
IEEE TRANSACTION ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, XXXX 2019 1

Using EEG for Mental Fatigue Assessment:
A Comprehensive Look Into the Current

State of the Art
Thiago Gabriel Monteiro, Charlotte Skourup, and Houxiang Zhang, Senior Member, IEEE

Abstract—This paper provides a brief survey of recent devel-
opments on the use of electroencephalogram (EEG) sensors for
detecting mental fatigue (MF) in human operators during tasks
involving human-machine interaction. This research topic has
received much attention since there is a consensus among experts
on the increasing relation between human failure and accidents
in safety-critical tasks. MF is one of the most influential aspects
leading to human failure and the most reliable way to assess
it is using operator’s physiological data, especially EEG. In the
past few decades, hundreds of publications have explored the
use of EEG alone or together with other objective and subjective
measures for assessing MF, drowsiness, and tiredness in human
operators. With recent improvements in data preprocessing,
feature extraction, and classification algorithms, the monitoring
and mitigation of MF in real time has become a reality. This
trend is mainly due to the increasing use of machine learning
techniques. This paper provides a comprehensive look at the
current state of the art in the field of MF detection using EEG,
identifying the currently used technique, algorithms, and methods
and possible trends and promising areas for further research. The
paper is concluded by suggesting a kernel partial least squares
discrete-output linear regression (KPLS-DLR) based model as an
all-around good option for an MF assessment system.

Index Terms—EEG, sensor fusion, mental fatigue assessment,
risk assessment, human factors, human-machine systems.

I. INTRODUCTION

IN recent decades the greater role human operators play
in life-threatening accidents than systems and equipment

malfunction or failure has become increasingly clear [1], [2].
Research has demonstrated this in relation to driving [3],
public transportation [4], [5], commercial air transportation
[6], air traffic control [7], nuclear power plants [8], maritime
operations [9], etc. This has prompted explorations into as-
sessments of operator functional state (OFS) as a key means
of lowering risk.

OFS can be characterized as how well a human operator
can react to the demands of an operation considering internal
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and external factors, according to the operator’s cognitive and
physiological capabilities [10]. OFS is a broad concept, but it
can be evaluated under the perspective of three main areas:
situation awareness, mental workload (MWL), and mental
fatigue (MF). MF builds up as an operation progresses and can
drastically reduce operators ability to understand, react, and
solve problems imposed by the operation quickly, including
both common procedures and unexpected situations.

Various methods have emerged of assessing MF. Subjective
evaluations include the NASA Task Load Index [11], the
Karolinska Sleepiness Scale [12], the Epworth Sleepiness
Scale [13] and the Chalder Fatigue Scale [14]. While these
subjective approaches can achieve good results in assessing
MF states, they rely on self-report and are thus subject to
bias. More objective methods include monitoring operators
performance, such as tracking steering wheel movements or
pressure on the acceleration pedal during a drive task [15]
and monitoring the operator’s behavior including head posi-
tion, blinking frequency, and yawning [16]. But monitoring
the operator’s physiological signals is considered the most
reliable way to assess MF since physiological signals start
to change long before any external signs of MF manifest [17].
The physiological signals researchers have used include res-
piration, electrocardiogram (ECG), electromyogram (EMG),
electrooculogram (EOG), and electroencephalogram (EEG).

Although it can achieve high accuracy level, the use of
physiological signal for assessing MF can provide some chal-
lenges. First, measurement generally requires physical contact
between operators and sensors, which can make operators
uncomfortable and affect the measured signals [18]. Second,
analysis accuracy is very sensitive to the quality of the mea-
sured signals. In most cases, these signals are very susceptible
to noise and need to be preprocessed in order to provide
any useful information. EEG is the most prominent signal
in the field today due to its low intrusiveness [19] and its
clear relation between the power spectrum characteristics in
different frequency bands and MF levels [20]. EEG signals
have also other applications in the medical field such as
seizure detection and engineering field such as brain computer
interfaces.

The main goal of this survey paper is to provide a compre-
hensive understanding of the current state-of-the-art techniques
regarding the use of EEG to assess MF and how to apply these
techniques in real-life situations. We seek to understand the
current trends in the field in order to present to researchers
the newest techniques available and the new knowledge built
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in this area in the past years.
The rest of the paper unfolds as follows. Section II provides

a comprehensive summary of MF assessment pipeline using
EEG. Section III describes the methodology used for the
literature survey and analysis. Section IV describes the state-
of-the-art methods currently available for assessing MF using
EEG. In Section V we discuss the current picture of the EEG
for MF assessment research field and provide our vision of a
feasible EEG-based MF detection system for implementation
in real-life applications. Section VI concludes the paper.

II. EEG FOR METAL FATIGUE ASSESSMENT -
BACKGROUND

A. Structure of an EEG-based mental fatigue assessment
method

An EEG-based algorithm that can be used to assess MF
must be structured to provide data acquisition, data prepro-
cessing, feature extraction, and MF state classification [21].
Fig. 1 provides an example of the use of this structure in the
MF detection framework we propose. EEG data is collected
from a crane operator working in an oil rig and preprocessed;
features are extracted and the MF state is classified. The state
assessment is used in a threshold algorithm which closes the
loop with the operator with a warning feedback when the MF
level exceeds a critical level.

Beyond the basic structure, the methods to handle and
classify EEG data need to be specially tailored for specific
applications. Additionally to the basic underlying structure,
new elements can be added to the work-flow according to
special needs of each algorithm. For example, applying a
dimension reduction technique on the features vector will re-
duce the classification algorithm input to its more meaningful
components [22].

The next sections describe the basic processes present in
EEG-based MF assessment methods.

B. Data acquisition

During the data acquisition phase, two main aspects govern
the acquisition of EEG signals, as described below.

