a load balancing technique, but should be mentioned as a property of a
scheduler. One achieves Min-max fairness when maximizing the lowest rate.

[5]

Generalized Processor Sharing (GPS) [16], is not an a method that
can be implemented. It is a method which achieves an exact weighted max-
min fairness. GPS is therefor used for comparison up against other load
balancing techniques to examine how effective they are. GPS is on the other
hand a fluid model assuming infinitesimal packet size. Variation in packet

size will not be handled by the plain GPS. Packet-by-packet GPS (PGPS) is
developed for these cases [3].

2.1 Round Robin

(RR) is one of the most basic load balancing techniques one can implement
and is explained in 1. It basically traverses through its resources sending one
task to each resource before moving to the next. The method does not take
packet size, inequality on resources or other aspects into consideration. Using
RR on two links with different capacity, delay or other characteristics can
because of give a suboptimal performance. Using RR can also give dynamic
imbalance if packets size varies greatly.

Algorithm 1 Round Robin
while true do
i+ (i+1)modn
Return R;
end while

2.2 Weighted Round Robin

Weighted Round Robin (WRR) is one of the extensions to normal Round
Robin. The way WRR works is that each resource branch of the load balancer
is assigned a weight. The weight will represent a resource capacity in the form
of processing power, bandwidth or similar depending on the system. Load
will be divided between the resources depending on the weight of each of
them. Regular Round Robin can be seen as a branch of WRR where all
weights is equal.

e R ~ Resource set R = {Ry, Ry,...R,_1, R,}
o W(R;) ~ Weight of resource S;

e | ~ Resource counter while running. Initiated with 1 = —1

cw ~ Current Weight

o maz(R) ~ Highest weight in resource set S

gcd(R) ~ Greatest common deviser of the weights in resource set S

4

Algorithm 2 Weighted Round Robin (WRR)

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:

while true do
i+ (i+1)modn
if i =0 then
cw «— cw — ged(R)
if cw <0 then
cw «— mazx(R)
end if
end if
if W(R;) > cw then
Return R;
end if
end while

Algorithm 3 Greatest common diviser

1
2
3
4
5:
6
7
8
9

10:
11:

. if a = 0 then
Return b
: end if
: while b # 0 do
if a > b then
a<+—a—>b
else
b—b—a
end if
end while
Return a

Fair Queuing - Example walk through

Packet Number | 1 2 3 4 5 6 7 8 9 10
Packet Weight | 2 2 4 6 2 2 2 4 2 2
Link 1 | 2/2 6/8 2/10
Link 2 2/2 2/412/6 4/10
Link 3 4/4 2/6 2/8

Table 1: Fair Queuing dividing ten packets, step by step. Allocations are
symboled by Allocated packets size / Total allocated

In a system with uneven resources, WRR can increase the efficiency of the
system. It has on the other hand the same problem as RR, where several
high-load demanding tasks go to the same resource. TODO: known mean

packet size in http://www.cs.berkeley.edu/ kfall/EE122/lec27/s1d006.htm
27

2.3 Deficit Round Robin

Load balancing is often several connections competing for one resource as
explained earlier. Deficit Round Robin (DRR) is a modification to WRR
which frees it from knowing the mean packet size to achieve min-max fairness
[8]. In my research, the packet size is not taken into consideration so I will
not examine this method more closely.

2.4 Fair Queuing

Fair Queuing (FQ) is a bit-wise load balancer compared to RR which is
packet based. Based on the amount of data, or time it is occupied by a path,
the information is shared between the different links.

It is easiest explained with an example illustrated in Table 1. Say we have
ten packets in the buffer with sizes 2, 2, 4, 6, 2, 2, 2, 4, 2, 2. and the counter
for each outgoing link is equal (zero for ease). The next packet will always
be sent to the link which has received the least amount of data. Each links
local value can for example be solved with a leaky bucket, decreasing the
“load recieved” at a given rate.

Short time fluctuations will of course occur, but these are a lot smaller then
in RR. In addition, FQ can prevent the situation where one link gets all the
small packets and one gets all the large ones.

6

2.5 Weighted fair queuing

Fair Queuing does not handle the weighting between the connections to load
balance. As with Round Robin there is a solution for skewed distribution.
Each connection is assigned a weight representing how large portion of the
load it should get. The load of the i’th connection will then be:

L; = w1+£;++21v’ where L is the total load to be balanced.

[19] shows that WF(Q can guarantee an end-to-end bound, but also used to
control the QoS through dynamically changing the weights.

