
June 2009
Finn Arve Aagesen, ITEM
Mazen Malek Shiaa, ITEM
Markus Hidell (Asst. Professor), KTH, Sweden

Master in Security and Mobile Computing
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Performance Evaluation Framework for
a SIP-based Telecommunication Call
Handling System

Nattanond Sangvanphant

Problem Description
The research work comprises the study and development of a performance evaluation framework
for a telecommunication call handling system that utilizes SIP platform. This call handling system
is part of an overall solution provided by Gintel for Virtual PBX. The performance evaluation
framework will focus on two main performance characteristics: system throughput (number of
calls) and call set-up delay.

1. Make a requirement specification for a performance evaluation framework.
2. Study the possibilities for using existing tools.
3. Study the telecommunication call handling system that will be used.
4. Develop a performance evaluation framework which facilitates throughput and call set-up delay
measurements.
5. Work out a selection of traffic load patterns, and make experiments for various call handling
system architectures.

Assignment given: 15. January 2009
Supervisor: Finn Arve Aagesen, ITEM

I

Abstract

Session Initiation Protocol (SIP) has been used for signaling in many Voice over IP

(VoIP) applications. Being more cost-effective than conventional circuit-switched

systems, IP-based telecommunication systems are extensively employed by many

service providers. As these systems gain more popularity, the need for dimensioning

of such systems grows correspondingly. Moreover, accurate information about system

capacity is necessary for future improvements of the system, as well as service

provision and implementation planning. For these reasons, a solution supporting

system performance evaluation is useful and beneficial in several ways.

The goal of this research was to develop a performance evaluation framework for a

SIP-based telecommunication system. The developed framework facilitates

measurements of the maximum number of requests which can be processed by a

system, and the amount of time required for call session establishment. With a user-

friendly interface, the framework enables system testers to perform experiments using

simulated SIP traffics, as well as to deal with results interpretation easily.

In order to achieve the objective, studies of related technologies and available tools

for SIP traffic generation have been carried out. Afterwards, the performance

evaluation framework is designed and implemented. Lastly, the developed framework

is used for evaluating the performance of EasyVPaBX, a SIP-based call handling

system, in various system configurations.

Keywords: SIP, Performance, Evaluation, Dimensioning, Measurement

II

III

Acknowledgement

This thesis is a part of the Master of Science in Security and Mobile Computing

degree in the NordSecMob program. It is done at the Department of Telematics

(ITEM), Norwegian University of Science and Technology (NTNU).

I would like to thank my supervisors, Mazen Malek Shiaa, and Professor Finn Arve

Aagesen for all their guidance, assistance, and valuable feedback throughout the

period of this thesis. Additionally, I would like to thank Asst.Prof. Markus Hidell at

the Royal Institute of Technology (KTH) in Stockholm, Sweden for his supervision.

Special thanks to Kirati Suttikulpanich for his beneficial ideas and advice.

Furthermore, I am indebted to the NordSecMob consortium and the European

Commission for giving me the opportunity to participate in this program. I would

also like to thank program coordinators, Eija Kujanpaa, Assoc.Prof. Peter Sjodin,

May-Britt Eklund-Larsson, and Mona Nordaune for their helpful assistance. Special

thanks to NordSecMob friends and classmates for their encouragement.

Lastly, I would like to thank my family and friends in Thailand for their love and

support throughout the time that I have to be away from home.

Trondheim, June 2009

Nattanond Sangvanphant

IV

V

Contents

Abstract .. I

Acknowledgement ... III

Contents .. V

List of Figures .. IX

List of Tables ... XI

1 Introduction ... 1

1.1 Motivation and Background .. 1

1.2 Objective and Scope .. 2

1.3 Research Work Activities .. 3

1.4 Structure of the Report ... 4

2 Background ... 5

2.1 Session Initiation Protocol (SIP) ... 5

2.1.1 SIP User Identifier .. 6

2.1.2 SIP Components ... 6

2.1.3 SIP Messages .. 7

2.1.4 SIP Headers .. 9

2.1.5 SIP Conversation ... 10

2.2 SIPp - SIP Performance Testing Tool .. 11

2.2.1 Running SIPp .. 11

2.2.2 Controlling SIPp .. 12

VI

2.2.3 Call Rate.. 12

2.2.4 XML Scenario File ... 12

2.2.5 Statistics .. 14

2.2.6 Output Files .. 15

2.3 OpenSIPS - Open Source SIP Server .. 16

2.4 EasyVPaBX ... 17

2.4.1 PaBX and Virtual PaBX ... 17

2.4.2 Key Features .. 18

2.4.3 System Architecture .. 18

3 Experiment on SIPp and OpenSIPS ... 21

3.1 Installation ... 21

3.1.1 Environment .. 21

3.1.2 SIPp ... 21

3.1.3 OpenSIPS .. 22

3.2 Scenarios .. 22

3.2.1 UAC and UAS ... 22

3.2.2 UAC and UAS with a SIP proxy ... 24

3.3 Results for Various Settings ... 26

3.3.1 Traffic Generation Rates ... 26

3.3.2 OpenSIPS Memory Configuration .. 27

3.4 Discussion about SIPp and OpenSIPS .. 28

4 SIP Performance Evaluation Framework.. 29

4.1 Framework Overview ... 29

4.2 Requirement Specification .. 30

4.2.1 Performance Measurements ... 30

4.2.2 Scenarios .. 31

4.2.3 User Interface... 35

4.3 Design... 35

VII

4.3.1 Components ... 35

4.3.2 Graphic User Interface ... 37

4.4 Implementation .. 39

4.4.1 Initial Requirements .. 39

4.4.2 Scenario Files ... 40

4.4.3 Threads .. 41

4.4.4 Starting SIPp ... 44

4.4.5 Controlling SIPp .. 45

4.4.6 Reading Statistics File ... 46

4.4.7 Displaying Graphs ... 46

5 EasyVPaBX Performance Evaluation... 49

5.1 System Configuration ... 49

5.1.1 Single Computer .. 50

5.1.2 Two Computers with a Load Balancer .. 51

5.2 Testing Environment .. 53

5.3 Performance Evaluation Results ... 54

5.3.1 Single Computer: Machine A ... 54

5.3.2 Single Computer: Machine B ... 55

5.3.3 Single Computer: Machine C ... 56

5.3.4 Single Computer: Machine D ... 57

5.3.5 Load Balancing: Machine C and Machine D .. 58

5.4 Results Comparison .. 59

5.5 Results Discussion .. 61

6 Framework Evaluation and Discussion ... 63

6.1 Requirement Verification .. 63

6.2 Comparisons to SIPp .. 64

6.2.1 Evaluation Parameters Specification .. 64

6.2.2 Results Presentation .. 64

VIII

6.3 Discussions ... 65

6.3.1 Performance Evaluation based on SIP Signals 65

6.3.2 Platform Compatibility .. 65

6.3.3 Proxy Server and Call Recipient .. 66

6.3.4 Determination of the System Capacity .. 66

6.3.5 Traffic Patterns ... 66

7 Conclusions ... 67

7.1 Summary .. 67

7.2 Future Work .. 68

References .. 69

Appendix A User Manual ... 73

Appendix B Simple Call Scenario File .. 75

Appendix C Queue Scenario File .. 77

Appendix D SIP Miscellaneous ... 79

Appendix E SIPp Miscellaneous ... 81

Appendix F OpenSIPS Miscellaneous ... 85

IX

List of Figures

Figure 1-1: Overview of the Performance Evaluation Framework 2

Figure 2-1: Example of a SIP INVITE request (adapted from [1]) 8

Figure 2-2: Example of a SIP response (adapted from [1]) .. 9

Figure 2-3: Example of SIP transactions (adapted from [1]) 10

Figure 2-4: EasyVPaBX Architecture (adapted from [19]) 18

Figure 3-1: SIP messages between UAC and UAS ... 22

Figure 3-2: Sequence of commands (simple UAC) .. 23

Figure 3-3: Sequence of commands (simple UAS) .. 23

Figure 3-4: SIP messages between UAC, SIP proxy, and UAS 24

Figure 3-5: OpenSIPS configuration file (partial) for simple UAC and UAS 25

Figure 3-6: INVITE message forwarded by the proxy ... 25

Figure 3-7: INVITE message received by the proxy .. 25

Figure 3-8: Successful calls at different target rates .. 26

Figure 3-9: Call response times at different target rates .. 26

Figure 3-10: Successful calls for different memory allocation 27

Figure 4-1: The performance evaluation framework ... 29

Figure 4-2: SIP messages in the simple call scenario .. 32

Figure 4-3: SIP messages in the queue scenario .. 34

Figure 4-4: Performance evaluation framework (detailed design) 36

Figure 4-5: Configurable Parameters ... 37

Figure 4-6: Successful/Failed calls diagram ... 38

Figure 4-7: Call failure diagram ... 38

Figure 4-8: Response time diagram ... 38

Figure 4-9: Call length diagram ... 38

X

Figure 4-10: Java method for command line execution .. 44

Figure 4-11: Generating a shell script from configuration parameters 45

Figure 4-12: Simplified Java code in the control thread ... 46

Figure 5-1: System Configuration for testing a single computer 50

Figure 5-2: System Configuration for testing two computers 51

Figure 5-3: Configuration files used for load balancing ... 52

Figure 5-4: Number of calls and call setup time diagrams (Machine A) 54

Figure 5-5: Number of calls and call setup time diagrams (Machine B) 55

Figure 5-6: Number of calls and call setup time diagrams (Machine C) 56

Figure 5-7: Number of calls and call setup time diagrams (Machine D) 57

Figure 5-8: Number of calls and call setup time diagrams (Machines C, D) 58

Figure 5-9: Successful call rate comparison .. 59

Figure 5-10: Failure percentage comparison .. 60

Figure 5-11: Call setup time comparison ... 60

Figure 6-1: Comparison of parameter specification .. 64

Figure 6-2: Comparisons of result presentations .. 65

Figure A-1: The performance evaluation framework (user manual) 73

Figure A-2: Output image files from the framework .. 74

XI

List of Tables

Table 5-1: Specifications of computers used as target systems 53

Table 5-2: Average Statistics (Machine A) ... 54

Table 5-3: Average Statistics (Machine B) ... 55

Table 5-4: Average Statistics (Machine C) ... 56

Table 5-5: Average Statistics (Machine D) ... 57

Table 5-6: Average Statistics (Machines C, D) .. 58

Table 5-7: Maximum capacity for different configurations .. 61

Table D-1: SIP methods (adapted from [32]) .. 79

Table D-2: SIP responses (adapted from [32]) ... 79

Table D-3: SIP Headers (summarized from [1]) ... 80

Table E-1: SIPp startup parameters .. 81

Table E-2: SIPp interactive commands ... 81

Table E-3: SIPp hot keys .. 82

Table E-4: SIPp unique attributes for certain commands .. 82

Table E-5: Attributes in XML scenario files .. 83

Table E-6: Keywords in XML scenario files ... 83

Table E-7: SIPp statistics counters ... 84

Table E-8: SIPp output files ... 84

Table F-1: OpenSIPS important keywords .. 85

Table F-2: OpenSIPS key parameters ... 85

Table F-3: OpenSIPS important functions .. 86

XII

1

Introduction

1.1 Motivation and Background

Session Initiation Protocol (SIP [1]) has become an industry standard for Voice

over IP (VoIP) applications. IP-based telecommunication systems are widely used

because of their cost-effectiveness compared to conventional circuit-switched

systems. As a basis for cost-effective implementations, knowledge about the

performance of the SIP-system is needed.

Many aspects of performance have been studied and certain evaluation approaches

are suggested. According to [2], the most important metric of SIP performance is

the number of requests that the server can process successfully (throughput).

Another significant aspect is the latency needed for setting up the session since SIP

has sub-second timing requirements that affect the overall performance of the

system [3].

A common method used for SIP system performance evaluation is to simulate

activities of users generating SIP calls to the target system. There are some open

source projects implementing SIP traffic generator for evaluation purpose such as

SIPp [4] which is used in many research works (e.g. [5], [6], [7], and [8]).

Nevertheless, using such tools demands deep knowledge and understandings.

Moreover, the text-based interface provided requires substantial efforts for

controlling the tool and the interpretation of the results.

For these reasons, an easy-to-use framework for performance evaluation of a SIP-

based system was needed. A user-friendly interface was needed for efficient

specification and performance of experiments as well as easy results interpretation.

2

1.2 Objective and Scope

The goal of this thesis is to design and implement a user-friendly performance

evaluation framework for a SIP-based telecommunication system. The framework

aims to be used in the dimensioning of the system.

An overview of the performance evaluation framework is illustrated in Figure 1-1.

User configures and controls an evaluation test through a standalone application.

The traffic generator creates SIP requests destined to the target system. An

intermediate node acts as a SIP proxy is responsible for forwarding SIP traffic.

The evaluation results are presented to the user in graphical formats.

The thesis focuses on two metrics, 1) system capacity and 2) the time needed for

call establishment. These two aspects of performance are measured using simulated

SIP traffics towards a target system. Considering the SIP traffic generation, there

are two issues that must be noted. First, SIP call sessions produced by the

framework do not contain any media data. For simplicity, the thesis focuses only

on the control plane of call sessions. Therefore, performance evaluation performed

by the framework is based on SIP signaling alone. Call sessions with media streams

may have certain degrees of influence on the performance, but this is not taken

into consideration in this thesis work. Second, implementation of the traffic

generator and the SIP proxy used in the framework are not parts of this thesis.

The two components are chosen from existing tools available as open source

projects.

In addition to developing an evaluation framework, the thesis includes a study of

the EasyVPaBX system and its performance. Various computers with different

computational power are used for the experiments. Target systems are set up from

a number of system configurations. EasyVPaBX as well as other necessary

software components are installed in the target systems. We apply the developed

framework to evaluate the performance of these target systems.

Figure 1-1: Overview of the Performance Evaluation Framework

control

result

 3

1.3 Research Work Activities

The research work performed in this thesis is divided into three steps, study,

develop, experiment, and evaluate. Details of each step are given as follow.

Study

The first step includes a study of related technologies, available tools to be used as

SIP traffic generator and SIP proxy, as well as the target system. As for the SIP

protocol, we focused on SIP messages, transactions, and roles of SIP participants.

Two tools, SIPp and OpenSIPS were studied. We configured a simple SIP system

based on these tools and some tests were performed.

The target system, EasyVPaBX, is a SIP-based system providing PBX

functionalities. We studied its architecture, required working environment, and

deployment and operation of the system.

Develop

With the available tools studied in the previous step, we designed and

implemented the performance evaluation framework. We analyzed the requirement

specifications of the framework. After that, a detailed design of the application was

made. We continued with the implementation step which includes defining SIP

scenarios, managing the interactions with a SIP traffic generator, processing

captured results, and drawing graphical diagrams.

Experiment

From the knowledge of the EasyVPaBX obtained in the first step, we identified

certain system configurations for target systems. The target systems were

prepared with necessary components such as an application server and a database.

The EasyVPaBX was deployed on the target systems. In addition to the target

systems, we configured another system with the performance evaluation framework

as well as other elements (i.e. a SIP proxy and a call recipient) to act as a tester.

Repetitive experiments on performance evaluation of the target systems

(EasyVPaBX) using the framework were carried out. We then compared the result

data gathered with the framework.

