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Abstract

Ship intelligence has been a hot topic in recent years. How toachieve autonomous maneuvers in a

complex marine environment in a safe, efficient, and low-cost manner is a fundamental task that ocean

engineers face. This paper presents a two-stage trajectoryplanning scheme to address the minimum-

time maneuvering problem in close-range encounters. The scheme is robust and versatile, as it can deal

with the complex spatial variability, such as sea current, state constraints, marine traffic, and physical

constraints, of close-range maneuvering. In the first stage, a directed graph with variable length is

generated according to the sea current distribution. A wavefront search is applied on the graph to explore

the reachability, the cost of state constraints, and the risk of collision. After a discrete solution has been

found, the second stage involves searching for a smooth solution. A Bézier curve based parameter

optimization approach is proposed to get rid of limited moving directions in the directed graph and

explore around the discrete path. The result will be a near-optimal, smooth path. The proposed scheme

has been tested to solve the Zermelo’s ship steering problemand several other close-range maneuvering

problems. The results demonstrate that the scheme is efficient in generating smoothed minimum-time

trajectories for surface vessels when maneuvering in close-range encounters.
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NOMENCLATURE

x, y, φ Ship position and orientation.

v, u Ship surge speed and total speed.

θ, δ The thrust direction of the ship and the maximum angular velocity of the thrust.

tf The travel time to reach the final state.

c, α Sea current velocity and direction.

∆c,∆α The changes of velocity magnitude and angle of sea current.

∆l, L Node’s interval and its maximum connection length.

P The state of the own ship.

S,D The set of the static and dynamic obstacles.

D0, Ds, Dd The dimension of the own ship, the static obstacle and the dynamic obstacle.

Q0, Qs, Qd Vertex format ofD0, Ds andDd.

Cs, Cd The array of clearance distances of the static and dynamic obstacles.

Xs, Xd The position of the static and dynamic obstacles.

Vd,Φd The velocity and orientation of the dynamic obstacles.

U0, Utf The cost function for initial and final states.

T0 The time constant used inU0.

Ctf The radius defined inUtf .

τ, λ Position control parameters for the connection point and the control point.
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I. I NTRODUCTION

Interest in developing advanced vessels that have intelligence and are capable of executing

different levels of autonomy for maritime operations has increased in recent years. The term

“levels of autonomy” is often used to describe the degree to which the vessel can act on its

own. Autonomy can range from a vessel being completely controlled by human, to being fully

autonomous and without any interaction from humans. In somecases, subtasks of a maritime

operation can be fully autonomous. For example, ship navigation in the open sea can be nearly

fully autonomous, while passing narrow waters is more likely to require close human supervision

and decision making, or even full human-operation.

To pave the way for autonomous ships, economic, regulatory and technological factors need

to be brought together to build up the requisite level of shipintelligence. The autonomy of

modern marine vessels is steadily increasing through strongly interacting subsystems, including

trajectory planning, motion prediction, and thrust allocation. These subsystems may be dedicated

to a specific, primary objective of the vessel or be part of thegeneral essential ship operations.

Because it is challenging to achieve full autonomy for general maritime operations, the industry

has been focusing on developing intelligent subsystems forspecific maritime operations, such

as the autonomous docking system from Rolls-Royce Marine AS [1] and Wärtsil̈a [2], and the

AUTOSEA project by Kongsberg Maritime [3]. This paper focuses on the maneuver subsystem

in line with that trend.

As the basis of autonomous ships, how to generate effective trajectories is of great importance,

especially for complex maneuvering scenarios. Recently, the maritime industry increasingly

demands surface vessels that can maneuver in close-range operating areas, such as dynamic

positioning for wind turbine installation, towing boats innarrow channels, and ship-ship docking

for loading/unloading. The limited working space, the positioning, and the heading requirements

for operations and the marine traffic nearby constitute a complex spatial environment. In addition,

the presence of uncertainty, especially the environmentalperturbations like wind, wave, and sea

current, increases maneuvering complexity [4].

In such a context, planning an optimal trajectory before an autonomous maneuver in the

close-range operating area is necessary, which increases ship safety to some extent. Indeed,

path planning has generated extensive interest for years [5]. The primary goal of path planning

is to find a sequence of way points that connect the initial andthe final configuration under
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certain physical constraints like acceleration limitation, while optimizing goals, e.g., searching

for energy-efficient [6], time-optimal [7] or shortest paths [8].

In general, solving a planning problem requires defining andconstructing a countable state

space and conducting efficient searches according to certain criteria [5]. Work on this subject

dates back to the 1970s. Notable results include the potential field method [9] and the elastic band

method [10]. However, these methods often reach a local minimum and are not easy to extend

to deal with complex constraints. Later work proposed sampling-based planning [11], [12], a

method using certain heuristics to discover and improve collision-free paths. These algorithms

can satisfy complex constraints but take exponential search time. As a branch of path planning,

graph-based searchapproaches such as the Dijkstra’s algorithm and theA∗ algorithm have proven

efficient for solving path planning problems in a low-dimensional space [13], [14]. However,

the smoothness of thegraph-basedsolutions depends on the discretized level of the state space.

Coarse discretization improves the computational efficiency but results in insufficiently smooth

paths. Therefore, researchers have sought smoothing technologies, such as splines, polynomials,

and the B́ezier curve[15], [16].There are also lattice-based planners that use control model

primitives to search in state space [17], [18]. Such planners are suitable for complex scenarios, but

have a relatively low re-planning rate due to computationalcomplexity. To reduce the computation

time, a preferred solution is to use hierarchical approaches [18], where a high-level planner,

such as the designed planner in this paper, runs at a low re-planning frequency to search for the

optimal trajectory within the entire domain, followed by a high-frequency low-level planner to

deal with the local changes in the environment [19].For those path planning problems that can

be represented as a set of parameters, evolutionary methodsincluding generic algorithm (GA)

[20] and particle swarm optimization [21], plus reinforcement learning [22], are applicable.

Recent work has proposed ways of utilizing optimization technologies for path planning based

on proper assumptions, including the gradient decent method [23], the stochastic optimization

[24], the dynamic programming principle[25], and the optimal control method [26], [27], [28].

Regarding trajectory optimization for marine vehicles, theconstant need to increase economic

feasibility under the premise of the vehicle’s safety motivates various implementations of vehicle

routing systems [29]. Minimizing the travel time for vehicles that are subject to weather constraint

has attracted particular interest. Investigations have generally assumed that vehicles use constant

engine power as they sail, while varying their headings to follow a time-optimal path. Both

discrete and continuous solutions are available. For instance, Soulignac et al. proposed a Dijkstra-
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like algorithm using symbolic wavefront expansion to search both the path and the departure time

for minimizing the travel time and verified the method in the presence of a time-varying flow

field [30]. Zeng et al. utilized a B-spline-based quantum particle swarm optimization technique to

minimize travel time while maintaining simultaneous arrival time for all the participating vehicles

[31]. Rhoads et al. characterized the minimal time problem ofthe fixed speed autonomous

underwater vehicles as a Hamilton-Jacobi equation, which can be solved using the extremal

field method [32]. Lolla et al. did similar work, except that they utilized the level set approach

to repeatedly compute the reachable region until the goal point is involved [33].