3 LSAROUTING

Link-State (LS) algorithms calculate the route from a source based on glob-
ally known information [12]. This is done by having each node broadcast its
link-state through the network segment it belongs to. This way, all nodes
will be able to calculate the best paths to all destinations in the network.

Idea behind Link State Routing is that each router must do the five following
things:

1. Discover its neighbors and learn their network addresses.
2. Measure the delay or cost to each of its neighbors.

3. Construct a packet telling all it has just learn.

4. Send this packet to all other routers.

5. Compute the shortest path to every other router. (Djikstra’s can be
used for this as will be explained in 3.1.)

3.1 Djikstra’s Algorithm

As pointed out in the list above, each node computes the shortest path
from itself to each node in the network from the distributed information it
has received. A widely used algorithm for this calculation is Djikstra’s Algo-
rithm [6] which solves the single-source shortest-paths problem on a weighted,

7

Algorithm 5 Pseudocode for Djikstra’s Algorithm.

1: for all Nodes n do

2: n.dist «— infinity

3: n.previous «<— NULL

4: end for

5: while N not empty do

6: n <« node with smallest dist

7 N+ N-—n

8: for all Neighbor m in N of n do
9: alt Route = n.dist + e, _,,,.cost
10: if alt Route < m.dist then

11: m.dist < alt Route

12: M.previous «— n

13: end if

14: end for
15: end while

Dijkstra’s Algorithm - Walk through

u v w X y zZ

Step Removed |d p|d p|d p|d p|d p|d p
0 0 ujoo -] -] -|00 -|00 -
1 u 0O u|d5 ul3d ujoo -3 ujoo -
2 uw 4 u|l3 uloo -|3 u|oo -
3 uwy 4 u|3 ul|l3 vy 3 vy
4 uwxy 4 u 3y 3y
5 UwWXyz 4 u 3y
6 UVWXYyZ 4 u

Table 2: Dijkstra’s Algorithm executed on Figure 2, step by step.

Figure 2: Step-by-step illustration of Djikstra’s Algorithm during calculation.

directed graph. The algorithm repeats itself until all nodes have been calcu-
lated. After k iterations of the algorithm, the least cost paths of k nodes are
known.

As we see in Figure 2 Djikstra’s Algorithm is a greedy one. It always chooses
the node with the lowest cost, that has not yet been calculated from. For
each node in the network the algorithm calculates line 8 - 14 in Algorithm
4.

4 COOS

The trend of this decade has been that more and more people are getting
connected to the Internet. The next step, which we are already seeing, is
that more and more objects are also coming online. This expected explosion
[17] of Connected Objects (CO) connecting to the Internet of Things (IoT),
requires a system to handle this. This will be everything from addressing,
QoS, giving a standard API, gathering it on one platform and so on. The
expected growth in this field is far to rapid to wait for a standardization with
todays lack of Standards Development Organisations (SDO) and the delay
of this kind of process will take.

This growth causes opportunities for new markets and is a potential of growth

9

Services OAM Services OAM
Storage Storage

| Distribution Platform I I Distribution Platform |
| |
Communication GW Communication GW

L— Customers |— '

Backbone Network
(eg. Internet)

D &
CED CEy (E

“Sensors” “Sensors” “Sensors”

Figure 3: COOS should be able to connect objects regardless of what under-
lying connectivity type is used.

10

Gateway nodes :.
\
’
v

B
\
Sensor routing nodes O_O \
' \ I (])
\
I \ :
l \

' [l

\
' \ [v .

\
I A r 1
‘ Vot v &
i Vol ' \
Sensor nodes @ @ @

Figure 4: CO-leaf as used in the CO platform

in existing markets. To utilize this, Telenor is working on a new platform
aimed at Connected Objects.

Telenors CO platform is a solution that will allow consumers to more easy
deploy solutions to “The Internet of Things”. It can bee seen as a new layer
in the OSI model, both handling problems and giving more opportunities
then the existing layers does. In addition, and probably most important, it
gives a flexible, agile, scalable and technology independent architecture.

Several problems are solved in Telenors solution. I will address some key
points of relevance to my research. The terms used in COOS is explained
in Table 3. The documentation gives a thorough explanation of most of
most subjects it handles. Unfortunately, deployment, network structure and
behavior is not available at this time. Some details and statistics are left out
of the report due to company policy.