4

Evaluate

Following the development process, we evaluation the performance evaluation

framework. We verified the framework we have developed against the requirement

specification. We compared the framework and the existing tool, SIPp, for the

usability and user-friendliness. In addition, we discussed some issues regarding the

developed framework.

1.4 Structure of the Report

Chapter 1: Introduction introduces a background motivation of this thesis. A scope

of the work, an overview of the performance evaluation framework developed in

this thesis, and the method used to accomplish the work are also presented.

Chapter 2: Background gives explanations of related technologies and tools used in

this thesis work including SIP, SIPp, OpenSIPS, and EasyVPaBX.

Chapter 3: Experiments on SIPp and OpenSIPS presents numbers of experiments

with the tools SIPp and OpenSIPS. Certain scenarios are setup and evaluation

tests are carried out.

Chapter 4: SIP Performance Evaluation Framework explains the requirements of

the framework and gives details of the design and implementation of the

performance evaluation tool.

Chapter 5: EasyVPaBX Performance Evaluation describes the details of system

configurations to be evaluated. The performance results from multiple experiments

are presented. Comparison of the results is given at the end of the chapter.

Chapter 6: Framework Evaluation and Discussion presents the evaluation of the

framework developed. It also discusses some issues of the framework.

Chapter 7: Conclusions summarizes the work in this thesis. In addition, interesting

ideas are pointed out for potential future works.

2

Background

This chapter explains related technologies and tools used in this project. We start

with section 2.1 explaining Sesstion Initiation Protocol (SIP), a signaling protocol

providing communication session setting up and tearing down. We continue with

the SIPp tool used for SIP performance testing in section 2.2. Next, section 2.3

gives details about the OpenSIPS project which implements SIP servers. Lastly, we

describe the EasyVPaBX, product of Gintel AS, which is the target system to be

evaluated in section 2.4.

2.1 Session Initiation Protocol (SIP)

Session Initiation Protocol (SIP) [1] is a signaling protocol for session management.

Typically, the main functions of SIP include locating end points, contacting and

exchanging information between end points for session establishment, modifying,

and terminating multimedia sessions with one or multiple participants [9]. SIP

works in an application layer and is independent of underlying transport layer.

Therefore, it can run on top of different transport protocols e.g. TCP, UDP.

SIP can be easily incorporated with various types of Internet applications. Since

SIP only deals with managing session, it is not an entire communication system by

itself. SIP is independent of the type of multimedia session handled and of the

mechanism used to describe the session [10]. Hence, SIP should be used with other

protocols to provide a complete service. These protocols include the Real-time

Transport Protocol (RTP) [11] for transporting real-time data such as audio and

video, the Real-Time Streaming Protocol (RTSP) [12] for media streaming control,

and the Session Description Protocol (SDP) [13] which is used to describe

multimedia communication sessions for session negotiation purpose. Nevertheless,

SIP is not dependent on any of them. Introducing new SIP applications does not

require changes to the network infrastructure. For these reasons, SIP has been

widely acknowledged as the industry standard for voice over IP (VoIP) protocols.

6

2.1.1 SIP User Identifier

SIP allows SIP user agents (see section 2.1.2.1) on the Internet to locate each

other. SIP provides name mapping and redirection service which allows user

mobility. The namespace maps between user identifier and the current location of

the user. Therefore, users can use a single identifier regardless their network

location. A SIP participant is identified by a Uniform Resource Identifier (URI).

This URI acts as a contact number for the participant. The syntax of SIP URIs is

sip:username@host:port, where host is the domain name of the SIP service

provider, and port is the port number which listens to SIP requests. For secure

transmission mode, sips: is used instead of sip: to represent the transportation

over the Transport Layer Security (TLS) protocol.

2.1.2 SIP Components

According to RFC 3261 [1], the SIP architecture consists of different SIP

components. These components interact with each other in a SIP scenario. There

are two main components in a SIP system: user agents and SIP servers.

2.1.2.1 User Agents

A User agent (UA) is an end-point entity which creates or receives SIP

messages. End users interact with a user agent through an interface

provided by the agent. By means of UA, end users can initiate,

hold/unhold, transfer, and answer/reject a SIP call.

A SIP UA can be divided into two roles, a User Agent Client (UAC), and a

User Agent Server (UAS). Within a SIP transaction, UAC generates SIP

requests, while UAS receives the requests, produces SIP response, and sends

it back to UAC. A single UA can function as both UAC and UAS.

SIP UA is available in the form of hardware as well as software. Hardware-

based user agent includes SIP-enabled mobile phone and SIP phones from

Cisco, Linksys, Aastra, etc. On the other hand, software-based agent is a

program which allow user to make or receive calls from a computer.

Examples of SIP soft-phones are SJPhone (www.sjlabs.com), Ekiga

(www.gnomemeeting.org), and X-Lite (www.counterpath.com).

http://www.sjlabs.com/�
http://www.gnomemeeting.org/�
http://www.counterpath.com/�

 7

2.1.2.2 SIP Servers

Even though two SIP user agents can communicate with each other

directly, it is not practical for a real-world scenario. Therefore, SIP servers

are needed as intermediary network elements to facilitate end points

discovery as well as process and forward SIP requests. Four types of SIP

servers are

• Proxy Server : SIP proxy server acts on behalf of clients to forward SIP

requests. It looks up a location of the destination and routes the traffic

to the corresponding recipient. Two types of proxy server are stateful

proxy and stateless proxy. The stateful proxy maintains the state of the

transaction while the stateless proxy relays SIP requests without keeping

any state information

• Redirect Server : SIP redirect server generates redirection answers to

indicate the client to try a different route. This happens when a

recipient has moved from its original location.

Redirect server does not forward the requests to the destination itself.

Instead, it guides the caller to the next destination by replying with a

location of the target URI. The client uses the received route

information to send the request to the destination.

• Registrar Server : A registrar processes REGISTER requests from users

to update their locations. A SIP URI is bound to its current location

temporarily. Therefore, every time a user logins, the UA sends a

registration message containing the location of the user to the registrar

• Location Server : A location server provides current location information

of SIP users. It cooperates with a registrar to maintain the mapping

between URIs and corresponding locations. The addresses registered at a

registrar are stored in a location server.

2.1.3 SIP Messages

SIP is a text-based protocol based on the UTF-8 character set. SIP messages

consist of a start-line, header fields, one empty line indicating the end of the

header fields, and an optional message body. The start-line can be either a

Request-line or a Status-line depends on the type of the message. The syntax of

SIP messages and header fields are similar to messages in the Hypertext Transfer

Protocol (HTTP). SIP messages can be categorized into two types, SIP requests

and SIP responses.

8

2.1.3.1 SIP Requests

A SIP request is a SIP message which contains a Request-line as a first line.

A Request-Line consists of a method name, a Request-URI, and the

protocol version. A single space is needed between a method name and a

Request-URI, as well as between the URI and the version number. This

Request-Line ends with a CRLF (Carriage-Return, Line-Feed) character.

Only six methods are defined in RFC 3261 [1] , they are INVITE, ACK,

BYE, CANCEL, REGISTER, and OPTIONS. Additional methods have

been defined later to support more complicated services. SIP methods and

their descriptions can be found in Table D-1, Appendix D.

An example of a SIP request is shown in Figure 2-1 [1]. The INVITE

message is created by Alice (alice@atlanta.com) to invite Bob

(bob@biloxi.com) to join a new call session. The Request-Line contains the

method name INVITE, the request URI, and SIP/2.0 as the SIP version.

The rest of the lines are message headers which are explained later. Note

that the content (SDP message) is not shown in the figure.

2.1.3.2 SIP Responses

A SIP response has a Status-Line as its start-line. A Status-Line consists

of the protocol version, a numeric Status-Code, and a Reason-Phrase. In

the same fashion as the Request-Line for a SIP request, each element in a

Status-Line is separated by a single space, and a CRLF character at the

end of the line.

Figure 2-2 below shows an example of a SIP response. The response message

is the result associated to an INVITE message initiated by Alice

(alice@atlanta.com) to Bob (bob@biloxi.com). This response contains 200

as a Status-Code, and OK as a Reason-Phrase.

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds
Max-Forwards: 70
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@pc33.atlanta.com
CSeq: 314159 INVITE
Contact: <sip:alice@pc33.atlanta.com>
Content-Type: application/sdp
Content-Length: 142

Figure 2-1: Example of a SIP INVITE request (adapted from [1])

 9

The Status-Code is an integer with 3 digits. This code indicates the result

of an attempt of a request. The Reason-Phrase, which is intended for

human user, gives short description explaining the Status-Code.

SIP defines the classes of response using the first digit of the Status-Code.

The other two digits vary for different results. For instance, a code between

100 and 199 is in the class 1xx response. Six classes of response and their

descriptions can be found in Table D-2, Appendix D.

Some examples of SIP responses are

• 100 Trying indicates that the request is successfully received and

being processed by the server.

• 180 Ringing indicates that the UA is trying to alert the user.

• 200 OK means that the request has been successful.

• 400 Bad Request indicates a syntax error in the request

• 404 Not Found informs that the requested user does not exist.

• 500 Server Internal Error indicates the unexpected problem at the

server side. The client may retry after some time.

2.1.4 SIP Headers

Apart from a Status-line of a Request-line in the first line of a SIP message, there

is a set of SIP headers in the following lines. Each header field consists of a field-

name, a colon, and a field-value. Whitespaces are allowed on either side of the

colon. However, it is suggested in RFC 3261 [1] that the implementations use only

one single space between the colon and the field-value. Examples can be found in

SIP messages in Figure 2-1 and Figure 2-2. (See Table D-3 for lists of SIP headers)

SIP/2.0 200 OK
Via: SIP/2.0/UDP server10.biloxi.com
;branch=z9hG4bKnashds8;received=192.0.2.3
Via: SIP/2.0/UDP bigbox3.site3.atlanta.com
;branch=z9hG4bK77ef4c2312983.1;received=192.0.2.2
Via: SIP/2.0/UDP pc33.atlanta.com
;branch=z9hG4bK776asdhds ;received=192.0.2.1
To: Bob <sip:bob@biloxi.com>;tag=a6c85cf
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@pc33.atlanta.com
CSeq: 314159 INVITE
Contact: <sip:bob@192.0.2.4>

Figure 2-2: Example of a SIP response (adapted from [1])

10

2.1.5 SIP Conversation

Figure 2-3: Example of SIP transactions (adapted from [1])

Figure 2-3 shows an example of SIP conversation between multiple participants.

The SIP session is established between Alice and Bob. First, Alice initiates a call

by sending an INVITE message to Bob through a proxy server in her domain.

Alice’s proxy server then finds out the address of Bob’s proxy server, and contacts

that proxy server to forward the invitation to Bob. Alice’s proxy also sends a 100

Trying message back to Alice’s UA to inform that it is performing the request.

Once the INVITE message is received by Bob’s UA, it replies with a 180 Ringing

message. When Bob picks up the call, a 200 OK message is generated and sent

back to Alice’s UA via the two proxies. After Alice’s UA gets the 200 OK, it

acknowledges Bob’s UA by sending an ACK message. From this point on, the

session has been established. Further media sessions can begin right after this.

When Bob hangs up the call, his UA generates a BYE message and sends it to

Alice’s UA to terminate the session. Alice’s UA replies with a 200 OK message,

and the session is terminated at both sides.

 11

2.2 SIPp - SIP Performance Testing Tool

SIPp[4] is a free performance testing tool for the SIP protocol. The SIPp project

has been initiated by Richard Gayraud, and Olivier Jacques from Hewlett Packard

Company. It is now an open source project being developed by many contributors.

SIPp can be used to test SIP equipments by generating SIP traffic and recording

performance measurements. The measurements provided include response time,

call time, number of successful calls and failed calls, number of ongoing calls, etc.

SIPp can generate multiple SIP calls to a remote system. In addition, many

instances of SIPp can be run simultaneously as long as they are bound to different

socket on the same machine. SIPp tool is based on the command line interface.

The interactive text-based results are displayed in several screens. For the

performance testing purpose, SIPp provides the ability to periodically save the

statistics as well as other logs to output files. Those files are of the comma-

separated-values or CSV format.

SIPp tool is available on almost all UNIX platforms including Linux. It can be also

run on the Windows platform. However, the Windows version of SIPp may not be

suitable for testing purpose since it cannot handle high performances. To reach

high performances, the UNIX systems are recommended.

The following parts describe in details the important features of SIPp.

2.2.1 Running SIPp

SIPp can be started from the command line. Several startup parameters are passed

to the SIPp process to configure it. The format of the command is

sipp remote_host[:remote_port] [options]

The remote_host and remote_port is the target of the generated traffic. After the

execution, SIPp starts generating and sending sequences of SIP messages to the

target. The sequence of SIP messages are defined by the embedded scenarios or the

external XML scenario file. Important parameters used when starting SIPp are

listed in Table E-1, Appendix E.

After an instance of SIPp tool has been created, the display screen shows the

diagram of SIP messages as well as message counters. Further interactions with

the tool are addressed in the next section.

12

2.2.2 Controlling SIPp

Once a SIPp instance has been created and running, it can be controlled using two

sets of commands, the hot keys and the interactive commands. Hot keys refer to

single key commands which can be entered at any time. See Table E-3 in

Appendix E, for the hot keys supported by SIPp.

Interactive commands offer more flexibility than the hot keys. They are single line

commands which require the command mode. The command mode can be entered

by the hot key “c”. The list of interactive commands is shown in Table E-2.

To control the SIPp tool, there are two approaches provided. The first way is

using the interactive command line. The SIPp process can be controlled by passing

the commands using keyboard. Hot keys can be executed directly in any screens,

while other commands must be used once the process is in the command mode.

The other way to execute the commands is through the controlling UDP socket.

Each SIPp instance listens to a specific UDP socket. This allows SIPp to be

remote-controlled. The commands can be sent to this controlling socket in order to

control the traffic generation. The controlling socket can accept both hot keys and

interactive command described above. The commands must be prefaced with the

letter c, for instance, cset rate 5.

2.2.3 Call Rate

The number of calls generated by SIPp in a specific amount of time can be

adjusted. This is called the call rate. The startup parameters specify the initial call

rate of the traffic. Once a SIPp instance is running, the call rate can be controlled

through the hot keys, and the interactive commands.

The unit of rate which is controlled by those commands is number of calls per one

period of time. The default value of the period if not specified otherwise is 1000 ms

or 1 second. However, this period can be adjusted by the startup parameters.

2.2.4 XML Scenario File

SIPp can take an external XML scenario file as a startup parameter. The scenario

file specifies the sequence of SIP messages to be sent and received. In addition, it

also defines starting and stopping points for timers, actions, logging events, etc.

The scenario file are passed through -sf option when starting SIPp.

 13

The XML scenario file contains commands which are used to control SIPp

behavior. Within each command tag, there are numbers of attributes for further

adjustment. SIPp also provides keywords for constructing SIP messages in the

scenario file. The following subsections address more details about these elements.

2.2.4.1 Commands

Commands are used to instruct SIPp to perform certain tasks e.g. sending

and receiving SIP messages. The commands are in XML tags format. Some

basic commands are <send>, <recv>, and <pause>.

• <send> This command is used to send SIP messages to the

target system. Inside the <send> tag, a SIP message must be

enclosed <![CDATA[and]]>.

• <recv> makes SIPp wait for the specified SIP message.

• <pause> tells SIPp to pause the scenario for some amount of

time. During the pause period, SIPp will not send any messages.