Collision avoidance is not emphasized in the papers listed above since the marine vehicles

are assumed to be operating in open sea; however, for vehicles in close-range operating areas,

collision avoidance becomes paramount, especially for encounters where the own ship (OS) is

required to give way to the target ship (TS) according to the collision regulations (COLREGs)

[34]. In fact, there have been attempts to create COLREGs compliant path planning algorithms for

surface vehiclesin dynamic marine traffic[35], [36], [37], [38]. As these works aim to explore

collision-free paths, environmental conditions are oftensimplified or ignored. But trajectory

planning for autonomous maneuvering in close-range operating area cannot utilize any off-the-

shelf methods, due to its complex spatial variability.

Our ongoing project aims to develop intelligent digital twins of autonomous ships to provide

life cycle services, ranging from risk assessment, trajectory planning, prediction, and trajectory

tracking to force allocation. The present work focuses on trajectory planning and proposes a

variant of the Dijkstra’s algorithm to address the close-range maneuvering problem. The most

significant finding is that:

• The algorithm can generate a near time-optimal path for surface vehicles with nonholonomic

motion constraints. Unlike the traditional Dijkstra basedmethods used for ground vehicles,

this algorithm is specially designed by taking the dynamic marine traffic, the COLREGs,

and the ocean current effects into account.

• Smoothing the obtained path while keeping it near-optimal is the second contribution of this

paper. Specifically, we propose a new approach to connect Bézier curves withC2 continuity.

Representing the obtained path as parameters of a group of Bézier curves and optimizing

through GA under the same criteria makes it possible to generate a similar but smoothed

path.
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Fig. 1. Sketch of time-optimal path planning for surface vehicles in close-range maneuvering mission (c: sea current,v: vehicle

velocity in calm water andu: vehicle velocity over the ground).

II. PROBLEM FORMULATION

This section describes the problem of time-optimal planning of surface vehicles with both

interior and exterior constraints in close-range operating areas, together with an optimization

framework to address the problem.

A. Close-range Maneuvering

Maneuvering surface vehicles for close-range maritime operation, e.g., steering the ship to-

wards an oil platform for loading goods, as depicted in Fig. 1, needs to not only guarantee ship

safety but also ensure that there is enough time and space forthe subsequent operations. In

particular, the following aspects are of great concern in the mission:

• Environmental disturbances: Wave, wind, and sea current are the main factors affecting

ship motion. However, missions are often executed in calm weather when wave and wind

are negligible. Thus the sea current is the dominant environmental impact considered here

[4]. Moreover, sea current is assumed to be time-invariant in the task, as changes occur on

the order of days [39].

• Thrust limitation: The ship has limited engine power, which means it cannot completely

compensate for the effects of the sea current on the ship. Therefore, it is critical to take

advantage of the environmental impact during the maneuvering. Furthermore, the changes

of the thrust direction are restricted to the physical properties of active thrusters, e.g., the
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maximum angular velocity of an azimuth thruster. Therefore, the corresponding steering

ability should be identified [27].

• Collision avoidance: There are both static and dynamic obstacles in the mission. The

difficulty is to navigate among them according to COLREGs, since TSs may not be able,

or may choose not, to comply with the rules [37]. In addition,ship dimensions should be

taken into consideration for close-range maneuvering. A clearance constraint by expanding

the obstacles virtually is one of the possible ways to prevent collision [28].

• Surge velocity: Low moving speed over the ground is suggested, such that the pilot has

enough time to respond to avoid collision. To this end, it is often assumed that the magnitude

of ship velocity in calm water is no greater than that of maximum velocity of the sea current

[26], [33].

• Ship orientation: A specific task will typically require a vehicle to have a particular

orientation, especially its heading at the end position [40]. This applies to the close-range

maneuvering task when the ship is approaching the oil rig. Ship heading is also an important

element used for determining encounter types and assessingrisk of collision [41]. It therefore

plays a key role in decision making in the whole maneuvering process.

B. Surface Vehicle Kinematic Model and Constraints

Considering the low surge speed requirement and the thrust limitation during close-range

maneuvering, the kinematics of a surface vehicle is expressed as











ẋ = v cos(θ) + c cos(α)

ẏ = v sin(θ) + c sin(α)
(1)

whereX = (x, y) is the position of the vehicle;v > 0 is the magnitude of vehicle velocity

in calm water;θ stands for the thrust orientation in world frame;c > 0 denotes the velocity

magnitude of the sea current; andα represents the sea current orientation in world frame. The

angular velocity of thrust orientation is constrained by:

|θ̇| ≤ δ (2)

whereδ refers to the maximum angular velocity. We assumev<max(c); otherwise the vehicle

can move freely. Note sideslip is omitted here and the vehicle moves along the tangent direction
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of the path, as illustrated in Fig. 1. Thus, the vehicle’s total velocity and orientation angle is

determined by










u =
√

ẋ2 + ẏ2

φ = arctan ẏ

ẋ

(3)

Let P (t) := (X, θ, φ) be the state of the vehicle (OS) andtf be the time of reaching the

final state. In order to achieve collision avoidance, we assume the setS representing the static

obstacles’ positions and dimensions, and the setD denoting the TSs’ initial states including the

position, the velocity, the orientation and the dimension,are available. Given the OS’s dimension

D0, and initial and final statesP0 andPtf , the minimum time maneuvering problem becomes:

min
θ

tf

s.t.



































































Eq. (1) (2)

0 < Col(P (t), D0,S) <∞

0 < Col(P (t), D0,S) <∞

P (0) = P0

P (tf ) = Ptf

t ∈ [0, tf ]

(4)

whereinCol(·) is the function of collision risk assessment, with values less than infinity indi-

cating safe maneuver amongst obstacles.

Remark 1: Complete initial/final states may make the problem unsolvable. Relaxing the

constraints by involving only partial initial/final states, such asX, (X,φ), or (X, θ), renders

a solution to (4) possible [40].

C. Two-stage Trajectory Generation Scheme

To address the maneuvering planning problem listed in (4), atwo-stage trajectory planning

scheme is proposed. An overall flowchart of this approach is illustrated in Fig. 2. The first stage

aims to use the wavefront search to find a discrete path on a grid representing the maneuvering

working space. For each wavefront node, under the premise ofreachability constrained by (1)

and (2), its cost is evaluated by the arrival time from the initial state, in conjunction with the

collision risk assessment via COLREGs. As far as the wavefrontsearch reaches the final state,

a discrete solution is found.
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Fig. 2. Flowchart describing the two-stage scheme for close-range maneuver planning problems.

Traditionalgraph-based searchapproaches usually suffer from limited motion directions.For

example, in [30], only the nearest eight neighboring nodes can be accessed. Although refining

the grid and enabling the adaptive connection between nodes, as introduced in Section III-A, are

beneficial to increase possible moving directions to some degrees, a further optimization that is

immune to motion direction restriction is needed. This is achieved in the second stage, which

attempts to search the space near the discrete solution to obtain a near-optimal, smooth result.