4.1 Addressing

A challenge with Connected Objects (CO) is that they often will be mobile
within one or several access networks and segments. The number of objects
will most likely exceed the possibility of giving each object a unique IPv4
address. It is also very unlikely that a ubiquitous IPv6 connectivity is estab-
lished in time to support the addressing. To cope with the lack of address
space in IPv4, HIT gateways are allocated a unique IP-address. CO-leafs
are then introduced to gather several objects under an addressable gateway
(see Figure 4). This way, a potentially large group of COs, under the control
of a single HIT gateway, can be addressed by the use of a globally unique
[P-address.

The identifiers Host Identity (HI) and Host Identity Tags (HIT) are mathe-
matically generated for objects which are the used unique tag for the objects.

11

COOS Definitions

Device

This is a physical unit that is able to communicate in
some way through some network.

Edge

A connection between an object and the platform, the
glue that makes the device able to communicate with
the whole system.

Object

This is an entity that is able to send or receive data
through some network, this entity can be either a device
or a service.

Service

Something that offer function(s) accessible by users
through some means of communication, usually run on
a device. A service can be composed of other services.
The CO platform will be able to offer services.

Plugin

A Plugin is an Object that can be plugged into the Mes-
saging bus. Object and Plugin are in many cases equiv-
alent notions and used interchangeably.

Endpoint

The entity that the Messaging bus receives messages
from and delivers messages to. Endpoint is the inter-
face towards the Message bus of a Plugin.

Channel

Channel is the connection between Plugins and the Mes-
sage Bus. It consists of Links and Transport

Link

A Link is a uni-directional path in a Channel consisting
of Filters

Transport

A Transport is a means for transporting messages over
an underlying medium.

Filter

A Message Processor that filters messages that flow
though. Filters are parts of Links.

Processor

An entity that processes messages.

Module

A Module is a set of functionalities in COOS. A Module
can be implemented by a set of Plugins and underly-
ing Modules. Security and Messaging are examples of

COOS modules

Component

Same as Plugin and Object

Table 3:

12

Message API

Component

Channel
Router network

Segment

Router

Figure 5: The CO platform contains of several routers divided in segments
for addressing. Components are then connected to the routers, often via
gateways.

These are generated so that no human readable information is conveyed.
Universal Resource Indentifiers (URI) are introduced as a human readable
identifier for objects. Translation to locate a object is:

URI — HI — HIT — IPaddress

The reverse resolution may also be needed in certain cases:

HIT — HI —- URI

4.2 Architecture

One of the most important features of the COOS layer is forwarding of pack-
ets through the network. Through HITs messages needs to reach the right
service platform from the sensors, the other way around or between different
DICOs or COOS’. The messaging service is an overlay network, a virtual
network, which uses an underlying network for connectivity as illustrated in
Figure 1. The service is distributed, but is centralized from the components
view. The routing information is local information at each router node and
is updated through LS routing. The routing information also contains in-
formation about which gateway to forward packets through, which again is
connected to one of the routers. Gateways is, at this point, thought to be
connected to a router in a one-to-one relation, where objects may be behind
several gateways. An example can be a device connected through GPRS and
regular IP at the same time.

13

v
Pre-processor Routing
¥ Algorithm

Pre-processor

v
Routing step »| Routing
T table

Post-processor

y

Post-processor
|

v

y

A

Figure 6: COOS router processes

The COOS network architecture will contain of developed COOS routers.
This is basically a system running Java on any supporting platform. Each
packet will be processed asynchronously at the router illustrated in Figure
6. The pre- and post processes can be, among others, logger, delayer, To-
kenChecker, LoadBalancer and so on. All these are configured at the router
manually.

Each router contains channels which represents a unidirectional TCP /IP, or
similar, connection to another router, gateway or a COOS component. These
channels are made up of an inbound and an outbound link, which again are
made up of different filters. The filters are set up on configuration and will
affect different packets differently. One filter is for example a Guaranteed
Delivery which will retransmit packets with the correct flag if the channel is
disconnected. The router tries it a certain number of times every 30 ms. and
notices the sender if it fails. The transporter is the component which handles
the transport of the messages. As we can see in Figure 8 it is on outgoing
traffic, through the channels, the priority flag comes to effect (zone D in the
figure). At the writing moment, no solution for prioritizing messages within
the forwarding step is done.

In the router itself (zone C in Figure 8, each passing message is handled as a
unique thread. All of these run in parallel. Zone A represents the underlying
connectionless network where the order of messages are not guaranteed and
therefor messages arrive in a randomized manner. The in channels, zone B,
are First Come, First Out (FIFO). A thread for the incoming packets are
generated in order as they arrive the router.

14

Channel

Inbound Link

/ Filter Filter \
\ Outbound Link / Transport

Channel

Router

Inbound Link

/ Filter Filter \
\ Outbound Link / Transport

Figure 7: Each router contains of channels which again is made up of filters,
links and a transporter.