This command can be used to emulate the call length. When

there is no attribute used with the <pause> command, SIPp will

use the value specified by the startup parameter -d as the delay.

Apart from the basic commands, there are commands regarding distribution

of timers. <ResponseTimeRepartition> and <CallLengthRepartition> are

used to define the intervals of distribution counters. The distribution

counters will be shown in the display window. They can also be written to

an output file if -trace_stat parameter is used.

2.2.4.2 Attributes

Each command has its own attributes for fine-tuning the command as

shown in Table E-4, Appendix E. Besides the unique attributes for certain

commands, there are numbers of attributes which are applicable for every

command. The common attributes are listed in Table E-5, Appendix E.

2.2.4.3 Keywords

There are some keywords available for constructing SIP messages.

Keywords are always in square brackets, []. These keywords will be

replaced by some values before the messages are sent. See Table E-6 in

Appendix E for available keywords.

14

2.2.4.4 Injection File

Apart from the keywords, the values can be injected using an external CSV

file. The file name has to be specified when executing SIPp with the

parameter -inf. To refer to the values, the keyword [field] is used in the

XML scenario file. The order of usage can be defined in the first line of the

injection file as SEQUENTIAL or RANDOM.

2.2.5 Statistics

SIPp offers timers and many counters to keep track of the calls generated. These

statistics values can be saved to output files for further use. The available timers

and counters are as follows.

2.2.5.1 Response Time Timers

SIPp provides five timers to measure the time between two SIPp

commands. The commands are send, recv, and nop which are specified in

the XML scenario file. In each command, the timers can be started or

stopped using start_rtd and rtd attributes of the command.

The measured response times are shown in display screens. In addition,

these timers can also be saved in a CSV file by specifying startup

parameters, i.e., -trace_rtt and -trace_stat.

2.2.5.2 Counters

There are number of counters provided by SIPp. Two types of counters are

periodic (P) and cumulated (C) counters. The periodic counters are reset

every time after the statistic row is updated. The counters are dumped in

an output file of CSV format using -trace_stat parameter at startup. To

adjust the frequency of dumping these values to the file, -fd parameter is

used. Some important counters are shown in Table E-7, Appendix E.

 15

2.2.6 Output Files

SIPp provides various types of output files. To enable the output files, the startup

parameters need to be set. Some of the output files are stored in CSV format. CSV

format or comma-separated-values file is used for storing data in a table form.

Each line of a CSV file represents one row in the table. Within a line, data fields

are separated by commas. However, different separators can also be used instead of

a comma, for instance, a semicolon. The output file can be imported to a

spreadsheet application for further analysis or presentation. List of output files are

shown in Table E-8. Among all output files, two files which store the counters and

timers values are the statistics file, and the response time file.

2.2.6.1 Statistics File

The statistics file consists of all counters values. The first line contains a

header line with all counter names. All other lines are the counter values at

the time of the report. The file is dumped periodically. The frequency of the

report can be set by -fd parameter.

2.2.6.2 Response Time File

This file contains the timer values measured by SIPp. A measure is

triggered by a message reception defined in an XML scenario file. Each line

shows the recorded response time together with the timer number (1-5).

As for the performance testing purpose, especially with high call rate, heavy traces

may affect the performance result. For example, usage of -trace_msg and -

trace_logs are suggested to be limited to debugging purpose only.

16

2.3 OpenSIPS - Open Source SIP Server

OpenSIPS (Open SIP Server) [14] is an open source implementation of a SIP

server. The project has been started as the older name, OpenSER, by the Voice

System 1

OpenSIPS provides a powerful scripting language for routing logic. OpenSIPS can

be configured by editing the configuration script which is loaded at execution time.

Certain important keywords, parameters, and functions are given in

 team in 2005. OpenSIPS offers many features such as SIP registrar

server, SIP proxy/router, SIP redirect server, SIP load-balancer/dispatcher, etc. In

addition to its functionalities, OpenSIPS is flexible and customizable for various

solutions. According to the documentation provided in the website, OpenSIPS is a

reliable and high-performance SIP server. It is one of the fastest SIP servers, with

performance up to hundreds of call setups per second. And it can run on embedded

systems with limited resources.

Appendix F.

The complete documentation of the scripting can be found in the website.

Keywords

The keywords are specific to SIP messages received by the server. These keywords

can be used in if statements for conditional decision. Significant keywords are

listed in Table F-1, Appendix F.

Parameters

The parameters are used for configuring the SIP server such as enabling or

disabling certain functionalities. Table F-2 in Appendix F contains key parameters

of OpenSIPS.

Functions

Functions can be used within the route blocks to manipulate SIP messages. The

route blocks are the core routing logic executed when a SIP message is received.

The functions used for configuring a simple SIP proxy can be found in Table F-3.

1 http://www.voice-system.ro/

http://www.voice-system.ro/�

 17

2.4 EasyVPaBX

EasyVPaBX is a software framework for operators and service providers to deliver

advanced virtual PaBX solutions for businesses and enterprises. The service

controls the call behaviors including internal, outgoing, and incoming calls to

employees, as well as company common numbers. The engine of EasyVPaBX is

based on the session initiation protocol (SIP). EasyVPaBX is a product of Gintel

AS [15], a developer of advanced application software for telecommunications

operators and service providers.

EasyVPaBX can be considered as a back-to-back user agent (B2BUA). B2BUA is

a SIP element which resides between the two end points of a call session. The

session is divided into two call legs. B2BUA acts as a user agent server (UAS) for

the session initiator and as a user agent client (UAC) to the destination recipient.

EasyVPaBX offers various features such as private numbering plans,

screening/barring schemes, group numbers, call forwarding, call transfer,

conference, and many more. The logic of PaBX services can be custom-tailored for

each customer and instantly deployed on the system. User-friendly tools are

available for easy configurations including switchboard operation, service

provisioning, and user administration. Beside several features, EasyVPaBX can be

composed by adding service packages from feature modules, thus it is a flexible

solution for both the service providers and the customers. The entire framework is

hosted by the service provider, requiring no hardware on customer premises [16].

2.4.1 PaBX and Virtual PaBX

Private Automatic Branch Exchange (PaBX) is a telephone exchange device which

serves as a point of entry into the public switched telephone network (PSTN). It

can handle calls between users in the same organization (internal calls) as well as

calls to/from the outside through the PSTN lines. PaBX is less expensive than

connecting an external telephone line to every telephone in the organization.

Therefore, it is a popular choice for companies and businesses. [17]

Virtual PaBX or hosted PaBX system, in contrast, provides similar services as of

PaBX systems without requiring customers to buy and install on-site equipment.

A telephone company with switching equipment can be a PaBX service provider.

Hence, customer organizations do not need to invest in their own PaBX devices,

but instead purchase services from the service provider. In addition, the provider

18

can use the same equipment for multiple PaBX accounts. Furthermore, the hosted

PaBX service promotes user mobility. A company can be geographically

distributed while using one single number for the entire company. [18]

2.4.2 Key Features

EasyVPaBX implements classical PaBX features as well as many others. Certain

features of the EasyVPaBX are listed below [16].

• Automated call handling

• Call barring/screening

• Call diversion to a switchboard

• Corporate main numbers

• Call forwarding, transfer, conference

• Self-service configuration for service provider, company, switchboard

operator and end-user.

2.4.3 System Architecture

Figure 2-4: EasyVPaBX Architecture (adapted from [19])

 19

The overall architecture of EasyVPaBX is illustrated in Figure 2-4. The

components of EasyVPaBX are denoted by blue boxes. The architecture can be

divided into two parts, the telecom part on the left-hand side, and the web part on

the right-hand side. The telecom part carries out the call handling features, while

the web part provides user interfaces for system configurations. The two parts are

based on underlying layers which are independent of the EasyVPaBX components.

The database in the middle is connected to both the telecom and the web parts. It

is used to store customer as well as user data including user numbers, application

logic strategies, profiles, parameters, statistics counters, etc.

The network exposure layer allows interactions between applications in the upper

layer, and network resources in the lower layer. This layer communicates with the

telecom application server using SIP protocol. There are the telecom network

exposure layer in the telecom part, and the web exposure layer in the web part.

2.4.3.1 Telecom Network Exposure Layer

The telecom network exposure layer contains network gateway equipments.

This layer enables the telecom application to access the networks below e.g.

public switched telephone network (PSTN), and public land mobile network

(PLMN). The telephone and mobile network are connected to the telecom

server through the devices in this layer.

Since the EasyVPaBX components running in the telecom application

server are based on SIP protocol, the gateway in this layer is responsible for

conversion between SIP traffics and telephone traffics.

2.4.3.2 Web Network Exposure Layer

The web network exposure layer contains a web server, and a web front-

end. The web server handles HTTP requests from the Internet. This web

server could be a Tomcat [20] server or similar servers. The web front-end

provides user interfaces for configurations and monitoring. The user

interfaces include the Service Provider UI, the Administrator UI, the

Switchboard UI, and the Customer UI.

20

The application server layer provides execution environment for service

applications. In this layer, there are the telecom application server in the telecom

part, and the web application server in the web part.

2.4.3.3 Telecom Application Server

Call handling and network traffic handling functionality is performed in this

telecom application server. On top of the application server, the

EasyVPaBX components are deployed and executed.The EasyVPaBX

telecom application components are the EasyVPaBX Engine which

processes incoming and outgoing calls, and the EasyVPaBX Conference

which is responsible for conference call services. These components are SIP-

based applications. Hence, the application server should be SIP- enhanced

to support the connection between the applications and the telecom

network exposure layer. One example of the telecom application server is

the BEA WebLogic SIP Server [21].

2.4.3.4 Web Application Server

The web application server hosts the web back-end and the integration

server applications. This server could be a Tomcat server or any similar

J2EE application server. The integration server provides interfaces to

interact with external systems. The web back-end allows the web front-end

to access the internal database and communicate with the telecom

applications.

3

Experiment on SIPp and OpenSIPS

In the last chapter, we had a glance on the capabilities of the SIPp and OpenSIPS

tools as well as how to use them. In this chapter, we continue on with some

experiments with them. In order to get familiar with SIPp and OpenSIPS tools, we

install and run them on a personal computer. Section 3.1 describes the software

and environment used in the experiment. In section 3.2, we set up two scenarios

using the tools. Numbers of performance measurement are performed under these

scenarios. Various results from different configurations are presented in section 3.3.

We end this chapter with some discussions regarding the tools in section 3.4.

3.1 Installation

3.1.1 Environment

The experiments are done on a computer with following specifications.

• Intel® CoreTM2 Duo Mobile Processor T5300 1.73 GHz

• 1.5 GB DDR2 RAM

• Ubuntu 8.10 Operating System

3.1.2 SIPp

We obtain the SIPp tool 3.1 (sip.3.1.src.tar.gz) from http://sipp.sourceforge.net.

The SIPp used in this thesis is compiled without SIP authentication and TLS

(Transport Layer Security) support. The source file includes a make file for easy

compilation. Once the installation is completed, the executable binary file is

automatically copied to user binary directory (/usr/local/bin/). Therefore, SIPp

can be started by calling sipp in the command line.

http://sipp.sourceforge.net/�

22

3.1.3 OpenSIPS

We compiled and installed OpenSIPS version 1.4.4 using the source file

(openSIPS-1.4.4-notls-src.tar.gz) downloaded from http://opensips.org. We

specified /usr/local/ as the prefix for compilation and installation. The default

configuration file is put into /usr/local/etc/opensips/opensips.cfg. And the

executable binary file is at /usr/local/sbin/opensips.

3.2 Scenarios

After we have installed the tools, we set up two communication scenarios. For the

first scenario, we use only the SIPp tool in the scenario. We connect two instances

of SIPp together, so the SIP participants talk to each other directly. With this set

up, we can see how the SIPp tool performs.

As for the second one, we insert the OpenSIPS as a SIP proxy between the two

participants. This scenario is more similar to the practical SIP-based

communication system.

3.2.1 UAC and UAS

We start with the scenario which makes use only the SIPp tool. In this scenario,

the caller (UAC) knows where the callee (UAS) is located. The caller initiates a

SIP session directly to the caller. Therefore, no intermediate proxy servers are

needed. To simulate the caller and the callee, two instances of SIPp are executed

on the same system. Therefore, they have to be bound to different addresses (i.e.

IP address and/or port number). Figure 3-1 shows SIP messages exchanged

between the two parties.

 Caller Callee
192.168.100.1:5060 192.168.100.2:5060

INVITE

180 Ringing

200 OK

ACK

BYE

200 OK

Figure 3-1: SIP messages between UAC and UAS

http://opensips.org/�

 23

From Figure 3-1, the caller first sends out an INVITE message. Then the callee

replies with a 180 Ringing response and a 200 OK response respectively. After

that, the caller sends an ACK back to the callee. At this point, the SIP session has

been established. In the real call, the media streams begin from this point on. To

emulate the call session, the caller waits for some time and sends a BYE message

to the callee to end the session. The callee replies with a 200 OK message, and the

call is terminated.

We created two XML scenario files (caller.xml, and callee.xml) for SIP message

sequences at both parties. The diagram shown in Figure 3-2 illustrates a sequence

of commands in the scenario file for the caller. In addition, Figure 3-3 shows

commands for the callee.

Using two virtual interfaces on the same machine, we bind the caller and the callee

to 192.168.100.1 and 192.168.100.2 at port 5060 respectively. As the calls are

generated by the caller, we control the call rate at the caller side, and also use the

statistic file produced by the caller. The target address of the caller is

192.168.100.2 at port 5060 (callee). The command for starting the caller is

sipp -sf caller.xml 192.168.100.2:5060 -i 192.168.100.1 -p 5060 -r 100 -trace_stat

Likewise, the target address of the callee instance is 192.168.100.1 at port 5060

(caller). Therefore, the command for starting the callee is

sipp -sf callee.xml 192.168.100.1:5060 -i 192.168.100.2 -p 5060

We set the caller to generate SIP calls at certain rates using -r parameter. Call

rates are of calls per second (cps). With the -trace_stat parameter, The caller

periodically saves the counters and timers into the statistics file. The interval

between each update can be configured using -fd parameter.

The statistics file produced by the SIPp process is in the CSV format. The file is in

tabular form separated by a semicolon. Diagrams showing the number of successful

call attempts and the call response times are presented in section 3.3.

Figure 3-2: Sequence of commands (simple UAC)

send INVITE
recv 180
recv 200
send ACK
send BYE
recv 200

recv INVITE
send 180
send 200
recv ACK
recv BYE
send 200

Figure 3-3: Sequence of commands (simple UAS)

24

3.2.2 UAC and UAS with a SIP proxy

After we have set up the UAC and UAS using SIPp in the previous scenario, we

add another component to the scenario. In regular SIP systems, the caller has no

information about the exact location (i.e. IP address and port number) of the

callee. In order to make it more realistic, we introduce an intermediate party, a

SIP proxy server. A proxy server is responsible for forwarding messages to

corresponding parties. Hence, the caller and callee only need to know their SIP

proxy server.

The three parties, the caller, the callee, and the proxy exchange SIP messages as

illustrated in Figure 3-4. At the caller and the callee points of view, the sequence

of SIP messages remains the same as of the first scenario. Therefore, we can use

the same scenario files. However, the 100 Trying message generated by the proxy

server is sent to the caller after the INVITE message. Hence, we make a minor

change in the caller scenario file in order to support this message.