1) Electrodes placement: Herbert H. Jasper [23] created
the International 10-20 system in order to standardize the
placement of electrodes on the scalp to make the direct
comparison of results from different research groups possible.

The naming convention for each electrode is as follow:
fronto-polar area (Fp), frontal area (F), central area (C),
parietal area (P), occipital area (O), temporal area (T), and
auricular electrodes (A). Besides the area names, there is also
a numbering convention to help distinguish between left and
right homologous regions, using odd numbers for the left
hemisphere, even numbers for the right hemisphere, and ”z”
(standing for zero) for the vertex electrodes [24]. The full
electrode arrangement is shown in Fig. 2.

The 10-20 system offers 21 positions to place electrodes,
which is not enough when using newer EEG hardware that
supports 32, 64, 128 or 256 data channels [25]. To account for
the increase of data channels, the 10-20 system was expanded
to define more standardized position in the scalp for electrode
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Fig. 1. Closed-loop EEG-based MF assessment framework.
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Fig. 2. International 10-20 system definition. (a) Lateral specification. (b)
Frontal specification. (c) Superior specification. (d) Electrodes placement and
naming. Adapted from [24].

placement. The extended 10-20 system (also called 10-10
system) [26] increases the number of standard positions from
21 to 74. Other extensions have been proposed such as a 10-5
system supporting up to 345 standard positions [27].

2) Frequency bands: EEG signals are composed of a wide
range of frequency components. When evaluating EEG signals
for MF detection, the range of interest is limited to between
0.3 and 30 Hz. This frequency interval is divided into five main
frequency bands (also called rhythms): delta, theta, alpha, beta,
and gamma [28].

• Delta band (δ) corresponds to the interval of 0.3− 4Hz.
It represents very slow brain activity, identified in infants
up to 1 year or in deep sleep stage in health adults. It
is usually not used for MF detection since it is mostly
present in a physiological state outside the interest of MF
detection studies.

• Theta band (θ) corresponds to the interval of 4− 8Hz. It
can be found in healthy, alert infants and children as well
as during drowsiness and sleep in adults. Awake, healthy
adults have low θ activity. The frontal θ activity is likely
to increase as a person fatigues [29].
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• Alpha band (α) corresponds to the interval of 8− 13Hz.
It can be found in healthy awake adults, when relaxed or
mentally inactive. The occipital and parietal α activities
are likely to increase as a person fatigues [29].

• Beta band (β) corresponds to the interval of 13− 30Hz.
It signifies tension and anticipation and can be found in
alert and anxious subjects. The changes in β activity as
a person fatigues still unclear [29].

• Gamma band (γ) consists of frequencies above 30Hz.
Usually does not have impact on MF detection, being
filtered out of the EEG data [30].

C. Data preprocessing

EEG signals have very small amplitudes and are highly
sensitive to noise. These noises are called artifacts. They
are undesirable electrical potentials which come from sources
other than the brain [28], such as EOG, EMG, ECG, and
power line and amplifier noises, poor electrodes contact with
the scalp and current drift [31]. When present in the data, these
noise components make the analysis of the desired phenomena
nearly impossible [32], since they may have amplitude in the
order of hundreds of µV [33] and EEG signals are in the
order of tens of µV. Therefore, artifacts need to be detected
and removed from the data. Understanding the advantages and
limitations of each preprocessing technique is very important
in order to choose the right method for each EEG application.

In recent years the most commonly used preprocessing
methods in the field of MF detection using EEG include:
digital filtering, independent component analysis (ICA) and
discrete wavelet transform (DWT).

Digital filtering is very useful to remove noise and artifacts
that are frequency-specific, such as body movement and power
line noises. Among these filters we can consider low-pass,
high-pass, band-pass, and notch filtering [31]. In ICA, the EEG
signal is seen as a linear combination of independent signals.
The ICA decomposes the multichannel data into temporal
independent and spatially fixed components [34].

DWT is the subset of wavelet transforms that discretely
samples the wavelets. The DWT is capable of decomposing
a signal in the time domain in a series of wave-like oscil-
lations (wavelets) in different frequency bands. The biggest
advantage of wavelet transform approaches for handling time-
series data is the fact that they preserve the signal temporal
information together with frequency, allowing the analysis of
non-stationary data, which Fourier transforms can’t achieve.

D. Feature extraction

After preprocessing, the data is more suitable for use in
a MF assessment method, but work remains to make it a
favorable format to allow classification algorithms to fully
explain the represented phenomenon. In order to make the data
contained in the EEG signal more meaningful and manageable,
relevant features can be extracted. These features basically
represent important characteristics of the dataset in a format
more compact and easier to handle. Extracting meaningful
features from EEG signals is complicated due to its complex,
unstable, non-stationary, and non-linear nature.

In the past years the most commonly used feature extraction
methods in the field of MF detection using EEG include:
power spectral density (PSD), statistics, and entropy measures.

PSD of a time-series describes the power distribution in the
signal as a function of frequency [35]. It is especially relevant
for EEG classification since the power in different frequencies
can be related to the brain activity in different sub-bands of
interest, making it possible to evaluate changes in the mental
state of a subject by tracking changes in the signal PSD. The
calculation of PSD in usually preceded by the application of
a Fourier transformation in order to change the EEG signal
from time to frequency domain.

Statistics can have poor performance when applied as a
feature extraction method for EEG signals, since this kind of
data is non-stationary by nature. A common way to avoid this
problem is to divide the EEG signal in shorter segments and
assume the signal is stationary in each of these segments. In
this way, statistical analysis can be applied to EEG signals and
parameters such as mean, standard deviation, skewness, and
kurtosis can be calculated.