(A B) 'C) 'D)
E i 0/\/* i \ N
: I
e~ [B2
) (R

Figure 8: Messages going through a router is handled differently depending
on where in the router they are.

15

Load Balancer

| coos | | coos | | coos |

Load Balancer

Figure 9: The Load Balancing component as thought in two different situa-
tions of use.

Load Balancer In the CO platform, there are several components defined,
which again are grouped together. A COOS instance can define which of
these components to inherit. The details of all of these components are
outside the scope of this thesis. A Load Balancing component is one of these.
Little information about how this component is going to work is available. It
is optional and it uses Round Robin to load balance. The resources to load
balance between is predefined during configuration.

Figure 9 shows the methods thought as published. The Load Balancer should
in one scenario be able to divide load between different network technologies.
This could be a PDA with access to 3G and wi-fi where the traffic should be
divided between these two. Another scenario could be an identical service
existing on different components or service platforms. The Load Balancer
will then balance the load between these. Information where this Load Bal-
ancer will be located is either unavailable or not set at this time. From the
published figures, similar to Figure 9 a set point of where it is located is not
set. With distributed service platforms to load balance between, locating it
in the routers could be argumented for. For balancing within a service plat-
forms resources, a local Load Balancer might be the most effective. Thorough
enough information about the objects and service platforms to research the
effect of load balancing was not available in my research.

16

5 SCENARIO

TODO: Import figures

When simulating unfamiliar behavior, case scenarios is useful to set variables
and behavior. This comes to everything from number of customers, QoS
demands and behavior. The two cases that is used during simulation gives a
variation in count, demands and retransmition rate among others. Variation
in packet size is not regarded in these scenarios. Only one test setting is done
on the routers with change in packet size at a locked configuration and load.
This is not enough to run a plausible simulation without it being to colored
by assumptions.

5.1 Case 1 - Animal herds

Setting herds out on bait in the wilderness is common in Norway. During
bait however, farmers have little to no control over their herds. This can be
position, if they are stuck or died for some reason. As coverage of cellular
telephone technology is closing in on complete coverage, this can be used as
an access medium for sensors herds carry around.

Traffic pattern As the deployed sensors should be as small as possible,
calculations will be done at a server side. A timer based reporting will be
most natural to use, both for power saving and ease of configuration. All
communication will also be from the carried devices to central servers. A
total of 26500 generating entities are used in the simulation with given traffic
sinks to reach from set gateways. Each entity represents an animal reporting
for the herd it is in. Each entity sends an update with given time slots of 15
minutes.

Time demands The herds will be on bait, often far from civilization. Real
time demands will have no effect as the farmer will not reach the animal
quickly anyway.

Packet loss Of the same reasons as above, packet loss in the COOS net-
work will not be critical. Actions should be handled if several packets are
lost in a row. [will not handle actions on continuous packet loss in my
experiment, which can more easily be solved at a higher level.

17

5.2 Case 2 - Patient supervision

In todays systems, home alarms has to be manually triggered for a community
care nurse to be notified. It also works only in the home of the patient so
she or he will be forced to stay within their home. An automatic update
of the patients condition and position will in a larger degree guarantee for
the patients need of help. In addition it will give the patient the possibility
to move outside of its home. This scenario is in addition split up in two
different traffic types. One is the continuous update messages of the patients
condition. If an alarm should be sounded, based on the patients information,
an alarm should be sounded to the nurse.

5.2.1 Case characteristics - Patient notifications

As the devices carried by the patients are portable, they should be as light
as possible excluding computation power as much as possible. The data sent
will then be clear values like position, hart rate and similar values needed to
see a patients condition. The notifications are tested

Traffic pattern These messages started to be similar to be alike the ones in
Case 1, a set interval based repetition. Each message containing information
about the patient at the given time. The interval will on the other hand be a
lot shorter, as time is in a much larger degree important. As this generated
to little variation, these messages was rewritten to have a variable waiting
time. This time was modeled as a poisson process with the mean value the
same as the static earlier value.

Time demands As every second will count when saving lives, the time
demands should be as strict as possible. The time demands should however
be loose enough that it can handle high load nodes to a certain degree.

Packet loss Of the same reason as above, packets should have high priority
and guarantee, where possible, a delivery.