Figure 3-4: SIP messages between UAC, SIP proxy, and UAS

 Callee
192. 192.168.100.2:5060

INVITE

180 Ringing

200 OK

ACK

BYE

200 OK

 Caller SIP Proxy
192.168.100.1:5060 192.168.100.3:5060

INVITE

100 Trying

180 Ringing

200 OK

ACK

BYE

200 OK

 25

…
listen=udp:192.168.100.3:5060
…
route{
…
if (is_method(“INVITE”)) {
 setflag(1);
 rewritehostport(192.168.100.2:5060);
}
…
}

We configure the OpenSIPS tool as a SIP proxy. The SIP proxy listens to

192.168.100.3 at port 5060. Figure 3-5 shows some part of the OpenSIPS

configuration file (opensips.cfg) used. For the routing logic, the OpenSIPS

accounts the INVITE message received and forward it to the callee (192.168.100.2

port 5060) by replacing the address in the request URI.

After the OpenSIPS proxy has been started, we start the caller and callee the same

way as in previous scenario. However, the target address must be changed to the

proxy (192.168.100.3 port 5060). The command for starting the caller is

sipp -sf caller.xml 192.168.100.3:5060 -i 192.168.100.1 -p 5060 -r 100 -trace_stat

The command for starting the callee is

sipp -sf callee.xml 192.168.100.3:5060 -i 192.168.100.2 -p 5060

The detail of the INVITE messages received and forwarded by OpenSIPS proxy

server is shown in Figure 3-7 and Figure 3-6 respectively. We can see that the

address in Request-Line is changed to the final destination address. In addition,

the Via and the Record-Route fields are added to the message header. The two

figures are taken from the network protocol analyzer application, Wireshark [22].

Figure 3-5: OpenSIPS configuration file (partial) for simple UAC and UAS

Figure 3-7: INVITE message received by the proxy Figure 3-6: INVITE message forwarded by the proxy

26

3.3 Results for Various Settings

3.3.1 Traffic Generation Rates

In this section, we perform the tests at different call generating rates ranging from

100 cps to 1000 cps. The averaged results from 10 repetitive experiments are

compared in the two diagrams below. Figure 3-8 shows the successful call attempts

per second, while the average response times are illustrated in Figure 3-9.

Figure 3-8: Successful calls at different target rates

Figure 3-9: Call response times at different target rates

For the case of UAC and UAS, most of the call attempts are successful up to 1000

cps. On the other hand, when an OpenSIPS proxy is included, the successful call

starts dropping at around 400 cps. Regarding the response time, we can see that

adding an intermediate proxy increases the call latency by small degrees. However,

significant differences take place after 500 cps.

0

200

400

600

800

1000

0 200 400 600 800 1000

Su
cc

us
sf

ul
 C

al
ls

 (c
ps

)

Target Call Rate (cps)

UAC-UAS

UAC-proxy-UAS

0
2
4
6
8

10
12
14
16
18
20

0 200 400 600 800 1000

Ca
ll

Re
sp

on
se

 T
im

e
(m

s)

Target Call Rate (cps)

UAC-UAS

UAC-proxy-UAS

 27

3.3.2 OpenSIPS Memory Configuration

From the result in the last section, we can see that the scenario which involves an

OpenSIPS proxy failed to process all requests at target rates higher than 400 cps.

This limitation must be related to the OpenSIPS process in some ways. Therefore,

we investigate deeper into the configurations of OpenSIPS. We find out that the

memory allocated to the OpenSIPS process at startup influences the number of

call requests it can process successfully.

Allocated memory can be configured using -m parameter. We perform more

experiments with different amount of allocated memory (16-128 Megabytes). For

each target rate, the test duration is 60 seconds. The results from 10 repetitive

tests are averaged and shown in Figure 3-10: Successful calls for different memory

allocationFigure 3-10.

Figure 3-10: Successful calls for different memory allocation

As we can see that OpenSIPS has some capacity limitations, using it in any

performance evaluation should be done with this in mind. Otherwise, the results

may be affected by this boundary.

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Su
cc

us
sf

ul
 C

al
ls

 (c
ps

)

Target Call Rate (cps)

128 MB

64 MB

32 MB

16 MB

28

3.4 Discussion about SIPp and OpenSIPS

From the experiments, we see that SIPp can produce SIP messages according to

the XML scenario file. It also provides many timers as well as statistic counters

captured from the calls generated. SIPp is really flexible and can be configured in

many ways to suit different testing purposes. For these reasons, SIPp is

appropriate for evaluating various SIP equipments. However, using and controlling

SIPp requires deep knowledge about the tool. In addition, the result statistic file

produced by SIPp may not be convenient to interpret directly. Further processing

in a spreadsheet application can help promote the understandability. Nevertheless,

it introduces new complexity in evaluating a system.

Regarding the performance aspect, SIPp can generate SIP traffic and capture the

statistics of the traffic at very high rate (thousands of calls per second). On the

other hand, OpenSIPS which acts as a proxy server has some limitations. Even

though it is claimed to handle hundreds of calls per second, the maximum number

of calls is most likely determined by the amount of allocated memory as

experimented in section 3.3. Therefore, users must ensure that performance

evaluation tools are capable of handling more intense traffic than the target system

before using them. This is to avoid a mistaken result caused by the constraints of

the evaluation tool itself.

4

SIP Performance Evaluation Framework

In the previous chapter, we studied the existing tools, SIPp and OpenSIPS. This

chapter handles the design and development of a performance evaluation

framework. We start with the overview of the framework in section 4.1. Then the

requirements of the framework are addressed in section 4.2. Following the

requirements, the detailed design of the tool is explained in section 4.3. The last

part, section 4.4, describes the implementation of the framework. The user manual

of the SIP performance evaluation framework can be found in Appendix A.

4.1 Framework Overview

The performance evaluation framework aims to provide better usability for system

testers. Predefined scenarios embedded in the framework can help cutting down

the time needed for editing XML scenario files. The graphic user interface reduces

the complexity of test configurations. The framework also displays the test results

as graphical diagrams for easier result interpretation. In addition, the diagrams are

real-time updated as the test is progressing.

The overall view of the framework is shown in Figure 4-1. The performance testing

tool works with an instance of SIPp, while users interact only with the tool using

graphic user interface (GUI). The tool creates a shell script with SIPp startup

 Figure 4-1: The performance evaluation framework

create a SIPp instance

control commands

 read write

30

parameters according to the configurations specified by the user. Once the shell

script is executed, it starts up a new instance of SIPp. The SIPp process generates

SIP requests towards the target system. All SIP messages between the SIPp

process and the target system are transmitted through a SIP proxy implemented

using OpenSIPS.

Once the traffic generator is started, the application controls the traffic during the

evaluation by sending control commands to the traffic generator. The result file

from the traffic generator is periodically read by the application. Graphical

diagrams are then created and displayed to the user.

4.2 Requirement Specification

This thesis aims to develop a user-friendly performance evaluation framework. The

framework should be able to dimension a SIP-based telecommunication system.

This section describes the requirements of the framework. We define the

performance metrics which will be dimensioned in section 4.2.1. The call scenarios

which should be supported are explained in section 4.2.2. Lastly, section 4.2.3

presents the user interface of the framework.

4.2.1 Performance Measurements

There are two performance metrics we are focusing in this thesis, the system

capacity, and the call setup time. The capacity of the target system is the number

of requests which can be processed properly within a period of time. A properly

serviced request refers to a successful call served by the system.

To measure the capacity of a system, calls are generated and targeted to the

system at various call rates. The maximum call rates of which the system can still

serve the requests can be considered as the capacity of that system.

The other aspect of performance that should be supported by the framework is the

call setup time. The response time of a call is the time it takes to get an answer

back from the target system. In this thesis, we refer the time between sending an

INVITE message out and receiving the corresponding 200 OK reply as the

response time.

 31

In summary, to measure the system capacity and call setup time, the framework

must be able to capture the response time of SIP calls as well as the number of

successful SIP calls. Moreover, it must be configurable to generate SIP calls at

different call rates to facilitate the measurement of the system capacity.

4.2.2 Scenarios

The SIP performance evaluation framework should support two scenarios. The

traffic generator generates a sequence of SIP messages according to the scenario

selected by users. The users do not need to study the SIP sequences or construct

the XML files themselves. In this way, the predefined XML scenario files can

shorten the time for configuring the test.

In this thesis, we take the EasyVPaBX as the target system. The EasyVPaBX

receives a call initiated from a caller, and forwards that call to the corresponding

callee. There are two scenarios which we cover, the simple call, and the queue.

To study the sequence of SIP messages in the two scenarios, we use a SIP soft

phone application to generate a call to the destination server. During the call, we

captured SIP messages transmitted between the soft phone and the server using a

network traffic analyzer. The tools we used for this purpose are SJphone [23] and

Wireshark [22]. From the captured sequence of messages, we draw a diagram

consisting of different participants of the call session. The following subsections

explain in details about the two scenarios.

4.2.2.1 Simple Call

For the simple call scenario, the actual destination of a call is always

available. Once the INVITE message from the caller is received by the

server (EasyVPaBX), the server immediately initiates a new call session to

the callee. After the SIP session with the callee has been established, the

caller and the callee can start the conversation. SIP messages exchanged in

this scenario is illustrated in Figure 4-2. The red dotted arrow in the

diagram denotes the media conversation.

The server maintains two SIP sessions when the call is active. One session is

between the caller and the server denoted by the green arrows, while the

other session is between the server and the callee denoted by the orange

arrows. The server terminates the call session when either side hangs up.

32

The caller sends SIP messages to the server through a SIP proxy. In

addition, the call created by the server targeted at the callee is also via a

SIP proxy. Normally, they can be two different proxy servers. However, the

EasyVPaBX server tested in this thesis sends SIP messages to a callee

through the same SIP proxy as the one it receives a call from the original

caller. Therefore, the SIP proxy used in the test must have address

information of the server (EasyVPaBX) as well as the callee.

INVITE

180 Ringing

200 OK

ACK

BYE

200 OK

INVITE

100 Trying

180 Ringing

200 OK

ACK

BYE

200 OK

INVITE

100 Trying

INVITE

100 Trying

180 Ringing

180 Ringing

200 OK

200 OK

ACK

ACK

BYE

200 OK

BYE

200 OK

Caller SIP Proxy EasyVPaBX Callee

Figure 4-2: SIP messages in the simple call scenario

 33

4.2.2.2 Queue

The queue scenario is slightly different from the simple call. When the

server receives a new call from the caller, it tries to find the corresponding

callee. If the callee is available, the server creates a new call session to the

callee. Otherwise, the call is placed in a waiting queue. During its time in

the waiting queue, the caller receives some audio messages. The audio

playback is originated from a media server. The SIP server (EasyVPaBX)

contacts the media server every time it has a new call waiting in the queue.

Once the destination is accessible, the server then initiates a call to the

callee, removes the call from the waiting queue, and the session between the

caller and the callee is then created.

One example of this scenario is a customer service center. The call center

has one public phone number where customers can call to get the service.

When at least one officer (callee) is available, the call is served immediately.

If there is no available officer, the customer is told to hold the line.

Afterwards, the customer will get connected with a vacant officer.

Figure 4-3 shows a sequence of SIP messages exchanged among different

participants in case that a call is placed in a waiting queue. The server

(EasyVPaBX) sends an INVITE to the media server to create a session

between the caller and the media server (denoted by blue arrows). After the

session is established, the caller gets a stream of audio packets from the

server. Until the callee is accessible, the server starts another session with

the callee (denoted by orange arrows). When the session with the callee is

created, the server terminates the session with the media server by a BYE

message. After that, the server sends another INVITE message back to the

caller to activate the call between the caller and the callee. The media

conversation begins after the ACK message from the server is sent to the

callee which is denoted by the dotted arrow in the diagram. The two

sessions go on in the same way as the case of a simple call. The server

terminates the sessions when it receives a BYE message from either the

caller or the callee.

34

INVITE

100 Trying

200 OK

ACK

INVITE

200 OK

ACK

BYE

200 OK

INVITE

100 Trying

200 OK

ACK

INVITE

100 Trying

180 Ringing

200 OK

INVITE

100 Trying

200 OK

ACK

ACK

BYE

200 OK

BYE

200 OK

INVITE

100 Trying

200 OK

ACK

INFO

200 OK

…

INFO

200 OK

INVITE

180 Ringing

200 OK

BYE

200 OK

ACK

BYE

200 OK

Caller SIP Proxy EasyVPaBX Media Server Callee

Figure 4-3: SIP messages in the queue scenario

 35

4.2.3 User Interface

Graphical user interface (GUI) allows users to interact with computer programs in

easier way compared to the command line interface (CLI) which has a steep

learning curve. With CLI, users are required to enter commands through the

command line. This could be complicated and time consuming since command

words may not be easily memorized by users. On the other hand, GUI offers

windows, icons, menus, and a pointing device for simpler control over applications.

Despite the fact that SIPp provides number of functionalities and configurations

and can be used for testing various SIP systems, it is available only in CLI mode

as discussed earlier in section 3.4. Starting, controlling, as well as monitoring the

result of SIPp have to be done with the command line. System testers need to

learn the commands and parameters in order to use the tool. In addition, the

results display is limited to text-based presentation.

For user-friendliness, the performance evaluation framework should provide an

easy-to-use graphical user interface. Users should be able to select testing

scenarios, as well as specify the destination number, IP address and port number

of the target system. Parameters such as the call rate and the duration of the test

should also be configurable through the interface. Moreover, the real-time

evaluation results should be displayed in graphical format for easy interpretation.

4.3 Design

Following the requirements discussed earlier, this section give details the design of

the performance evaluation framework. Section 4.3.1 describes the components of

the framework. Then the user interface design is explained in section 0.

4.3.1 Components

The performance evaluation framework is designed as illustrated in Figure 4-4. The

framework comprises of three main tasks, creating startup script, controlling the

traffic generator, and processing the result. These tasks are represented as circles

in the figure. In addition, the framework contains a SIP traffic generator (SIPp), a

SIP proxy (OpenSIPS), and a target system (EasyVPaBX).

36

Figure 4-4: Performance evaluation framework (detailed design)

As discussed in section 3.4, SIPp is appropriate for evaluating SIP equipments. It

can generate SIP requests at high speed and can be configured to suit different

tests. In addition, experiments in section 3.3 show that OpenSIPS has reasonable

performance as a SIP proxy. Moreover, both SIPp and OpenSIPS are open source

software, so we can use them as a basis of the framework development. For these

reasons, we choose SIPp and OpenSIPS as the traffic generator and the SIP proxy

for the performance evaluation framework.

The framework provides a graphic form for evaluation specifications from a user.

The configuration parameters specified by the user are used for generating a

startup script as well as controlling the behavior of the traffic generator. Once the

script file has been created and executed, an instance of SIPp will start generating

SIP traffic towards the target system through the SIP proxy.

During an evaluation, the SIPp instance keeps listening to a particular UDP port

called control port for run-time commands. In order to control the traffic

generated by the SIPp process, the traffic controller opens a connection to this

control port. Based on the configurations specified by the user, the traffic

controller sends control commands such as increasing or decreasing the call rate

and pausing the call generation to this port.

For performance measurements, the SIPp process captures statistic counters and

timers, and writes the result to an output file. This file is retrieved by a result

updater. Furthermore, statistic values in the file are extracted and processed. As a

result, the user can monitor the real-time updated graphical diagrams created from

the output file.

 37

4.3.2 Graphic User Interface

The graphical user interface provided by the framework can be divided into two

parts, the parameters configuration, and the results display. The following

subsections give details about them.

