@ NTNU

Norwegian University of
Science and Technology

Study of TCP friendliness of CEAS
routing system in comparison with
Distance Vector Routing and Link State
Routing

Sandeep Tamrakar

Master in Security and Mobile Computing
Submission date: June 2009
Supervisor: Bjarne Emil Helvik, ITEM
Co-supervisor: Otto J Wittner, ITEM

Sasu Tarkoma, External (TKK)

Norwegian University of Science and Technology
Department of Telematics

Problem Description

Ensuring that a network treats TCP traffic in a "friendly” manner has been an important topic for
at least a decade. A promising stochastic path management (routing) system known as CEAS
(Cross Entropy Ant System) has been developed at the department and Q2S. An important issue is
the level of "TCP friendliness” CEAS may provide. To investigate this and related questions, it is
suggested to perform comparative studies of the performance of CEAS based and distant vector
based routing.

Work toward this objective ha started as an autumn project, using ns-2 as a tool. The master
thesis is

a continuation of this work, where it will be look at more complex network scenarios. For instance:
- various topologies.

- dependence on the traffic source characteristics.

- multiple TCP streams and background traffic.

- a range of failure characteristics, including link failures statistic observed in operational
networks

An expected outcome of the study is a mapping of the pros and cons of CEAS routed network
relative to distant vector routing for this kind of transport.

Assignment given: 15. January 2009
Supervisor: Bjarne Emil Helvik, ITEM

Abstract

With the continuous development of the Internet technologies new routing require-
ments have surfaced. In response, several adaptive, stochastic routing algorithms have
been purposed. The Cross Entropy Ant System (CEAS) is an adaptive, robust and
distributed routing and management system based on the swarm intelligence. Several
prototype implementations and enhancements have been made on this system, however

the level of TCP friendliness the CEAS may provide is yet an important issue.

In order to investigate the level of TCP friendliness, the behavior of the CEAS
system during different network dynamics needs to be understood. For this reason,
the behavior of the CEAS system under different network event and its corresponding
effects on TCP performance is examined first using a simple network. Later the level of
TCP performance is measured on complex networks. Also the load sharing capabilities
of the CEAS system is investigated the efficiency of the system to manage and update
according to the network load. Additionally the results are compared against the
results obtained from the standard Link State Routing protocol and the Distance Vector

Routing protocol under similar conditions.

In this work, we find that the update process in response to the change in network
dynamics is slower on CEAS compared to the other systems. However, the update
process speeds up with the increase in the ant rates. During such period the use
of multiple path reduces the TCP performance. We also find that large amount of
packets loop around some links during link failures. Such looping reduces the TCP

performance significantly. However, implementing previous hop memory technique

removes such loops and also help TCP resume transmission immediately after the link

failure.

Compare to the LSRP and the DVR, we find that CEAS manages network resources
more efficiently to produce higher TCP performance. We find that the CEAS diverts
the data traffic on the basis of the quality of the path rather than the length of the
path. We also find that the CEAS system handles multiple TCP stream independently
with equal priority. But the smaller transition delay on the ants compared to the
data packet reduces the TCP performance to some extent. However, forcing the ants
to experience longer queuing delay according to the traffic load improves the TCP

performance as well as helps CEAS update more accurately.

ii

Acknowledgements

This text is submitted as the concluding part of my Master of Science degree in
Security and Mobile Computing in the NordSecMob program. This work has been
carried out at the Department of Telematics (ITEM), Norwegian University of Science

and Technology (NTNU) during the spring of 2009.

[would like to thank my supervisor Professor Bjarne E. Helvik and my tutor Otto J.
Wittner, Post Doc at the Center of Quantifiable Quality of Service in Communication
System, Centre of Excellence (Q2S), for all their guidance, assistance and valuable
feedbacks throughout the period of this thesis. Additionally, I would like to thank
Professor Sasu Tarkoma at the Helsinki University of Technology (TKK) in Finland
for his supervision. Special thanks to Laurent Paquereau, Phd at Q2S for providing

the required materials for this thesis, his guidance and assistance.

Sandeep Tamrakar
Norwegian University of Science and Technology (NTNU), Trondheim
June 2009

Abbreviations and Acronyms

ABC
ACK
AIMD
CBR
CE
CEAS
cwnd
DUPACK
DVR
FIB
Gbps
IGP
IP
IS-1S
Kbps
LSA
LSRP
Mbps
MSS
NS 2
OSPF
RIP
RTO
RTT

Ant Based Control
Acknowledgement

Additive Increase and Multiplicative Decrease
Constant Bit Rate

Cross Entropy

Cross Entropy Ants System
congestion window

Duplicate Acknowledgement
Distance Vector Routing
Forwarding Information Base
Giga bits per second

Interior Gateway Protocol
Internet Protocol
Intermediate System to Intermediate System
Kilo bits per second

Link State Advertisement
Link State Routing Protocol
Mega bits per second
Maximum Segment Size
Network Simulator 2

Open Shortest Path First
Routing Information Protocol
Retransmission Time Out
Round Trip Time

rwnd
SACK
SMSS
ssthresh
TCP
TTL
UDP

receiver window

Selective Acknowledgement
Sender Maximum Segment Size
slow-start threshold
Transmission Control Protocol
Time To Live

User Datagram Protocol

Contents

Abstract

Acknowledgements

Abbreviations and Acronyms

List of Tables

List of Figures

Chapter 1 Introduction

1.1
1.2
1.3
14

Introduction and Motivation e e e e e

Related Works
Research Methods

Structure of thesis,

Chapter 2 Background

2.1
2.2
2.3
24
2.5
2.6

2.7

Stochastic Routing
Ant Routing
Cross Entropy Ant System
Link State Routing (OSPF)
Distance Vector Routing (RIP)
TCP
2.6.1 TCP congestion control

2.6.1.1 Slow start / congestion avoidance

2.6.1.2 Fast Retransmit / Fast Recovery
Effect of Stochastic Routingon TCP

vii

iii

x1

Ot = W = -

© oo N N

2.8

TCP variants

Chapter 3 Simulation Module

3.1
3.2

3.3
34
3.5
3.6

Simulator Basics L
CEAS Extension Modification
3.2.1 CEAS ForwardingUnit Implementation
3.2.2 Cost Path Modification
3.2.3 Record Single Hop Route Address Implementation
Production
Parameters
Topologies
Network Dynamics
3.6.1 TCP Connections
3.6.2 Background Traffic

Chapter 4 Measuring TCP performance on CEAS system

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Performance Metrics
TCP performance on steady-state network
TCP performance during Link Failure
TCP performance during Link Congestion
The effect of different capacity links on TCP. . .

Multiple TCP connections.

Previous Hop memory

Chapter 5 Case Study

5.1
5.2

5.3

Performance Metrics
TCP performance using 12 node network
5.2.1 TCP performance on steady network L.
5.2.2 TCP performance during multiple link failures
5.2.3 TCP performance during frequent transient links

TCP Performance on large Topology

Chapter 6 Conclusion and Future Works

6.1
6.2

Concluding remarks

Future works

21
21
22
23
23
24
24
25
27
27
28
29

31
33
33
39
44
48
49
54

59
59
60
61
64
67
72

Appendix A Multi-* Network NS2 extension

Appendix B CEAS extension modification
B.1 Forwarding Unit

B.2 Link cost modification
Appendix C The effect of different capacity links on TCP
Appendix D Multiple TCP stream on LSRP and DVR

Appendix E Locations of the 58 node Uninett Network

85

89
89
90

91

93

95

List of Tables

3.1
3.2
3.3

4.1
4.2
4.3
4.4

5.1
5.2

CEAS parameters o e e e 26
LSRP parameters L 26
DVR parameters e e e 26
TCP configuration 35
Pheromone Stabilization Phase with Elite Selection on All Ants 35
TCP throughput during multiple connections 50
TCP Throughput during multiple connection at packet size of 9000 bytes 52
TCP configuration e 61
Background traffic parameterso oL 61

List of Figures

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

4.16
4.17

5.1
5.2
5.3
5.4

TCP congestion control mechanism., . 14
A simple 11 node network 32
Pheromone Stabilization periodo L 36
Time required for TCP to transmit with Full Data Rate 37
cwnd at different ant rate oL Lo 38
Out-of-order packet received at Ant rate 5 (an instance of simulation) 38
Re-stabilization phase 40
Time required for TCP to resume transmission after Link Failure 41
Time required for TCP to regain full data rate after transmission is resumed 42
Micro-Loops after Link Failure 42
Time required for TCP to regain full data rate after link re-establishment 43
TCP Throughput during congestion 45
TCP Throughput on different system with Large packet size 47
Pheromone Distribution at node 3 o o o oo o1
Pheromone Distribution at node 3 using packet size of 9000 bytes 53

Comparison of TCP data rate between TCP Reno and TCP Sack (results from an

instance of a simulation) L L L 53
Micro-looping during Link failureo oo oo 54
average percentage gain in TCP Throughput 56
12 nodes network. L 60
TCP Connect Time. 0. 0 e e 62
TCP Throughput at various levels of background traffic loads 63
TCP Goodput at various levels of background traffic loads 64

xi

5.5

5.6
5.7

5.8
5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

Al
A2
A3

C.1
C.2

D.1

TCP Throughput during multiple links failure at various levels of background traffic
loads e 65
TCP Goodput during multiple links failure at various levels of background traffic loads 66
TCP data retransmission during multiple links failure at 1000 Kbps of background
traffic loads L 67
TCP performance after using one hop memory technique. 68

TCP Throughput under frequent transient links at various levels of background traffic

loads e 69
TCP Goodput under frequent transient links at various levels of background traffic loads 70
TCP performance after using one hop memory technique. 71
Uninett Topology Oct 2007. e 73
TCP Throughput of first TCP connection 75
TCP data transmission of first TCP connection 76
TCP Throughput of second TCP connection 7
TCP Throughput of third TCP connection 78
TCP Throughput of fourth TCP connection 79
NS2 Node layout o0 e 85
Node Layout e 86
Architecture of NetworkLayerUnit 87
TCP throughput when the shortest path has lower link capacity 92
Improved TCP perfromance after increasing packet size to 9000 bytes. 92
Data rates of Two TCP stream on LSRP and DVR 93

xii

Chapter 1

Introduction

1.1 Introduction and Motivation

With the continuous development of the Internet technologies, large amount of new
applications based on the Internet is being evolved. As a consequence, the volume of
data traffic is growing enormously. Such huge traffic calls for new routing requirements
those that are scalable, self adaptive and self manageable. In other words, we require
routing algorithms that detect and utilize its available network resources, distribute
data traffic across multiple paths and quickly adapt to the changing network loads and
the network topologies to produce low latency, low loss and high throughput. A study
by Tangmunarunkit et al. [35] shows that the current IP routing does not make good
utilization of its available network resources in order to provide high throughput. For
example, in a network there may exist some path other than the routing policy defined
path that has more number of intermediary nodes and yet produces better performance
than the predefined path.

In response to these requirements, several adaptive stochastic algorithms have been
purposed that make use of multi-path routing. Further, self-organized, distributed al-
gorithms inspired by the native behavior of ants have been studied for a while. Such

systems are referred to as Swarm Intelligence!. Algorithms based on ant colony opti-

ISwarm Intelligence is a decentralized, self-organized systems that results in an optimal solution by collective behavior

1.1. Introduction and Motivation

mizations have been applied to solve various combinatorial optimization problems such
as traveling salesman problem, quadratic assignment, protein folding, graph coloring
etc. Such algorithms have been proposed for network routing as well. AntNet [7],
Ant-based Control [32], Adaptive Swarm-based Routing [36] etc are some of the ex-
amples of ant based routings. In these algorithms the swarming behavior of ants are
represented by mobile agents that flow throughout the network and collect information
that are later used for managing and controlling the network.

Typically ant based routing are studied with focus on datagram network i.e. User
Datagram Protocol (UDP) as a transport layer protocol |7, 10]. However, most of the
applications on the Internet use Transmission Control Protocol (TCP) as the transport
layer protocol for reliability. The nature of adaptive routing is that it makes use
of different available paths to transmit data of the same session. At each node the
probability of selecting next node is based on the quality of the path between them.
At the destination, the data following different paths may reach out of order. UDP
responds the out-of-order packets simply by discarding them. However, beyond certain
threshold, TCP assumes such out-of-order delivery is due to the network congestion
and responds by decreasing TCP throughput. Therefore, the behavior of the TCP on
a network using ant based routing should be well studied.

A promising stochastic path management system, based on the swarming behavior
of ants and the rare event optimization method cross entropy, know as Cross Entropy
Ant System (CEAS) has been developed at the department of Telematics, NTNU and
Q2S. Several prototype implementations and enhancements have been made on the
system, however the level of TCP friendliness CEAS may provide is yet an important
issue.

The main objective of this work is to understand the behavior of the CEAS during
different network events and its corresponding effects on the TCP performance. The
time taken by the CEAS to update the system in response to the change in the network

dynamics is an important factor. This helps us to understand how well the TCP

of simple local interactions between elements of the system.

Chapter 1. Introduction

performs during such events. Thus a part of the work includes measurement of the
CEAS update process and the behavior of the TCP during such period. The other
important issues are to find out the performance of TCP during network congestion,
the load sharing capabilities of the CEAS system etc. One of the main objective of
this study is also to compare the results against other standard routing systems such

as Link State Routing and Distance Vector Routing under similar conditions.

1.2 Related Works

Ant Based Control (ABC) by Schoonderwoerd et al. [32] was the first attempt
to implement an ant based optimization method to the network routing. However this
is limited to the symmetric circuit switched telecommunication network and is not
applicable to the packet switching network like the Internet. Dorigo and Di Caro |[7]
later introduced AntNet which is designed for packet switching, connectionless network.
The Cross Entropy Ants System, purposed by Helvik and Wittner [16], forms the
groundwork for this work.

Godomska and Pacut in [10] have studied the behavior of TCP on ant based routing
like AntNet and Adaptive Swarm-based Routing. They concluded that, although TCP
sets higher demands on the adaptation process, the load range of the network could be
extended in a way to provide efficient routing policies. However, their study was based
on the comparison of TCP performance against UDP.

In Master’s project [33], we compared and analyzed the TCP performance in a
network applying CEAS based stochastic routing against Link State Routing OSPF.
The TCP performance were measured using factors like Connect time, throughput and
goodputs. The study was based on a small network with only one TCP connection
with various background traffic loads. During the project we found that a large amount
of TCP packets were lost due to looping after link failures. Such looping significantly
reduced the TCP performance. In this work, we try to avoid such looping by imple-

menting previous hop memory technique that forbids forwarding packets back to the

1.3. Research Methods

node that recently forwarded.

Further, the project work was carried out only using one TCP connection on a
network. In this work, we examine the behavior of the CEAS system during different
network events and measure the TCP performance. We also examine the performance

of multiple TCP sources using two different variants of TCP.

1.3 Research Methods

In order to evaluate the performance of TCP on CEAS system, the following main

questions are investigated.

1. How fast the CEAS system updates and stabilizes in response to the network

dynamics and how they affect the TCP performance?
2. Does the use of multipath routing causes reduction in the TCP performance?
3. How well the system handles TCP data traffic during congestion?

4. Does the system re-routes the TCP traffic in response to the congestion or they

are continuously forwarded along the congested path?
5. How does the CEAS handles multiple TCP traffic when they share common links?

6. Does the CEAS system divert multiple TCP traffic on separate path or the TCP

connections struggle to use the best path?
7. Does the TCP performance on CEAS is better than on the LSRP and DVR?

Each of the questions is investigated using simulations. The simulations are carried
out in a simple network. The simple network helps us understand and investigate the
questions in an easier way. Further, it is easier to visually examine the simulations to
gain more insight.

All the simulations in this work have been carried out using Network Simulator 2

(NS 2) 2. NS 2 is a widely used discrete event simulator that provides a reproducible and

2For more information on NS2, see http://www.isi.edu/nsnam /ns

Chapter 1. Introduction

controllable environment for the evaluation of the Internet protocols. All the previous
studies related to the CEAS have been based on the modules developed by Helvik
and Wittner [16]. However, for this work a newer version of the CEAS module has
been provided by the department of telematics, NTNU. This new version is developed
on top of the multi- * network extension by Paquereau and Helvik [26, 27|. The
modules are written in C ++ and some modifications have been made according to
our requirements. 15 independent replications have been simulated for each scenario,
the results have been then synchronized to calculate 95 percent confidence interval.
Chapter 3 describes the simulation model in detail as well as the modifications made.