18

Case values

Case Alarm messages Patient messages | Animal messages

Type 1 2 3

Priority 1 2 3

serverToClient TRUE FALSE FALSE

Retransmit Timer Variable Static/Variable 900000 ms
Avg: 1 alarm/2 min. Avg: 15s

Guaranteed Delivery TRUE TRUE FALSE

Time demand 5000 15000 90000

QoS routing choice Delay Delay Hop Count

Table 4: Difference between packet types and their QoS values used in sim-
ulation.

5.2.2 Case characteristics - Alarm messages

When a patient either hits an alarm button, his pulse raises to the roof or
some other event that should generate an alarm, the community nurse should
be alarmed. This alarm is sent from a Service Platform to the nurse to inform
him or her about the patients status, whereabouts and so on.

Traffic pattern These will have no repeated pattern as the information
messages. We look at the different alarm situations as independent of each
other and model the intensity of these messages as a poisson process. They
will also occur relatively seldom. I started out with an alarm each 15th
minute and raised it up to each 2nd minute to look for difference.

Time demands Of the same reasons as above an alarm message should
reach the destination within a strict limit.

Packet loss A loss of packet will be critical in this case so packet loss
should be avoided at all means.

6 SIMULATION

At the writing moment the simulated system is only at a test phase. Tests
have been mainly isolated with a goal to get specific performance values. To

19

be fully able to to see the effect different topologies and load balancing has
on the system the solution needs to be set in a context. I came to the point
that only a simulation would produce these results.

TODO: add reason of simulation TODO: Add things about model-
ing system from MAD and Lilja. To complex to model and therefor
simulate.

6.1 Goals of simulation

The COOS system is not yet put into use and is therefor not tested throughly.
This counts for all parts of the system. There does however exists perfor-
mance tests on delay through routers according to load on one single router
with variation in the number of threads. The information about the system
available is mainly restricted to the routers as explained earlier. The tests ex-
ecuted on the routers show us that the performance is colored by a high level
language. The delay through the routers greatly exceeds the performance
experienced in lower layer architectures.

Employees at Telenor have helped me with the effect several parallel compu-
tations have on the delay through each hop. The statistics are output from
performance tests run by [21]. The tests still lack some detailed information
for optimization. More details around when the thread count variates along
with closer details on which tasks in the router takes time are recommended
to fully simulate the behavior. In addition, the effect variation of packet size
has on the performance is not thoroughly tested.

In the finished COOS platform, messages will have different choices on which
QoS parameters to be routed by. The model I have created supports this, but
is limited to route based on hop count and total delay (in ms.). This is done
due to, again, lack of information about the system. With more system tests
to reveal system times, behavior and delays on link or node failures and a
clarification on link loss ratios this aspect could more correctly be examined.
A plausible model on how the architecture of the system with respect to
number of routers and links between them and how and where the gateways
are located along with the performance of them should be identified.

6.1.1 Simulation tools

There are both network simulators and general simulator languages at the
market. Depending on the task to simulate, different ones are more suitable

20

then others. The ones regarded in my research and the reason of my choice
is explained shortly.

Simula/DEMOS Discrete Event Modeling on Simula (DEMOS) is a pack-
age written in Simula [1]. Simula by itself is sufficient to compose any simu-
lation model, but leaves it to the user to define all the boundaries. Simula on
the other hand does not give any help with building blocks, which the user
has to define.

DEMOS is based on entities competing for resources. It gives the building
blocks for this in addition to some statistical help.[4]

JavaDEMOS This package for Java is based on the same packet for Sim-
ula. It’s main difference is that it is a package for Java. As with Java,
Software Development Kits for the language is also more evolved then its
predecessor. Modeling using this package would most likely be more effec-
tive. However, experiments show that larger experiments meet problems in
simulation efficiency. [9]

Network Simulator 2 (NS2) As the above, NS2 is also a discrete event
simulator. It is targeted at network behavior. The simulator has considerably
support for TCP, routing and multicasting protocols over different network
technologies.

The simulator compiles under C++ and is developed on several kinds of
Unix distributions. It should also run on any Posix system in addition to
Windows.

As mentioned, NS2’s main focus is on the transport and known routing pro-
tocols. The system I am investigating is in a larger degree on top of what
NS2 offers, with several special properties. Modeling the system might be
easier in NS2, but giving the different parts the special properties they need,
would most likely need severe scripting. [11]

6.2 Simulator logics
Simula/DEMOS was seen as the most suitable simulation language to model
the system in. This simulator is mainly operated as several entities competing

for resources. I modeled the system with the logics laying in a packet entity

21

———————————————— - ---=-n
\ Repeat step pr. hop |

Figure 10: Simplified logics of a packet. The stippled tasks are done for each
hop the packet does through the network.

alone. As can be seen in Figure 10 it can shorty be seen on as a while loop
running as long as the packet has not either reached its destination or a break
threshold is breached.