4.3.2.1 Parameters Conf iguration

Users can configure the evaluation parameters through a graphical form.

This form contains several text fields and drop down lists as shown in

Figure 4-5 below. The parameters can be categorized into three groups,

scenarios, local and target systems, and load patterns.

Scenarios

For the SIP scenarios, there are two options, the simple call, and the queue.

The selected choice determines the XML scenario file to be used for

generating SIP traffic to the target system.

Local and Target Systems

User can specify the IP address of the local system as well as the port

number used to send out the SIP messages. The destination number, IP

address and port number of the target system are also configurable.

Figure 4-5: Configurable Parameters

Scenarios

Load Pattern

Local and Target Systems

38

Load Pattern

There are two patterns of traffic available, the fixed rate, and the increasing

rate. For the fixed call rate, user defines the rate of the traffic to be

generated, and the duration of the test.

As for the increasing case, user gives parameters such as the start call rate,

the final call rate, and the increasing step to define the traffic pattern. In

addition, between different rates, the traffic can be paused for some amount

of time which is configured by the pause time. The period of each call rate

is identified by the active time. For both load patterns, the frequency of

result updating can be specified in the polling interval field.

4.3.2.2 Results Display

Based on the statistics values retrieved from the SIPp output file, the

framework creates graphical diagrams and updates them periodically. These

diagrams let users interpret the result easily. Therefore, we choose to

generate four diagrams, the successful/failed call numbers, the failure rate,

the call response time, and the total call length. The examples of these

diagrams are shown in Figure 4-6, Figure 4-7, Figure 4-8, and Figure 4-9.

Figure 4-6: Successful/Failed calls diagram Figure 4-7: Call failure diagram

Figure 4-8: Response time diagram Figure 4-9: Call length diagram

 39

4.4 Implementation

This section addresses the implementation of the SIP performance evaluation

framework. We mention certain assumptions for the tool in section 4.4.1. We

continue with composing the XML scenario files in section 4.4.2. The main logics

of the tool are explained in section 4.4.3 where we divide the tasks into three

threads. The details of starting and controlling a SIPp process, reading the output

file, and generating graphs are described in sections 4.4.4, 4.4.5, 4.4.6, and 4.4.7.

4.4.1 Initial Requirements

Before implementing the SIP performance evaluation framework, we addressed

some requirements and assumptions for running the tool as follows.

Java Environment

The application developed in this thesis is based on Java 2 Platform Standard

Edition [24]. It is tested on systems with Java Runtime Environment JRE 6 .

SIPp

The application does not include the SIPp tool inside. Nevertheless, an instance of

SIPp is created when the tool starts the test. Therefore, it is required that SIPp is

properly installed in the system. The application in this thesis has been tested with

SIPp version 3.1. Other versions of SIPp may also be functional with the tool as

well, but this is not assured.

Proxy Server

The complete test system requires a proxy server as shown earlier in Figure 4-1.

For the application to run properly, a proxy server which forwards SIP messages

to the target system must be configured. In this thesis, we set up the OpenSIPS

version 1.4.4 to perform this task.

Library Files

The graphical user interface of the framework is implemented using Swing

Application Framework [25]. In addition, the diagrams showing test results are

produced using JFreeChart library [26]. The framework comes with these libraries

as Java archive (JAR) files in the lib directory.

40

4.4.2 Scenario Files

The SIP performance evaluation framework comes with certain scenarios. These

SIP scenarios are defined by XML scenario files included in the application. The

files are copied to the testing directory before the test is started. As stated earlier

in the requirements section, the simple call, and the queue scenarios are embedded

in the tool. The following scenario files are created according to the two SIP

sequences discussed in section 4.2.2.

4.4.2.1 Simple Call Scenario File

The XML file describing the simple call scenario is shown in Appendix B.

The caller starts by sending an INVITE message. Then it expects a 100

Trying message, and a 180 Ringing message, but these messages are

optional. After that, it waits for a 200 OK message which triggers the

response-time timer to stop. The value of this timer is stored and written to

the statistics file. Upon receiving the 200 OK message, it sends out an

ACK message and the call session is established. To terminate the session,

the caller sends a BYE message, and expects a 200 OK message as a reply.

4.4.2.2 Queue Scenario File

For the queue scenario, we modify the simple call scenario file to support

additional messages from the server. The XML file of the queue scenario is

shown in Appendix C. At the beginning, we define a variable q for storing

the status of the call session. If q is set, it means that the session is put in a

waiting queue in the server. This variable is used to test a conditional

branching.

To detect whether the session is placed in the waiting queue or not, we

explore the first 200 OK message received. We search the message for a

keyword using a regular expression. Since, the EasyVPaBX system in this

thesis uses the SnowShore IP media server [27], we take snowshore as a

keyword which reflects the originator of the message. If the 200 OK

message contains this keyword, the session is established with the media

server. This means that it is currently in the queue. Therefore, the caller

has to wait until it gets a new INVITE message denoting that the ultimate

destination can be connected and the session has been removed from the

waiting queue. Otherwise, the caller jumps to another part of the scenario

file to continue on the normal session establishment.

 41

4.4.3 Threads

A thread of execution is a forked task of a program. Within a single computer

program, multiple threads can run simultaneously. Multiple threads can share

process state as well as resources. However, they are executed independently.

Depends on systems, threads can be implemented by multiplexing or really

running them concurrently using multiple processors. Multiplexing refers to

context switching between threads by one processor. The switching happens fast

enough as if the threads are running at the same time.

With the thread concept, programmers have better control over concurrent

executions. For instance, an application which requires responsiveness to users’
interaction may need multiple threaded programming. While one execution thread

is busy with long running task or has to wait for an input/output event, another

thread can handle the users’ interaction. Therefore, the application will not freeze

during the completion of the time consuming tasks.

As explained in the requirements section, the performance evaluation framework

consists of several tasks. These tasks include generating graphical user interface,

starting an instance of SIPp, controlling the SIPp process, and processing the

result file.

Most of the tasks listed above need to be done concurrently. For easier

management, we divided them into multiple threads. Considering Java as a

programming language used in developing the framework, we can straightforwardly

implement these threads using Java. Since the Java Virtual Machine allows an

application to have multiple threads of execution running concurrently [28].

For the application, we implement three threads, the main thread, the control

thread, and the result update thread. Because the latter two threads have certain

blocking events, we split them from the main thread to prevent the tool to halt

while waiting for those tasks.

The main thread deals with interfaces and interactions with user and also manages

the other threads. The control thread is responsible for sending commands to the

SIPp instance. The result update thread periodically reads the output file for

statistic values. Additionally, it processes them and generates result diagrams.

42

4.4.3.1 Main Thread

The main thread is the main process started when user launch the

application. It manages the appearance of the tool as well as the interaction

with a user. The following steps are the logic of the main process.

1. The graphical user interfaces are prepared and displayed to the

user. This step includes creating several windows, menus, and

panels, initialize test configuration options and text fields.

2. When the user chooses to start a test, the main thread prepares a

new test folder. It creates a test scenario file as well as other

necessary files in the folder.

3. It then makes a new shell script consisting of the command to

execute a SIPp process. In addition, the shell script also contains

startup parameters which are derived from the configurations

specified by the user.

4. Once everything is ready, the test can be started. The process

executes the shell script to start up an instance of SIPp. From

this point on, SIP traffic are generated and sent to the target

system.

5. The main process starts the other two threads, the control thread

for controlling the SIPp, and the result update thread for

processing the result.

6. When the test has been completed, the main process is informed

by the control thread. It manages the close down of the test. This

includes terminating all other threads, and killing the SIPp

process.

All steps preformed in the main process do not require much time compared

to the tasks in the other two threads. In other words, all the tasks in the

main thread are not blocking or having to wait for certain events. Hence,

from user’s point of view, the main process which is responsible for

interaction and interface is always responsive.

 43

4.4.3.2 Control Thread

The control thread is created after the main process has started the SIPp

instance. This thread is responsible for sending control commands to the

SIPp process to increase/decrease the traffic generation rate, and pause the

generation. At the time of creation, this thread is initialized with

parameters specified by the user for traffic generation pattern.

According to the configurations initialized at startup, the control thread

keeps track of the time period and sends out traffic control commands to

the SIPp process through a specific UDP port called control port.

The reason of separating this as another thread is because it has to

periodically perform its task (sending command) at a specific time. During

the period of time between each command, the thread does nothing but

waiting. This can be considered as a blocking event.

4.4.3.3 Result Update Thread

The result update thread is also created after the SIPp instance has been

started. This thread keeps reading the result file from the SIPp process.

During the test, the SIPp process saves the counters and timers into this

result file once every some period of time. Similar to the control thread, this

result update thread needs to wait for certain events. Therefore, it is

separated as an independent thread.

The frequency of reading the result file is specified by the user. It matches

with the result writing event of the SIPp process. The thread waits for a

specific amount of time and updates statistic values from the file.

Furthermore, it processes these values and plots several graphs. These tasks

go on iteratively until the test ends.

At the end of the test, the main process sends termination signal to this

thread. The thread stops reading and processing the result. Additionally,

before the thread is terminated, it exports the final diagrams to image files

for further usage.

44

4.4.4 Starting SIPp

This step is a part of the main thread (section 4.4.3.1). When the user chooses to

start the test, all configuration parameters are collected and stored in the

application. Certain parameters are used as startup options passed to the SIPp

process. Other parameters instruct the control thread which is created after the

SIPp process has been started.

Working with SIPp requires interactions through a command line prompt. We

created one Java method to support execution of shell commands from the

application. This method takes a shell command together with a working directory

as input parameters. It then sets the working directory and creates a new process.

After the command is executed, the method returns with the result from the

command line. Figure 4-10 shows the execute method which carries out the task.

The tool prepares for the new test by creating a new directory containing the

scenario file and some other necessary files. The directory name consists of the

current date and time for its uniqueness.

A new shell script is generated within the directory. This shell script contains the

command to start a SIPp process as well as startup parameters. To make the SIPp

process controllable from the application, a control port must be identified when

starting the process. The application finds an available UDP port, and adds -cp
parameter following by the UDP port number in the script file. Putting collected

configurations into the shell script is illustrated in Figure 4-11.

public static String execute(String folder, String command){
String result = "";
try{

ProcessBuilder pb = new ProcessBuilder("bash", "-c", command);
pb.directory(new File(folder));
Process proc = pb.start();
proc.waitFor();
BufferedReader resultReader = new BufferedReader(

new InputStreamReader(proc.getInputStream()));
String temp;
while ((temp = resultReader.readLine()) != null){

result = result + temp + "\n";
}
resultReader.close();

}catch(Exception e){e.printStackTrace();}
return result.trim();

}

Figure 4-10: Java method for command line execution

 45

After the shell script is written, the tool starts a configured SIPp process by

running the shell script. Since the SIPp is started in background mode (denoted by

the -bg parameter in the script), the result of executing the script is the process ID

of the SIPp. This process ID is stored in the application for later use. Creation of

the new directory, copying the files, generating, and executing the shell script file

are achieved using the execute method. Once the test is started, the application

creates two new threads, the control thread, and the result update thread.

4.4.5 Controlling SIPp

After starting the SIPp process, a new thread, control thread (section 4.4.3.2), is

created. This thread sends control commands to the SIPp process. The commands

are packetized and sent to the UDP port which is configured as the control port in

the last step.

Load pattern parameters collected previously are passed to the control thread. The

final call rate, the increasing step, the active period, and the pause period

determine the commands and the specific time they are sent out. Figure 4-12

shows an example of simplified Java code which sends the command to the control

port periodically.

Figure 4-11: Generating a shell script from configuration parameters

sipp -sf caller.xml 192.168.100.1:5060 –s 90188000

-i 192.168.100.234 -p 5060 -r 2 -fd 20 -cp 8889 -bg

46

4.4.6 Reading Statistics File

Reading the statistics file is a part of the result update thread (section 4.4.3.3).

Statistics file contains statistics and timer values. The file is updated periodically

by the SIPp process. The application keeps reading this file until the test

completes. The frequency of reading the file is identified by the polling interval

parameter given by the user.

The statistic file is in a tabular format. One line of the file is read at a time, and is

divided into fields. The values which we are interested are stored for further

processing. These values include elapsed time, current call rate, number of calls

created, number of successful/failed calls, call response time, and total call length.

4.4.7 Displaying Graphs

Processing values from the statistics file, and plotting them as graphical diagrams

are also done within the result update thread (section 4.4.3.3). Statistics values

and timers are grouped by the call generation rate. For each call rate, the averages

of the values are calculated. These processed data are put in proper datasets for

graph plotting.

do{
try{

sleep(activeTime);
if(pauseTime>0){

//send the pause signal
UDPUtility.sendCommand("p", IP, port);

sleep(pauseTime);

//send the unpause signal
UDPUtility.sendCommand("p", IP, port);

}

//send the increase rate signal
currentRate += increaseStep;
UDPUtility.sendCommand("cset rate "+currentRate, IP, port);

}catch(Exception e){}

}while(currentRate < endRate);

Figure 4-12: Simplified Java code in the control thread

 47

For drawing graphical diagrams, we consider JFreeChart [26]. JFreeChart is an

open source Java chart library which provides APIs supporting a wide range of

chart types. We consulted the API documentation provided in their website [29]

for generating the graphs. In total, the tool generates four different diagrams, the

successful/failed calls, the call failure rates, the response time, and the call length.

Apart from displaying real-time updated diagrams during the test, this thread also

exports the final diagrams to image files for later use after the test has been

completed. These images are saved in the working directory.

48

5

EasyVPaBX Performance Evaluation

In this chapter, we set up certain systems as target systems. We consider various

configurations including single computer, and load balancing scheme with two

computers. Various computers are used to see how EasyVPaBX performs in

different environments.

This chapter starts with section 5.1 giving details of target system configurations

as well as the user system which hosts the performance evaluation framework.

Following that, lists of computer specifications used in the configurations are

described in section 5.2. The performance results from multiple experiments are

presented in section 5.3. Performance data from the target systems are then

compared and discussed in section 5.4 and section 5.5 respectively.

5.1 System Configuration

We set up a user system which contains the performance evaluation framework

for generating SIP traffics and capturing the evaluation results. In addition, two

configurations are set up for testing the EasyVPaBX (SIP server) application as

the target systems. The first setting consists of a single instance of the server

running on one computer. This is for evaluating the performance of the server. The

second configuration, on the other hand, aims to test a load balancing scheme. It

adds another computer which hosts one more instance of the server. The details of

these two settings are explained in the following subsections.

50

5.1.1 Single Computer

Figure 5-1: System Configuration for testing a single computer

The system configuration for performance evaluation of a single instance of the

EasyVPaBX server is shown in Figure 5-1. On the left side of the figure, the user

system hosts all components needed for performance measurements. This system

contains the application, a traffic generator (a SIPp process), a SIP proxy

(OpenSIPS), and a call recipient (another SIPp process). The application creates

and controls the traffic generator. The SIP traffics generated are sent to the SIP

proxy server which forwards them to the target system. The outbound traffics

from the target system are sent to the call recipient through the SIP proxy.

On the right hand side of the figure lays the target system. The target system

consists of one computer. An application server is installed in the computer for

hosting the EasyVPaBX application. We also installed the Oracle WebLogic SIP

Server version 3.1 [30] as the application server. The EasyVPaBX is deployed in a

managed server which is controlled by the administration server. As for the data

storage, we employ the MySQL [31] database. The server accesses application

data in the local database installed on this computer.