Various entropy measure methods have been used to analyze
EEG signals [36]–[40] due to its robustness in evaluating the
regularity and predictability of complex systems. Entropy was
originally used in thermodynamics to assess the degree of
disorder in a system and now it is also used in information
theory as a way to measure the uncertainty of systems [41].
As a person gets fatigued, we can expect a decrease in the
entropy level of its EEG signals, indicating a decrease and
weakening of brain synapses. Recently, the most commonly
used entropy measures are Sample Entropy (SampEn), Fuzzy
Entropy (FuzEn), Approximate Entropy (AppEn), and Spectral
Entropy (SpecEn)

When the number of features obtained is too big to be
directly used in the classification algorithm or when an im-
provement in the algorithm performance is needed (especially
for online application), dimension reduction techniques such
as principal component analysis (PCA) and ICA can be applied
to obtain an optimized set of features.

E. Mental fatigue state classification

The classification algorithm can classify the input features
in any number of classes, depending on how the algorithm is
trained or designed to handle the input data. Most of the works
use two MF states, but some works consider the existence of
intermediate states. These states indicate the transition between
the normal and fatigue states.

Among the EEG-based MF assessment methods, no classi-
fication algorithm clearly dominates the field. Classification
algorithm-wise, the state of the art is very heterogeneous,
presenting just a few algorithms which were applied in more
than one publication (e.g., Bayesian neural network, BNN, k-
nearest neighbor, kNN, support vector machine, SVM). This
heterogeneity is due to the fact that no classifier fits all kinds of
problems. The best classification tool for each case should be
selected based on the particular characteristics of each dataset
[42]. The different state-of-the-art classification algorithm will
be briefly presented in Section IV.
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III. METHODS

In this Section we describe our survey methodology. We first
present the literature search methodology using the PRISMA
statement and follow up by presenting our classification strat-
egy for the surveyed literature.

A. Literature search approach

This survey paper is structured following the guidelines
presented on the PRISMA statement [43]. The process behind
the selection of papers for this survey follows the PRISMA
flow diagram, presented in Fig. 3. Papers included in the
identification phase were those published in English between
January 2013 and December 2017 with a title, abstract, or body
containing results for the following Boolean search statement:
(mental fatigue OR fatigue) AND (EEG OR electroencephalo-
gram). The remaining steps of the selection process are
depicted in Fig. 3, including all criteria used in the eligibility
phase.

B. Categorization approach

When describing a method to assess MF using EEG signals,
there are some very important characteristics that are relevant
to the way it will perform and to how it can be extended
to case studies other than the original application. Having a
taxonomy describing these characteristics can help researchers
to select methods that meet the requirements of their specific
problems. Hereafter we present a Taxonomy that highlights
the characteristics we consider the most relevant for this kind
of application. These characteristics are non-linearity, nature,
dynamics, implementation, and cross-subject.

Non-linear (N). Specifies which kind of discriminant al-
gorithms was used in the current MF assessment method to
distinguish between different MF states: linear or non-linear
classifier.

Generative (G). This refers to how the model handles
different classes in the dataset. The method is discriminative
if it is only capable of learning how to discriminating between
the data in different classes, without explaining its structure.
If a method is also capable of explaining how the data in each
class is structured, being able to model the data, it is called a
generative method.

Dynamic (D). Specifies if the MF assessment method uses
temporal information during classification. This requires that
the method is capable of storing a significant amount of past
information to use in the classification task at each instant. If
the method can keep track of temporal information it is said
to be dynamic; if not is it said to be static.

Online (O). A method may be implemented offline or
online. Offline implies that the method stores information for
later classification (i.e. not real time). Online means the MF
assessment is made is real time.

Cross-subject (C). We say a method considered cross-
subject influence if it explicitly took into consideration the
individual physiological characteristics of each subject in the
classification process. This is an important factor to consider,
since MF limits and their representation in physiological
signals can differ across subjects.
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Fig. 3. PRISMA flow diagram.

Besides the taxonomic decomposition of the state of the
art described above we also classified the surveyed papers
according to the data processing pipeline presented in Section
II by identifying the chosen approaches for data preprocessing,
feature extraction, and classification algorithm. The results of
this classification approach are presented in Section IV, and
summarized in Tables I-III.

All the surveyed papers are reported according to the data
domain where the EEG data was analyzed during the MF
assessment task. In each data domain table, papers are com-
pared regarding the main characteristics of the MF assessment
pipeline described in Section II, namely preprocessing, feature
extraction, and classification algorithm, and the taxonomy
presented in Section III. For the sake of a cleaner presentation,
the taxonomy terms are represented by their initials in Tables I-
III. The presence of a check mark in a taxonomy field indicates
that the paper presents that desired characteristic.

Additionally, although the classification accuracy obtained
by the authors in each paper is presented in these tables, they
should be analyzed with caution. Since most researchers in the
field don’t make use of benchmark data sets, it is not possible
to compare the accuracy of different studies reliably. As an ex-
ample, a case study that considers cross-subject classification
is expected to have a lower classification accuracy than one
which only considers single subject classification. Publications
presented in this survey without accuracy value use regression
methods, and performance is evaluated by root mean square
error (RMSE) instead of accuracy.
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IV. STATE OF THE ART OF MENTAL FATIGUE ASSESSMENT
USING EEG

EEG data can be processed in different domains, including
PCA and ICA [44]. In the present work we divided the MF
assessment method according to the three main data domains,
namely time, frequency, and time-frequency.

EEG signals are obtained as time-series, which are noisy,
high dimensional, and non-stationary, have an explicit de-
pendency on the time variable and require the extraction of
features from them to be invariant to translations in time
[45]. So, although the natural domain of EEG is time, all the
previously cited signal characteristics can make the analysis of
data in the original domain quite challenging. Also, the EEG
signals have clinical significance in different frequency bands
(δ, θ, α, and β), which cannot be observed directly in the time
domain.