The results related to the TCP performance as well as CEAS behavior are studied.
The results related to CEAS behavior during different network events are used to
understand the behavior of the TCP. If TCP performance shows unexpected results,
the CEAS behavior is then studied to find logical explanations. Further, the simulations
are visually examined to gain more insight during such unexpected results. The TCP
performance results are then compared with the results obtained from LSRP and DVR
under similar configurations.

Later, two case studies are made to measure the performance of TCP in complex
CEAS networks. Each case study is based on different topologies. The results from our
basic studies are used as references to reason out the behavior of TCP in the complex

networks.

1.4 Structure of thesis

In this chapter, we briefly outlined the research area and our approach. The rest
of the thesis is organized as follows.

Chapter 2 provides the necessary background on stochastic routing, LSRP and
DVR. Tt also provides brief overview of CEAS system. Section 2.6, gives a brief overview
of TCP and the underlying congestion control algorithms. Further, Section 2.7 defines

the problems related to TCP on stochastic networks. Finally, in Section 2.8 we explain

1.4. Structure of thesis

the congestion control algorithm used in different versions of TCP

In Chapter 3, we outline our measurement platform and simulation models. The
modification made on extension is explained in Section 3.2. The rest of the sections
defines the implementation, parameters, topologies, network dynamics used in our
study.

In Chapter 4, we measure the TCP performance on CEAS system under influence
of different network events. The sections are organized according to the network events.
The results from each events are explained using graphs. The results are also compared
with the results from LSRP and DVR.

Chapter 5, presents two case studies based on two different networks. The studies
in this chapter mainly focus on observing the behavior of the TCP in complex networks.
The results from Chapter 4 are used as references to reason out the behavior of the TCP
in complex networks. The chapter is divided into two sections based on the network

topologies; a 12 node network and the 58 node topology from the Uninett network.
The main results of this work are summarized in Chapter 6 and the future works

are outlined.

Chapter 2

Background

2.1 Stochastic Routing

Basically TP routing is a set of protocols responsible for determining the path that
data follows from its source to the destination. The path from a source to its destination
may consist of series of routers. The IP routing protocol helps routers maintain a set
of rules that they refer while forwarding data packets to the next node towards the
destination |[34].

The state of art Link State Routing protocols such as OSPF! and IS-IS? are de-
terministic. Such routing algorithms are fine tuned in order to pre-determine the best
path from source to the destination. Each router along the path maintains a next-hop
routing table that consists of the addresses of its neighboring nodes along with the
associated path cost. The selection of the next hop is based on the cost associated
with the path towards the destination. Similarly Distance Vector Routing such as
RIP 2 uses hop count as routing metric to find the best path between a pair of nodes.
Therefore, the data packets are always routed through the same path defined by the

routing policy even though there may exists multiple paths towards the destination

LOpen Shortest Path First (OSPF) is an Internet domain routing based on Dijkstra’s algorithm. See TETF RFC
2328.

2Intermediate System to Intermediate System (IS-IS) is similar to OSPF based on Dijkstra’s algorithm. See TETF
RFC 1195.

3Routing Information Protocol (RIP) is a distance-vector routing that uses hop count as routing metric. See TETF
RFC 1058

2.2. Ant Routing

[28].

However, in stochastic routing, the routing tables maintained by each router consist
of possible next node addresses based on a probability distribution. During packet
forwarding each node randomly selects next node from its routing table irrespective
of the previous selections. However, the probability of selecting a particular node
among other possible nodes is proportional to the quality of the path between them.
In stochastic routing there are no pre-determined path defined by the routing policy.
Thus, the data packets do not always follow the same path which makes this routing
non-deterministic [28, 6]. However, swarm based routing algorithms use stochastic

optimization methods in order to minimize the time finding the optimized path [22, 15].

2.2 Ant Routing

A collection of numerous simple local interactions between elements of self-organizing
system that results in complex collective behavior is known as Emergent behavior.
Emergent behaviors are very useful to solve optimization problems [11, 18]. Such
behavior can be found in nature, for example; a colony of ants sorting eggs without
having ants the knowledge of sorting. In this example the optimization process is not
centrally controlled but in fact the solution is produced by the collective behavior of
individual elements of the distributed system.

Swarm based routing algorithms make use of the emergent behavior of Ants search-
ing for food. In nature, ants continuously forge around in search of food. They form
a self-organizing system by interacting with each other using a chemical signal called
pheromones. During food search ants leave behind pheromones on their way towards
the food. These pheromones direct other ants towards the food. Paths with the
stronger pheromones are likely to be followed by most of the ants. As time passes
by, the pheromone gradually evaporates, yet the shorter paths tend to have stronger
pheromones than the longer paths. Thus, the shortest path is more likely to be followed

by further ants. The resulting shortest path is the outcome of simple local interaction

Chapter 2. Background

18, 11, 7, 15].

2.3 Cross Entropy Ant System

The Cross Entropy Ants System (CEAS), purposed by Helvik and Wittner [16],
forms the basic foundation of this work. The CEAS routing is based on two key
principles; emergent behavior and the cross entropy method for stochastic optimization.

In CEAS, emergence can be explained by the behavior of numerous ant-like mobile
agents that flows randomly throughout the network in search of possible paths between
two nodes. When a path from a source to its destination is found the ants retreats
back following the same path as well as updating a parameter, denoted as pheromone.
This pheromone is a crucial element in path finding as it guides other ants traveling
towards the destination. Each nodes along the path maintains a table that incorporates
addresses of its neighboring nodes along with their corresponding pheromone values
towards them [16, 15].

The CEAS uses a Cross Entropy (CE) method introduced by Rubinstein [30] to
update pheromones. The CE method has been widely used as powerful technique for
solving combinatorial optimization problems. The CE method uses adaptive sampling
technique to probabilistically converge random sequence of solutions to an optimal
solution. Thus, it is very helpful in finding optimal solutions in case of rare events
where the probability of occurring an event is very low. For example, on a large
network, the probability of finding an optimal path between two nodes by searching
randomly throughout the network is very low. Hence the use of adaptive sampling
helps gradually and iteratively minimize the cross-entropy between randomly found
paths and converge various found paths into an optimized path on the basis of the
path cost [30, 16, 15].

In CEAS system, the source node is responsible for generating simple agents de-
noted as ants. All ants are initially generated as forward ants that explore the entire

network searching paths towards the destination. The forward ants are of two types:

2.3. Cross Entropy Ant System

explorer ants and normal ants. At each intermediate node, the explorer ants choose
the next node randomly. These explorer ants are responsible for finding new paths.
Unlike explorer ants, normal ants choose the next node according to the probability
distribution i.e. the probability p;;, for a normal ant at visit ¢ in node 4, is calculated
according the random proportional rule 2.1. Each node maintains a database known

as message database to store the outcome of the random proportional rule [15].

Tij,t-[<j ¢ U)
Z(i,l)géE,lgEU Tilt

where, 7;;; is the pheromone value of link (¢, j) € E at update ¢, U is a list of forbidden
nodes, and FE is the set of all links.

When a forward ant reaches its destination, a path cost, denoted by L (w), is
calculated as in 2.2 . The path cost L (w) is the summation of all the link costs along

the path that ant followed. This path cost may vary with traffic loads and time.

Lw) = 3 L) (2.2)

V(i,j)Ew

where, L((7,7)) is a link cost between nodes i and j.

In addition to this, a control variable, know as temperature, is also updated. Over
time the temperature variable decreases but as more ants arrive at the destination, the
temperature variable stabilizes.

Backward ants then travel back from the destination node to the source node along
the same path but in reverse order. At each node along the path these backward ants
update the pheromone values. The pheromone values are updated according to the
path cost and the temperature variable. Thus, over time the pheromone values along
the better path get stronger there by increasing the probability of normal ants passing
through the path (from equation 2.1). As more ants pass through the better paths,
the routing table converges to find an optimal path among multiple paths [16, 15].

10

Chapter 2. Background

2.4 Link State Routing (OSPF)

Open Shortest Path First (OSPF) is a link-state routing protocol and is a family
of Interior Gateway Protocol (IGP). As a link-state routing protocol, routers discover
their neighbors and their states by exchanging link-state messages known as Link State
Advertisements. Initially LSA messages are flooded throughout the network (usually
Autonomous System *) to discover neighboring nodes. Once the initialization phase is
completed the LSA messages are exchanged periodically or in response to any change in
the topology. LSA messages helps nodes maintain a link state database regarding their
local and neighbor’s information, topological information and the cost associated with
each link towards the neighbors. Upon receiving an LSA message each node compares
the message with the entry in their database and updates them provided that the LSA
message is newer. Thus, every node within the Autonomous System has information
about the entire network topology which they use to calculate end-to-end path cost
using Shortest Path First or Dijkstra’s algorithm. During routing, the next node along
the path is the one with the lowest path cost towards the destination [23, 34].

The complete knowledge of the entire network topology allows the OSPF nodes
to easily calculate the shortest path from a source node to its destination node. In
addition to this, it also allows the system to quickly respond to any change in the
topologies such as link failures and link re-establishments. However, link state routing
protocols are not scalable; increasing the number of nodes in the network increases the
volume of the LSA messages exchange as well as increases the time require to calculate
entire end-to-end path. Additionally, the protocol is not suitable in the environment
where the frequency of link failures is very high. At such high rate of link failures the
amount of LSA message exchange to update the system increases and also the overhead
of recalculating the entire end-to-end path cost increases. A study by Heegaard and
Wittner [14] shows how stochastic routing CEAS outperforms link state routing in

case of frequent transient failures in the network.

4 Autonomous System (AS) is a collection of connected routers within a control of common network administrator.
See IETF RFC 1930

11

2.5. Distance Vector Routing (RIP)

2.5 Distance Vector Routing (RIP)

Routing Information Protocol (RIP) is one of the IGP protocols that are based on
Distance Vector Routing algorithm. Similar to link state routing RIP is used within a
single Autonomous System. Also RIP nodes send routing-update messages periodically
or in response to any change in the topology. Upon receiving a new update message
each node updates its routing table to reflect the changes. However, RIP nodes only
maintain information regarding the best path towards the destination. Further, RIP
uses hop count as routing metric to calculate the distance between a source and a
destination node. In order to prevent routing loops in the network, RIP defines the
maximum number of hops in a path to be 15 which in fact limits the size of the network.

Any destination node beyond this limit is considered unreachable.

2.6 TCP

The Transmission Control Protocol (TCP) is widely used connection-oriented Trans-
port Layer protocol. TCP ensure end-to-end reliable connection over the Internet. By
connection oriented it means that a connection must be established between two nodes
before transferring data. Further, TCP includes error detection and error correction
mechanism in order to provide the end-to-end reliability.

TCP transfer data in a form of segment which includes both the TCP header
and the payload (user data). The segment size may vary according to the payload.
However, it should not exceed the Maximum Segment Size (MSS) of the connection.
Each TCP segment is assigned a unique sequence number. When a destination receives
a segment it sends back an acknowledgment (ACK) for the received segment. The
acknowledgment also consists of the next sequence number that the receiver expects

to receive [29].

2.6.1 TCP congestion control

TCP uses feedback control algorithm, additive increase and multiplicative decrease

12

Chapter 2. Background

(AIMD) algorithm, to avoid congestion in the network. Congestion builds up when
the traffic load exceeds beyond the network capacity. The idea is to increase the
transmission rate until loss occurs. The transmission rate is governed by two entities
Congestion window (cwnd) and receiver’s advertised window (rwnd). cwnd limits the
maximum amount of data that sender can transmit while rwnd limits the maximum
amount of data the receiver is willing to receive. In general, the transmission rate
should not exceed the minimum of cwnd and rwnd [2].

For every segment transmitted, a timer known as retransmission time-out (RTO)
is set. When this timer expires, TCP assumes that the segment is lost. In addition to
this, TCP receiver generates DUPACK for every out-of-order segment received. Beyond
certain threshold, TCP interprets continuous DUPACKSs as packet loss.

When a segment is lost, TCP congestion control mechanism interprets the loss as
a result of network congestion [17], therefore it responds by decreasing the congestion
window. The decrease in congestion window size depends on the TCP variation yet
most of the TCP variants use the following inter-wined algorithms to handle congestion;

slow-start, congestion avoidance, fast retransmit and fast recovery.

2.6.1.1 Slow start / congestion avoidance

Slow-start begins when a TCP connection is established. Initially a congestion
window is set to not more than twice the mazimum segment size (SMSS) that sender

can transmit.

cund < 2% SMSS bytes (2.3)

For each ACK received, the cwnd value is increased by one SMSS until it exceeds
the slow-start threshold (ssthresh) or congestion occurs. After this the TCP enters
congestion avoidance phase. During this phase, cwnd is increased by one full sized
segment for each round-trip time (RTT). In general, cwnd is increased as in equation
2.4. Thus, cwnd grows exponentially during slow-start phase but grows linearly during

congestion avoidance.

13

2.6. TCP

Third DUPACK cwnd > ssthresh

Third DUPACK

Fast
Recovery

Congestion
avoidance

ACK

@

Figure 2.1: TCP congestion control mechanism.

cwnd+ = SMSS « SMSS/cwnd (2.4)

When the retransmission timer RTO expires, TCP interprets this as congestion.
Then, the lost segment is retransmitted and the ssthresh is set to the half of the current
cwnd value. Thereafter, TCP re-enters slow start phase with cwnd value set to one

full sized segment [17].

2.6.1.2 Fast Retransmit / Fast Recovery

For each out-of-order segment received, a duplicate acknowledgment (DUPACK)
is sent by the receiver indicating segment(s) missing. However, as any of the missing
segments is received, the receiver should immediately acknowledge indicating that the
missing segment has been received.

TCP sender waits for 3 conjugative DUPACK before retransmitting the first un-
acknowledged segment. Thereafter, ssthresh is set to the half of cwnd, then the cwnd

14

Chapter 2. Background

is set as in equation 2.5 and Fast recovery phase is activated.

cwnd = ssthresh + 3 SMSS (2.5)

For each additional DUPACK received, cwnd is incremented by one SMSS to reflect
that an additional segment has been sent. A new segment may also be transmitted if
permitted by the new cwnd and the receiver’s advertised window. When a next ACK
is received, cwnd is set to ssthresh. This indicates that all the missing segments have

been received. Figure 2.1 illustrates the whole procedure [17].

2.7 Effect of Stochastic Routing on TCP

In stochastic routing, the next node along the path is selected randomly irrespective
of their previous selections. Therefore, data packets from a same TCP session may
follow different paths to the destination. This random behavior has negative effect on
the TCP performance. For example; assume p and p’ to be two different paths that
exist between two nodes A and B, where the path p’ has longer propagation delay than
the path p. Also assume that a TCP connection is established between the nodes. If
a TCP packet generated at time ¢ takes the route through the path p’ and next TCP
packet generated at time ¢+ x takes the route through the path p then the later packet
reaches the destination before the former packet. Thus, packets following different path
causes re-ordering of the packets. Although the out of order packet delivery is not due
to the packet loss, beyond certain threshold TCP treats such out of order packet receive
as packet loss and activates the congestion control mechanism [17].

In our example the out-of-order packet delivery is neither due to the packet loss
nor due to the congestion yet TCP enters the congestion control mechanism causing
reduce in the TCP performance. As explained in Section 2.6.1, TCP respond packet
loss by retransmitting the lost packets and reducing the window size in order to reduce
the overload on the network. This unnecessary Fast retransmit / Fast recovery wastes

available bandwidth as well as reduces Data transmission rate [1, 31, 24].

15

2.7. Effect of Stochastic Routing on TCP

Generally, a TCP sender waits for 3 DUPACKSs before retransmitting the first
unacknowledged packet. After this, TCP enters the fast recovery phase. In order to
avoid TCP from entering Fast retransmission and Fast recovery phase the propagation
delay on the longer path p’ should be less than the time required by next 3 conjugative
packets to reach the destination. Let x be the interval of packet generation, d and d’ be
the total propagation time for a packet to reach from A to B via p and p’ respectively.
Assume a packet generated at time ¢ takes the longer path p’ and other 3 conjugative
packets generated at t+x, t +2x and t+ 3z all take shorter path p. Therefore, to avoid
retransmission the packet via path p’ should reach destination B before time ¢+ 3x +d.