The grid constraint is eliminated by replacing the discretepath with parameterized B́ezier curves

with C2 continuity (see Section IV-A for details). Thus, the optimization turns into searching in

the parameter space of the Bézier curves, without considering any grid constraints. GAmakes it

possible to obtain the optimized parameters constructing the B́ezier curves, which consequently



IEEE JOURNAL OF OCEANIC ENGINEERING 10

form a smooth path.

III. WAVEFRONT SEARCH IN DYNAMIC ENVIRONMENT

The related work in Section I reveals that searching in the state space can start either from

the initial state to the final state as with the Dijkstra’s algorithm, or vice versa, as with the

Hamilton-Jacobi method. The former formulates the wavefront search strategy, which explores

the outer boundary of the attainable region. By contrast the latter evaluates the value function

of the state backward in time, from which a control law can be generated along the negative

gradient of the value function. The advantage of the backward search technology is that it

provides a continuous solution. However, the approximation of the value function in the state

space is computationally expensive [26]. Furthermore, although the backward search can find

solutions in a domain among static obstacles [40], it is not applicable to dynamic obstacles.

This is because the backward search lacks time information from the initial state to the current

state to estimate the state of dynamic objects. Therefore, awavefront search is preferable in the

two-stage scheme.

This section introduces the key elements involved in the first stage of the scheme in Fig. 2,

including how to establish a directed graph with variable connections, judge node reachability,

and comply with COLREGs and user-defined initial/final states—to complete the wavefront

search algorithm.

A. Directed Graph Generation

Let the working space for close-range maneuvering be uniformly divided intom× n nodes,

with an interval of∆l. The generation of the directed graph is based on the assumption that

the sea current vector on one node is similar to its connectedneighbors, so that the sea current

on these nodes is considered consistent when the vehicle moves from the node to one of its

neighbors.

The similarity of sea current is defined as follows: For two non-zero vectors of sea currentci

andcj , as shown in Fig. 3a,cj is similar to ci only if their difference with respect to percentage

of magnitude is no greater than∆c, and their angle difference is no greater than∆α. That is,











|‖ci‖−‖cj‖|

‖ci‖
≤ ∆c

arccos(
ci·cj

‖ci‖ ‖cj‖
) ≤ ∆α

(5)
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ci
cj

2||ci||�c 

||ci|| 
�α 

(a)

Center node

Nodes connected to the center node

Nodes not connected to the center node

Sea current vector

L

�l

(b)

Fig. 3. Generating a directed graph by using the concept of similarity of sea current vectors. (a) Definition of similarity of sea

current vectors. (b) Example of how one node (the center node) connects to the neighbors via (5), whereL = 3.3∆l, ∆c = 0.1

and∆α = 2◦. Note that the outdegree of the center node is variable, depending on parametersL, ∆c, and∆α.

where “·” and “‖ ‖” denote dot product and Euclidean norm, respectively. For zero case of either

ci or cj , we still assume they are similar.

In addition, for each node, suppose there is a circle with a radius ofL around that center node,

representing the maximum connection length. Combined with (5), the center node is connected

to all nodes within the circle that have a similar sea currentvector to that of the center node,

as in the example shown in Fig. 3b. As a result, each node in thegenerated directed graph

has a variable number of connected neighbors, which not onlyincreases the possible moving

directions, but also ensures the consistency of sea currentduring the motion.

B. Reachability

As mentioned above, the edge between two nodes in the directed graph shows rational spatial

relationship and sea current consistency. Nevertheless, it does not guarantee the reachability from

one node to the other due to (1) and (2). Suppose at thetth wavefront search, there is a search-

front nodenj connecting to its neighbornk. Given the sea current vector (c(nj) andα(nj)), the

moving directionΦ0 from nj to nk, andnj ’s predecessorni which results in the minimal travel

time t∗(nj) from the initial node tonj, reachability (from nj to nk) is to check whether:

(i) there is a proper thrust orientation angleθ(nj) at nj such that the resultant velocity vector

(u(nj) andφ(nj)) is exactly towards the neighbornk, i.e., φ(nj) = Φ0 andu(nj) > 0;
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(a)

nk(t+1)

nj(t)

ni(t-1)

x

y

ϕ(nj)=Φ0

v(nj)

u(nj)

θ(nj)

�(nj)

c(nj)

(b)

�k(t+1)

�j(t)
u1(�j)

v1(�j)

�i(t-1)

x

y
θ1(�j)

v2(�j)

u2(�j)

θ2(�j)

ϕ(�j)=Φ0

α(�j)

c(�j)

(c)

	
(t+1)

	j(t)

	i(t-1)

�

�

θ1(	j)

θ(	j)

c(	j)

v(	j)

v1(	j)

u1(	j)

ϕ(	j)=Φ0

u(	j)

α(	j)

(d)

Fig. 4. Geometric illustration of findingθ(nj) at nj that leads to resultant moving directionu(nj) towardsnk. Taking the

end position of the vector(c(nj), α(nj)) as the center of a circle and the magnitude ofv as the radius, there are four cases of

solutions, depending on the intersection(s) with the straight line betweennj andnk. (a) No solution. (b) Unique solution. (c)

Two valid solutions. (d) Two solutions with one valid and the other invalid (represented as the dashed line).

(ii) the thrust orientation changing fromθ(ni) at ni to θ(nj) at nj must satisfy (2). Here,

we simplify the process such that the change of thrust orientation happens only when the

vehicle arrives at a new node, and the process is untimed.

From a geometric perspective, the solution to (i) can be divided into four cases, as illustrated in

Fig. 4. Indeed, substituting (3) into (1), multiplying the two sides of the equations and rearranging

the result yield the reachability constraint for (i):

sin(φ(nj)− θ(nj)) =
c(nj)

v
sin(α(nj)− φ(nj)) (6)

The solution relies on the right side value of (6). When its absolute value is bigger than 1, (6)

has no solution (see illustration in Fig. 4a). If its absolute value equals 1, the unique solution as

depicted in Fig. 4b is expressed as:
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θ(nj) =











φ(nj)− π/2 if α(nj) > φ(nj)

φ(nj) + π/2 otherwise
(7)

Otherwise, there are two solutions for (6) (see illustration in Fig. 4c):

θ(nj) =











φ(nj)− arcsin(
c(nj)

v
sin(α(nj)− φ(nj)))

φ(nj) + arcsin(
c(nj)

v
sin(α(nj)− φ(nj)))− π

(8)

Note from Fig. 4d that for the case of two solutions, one of them may be invalid due to

u(nj) ≤ 0, resulting in an opposite moving direction away fromnk. Therefore, it is necessary

to bring (8) back into (1) and (3) to verify the result, and to calculateu(nj) as well.

If (7) or (8) exists, the travel time fromnj to nk will be:

t(nj, nk) =
dist(nj, nk)

u(nj)
(9)

where dist(·) represents the connection length between the two nodes. By considering the

simplification in (ii), thrust orientation constraint is expressed as:

|θ(nj)− θ(ni)| ≤ δ t(nj, nk) (10)

which indicates only when thrust orientation difference issmaller thanδ t(nj, nk), moving from

nj to nk is considered reachable. Once the reachability tonk is determined,nk’s arrival time

t(nk) = t∗(nj) + t(nj, nk) is obtained, which can be used for collision risk assessment; see

Section III-C.