To overcome these issues, some researchers opt to evaluate
the EEG data in the frequency domain. This approach makes it
possible to visualize the important frequency bands and avoid
the problematic characteristics of time-series signals. The
time-frequency domain is another option that merges time and
frequency domain characteristics by decomposing the original
time-series into one time-series for each desired frequency
band. This approach conserves the temporal characteristics of
the original EEG signal, which can be valuable for certain
assessment methods. The following sections discuss EEG-
based MF assessment methods in each of these three domains.

A. Time domain methods

1) Preprocessing: Most time domain methods rely heavily
on digital filtering as the main preprocessing approach. Band
pass filters are used to restrict the EEG signals to the frequency
intervals of interest for MF analysis. Notch filters are applied
to remove specific noise from the data, such as power line
noise [46], [47]. In order to remove blink, heart and muscle
artifacts from EEG data, ICA [48]–[50] and visual inspection
[51] are also applied.

2) Feature extraction: Several different types of entropy
measures have been applied for feature extraction in the time
domain. Entropy measures are popular due to the ability to
measure the degree of uncertainty in unstable and non-linear
time series such as EEG signals. These measures can be used
to compare normal and unsettled brain states. In some cases
different entropy measures are used in isolation [47], [52], but
they can also be combined in order to improve the quality of
extracted features [46], [53]–[55].

Complex EEG data from several channels can be repre-
sented in a simpler way by means of PCA, transforming the
original set of inputs to a new set of coordinate systems that
encapsulates the greatest amount of the original variance in
the least number of new components as possible [56]. Al-
ternatively, the complex input data can be factored using non-
negative decomposition methods, which factor the input data in
meaningful components without applying any transformations
to it [51].

An alternative for spectral analysis in the time domain is
auto regressive (AR) modeling. It has been applied due to its

ability to model the peak spectra of EEG signals and reportedly
provides a better set of features then FFT-based methods [48],
[49].

3) Classification: SVM is used as classifier for MF assess-
ment problems since it can group input elements in different
classes. It is a kernel-based method, meaning that it can
perform different linear [52] and non-linear classification [51],
[53] by just changing its kernel function. Another algorithm
that makes use of clustering is kNN. When kNN is used for a
classification task, an input element is classified by a majority
vote of its k-nearest neighbors, where its class is assigned as
the most common one among these neighbors [57].

Decision tree (DT) is a predictive model, where the branches
and leaves structure represent, respectively, the classes features
and labels. Thus a label is represented by the conjunction
of features that lead to it. It is a simple model capable of
modeling large datasets with little data preparation well. When
combined with bosting, it can perform well on noise datasets
[54].

The main disadvantage of DT is its tendency to over fit
to the training data. Random forest overcomes this flaw. It
is an ensemble method that considers several decision trees
for the classification task. This approach provides a set of
more robust features for training the classifier [47]. AdaBoost
is another ensemble classification method, which weighs the
classification results of multiple other classifiers and makes a
decision based on the majority voting criteria. Hu [55] applied
AdaBoost with SVM, DT, and NB sub classifiers.

Neural networks are extensively used for MF assessment
in time series, since different network structures can provide
interesting properties to the classification algorithm. Good
classification results can be obtained using all kinds of neu-
ral networks, depending on the specific necessities of each
dataset. Even a simple and not very robust model such as the
multi-layer perceptron (MLP) can achieve good classification
accuracies if trained properly [46].

One of the crucial issues when using a neural network
approach is to ensure that the learned structure can make a
good generalization when data never seen before is presented
to it. Chai et al. [48] propose the use of Bayesian neural
network (BNN) as a classifier due to its ability to generalize
the data analysis independently of how small or noisy the
dataset is.

A neural network can learn very intricate features from the
input data, including how the data structure is composed. One
example of such a model is a deep belief network (DBN),
which is a non-linear classification model composed of an
unsupervised generative model and a supervised discriminative
model. The model can be made more efficient by adding
sparsity to the network, preventing it from over-fitting [49].
Some neural network models can also learn how to model
temporal relationships of state variables, making the classifi-
cation algorithm dynamic [50].

Besides classification, a regression approach can also be ap-
plied for MF detection. A sequential discounted auto regressive
(SDAR) model of order N sequentially represents each data
point in a time series as a combination of N previous point,
with a discount factor for older points. When using statistical
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TABLE I
TIME DOMAIN METHODS.

Preprocessing Feature extraction Classification algorithm N G D O C Acc. Ref.

Band-pass filter Statistics SDAR 95% [58]
PCA OwARR, OwARR-SDS - [56]
SamEn, FuzEn, AppEn, SpecEn AdaBoost 97.5% [55]

DT 95.7% [54]
SamEn, FuzEn, AppEn, SpecEn
/ Fisher distance

SVM 98.8% [53]

Fuzzy Entropy / Fisher distance SVM 85% [52]
Band-pass filter, Notch filter SamEn, FuzEn, AppEn, SpecEn MLP 98% [46]

RF 96.6% [47]
Band-pass filter, Visual inspection DNTF SVM 98% [51]
ICA AR modeling BNN 88.2% [48]

Sparse-DBN 93.1% [49]
Statistics Dynamic-BNN 95% [50]

- Meditation and Attention EEG k-NN 83.6% [57]

features, such a model can be trained to predict changes
in EEG data with timing precision close to 150 ms [58].
Regression models can also be used for accounting for EEG
differences among multiple subjects. Online Weighted Adap-
tation Regularization for Regression (OwARR) achieves this
by online fusing data from old and new subjects, constantly
adapting the classification model. Source domain selection
(SDS) is applied to reduce the number of previous subjects
needed to estimate new regression for real time applications
[56].