Outbound and inbound SIP traffics take place between the SIP proxy and the SIP

server (EasyVPaBX). The two systems are connected to the same local area

network (LAN) with the Fast Ethernet standard supporting traffic at 100 megabits

per second (100Mbps).

 51

5.1.2 Two Computers with a Load Balancer

Figure 5-2: System Configuration for testing two computers

Figure 5-2 illustrates the system configuration for testing a load balancing scheme.

In addition to the configuration of the single computer, the second computer is

inserted. The two computers, machine 1 and machine 2, in the target system

process SIP requests simultaneously. Similar to the last configuration, machine 1

contains the application server as well as the database. Machine 2, which is newly

added, is installed with the same application server. The application server

contains a managed server hosting another instance of EasyVPaBX. This managed

server shares the same administration server in machine 1. Furthermore, the

application server in machine 2 also uses the database installed in machine 1.

Slight modification is made to the SIP proxy in the user system to support load

balancing. The configuration files of the SIP proxy are edited so that the proxy

forwards SIP requests to two SIP servers. Therefore, the SIP traffics happen

between the SIP proxy and the SIP server in machine 1, as well as between the

52

proxy and the SIP server in machine 2. The three components, the user system,

machine 1, and machine 2 are connected to the same local area network (LAN)

with the speed of 100 Mbps.

Figure 5-3 shows some parts of the OpenSIPS configuration file used in this setting

as well as the file dispatcher.list used within the configuration file. In the

configuration file, the module dispatcher.so is loaded in order to enable the

ds_select_dst method.

The ds_select_dst method is used to dispatch received SIP requests to different

destinations. A set of destination locations is defined in an external file specified in

the list_file parameter of the dispatcher module. The first parameter of the

method indicates the group of destination addresses. The technique for choosing

the destination is identified by the second parameter. In our case, we apply the

round-robin algorithm (denoted as “4”) which assigns SIP requests to destinations

in circular order.

From Figure 5-3, the first request will be forwarded to the address in the first line

(129.241.208.125 at port 5061), while the second request will go to the second

address (129.241.208.126 at port 5061). The next request will again be destined at

the first address, and so on.

Figure 5-3: Configuration files used for load balancing

...
loadmodule "dispatcher.so"
modparam("dispatcher", "list_file", "dispatcher.list")
...
route{
...
 if (is_method("INVITE")) {
 ds_select_dst("1", "4");
 route(1);
 }
...
}

1 sip:129.241.208.125:5061
1 sip:129.241.208.126:5061

dispatcher.list

OpenSIPS configuration file

 53

5.2 Testing Environment

From the last section, there are two types of the target system explained, the

single computer, and the two computers with a load balancer. This section defines

in more details, the computers used in each configuration.

In order to see the performance testing results of the EasyVPaBX in different

environment, we use various computers hosting the application. Four different

computers were used as target systems. These computers have been set up in a

similar way. Each computer is installed with the WebLogic SIP Server version 3.1

as an application server, and the MySQL version 5.0 as a database. The

EasyVPaBX application is deployed in the application server. In addition, each

computer is equipped with a network interface card supporting LAN at the speed

of 100 megabits per second.

The four computers, A, B, C, and D are different in terms of hardware and

software. Table 5-1 below lists the specifications of the four computers.

For the first configuration, the single computer, four computers are tested

individually. The performance results of these computers are then evaluated. As

for a better comparison of the performance testing results between the two

configurations, two identical computers are needed. From Table 5-1, we can see

that machine C and machine D share similar specifications both in hardware and

software. For these reasons, the two computers are used in setting up the second

configuration, the two computers with a load balancer.

Machine Processor CPU Speed Memory Operating System

A Intel® CoreTM 2 Duo 1.73 GHz 1.5 GB Ubuntu 8.10
B Intel® Pentium® 4 3.0 GHz 2 GB CentOS 4.6
C Intel® Pentium® 4 2.6 GHz 1 GB Ubuntu 8.10
D Intel® Pentium® 4 2.6 GHz 1 GB Ubuntu 8.10

Table 5-1: Specifications of computers used as target systems

54

5.3 Performance Evaluation Results

We use the performance evaluation framework to generate SIP traffic, and capture

the performance results. The results presented in this section are averaged values

from multiple experiments. For each configuration, we perform 10 rounds of

evaluation. We use the increasing load for evaluating the throughput of the target

system. The traffic rate starts from 2 calls per second (cps), and ends at 20 calls

per second. The call rate is incremented by 2 cps step. For each call rate, the test

lasts for 180 seconds. The statistics values are updated every 20 seconds. The

results of different configurations are shown in the following subsections. All

diagrams shown in this section are produced by the framework after the evaluation

has been completed.

5.3.1 Single Computer: Machine A

Call Rate (cps) Successful (cps) Failed (%) Call Setup Time (ms)
2 2 0 73
4 4 0 74
6 6 0.01 76
8 8 0.01 82

10 10 0.00 98
12 12 0.03 115
14 14 0.08 137
16 16 0.04 201
18 18 0.07 243
20 13.65 31.76 3289

Table 5-2: Average Statistics (Machine A)

Figure 5-4: Number of calls and call setup time diagrams (Machine A)

 55

Figure 5-4 shows two diagrams from one of the performance evaluation carried out

on machine A. From the left diagram, we can see that the successful calls dropped

after the call rate reaches 18 cps. In addition, after this call rate, the call response

time increases significantly as shown in the diagram on the right hand side.

5.3.2 Single Computer: Machine B

From Figure 5-5, at 10 cps call rate the number of open call starts to rise. From

this point on, the successful calls are decreasing. At 10 cps, most of the call setup

time is larger than 200 milliseconds. The call setup time grows dramatically

afterwards.

Call Rate (cps) Successful (cps) Failed (%) Call Setup Time (ms)
2 2 0 58
4 4 0 69
6 6 0.03 74
8 8 0.12 121

10 10 0.08 474
12 10.95 8.72 3451
14 8.24 40.83 5289
16 5.93 62.91 6077
18 5.38 70.14 6124
20 4.54 77.29 6608

Table 5-3: Average Statistics (Machine B)

Figure 5-5: Number of calls and call setup time diagrams (Machine B)

56

5.3.3 Single Computer: Machine C

With machine C, the unfinished call in the system starts increasing after 8 cps as

displayed in Figure 5-6. The number failed call escalates at this point as well.

After that, most of the calls are failed, only small number of calls can be processed

by the target system.

Call Rate (cps) Successful (cps) Failed (%) Call Setup Time (ms)
2 2 0 76
4 4 0.01 75
6 6 0.03 89
8 7.2 9.97 4735

10 5.67 43.28 7861
12 1.70 85.84 17583
14 1.36 90.28 18608
16 1.27 92.07 17569
18 0.87 95.19 17241
20 0.93 95.35 17813

Table 5-4: Average Statistics (Machine C)

 Figure 5-6: Number of calls and call setup time diagrams (Machine C)

 57

5.3.4 Single Computer: Machine D

Machine D has the same specifications as machine C. The performance results are

also similar to the results of machine C. As shown in figure, most of the calls can

be processed at 6 cps. The call setup time, and the number of failed call get

considerably higher after 8 cps.

Call Rate (cps) Successful (cps) Failed (%) Call Setup Time (ms)
2 2 0 84
4 4 0.02 89
6 5.67 5.46 126
8 6.10 23.75 6476

10 4.42 55.93 8235
12 1.41 88.27 12685
14 1.13 91.93 13972
16 0.58 96.42 14391
18 0.56 96.89 13876
20 0.57 97.14 15197

Table 5-5: Average Statistics (Machine D)

 Figure 5-7: Number of calls and call setup time diagrams (Machine D)

58

5.3.5 Load Balancing: Machine C and Machine D

This target system is configured as explained in section 5.1.2. As presented in

Figure 5-8, the number of unfinished call begins to climb up at 12 cps. At 10 cps,

most of the requests can be processed by the system.

Call Rate (cps) Successful (cps) Failed (%) Call Setup Time (ms)
2 2 0 156
4 4 0.01 130
6 6 0.06 138
8 7.97 0.54 165

10 9.47 5.29 184
12 10.43 13.08 568
14 11.74 16.17 1743
16 12.52 21.75 5897
18 8.11 54.94 9256
20 8.33 58.37 9248

Table 5-6: Average Statistics (Machines C, D)

 Figure 5-8: Number of calls and call setup time diagrams (Machines C, D)

 59

5.4 Results Comparison

We have evaluated the performance of EasyVPaBX on various configurations

using the framework. The results of each configuration are presented earlier. In

this section, we compare the gathered performance data and discuss about them.

From Table 5-2, Table 5-3, Table 5-4, Table 5-5, and Table 5-6 in section 5.3, we

draw three comparison diagrams. Figure 5-9 and Figure 5-10 illustrate the number

of successful calls and the failure percentage at different call rate respectively.

From Figure 5-9, machine D started dropping some requests after 6 cps. Machine

C, which has the same specification as machine D can process the requests at 6

cps, but the failure rate start rising after that.

The load balancing scheme which make use of both machine C and machine D

performed well up to 8 cps. Small number of call rejections occurred after 10 cps

and it grew afterwards.

With a faster processor compared to machine C and D, machine B can process

most of the requests at 10 cps. However, at 12 cps it started rejecting a quantity of

call requests.

Among the five configurations, machine A has the best result. It can handle call

requests at 18 cps. Even though the clock speed of machine A’ processor is lower

than others, but the fact that the processor composes of two processing core is

most probably be the reason for this.

Figure 5-9: Successful call rate comparison

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

Su
cc

us
sf

ul
 C

al
ls

 (c
ps

)

Target Call Rate (cps)

Machine A

Machine B

Machine C

Machine D

Machine C+D

60

Figure 5-10: Failure percentage comparison

Apart from the successful and failure percentage, we also compare the call setup

time of various systems. The comparison is presented in Figure 5-11 below. For all

the single computer configurations, the call setup times at 2 cps are around 70 to

80 milliseconds. Then they get longer at higher request rates.

The load balancing setting, on the other hand, obviously has bigger response time

(130 milliseconds) compared to the single computer settings. The reason behind

this may due to the shared database which is resided on one of the computer.

Access to data in remote database requires longer time than the local one.

Figure 5-11: Call setup time comparison

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

Fa
ile

d
Ca

lls
 (%

)

Call Rate (cps)

Machine A

Machine B

Machine C

Machine D

Machine C+D

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16 18 20

Ca
ll

Se
tu

p
Ti

m
e

(m
s)

Call Rate (cps)

Machine A

Machine B

Machine C

Machine D

Machine C+D

 61

For every configuration, the call setup time jumps dramatically after certain

points. The huge increase of the call setup time indicates that the target system

cannot process most of the call immediately. Some of the requests are then queuing

up to be served by the system. After this point, waiting requests become more

intense and the system then start rejecting certain amount of them. Considering

Figure 5-10 and Figure 5-11, we can see that the rising of call setup time relates to

the point where failed requests occurred.

5.5 Results Discussion

The successful/failure percentage as well as the call setup time measured by the

framework can be used to determine the maximum capacity of the target system.

For example, if we define the acceptable failure rate and the maximum call setup

time to be 10% and 250 milliseconds2

Table 5-7

 respectively, the system capacity for each

configuration can be determined as highlighted rows in .

The capacity shown in the table is only one example of result interpretation. The

appropriate criterion can vary from system to system.

2 The default timer for retransmission of lost packets in SIP is 500 milliseconds. We choose 250

milliseconds as a time allowed for the target system to process the request. Since the experiments

performed did not consider the network delay, we leave some space for this network delay in the

real environment. However, the appropriate threshold must be defined based on thorough studies

Machine Call Rate (cps) Failed (%) Call Setup Time (ms)

A
16 0.04 201
18 0.07 243
20 31.76 3289

B
6 0.03 74
8 0.12 121

10 0.08 474

C
4 0.01 75
6 0.03 89
8 9.97 4735

D
4 0.02 89
6 5.46 126
8 23.75 6476

C+D
8 0.54 165

10 5.29 184
12 13.08 568

Table 5-7: Maximum capacity for different configurations

62

The performance evaluations of EasyVPaBX performed in this chapter are done

based on certain assumptions. The target systems are attached to the same local

area network (LAN) as the user system which hosts the evaluation framework. As

the two systems communicate through a high speed connection (100 Mbps), SIP

messages travelling between them have a very small network delay. Consider the

packet length is less than 1500 bytes and 14 packets per call session (section 4.2.2,

Figure 4-2), so each session has no more than 20 kilobytes in total. For the traffic

at 20 cps, SIP signaling packets require less than 3.2 Mbps. Therefore, the network

is not considered as a factor in these experiments. However, in realistic

circumstances, SIP packets require some amount of time in the network to reach

the server. This network delay affects an overall performance perceived by users.

For this reason, further experiments on a real network infrastructure hosting the

product should be taken in consideration.

6

Framework Evaluation and Discussion

In this chapter, we evaluate the performance evaluation framework we have

developed. We start with section 6.1 presenting the verification of the framework

against the requirement specification. In addition, section 6.2 compares the

framework and the tool SIPp. Then, some issues about the framework are

discussed in section 6.3.

6.1 Requirement Verification

We designed and implemented the performance evaluation framework according to

the requirement specified in section 4.2. The requirement specification includes

supporting two performance metrics (i.e. system capacity and call setup time), two

embedded scenarios, and user-friendly graphical interface.

Regarding the system capacity, the framework developed can generate SIP traffic

at different rate. It can measure the number of call attempts successfully processed

by a target system. These results from different rate are then used to determine

the system capacity. As for the call setup time, the framework records the time

taken from the first INVITE request until a corresponding 200 OK reply is

received. This is configured in the XML scenario files composed in section 4.2.2.

Examples of the two measurements are presented earlier in section 5.3.

The two scenarios (i.e. simple call, and queue) were embedded in the framework.

We created the two XML files based on SIP sequences illustrated in Figure 4-2

and Figure 4-3. These two files were contained in the specific directory in the

framework. They are used as a parameter to the traffic generator.

For user-friendliness, we developed a graphical user interface as shown in Figure

4-5. Users can configure evaluation parameters through the interface. Moreover,

the real-time resulting statistics are displayed in easy-to-understand diagrams as

shown in Figure 4-6, Figure 4-7, Figure 4-8, and Figure 4-9.

64

6.2 Comparisons to SIPp

In this section, we present comparisons between the framework we developed and

the existing tool, SIPp. In general, the framework offers better usability both in

configuring startup parameters and results interpretation.

6.2.1 Evaluation Parameters Specification

Figure 6-1: Comparison of parameter specification

For starting up the traffic generator, the startup parameters have to be specified.

With SIPp, users are required to type all the parameters through a command line

as shown in the left side of Figure 6-1. On the other hand, the framework provides

a form where users can select and specify configurations for the evaluation.

In addition to the startup parameters, two embedded scenarios are provided by the

framework. Therefore, users do not have to compose the XML scenario files

themselves. Moreover, the framework can be configured to increase or pause the

traffic generation during the evaluation while with SIPp, users have to explicitly

insert the command to control the traffic.

6.2.2 Results Presentation

SIPp offers only the text-based interface. The performance results are presented in

tabular form as in the left side of Figure 6-2. The developed framework improved

the presentation by introducing graphical diagrams as shown in the right side of

the figure. The graphical diagrams are easier and more convenient for result

interpretation. In other words, this graphic interface promotes the user-friendliness

of the performance evaluation framework.