Remark 2:From (9) and (10), longer connection lengthdist leads to the constraint in (10)

being more relaxed. It is thus possible that for the two neighbors of a single node with the same

Φ0 but differentdist, the closer neighbor is unreachable but the distant neighbor is reachable.

This phenomenon follows the fact of steering a vehicle with an upper bound on curvature [40].

C. Collision Avoidance

Collision avoidance is associated with both static obstacles such as oil platforms and dynamic

obstacles like TSs. Following the notations used in SectionII-B, Table I lists the parameters of

the two types of obstacles used throughout this section. Note that static obstacles are simplified

as a circle, while dynamic obstacles are represented as a rectangle.
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TABLE I

NOTATION OF OBSTACLES’ PARAMETERS

Obstacle

type
Parameter Description

Static

obstacles

Xs Obstacles’ 2D position

Ds Obstacles’ dimensions (in radius)

S The set of the whole static obstacles

Dynamic

obstacles

(TSs)

Xd Obstacles’ 2D position

Φd Obstacles’ orientation

Vd Obstacles’ velocity magnitude over ground

Dd Obstacles’ dimension (length× width)

D The set of the whole dynamic obstacles

Collision risk is assessed onnk once its reachability fromnj has been determined. This indi-

cates its arrival timet(nk) from initial state and transition stateP (t(nk)) = (Xnk
, u(nk), θ(nj),

φ(nj)) are known (Xnk
is the 2D position ofnk). Given the OS’s 2D dimensionD0 (length×

width) and the setsS := (Xs, Ds) andD := (Xd,Φd, Vd, Dd), collision risk assessment onnk

is expressed in an accumulative way:

R(nk) = Col(p(t(nk)), D0,S) + Col(p(t(nk)), D0,D)

=
∑

si∈S

col(si) +
∑

di∈D

col(di) (11)

whereCol(·) andcol(·) are the functions of collision risk assessment for one type of obstacles

and individual obstacle, respectively.

For conciseness, the shapes of the OS, the TSs, and the staticobstacles are converted from size

formatD0, Ds, andDd into vertex formatQ0, Qs, andQd, respectively. LetCs andCd be the

arrays of clearance distances for the two types of obstacles, wherein∀si ∈ S, Cs(si) > Ds(si)

and∀di ∈ D, Cd(di) > ‖Dd(di)‖. They are the parameters that represent virtual circles around

each of the obstacles. Only when the OS moves into any of thesecircles, is collision risk

considered.

For everysi ∈ S, let dist(si) = ‖Xnk
−Xs(si)‖ for concise purpose. The collision risk between

si and the OS is defined as a piecewise function:
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Fig. 5. Encounter situation for dynamic obstacles. (a) Encounter types inCOLREGs. (b) Classification of encounter regions.

(c) High risk of collision on encounter situationsO1T1, O1T4, O2T3, O3T2, andO4T1.

col(si)=























∞ if poly(Xnk
+R0Q0, Qs(si))<0

e
Cs(si)−Ds(si)

dist(si)−Ds(si) if Ds(si)<dist(si)<Cs(si)

1 if dist(si)≥Cs(si)

(12)

whereinR0 is the rotation matrix rotating pointsQ0 through an angle ofφ(nj) about the origin

of the OS;poly(·) is the function to detect overlap of convex polygons, with values smaller than

zero indicating polygons are overlapping [42]. The three cases in (12) stand for the risk factor

betweensi and the OS atnk where they collide, near far and far away, respectively.

For dynamic obstacles (TSs), predicting their future motion is needed. One of the simplest

predictions is straight line trajectories [37]. When the OS is atnk, for everydi ∈ D, its position

is updated from the initial state:

Xd(di, t) = Xd(di, 0) + Vd(di) t





cos(Φd(di))

sin(Φd(di))



 (13)

Accordingly, based on the states of both the OS anddi at timet(nk), their encounter type can be

determined. In COLREGs, the encounter situations between theOS and the TS are divided into

three types: head-on, crossing, and overtaking, as illustrated in Fig. 5a. The vehicles act either

to “give-way” or “stand-on”. The difference is the “give-way” vehicle should alter its course,



IEEE JOURNAL OF OCEANIC ENGINEERING 16

TABLE II

ENCOUNTERTYPES AND OS ACTIONS UNDERENCOUNTERSITUATIONS

Encounter type Encounter situation OS action

Head-on
O1T4 Give way

O2T4, O3T4 Stand on

Crossing

O2T3 Give way

O1T2, O1T3, O2T2, O3T2

O3T3, O4T2, O4T3, O4T4

Stand on

Overtaking
O1T1 Give way

O2T1, O3T1, O4T1 Stand on

whereas the “stand-on” vehicle is suggested to maintain itscourse and speed. Inspired by [41]

and according to rules 13-18 in COLREGs, we categorize the position ofdi with respect to

the position and heading of the OS into regions fromO1 to O4, and the relative heading ofdi

by comparingΦd(di) andφ(nj) in regionsT1 to T4, as shown in Fig. 5b. In total, there are 16

encounter situations (ESs) represented inOiTj format. Table II lists these ESs and corresponding

action by the OS. Five of them, as illustrated in Fig. 5c, are considered to be at high risk of

collision in this paper. Note that even though the OS is the “stand-on” vehicle in situationsO3T2

andO4T1, the probability of collision still exists as the TS may failto take action.

Collision risk assessment for TSs contains two phases. The first phase checks the current

collision—when the OS arrives atnk:

r1 =











∞ if poly(Xnk
+R0Q0, Xd(di)+RdQd(di))<0

1 otherwise
(14)

whereRd stands for the rotation ofQd(di) through an angle ofΦd(di) about the origin ofdi.

The second phaseis a variant of the closest point of approach, whichconsiders the near-future

collision by assuming the OS continues to move along the direction φ(nj) with a forward speed

u(nk), and evaluates the risk in terms of the distancedist(di, t) between the OS anddi:























X(t) = Xnk
+ u(nk) t







cos(φ(nj))

sin(φ(nj))







dist(di, t) = ‖X(t)−Xd(di, t+ t(nk))‖

(15)
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where t ≥ 0 denotes the future time. By combining (13) and (15),dist(di, t) becomes a

convex function with respect tot. Its minimummin(dist(di, t)) exists when eithert = 0 or

t > 0, indicating that the OS anddi will either depart forever, or come closer and then depart,

respectively. The latter case presents more danger, especially for the encounter situations in

Fig. 5. Therefore, the second phase risk assessment is defined as follows:

r2 =











1 if dist(di, 0) > Cd(di)

γ e
Cd(di)

min dist(di,t)+ǫ otherwise
(16)

whereǫ is a small positive constant; andγ is a piecewise function:

γ =



























1 if argmin
t

dist(di, t)=0

p if argmin
t

dist(di, t) 6=0 & ES in Fig. 5c

q otherwise

(17)

wherep andq are constants satisfyingp≫ q > 1. Consequently, collision risk fordi is expressed

as:

col(di) = max(r1, r2) (18)

The total collision risk in (11) will be used as a kind of cost for the search among the wavefront

nodes, see Section III-D.