Table I presents the discussed time domain methods, com-
paring their main characteristics.

B. Frequency domain methods

1) Preprocessing: On the frequency domain, the prepro-
cessing phase receives special attention from researchers.
Besides the more common digital filters like band-pass and
notch filters, specialized algorithms are frequently used for
artifact rejection. Slow artifact rejection are especially relevant
on frequency domain analysis since they have a big impact in
the spectral powers of δ, θ, α, and β sub-bands.

ICA is the most popular choice due to its simplicity and
efficacy in rejecting EOG and movement artifacts [59]–[66]. It
decomposes the original signal into independent components
that can be inspected in order to reject the ones related to
artifacts.

Other approaches similar to ICA present in the surveyed
literature are PCA [67], [68] and de-noising wavelets [69]–
[71]. Both approaches consist of decomposing the original
signal in a new set of components (principal components and
sub band intervals, respectively) and rejecting the components
closely related to EOG, ECG, and movement artifacts. The
Fisher bilateral test was applied as a thresholding method for
artifact rejection [72]. In this case, the EEG data is compared
to a 60s long reference signal known to be artifact free.

2) Feature extraction: By far the most common approach
to feature extraction on the frequency domain is spectral
analysis through FFT and PSD. Researchers are not only

interested in the spectral powers for δ, θ, α, and β sub-bands,
but also in the relation and ratios among these frequency
bands, since they carry important information about MF state
changes. Additionally the ratios between spectral powers of
different frequency bands help the classification model to
account for cross-subject variations in the input data [60], [61],
[72], [73].

In the literature, statistics are also applied together with
spectral analysis for feature extraction. They can be fed to
a classifier directly [59] or filtered by some kind of feature
selection algorithm [66]. Non-parametric feature extraction
was also applied due to the advantages of parametric models,
such as better performance for non-normal distributed data
[64], [65].

3) Classification: Since most of the feature extraction
methods on frequency domain rely on discrete spectral fea-
tures, there is a large number of linear classifiers in the
surveyed literature. The most common linear classifiers are
SVM with linear kernel functions [68], [74], [75] and simple
thresholding [61], [72]. Kernel partial least squares (KPLS)
decomposition was used on the EEG data to find and select
a reduced set of orthogonal components with maximum co-
variance. It was coupled with discrete-output linear regression
(DLR) classifier to define a linear hyperplane capable of
separating the MF states in the appropriate classes [69].

Yet in the realm of linear methods, k-singular value de-
composition (KSVD) was applied to generate an overcomplete
dictionary of signals that can be used to, sparsely, represent
the input signal as a linear combination of the learnt signals
[70]. Also, Fishers linear discriminant analysis (FLDA) was
used to find a linear combination of features that characterizes
different MF states. This set of features can be applied as a
linear classifier [60].

SVM is the most common method used for MF classifi-
cation in the frequency domain. Besides its use with linear
kernels, it was also extensively applied with non-linear ker-
nels, for more robust classification performance [63], [64],
[66], [67], [71], [76]. Some more specialized versions of
the traditional SVM algorithm were also used. Temporal
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TABLE II
FREQUENCY DOMAIN METHODS.

Preprocessing Feature extraction Classification algorithm N G D O C Acc. Ref.

Band-pass filter PSD SVM 98.2% [74]
SVM 96.2% [75]
RBF-SVR - [78]
RSEFNN - [79]

Band-pass filter, Coherence method PSD ABSVM 82.2% [77]
Band-pass filter, Coherence method, ICA PSD / Statistics SDBN 77% [59]
Band-pass filter, Notch filter, ICA PSD FLDA 80% [60]
Band-pass filter, Visual inspection, ICA PSD Thresholding 76% [61]
Band-pass filter, ICA PSD SDAE 85.6% [62]

PDC SVM 81.5% [63]
ICA FFT / NWFE SVM 88.7% [64]

RBFNN 91.6% [65]
SPD / Statistics / SVM SVM 75% [66]

Low-pass filter, PCA PSD SVM 80.4% [67]
PCA PSD SVM 94% [68]
De-noising wavelet PSD KPLS-DLR 97% [69]

Sparse-KSVD 95% [70]
DWT PSD SVM 90.7% [71]
Fisher bilateral test PSD Thresholding 98.3% [72]
- PSD SVM 86% [76]

temporal aggregation SVM 87% [73]

aggregation SVM was applied in order to make the SVM
algorithm dynamic [73]. Adaptive bounded SVM (ABSVM)
can be used for two reasons: the bounded part optimizes the
SVM training procedure when more than two MF states are
considered and the adaptive part optimizes the results for
cross-section and cross-subject classification problems [77].
Support vector regression (SVR) is a variation of SVM that
performs regression instead of classification and was used to
create an MF predictor [78].

Neural network models were also found in the surveyed
literature. Sparse DBN [59] and sparse deep auto encoders [62]
were used to create generative models capable of accounting
for, respectively, cross-subject and cross-session variability.
Radial basis function neural network (RBFNN) is basically
an MLP with exactly one hidden layer and uses radial basis
functions as activation functions. It was applied to construct a
non-linear MF state classifier due to its training and classifica-
tion performances [65]. A recurrent self-evolving fuzzy neural
network (RSEFNN) was used to create a dynamic regression
tool capable of accounting for cross-subject regression of MF
states [79].

Table II presents the discussed frequency domain methods,
comparing their main characteristics.