1.e.

t+d <t+3x+dor
d —d <3z (2.6)

Let ¢y, and ¢, be the total time, excluding queuing delays and router processing
delays, required for a packet to travel from A to B via p and p’ respectively. Assuming
t, and t, be the queuing delay and the processing time for a router respectively. Also
assuming that the path p consist of n numbers of routers and p’ consist of n+k numbers

of routers then from Equation 2.6;

tyap + (n+ k)t + 1) — {tpa + n(t, +t,)} < 3z, or
tp’ab — tpab < 3x — k’(tr + tq) (27)

The packet generation interval, x is inversely proportional to the Data transmission rate
but directly proportional to the packet size. Further, ¢, and ¢, is also proportional
to the packet size. Therefore, for a path p’ with longer delay we can avoid spurious
retransmission by reducing the Data transmission rate and increasing the packet size.
However, the Maximum Transmission Unit available for Ethernet frame is 1500 bytes.

Further, £ in Equation 2.7 indicates the number of additional routers in the longer

16

Chapter 2. Background

path p'which refers that the delay difference decreases as we increase the number of
additional routers in the longer path p'.
In addition to this, a study by Blanton and Allman [4] lists further negative effects

of packet reordering

e TCP’s standard congestion control algorithms prohibits to transmit any packet
when a DUPACK is received until fast retransmit is triggered. However TCP
stores permission to send new data and if an ACK covering new data arrives
before the fast retransmit is triggered then the burst of data is sent on this ACK

will be larger than if reordering had not occurred.

e TCP reordering causes RTT sampling ambiguous; Generally RTT is estimated
using a timer that starts just before a given segment S is transmitted and then
stopped as the ACK covering the segment arrives. During retransmission, the
sender can not make sure whether the ACK covering the segment is in response

of the first transmission of the segment or in response to the retransmission.

2.8 TCP variants

TCP Reno is widely used TCP protocol on the Internet. It uses congestion control
mechanism described in Section 2.6.1. However, fast recover used in Reno does not
recover efficiently when there are multiple packet losses in a single flight [2]. In order
to deal with multiple packet losses, NewReno [9] is designed with modification in the
original Fast Retransmit and Fast Recovery algorithm.

NewReno recovers multiple losses one packet per round trip time using partial
acknowledgments concept. During multiple packet losses, the first non-duplicate ac-
knowledgment received does not necessarily indicate that all the packets transmitted
prior to the Fast retransmit have been successfully received. However, Reno leaves
Fast Recovery phase as soon as it receives first non-duplicate acknowledgment. Thus,
in case of multiple packet losses, the additional DUPACKS received after the first non-

duplicate ACK causes Reno to enter another cycle of the Fast Retransmit and Fast

17

2.8. TCP variants

recover phase with further decrease if cwnd and ssthresh. Unlike Reno, NewReno re-
mains in the Fast Recovery phase retransmitting one packet per RTT until every lost
packet have been retransmitted and acknowledged.

During transmission, NewReno saves the highest sequence number that has been
transmitted. When a packet loss is indicated by 3 continuous DUPACK, it performs
Fast Retransmission and Fast Recovery as usual. Reno exits recovery phase as soon
as a non-duplicate ACK arrives however, NewReno performs additional verification
to confirm that the ACK actually covers the highest sequence number stored. If the
verification fails, it assumes the ACK as partial ACK and retransmits the first unac-
knowledged packet.

The major drawback of NewReno is that it cannot predict multiple packet losses
until it verifies the ACK against the highest sequence number stored. Thus, this may
take substantial amount of time to recover from a series of loss depending on the
number of packets lost and the size of RTT [9].

In general, an ACK only confirms that all the packets up to the number indicated
by that ACK has been successfully received but does not provide any information about
further received packets. In other word, TCP does not send ACK for those packets
that are received beyond the one it expects [2].

TCP Selective Acknowledgment (SACK) [21] is specially designed to handle mul-
tiple packet losses correctly. TCP SACK implementation uses the conventional con-
gestion control algorithm as used by TCP Reno. Similarly, the Fast Retransmit and
Fast Recovery phase in SACK implementation is triggered after receiving 3 continu-
ous DUPACK. The main difference between the two implementations is their behavior
during multiple packet losses in a single flight.

An ACK with SACK option is sent by receiver informing the sender about the
arrival of non-contiguous segments. The SACK option contains a list of the contiguous
data blocks received and queued at the receiver. Two 32 bit unsigned integer are used
to indicate the starting and the ending of each blocks. In general, a 40 byte ACK
can include maximum of 3 SACK blocks. The SACK option must always provide

18

Chapter 2. Background

the information about the most recently received segment to inform sender about
the currently missing segments. When missing segments are received they must be
acknowledged immediately. In this way, SACK method helps to inform the sender
about the correctly received packets as well as the missing packets. The receiver uses
SACK option as reference during retransmission to correctly retransmit only those

segments that has been reported missing [21].

19

2.8. TCP variants

20

Chapter 3

Simulation Module

We used simulations to compare the performance of TCP over CEAS, LSRP and
DVR routing protocols. We carried out all our simulations using Network Simulator
2 (NS2)'. NS2 is a discrete event simulator widely used for research of IP network on

the packet level.

3.1 Simulator Basics

NS2 simulator is a widely used tool for evaluation of Internet Protocols which
is based on two languages; Object oriented C++ classes and OTcl?>. The compiled
C++ classes acting as the kernel of the simulator holds the necessary details and the
operations of different protocols. On the other hand, the OTcl acts as the user interface
allowing user to define network topologies, specify protocols and applications that one
wish to simulate. Thus NS2 provides a reproducible and controllable environment for
the evaluation of the implemented protocols. The standard distribution of NS2 includes
all the necessary support for the Link State Routing Protocol and the Distance Vector
Routing.

All previous studies regarding CEAS were based on the NS2 module developed by

!For more information on NS2, see http://www.isi.edu/nsnam/ns
20Tel, short for MIT Object Tcl, is an extension to Tcl/Tk for object-oriented programming. (http://otcl-
tclel.sourceforge.net /otcl/)

21

3.2. CEAS Extension Modification

Helvik and Wittner [16]. However, for this work we received a new version of CEAS
module from the department of telematics, NTNU. This new CEAS module is designed
on top of the NS2 extension that supports multi-* networks developed by Paquereau
et al. [27, 26]. The multi-* network extension provides better support for wireless
and mobile networks. This extension enables nodes to support multiple interfaces of
different types. Such multiple interfaces allow the nodes to communicate over multiple
channel at the same time. All new features are added in a form of modules making it
easier to enable and disable such features by enabling and disabling the modules [26].

Typically a node in NS2 consists of two Tcl objects: an address classifier and a port
classifier. These classifiers are responsible for distributing incoming packets either to a
corresponding agent or to an outgoing link [8|. The extension provided by Paquereau
et al. [26, 27| adds two new objects; NetworkLayerManager and NetworkLayerUnit.
The NetworkLayerUnit consists of a ForwardingUnit and a RoutingUnit which handles
the data packets and the routing packets respectively The multi-* network extension

is briefly explained in Appendix A.

3.2 CEAS Extension Modification

The new CEAS extension that we received for this work was still under developing
process. It lacked support for self-tuned refresh rates [13], also the ForwardingUnit
module for CEAS had not been implemented and the Link cost calculation ignored
the traffic loads on the path. However, features like elite-selection, routing-loops, tem-
perature approzimation and pheromone approzimation were implemented as modules
making it easier to configure through OTel script.

At the time we begin our work, no studies related to data packets had been carried
out with the new CEAS extension. Moreover, the incomplete ForwardingUnit made
our study difficult as the unit is responsible for handling data packets. Further, the
traffic loads on the link had no effect on the link cost which made the system difficult

to handle load balancing and re-routing during congestion. So, before proceeding to

22

Chapter 3. Simulation Module

the studies our first objective is to implement a working ForwardingUnit module and
to adjust Link cost calculation.

The new CEAS extension is divided into two modules; common module and plain
module. The common module acts as the core of the CEAS system. It provides the
basic properties and functionalities of the system. It also defines the premises of the
system. The plain module is a subclass of the common CEAS module which defines

and expands the functionalities of the system.

3.2.1 CEAS ForwardingUnit Implementation

The CEAS ForwardingUnit is an inherited class of the ForwardingUnit (3.1). This
unit handles all data packets that pass through the CEAS NetworkLayerUnit. All the
packets that are destined to the node are passed upwards to the corresponding agent.
Likewise, the packets that are in transit are either forwarded to a neighboring node
based on the pheromone level associated with the corresponding path or dropped if no
neighbor node exist. The selection of next neighbor node along the path is made using
stochastic sampling with replacement method (Roulette wheel method) [3] among the

neighboring nodes taking associated pheromone values as the parameter of selection.

(See Appendix B.1 for detail.)

3.2.2 Cost Path Modification

A path cost L(w) is calculated using the Equation 2.2, which is the sum of all the
link costs along the path. The link cost is measured using short term average delay on
the link. The average delay changes according to the traffic load on the link. Therefore
the calculation of end-to-end delay as the path cost reflects the quality of the path at
the given time.

The CEAS extension that we received for our work however did not account any
traffic load on a path during the path cost calculation. Thus, the path cost only
depends on the transition delay on the links but not on the quality of the path.

In order to achieve the variable path cost that changes with respect to the traffic

23

3.3. Production

load we added a time stamp on each ant at the time of their creation. This time stamp
enables us to measure the actual end-to-end delay on the path that the ant traveled.

We used this information during the path cost calculation.

3.2.3 Record Single Hop Route Address Implementation

In our previous work [33], we found that large number of packets are lost due to
looping when there is link failures. Such loopings are found in this work as well. (see
Section 4.3 for detail.) To avoid such loopings we introduce a technique that prevents
forwarding packets back to the node that recently forwarded them. To implement
this we use prev_hop() method of common packet header to retrieve the address of
the recently forwarded node. We then remove the node from the list of neighboring
nodes so that the next node selected would not be the one that recently forwarded the
packet. However, in conditions where there remain no neighboring node other than
the previously forwarded node the packet would have to be ultimately dropped by the
routers. Thus, in such conditions we allow forwarding the packet back to the previous

node.

3.3 Production

All the simulations in this report related to the CEAS system are run with 15
replications per scenarios using different seeds for the random number generator. Other
simulations related to the Link State Routing and the Distance Vector Routing are
carried out once per scenario. The simulation output from all the replications are
synchronized and post processed using the AWK?® programming language. The graphs

from the simulation results have been plotted using gnuplot®.

3AWK is a general purpose programming language designed for processing text-based data
4Gnu plot is a versatile command-line driven interactive utility for generating plots of data and functions.

24

Chapter 3. Simulation Module

3.4 Parameters

The input parameters to the simulator are given using the TCL user script. The
parameters used for CEAS system are listed in Table 3.1. Similarly the default pa-
rameters used for Link State routing protocol and Distance vector routing protocol are
listed in Table 3.2 and Table 3.3.

The elite selection was introduced by [12] to reduce the overhead of the backward
ants carrying insignificant updates. With elite selection only those ants following the
path with the best cost values so far are returned to update pheromone. During forward
search explorer ants select next node randomly. Excluding the explorer ants update
from the elite selection allows the explorer ants to return back. While returning, the
explorer ants update pheromone level along their way. In a small network like 4.1 where
there are only few paths available and the differences between the path costs are very
small, such updates would increase the pheromone level along the alternative paths as
well. Although allowing the explorer ants to return back helps system reacts faster to
network dynamics, the increase in the probability of selecting alternative path causes
reordering of the packets. Thus in this study, we use elite selection on all ants.

During forward search ants list all the addresses of the nodes that they pass by. At
the destination, the list is analyzed to remove cyclic paths that the ants have traveled.
Since our path cost calculation depends on the entire end-to-end delay, removing such
cyclic paths does not reduce the delay experienced by the ants along the cyclic paths.

The ants following the cyclic path experience longer end-to-end delay than those
that travel straight. Suppose after removing the cyclic paths both the paths become
identical then this might create an ambiguity during the path cost calculation. How-
ever, this is not the case in subpath method introduced by Kjeldsen [19]|, where the
ants not only stores the addresses of the nodes but also record each link cost along the
path. At the destination, the reduction of the cyclic path also reduces the link cost
around the cyclic path.

25

3.4. Parameters

Parameter

Description

Seed

179324 -+ timid (for each replication timid
is incremented by 1)

Simulation Time

Simulation time varies according to the
scenarios

Initialization Phase

50 seconds

Initialization Phase ant rate

100 ants per second (All ants are explorer
in this phase)

Ant-rate normal

1 to 20 ants per seconds

Ant-rate explorer

10 % of normal ant rate

Processing delay

0 (The total delay is specified for each
link in the topology)

Beta ()

0.98 (Evaporation, for detail see [16])

Rho (p)

0.01 (Search focus, for detail see [16])

Elite Selection

All Ants

Cycle treatment

Allow cycles

Table 3.1: CEAS parameters

| Parameter | Description
preference 120
advertInterval 1800 seconds (Periodic route update

interval)

Spf wait time

0.01-+0.250 (Shortest path first wait time)

Table 3.2: LSRP parameters

| Parameter | Description |
preference 120
advertInterval 2 seconds (Periodic route update interval)
INFINTTY 32 (to determine the validity of route, see

NS2 manual for detail)

Table 3.3: DVR parameters

26

Chapter 3. Simulation Module

3.5 Topologies

Three different topologies are used in our studies. A simple eleven node network
as shown in Figure 4.1 is used to understand the behavior of CEAS during different
network events and to study its corresponding effect on the TCP performance. This
eleven node network is chosen in order to have a simple structure in the topology which
is easier to study as well as easier to visually examine the simulations. Further, we
have used identical bandwidth of 100 Mbps and transmission delay of 1 milli-second on
each links to have a regular structure on the topology. However, in a particular case
we varied bandwidth on a link which is explained later. We use the results from this
network as a reference to understand and analyze the behavior of TCP under various
network conditions in more complex networks.

The remaining two topologies are used as case studies; a twelve node network and
the 58 node topology extracted from the Uninett® network. The twelve node network,
as shown in Figure 5.1, is chosen to have more complex network than the one we use for
our basic studies. We introduced various levels of background traffics and multiple link
failures to analyze its effect on TCP performance. Finally, we used 58 node Uninett
network topology as depicted in Figure 5.12. This topology is chosen to provide a
realistic setting for our study. The routers in all of our topologies use maximum queue

size of 60 segments and a drop-tail queuing strategy.

3.6 Network Dynamics

NS2 provides functionality to simulate network dynamics like link failures. In this
work, we study the system using multiple link failures as well as with multiple level of
background traffic. We have categorized link failures into two types on the basis of the
link failures and their re-establishment time. The first types of failures that we call
steady link failures takes longer time to re-establish. On the other hand, the second

types of link failures that we call transient link failures takes very short time, usually

swww.uninett.no

27

3.6. Network Dynamics

less than a second, to re-establish. Further, we introduce such transient link failures
for certain time interval to exhibit flapping or unstable behavior of the link. These

transient links are used in our case studies.

A link cost is calculated on the basis of an average delay on a link. The delays on
each link are specified on the topology and remain constant throughout the simulation.
However, the path cost varies according to the traffic load along the path. Data rates,
Connection types, packet size etc are defined using TCL scripts which also remain

constant throughout the simulation.

3.6.1 TCP Connections

Each scenario is studied using two variants of TCP; TCP Reno and TCP Sack.
TCP Reno is one of the most widely used TCP congestion avoidance algorithms on
the Internet. However, TCP Reno suffers during multiple packet losses in a same flight
of transmission. On the other hand, TCP Sack is better designed to handle multiple
packet losses. In this work we have compared the results from both the variants. All
of our simulations are conducted using a bulk TCP transfer. Although such TCP
connections are not realistic, it allows us to measure the ideal TCP performance on

the CEAS system.

The TCP sources are created using a Constant Bit Rate (CBR) source that gener-
ates data at a constant rate. In all of our simulations the TCP data rates generated are
more than 70% of the link capacity. The TCP source uses the maximum congestion
window up to 200 segments. Time to Live (TTL) values for smaller networks are set to
10 whereas for the large network they are set to 30. The TCP Reno receiver uses TCP
Sink with delayed ACKs and the TCP Sack receiver uses the sack! TCP sink with
delayed ACKs. The delayed ACK timer is implemented with 100 ms granularity. The
default allowed maximum DUPACK is 3 as well as the TCP sender uses the default
clock granularity of 60 ms for the retransmission timer. The TCP packet size used in

our simulations is usually 1500 bytes which is the Mazimum Transmission Unit used

28

Chapter 3. Simulation Module

in the Ethernet. However, packet size of 512 bytes and 9000 bytes® are also used in

our simulations.