Figure 11 illustrates the logic of the packet entity in more detail. As can
be seen, packets are only generated at the beginning of the simulation and
reused by reseting the packet. This is done for performance issues. Several
details in the COOS solution are not modeled as it would not affect the
performance or the detail of information is not available. The throughput
tests Telenor has performed on the system, gives basis for the statistics in
the model. The number of threads each router runs, affect the performance
each packet experiences. The performance tests of the system characterizes
the delay variation in three groups. These numbers gives basis for a division
into more groups to take smaller variation into account.

Entity solution In my solution I have kept the number of different enti-
ties at a minimum. This because as synchronization between entities affect
performance drastically. In addition, creation and termination, is kept to
a minimum. As far as it is possible, updating of static memory variables
is used. This prevents the simulator to use a variable memory size during
simulation, which also affects performance due to segmentation [18], among
other factors.

The main entity, packet, has most of the logics in the simulator. For each
step through the network it handles forwarding, link choices, COOS specific
behavior like Guaranteed Delivery (see Section 4), handling of broken links
and statistics. Each entity is only created at simulation startup and is kept
alive through all of the simulation. Each packet entity represents a patient
or animal herd in the case scenarios. Each time an update is sendt, the
representative packet entity is triggered. This way the memory usage is kept
fairly static and most of the memory access done is reading from and writing
to existing variables.

Routers are not modeled as an entity. Synchronization cost is as explained

22

Initialized
[] in mainl()
[

setNulllll

Hold
routerT

|findNextHop(l| Choose Break
GW/Server Statistics

Hold
Forwarding

Transfer

| Through GW/S
Handle
link-LB

Router

Arra:
‘$ outQ/Hold

Updavte
counters

Updavte
statistics

A

Figure 11: All of the router logics is placed into procedures in the packet
entity of performance reasons. The packets are simulated according to sta-
tistical defined boundaries.

23

the reason for this. The local information needed about the routers was
also possible to keep in static memory variables. All transport costs, routing
topology and link failures are kept in globally accessible matrices. In practice
this information will be stored locally. The performance of LS routing proto-
cols is outside the scope of this research and therefor not modeled. Routing
logics is handled by a procedure which is again called upon each time the
topology changes.

Control over and knowledge about them /inks in underlying network layers is
difficult to do dynamical. In addition, these are looked on as fairly static in
performance. These are therefor modeled only as a delay between hops in the
network. Delay and loss tests over a longer period between the major cities
in Norway was performed during the research. Simple tools like ping and
tracert was used to give a plausible topology to simulate. The connections
in the CO network will also be connection oriented. This will decrease the
variation even more. The delay through the underlying network is therefor
set to a static value. Figure 12 shows the tested delay times experienced
through the simulated network.

The transporter on the other hand is modeled as a resource packets will
compete for. It is, as explained in section 4, in the transporter the priority
of the packets is taken into account. Exact performance measures of the
processes in the router is not tested. System times are calculated out from
throughput tests done by Telenor, but they do not measure how effective the
different processes are. This affects the accuracy of the simulation. Change
in these values affect the outcome slightly.

6.2.1 Delay in router

Telenor has run several tests on the delay on packets running through a
router, varying the number of parallel threads running. The tests have been
run on 10, 50 and 100 threads in addition to 50 threads with 1kB size on
packets. Each test is presented as an empirical distribution, where the delay
results are grouped in bulks according to a time interval delayed through the
router.

The statistical information of on delay through routers available is already
treated and visualized. Therefor we have to make assumptions of the be-
havior of these times when number of clients changes. On the basis of the
histograms for 10, 50 and 100 clients, statistical probabilities were be made.

24

9 10

Figure 12: The delay in ms. in the topology the simulator was performed
on.

25

\ /N
\/ \/

Figure 13: Test 1 Topology - Test load balancing over multiple links.

6.2.2 Load Balancing

Load balancing is, along with connections, configured at each node during
configuration of the COOS routers. As the load balancer is defined as a
post-processor, a packet will be directed to a channels transpoter from the
load balancer. As the load balancers are based on initial configuration, a
dynamic calculation is not supported. Since routing matrices are calculated
for different QoS parameters it would be natrual to also have load balancers
that support this.

6.3 Simulation Runs

A total of over 70 simulations were run through my research. As pointed
out earlier, my focus has been the delay through the network and how to
minimize it and the packet loss due to timeouts. As explained earlier, the
routers tend to give high delays when the number of simultaneous packets
being processed increases.