 65

Figure 6-2: Comparisons of result presentations

6.3 Discussions

6.3.1 Performance Evaluation based on SIP Signals

Multimedia call sessions can be separated into two planes, a control plane and a

media plane. SIP defines a set of messages in the control plane. These SIP

messages are used for signaling establishment, modification, and termination of call

sessions. The media session is handled by other protocols (e.g. RTP) and is not a

part of SIP. As mentioned in the scope of this thesis work in section 1.2, the

performance evaluation framework only deals with SIP call sessions. SIP traffics

generated by the framework do not contain any media data. Therefore,

performance results produced by the framework are based on SIP signaling alone.

Media data in each call session can create variations in the performance, thus

additional study about the idea may be considered for more accurate results.

6.3.2 Platform Compatibility

Regarding platform compatibility, the current version of the performance

evaluation framework has been developed to work on Linux operating systems.

The interactions between the framework and the underlying application and files

are implemented using Linux-based scripts. Hence, some modifications are needed

in case of porting the framework to other operating systems.

66

6.3.3 Proxy Server and Call Recipient

SIP traffics generated are forwarded to the target system by a proxy server (e.g.

OpenSIPS). The call session is established when the target system creates another

SIP session with a final call recipient. Therefore, the proxy server and the call

recipient are necessary parts of the performance evaluation framework.

Nevertheless, they are not included inside the developed application. Even though

it seems more convenient embedding them to avoid additional steps for manual

configurations of these components, excluding them can be more flexible. A system

with its own proprietary SIP proxy or call recipients can also be evaluated using

the framework.

6.3.4 Determination of the System Capacity

The evaluation result from the framework includes successful/failure percentage as

well as the call setup time measured by the framework. The maximum capacity of

the target system is not a direct output of the framework itself. Since the capacity

of the system depends on a criterion of the service, failure rate and setup time

thresholds must be defined. These threshold values are then used together with

performance results from the framework to determine the capacity of the system.

6.3.5 Traffic Patterns

Concerning the traffic pattern used in the evaluations, a uniform distribution of

requests is applied. Although the framework can control the rate of requests

generation, the distribution cannot be configured. This is a limitation of the

underlying traffic generator (SIPp). The current version of SIPp (v.3.1) supports

only uniformly distributed traffic generation. For more realistic traffic pattern,

some modifications to the framework and/or the underlying tools are needed.

Apart from the issues discussed above, the performance evaluation framework can

facilitate the measurements of the successful/failure rate of call requests, and the

call setup time of SIP-based telecommunication systems. These performance data

are used for defining the capacity of such systems. In addition, the framework

comes with an easy-to-use graphical interface which promotes usability and

understandability in evaluating performance of a system.

7

Conclusions

7.1 Summary

Evaluating a performance of telecommunication systems can be a challenging task.

It comprises of studying different scenarios, creating simulations, capturing

statistics data, and interpreting results. Nevertheless, an accurate capacity of a

system can be valuable for system developers as well as prospect customers.

Therefore, the objective of this work was to develop a framework for performance

evaluation of a SIP-based telecommunication system.

In this thesis, we studied the available tool which can be used for performance

evaluation of a SIP system. In addition, the necessary components such as a SIP

proxy and call recipient were also taken into account. SIPp and OpenSIPS were

chosen as an evaluation tool, and a proxy respectively. Number of experiments had

been carried out with these elements. They were then put together to found a basis

of the performance evaluation framework.

We designed and implemented the performance evaluation framework using SIPp

as a traffic generator. The framework facilitates measurements of number of calls

that the system can process and also call setup times at different call rate. A user-

friendly graphic interface (GUI) was built to promote the usability of the

framework. Evaluation parameters such as call scenario, traffic generation rate,

duration of the test, etc, can be configured through the GUI. Moreover, real-time

updated graphical diagrams showing offer an easier way to interpret the results.

We also studied EasyVPaBX which is a SIP-based system providing controls over

call behaviors. Different sets of computers hosting the EasyVPaBX application had

been setup as the target systems. We performed several evaluations of these

systems using the framework. The performance results gathered from the

experiments were presented, compared, and discussed.

68

Concerning the capacity of the framework developed, we experienced in section

3.3.2 that number of calls which can be handled by OpenSIPS is dependent on the

memory allocated. Since we used OpenSIPS as the SIP proxy in the performance

evaluation framework, this constraint also applies. Consequently, the framework

should not be used for evaluating systems which have higher capacity than the

framework itself to avoid mistaken results. However, the EasyVPaBX system

evaluated in chapter 5 has much less capacity than this limitation. Therefore, it

does not affect the performance evaluation of the targets.

7.2 Future Work

The performance evaluation framework provides several features facilitating a

dimensioning of SIP-based telecommunication systems. Nevertheless, there exists

some functionality which can be added in the future. Automated test using a real-

time result as a feedback is one good example. More intelligence may be

introduced in decision making based on the feedback. For instance, the

characteristic of generated traffics can be adjusted to suit the current condition of

a target system. Furthermore, other call scenarios can be studied, implemented,

and embedded in the framework for convenient usage.

Regarding the performance evaluation of EasyVPaBX, more thorough evaluations

should be carried out. As discussed in section 5.5, the experiments performed in

this thesis did not consider a network delay. In the actual working environment,

this delay may not be negligible. Therefore, performance evaluation with the true

user perception of the service should also be concerned. In addition to experiments

with real network infrastructure, other system configurations may be studied and

evaluated. This could be beneficial for future deployment plans of EasyVPaBX.

 69

References

[1]. J. Rosenberg , H. Schulzrinne , G. Camarillo , A. Johnston , J. Peterson , R.

Sparks , M. Handley , E. Schooler. SIP: Session Initiation Protocol, RFC 3261.

June 2002.

[2]. SIPstone - Benchmarking SIP Server Performance. Henning Schulzrinne,

Sankaran Narayanan and Jonathan Lennox. Columbia University : s.n., April

2002.

[3]. A Tutorial on SIP Applicaiton Server Performance and Benchmarking.

Curtis Hrischuk, Ph.D. and Gary DeVal. Reno, Nevada USA : The Computer

Measurement Group (CMG), December 2006. 31st Annual International

Conference of The Computer Measurement Group. Inc.

[4]. SIPp. [Online] http://sipp.sourceforge.net.

[5]. Evaluating SIP Server Performance. Erich M. Nahum, John Tracey and

Charles P. Wright. San Diego, California, USA : ACM, June 2007. Proceedings of

the 2007 ACM SIGMETRICS International Conference on Measurement and

Modeling of Computer Systems. ISBN 978-1-59593-639-4.

[6]. Stephan Wanke, et al. Measurement of the SIP Parsing Performance in the

SIP Express Router. Lecture Notes in Computer Science. s.l. : Springer Berlin /

Heidelberg, 2007, pp. 103-110.

[7]. The Throughput Performance of SIP Session at Different Call Rates and

Maximum Header Length. Ling-Feng Chiang, Cheng-Chi Yu and Jiang-Whai

Dai. 2005. International Symposium on Communications (ISCOM 2005) .

[8]. SIP Parsing Offload: Design and Performance. Jia Zou, et al. November

2007. Global Telecommunications Conference, 2007. GLOBECOM '07. IEEE. pp.

2774-2779. ISBN 978-1-4244-1043-9.

[9]. Alan B. Johnston. SIP: Understanding the Session Initiation Protocol. 2nd

Edition. s.l. : Artech House, 2004. ISBN 1580536557.

[10]. Gonzalo Camarillo. SIP Demystified. s.l. : McGraw-Hill Professional, August

2001. ISBN 0071373403.

70

[11]. H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson. RTP: Real-time

Transport Protocol, RFC 1889. January, 1996.

[12]. H. Schulzrinne, A. Rao, R. Lanphier. Real-Time Streaming Protocol (RTSP),

RFC 2326. April 1998.

[13]. M. Handley, V. Jacobson. Session Description Protocol (SDP), RFC 2327.

April 1998.

[14]. OpenSIPS. OpenSIPS. [Online] http://www.opensips.org.

[15]. Gintel AS. [Online] http://www.gintel.com/.

[16]. Gintel AS. EasyVPaBX Product Sheet. s.l. : Gintel AS, 2008.

[17]. Anu A. Gokhale. Introduction to Telecommunications. 2nd Edition. s.l. :

Cengage Learning, 2004. pp. 152-154. ISBN 9781401856489.

[18]. Advantages of Hosted PBX Solution. Telecom Auditing Guide. [Online]

[Cited: April 2, 2009.] http://www.telecomauditguide.com/pbx/advantages-of-a-

hosted-pbx-solution/.

[19]. Gintel AS. EasyVPaBX - Complete Hosted Telephony Solution for

Enterprises and SMEs : Service Description Document V2.0. s.l. : Gintel AS,

September 2008.

[20]. Apache Tomcat. The Apache Software Foundation. [Online]

http://tomcat.apache.org/.

[21]. Oracle WebLogic Server. Oracle. [Online] http://www.oracle.com/appserver/.

[22]. Wireshark. [Online] http://www.wireshark.org.

[23]. SJphone. SJ Labs. [Online] http://www.sjlabs.com.

[24]. Java SE. Sun Microsystems. [Online] http://java.sun.com/javase/.

[25]. Swing Application Framework. [Online] https://appframework.dev.java.net/.

[26]. JFreeChart. [Online] http://www.jfree.org/jfreechart/.

[27]. IP Media Server. Dialogic. [Online]

http://www.dialogic.com/products/ip_enabled/ip_media_server/.

[28]. Thread. Java Platform SE 6. [Online]

http://java.sun.com/javase/6/docs/api/java/lang/Thread.html.

 71

[29]. JFreeChart API Documentation. [Online]

http://www.jfree.org/jfreechart/api/javadoc/index.html.

[30]. Orable WebLogic SIP Server 3.1. [Online]

http://download.oracle.com/otn/bea/weblogic/B46920-01.zip.

[31]. MySQL - Open Source Database. [Online] http://www.mysql.com/.

[32]. H. Sinnereich and A. Johnston. Internet Communications Using SIP:

Delivering VOIP and Multimedia Services with Session Initiation Protocol. s.l. :

Wiley Publishing Inc., 2006.

[33]. GNU Scientific Library. GNU Project. [Online]

http://www.gnu.org/software/gsl/.

[34]. Dorgham Sisalem, Jiri Kuthan. SIP Tutorial. s.l. : iptel.org, Tekelec, March

2007.

72

Appendix A
User Manual

The performance evaluation framework is developed on Java 2 Platform standard

edition. To use the framework, JRE 6 is recommended. Additionally, SIPp must be

properly installed on the system. Other configured components (a SIP proxy and a

call recipient) are also required.

To install the framework, one executable JAR file (SIPPerformance.jar) and two

subdirectories (/lib and /predefined) must be placed in a destination folder. In

order to start the framework, execute the JAR file. The graphical user interface of

the framework will appear as shown in Figure A-1.

Figure A-1: The performance evaluation framework (user manual)

74

To start an evaluation, follow these steps

1. Select File > New Test

2. Select a scenario (Simple Call or Queue).

3. Configure the IP addresses and port numbers of the traffic generator as well

as the target system.

4. Choose a load pattern and configure the parameters.

5. Click Start Test.

6. Once the test has been started, the framework provides four panels for

result monitoring. Users can switch between these panels to see the real-

time updated graphs.

After the test has been completed, the four diagrams are written in the newly

created folder. Figure A-2 shows the output image files from the framework.

Figure A-2: Output image files from the framework

Appendix B
Simple Call Scenario File

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE scenario SYSTEM "[field0].dtd">
<scenario name="Basic Sipstone UAC">

 <send retrans="500">
 <![CDATA[
 INVITE sip:[service]@[remote_ip]:[remote_port] SIP/2.0
 Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]
 From: [field0] <sip:[field0]@[remote_ip]:[remote_port]>;tag=[call_number]
 To: sut <sip:[service]@[remote_ip]:[remote_port]>
 Call-ID: [call_id]
 CSeq: 1 INVITE
 Contact: sip:[field0]@[local_ip]:[local_port]
 ServiceKey: 183
 Max-Forwards: 70
 Subject: Performance Test
 Content-Length: 0

]]>
 </send>

 <recv response="100" optional="true"></recv>
 <recv response="180" optional="true"></recv>
 <recv response="200" rrs="true" rtd="true"></recv>

 <send>
 <![CDATA[

 ACK [next_url] SIP/2.0
 Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]
 From: [field0] <sip:[field0]@[remote_ip]:[remote_port]>;tag=[call_number]
 To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
 Contact: sip:[field0]@[local_ip]:[local_port]
 Call-ID: [call_id]
 CSeq: 1 ACK
 Max-Forwards: 3
 Content-Length: 0

]]>
 </send>
 <send>
 <![CDATA[
 BYE [next_url] SIP/2.0
 Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]
 From: [field0] <sip:[field0]@[remote_ip]:[remote_port]>;tag=[call_number]
 To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
 Call-ID: [call_id]
 CSeq: 2 BYE
 Contact: sip:[field0]@[local_ip]:[local_port]
 Max-Forwards: 70
 Content-Length: 0

]]>
 </send>
 <recv response="200" crlf="true"></recv>

 <ResponseTimeRepartition value="10, 20, 30, 40, 50, 100, 150, 200" />
 <CallLengthRepartition value="10, 50, 100, 500, 1000, 5000, 10000" />

</scenario>

76

Appendix C
Queue Scenario File

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE scenario SYSTEM "[field0].dtd">
<scenario name="Basic Sipstone UAC">
 <User variables="q" />

 <send retrans="500">
 <![CDATA[
 INVITE sip:[service]@[remote_ip]:[remote_port] SIP/2.0
 Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]
 From: [field0] <sip:[field0]@[remote_ip]:[remote_port]>;tag=[call_number]
 To: sut <sip:[service]@[remote_ip]:[remote_port]>
 Call-ID: [call_id]
 CSeq: 1 INVITE
 Contact: sip:[field0]@[local_ip]:[local_port]
 ServiceKey: 183
 Max-Forwards: 70
 Subject: Performance Test
 Content-Length: 0

]]>
 </send>

 <recv response="100" optional="true"></recv>

 <recv response="180" optional="true"></recv>

 <recv response="200" rrs="true" rtd="true">

 <action>
 <ereg regexp="snowshore" search_in="msg" case_idp="true" assign_to="q"/>
 </action>

 </recv>

 <send>
 <![CDATA[

 ACK [next_url] SIP/2.0
 Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]
 From: [field0] <sip:[field0]@[remote_ip]:[remote_port]>;tag=[call_number]
 To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
 Contact: sip:[field0]@[local_ip]:[local_port]
 Call-ID: [call_id]
 CSeq: 1 ACK
 Max-Forwards: 3
 Content-Length: 0

]]>
 </send>

<!-- If not in queue, jump to the real call -->

 <nop condexec="q" condexec_inverse="true">
 <action> <jump value="2" /> </action>
 </nop>

<!-- Otherwise, wait for an INVITE -->

 <recv request="INVITE" rrs="true" crlf="true"/>

78

 <send>
 <![CDATA[

 SIP/2.0 100 Giving a try
 [last_Via:]
 [last_From:]
 [last_To:];tag=[pid]SIPpTag01[call_number]
 [last_Call-ID:]
 [last_Record-Route:]
 [last_CSeq:]
 Contact: <sip:[local_ip]:[local_port];transport=[transport]>
 Content-Length: 0

]]>
 </send>

 <send>
 <![CDATA[
 SIP/2.0 200 OK
 [last_Via:]
 [last_From:]
 [last_To:]
 [last_Call-ID:]
 [last_Record-Route:]
 [last_CSeq:]
 Contact: <sip:[local_ip]:[local_port];transport=[transport]>
 Content-Length: 0

]]>
 </send>

 <recv request="ACK" crlf="true"/>

<!-- Start of the real call -->
 <label id="2" />
 <pause />
<!-- End of the real call -->

 <send>
 <![CDATA[
 BYE [next_url] SIP/2.0
 Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]
 From: [field0] <sip:[field0]@[remote_ip]:[remote_port]>;tag=[call_number]
 To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
 Call-ID: [call_id]
 CSeq: 2 BYE
 Contact: sip:[field0]@[local_ip]:[local_port]
 Max-Forwards: 70
 Content-Length: 0

]]>
 </send>

 <recv response="200" crlf="true"></recv>

 <ResponseTimeRepartition value="10, 20, 30, 40, 50, 100, 150, 200" />

 <CallLengthRepartition value="10, 50, 100, 500, 1000, 5000, 10000" />

</scenario>

Appendix D
SIP Miscellaneous

Method Description

INVITE Session setup
ACK Acknowledgement of final response to INVITE
BYE Session termination
CANCEL Pending session cancellation
REGISTER Registration of a user’s URI
OPTIONS Query of options and capabilities
INFO Mid-call signaling transport
PRACK Provisional response acknowledgment
UPDATE Update session information
REFER Transfer user to a URI
SUBSCRIBE Request notification of an event
NOTIFY Transport of subscribed event notification
MESSAGE Transport of an instant message body
PUBLISH Upload presence state to a server

Table D-1: SIP methods (adapted from [32])

Class Description

1xx Provisional or Informational
Request is progressing but not yet complete.