3.6.2 Background Traffic

Some of our simulations are conducted under influence of background traffics. All
the background traffic in this study is generated using CBR UDP source. During
our case studies we use various levels of background traffic. Such background traffic
is generated using multiple CBR UDP sources. The background connection pairs are
selected in such a way that at least one of the connection shares a common link with the
TCP connection when there are no link failures. In order to have such a shared links
some of the neighboring nodes of TCP source and destination as well as themselves are

selected as background sources or sinks.

6Jumbo frames allows packet size up to 9000 bytes
(http://sd.wareonearth.com /™ phil /jumbo.html)

29

3.6. Network Dynamics

30

Chapter 4

Measuring TCP performance on

CEAS system

This chapter presents the simulation studies of the CEAS system under different
network dynamics and the corresponding effects on the TCP behavior. The simula-
tions performed in this section are approaches to find out the answers to the research

questions listed in Section 1.3

All of our simulation studies in this chapter uses a simple eleven node network as
depicted in Figure: 4.1. We choose a node on either side of the network as a source and
a destination so that there are two paths between them. Each scenario is simulated for
both TCP Reno and TCP Sack and the results are compared. The TCP performance

studies are divided into the following sections:

Section 4.2, TCP performance on steady network

The time required to stabilize the pheromone levels along the available paths and
the number of ants participating on this stabilization process are measured. As well
as the effect of starting TCP connection immediately after the initialization phase is

examined.

31

10 9)

Figure 4.1: A simple 11 node network

Section 4.3, TCP performance during Link Failure

The behavior of the CEAS system during link failure is observed and the time
required to update and re-stabilize the pheromone level along the alternative path is
measured. In addition to this, the effect of link failure on TCP performance is observed
and the time required for the TCP to resume connection and regain its full data rate

after the link failure is also measured.

Section 4.4, TCP performance during Link Congestion

The behavior of the CEAS system during link congestion along the best path is
observed. Further, how the system diverts the traffic during congestion is examined.
The performance of TCP during link congestion is studied and the effect of increasing

the packet size is also discussed.

Section 4.5, TCP performance different capacity links

The CEAS system on the network with varying link capacity is studied. The system
is examined using the lower capacity link along the best path to examine whether the
system selects the alternative path as the best path or continues to use the lower
capacity link as the best path. The performance of the TCP under such network is

also studied and also the effect of increasing the packet size is examined.

32

Chapter 4. Measuring TCP performance on CEAS system

Section 4.4, Multiple TCP connections

The performance of the TCP when there are more than one connections is studied.
The study is focused on finding out whether both the TCP connection struggles to use
the best path or the system diverts the TCP streams on separate path.

Section 4.4, Previous Hop memory technique

The improvement on the TCP performance during link failure after implementing

previous hop memory technique is studied.

4.1 Performance Metrics

The following performance metrics are applied while measuring the performance of

TCP on CEAS system:

e The best path - The path with the shortest end-to-end delay from the source

node to the destination node.

e Pheromone Stabilization period - A point in time when the probability of
normal ants following the best path is 100 times higher than the other paths in

the network.

e Re-stabilization period - A point in time when the system updates pheromone
level to elect new best path in response to the network events such as link failure,

link Establishment or congestion.
e TCP data rate - the rate at which TCP source transmits data.

e TCP Throughput - The total amount of TCP data transferred after starting a
TCP connection over the entire interval of the simulation.
4.2 TCP performance on steady-state network

Before measuring the TCP performance in a network with CEAS system, it is

33

4.2. TCP performance on steady-state network

important to observe the time required for the CEAS system to stabilize the pheromone
levels along the available paths. Once the pheromone level stabilizes the majority of
ants follow through the best path making it the most popular path in the network.
The stabilization period depends on the number of the ants in the network. Thus, we
use simulations at different ant rates and compare the results. Then, we observed the
effect of starting TCP connection immediately after the initialization phase using TCP
data rate as the performance metric. We measured the time required for a TCP source
to transfer packets at full data rate. TCP connection using both of the TCP variants

is studied.

Scenario:

To measure the stabilization period two nodes; node 0 and node § are selected as
a source and destination nodes. In this simulation only ant traffic is generated but
not the data traffic. Elite selections are made on all ants including the explorer ants.
Further, cyclic paths are not removed at the destination. The scenario is simulated
for 600 seconds with the first 50 seconds as the initialization phase, during which all
ants generated are explorer ants searching the possible paths. The stabilization period
at different ant rates are compared and graphs are plotted with 95 percent confidence
interval. Throughout the simulation, the network remains steady with no link failures.

In second phase of this simulation we start the TCP connection right after the
initialization phase i.e. at 50 sec. and measured the time required for the TCP source
to transmit data at the full rate. The scenario is simulated for 1800 seconds. The TCP
receiver uses the Sackl TCP sink along with delayed ACKs for TCP Sack whereas
simply TCPSink with delayed ACK for TCP Reno. The packet size, data rates and
other TCP parameters are as in the Table 4.1.

Results and Discussion:

Figure 4.2 shows the Pheromone Stabilization periods at different ant rates. The

time required to stabilize pheromone values decreases with the increase in the ant rates.

34

Chapter 4. Measuring TCP performance on CEAS system

| Parameter | Values
Data Rate 75 Mbps
TTL 10
Window Size &0
Packet Size 1500 bytes

Table 4.1: TCP configuration

Ant Rate Mean Time Approx. Number of Ants
required

(Normal + Explorer) (Normal + Explorer)
1+0.1 151.2 ~166

2+ 0.2 73 ~160

3+ 0.3 49.8 ~164

o+ 0.5 30.7 ~169

10 + 1 14.9 ~164

15+ 1.5 9.8 ~162

20 + 2 7.52 ~165

Average ~164

Table 4.2: Pheromone Stabilization Phase with Elite Selection on All Ants

The Table 4.2 summarizes the stabilization time period as well as the number of ants
participating in the stabilization process. The number of ants generated during the
initialization phase is excluded. The Table shows that the number of ants participating
in the stabilization process at all ant rates is almost equal. From these results, we can
assume that at an ant rate of 164 ants per second the system would establish the best
path in our network immediately after the initialization phase.

Figure 4.3 compares the time taken by TCP Reno and TCP Sack to transmit data
at full rate i.e. 75 Mb for our scenario. The results from both of the TCP variants
at different ant rates are compared. The figure shows similar results to that of the
pheromone stabilization process; at higher ant rates the time required by both the
variants are shorter. Graphs plotted in the figure also indicate that at all ant rates
the TCP Sack takes shorter time to transmit at full data rate than the TCP Reno.

However, at higher ant rates the time differences between the variants are smaller.

In these simulations we start the TCP connection immediately after the initializa-

tion phase, at this moment the pheromone levels in the network are yet to be stabilized.

35

4.2. TCP performance on steady-state network

Time Required to stabilize pheromone values

T T
Pheromone Stabilization Time ——+—

Time (Sec)

50

INITIALIZATION PHASE
0 1 2 3 5 10 15 20
Number of normal Ants per second

Figure 4.2: Pheromone Stabilization period

Therefore, the system makes use of both the available paths to deliver the TCP packets

resulting out-of-order packet delivery.

The negative effect of the out-of-order packet delivery on TCP throughput is dis-
cussed above in Section 2.7. Also, during multiple packet losses TCP Reno suffers
from cycles of re-entering Fast Transmit and Fast Recovery phase resulting further
decrease in the TCP window size. On the other hand, TCP Sack does not leave the
Fast Transmit and Fast Recovery phase immediately after retransmitting the first un-
acknowledged packet in response to the 3 continuous DUPACK received. Further,
TCP Sack benefits from SACK enabled ACK which informs the TCP sender about the

currently missing packet at the receiver.

Figure 4.4, shows congestion window, cwnd, of both TCP Sack and TCP Reno at

different ant rates. The figure also shows that the cwnd of TCP Reno fluctuates more

36

Chapter 4. Measuring TCP performance on CEAS system

Time Required for TCP to transmit with full Data Rate
700

TCP Reno —+—
1 TCP Sack --x---

600 | \
500 |

400

Time (Sec)

300

200

: T

INITIALIZATION PHASE

0
01 2 3 5 10 15 20
Number of normal Ants per second

Figure 4.3: Time required for TCP to transmit with Full Data Rate

frequently than that of the TCP Sack due to the cycles of re-entering the Fast Transmit
and Fast Recovery Phase.

In brief, until the system stabilizes the probability of out-of-order packet delivery
is higher resulting poor TCP performance. But, as the system stabilizes, the cwnd
for both the variants increases. Figure 4.5 provides an image of out-of-order packet
delivery rate at an ant rate of 5 ants per second for both the TCP variants. The
graphs are plotted using a result from an instance of the simulations. Initially the
rate of out-of-order delivery is larger but the rate decreases as the pheromone level
stabilizes. Therefore, if we start the TCP connection sometime after the pheromone
stabilization phase, the data transmission would start at full rate.

However, this is not the case in LSRP and DVR; the initialization phase in these
protocols takes very short time, less than a second for a small network like ours. Fur-
ther, the data packets are always forwarded through the same path which prevents

reordering of packets resulting stable TCP throughput.

37

4.2. TCP performance on steady-state network

5 Ants per Second

10 Ants per Second

1200 T T 1200 T T
2 TCP Reno 2 TCP Reno
kS TCP Sack kS TCP Sack
S 900 S 900
e e
8 8
D 600 D 600
() ()
2 2
o o
(@] 300 (@) 300 /]
5 5 /v
o, i A R
50 100 150 200 250 50 100 150 200 250
Time (Sec) Time (Sec)
15 Ants per Second 20 Ants per Second
1200 T T 1200 T T
5 TCP Reno 5 TCP Reno
E TCP Sack S TCP Sack
S 900 S 900
e e
K] 8
D 600 D 600
[()
[=2) (=)
5 5
O 300 4 O 300 /]
o o
2 ww/ / 2 /
= =
0 0
50 100 150 200 250 50 100 150 200 250
Time (Sec) Time (Sec)
Figure 4.4: cwnd at different ant rate
Number of Retransmitted packet at ant rate 5
@ 50 ﬁ ‘
e 0 M I L TCP Reno
IS th\‘”\\
o i
- 30 \i
£ | %W i
E 20 ‘VLW ‘\
2 NIL,)
s 10 MMN i
3 U LA Y N
0
0 50 100 150 200 250 300 350 400
Time (Sec)
Number of Retransmitted packet at ant rate 5
g TCP Sack
(] ac [
< 40 |
s i\
5 30 ‘
Q | |
I N
£ 20 I 0
g | ! | ‘w 1Tm
© 10 1
b Il
@ 0
0 50 100 150 200 250 300 350 400

Time (Sec)

Figure 4.5: Out-of-order packet received at Ant rate 5 (an instance of simulation)

38

Chapter 4. Measuring TCP performance on CEAS system

4.3 TCP performance during Link Failure

The next step in our study is to understand the behavior of the CEAS system
under the influence of network dynamics such as link failures and re-establishments. In
this study, we measure the time required for the system to update and re-stabilize the
pheromone values in order to divert the traffic through alternative path after the link
failure. Similar to the simulation carried out in Section 4.2, we measure the system at
various ant rates. We also measure the time taken by the TCP source to resume data
transmission, via the immediate best path, after the link failure. The effect of the link

re-establishment is also studied.

Scenario:

Similar to our previous scenario in Section 4.2, we use node 0 and node 8 as
our source and destination nodes. Similarly, the packet size, Data rates and other
parameters are set identical. Further, the scenario is simulated for both the TCP
variants at different ant rates. However, we start the data traffic 100 seconds after the
stabilization phase to avoid out-of-order packet delivery. As a consequence, the TCP
source transmits data at the full rate.

The TCP traffic generation start time varies according to the stabilization time.
Similarly, the simulation time varies according to the ant rates because the system with
the lower ant rates takes longer time to update the pheromone values. The link failure
event is scheduled after 100 seconds of the TCP transmission starts. At this time, we
break the link connection node 4 and node 5 in order to have a link failure on the best
path. Finally, after 100 seconds of successful re-route at full data rate we re-establish
the failure link. The results from both the TCP variants are compared and graphs are

plotted with 95 percent confidence interval.

Results and discussion
Figure 4.6 compares the time required by the CEAS system to update and re-

39

4.3. TCP performance during Link Failure

Time Required to update and re-stabalize pheromone values
900 T

After Linkfallilure ——
800 T After Link Re-estabilishment

700 \

600 \

500

400 - \

300 \

}
200 N\
e

Time (Sec)

100 B
‘ .

0 ; ; . .
0123 5 10 15 20
Number of normal Ants per second

(a)

Figure 4.6: Re-stabilization phase

stabilize the pheromone values at different ant rates in order to divert the traffic after
the link failure and after the link re-establishment. The results show that during the
pheromone re-stabilization process, it requires more number of ants than during the
initial stabilization process. During the system initialization, the pheromone level along
both the paths are at their minimum levels but the stabilization process increases the
pheromone level much higher along the best path compared to the alternative path.
In our scenario, the link failure event occurs after the stabilization phase and also
along the best path. Therefore, the system requires more number of ants to reduce the

pheromone level along the failure path and raise the level along the alternative path.

The results also show that during the update process, more number of ants is
required at the higher ant rates than at the lower rates. The reason is that we start
the TCP traffic 100 seconds after the stabilization phase and also the link failure
is scheduled 100 seconds after the TCP connection. During this time, the number

of ants updating pheromone values is larger at the higher ant rates which further

40

Chapter 4. Measuring TCP performance on CEAS system

reduce the pheromone level along the alternative path compared to the pheromone
level at the lower rates. Therefore, proportional numbers of ants are required in the
re-stabilization process. Further, the slower pheromone update process at lower ant
rates is also benefited by the nature of the control variable i.e. temperature which
decreases over time. The control variable, temperature is a main parameter used in

pheromone update method (see [16] for detail).

The results from the link re-establishment, depicted in Figure 4.6, shows the similar
results to that of link failure process. However, the time period for re-establishing the

best path is shorter than the re-route time during link failure.

Time Required for TCP to resume data transmission after the link failure

700
l Reno ——+—
4 Sack
600
500
5 400 \
[\
(%)
o E
E \
E 300 y
\
\\
200 S
100 - -
O 1
0 1 2 3 5 10 15 20

Number of Ants

Figure 4.7: Time required for TCP to resume transmission after Link Failure

Figure 4.7 compares the time taken by TCP Reno and TCP Sack to resume data
transmission after the link failure where as Figure 4.8 compares the time taken by both
the TCP variants to regain the full data rate after the data transmission is resumed.
The time taken by the TCP to resume data transmission depends on the pheromone

update process. During which, the increase in the pheromone level along the alternative

41

4.3. TCP performance during Link Failure

Time Required for TCP to Regain Data Rate after successful re-route

600
Reno +——+——
Sack
500
400
o
[}
)
© 300 \
£ \
= \\\
\\
200 K
100
0 1 1
o 1 2 3 5 10 15 20

Number of Ants

Figure 4.8: Time required for TCP to regain full data rate after transmission is resumed

path increases the probability of selecting that path. Once the probability of selecting
the alternative path is significant enough the TCP data transmission resumes. Thus,
the results from both the TCP variants are similar. However, it takes significant amount

of time before TCP regains full data rate because of the random packet loss.

Packet Looping

10 9 8

Figure 4.9: Micro-Loops after Link Failure

At node 3 as shown in Figure 4.9, though there remains only one available path

42

Chapter 4. Measuring TCP performance on CEAS system

towards the destination, the probability of selecting node 4 over node 10 as the next
node still remains higher. Further at node /, the failure of only available route towards
the destination other than the route back to the node 3 worsen the situation. This
causes a large number of TCP packets to loop around node 3 and node 4 until their
TTL value expires and finally dropped by the routers. The number of packets looping
around node 3 and node 4 decreases as the pheromone level re-stabilizes resulting
regain in TCP throughput.

Time Required for TCP to Regain Data Rate after Link re-estabilishment
600

Reno +——+—

Sack

500

400 \\

300

Time (Sec)

200

100

o 1 2 3 5 10 15 20
Number of Ants

Figure 4.10: Time required for TCP to regain full data rate after link re-establishment

Similarly Figure 4.10 compares the time taken by both the TCP variants to re-
gain full data rate after the link re-establishment. During pheromone update process,
the system routes traffic through both the path causing out-of-order packet delivery.
However, as the pheromone stabilizes the rate of out-of-order delivery reduces resulting
gain in TCP throughput. Thus, considerable amount of time is required depending on

the ant rates before the TCP regains the data rate.

Figure 4.8, Figure 4.10 and Figure 4.3 shows that depending on the ant rates, the

43

4.4. TCP performance during Link Congestion

performance of TCP during pheromone stabilization periods are similar. The results
from all these three graphs also shows that the TCP Sack regains faster compared to
the TCP Reno.