26

1.0 = — —

e

0.4

:|:| I I T T T | IR T TR TN R THN T TR T PR T R TR N TN T T T PR T T T |
0 50 100 1500 2000 2500 000

Figure 14: Delay for Type 2 traffic for a Round Robin setting on topology 2
and a normal in topology 1.

Figure 14 shows us the cumulative distribution in delay for two scenarios
with a low traffic intensity. One using no load balancing. The other scenario
is the same traffic amount, only run with Round Robin on the same topology.
Both are illustrated in Figure 13.

One can clearly see from the figure that there is a difference, both between
the traffic types and the topologies. The two curves starting off steepest
illustrates the higher prioritized traffic. It has an average on about 425 ms.
in both cases. The variation on the average between the four different policies
tested, including no load balancing, the difference in mean value is only 1,4ms
for the Type 2 traffic (2,3 ms. for Type 3 traffic).

There is also a difference between the different traffic types in the figure. The
average of Type 2 traffic is 425 ms. in both cases where it is 519 and 521
ms. for the Type 1 traffic. At this network utilization a 22% growth in delay
is alot. Especially when, as pointed out earlier, the most of delay through
the routers are paralell and takes no regard to priority. In this case however
the difference is due to the difference in number of average hops each packet
does. Where Type 2 traffic used an average of 1,56, Type 3 used 1,92 giving
both types of traffic an average of about 270 ms. used pr. hop through the

27

1.0 I

o 50 10606 1500 20D 250 3066

Figure 15: Cumulative distribution of delay for prioritized packets when
traffic increases with 0%, 33% and 55% running without load balancing.
The two first have identical distribution.

network. This difference is only a result of the traffic pattern defined from
the case scenarios.

When we increase the saturation of the network the behavior stays the same.
As Figure 15 shows, we need to apply a certain amount of traffic before
it affects the delay times noticeably. The delay time increases slowly up
against saturation where an exponential increase is experiences. This typical
for server/queue-systems and is explained in [13] and [14]. This is also seen
regardless of both priority variations and load balancing policy. The lower
priority traffic is earlier affected as the queues in the Transporters increase.

6.3.1 Adding load balancing nodes

In a utilized information system, adding resources where its needed is a way
to increase performance. In my research the router nodes are the focus area
as links is an uncontrollable resource. My interest was to see if adding extra
routing nodes at points in the topology in the network, load balancing certain
traffic between these, would help the performance. As Figure 16 shows I

28

O,

/%A N |

©—©

2
CRCEN

added a parallel node to node two. All traffic going from node one is then
load balanced between these two as it earlier had only one option, regardless
of the cost matrix. In addition, there link load balancing is used where the
number of additional links added is changed.

6.3.2 Increasing mesh level

By increasing the mesh level of the network, my assumption was that the
average hop count of packets will be reduced. This will both decrease the
utilization of the routers and reduce the time a packet uses traversing between
network layers.

As expected, the hop count decreases drastically, closing in on one. Because
of link failures, it does not reach it completely. Simulations were run with a
greatly increased link failure rate, one link failure every two hours, in addition
to 55% higher load on the network. Even then, a full mesh topology without
any extra links outperformed the earlier simulated scenarios. The average
hop count was decreased from around 1,56, to around 1,47. This litle decrease
resulted in a delay performance on up against 8% for prioritized traffic and
15% on none prioritized traffic. The loss rate is allmost, even with the high
link failure rate, allmost nullified. The only packet loss’ are isolated events
due to a small statistical possibility with a large router delay.

7 CONCLUSION

Load balancing within the network, has to some degree an effect. The extra
links through the network creates redundancy of links, which again will give
the topology an extra robustness. Links through the IP network is however
often in the same Shared Link Risk Group [10], which will decrease this
effect. Performance wise for delay through the network, the effect with extra
channels, makes the system more robust for higher traffic load. It is however,
not been researched if the resources of the system running a router node fully
will benefit from the increased channels.

The results also give a clear indication that a key number to strive for in
this topology is the hop count a packet uses through the network. As we
see in figure 18 a packet traversing through the COOS network, must for
each hop “go up” into the COOS layer to be routed to the next hop. With
an increased mesh degree and a lowered average hop count, this extra time

30

®
@ @

\\/ \¢

4 7R

A_T=9 A=
A NP

Figure 17: Test 3 Topology - Simulation to test the effect increasing the
mesh-level of the network.