C. Time-frequency domain methods

1) Preprocessing: Researchers typically focus on two ap-
proaches to the preprocessing phase in the time-frequency
domain: digital filtering and wavelets. As seen in the previous
section, band-pass and notch filters are largely used as noise
and artifact removal tools. Adaptive filters are also viable
digital options for noise and artifact rejection [80]. Experts

also use visual inspection to remove artifacts [81], [82]. This
approach is especially effective when relying on data from
other sensors, such as EMG and EOG [83].

Wavelet transforms will decompose a time series into a
set of components with different frequency bands. They are
effective for analyzing nonstationary signals, since they can
represent trends, discontinuities, and patterns in the original
signal very well [84]. Wavelet packet transform (WPT) is the
simplest wavelet transform, disregarding boundary treatments
in the original signal [85]. Discrete wavelet transforms (DWT)
are most commonly used due to their more robust performance
[86]–[88].

2) Feature extraction: One of the reasons to conduct
EEG analysis in the time-frequency domain is to work with
non-linear features for the MF state classification. Usually,
authors opt for different entropy and complexity measures to
capture the non-stationarity and non-linearity of EEG signals.
The separation of the original signal in its main sub-bands
seems to improve the non-linear features performance. Some
of the applied measures include differential entropy (DEn)
[89], AppEn, SampEn, Renyi entropy (RenEn), recurrence
quantification analysis (RQA) [83], wavelet entropy (WEn)
[86], and Kolmogorov complexity (KC) [90]. The use of
sliding windows for the calculation of entropy measures can
be applied for real-time MF detection [84].

When working on the time-frequency domain, most authors
opt to use some type of wavelet transformation to convert the
EEG time series to the time-frequency domain. When doing
this, da Silveira et al. [87] used best m-term approximation
to select the wavelet decomposition terms with the biggest
influence in alpha and beta sub bands. Kaur and Singh [92]
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TABLE III
TIME-FREQUENCY DOMAIN METHODS.

Preprocessing Feature extraction Classification algorithm N G D O C Acc. Ref.

Band-pass filter Raw data, ICA CCNN, CCNN-R 76.7% [90]
WPT / Statistics / MI SVM 98.6% [91]
DEn SVR 85% [89]

Band-pass filter, Notch EMD MLP 84.5% [92]
filter DWT Thresholding 85% [93]
Band-pass filter, Visual Statistics, SamEn, PSD SVM 80% [81]
inspection KC / AppEn / PCA SVM 85% [82]
Band-pass filter, Adaptive filter Statistics / LDA MLP 85.7% [80]
Visual inspection SamEn, AppEn, RenyiEn, RQA ELM 97.3% [83]
DWT WEn PCNN 97% [86]

Best m-term approximation Thresholding 98.7% [87]
Statistics deep-LSTM 93% [88]
WEnS, PP-ApEnS, PP-SampEnS MLP 96.5% [84]

WPT PSD Thresholding - [85]

opted for a different approach to make the EEG data domain
transition. They applied the empirical mode decomposition
method (EMD) to extract intrinsic mode functions (IMFs)
from EEG signals.

Instead of focusing the MF detection method on only one
domain, some authors try to expand their possibilities by
transitioning between different domains during the EEG data
analysis. Correa et al. [80] made use of statistical features
in the time, frequency, and time-frequency domain to assess
drivers drowsiness state. Lee et al. [91] extracted 51 statistical,
frequency, and interval features from EEG and respiration sig-
nals, and performed feature selection using mutual information
(MI).

Since time-frequency domain signals contain all frequency
domain information available, the use of spectral analyzing
on the decomposed signals by deriving power-based indices is
still a viable option [85].

3) Classification: Most of the works surveyed on the time-
frequency domain use some sort of entropy, complexity, or sta-
tistical measures as features. So, the classification algorithms
need to distinguish among different MF states based on a set
of discreate measures. Three approaches to this task dominate
thresholding, SVM, and neural networks.

Thresholding classifiers are the simplest. They are trained
to find the limits for the features that define each MF state.
They are mostly linear and were used on spectral features
[85] and on the decomposed time-series [87], [93]. As in the
frequency domain, SVM is extensively applied as a clustering
method, to group the input signals in different MF state classes
based on non-linear features. Only non-linear kernels were
used for SVM in the surveyed works [81], [82], [91]. SVR was
also used together with a continuous conditional neural field
(CCNF) and a continuous conditional random field (CCRF) to
produce a dynamic estimator of the MF state [89].

One of the most simple neural network models is called
single layer perceptron (SLP). Altough SLP is not very useful
for complex classification problems by itself, a variation of
SLP called extreme learning machine (ELM) was successfully

applied for MF state classification due to its ability to avoid
local optima and fast training speed [83]. An MLP classifier
was used in several works with good results [80], [84], [92]
although more complex and robust neural network model was
also used. Deep-Long short-term memory (LSTM) was used
to construct a dynamic classifier to account for the fact that
MF has a very important temporal factor, since it builds up
over time [88]. Channel-wise, a convolutional neural network
was used to automatically extract a complex feature from time-
series data [90]. Such features are robust enough to provide
effective cross-subject classification of the MF state.

Table III presents the discussed wavelet domain methods,
comparing their main characteristics.

V. DISCUSSION AND FUTURE TRENDS

The number of published works using EEG to assess MF
has steadily increased in the recent years, as shown in Fig.
4. This increase reflects a change of paradigm in human
machine systems as machinery systems become increasingly
reliable and consequently human operators account for a
steady increase in accidents. This increase also shows that
higher levels of automation in several industries, such as
automotive [94] and maritime [95] have not made the topic
less relevant. This is because in most cases automation does
not remove the human element completely from the loop, just
reallocates it to a different role.