4.4 TCP performance during Link Congestion

As a stochastic routing, CEAS uses multi-path routing. CEAS system continuously
evaluates all available paths and selects a best path based on the quality of the path.
Depending on the traffic loads the best path between two nodes changes over time.
When there are no traffic loads on the network the CEAS selects shortest path as
the best path. In this section we explicitly introduce heavy traffic loads along the
shortest path forcing the system to re-select the best path. In this section we study the
behavior of CEAS system during path congestion and analyze the effect on the TCP
performance. We also compare the results with the LSRP and the DVR under similar

configurations.

Scenario:

Like in our previous scenarios, we use similar parameters and configurations. We
load the link connecting node 4 and node 5 with a heavy traffic. This link is selected in
order to introduce congestion along the best path. We load the link with 97 percent of
the link capacity as the background traffic. For this we generate CBR, UDP connection
at data rate of 97 Mb between the nodes / and 5. We use TTL value of 1 for UDP
packet in order to load traffic only on that link. Similarly, we start the link congestion
100 seconds after the stable TCP connection. For this study, we use TCP throughput
as the performance metric. Further we simulate the system only at the higher ant rates
i.e. above § ants per seconds. The results from both the TCP variants at different
ant rates are plotted with the 95 percent confidence interval. We compare the results

against the results from LSRP and DVR simulated under similar configurations.

44

Chapter 4. Measuring TCP performance on CEAS system

Results and Discussions:

TCP Throughput during Link congestion
80

Reno ——+—

Sack

70

60

@
S 50
: I
5
g . | I I
g 1
: J | !
e
'_
o 30
O
'_
20
10 ¥ 4
0
Antrate 5 Ant rate 10 Ant rate 15 Ant rate 20 LSRP DVR
| CEAS System |
PROTOCOLS

Figure 4.11: TCP Throughput during congestion

During all simulations we observe that after starting the link congestion, the TCP
data transfer rate never reaches its full rate. At the receiver node we observe continuous
out-of-order packet delivery. While visually examining the simulations we find that the
system uses both the available paths to some extent. We find that the use of the shortest
path is more frequent than the non-congestion path. The system does not completely
divert the traffic along the non-congested route. We also find that the overall TCP
throughput at different levels of ant rate are almost similar.

There are mainly two reason for this; TCP congestion control algorithm which
reduces the data rate to avoid the congestion and the large difference in the packet size
between the ant packets and the data packets. The ant packet size is comparatively
smaller than the data packet thus, ant packets experiences less transition delay than
the data packets. During congestion both the ant packets as well as data packets

experience delay due to increase in the queue length on the nodes. In response to this,

45

4.4. TCP performance during Link Congestion

TCP reduces its data rate meanwhile the system updates the pheromone level along the
non-congested path increasing the probability of its use. As the result of reduced data
traffic and some of its traffic following the alternative path, the previously congested
path gets fewer traffic loads other than the background traffic. In the mean time, the
ants traveling through the previously congested path do not experience large queuing
delay as before. While reaching the destination the ants re-marks this path as the
best path and updates the system accordingly. This causes periodic fluctuation on
the selection of the path. In addition to this, such fluctuation on path selection causes
fluctuation in the TCP data rate as well as reordering of the packets. As a consequence,
TCP never regains its full data rate.

On the other hand, LSRP and DVR never use alternative path unless there is a
link failure. Thus, they always experience network congestion and reduce the TCP
throughput. The overall TCP throughput on all three systems are compared in the
Figure 4.11. The graph shows that the TCP throughput on the CEAS system is not
much affected by the ant rates. Which further indicates that the system does not make
use of the alternative path in response to the congestion. However, compared to the
TCP throughput on LSRP and DVR, the TCP throughput on the CEAS system is /
times higher in our network. Similar to our previous results the performance of TCP
Sack is higher than that of TCP Reno. But, the difference between the performance
of both the TCP variants in case of LSRP and DVR is insignificant.

The effect of increasing packet size.

Increasing the packet size increases the transition time of the packet and also
decreases the number of packets required to transmit the same amount of data. As
explained in Section 2.7, increasing the packet transition delays increases the time
interval of sending 3 continuous DUPACKSs for missing packets. Consequently, this
increases the average delay that the missing packet can spend on the longer path before
triggering the Fast retransmission and Fast recovery mechanism. Additionally, reduce

in the packets quantity reduces the number of out-of-order packets proportionally.

46

Chapter 4. Measuring TCP performance on CEAS system

TCP Throughput during Link congestion with packet size 9000 bytes
100

Reno +——+—
Sack

80 }
? }
Q.
fe)
2 60
5
(=X
<
j=2]
>
e
<
= 40
o
O
[

20

+ +
Ant rate 5 Ant rate 10 Ant rate 15 Ant rate 20 LSRP DVR

| CEAS System |
PROTOCOLS

Figure 4.12: TCP Throughput on different system with Large packet size

Therefore, TCP transmits data with higher throughput.

In addition to this, longer time spent by data packets on a link causes ant packets
to wait longer time in queue. This adds considerable amount of delay on ant packets
when the network is loaded. Taking our previous scenario as an example; when there is
congestion along the best path, the ants traveling through the path experience longer
queuing delay. In the mean time, ants traveling through the alternative path do not
experience such delay. As a consequence, the system diverts data traffic along the
alternative path. But this time, the ants traveling through the shortest path still
experience queuing delay as some of the data traffic still follow the best path. Further,
the UDP background traffic does not reduce its transmission rate in response to the
congestion. Besides that, the background traffic load on this link is higher compared
to the data traffic along the alternative path. This further increases the queuing delay
along the shortest bath. As a result, the system gradually diverts large amount of data

through the alternative path which ultimately increases the TCP performance.

47

4.5. The effect of different capacity links on TCP.

The results obtained by increasing the packet size to 9000 bytes are plotted in
Figure 4.12. The graph shows significant increase in TCP performance on CEAS
system but, the TCP performance on LSRP and DVR show no improvement because
they continue to use shortest path and experience congestion.

These results indicate that forcing the ants to experience considerable amount of
delay corresponding to the traffic load enhances the TCP performance. This can be
achieved easily by setting packet-priority on the data packets. The Packet-priority
allows a packet with a higher priority to be served before a packet with a lower pri-
ority. Thus, at each router the data packets would get higher preference forcing the
ant packets to remain longer time in queue. Another possible solution could be piggy-
backing ant information on the data packets. With such piggybacking the ants would

experience the same amount of delay as the data packets.

4.5 The effect of different capacity links on TCP.

In a real network capacity of a link varies according to the network requirements
and the capacity planning. In LSRP, the capacity of the links is the major factor
influencing the link cost. The best path between two nodes is calculated on the basis
of total end-to-end link costs among the available paths. Unlike LSRP, the CEAS
system calculates path cost on the basis of the end-to-end delay. Therefore, when the
network is not loaded with data traffic, the end-to-end delay depends on the average
link transition delay. Since the packet size of the ants is very small, the transition
delay on ant packets is negligible compared to data packets. However, the end-to-end
delay varies according to the traffic loads. In this section we study how the CEAS
system treats the link with unequal capacity during path selection and its effect on

TCP performance.

Scenario:
Similar to our previous scenarios, we select link connecting node 4 and node 5

48

Chapter 4. Measuring TCP performance on CEAS system

as our victim and lower its link capacity by one tenth. Similarly, we simulate the
scenario for 1200 seconds at the higher ant rates. Again, we use TCP throughput as
the performance metric. The results from both the TCP variants at different ant rates

are compared with 95 percent confidence interval.

Results:

The results from these simulations are very similar to the results that we obtain
in Section 4.4. During entire period of simulations we observe that the TCP never
gain its full rate. (The graphs from the results are plotted in Appendix C.) We also
find that the TCP data rate fluctuates continuously as well as the system continues
using the lower capacity path more frequently than the alternative path. The reason
behind such fluctuation is same as discussed above in Section 4.4; TCP congestion
control algorithm and the large difference in the packet size between ant packets and
data packets. Similarly this problem could be solved by setting higher Packet-priority
on data packets allowing them to be served before ant packets. Also piggybacking ant

information on the data packets could be an option.

4.6 Multiple TCP connections.

All of our studies above only deals with a single TCP connection in the network.
In this section, we study the behavior of the CEAS system under influence of two TCP
connections. Here, we examine how the system handles both the connections to find

out:

e Whether the system handles both the TCP connections equally. In other words,
we investigate whether the overall TCP throughput of both the TCP connections

are similar or one of them dominates the other, and

e Whether both the TCP connections struggle to use the best path or they are
diverted along different paths.

49

4.6. Multiple TCP connections.

Scenario:

To understand the behavior of the system under TCP connection we use select two
TCP connections in such a way that they both share the best path along the same
direction. For which we establish first TCP connection between node 0 and node 8
and the second TCP connection between node 2 and node 6, where node 0 and node
2 are the source nodes. We start both the TCP connections at the same time i.e. 100
seconds after the initialization phase. This time we only simulated the system at an

ant rate of 20. We also simulate the system using larger packet size i.e. 9000 bytes.

Results and Discussion:

The results obtained from the simulations are listed in Table 4.3. During simula-
tions we observe that non of the TCP connection transmit data at their full rate. The
results show that the average TCP throughputs for both the TCP connections on the
CEAS systems are almost equal. This means that the system handles both the TCP
connection independently with equal priorityl. This also means that both the TCP

connection experiences congestion in a similar manner.

Parameter Throughput (TCP Reno) Throughput (TCP Sack)
TCP 1 TCP 2 TCP 1 TCP 2
(standard (standard (standard (standard
error) error) error) error)

CEAS (ant || 40.65 (11.82) | 38.81 (12.97) | 44.46 (11.23) | 40.58 (9.81)

rate 20)

LSRP 44.45 55.01 00.12 47.07

DVR 42.01 55.01 00.12 47.07

Table 4.3: TCP throughput during multiple connections

Figure 4.13, depicts the pheromone distribution at node 3 towards the node 4 and
node 10 (i.e. along the best path and the alternative path). The graph is plotted using
the results from an instance of the simulations. Looking at the pheromone distribution
we find that the probability of using the shortest path by both the systems is much

higher than the alternative path. While visually examining the simulations we find that

50

Chapter 4. Measuring TCP performance on CEAS system

Pheromone Level along the best path for both the sources

0.6
5 05 (i A s e TR ol SRR A SRR, WS, S SLAS
g 0.4 ‘
FR
S o3 KA Sourcel — |
g ' Source 2
o
5 02
<
& o1

0
0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Time (Sec)
Pheromone Level along the alternative path for both the sources

0.6
5 0.5
>
S o4
2 Source 1 ———
g 03 Source 2 7
o
E 0.2
T o i

0 \\ A iy iy L Jk " £
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Time (Sec)

Figure 4.13: Pheromone Distribution at node 3

both the TCP traffic strives to use only the shortest path. During such competition the
shortest path gets congested. As a consequence, both the TCP connections experience
congestion at the same time and reduce their data rate. The reduction of the data rate
on both the connections removes the congestion however, both the connection then
again increase their data rate. This causes periodic congestion along the shortest path.
Thus the behavior of the system is similar to the one that we observed in Section 4.4.

And, the TCP connections neither gain full data rate nor they are diverted separately.

Unlike CEAS, LSRP and DVR both use only the shortest path for both the connec-
tions. The TCP connections using TCP Reno in these systems get periodic preference
along the best path allowing one TCP stream to transmit at higher rate than the other
alternatively (the graphs showing such alternating data rates are plotted in Appendix
D). This is the reason why we have the differences in the throughputs of the two TCP
connections in case of LSRP and DVR. At the end of our simulation one of the TCP

connections is transmitting at higher data rate than the other resulting the difference

o1

4.6. Multiple TCP connections.

in overall TCP throughputs.

Parameter Throughput (TCP Reno) Throughput (TCP Sack)
TCP 1 TCP 2 TCP 1 TCP 2
(standard (standard (standard (standard
error) error) error) error)

CEAS (ant || 74.04 (3.13) | 75.03 (2.31) | 749 (1.3) 75.23 (0.81)

rate 20)

LSRP 00.21 49.12 52.45 47.21

DVR 08.63 40.75 09.66 38.28

Table 4.4: TCP Throughput during multiple connection at packet size of 9000 bytes

The results obtained after increasing the packet size are listed in Table 4.4. Similar
to our previous results in Section 4.4, the TCP performance on CEAS system shows
significant improvement while the improvements on LSRP and DVR are very small.
Looking at the pheromone distribution at node &, depicted in Figure 4.14, we can say
that the TCP streams make use of both the paths more frequently. The graph also
show that the probability of using the shortest path by one TCP stream is higher than
other alternatively. This indicates that the system diverts TCP streams separately.
While visually examining the simulations we find that most of the time both the TCP
traffic follows separate paths yet the TCP streams compete to use the best path.

52

Chapter 4. Measuring TCP performance on CEAS system

Pheromone Level along the best path for both the sources

0.6 — T T
[Source 1 ——
— 05 T : Source2 ~
2 B
Q
a 0.4 \ y
© \ L
§ 03 !
: \
s 02 t
£ L
& o1
0
0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Time (Sec)
Pheromone Level along the alternative path for both the sources
0.6 T T
L Source 1 ———
5 05 ﬁ] r”jﬁj' Source2 - -
>
3 o4
2 |
é 0.3 '
§ 02 ?fv \"‘"W“WWWM
£ ;] PPl i
0.1 i .
0 \ J ¥

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Time (Sec)

Figure 4.14: Pheromone Distribution at node 3 using packet size of 9000 bytes

2 TCP Reno Connections

120

100
80

60

40

Data Rate (Mbps)

20 ;

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Time (Sec)

2 TCP Sack Connections

120 T
100

80
60

40
20

Data Rate (Mbps)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Time (Sec)

Figure 4.15: Comparison of TCP data rate between TCP Reno and TCP Sack (results from an
instance of a simulation)

93

4.7. Previous Hop memory

Figure 4.15 compares the TCP data rate of both the connection using TCP Reno
and TCP sack during an entire period of simulations. The graph is plotted using the
results from an instance of the simulation after increasing the packet size to 9000 bytes.

The results show that the performance of TCP Sack is much smoother than TCP Reno.

4.7 Previous Hop memory

During link failure, we observe that large number of packets continuously loop
around node 3 and node 4. Although there is an alternative path available towards
destination, the pheromone level toward the failure path still remains higher than the
alternative path. Thus at node 3, packets are forwarded to node 4 instead of node
10. But at node 4, the only available link towards the destination other than route
back is broken so the packets are forwarded back to the node 8. As a result packets

continuously loop around the link and reduces the TCP performance.

0 n pF=—n + 1F = 4 n+x f=efnx+ 6

Packet Looping

10 9)

Figure 4.16: Micro-looping during Link failure

Let’s assume a topology as shown in Figure 4.16, where we have another path
connecting node 4 and node 5 via a series of nodes n + x + 1. Suppose the link
connecting node / and node 5 is broken as in our previous scenario. At this point,
the path cost towards node 5 via n + x + 1 nodes is much higher than the path cost
along [4,3,10,9,5]. Thus, packets reaching node 4 is forwarded back to node 3 instead

of node n. However at node 3, the probability of selecting node 4 over node 10 still

54

Chapter 4. Measuring TCP performance on CEAS system

remains higher. As a result the TCP packets keep looping around node 3 and node /
until the probability of selecting node 10 becomes higher.

To avoid such micro looping we implement a previous hop memory technique. This
technique prohibits forwarding packets back to the node from which they are recently
forwarded. As in our example from Figure 4.16, once the packet reaches node 4, the
previous hop memory technique restricts the forwarding of the packet back to the node
3. Thus, the packet is forwarded to node n which would then ultimately reach node
5. Further as in our scenario where we have only one available path i.e. route back to
the node 3, if we prohibit forwarding the packet back then the packet would have to
be dropped. In such cases, where there is no available path other than route back we
allow forwarding back the packet. But as the packet reaches node 3, there are other
paths available so the packet would not be forwarded again to node 4. This ultimately

removes the continuous looping.

Results and Discussion:

After implementing a previous hop memory technique, we find that at all ant
rates the TCP transmission rate is unaffected by the link failure. TCP resumes data
transmission immediately after the failure and continues transmitting data at the same
rate. The data packets that are forwarded to node 4 loop back to node 3 and continue
their journey through the alternative path. However, during pheromone update and re-
stabilization process, the system slowly diverts more TCP traffic along the alternative
path. As a result TCP data packets follow both the paths; the alternative path and
the one with a single loop. The use of multi-path causes reordering of the packets and
reduces TCP performance. However, TCP regains its data rate once the re-stabilization
phase ends.