Figure 18: Each packet has to traverse through the network layers for each
hop through the network. This increases load on each COOS router which
again will affect the performance and experienced QoS.

31

used can be decreased easily. The increased mesh will also, as we have seen,
increase the robustness of the network. Even with rapid link failures, the
only noticeable effect is on traffic without a guaranteed delivery.

A full mesh will of course increase the cost on configuration of the routers
for every extra link. Firewalls throughout the network can also create prob-
lems in reaching a full mesh. The cost of adding extra links does however
greatly increase the performance if it is compared to adding extra nodes or
configuring several parallel links.

7.1 Future Work

As pointed out, there are several uncertainties on the behavior of the COOS
elements. The performance of the routers is only tested as a whole. There
are several issues within a router this complex that can greatly affect the per-
formance. Both of the router, but also the QoS experienced as a whole. This
counts for starters the performance variation during packet size variation,
which we have seen will affect which load balancing policy to use. The use
of priority flags throughout the router can also give stricter QoS guarantee
for traffic with strict requirements.

A more thorough consciousness-raising of the network aspect of this kind of
solution should be done. The traffic pattern expected will affect, both the
topology, but also placement of gateways and service platforms. This pattern
can also give a wider understanding of how to effectively balance and forward
traffic.

References

[1] Simula webpage, http://www.iro.umontreal.ca/~simula/.

[2] Jan A. Audestad, Internet as a multiple graph structure, Information
Security Technical Report, No. 1 (2007).

[3] Jon C.R. Bennett and Hui Zhang, Wf2q: Worst-case fair weighted fair
queueing, http://lion.cs.uiuc.edu/courses/cs497hou/pres/WF2Q.
pdf.

[4] Graham M. Birtwistle, Demos: a system for discrete event modelling on
simula, Springer-Verlag New York, Inc., New York, NY, USA, 1987.

32

[5]

[12]

[13]

[14]

[15]

[16]

[17]

Holger Boche, Marcin Wiczanowski, and Slawomir Stanczak, Unifying
view on min-max fairness, mazr-min fairness, and utility optimization in
cellular networks, EURASIP Journal on Wireless Communications and
Networking 2007 (2007), ID 348609.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein, Introduction to algorithms - 2nd ed., MIT Press, 2001.

Wikipedia The Free Encyclopedia, Posiz, http://en.wikipedia.org/
w/index.php?title=POSIX&o01did=300336312.

Kevin Fall, Lecture: Qos in atm, http://www.cs.berkeley.edu/
~kfall/EE122/1ec27/.

Institute for Computer Science and University Duisburg-Essen Busi-
ness Information Systems, Javademos, http://sysmod.icb.uni-due.
de/index.php?id=javademos.

Bjarne E. Helvik, Dependable computing systems and communication
networks, Tapir Akademiske Forlag, 2007.

University in South California Information Science Intstitute, Net-
work sitmulator 2, http://nsnam.isi.edu/nsnam/index.php/User_
Information.

James F. Kurose, Keith W. Ross, and Bhojan Anand, Computer net-
working, forth ed., Greg Tobin, 2008.

David J. Lilja, Measuring computer performance: A practitioner’s guide,
Cambidge University Press, 2000.

Daniel A. Menascé, Virgilio A.F. Almeida, and Lawrence W. Dowdy,
Performence by design, Pearson Education, 2004.

Anders Olsson, Understanding changing telecommunications, building a
successful telecom buisness, John Wiley & Sons Ltd., 2003.

Abhay Kumar J. Parekh, A generalized processor sharing approach to
flow control in integrated services networks, Tech. report, Massachusetts
Institute of Technology, 1992.

Harbor Research, 2009 - 2013 pervasive internet & smart services
market forecast, http://www.harborresearch.com/HarborContent/
reports.html, 2008.

33

[18]

[19]

[20]

[21]

William Stallings, Operating systems, internals and design principles,
6th ed., 2009.

Dimitrios Stiliadis and Anujan Varma, Latency-rate servers: A general
model for analysis of traffic scheduling algorithms, http://ieeexplore.
ieee.org/iel2/3539/10628/00497884 . pdf 7arnumber=497884.

Wikipedia, Autonomous system — wikipedia, the free encyclo-
pedia, http://en.wikipedia.org/w/index.php?title=Autonomous_
system_(Internet)&oldid=267450890, 2008, [Online; accessed 5-
February-2009].

Zeromq, Measuring messaging performance, http://www.zeromq.org/
whitepapers:measuring-performance.

34

	Title Page
	Problem Description
	masteroppgave.pdf