D. Cost Evaluation

The constraints in (4) are converted into costs for evaluation during the wavefront search.

Besides costs from Section III-B and III-C, the costsU0 andUtf for user-defined initial and final

states (denoted asP0 := (X0, θ0, φ0) andPtf := (Xtf , θtf , φtf ), respectively) are defined as a

function taking effect only on a specific temporal-spatial domain:

U0 =











e
‖z−z0‖

t+ǫ if 0<t<T0

1 otherwise
(19)
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and

Utf =











e

‖z−ztf
‖

‖X−Xtf
‖+ǫ if ‖X−Xtf‖<Ctf

1 otherwise
(20)

Algorithm 1: Dijkstra-like solver for close-range maneuvering problem
Data: P0 = (X0, z0) andPtf = (Xtf , ztf )

Result: Nodes on the optimal path fromX0 to Xtf

N := set of nodes;

mappingX0 to n0 ∈ N , andXtf to ntf ∈ N ;

NC(nx, ny) := nx connecting tony by (5);

NB(nx) := {ny | NC(nx, ny)};

C(nx) := cost in path fromn0 to nx;

prev(nx) := previous node ofnx in path fromn0;

K := {nx ∈ N | cost(nx) is known};

U := {nx ∈ N | cost(nx) is unknown};

cost(n0)← 0;

for ni ∈ N − {n0} do

cost(ni)←∞ ;

K ← ∅ andU ← N ;

while U 6= ∅ do

nj ← argmin
nj∈U

C(nj);

K ← K ∪ {nj} andU ← U − {nj};

for nk ∈ NB(nj) do

if reachable(nj, nk) by (6) and (10)then

cost(nj, nk) = t(nj, nk) · R(nk) · U0 · Utf by (9), (11), (19) – (21);

if C(nk) > C(nj) + cost(nj, nk) then

C(nk)← C(nj) + cost(nj, nk);

prev(nk) = nj;

return prev;
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, or

Utf =











e

‖X−Xtf
‖

Ctf if ‖X−Xtf‖<Ctf

1 otherwise
(21)

for the case of no orientation constraints on the final state,whereT0 represents a fixed time

period; Ctf stands for the radius of the circle centered atXtf ; z ∈ {θ, φ} is the thrust/ship

orientation, corresponding to the user-defined parametersof z0 ∈ {θ0, φ0} andztf ∈ {θtf , φtf}.

Once the constraints in (4) are quantified as costs, an approximate solution to (4) can be

realized through a wavefront search, as depicted in Algorithm 1. Accordingly, the path with the

lowest cost (if it exists) is expressed as a set of nodes with afixed sequence obtained by reverse

iteration of the returned indexing vectorprev.

IV. PATH SMOOTHING

This section introduces a new smoothing method in conjunction with parameter optimization

technology for an exploration of a near-optimal path aroundthe discrete solution obtained from

Section III.

A. Bézier Curve Connection

Bézier curves are a type of parametric curve that has been widely used in computer graphics

[43]. The parametric B́ezier curve of degreeM is usually expressed as:

G(η) =
M
∑

i=0

bi,M(η) Bi, η ∈ [0, 1] (22)

whereη is the parameter describing the interpolation of the Bézier curve;Bi denotes theith

control point ofG; andbi,M(η) represents theith Bernstein polynomial given by:

bi,M(η) =





M

i



 ηi(1− η)M−i (23)

A Bézier curve is characterized by: (1) it starts atB0 and ends atBM ; and (2)B0B1 and

BM−1BM are the tangent directions of G atB0 andBM , respectively.

Given there areH points fromO1 toOH in the discrete path obtained by Algorithm 1, path

smoothing involves constructing multiple Bézier curves around the discrete path and joining them

smoothly, as shown in Fig. 6. Our previous work introduced a method to join cubic B́ezier curves

(M=3) with C1 continuity [16]. Nevertheless, considering the constraint (2) and its relation to
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i+1B0
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1B1

1B5

1B4

1B3

1B2

1B0

H-2B0

H-2B1

H-2B2

H-2B3
H-2B4

H-2B5

O3

O2

Oi+1

Oi+2

OH-1

Oi+3

GH-2

G1

Gi

Gi+1

Connecting point

Discrete path point
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H-3B5

2B0

Fig. 6. Connection of 5th-order B́ezier curves withC2 continuity. Each color line corresponds to a Bézier curve.

curvature, connecting B́ezier curves withC2 continuity is needed.1 The following introduces a

method to join 5th-order B́ezier curves (M=5) with C2 continuity.

There is a type of control points called connecting points that serve as the end of one Bézier

curve and the beginning of the other Bézier curve, as illustrated in Fig. 6. Suppose the connecting

points are on each segment of the discrete path, excluding the segments withO1 andOH involved.

Thus in total, there areH−3 connecting points used for joiningH−2 Bézier curves on the

discrete path. For each Bézier curveGi, apart from the control points at each end (iB0 and iB5,

respectively), the other four control points are designed to be evenly divided into two groups and

to be limited into the two adjacent segments of the discrete path, that is,iB1 andiB2 on iB0Oi+1,

while iB3 and iB4 on Oi+1
iB5. The purpose is to decrease geometric constraints to connect two

Bézier curves (see Remarks 3 and 4).

From (22), the 1st- and 2nd-order derivatives ofGi with respect toη are determined by its

control points [45]:

1As one of the criteria for path smoothness evaluation, the parametricC1 continuity indicates the derivative ofG(η) in (22)

w.r.t. η is continuous;C2 continuity is stricter, which requires both the first- and second-order derivatives ofG(η) are continuous

[44].
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Ġi(η) = M
M−1
∑

i=0

bi,M−1(η) (Bi+1 − Bi) (24)

G̈i(η) = M(M−1)
M−2
∑

i=0

bi,M−2(η) (Bi+2−2Bi+1+Bi) (25)

Since the polynomial functionbi,M (η) is continuous, botḣGi(η) andG̈i(η) are continuous. Hence,

Gi hasC2 continuity for all η ∈ [0, 1].

In order to join the(H−2) Bézier curves withC2 continuity, for any two adjacentGi and

Gi+1, their 1st- and 2nd-order derivatives at the connecting point iB5 (i+1B0) must be continuous.

That is:























iB5 =
i+1B0

Ġi(1) = Ġi+1(0)

G̈i(1) = Ġi+1(0)

(26)

Taking (24) and (25) into (26) withM=5 yields the geometric requirements to achieveC2

continuity:











i+1B1 = 2iB5 −
iB4

i+1B2 = 4iB5 − 4iB4 +
iB3

(27)

Remark 3:Equation (26) reveals the dependence ofGi+1 on Gi. Note because the control

points iB3,
iB4 and iB5 are set on the segmentOi+1Oi+2,

i+1B1 and i+1B2 represented as the

linear combination of the three control points should be also located on the same segment, or

on its extension.