The overall percentage gain in TCP throughput after implementing a previous hop
memory technique is plotted in Figure 4.17. The graph shows that the system at the
lower ant rates benefits more with this technique than the system at higher ant rates.

The reason behind such benefit is due to slower pheromone update and re-stabilization

95

4.7. Previous Hop memory

Average percentage gain in TCP Throughput after implementing One Hop Memory
100

o\

I

) \

u

T
Percentage gain —=—

Percentage gain (TCP Throughput)

0 1 2 3 5 10 15 20
Number of Ants

Figure 4.17: average percentage gain in TCP Throughput

process at the lower ant rates. Without the previous hop memory technique large
number of TCP packets suffers looping at lower ant rates than at higher ant rates.
Thus the overall gain in TCP performance is more at lower ant rates than at higher

ant rates.

Conclusion:

From the above results, we find that during pheromone update periods, the use
of multiple paths reduces the TCP performance. During link failure along the best
path, the system takes certain time to update the pheromone values depending on the
ant rates. Further, TCP data transmission is interrupted until the pheromone level
along the alternative path rises increasing the probability of its selection. However, the
TCP does not regain its data transmission rate immediately. Until the probability of
selecting the alternative path over the failure path becomes significantly high enough

the TCP continuously experiences packet loss due to micro-looping. Increasing the

56

Chapter 4. Measuring TCP performance on CEAS system

ant rate reduces such transmission interrupt time yet the micro looping of the packets
reduces the TCP performance to some extent.

We find that the use of previous hop memory technique not only removes such
micro looping but also helps TCP source to resume data transmission immediately
after the link failure. However, the TCP performance reduces again during pheromone
re-stabilization period. In addition to this the overall performance gain achieved after
implementing previous hop memory technique is higher at the lower ant rates compared
at the higher ant rates.

We also find that the CEAS utilizes its available resources more efficiently than
the LSRP and DVR according to the network load. However, due to the smaller
transition delay of ant packets compared to the data packets we find that the TCP
experiences periodic congestion causing its transmission rate to fluctuate. Although
the system make use of the alternative path in response to the congestion, the periodic
fluctuation of the TCP and the smaller transition delay of ant packets causes the
system to continuously use the shortest path. We also find that forcing the ant packets
to experience considerable amount of queuing delay according to the traffic load helps
ants to better update the system more accurately.

Unlike LSRP and DVR, we find that the CEAS system handles multiple TCP
traffic independently with equal priority. However, the TCP streams strive to use the
shortest path causing periodic congestion along the shortest. This significantly reduces
the performance of the TCP streams. Similarly, we find that forcing the ant packets
to experience queuing delay, the system handles multiple TCP streams more efficiently
and diverts them along separate paths. However, the TCP streams strive to use the
shortest path as far as possible but one TCP stream at a time.

Finally, we find that the performance of TCP Sack is better than the TCP Reno
due to its congestion control strategy. Thus, the TCP Sack would be better choice to
use in multipath routing such as CEAS.

57

4.7. Previous Hop memory

o8

Chapter 5

Case Study

This chapter presents simulation studies of the TCP performance on the CEAS sys-
tem under the influence of combination of network events. The results are compared
against LSRP and DVR under similar configurations. The studies in this chapter
mainly focus on observing the behavior of the TCP in complex networks. The simula-
tions performed in this case study is to understand whether the CEAS behavior under
influence of the various network events on complex network produce similar effects on
the TCP performance as in the simple network or the results are topology specific.

The case studies are divided on the basis of the topology; Figure 5.1 and Figure
5.12.

5.1 Performance Metrics

e TCP Connect Time - The amount of time required to establish a TCP connec-
tion from a source to a destination. In other words this is the total time required

to deliver first TCP data packet after completing TCP handshaking.

e TCP Throughput - The total amount of TCP data transferred after starting a

TCP connection over the entire interval of the simulation

e TCP Goodput - The total amount of data delivered over the interval of the

99

5.2. TCP performance using 12 node network

simulation.

5.2 TCP performance using 12 node network

Figure 5.1: 12 nodes network.

This topology is selected to examine the TCP performance on more complex net-
work where we have more than two paths between connection pairs. However, we
maintain a regular structure in the topology which would help us understand the sys-

tem easily and also enable us to visually examine the simulations to gain more insight.

Configurations:

In this study, we use lower capacity links, each of 1 Mb bandwidth, to connect
nodes. In addition to this, we use longer transition delay of 10 milliseconds on each
links. We simulate the CEAS system at ant rate of 10 normal ants per second and
1 explorer ant per second with beta value of 0.98. Rest of the CEAS configurations
remains similar to our above studies in Chapter 4.

Here, we observe the behavior of the CEAS system under influence of multiple link
failures, link re-establishment and frequent transient links in presence of various levels
background loads. We study the TCP performance of both TCP Reno and TCP Sack.
The TCP performance results are compared with the results obtained from using LSRP

and DVR under similar network configurations. The TCP configuration parameters are

60

Chapter 5. Case Study

listed in Table 5.1 and the Table 5.2 lists the configuration parameters for background

traffic generators.

| Parameter | Values

TCP variants TCP Reno, TCP Sack

TTL 10

Window Size 200

Packet Size 512 bytes

Data Rate 800 Kbps

Table 5.1: TCP configuration

| Parameter | Values

Traffic UDP

Source CBR generator

Packet Size 512 bytes

Data Rates 0 - 5000 Kbps

TTL 10

Number of Connections 5

Table 5.2: Background traffic parameters

5.2.1 TCP performance on steady network

In this section, we measure and compare the TCP performance of all three systems
on our network when there are no link failures. The TCP performance is measured on
the basis of TCP connect time, TCP Throughput and TCP Goodput. Additionally,
we measure the TCP performance at various levels of background traffic. The TCP

performance using both TCP Reno and TCP Sack are compared.

Scenario:

We select node 00 and node 10 as our TCP source and destination nodes. The
source and the destination nodes are chosen in order to have multiple paths between
them. To avoid the stabilization phase we start TCP traffic 50 seconds after the
initialization phase. The scenarios are simulated for 700 seconds with first 50 seconds

as the initialization phase.

61

5.2. TCP performance using 12 node network

We introduce background traffic loads using 5 different UDP traffic generators
immediately after the initialization phase. The UDP traffic source and destination
nodes are selected in such a way that at least one of the background connections shares
a common link with the TCP connection. The combined traffic generated by these

UDP connections provides different levels of background traffic loads on the network.

Results and Discussions:

TCP Reno Connect Time
0.4

E | CEAS —+—
~ 03 : LSRP
o |
£ ' DVR -
= 02
3]
2 01
c
S

0 500 1000 1500 2000 3000 5000

Background Traffic: UDP (Kbps)
TCP Sack Connect Time

o 04 -
3 | CEAS —+—
~ 03 : LSRP
o |
£ ' DVR -
= 0.2 - "
3]
2 01
c
S

0 500 1000 1500 2000 3000 5000

Background Traffic: UDP (Kbps)

Figure 5.2: TCP Connect Time.

Figure 5.2, compares the connect time on all three systems at various levels of
background traffic. The graphs show that the connect time for both the TCP variants
are almost similar. Up to the background loads of 1500 Kbps, the connect time remains
unchanged on all three systems. Further increasing the background load delays the
connect time. However, at 3000 Kbps the connect time on CEAS system takes much
less time compared to the other systems. The reason for this is, the background loads
on the shortest path is higher compared to the other available paths and the TCP
traffic on LSRP and DVR only follows the shortest path while the TCP traffic are
forwarded using multiple paths on the CEAS system.

Figure 5.3 and 5.4, compare the TCP throughput and goodput on all three systems

62

Chapter 5. Case Study

TCP Reno Throughput Comparison with no link failures

% 800 feg CEAS +———i |
k3 D LSRP
< 600 \ DVR - |
3 ~
£ 400 R
3
£ 200
= —~
0
0 500 1000 1500 2000 3000 5000
Background Traffic: UDP (Kbps)
TCP Sack Throughput Comparison with no link failures
% 800 fr—— CEAS +———i |
k3 e LSRP
5 \‘x\ \
£ 400 S ™
=)
g ~
£ 200
= —
0
0 500 1000 1500 2000 3000 5000

Background Traffic; UDP (Kbps)

Figure 5.3: TCP Throughput at various levels of background traffic loads

at various levels of background traffic. Both the graphs show that the performance of
TCP Sack is better than TCP Reno on CEAS system while the TCP performance of
both the variants on the LSRP and DVR remains unchanged. The results show that
TCP Sack on CEAS system maintains highest level of goodput up to 1000 Kbps of
background loads on the network while the performance of TCP Reno decreases with
the increase in the background loads. The results also show that there are very little
differences on the TCP throughput and TCP goodput values. This infers that the data

retransmission rates on all three systems are very low.

Due to the fact that the background loads on the shortest path is higher compared
to the other paths the TCP performance on LSRP and DVR is much lower than on the
CEAS system at higher background loads. However, beyond 3000 Kbps of background
loads the TCP throughputs on all three system is very negligible. All these results
indicates that in presence of lower traffic loads the TCP performance on all three

systems are similar. Further increase in the traffic load reduces the TCP performances

63

5.2. TCP performance using 12 node network

TCP Reno Goodput Comparison with no link failures

T
w CEAS —+— |
800 S LSRP
0 DVR ---%---
o 600 ~osg
™ .
2 400 =
© .
o
[=}
O 200
0 R
0 500 1000 1500 2000 3000 5000
Background Traffic: UDP (Kbps)
TCP Sack Goodput Comparison with no link failures
T
« CEAS +—+— |
800 I LSRP
i DVR %
& 600 e AN
4 *o \
E
& 400 %
o N
=3
O 200 e \
0 500 1000 1500 2000 3000 5000

Background Traffic: UDP (Kbps)

Figure 5.4: TCP Goodput at various levels of background traffic loads

yett CEAS maintains higher TCP performance than others. This indicates that the
CEAS system makes better use of its available resources than LSRP and DVR.

5.2.2 TCP performance during multiple link failures

In this section, we measure the TCP performance of all three systems during mul-
tiple link failures. Similar to our above study we use TCP Throughput and TCP
Goodput as our performance metrics. Similarly, we measure the TCP performance
during link failures at various levels of background traffic. The performances of all

three systems are compared using both the TCP variants.

Scenario:

Similar to our scenario in 5.2.1, we select node 0 and node 10 as our TCP source and
destination nodes. The simulation parameters, TCP parameters and UDP background

traffic loads are configured identically. We schedule first link failure 100 seconds after

64

Chapter 5. Case Study

TCP Reno Throughput Comparison during multiple link failures

CEAS >I—+—4 4

@ 800 fHesy
k3 LSRP
= Tk
£ 400 AN %
£ 200
|_ -
ob— i e e
0 500 1000 1500 2000 3000 5000
Background Traffic: UDP (Kbps)
TCP Sack Throughput Comparison during multiple link failures
T 800 fxisy CEAS —+— |
k3 I S LSRP
5 S
=3 SN
< 400 g
£ 200
= .
0 """"""" P —
0 500 1000 1500 2000 3000 5000

Background Traffic; UDP (Kbps)

Figure 5.5: TCP Throughput during multiple links failure at various levels of background traffic
loads

starting TCP traffic. The first failure is scheduled along the shortest path between
the TCP connection pair so that the failure affects all three systems. The next failure
is scheduled along the next shortest path and further failures are selected among the
equal cost paths. However, we re-establish the failure links along the second shortest
path and the shortest path after some time. All the events are at least 50 seconds apart
where as the time period between a particular link failure and its re-establishment is
scheduled 350 seconds apart. The scenario is simulated for both the TCP variants at

various levels of background traffic loads.

Results and Discussions:

Figure 5.5 and 5.6, compare the TCP throughput and TCP goodput on all three
systems at various levels of background traffic when there are multiple link failures on

the network. Similar to the previous results, the graphs show that the performance of

TCP Sack is better than TCP Reno on CEAS system while the difference between the

65

5.2. TCP performance using 12 node network

TCP Reno Goodput Comparison during multiple link failures

800 CEAS —+— |
@ L LSRP
= okl
3 400 AN P
g e
& 200
0 K- B
0 500 1000 1500 2000 3000 5000
Background Traffic: UDP (Kbps)
TCP Sack Goodput Comparison during multiple link failures
800 o CEAS 1]
Q I S LSRP
S 600 E \ DVR = e
3 400 gy
g N
& 200
0 rrrrrrrrrrrrrrrrrrrrrrr
0 500 1000 1500 2000 3000 5000

Background Traffic: UDP (Kbps)

Figure 5.6: TCP Goodput during multiple links failure at various levels of background traffic loads

TCP performance of both the TCP variants on other systems are insignificant.

The lower performance of TCP on CEAS system compared to other system is due
to the time it takes to update the pheromone level and divert the data traffic along
other available path. Unlike LSRP and DVR the selection of the next shortest path on
CEAS takes significant amount of time depending on the ant rate. In the mean time,
large amount of packets are delivered out-of-order reducing the TCP performance. This

has been discussed in Section 4.3.

Figure 5.7 gives an overview of data re-transfer in all three systems during multiple
link failures at 1000 Kbps of background traffic. (The graph is plotted using a result
from an instance of the simulation at 1000 Kbps of background traffic.) The figure
shows that the data retransmission on the CEAS system is more frequent than LSRP
and DVR. This indicates that the large number of packets are delivered out-of-order
on CEAS system. While visually examining the simulations we find that the CEAS
system diverts the traffic along multiple paths after the link failure. In addition to this,

66

Chapter 5. Case Study

TCP Reno Data retransmission during multiple link failures at 1000 Kbps of Background loads

50 SR T T
IR I CEAS ——
LSRP
DVR -
40
i)
<
— 30
Q2
[2]
o
o
©
@
s 20
IS :
o 3
10 | B
. | éi JHH]WMMWMJ
0 300 400 500 600 700
Time (Sec)

Figure 5.7: TCP data retransmission during multiple links failure at 1000 Kbps of background traffic
loads

there are multiple packet losses due to micro-looping. (see Section 4.3 for detail.)
Figure 5.8 compares the improvement achieved on TCP Goodput after implement-

ing previous hop memory technique. The graphs show slight improvement on TCP

goodput at all levels of background traffic. However, the difference in performance

would have been larger at lower ant rates.

5.2.3 TCP performance during frequent transient links

In this section, we measure the TCP performance of all three systems on the
network with unstable links (frequent transient links). The TCP Throughput and
TCP Goodput of all three systems are measured and compared at various levels of
background traffic.

Scenario:

To simulate an unstable behavior of links, we flap links up and down continuously

67

5.2. TCP performance using 12 node network

TCP Reno Goodput Comparision with and without a Hop Memory

T
Reno —— _|
800 Reno with Hop
I e
Q ™
g 600 \
32 400 BN
° \
o
[=}
° 200 \
0
0 500 1000 1500 2000 3000 5000
Background Traffic: UDP (Kbps)
TCP Sack Goodput Comparision with and without a Hop Memory
T
Sack —+— |
800 Sack with Hop
m s
5 600 —
<
2 400 ™
S \
o
[=}
O 200 \

0 500 1000 1500 2000 3000 5000
Background Traffic: UDP (Kbps)

Figure 5.8: TCP performance after using one hop memory technique.

at the frequency of less than a second. Each flap period last for 2 seconds and the next
flap period begins 2 seconds after the end of previous period. For this scenario, node
7 and node 10 are selected as our TCP source and destination nodes. The simulation
parameters, TCP parameters and the background traffic loads are configured identical
to above scenarios. The cyclic link flapping continues throughout the simulation period.
A link along the shortest path and a link along the equal cost path are selected as our
unstable links. The equal cost paths are among the next shortest path. The two links

flap up and down at frequency of 0.3 second and 0.5 second.