Fig. 4 also shows a big shift regarding the data domains
used for analyzing the EEG data. The time domain, which was
barely used in previous years, came to dominate in 2017. This
most likely indicates the development of methods capable of
dealing with time-series and its particularities. including non-
linearity, high levels of noise, high dimensionality, and non-
stationarity [45]). Some methods capable of dealing with these
special requirements from time-series include deep learning
methods such as CNN, DBN, and auto encoders.

An overview of the taxonomic distribution can be seen
in Fig. 5. Most of the taxonomic characteristics have an
undeniable tendency across the field, which may indicate either
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a conformation about how the MF assessment methods should
be structured or a possible turning point for further improve-
ment. We can see that the vast majority of the papers applied
non-linear methods for handling EEG data. This is expected,
since measuring linear features that can correctly represent
time-series data can be very tricky, due to the intrinsic nature
of this kind of signal. The greatest number of papers also
use a discriminative approach, since most generative models
are deep-learning based and this kind of architecture has
not been much explored in the field of MF assessment with
EEG, although as noted there has been a shift towards deeper
models. Regarding the dynamics, most papers use a static
approach, since keeping track of temporal data to assess the
MF state is demanding, especially for real-time applications.
With the development of models such as LSTM, a dynamic
approach is becoming more feasible, which is very relevant,
since the MF state is a built-up process where the tiredness
accumulates over time, making this temporal dependency very
relevant for an accurate analysis. The cross-subject aspect was
evaluated by few researchers, although it is known that the
EEG signals and MF state are subject-dependent, presenting
variation among people. Future research should address this
point. Regarding implementation, fortunately, almost 50% of
the published work in the past five years presented methods
capable of being implemented in real-time, which is essential
for real life application. Usually this kind of online method
uses little to no preprocessing, a simpler set of features and
a small amount of EEG channels in order to reduce the
computational requirement and hardware footprint as much
as possible.

The application areas where MF detection using EEG has

36
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1 1
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Safety critical task
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Fig. 6. Application areas distribution for the state of the art.

been applied are driving, mental load tasks [51], [63], [68],
[69], [82], [83], [88], safety-critical tasks [59], [62], [77],
train piloting [71], and aircraft piloting [72]. Fig. 6 shows
that driving tasks dominate as a case study for most of the
published work. This reflects the automotive industrys efforts
to provide systems to detect drowsiness in drivers, which have
been implemented by several automobile manufacturers in-
cluding Audi, Volkswagen, Volvo, BMW, and Mercedes-Benz.
Most of the systems available today use driving patterns such
as steering pattern, vehicle lane positioning, and acceleration
and brake pattern [96] to identify fatigued drivers. Although
some systems use driver’s eyes and face monitoring to assess
drowsiness [97], no commercial system the car industry has
employed currently applies physiological signals to detect MF.
Implementing a system that monitors physiological signals
that can be used in real-life applications for detecting MF
is the next step in accident avoidance in human machine
systems, and the automotive industry seems to be the most
likely to achieve this first. Although other fields need such
systems, minimal effort has been put into developing them,
which provides an opportunity for researchers in other areas
to develop new methods and tools for real-time MF detection.

A. The feasibility of EEG-based mental fatigue detection
systems

Several EEG-based MF detection methods can achieve
classification accuracy over 90%. Although impressive, these
numbers hide important limitations of current approaches that
make the transition from research laboratories to real-life
applications very difficult. These important points to consider
are discussed below.

1) Cross-subject and cross-session MF detection: EEG
signals are very sensitive electrical signals and can behave
differently from person to person, so MF detection methods
need to be robust enough to handle these variations. This
robustness is also necessary to ensure a good generalization ca-
pability needed to handle subjects outside the training samples.
On the surveyed literature, cross-subject and cross-session
variability is most commonly approached in the frequency
domain. The advantage of frequency domain methods is the
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use of spectral power ratios, which help to compensate for
different ranges of theta, alpha, and beta sub-band activities
in different individuals. Some entropy [47], regression [56],
and neural network [90], [92] based methods were attempted
on time and time-frequency domains, usually with similar
accuracy ratios to frequency domain methods.

2) Computational requirements: The process of MF as-
sessment should be as time and energy efficient as possible.
It should not rely on expensive computations that require a
powerful computer to complete. Basically any of the surveyed
methods that can be considered online present a reasonable
level of computational requirement for real-life implemen-
tation. Usually the time-consuming part of these algorithms
is the training phase, but once the algorithm is trained, its
application to new data is fast.

3) Portability: The hardware carrying the MF assessment
algorithm should be as compact as possible. It should be
portable, allowing the user to move around with no restrictions
while providing long periods of battery autonomy. On the
surveyed literature, portability is achieved using the Android
platform [57], [75], [78], [91]. Computationally light MF
assessment algorithms are implemented on mobile devices,
receiving EEG data in real time via Bluetooth communication.

4) Intrusiveness: The MF assessment system should be
as nonintrusive as possible to not interfere in any way with
the performance of the user. If not properly designed, the
system can cause distress to the operation. A main factor to
improve is the number of electrodes used to acquire the EEG
signal, balancing the trade-off between number of electrodes
and precision of MF detection. In the surveyed literature, we
considered nonintrusive algorithms that rely on only EEG
sensor and consider just few channels. In several studies,
authors investigated the use of the simplest possible model,
using only one EEG channel [47], [73], [74], [80], [85], [87]
making the installation of electrodes as fast and simple as
possible and reducing a lot of the computational requirements.

5) Number of MF states: MF develops as an accumulative
process. Most published works use only two MF states to
assess MF. The use of intermediate states between ”no fatigue”
and ”fatigue” can help with the correct assessment of MF,
since more gradual change between states can ensure better
accuracy and greater response time for safety-critical systems.
On the surveyed literature, few authors explored the use of
intermediate MF states. We can identify the studies using three
[59], [76], [89] or four [67], [77], [91] different MF states.
Some methods capable of performing regression can present
an almost continuous MF development output [78], [79].