Remark 4:Locating low-order B́ezier curves’ control points (M< 5) on the discrete path

cannot guaranteeC2 continuity. On the one hand, there areM control points on each segment

of the discrete path due to the end-to-end connection between Bézier curves (see Fig. 6 for

example). On the other hand, similar constraints to (27) canbe obtained in which five control

points are involved to achieveC2 continuity. This implies at least one involved control point is

on neither the segment nor its extension. Therefore, the constraint cannot be satisfied through

linear combination.
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B. Path Parameterization and Optimization

In the construction ofC2 continuous B́ezier curves, there are3H−5 points determining the

smoothness of the path, includingH−3 connecting points, and2(H−1) control points (two

control points on each segment of the discrete path, see Fig.6). Here we use percentage

representation instead of positions of these points to parameterize the path. For connecting

points, letτi∈(0, 1) be the percentage of the line segment. Thus, the position of the connecting

point can be expressed as:

iB5 = Oi+1τi +Oi+2(1− τi), i = 1, 2...H−3 (28)

In addition, parametersλ1i∈(0, 1) andλ2i∈(0, 1) are utilized to represent the two control points

on each segment:











iB3 = Oi+1λ1i +
iB5(1− λ1i)

iB4 =
iB3λ2i +

iB5(1− λ2i)
i = 1, 2...H−3 (29)

Similar representations are applied to the two control points on the segment at each end (1B1,
1B2,

H−2B3 andH−2B4).

Once the smooth path is parameterized by the3H−5 parameters, which are [τ ,λ1,λ2], GA is

used to evolve these parameters for the optimal smooth path that has the lowest risk of collision.

Note that the user-defined initial and final states will not bechanged due to the properties of

Bézier curves. Therefore, the costsU0 andUtf in (19) – (21) are ignored in the optimization

process. For each individual in the GA generation, the corresponding arrival time of all the points

on the smooth path can be estimated. Because the arrival time of the discrete path is known

from Section III-B, it is intuitive to estimate the arrival time of the connecting point in Fig. 6

via the geometric relationship between the adjacent discrete points:

t(iB5) = t(Oi+1)+(t(Oi+2)−t(Oi+1))
‖iB5−Oi+2‖

‖Oi+1−Oi+2‖
(30)

The rest points on the smooth path can be calculated in the same way, but use the curve length

rather than segment length to estimate the arrival time. Thecorresponding vehicle speed can

thus be obtained if we assume the speed along the curve of two adjacent connecting points is

constant.
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The curvature of the discrete path can be calculated in the first stage of the scheme by using

its definitionρ1=|dφ/ds| (heres denotes the curve length). Also, it is straightforward to obtain

curvature for theith Bézier curve by using (24) and (25) for comparison:

ρ2 =
|ĠxG̈y − ĠyG̈x|

‖Ġ‖
3 (31)

whereĠ=(Ġx, Ġy) andG̈=(G̈x, G̈y). In GA, if the curvatures of the smoothed paths are smaller

than those of their counterpartsρ1, the corresponding individuals with low cost from collision

avoidance in (11) are selected to perform GA operation, including crossover and mutation to

breed a new generation. The process will be repeated until the termination condition, such as the

maximum number of generations, has been reached. After the optimization, the resulting path

is close to the discrete solution but smooth withC2 continuity.

V. EXPERIMENTS

To verify the correctness and effectiveness of the path generated by the proposed approach,

a benchmark test and a series of experiments, including initial and final state constraint, thrust

constraint and collision avoidance, were conductedin a computer equipped with 2.60 GHz i7-

6600U CPU and 8 GB RAM.

A. Comparison with Benchmark

The Zermelo’s ship steering problem is a well-known optimization problem that can be solved

analytically [46]. Here we use its solution as the benchmarkand compare it with the result from

our approach.

Ship dimension is negligible in this problem. Suppose a shipis initially positioned atX0=(3.66,

− 1.86) with a thrust orientationθ0=105◦. Zermelo’s problem is to steer the ship at a constant

speedv=1m/s through a sea current fieldc=(−y, 0) to reach the positionXtf=(0, 0) in

minimum travel time. In other words, the problem can be expressed as a simplification of (4):

min
θ

tf

s.t.







































Eq. (1)

P (0) = (X0, θ0)

P (tf ) = Xtf

t ∈ [0, tf ]

(32)
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TABLE III

PARAMETERS OFWAVEFRONT SEARCH IN ZERMELO’ S PROBLEM

Parameter Value Description

m× n 401× 201 Number of nodes in the directed graph

∆l 0.02m Nodes’ intervals

L 0.2m Nodes’ maximum connection length

∆c 0.1 Allowed current magnitude change in (5)

∆α 2◦ Allowed current orientation change in (5)

T0 0.5s Time threshold in (19)

Ctf 0.3m Distance threshold in (20)
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Fig. 7. Comparison between the analytical solution and the proposed approach in Zermelo’s problem. (a) Comparison of the

planning paths. The arrows represent thrust orientations. (b) Comparison of thrust orientation.
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The two-stage scheme was carried out and the parameter settings for the wavefront search

are listed in Table III. Since there are neither thrust constraints like (2) nor obstacles in the

application, Algorithm 1 with simplified cost from (19) and (21) was conducted, resulting in a

discrete path containingH=40 points. After100 generations of evolution through GA, the path

was further optimized toward acceptable smoothness.It took 156s to complete the experiment.

From Fig. 7a, the shape of the computed path is similar to thatof the analytical path. The

vehicle is drifted more to the right at the beginning due to the accumulated error of steering

caused by the granularity of the directed graph. According to Fig. 7b, however, the degree of

steering is compensated back after about3.5 s when the vehicle passes(2.7, 1.0) using a thrust

angle of 180◦. Furthermore, the travel time along the computed path is5.52 s. Compared to

5.46 s, the minimum travel time in theory, the time error is as low as1.09%.

The similarity in terms of both path shape and travel time demonstrates that the two-stage

trajectory planning scheme is a suitable approach for generating a near time-optimal path.

B. Path Planning under Initial and Final State Constraints

Gyre flow is one type of spatially complex sea current caused by wind movements. In this

section, the proposed approach was applied in simulated gyres given by Cartesian format:











cx(x, y) = − sin(xπ/250) cos(yπ/250)

cy(x, y) = cos(xπ/250) sin(yπ/250)
(33)

The working space is set to500m×500m. There are201× 201 nodes evenly distributed in this

scope. A directed graph was generated by settingL=10m, ∆c=0.1 and∆α=2◦, respectively.

Suppose the OS has a dimension ofD0=82m×23m, and its initial and final positions are both

at the center of a gyre:X0=(125m, 125m) andXtf=(375m, 375m).

The optimization problem here is the same as (32), but differs from i) adding (2) with

thrust angular speed limitδ=18 ◦/s; and ii) setting a stricter initial and final states constraint:

P (0)=(X0, φ0) and P (tf )=(Xtf , φtf ). Note that the ship heading is the main concern in this

experiment. The related parameters for initial and final states are set asT0=10 s andCtf=20m.