Results and discussions:

Figure 5.9 and 5.10, compares the TCP throughput and TCP goodput on all three
systems at various levels of background loads in presence of unstable links on the net-
work. The results show that the TCP performance on the CEAS system is significantly
better than the LSRP and DVR. The LSRP and DVR both try to route traffic through

68

Chapter 5. Case Study

TCP Reno Throughput Comparison under frequent transient links

% 800 CEAS +——]
k3 LSRP
¥ 600 fro DVR =
£ 400 Ko E—
(@)}
3
£ 200
|_ N

0 N

0 500 1000 1500 2000 3000 5000
Background Traffic: UDP (Kbps)
TCP Sack Throughput Comparison under frequent transient links

% 800 CEAS >I—+—4 ,_
k3 LSRP
< 600 | — DVR o
2 00 L T
[=2) L TR R TR S ‘
3
£ 200
|_ s

0 -

0 500 1000 1500 2000 3000 5000

Background Traffic; UDP (Kbps)

Figure 5.9: TCP Throughput under frequent transient links at various levels of background traffic
loads

the shortest path thus during flapping large amount of data packets are dropped. Fur-
ther the situation is worsen by the flapping behavior of both the shortest path and
the second shortest path at different time interval. The LSRP and DVR continuously
struggle to re-route the data traffic along the shortest path which causes huge amount
of packet loss.

On the other hand, the higher performance of TCP on CEAS is due to the use of
stable paths more frequent than the shortest path. While visually examining the sim-
ulations we find that the CEAS system gradually avoids the unstable links and diverts
most of the traffic via reliable links. We find that the LSRP suffers the most among
the three systems. During link flapping large amount of LSA messages are generated
to reflect the change in the topology which requires extra over head of updating the
routing table and re-calculating the shortest path. But, the DVR only updates the
information along the shortest path available which reduces the overhead compared to

the LSRP. In addition to this, the 2 second period update of routing tables in DVR

69

5.2. TCP performance using 12 node network

TCP Reno Goodput Comparison under frequent transient links

. 800 CEAS >I—+—4 .
2 LSRP
< P
= K TR \
2 400 i R -
©
3
S 200
0 500 1000 1500 2000 3000 5000

Background Traffic: UDP (Kbps)

TCP Sack Goodput Comparison under frequent transient links

800 CEAS i |
Tg_ LSRP
2 400 o
e R TRREEETEE *
8 200
0 500 1000 1500 2000 3000 5000

Background Traffic: UDP (Kbps)
Figure 5.10: TCP Goodput under frequent transient links at various levels of background traffic

loads

further helps maintain the system more accurately than LSRP. However, if the links on
the network were of different link cost LSRP would have performed better than DVR
as DVR only uses hop count to calculate shortest path.

Figure 5.11 shows the slight improvement achieved on TCP Goodput after imple-

menting previous hop memory technique.

70

Chapter 5. Case Study

Goodput (Kbps)

Goodput (Kbps)

TCP Reno Goodput Comparision with and without a Hop Memory

Reno +—+—

800

600

Reno with Hop

‘\\

400

e

200

\

500

1000 1500

2000

3000 5000

Background Traffic: UDP (Kbps)

TCP Sack Goodput Comparision with and without a Hop Memory

T
Sack ——+—i

800

Sack with Hop

600

400

200

500

1000 1500

2000

3000 5000

Background Traffic; UDP (Kbps)

Figure 5.11: TCP performance after using one hop memory technique.

71

5.3. TCP Performance on large Topology

5.3 TCP Performance on large Topology

In this section we carry out simulation study based on a 58 node network topology
extracted from Uninett! network. The network consists of 12 routers connected using
fifteen 2.5 Gbps links. The remaining routers are connected using lower capacity links
ranging from 10 Mbps to 1 Gbps. The topology is illustrated in Figure 5.12. This
topology is chosen to provide realistic settings for our study. The studies in this section
are mainly focused on observing the performance of TCP during different network
events and verify the behavior of TCP with the results from the studies above. (The
geographic location of the nodes are listed in Appendix E)

Scenario:

In a real world the bulk TCP data transfer is not very common. Further, the
link failure events are also very rare except during the scheduled maintenance period.
However, a study by Markopoulou et al. [20] shows that the link failures other than
scheduled maintenance occur often on a network. The study shows that most of the
failures occurs simultaneously due to router related problems or link related problems.
In addition to this, there may be other individual link failures. Some of the individual
link failures last for longer period of time while the other may last for very short interval
but the frequency of such short link failures may be quite high.

Assuming a scenario of scheduled data backup which involves large TCP data
transfer we selected 4 TCP connections on different parts of the network. We select a
common destination on all four connections assuming it to be the central server. Also,
assuming the worst case scenario we created some link long term link failures on the
network as well as high frequency short term link failures. We schedule these high
frequency short term link failures in such a way that the link remains disconnected for
3 to 7 seconds and the next failure occurs 1 to 3 seconds after the re-establishment. We

also introduce some background traffic around one TCP source. All the network events

lwww.uninett.no

72

Chapter 5. Case Study

m—— ?.5 Gbit/s
—] Gbit/s

——100-155 Mbit/s

—10-34 Mbit/s

Figure 5.12: Uninett Topology Oct 2007.

73

5.3. TCP Performance on large Topology

are selected in such a way that each of the event effects at least one TCP connection.

We select node 51, connected with high capacity links to its neighboring nodes, as
our central server. We start all the TCP connections at the same time i.e. 50 seconds
after the initialization phase. We simulate the scenario for 1800 seconds (30 minutes)
with first 50 seconds as the initialization phase. We use ant rate of 20 normal ants per
second and 2 explorer ants per second with beta value of (.98 for all TCP connections.
The packet size used is 1500 bytes with TTL value of 30. For this study all the TCP
connections use only TCP Sack with delayed ACK.

First TCP connection pair:

We select node 4 as our first TCP source. Node 4 has multiple high capacity
paths towards the destination. We introduce frequent transient link failures along the
shortest path (link connecting node 5 and node 1) and a long term link failure along
the second shortest path (link connecting node 34 and node 35). These events are
scheduled 600 seconds apart. For this connection we use data rate of 2 Gbps as most

of its paths consist of high capacity links.

Second TCP connection pair:

We select node 12 as our second TCP source. Node 12 is connected to its neigh-
boring nodes with 7 Gbps links. We introduce background CBR UDP traffic of 800
Mbps along its shortest path (i.e. between node 12 and node 35). We use TTL value of
2 so that the TCP experiences congestion only along that particular path. The UDP
background traffic uses packet size of 1500 bytes. The TCP data is generated at data
rate of 800 Mbps.

Third TCP Connection pair:

We select node 41 as our third TCP source. Node 41 is connected to its neighboring
nodes with low capacity links (32 Mbps and 34 Mbps). This connection shares its
shortest path with the first TCP connection. Thus, the flapping of link connecting

74

Chapter 5. Case Study

node 5 and node 1 affects both of the TCP connections. The TCP source generates
data at the rate of 30 Mbps.

Fourth TCP Connection pair:

We select node /7 as our fourth TCP source. Although node 47 is connected with
1 Gbps links to its neighbors, the composite link capacities along the paths varies.
For instance; paths [/7,17,18,53,51] and [47,48,18,53,51] consist of equal numbers of
intermediate nodes but all the nodes along the first path are connected by 1 Gbps links
where as the link connecting node 48 and node 18 along the second path is only of 155
Mbps bandwidth. The TCP source generates data at the rate of 200 Mbps.

Results and Discussions:

First TCP Connection:

TCP Throughput of the first connection

TCP thro'ughput -
1.8

1.6

14

1.2

0.8

TCP Throughput (Gbps)

0.6

CEAS CEAS-1Hop Memory LSRP DVR
Protocols

Figure 5.13: TCP Throughput of first TCP connection

Figure 5.13 compares the TCP throughput of the first TCP connection on all three
systems. (The figure also compares the TCP throughput on the CEAS system after
implementing one hop memory technique.) The results show that the LSRP and DVR

are more severely affected by the frequent transient behavior of the link. Looking at the

75

5.3. TCP Performance on large Topology

data transmission graph, depicted in Figure 5.14, we find that TCP gradually increases
its transmission rate some time after the transient behavior starts. This indicates that
the CEAS system makes use of alternative path to divert the TCP traffic. However,
the fluctuation in the graph also indicates that the CEAS do not completely avoid the
unstable link. The gradual increase in the data rate suggests that the considerable
amounts of data are being diverted along the alternative path. Over time, the range
of the fluctuation decreases which suggested that the use of alternative path is more

often.

TCP Data rate of first TCP connection
25

TCP Ithroughpult

—

" | T
20 ‘ ‘ \ ’v

=

—
L
HE—
=

i (’Ph

10 ‘

Data rate (100 Mbps)

|

|
0 | |y NM |
0 200 400 600 800 1000 1200 1400 1600 1800
Time (Sec)

Figure 5.14: TCP data transmission of first TCP connection

The failure of the link along the second shortest path, at time 1200 sec, caused
some interrupt in the data transmission. However, the TCP connection resumes after
some time yet the continuous fluctuation indicates that the system continuously uses

multiple paths.

The TCP performance does not show much improvement after implementing pre-
vious hop memory technique. The reason is due to the higher ant rates. At higher ant

rates the system updates quickly. (see Section 4.7 for detail)

76

Chapter 5. Case Study

TCP Throughput of the second connection

800 TCP thro'ughput —a— |

700

600

500

400

TCP Throughput (Mbps)

300

CEAS CEAS- pkt Size 9000 LSRP DVR
Protocols

Figure 5.15: TCP Throughput of second TCP connection

Second TCP connection:

Figure 5.15 compares the TCP throughput of the second TCP connection on all
three systems. The figure also shows the results obtained after increasing the packet
size. The results show that all three systems are affected by the congestion along the
shortest path. However, the higher TCP throughput on the CEAS system compared
to the LSRP and DVR suggests that the CEAS system uses alternative path to divert
some of the traffic during congestion.

The overall TCP throughput is more than half of its full data rate. This indicates
that the also in this network the TCP connection experiences periodic congestion and
continuously diverts the data traffic along multiple paths. Similarly we find that the
TCP performance on CEAS increases significantly after increasing the packet size to
9000 bytes. This shows that the large difference in the packet size of ant packet and
data packet is crucial factor affecting the TCP performance during congestion. (see

Section 4.4 for detail.)

Third TCP Connection:
Figure 5.16 compares the TCP throughput of the third TCP connection on all

7

5.3. TCP Performance on large Topology

TCP Throughput of the third connection
20

TCP thrc;ughput -

18

16

14

TCP Throughput (Mbps)

12

10

CEAS CEAS-1Hop Memory LSRP DVR
Protocols

Figure 5.16: TCP Throughput of third TCP connection

three systems. Similar to the results from first TCP connection, the results show that
the frequent transient behavior of the link along the shortest path affects all three
systems. And the one hop memory technique does not improve the TCP performance

significantly.

Visually examining the simulations we find that some of the packets suffer looping
around cyclic path during link flapping. Although previous hop memory technique
prevents looping around a link it is not adequate enough to prevent looping around a
cyclic path. During link flapping, we find that some amount of packets loops around
node 5, node 4 and node 33. At node 4, the previous hop memory technique prevents
forwarding packets back to the node 5. Node j then selects node 35 as the next node
however, there is the probability of selecting node 33 as the next node which causes

such looping.

These loopings could be avoided by using Route Record option of IP packet header
that allows to record TP addresses of up to 9 first visited routers. However, in larger
network such looping may occur after the first 9 nodes. Another solution could be to
include a list in each data packet that records all the addresses of the nodes visited by

the packets. However, processing such list could increase the overhead at each node.

78

Chapter 5. Case Study

Further, at higher ant rates we find only slight improvement on the TCP performance
after implementing previous hop memory. Thus, implementing such list could be more

costly.

Fourth TCP connection:

TCP Throughput of the fourth connection

200

180

160 i TCP throughput —=—

140

TCP Throughput (Mbps)

120

100

CEAS CEAS-1Hop Memory LSRP DVR
Protocols

Figure 5.17: TCP Throughput of fourth TCP connection

Figure 5.17 compares the TCP throughput of the fourth TCP connection on all
three systems. The unequal link capacities along the paths caused the TCP to reduce
its throughput. For this TCP connection there are two paths [47,17,18,53,51] and
[47,48,18,53,51] with equal number of intermediate nodes. The link capacity along the
second path is much lower compared to the first. Due to the smaller packet size of
the ant packets the difference in the end-to-end delay experience by the ants along the
paths are insignificant. Thus, the CEAS system uses both the paths and experiences
periodic congestion along the second path.

The results also show that the LSRP and the DVR are not affected by such differ-
ences in link capacities. The link cost metric associated with each link on the network
drives TCP data packet along the best path rather than the shortest path in case of
the LSRP. However, in case of DVR, both the paths consist of equal number of hops

79

5.3. TCP Performance on large Topology

towards the destination. The results show that the TCP source router chooses the next
router along the first path rather than the second path. This might not always be the
case.

The result after increasing the packet size to 9000 bytes shows significant im-
provement on TCP performance. This again shows that the smaller transition delays

experienced by ant packets are the major factor affecting the TCP performance.

Conclusion

The behavior of the TCP during different network events in these case studies
shows similarity with the behavior that we observe in our basic studies. We find that
TCP suffers from micro looping during link failures in all 3 topologies. Although such
loopings are removed by the previous hop memory technique, it is not adequate enough
to prevent looping on circular paths. Further, TCP suffers from out-of-order packet
delivery during pheromone re-stabilization period. In addition to this, the overall
performance gain with this technique is very little at higher ant rates.

Although TCP performance during network congestion is higher in CEAS system
than on LSRP and DVR, CEAS do not completely divert the TCP traffic along the
alternative path. The major cause is the smaller delay experienced by the ant pack-
ets compared to the data packets. Therefore, forcing the ant packets to experience
delay according to the network load updates the system accurately and increases the

utilization of the network resources. As a result TCP performance is enhanced.

80

Chapter 6

Conclusion and Future Works

6.1 Concluding remarks

In this work, we study the TCP friendliness of the Cross Entropy Ants System in
comparison with the standard Link State Routing protocol and the Distance Vector
Routing. The CEAS is an adaptive, robust and distributed routing and management
system based on the swarm intelligence. This work is more focused on analyzing
the behavior of CEAS during different types of network events and investigating the
corresponding effects on the TCP performance.

We study the TCP performance using two TCP variants; TCP Reno and TCP Sack
on the CEAS network. The study is carried out in two phases: First using a simple
network we try to find out how does the TCP behavior varies during different events. In
the second phase, we use complex networks to measure the TCP performance during
combination of the events. The results from the first phase are used as references
to reason out the behavior of the TCP in complex network. The TCP performance
are compared with the results obtained from the LSRP and the DVR under similar
configurations. All the studies are performed using simulations. Each simulation is
replicated 15 times with different seed and the results are synchronized to calculate 95
percent confidence interval.

We find that the CEAS takes considerable amount of time to establish the best

81

6.1. Concluding remarks

path depending on the ant rate. Unlike CEAS, the LSRP and the DVR establish their
shortest path immediately after their initialization phase. Thus, LSRP and DVR are
immediately ready to transmit TCP data at full rate while CEAS takes some time
before transmitting TCP data at full rate.

Similarly, the update process in response to change in network topology is slower
in CEAS compared to the others. Such longer update process interrupts the TCP
transmission as well as reduces the TCP performance. Unlike CEAS, the TCP trans-
mission in LSRP and DVR resumes at full rate immediately after the changes occur.
Increasing ant rate decreases the pheromone update and stabilization period however
this increases the overhead of processing ants when the network is stable.

During link failures we observe micro-looping of data packets. These looping reduce
TCP performance significantly. Such micro-loops are removed by using the previous
hop memory technique. This technique not only removes such loops but also helps
TCP resume data transfer at full rate immediately after the link failure. However, this
technique is not adequate enough to prevent looping around circular paths.

Although the CEAS shows slower response to the network dynamics, it manages
network resources far better than the other systems. The higher TCP performance
on CEAS compared to the other system during congestion and load sharing clearly
indicates that the CEAS updates its resources on the basis of the quality of the network.
We also find that the CEAS handles multiple TCP stream independently with equal
priority. But the smaller transition delay on ants compared to the data packet reduces
the TCP performance however the overall TCP performance is comparatively higher
on the CEAS system. Further, forcing the ants to experience longer queuing delay
according to the traffic load helps CEAS update and manage resources more accurately
resulting higher TCP performance.

Likewise, the results obtained from our case studies shows similarity in the TCP
performance and CEAS behavior. This further indicates that the system manages its
resource and handles TCP streams on the basis of the quality of the network. We also

find that the performance of TCP Sack is better than TCP Reno in all cases.

82

Chapter 6. Conclusion and Future Works

In brief, The TCP performance on CEAS system during changes in the network
dynamics entirely depends on the ant rates. However, the system adjust its resources

according to the quality of the network to provide better TCP performance.