2xx Success
Request has been completed successfully

3xx Redirection
 Request should be tried at another location

4xx Client Error
Request was not completed
because of an error in the request

5xx Server Error
Request was not completed
because of an error in the recipient

6xx Global Failure
Request has failed and should not be retried again

Table D-2: SIP responses (adapted from [32])

80

SIP Header Description

Via indicates the transport used for the transaction and
identifies the location where the response is to be sent.
It contains the transport protocol, the host name or IP
address, as well as the port number (optional).
e.g. Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK-1

To shows the logical recipient of the request.
It contains a name and a SIP or SIPS URI of the recipient.
e.g. To: Carol <sip:carol@chicago.com>

From indicates the logical identity of the initiator of the request.
It contains a URI and optionally a display name.
In addition, a new "tag" parameter chosen by the UAC is
appended after the URI.
e.g. From: "Bob" <sips:bob@biloxi.com> ;tag=a48s

Max-Forwards the maximum number of hops a request can transit on the
way to its destination. The number is decremented by one
each hop. This is for loop prevention.

Call-ID acts as a unique identifier to group a series of messages.
It is required that the Call-ID remains the same for all
requests and responses in a dialog.
The UAC selects a globally unique identifier for a session.
e.g. Call-ID: f81d4fae-7dec-11d0-a765@foo.bar.com

CSeq

identifies and orders the transaction.
It consists of a sequence number and a method.
e.g. CSeq: 4711 INVITE

Contact provides a SIP URI which can be used to contact the UA for
subsequent requests.

Content-Type provides a description of the body part of the message.
e.g. Content-Type: SDP

Content-Length contains the length (byte) of the message content.
The 0 value indicates no content in the message body.

Table D-3: SIP Headers (summarized from [1])

Appendix E
SIPp Miscellaneous

Parameter Description

-bg run SIPp in background mode
-ci set the local control IP address for remote-controlling
-cp set the local control port for remote-controlling
-d set the length of the calls in millisecond, default is 0
-f set the statistics report frequency, default is 1s
-fd set the statistics dump frequency, default is 60s
-i set the local IP, default is the primary host IP
-inf inject values from an external CSV file
-l set the maximum number of the simultaneous call

If this number is reached, SIPp pause the traffic generation until open
call number is less than this.
Default value is 3 x call length x call rate.

-m the number of total call to be generated
-max_retrans maximum UDP retransmission

 Default is 5 for INVITE message, 7 for others.
-p the local port number of this SIPp.

Default is random free port
-r the initial call rate
-rate_scale the rate step used for hot keys
-rp the rate period, default is 1000 ms
-sf use the external XML scenario file
-sn use the embedded scenario
-trace_msg save sent and received SIP messages to the log file
-trace_err save unexpected messages to the log file
-trace_stat save all statistics to the file
-trace_counts save individual message counts to the file
-trace_rtt save all the response times to the file

Table E-1: SIPp startup parameters

Command Description
dump tasks Save the list of active tasks to the error log
set rate X Set the call rate to X
set rate-scale X Set the step of rate as used by hot keys +,-,*,/
set users X Set the number of users
set limit X Set the open call limit
set index <true|false> Display message indexes in the scenario screen
set display <main|ooc> Change the displayed scenario
trace <log> <on|off> Turn log on or off

Table E-2: SIPp interactive commands

82

Hot Key Description
+ Increase the call rate by one step
- Decrease the call rate by one step
* Increase the call rate by ten step
/ Decrease the call rate by ten step
c Enter the command mode
p Pause the traffic
q Quit the SIPp (wait for ongoing calls to end)
Q Force quit SIPp
s Dump the screen
1-9 Switch between display screens

Table E-3: SIPp hot keys

Command Attribute Description

<send> retrans to adjust T1 timer used in UDP retransmission.
For example, <send retrans=”500”> sets timer to 500 ms.

<recv> response to specify what SIP message code is expected.
For example, <recv response=”200”> tells SIPp to wait
for an answer with the code 200.

request to wait for a SIP request message.
For instance, <recv request=”ACK”> will wait for an ACK message.

optional to indicate that the SIP message is optional.
For instance, <recv response=”100” optional=”true”>
tells SIPp that this 100 message can be received but not required.

rrs stands for record route set.
With this attribute, SIPp will save the Record-Route header
of the received SIP message for later use.
For example, <recv response=”100” rrs=”true”> lets the received
route be stored and is accessible by [routes] keyword.

timeout specify a timeout to wait for the message.
For instance, <recv timeout=”10000”> tells SIPp to abort the call
if the expected message is not received within 10 seconds.

<pause> milliseconds to specify the delay period in milliseconds.
For example, <pause milliseconds=”5000”/>
tells SIPp to pause the scenario for 5 seconds.

variable to pause for the number of milliseconds stored in the variable.
For instance, <pause variable=”1”/>
uses value in variable 1 as the pause time.

distribution to use certain statistical distributions to determine the delay.
Available distributions include uniform, normal, exponential, etc.
Some distributions require recompilation with GSL [33] support.

Table E-4: SIPp unique attributes for certain commands

 83

Attribute Description

start_rtd starts one of the Response Time Duration timers
Rtd stops one of the Response Time Duration timers
repeat_rtd allows the timer to be counted more than once
Clrf prints an empty line on the display screen
Next jumps to another part of the script
test (used with next) jumps to another part of the script only if the variable is set
chance (used with test) adds probability to jump to another part
Condexec executes the command only if the variable is set
condexec_inverse executes the command only if the variable is not set
Counter increments the specified counter

Table E-5: Attributes in XML scenario files

Keyword Description

[service] Service field, as passed in the -s service_name

[remote_ip] Remote IP address, as passed on the command line.
[remote_port] Remote IP port, as passed on the command line.
[transport] Depending on the value of -t parameter, "UDP" or "TCP".
[local_ip] Will take the value of -i parameter.
[local_port] Will take the value of -p parameter.
[len] Computed length of the SIP body.

To be used in "Content-Length" header.
[call_number] Index. The call_number starts from "1"

and is incremented by 1 for each call.
[cseq] Generates automatically the CSeq number. The initial value is 1.

It can be changed by using the -base_cseq command line option.
[call_id] A call_id identifies a call and is generated by SIPp for each new call.

In client mode, it is mandatory to use the value generated by SIPp.
[routes] If the "rrs" attribute in a recv command is set to "true",

then the "Record-Route:" header received is stored
and can be recalled using the [routes] keyword

[next_url] If the "rrs" attribute in a recv command is set to "true",
then the [next_url] contains the contents of the Contact header

[branch] Provide a branch value which is a concatenation of magic cookie
(z9hG4bK) + call number + message index in scenario.

Table E-6: Keywords in XML scenario files

84

File Name Description Parameter

<scenario>_<pid>_messages.log Sent and received messages -trace_msg
<scenario>_<pid>_shortmessages.log Sent and received messages in CSV format -trace_shortmsg
<scenario>_<pid>_screen.log Final statistics screens before SIPp quits -trace_screen
<scenario>_<pid>_errors.log Unexpected messages -trace_err
<scenario>_<pid>.csv All statistics in CSV format -trace_stat
<scenario>_<pid>_counts.csv Individual message counts in CSV format -trace_counts
<scenario>_<pid>_rtt.csv Response times in CSV format -trace_rtt
<scenario>_<pid>_logs.log Log actions specified in the scenario file -trace_logs

Table E-8: SIPp output files

Counters Description

StartTime Date and time when the test has started.
LastResetTime Date and time when periodic counters where last reset.
CurrentTime Date and time of the statistic row.
ElapsedTime Elapsed time.
CallRate Call rate (calls per seconds).
IncomingCall Number of incoming calls.
OutgoingCall Number of outgoing calls.
TotalCallCreated Number of calls created.
CurrentCall Number of calls currently ongoing.
SuccessfulCall Number of successful calls.
FailedCall Number of failed calls (all reasons).
OutOfCallMsgs Number of SIP messages that cannot be associated.
Retransmissions Number of SIP messages being retransmitted.
ResponseTime Time between two commands specified in the XML file.
CallLength Duration of an entire call.

Table E-7: SIPp statistics counters

Appendix F
OpenSIPS Miscellaneous

Keyword Description

from_uri the URI in the From header in the received SIP message.
e.g. if(from_uri~=”.*@opensips.org”)

method the SIP method of the message.
e.g. if(method==”INVITE”)

src_ip the source IP address of the SIP message.
e.g. if(src_ip==127.0.0.1)

src_port the source port number of the SIP message.
e.g. if(src_port==5060)

uri the request URI of the SIP message.
e.g. if(uri~=”[123]+.*@sipproxy.com”)

Table F-1: OpenSIPS important keywords

Parameter Description

alias to set alias hostnames for the server.
e.g. alias=sipserver.com:5060

children to set the number of children to fork for the UDP interfaces
in the case that fork parameter is enabled. (default value is 8).
e.g. children=16

debug to set the debug level. Higher values result in more log messages.
e.g. debug=3

fork to enable or disable the daemon mode which allows one process
for each network interface and each protocol.
When disabled, the openSIPS is bound to the terminal as a single process.
e.g. fork=no

listen to set the network address that OpenSIPS should listen to.
Multiple values can be assigned to this parameter to make
the SIP server listens to more than one address.
If it is omitted, the server will listen to all interfaces.
e.g. listen=udp:127.0.0.1:5060

loadmodule to load the module specified as the parameter.
e.g. loadmodule “db_mysql.so”

mpath to set the path for OpenSIPS to look for modules.
e.g. mpath=”/usr/local/lib/opensips/modules”

modparam to modify the value of a parameter.
e.g. modparam("usrloc", "db_mode", 2)

port to set the port OpenSIPS should listen. (default value is 5060)
e.g. port=5061

Table F-2: OpenSIPS key parameters

86

Function Description

rewritehost() to substitute the domain part of the request URI
with the value specified. Other parts remain unchanged.
e.g. rewritehost(“10.0.0.10”);

rewritehostport() to change the domain part and the port number of the request URI.
Other parts such as username remain unchanged.
e.g. rewritehostport(“10.0.0.10:5090”);

rewriteport() to change the port number of the request URI.
e.g. rewriteport(”5090”);

rewriteuri() to change the whole request URI.
e.g. rewritepath(“sip:abc@sipserver:5090”);

setflag() to mark the current SIP message for further processing.
The flag parameter can be in the range from 1 to 31.
e.g. setflag(1);

isflagset() to test if the current SIP message is marked with the flag.
e.g. isflagset(1)

strip() to strip the first n characters from the username in the request URI.
e.g. strip(5);

ds_select_dst(set, alg) to choose the destination from the provided set of addresses
based on different algorithms. The first parameter indicates
the set number. The latter specifies the algorithm used
in selecting one instance in the set.
This method belongs to the dispatcher module (dispatcher.so).
e.g. ds_select_dst(“2”, “0”);

Table F-3: OpenSIPS important functions

	Title Page
	Problem Description
	Abstract
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and Background
	Objective and Scope
	Research Work Activities
	Structure of the Report

	Background
	Session Initiation Protocol (SIP)
	SIP User Identifier
	SIP Components
	User Agents
	SIP Servers

	SIP Messages
	SIP Requests
	SIP Responses

	SIP Headers
	SIP Conversation

	SIPp - SIP Performance Testing Tool
	Running SIPp
	Controlling SIPp
	Call Rate
	XML Scenario File
	Commands
	Attributes
	Keywords
	Injection File

	Statistics
	Response Time Timers
	Counters

	Output Files
	Statistics File
	Response Time File

	OpenSIPS - Open Source SIP Server
	EasyVPaBX
	PaBX and Virtual PaBX
	Key Features
	System Architecture
	Telecom Network Exposure Layer
	Web Network Exposure Layer
	Telecom Application Server
	Web Application Server

	Experiment on SIPp and OpenSIPS
	Installation
	Environment
	SIPp
	OpenSIPS

	Scenarios
	UAC and UAS
	UAC and UAS with a SIP proxy

	Results for Various Settings
	Traffic Generation Rates
	OpenSIPS Memory Configuration

	Discussion about SIPp and OpenSIPS

	SIP Performance Evaluation Framework
	Framework Overview
	Requirement Specification
	Performance Measurements
	Scenarios
	Simple Call
	Queue

	User Interface

	Design
	Components
	Graphic User Interface
	Parameters Configuration
	Results Display

	Implementation
	Initial Requirements
	Scenario Files
	Simple Call Scenario File
	Queue Scenario File

	Threads
	Main Thread
	Control Thread
	Result Update Thread

	Starting SIPp
	Controlling SIPp
	Reading Statistics File
	Displaying Graphs

	EasyVPaBX Performance Evaluation
	System Configuration
	Single Computer
	Two Computers with a Load Balancer

	Testing Environment
	Performance Evaluation Results
	Single Computer: Machine A
	Single Computer: Machine B
	Single Computer: Machine C
	Single Computer: Machine D
	Load Balancing: Machine C and Machine D

	Results Comparison
	Results Discussion

	Framework Evaluation and Discussion
	Requirement Verification
	Comparisons to SIPp
	Evaluation Parameters Specification
	Results Presentation

	Discussions
	Performance Evaluation based on SIP Signals
	Platform Compatibility
	Proxy Server and Call Recipient
	Determination of the System Capacity
	Traffic Patterns

	Conclusions
	Summary
	Future Work

	References
	User Manual
	Simple Call Scenario File
	Queue Scenario File
	SIP Miscellaneous
	SIPp Miscellaneous
	OpenSIPS Miscellaneous