Traversals of initial and final states within[−180◦, 180◦]×[−180◦, 180◦] under different vehicle

velocity v∈(0, 1]m/s were conducted.

For conciseness, Fig. 8 shows only optimal trajectories under three different vehicle velocities,

as well as the corresponding results for the most time efficient path under that velocity.Each
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Fig. 8. Solutions for the “initial and final state constraints” optimization problem with respect to different vehicle velocities.

(a) v=0.3m/s. (b) v=0.6m/s. (c) v=0.9m/s.

TABLE IV

STATISTICS OFM INIMUM -TIME PATHS FORTHE “I NITIAL AND FINAL STATE CONSTRAINTS” OPTIMIZATION PROBLEM

v[m/s] φ0[
◦] φtf [

◦] tf [s] s[m] ū[m/s]

0.2 0 120 1797.78 1123.68 0.62

0.3 0 135 1033.29 708.80 0.69

0.4 180 180 775.23 580.67 0.75

0.5 180 -100 615.78 495.76 0.81

0.6 180 -80 518.92 462.13 0.89

0.7 180 -60 449.71 443.41 0.97

0.8 180 -50 398.66 431.33 1.08

0.9 90 -30 358.42 399.28 1.11

1.0 90 -30 324.02 396.27 1.22

successful search took about 120s of computation time.It is worth noting that among the optimal

trajectories,φ0∈{0
◦, 90◦, 180◦} dominates the majority; and the applicable range ofφtf increases

with the growth of vehicle velocity. Table IV lists the results of minimum-time paths among

the solutions of all possible initial and final state constraints for each specificv∈(0, 1]m/s. We

found that whenv<0.2m/s, the target position is unattainable. But forv≥0.2m/s, the vehicle
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Fig. 9. Solutions for the “thrust angular speed limit” optimization problem with respect to different dimensions of static obstacles.

(a) Ds(s1)=30m. (b) Ds(s1)=60m. (c) Ds(s1)=90m.

can ride the sea current (see the averaged total speedū in Table IV) to reach the destination

while satisfying (2).

Note that not all combinations ofφ0 and φtf have a solution. As described in Remark 1,

this is because too-strict constraints make the problem unsolvable. In fact, setting the constraint

on the final state is more practical, since it involves subsequent maritime operations after the

vehicle has arrived at the destination; in contrast, adjusting the initial state becomes simpler, as

the working space near the ship is wide and open.

C. Path Planning under Thrust Angular Velocity Limit

This section investigates the influence of thrust angular velocity limit δ for path planning in

gyre flow. The scene in Section V-B is adopted (includingX0, Xtf andD0 of the OS, and gyre

parameters). A static obstacles1 with a variable radiusDs(s1) located atXs(s1)=(250m, 290m)

is added to block the minimum-time paths in Fig. 8 to the destination. The clearance distance

for s1 is set to half the width of the OS wider thanDs(s1), i.e., Cs(s1)=Ds(s1)+11.5m, so

as to prevent collision when the OS passes bys1. As there are no heading constraints on both

initial and final states, the optimization problem with thrust angular velocity limit is expressed
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as:
min
θ

tf

s.t.



















































Eq. (1) (2)

0 < Col(P (t), D0, s1) <∞

P (0) = X0

P (tf ) = Xtf

t ∈ [0, tf ]

(34)

The experiment was conducted under various obstacle’s dimensionsDs(s1)∈[30m, 90m] by

setting vehicle parametersv=0.7m/s andδ∈(0 ◦/s, 18 ◦/s]. The computation time for successful

search depends onDs(s1) andδ, ranging from 101s to 149s.Fig. 9 illustrates the time optimal

paths for three cases ofDs(s1). With the growth ofδ, these paths in each case can be roughly

divided into three categories:

• Ga: Whenδ is small, which indicates that the OS has a poor steering ability, the OS is able

to pass bys1 from below to reachXtf in longer travel time.

• Gb: Improving the OS’s steering ability by applying a higher value of δ to the planner

results in better solutions. The OS travels toXtf in shorter time if it can passs1 from

above.

• Gc: Further increasingδ cannot help to find trajectories with shorter travel time. This means

the angular speed limit no longer has any effect. Therefore,Gc is the set of identical solutions

representing the minimum-time path.

The lower part of Fig. 9 depicts the maneuvering results ofGc. It reveals that with the increase

of Ds(s1), achievingGc requires an improved steering ability (see the value ofmax{|θ̇|} in the

figure for example).

Table V summarizes the required angular speed limit and its averaged travel timētf for the

three groups of paths. It has been found that there is no solution for too smallδ; for example,

δ<0.3 ◦/s for Ds(s1)∈[30m, 60m], and δ<0.4 ◦/s for Ds(s1)∈[70m, 90m]. The difference in

minimum valid δ occurs inGa whenDs(s1) changes from60m to 70m, which results in the

decrease of number of solutions, as well as a decreasedt̄f . From Ga to Gc, it is clear that

increasingδ can maket̄f decrease, which reveals the fact that vehicles with higher steering

ability are more suited to close-range maneuvering.
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TABLE V

SCOPE OFTHRUST ANGULAR SPEED AND AVERAGED TRAVEL TIME FOR Ga, Gc AND Gc

Ds(s1)[m]
Ga Gb Gc

δ[◦/s] t̄f [s] δ[◦/s] t̄f [s] δ[◦/s] t̄f [s]

30 [0.3,1.2] 553.16 (1.2,7.7] 482.49 (7.7,18] 479.42

40 [0.3,1.1] 616.72 (1.1,8.2] 502.05 (8.2,18] 497.18

50 [0.3,0.9] 823.81 (0.9,11.0] 528.29 (11.0,18] 521.18

60 [0.3,1.2] 840.92 (1.2,10.4] 553.83 (10.4,18] 549.77

70 [0.4,1.2] 781.47 (1.2,10.3] 588.41 (10.3,18] 583.56

80 [0.4,1.3] 790.71 (1.3,9.2] 627.44 (9.2,18] 623.37

90 [0.4,2.4] 733.15 (2.4,14.6] 670.70 (14.6,18] 669.39

TABLE VI

THE POSITIONS, ORIENTATIONS, AND VELOCITIES OFTSS

Dynamic obstacles Xd[m] Φd[
◦] Vd[m/s]

TS1 (50, 200) 10 0.55

TS2 (125, 400) −100 0.60

TS3 (425, 450) −150 0.45

TS4 (200, 450) −15 0.15

TS5 (450, 50) 180 0.40

TS6 (250, 200) −30 0.65

TS7 (450, 350) −90 0.20

D. Path Planning with Multiple Obstacles

The experiment was carried out to verify the possibility of collision avoidance among multiple

close-range encounters. We continued to use the scene in Section V-C, includingX0, Xtf andD0

of the OS, and the gyre parameters. Four static obstacles, with the same radius ofDs(si)=30m

and clearance distanceCs(si)=Ds(si)+11.5m, are located at(200m, 400m), (250m, 290m),

(300m, 125m) and(375m, 200m), respectively. In addition, there are seven dynamic obstacles

from TS1 to TS7 involved in the experiment, with their initial states listed in Table VI. Their

dimensions are set the same as the OS. The optimization problem here is the same as (4).