6) Closed loop system: The assessment of MF is as im-
portant as what the system does with this information. There
is a need to develop efficient ways to mitigate the effects of
MF and to alert the user about the dangers in the operation
during the MF state. The MF detection system needs to be
capable of acting before any accident happens, in a preventive
way. On the surveyed literature, several authors implemented
closed loop systems, but almost all of them used driving as
a case study. In most cases, the fatigue threshold detection
module sends a sonorous or visual warning feedback to alert
the user about dangerous driving conditions [66], [67], [75],

[78], [86], [91], [93]. A vehicle speed control model based on
an MF assessment algorithm was successfully implemented in
[70]. There was only one work that considered a closed loop
system in an application area other than driving, where the
author implemented an MF warning feedback for train pilots
using sonorous alarm and a massage chair [71].

VI. CONCLUSION

Following the continuous increase in quality of hardware
and software present in all kinds of machine systems, the role
of the human factor and human failure in accidents in human-
machine systems has become more evident. One of the biggest
causes of human failure lies in excessive MF, which can lead to
drowsiness, lack of situational awareness, and slower response
to external stimulus. When developing a system that can assess
MF and warn the human operator about its critical condition,
the use of EEG is recognized as the most reliable way to
implement such a system.

This survey paper reviewed the current state of the art of the
field of EEG-based MF detection systems. The fundamentals
of data acquisition and interpretation were approached. The
underlying structure of a typical EEG-based MF detection
method was discussed and the most common preprocessing,
feature extraction, and classification algorithms were presented
and briefly discussed. The main goal of this paper is to provide
an overview of the current trends in the area. To do this, we
tried very hard to be inclusive of relevant papers published
in the past five years. In this review we discussed these
papers approaches, characteristics, and results based on their
application domains, which we divided into time, frequency,
and time-frequency domains.

In the final portion of the paper we discussed the current
state of the art using the presented taxonomy as a basis for
discussion. The main points of the MF detection methods ar-
chitectures were approached and their current usage and future
trends were briefly evaluated. There is a lot of opportunity
to develop MF detection systems for applications other than
driving and now might be the right moment to put more
emphasis into deep learning models that have been barely used
to date, always keeping in mind the important role of online
models in making real world applications feasible.

trFinally, from our survey study we recommend the reader
to take a closer look at Trejo et al. [69]. On this work the
authors implemented an MF detection model based on KPLS-
DLR that meets most of the desired criteria for a feasible MF
detection system in real life. Their model is dynamic, feasible
for online implementation and robust for cross-subject classi-
fication. The system is very minimally intrusive, using only
2 EEG channels and 2 EOG channels for artifact rejection.
The mathematical algorithm implemented is simple but has
outstanding performance (97% accuracy).
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[12] T. Åkerstedt and M. Gillberg, “Subjective and objective sleepiness in
the active individual,” International Journal of Neuroscience, vol. 52,
no. 1-2, pp. 29–37, 1990.

[13] M. W. Johns, “A new method for measuring daytime sleepiness: the
epworth sleepiness scale,” sleep, vol. 14, no. 6, pp. 540–545, 1991.

[14] T. Chalder, G. Berelowitz, T. Pawlikowska, L. Watts, S. Wessely,
D. Wright, and E. Wallace, “Development of a fatigue scale,” Journal
of psychosomatic research, vol. 37, no. 2, pp. 147–153, 1993.

[15] P. M. Forsman, B. J. Vila, R. A. Short, C. G. Mott, and H. P. Van Dongen,
“Efficient driver drowsiness detection at moderate levels of drowsiness,”
Accident Analysis & Prevention, vol. 50, pp. 341–350, 2013.

[16] B.-C. Yin, X. Fan, and Y.-F. Sun, “Multiscale dynamic features based
driver fatigue detection,” International Journal of Pattern Recognition
and Artificial Intelligence, vol. 23, no. 03, pp. 575–589, 2009.

[17] A. Sahayadhas, K. Sundaraj, and M. Murugappan, “Detecting driver
drowsiness based on sensors: a review,” Sensors, vol. 12, no. 12, pp.
16 937–16 953, 2012.

[18] W. Zhu, H. Yang, Y. Jin, and B. Liu, “A method for recognizing fatigue
driving based on dempster-shafer theory and fuzzy neural network,”
Mathematical Problems in Engineering, vol. 2017, 2017.

[19] V. Menon, S. Rivera, C. White, G. Glover, and A. Reiss, “Dissociating
prefrontal and parietal cortex activation during arithmetic processing,”
Neuroimage, vol. 12, no. 4, pp. 357–365, 2000.

[20] S.-W. Chuang, L.-W. Ko, Y.-P. Lin, R.-S. Huang, T.-P. Jung, and C.-T.
Lin, “Co-modulatory spectral changes in independent brain processes
are correlated with task performance,” Neuroimage, vol. 62, no. 3, pp.
1469–1477, 2012.

[21] B. He, S. Gao, H. Yuan, and J. R. Wolpaw, “Brain–computer interfaces,”
in Neural Engineering. Springer, 2013, pp. 87–151.

[22] J. Liu, C. Zhang, and C. Zheng, “Eeg-based estimation of mental fatigue
by using kpca–hmm and complexity parameters,” Biomedical Signal
Processing and Control, vol. 5, no. 2, pp. 124–130, 2010.

[23] H. H. Jasper, “The ten twenty electrode system of the international fed-
eration,” Electroencephalography and Clinical Neuroph siology, vol. 10,
pp. 371–375, 1958.
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