6.2 Future works

In this study, we find that considerable amounts of ants are required during pheromone
update and re-stabilization periods. Increasing the ant rate decreases the stabilization
periods. However, this increases the overhead of processing ants when the network
remains stable. In order to adapt the ant rates according to the network state, the
self-tuned refresh rate strategies have been proposed in [13] which continuously moni-
tors parameters and ant rates to detect state changes and adapt the ant rate according.
Thus, the future work include the measurement of TCP performance after implement-
ing such strategies.

We also find that the re-ordering of the TCP packets is due to the use of multiple
paths and not due to packet loss. Thus, it would be interesting to study the TCP
performance using a different version of TCP known as TCP PR [5] proposed to
maintain TCP throughput TCP throughput during packet re-ordering. Unlike other
TCP variants, TCP PR does not rely on DUPACKSs to detect a packet loss instead
it relies solely on retransmission time out. Thus, TCP PR simply ignores packet
reordering and continues transmission at full rate.

We observe that forcing the ants to experience considerable amount of delay ac-
cording to the traffic load helps the system update more accurately. Thus, the future
work include study of the CEAS behavior and the TCP performance using packet pri-
ority on data packet. The packet priority on data packet would force the ant packets to
wait longer time queuing on each router depending on the traffic loads. Another study
could include piggybacking the ant information on the data packet. Such piggybacking
causes the ants to experience same amount of delay as the data traffic which would

help the system update more accurately.

83

6.2. Future works

It might also be interesting to study the TCP performance on CEAS using the
subpath [19] method. Using subpath method, the forward ants not only record the
addresses of the nodes it passes by but also record each link cost along the path. Thus
reaching at the destination, the reduction of the cyclic path would also reduce the link
cost around those cycles which helps system to update pheromone level faster and more

accurately during change in the network dynamics.

84

Appendix A

Multi-* Network NS2 extension

Port
Classifier

Node entry
—_—

Address
Classifier

Figure A.1: NS2 Node layout

Typically a node in NS2 consists of two Tcl objects: an address classifier and a port
classifier. These classifiers are responsible for distributing incoming packets either to a
corresponding agent or to an outgoing link [8]. A typical unicast layout of a Node is
shown in Figure A.1. The extension provided by Paquereau et al. [26, 27| adds two new

objects; NetworkLayerManager and NetworkLayerUnit, to a node as shown in Figure

85

A.2. Here, NetworkInterface2 is a generic network interface object that replaces the
existing NetworkInterface object of the default NS2. A number of NetworkInterface2
objects can be attached to a node each with a unique identifier [25]. These objects

label each packet passing through them with their interface identifier [8].

4 ~
[Agent)¢ = = = = = = =
~ - 1
; |
. 1
1
JE N I
1 \ /
I \ Port /
! \ Classifier
I \)/
1 I N
v 1
NetworkLayerManager
T
FIB :
I
;T v - \
NetworkLayerUnit , Address
/ Classifier \
/
______ - =\
|
NetworkInterface2 - - v
PointToPoint
NetworkInterface
1 1

| 1
\7 A7

-V ==

- ~ ~
(" Link)t Link)
~ - ~ -

Stack of low layer or Link
depending on the type of interface

Figure A.2: Node Layout

The primary purpose of NetworkLayerManager is to maintain a list of Network-
Interface2 and a list of NetworkLayerUnits as well as to handle and distribute each
packet passing through the nodes. NetworkLayerManager decides whether a received
packet should be forwarded upwards to the port classifier or forwarded to a neigh-
bor node according to the packet destination. The NetworkLayerUnit consists of a
ForwardingUnit and a RoutingUnit which handles the data packets and the routing
packets respectively. The detail structure of a NetworkLayerUnit is shown in Figure
A.3.

The new node layout also consists of a PointToPointInterface and a Forwarding

Information Base (FIB). The PointToPointInterface is an extra layer added between a

86

Appendix A. Multi-* Network NS2 extension

NetworkLayerManager

RoutingPacket
Generator

Node and a Link. Operations such as up or down on a PointToPointInterface causes
the link attached to connect or disconnect respectively. The FIB stores and maintains

all the routing information. Further, information regarding neighboring nodes is stored

recv ()% processPacket ()

NetworkLayerUnit

up

ForwardingUnit

—

down

queue_ RoutingingUnit
send ()
Networkinterface2 NetworkInterface2

Figure A.3: Architecture of NetworkLayerUnit

in a NeighborInformationBase. For more detail refer [25].

87

88

Appendix B

CEAS extension modification

All the source codes related to the CEAS module are submitted along with this
work. This also includes the TCL scripts and topology files. The multi-* network exten-

sion and the technical manual is availabe at http: //www.q2s.ntnu.no/~ paquerea/ns.php

B.1 Forwarding Unit

The CEAS ForwardingUnit premises are defined in “common /src/ceas-forwarding-
unit.h” the modifications are made in “plain /src/plain-ceas-forwarding-unit.h”. Plain CEASForw:
is an inherited class of CEASForwardingUnit which is futher inherited from For-
wardingUnit of the multi-* network extension.

The method recv(Packet *p, Handler *h) is expanded. This method handles all the
incoming data packets that pass through the CEAS NetworkLayerUnit. The method

is expanded as in the following pseudo code.
if (ch—>direction () == hdr_cmn::UP)
{

// Packet is at the destination

// Send the packet up to the associated agent.

}

if (ch—>direction () = hdr_cmn::Down)

89

B.2. Link cost modification

// Outgoing packet
// Create a list of neighbouring nodes associated with the cumulative pher
if (No_Neighbour Found)
{
// Drop the packet
return ;
¥
if (isSetPrevHop && neighboringNodes > 1)
{ // previous hop prohibits forwarding back only if the neighoring nodes

// remove the previous node from the list

}

// Select next node using selectRandomNeighbour
// Forward the packet to the next node

return;}

B.2 Link cost modification

The link cost modifications are made on “plain /src/plain-ceas-forwarding-unit.h”.
The link cost is caluclated by substracting the current time from the timestamp set

during the generation of the ants.

90

Appendix C

The effect of different capacity links
on TCP

The Figure C.1 compares the overall TCP throughput on all three system when the
shortest path has lower link capacity. The result is very similar to the one we obtain
during link congestion (see Section 4.4). Similarly, the results obtained after increasing
the packet size to 9000 bytes shows significant improvement on overall TCP perfor-
mance. However, the TCP performance on LSRP and DVR shows no improvements.

Figure C.2 compares the results after increasing the packet size.

91

TCP Throughput when the shortest path has lower link capacity

80
Reno +——
Sack

70

40

30

TCP Throughput (Mbps)

20

10

Ant rate 5 Ant rate 10 Ant rate 15 Ant rate 20 LSRP DVR

| CEAS System |
PROTOCOLS

Figure C.1: TCP throughput when the shortest path has lower link capacity

improved TCP performance with the increase in packet size to 9000 bytes

100
Reno ——+—i
Sack
80 {

m
Q.
Qo

2 60
5
o
Ny
[=2)
>
2
<

= 40
o
O
[

20

+ +
Ant rate 5 Ant rate 10 Ant rate 15 Ant rate 20 LSRP DVR

| CEAS System |
PROTOCOLS

Figure C.2: Improved TCP perfromance after increasing packet size to 9000 bytes.

92

Appendix D

Multiple TCP stream on LSRP and
DVR

2 TCP Reno Connections using LSRP

80
TCP1 ——
— “ N TCP 2
2 60 M [z K
g byl \‘ : Mg “ N\N\M'W’N/\A/v\,/‘ ‘\ \‘
© a0 [\‘ \‘ MN\“ ‘} ww\w‘ S “v A e .)
] g o v M ‘ |~ o
4 \ |~
A ([
8 207 i é
0 |
0 100 200 300 400
Time (Sec)
2 TCP Reno Connections using DVR
80
TCR1 ——
- TCP 2
o 60 f
§ i | e [
pre A ANIAARA AP | .
; 0 ~ ~An A W \m‘} WJ “ ‘Vv\v,wmw ‘ JON |
w ‘ [A \y/ s ,/»W“VNV | N ey
o ‘v’ " oV
I | | I [(
g 20 — 0
|
0 I
0 100 200 300 400
Time (Sec)

Figure D.1: Data rates of Two TCP stream on LSRP and DVR

The Figure D.1 shows the data rate of two TCP connection on LSRP and DVR
over entire period of simulation. The TCP streams on LSRP and DVR always use the

93

shortest path. The figure shows that the LSRP and DVR gives periodic preferences to
the TCP streams during load sharing.

94

Appendix E

Locations of the 58 node Uninett

Network
0 Aho 15 Halden 30 Molde 45 Stolavspl
1 Alesund 16 Hamar 31 Namsos 46 Stord
2 As 17 32 Narvik 47
Harstad-gw Svalbard-gw
3 Arendal 18 33 Nygardsgt | 48
Harstad-gw3 Svalbard-gw?2
4 Bergen-BT | 19 Haugesund | 34 Oslo-gwl 49 Teknobyen
D 20 Hitos 35 Oslo-gw?2 50 Trd-real
Bergen-HTS
6 Bo 21 Hist 36 Pil52 51 Trd-hvd
7 Bodo 22 Honefoss 37 Porsgrunn | 52
Tromso-gw?2
8 Drammen 23 Kjeller 38 Rena 53
Tromso-gw3
9 Elverum 24 Kongsberg | 39 Sarpsborg | 54 Tromso-gw
10 Evenstad 25 40 Seilduk 55 Tynset
Kristiansand

95

11 Forde 26 41 Sogndal 56 Veths
Kristiansund

12 27 Levanger 42 Stavanger | 57 Volda

Fredrikstad

13 Gjovik 28 43 Steinkjer
Lillehammer

14 Grimstad | 29 Mo 44 Stjordal

96

For more detail refer http://forskningsnett.uninett.no/forskningsnett /fnett-status.pdf

References

[1] Abouzeid, Alhussein A., Azizoglu, Murat, Roy, and Sumit. Stochastic modeling of tcp/ip over
random loss channels. In HiPC' ’99: Proceedings of the 6th International Conference on High
Performance Computing, pages 309-314, London, UK, 1999. Springer-Verlag.

[2] M. Allman, V. Pazson, and W. Stevens. TCP Congestion Control. RFC 2581, April 1999. http:
//ietf.org/rfc/rfc2581.txt.

[3] James E. Baker. Reducing bias and inefficiency in the selection algorithm. In Proceedings of
the Second International Conference on Genetic Algorithms on Genetic algorithms and their

application, pages 14-21, Hillsdale, NJ, USA, 1987. L. Erlbaum Associates Inc.

[4] Blanton, Ethan, Allman, and Mark. On making tcp more robust to packet reordering. SIGCOMM
Comput. Commun. Rev., 32(1):20-30, 2002.

[5] S. Bohacek, J.P. Hespanha, Junsoo Lee, Chansook Lim, and K. Obraczka. TCP-PR: TCP for
persistent packet reordering. In Distributed Computing Systems, 2003. Proceedings. 23rd In-
ternational Conference on, pages 222-231, May 2003.

[6] Stephan Bohacek, JoA£o P. Hespanha, Katia Obraczka, Junsoo Lee, and Chansook Lim. En-

hancing security via stochastic routing, 2002.

[7] Gianni Di Caro and Marco Dorigo. Antnet: Distributed stigmergetic control for communications

networks. Journal of Artificial Intelligence Research, 9:317-365, 1998.

[8] Kevin Fall and Kannan Varadhan. The ns Manual, 2008. http://www.isi.edu/nsnam/ns/

ns-documentation.html.

[9] S. Floyd and T. Henderson. The NewReno modification to TCP’s fast recovery algorithm. RFC
2582, August 1999. http://ietf.org/rfc/rfc2582.txt.

[10] Malgorzata Gadomska and Andrzej Pacut. Performance of ant routing algorithms when using

tep. 4448 /2007:1-10, 2007.

97

REFERENCES

[11] Giovanna, Foukia, Noria, Hassas, Salima, Karageorgos, Anthony, Most a@©faoui, Soraya K., Rana,
Omer F., Ulieru, Mihaela, Paul Valckenaers, and, Van Aart, and Chris. Self-Organisation:
Paradigms and Applications. 2004.

[12] Poul Heegaard, Otto Wittner, Victor Nicola, and Bjarne Helvik. Distributed asynchronous al-
gorithm for cross-entropy-based combinatorial optimization. In Rare Event Simuation and

Combinatiorial Optimization, September 2004.

[13] Poul E. Heegaard and Otto Wittner. Self-tuned Refresh Rate in a Swarm Intelligence Path
Management System. In IWS0S/EuroNGI, pages 148-162, 2006.

[14] Poul E Heegaard and Otto J Wittner. Overhead reduction in distributed path management
system. Submitted to Computer Networks, 2008.

[15] Poul E. Heegard, Bjarne E. Helvik, and Otto Wittner. The cross entropy ant system for network
path management. Telektronikk, 1:19-40, 2008.

[16] Bjarne Helvik and Otto Wittner. Using the cross entropy method to guide/govern mobile agent’s
path finding in networks. In Proceedings of 3rd International Workshop on Mobile Agents for
Telecommunication Applications, pages 14-16. Springer Verlag, 2001.

[17] V. Jacobson. Congestion avoidance and control. SIGCOMM Comput. Commun. Rev., 18(4):314-
329, 1988.

[18] J. Kennedy and R. Eberhart. Swarm Intellignece. Morgan Kaufmann, 1st edition, 2001.

[19] Vebjgrn Kjeldsen. Cooperation through pheromone sharing in swarm routing. Master’s thesis,

June 2007.

[20] Markopoulou, Athina, Iannaccone, Gianluca, Bhattacharyya, Supratik, Chuah, Chen-Nee, Gan-
jali, Yashar, Diot, and Christophe. Characterization of failures in an operational ip backbone

network. IEEE/ACM Trans. Netw., 16(4):749-762, 2008.

[21] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowledgment Options.
RFC 2018, October 1996. http://ietf.org/rfc/rfc2018.txt.

[22] Nicolas Meuleau and Marco Dorigo. Ant colony optimization and stochastic gradient descent.

Artificial Life, 8:103-121, 2002.

[23] J. Moy. OSPF Version 2. RFC 2328, Ascend Communications, Inc., April 1998. http://ietf.
org/rfc/rfc2328.txt.

[24] Teunis J. Ott, J. H. B. Kemperman, and Matt Mathis. The stationary behavior of ideal tcp

congestion avoidance, 1996.

98

REFERENCES

[25] Laurent Paquereau. Extension to ns-2, October 2008. http://people.item.ntnu.no/

“paquerea/ns/q2s_doc.pdf.

[26] Laurent Paquereau and Bjarne E Helvik. A module-based wireless node for ns-2. In Proceedings
of first workshop on NS2 (WNS2), Pisa, Italy, 2006.

*

[27] Laurent Paquereau and Bjarne E Helvik. Simulation of wireless multi - * networks in ns-2. In

Proceedings of second workshop on ns-2 (WNS2), Athens, Greece, October 2008.

[28] Le Quoc, C., Bellot, P., and A. Demaille. Stochastic routing in large grid-shaped quantum net-
works, March 2007.

[29] Transmission Control Protocol. RFC 793, Defense Advanced Research Projects Agency, Septem-
ber 1981. http://ietf.org/rfc/rfc793.txt.

[30] Reuven Rubinstein. The cross-entropy method for combinatorial and continuous optimization.

Methodology and Computing in Applied Probability, 1:127-190, 1999.

[31] S. Savari and E. Telatar. The behavior of certain stochastic processes arising in window protocols.

In in Proc. IEEE GLOBECOM, volume 18, pages 791-795, Dec 1999.

[32] Ruud Schoonderwoerd, Owen Holl, Janet Bruten, and Leon Rothkrantz. Ant-based load balancing

in telecommunications networks. Adaptive Behavior, 5:169-207, 1996.

[33] Sandeep Tamrakar. Comparison of TCP performance in a network applying CEAS based stochas-
tic routing and Link State Routing OSPF. Master’s project, NTNU, December 2008.

[34] Andrew S. Tanenbaum. Computer Network. Prentice Hall, 4th edition, 2003.

[35] Hongsuda Tangmunarunkit, Ramesh Govindan, Scott Shenker, and Deborah Estrin. The impact
of routing policy on internet paths. In in Proc. 20th IEEE INFOCOM, pages 736-742, 2001.

[36] Lu Yong, Zhao Guang-zhou, and Su Fan-jun. Adaptive swarm-based routing in communication

networks. Journal of Zhejiang Univ. Science, 5:867-872, 2004.

99

	Title Page
	Problem Description
	Share.eps