The related parameters for the OS and the TSs are set asv=0.7m/s and δ=18 ◦/s, T0= 0 s,

Ctf=20m, Cd=90m, p=1000 andq=10, respectively.The computation time for this experiment
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Solutions for the “multiple obstacles” optimization problem with respect to different number of TSs. (a) 2 TSs. (b) 3

TSs. (c) 4 TSs. (d) 5 TSs. (e) 6 TSs. (f) 7 TSs.

increases from 144s to 187s with the growth of number of TSs.

Fig. 10 shows six test cases with a different number of TSs. Note that for each test case, an

extra TS is added to arrange around the planed path from the previous test case. The purpose is

to examine how these minimum-time paths evolve with the increase of TSs. In order to avoid

collision with TSs, Fig. 10a, 10b, 10d, and 10e reveal that the planner tries to slightly change

the OS’s course at the place where the sea’s current magnitude is relatively small. If changing

course cannot guarantee the reachability or collision avoidance, a new path will be explored, as

depicted in Fig. 10c and 10f.

There are head-on, crossing and overtaking between the OS and the TSs in Fig. 10. The

experiment does not identify any instances of high risk of ES(see Fig. 5c). This is consistent

with (17), where high risk of ES corresponds to high cost. Table VII lists the closest ES for

each test case, together with the minimal distance and the time when it happens. According to
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TABLE VII

CLOSESTENCOUNTERSITUATIONS IN FIG. 10

Test

case
Encounters

Min.

dist. [m]

Time of

min. dist.[s]

Encounter

situation

2 TSs OS & TS2 42.46 239.80 O2T2

3 TSs
OS & TS2 42.46 239.80 O2T2

OS & TS3 32.27 422.70 O2T4

4 TSs OS & TS1 49.21 549.51 O4T2

5 TSs
OS & TS1 45.88 570.65 O4T2

OS & TS5 25.03 246.74 O3T4

6 TSs

OS & TS1 37.61 614.36 O4T2

OS & TS5 27.98 243.29 O2T4

OS & TS6 54.25 345.89 O2T2

7 TSs

OS & TS1 58.74 358.34 O2T1

OS & TS2 42.46 239.80 O2T2

OS & TS4 51.66 741.63 O4T2

Table II, the OS in these closest ESs is “stand-on”, which indicates the OS is safe even when

the TS is within the circle of clearance distance.

We have also verified successful trajectory planning in other cases ofX0 andXtf with non-

zero sea current velocity. Considering the length of the paper, the results are not shown here.

From the experiment, we demonstrate the effectiveness of the proposed planning method for

collision avoidance in complicated close-range encounterscenarios.

E. Discussion

This section discussesthe tuning of planning parameters, the key factors of maneuvering

ability, and the compliance with COLREGs for close-range encounters in the complex spatial

environment.

The proposed planner mainly contains three groups of adjustable parameters. The first group

of parameters includingm, n, ∆l, L, ∆c and∆α is used to model the sea current distribution.

As illustrated in Fig. 3, these parameters determine the number of nodes and connections of

the directed graph. An empirical setting ofm,n ∈ [50, 500], L ∈ [∆l, 10∆l], ∆c ∈ (0, 0.2]

and∆α ∈ (0 ◦, 4 ◦] would balance the computational complexity and the reachability for close-

range maneuvering applications. The second group is user-defined parametersT0 andCtf used
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for cost evaluation in initial and final states. From (19) – (21), these parameters should be

kept in a relatively small and reasonable range, e.g.,T0 ∈ (0 s, 10 s] and Ctf ∈ (0m, 30m],

to prevent the resultant trajectory from violating the initial and final state constraints. The last

group is collision avoidance related parametersCs andCd, and their values depend on OS’s and

obstacles’ dimensions. For ship safety, it is suggested to set Cs at least half the width of the OS

wider thanDs, and setCd longer than the sum of length and width ofDd, respectively.

Maneuvering ability refers to bothv andδ according to (1) and (2). From Fig. 4, a higher value

of v will have greater possibility of finding solutions, therebyimproving reachability to neighbor

nodes. This is consistent with practical applications and has also been verified in Fig. 8, in which

the number of obtained paths increases whenv increases.δ also has an effect on maneuvering.

As illustrated in Table V, whenv is relatively high, the influence ofδ becomes more prominent.

This makes sense, given that a higher value ofv corresponds to a shorter travel time to reach

available neighbors. From (10), however, the range of validthrust orientation will be narrowed

down accordingly. That is why, in most close-range maneuvering applications, using a high value

of δ on the vehicle is preferable.

Regarding the compliance with COLREGs for the proposed planner, it is closely related to

how the COLREGs are implemented. In the COLREGs, the “give-way” vehicle is suggested

to take action as early as possible to keep the way clear. The strategy in (17) interprets the

COLREGs in a similar way in that the OS keeps the TSs out of a safe area in case there is

a high risk of collision. Fig. 8 and Table VII verify the correctness of the idea. The planner

may not completely follow rule 6 in the COLREGs, that is, to guarantee the OS to pass by

obstacles using a safe/low speed, due to the conflict with theoptimization goal. The assumption

of constantv in the kinematic model may be the other factor that makes it happen. Utilizing

variablev is promising to address the problem, as at least it will be beneficial to deal with dense

traffic scenarios. But a full understanding of the use of variable v is beyond the scope of this

paper and will be investigated in future work.

To sum up, the proposed planner takes both maneuvering ability and the COLREGs into

account andif the planning parameters are well tuned, it is capable of generating time efficient

paths under various constraints, ranging from sea current,obstacles, and initial and final states,

to thrust orientation.
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VI. CONCLUSION

Intelligent trajectory planning is the crucial element of autonomous ships for the next gen-

eration of marine transportation systems. In this paper, wehave investigated the time-optimal

trajectory planning in close-range encounters. Considering that the surroundings of a surface

vessel during maneuvering create complex spatial variability, including sea current, marine traffic,

and constraints from initial and final states, a two-stage trajectory planning scheme is proposed.

In the first stage, a directed graph with variable connectionis established. The reachability,

the risk of collision, and different states constraints determine the maneuvering cost. Through

a wavefront search, a discrete solution can be obtained. Thediscrete path is parameterized as

multiple Bézier curves connecting withC2 continuity in the second stage. Searching in the

parameter space via GA provides a way to explore the discretepath. By using the same cost

criteria in the wavefront search, the solution will be a near-optimal but smooth path. Through a

benchmark test and experiments with respect to maneuveringability and COLREGs compliance,

we confirm the effectiveness of the planner for generating a minimum-time path in close-range

maneuvering.

Based on the current work and the discussion in Section V-E, future efforts will be made to

(1) apply variable vehicle velocity to the kinematic model and refine the two-stage scheme to

address the corresponding optimization problem;(2) use hierarchical approaches to improve the

proposed planner and thus increase the re-planning frequency; and (3) combine the proposed

planner with a trajectory tracking controller to achieve autonomous maneuvering in a professional

simulation platform.
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