
June 2009
Leif Arne Rønningen, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

Automated Calibration of Multi-
Projector Arrays

Ola Nordbryhn

Problem Description
One of the problems with video projectors is that the calibration is a manual process that takes
time and may be inaccurate. This problem is magnified when setting up a multi-projector array,
where several projectors are set up to work otgether, to give stereoscopic images or to increase
the projected image size. By doing this process automatically, one may gain both speed and
accuracy, and in turn get a more flexible projection system. One of the goals is to make a
demonstrator of a system that can prove this.

Assignment given: 15. January 2009
Supervisor: Leif Arne Rønningen, ITEM

Distributed Calibration of Multi-Projector

Arrays

Ola Nordbryhn

June 11, 2009

This page is intentionally left blank.

i

Abstract

Setting up large multi-projector arrays today usually come at a cost;

manual calibration of each projector requires time. The orientation of the

image from each projector must be correctly aligned in six axes to make

the �nal projected output �t the screen. Not all aspects of calibrating

projectors are possible to correct, consumer hardware usually only covers

two or three of the axes, the remainder are often corrected using clever

projector placement. Also, the degree of which it is possible to adjust is

also limited, decreasing placement �exibility. As the collaboration surfaces

in Hems lab requires a large number of projectors to work seamlessly

together, good calibration techniques are required in order to keep setup

and maintenance time low, while giving highly accurate calibration results.

By creating a software demonstrator that automates much of the cal-

ibration and enables quick and easy setup, I have made possible rapid

prototyping, testing and demonstration of multi-projector arrays, both

with single and stereoscopic views. As I will prove, this software shows

a �exible approach that may be of use, not only to the Caruso lab and

future Hems lab, but may also be used in other settings where projector

technology up to this date still has not been widely used, by overcoming

the calibration and image warping hurdles and limitations.

The software is developed with basis in the OpenCV computer vision

library, and implemented in Python. Tests show that calibration time for

a single projector may be cut down to a matter of seconds, regardless of the

placement of the projector in relation to the screen, whereas traditional

calibration often still not reach the same level of accuracy even if taking

tens of minutes or require repositioning of the projector to compensate

for the lack of adjustment possibilities.

ii

Acknowledgments

I would like to thank my teachers at NTNU, especially my project tutor Leif

Arne Rønningen at Department of Telematics, for guidance and advice through-

out my education, and all my previous and current classmates, whose knowledge

has been both inspiring and helpful. I would also like to thank my girlfriend for

support during my work and for the cover art.

Disclaimer

This report is the main part of my Master's thesis at NTNU's Department of

Telematics. The work was done during the spring of 2009, with a duration of

20 weeks. All sources used are properly covered and accounted for, images and

�gures are created myself or taken from Wikimedia Commons unless otherwise

noted. The sample video used in all examples is the intro to the show Kempha-

nen from Belgian TV station VRT. The cover image is made by Anne Louise

Morseth.

iii

List of Figures

1 Illustration showing the relation between angles when calculating

keystone distortion[24] . 7

2 A plot showing total pixel count for rotated images 9

3 Figure showing the six axes[5] . 11

4 Corner pinning inputs and outputs that produce unwanted warping 14

5 Illustration showing how the areas covered by the projector and

camera should overlap . 16

6 A PC/104+ stack[15] . 18

7 Anaglyph and shutter glasses used for viewing stereoscopic pro-

jections . 24

8 The calibration test images . 28

9 Average frame rate after over 10.000 frames 34

10 A SVGA resolution frame inscribing the area covered by an XGA

resolution frame . 37

11 A projector placed directly in front of the screen for minimum

image distortion . 38

12 Top view of three projectors placed at high angles to produce a

single high resolution image . 39

13 The control panel interface . 43

14 The source material and command output windows 44

15 The area covered by the projector 45

16 A closeup of the projector . 46

17 Beginning of the corner pinning 47

18 Standard calibration after the corner pinning 48

19 Start of the normal calibration without corner pinning 49

20 The output video after calibration 50

21 Screen shot of the monitor output 51

iv

22 An overview of the system . 54

23 MIDI[11] and DMX512[10] cables and connectors 56

24 Corner pin inputs . 71

25 Vertical lines before correction 72

26 Vertical lines after correction . 73

27 Horizontal lines before correction 73

28 Horizontal lines after correction 74

29 Rotation adjustment before correction 74

30 Rotation adjustment after correction 75

31 Size adjustment before correction 76

32 Size adjustment after correction 76

33 Corner placement before correction 77

34 Corner placement after correction 78

35 Warped video after calibration 78

36 Warped, inverted and �ipped output 79

37 Warped and masked output . 80

38 Warped, rotated and masked output 80

39 Warped, �ipped and masked output 81

v

List of Tables

1 Loss of resolution due to keystoning 8

2 Loss of resolution due to rotation 8

3 The four versions of the calibration program 25

4 Keyboard map for the calibration part of the program 30

5 Keyboard map for the main loop of the program 31

6 Data rate for existing and needed display transmission standards 32

vi

Nomenclature

CPU Central Processing Unit, the main processing unit and core of computers.

Everything in a computer is connected to and through the CPU.

CRT Cathode Ray Tube, display technology used in older TV sets where a

beam of electrons hit a �uorescent coating in the display screen, which

then emits light.

DLP Digital Light Processing, projection technology common in home projec-

tors today. It uses micromirrors on a chip, which is illuminated through

a color wheel.

DMX512 A communication protocol and connector speci�cation, used as an

industry standard between stage light controllers and the dimmers or

other equipment being controlled.

FPGA Field Programmable Gate Array, an integrated circuit where gates and

wiring can be reprogrammed by the user to work in a speci�c manner

to create a hardware implementation of a given design.

Full HD Full HD is a display speci�cation that de�nes the resolution to be 1920

by 1080 pixels, displayed progressively. This gives a gross pixel count of

approximately two megapixels.

GPU Graphical Processing Unit, a specialized graphics coprocessor common

in most modern computers, fucusing on solving the highly parallel prob-

lem sets needed for graphics calculations.

GUI Graphical User Interface, as opposed to textual interface.

LAN Local Area Network, a small network, usually with ethernet connections.

Used for connecting and communicating with nearby computers over a

wired network.

MIDI Musical Instrument Digital Interface, a standard protocol for transmit-

ting event information and synchronisation, often used to communicate

between music instrument controllers and computers.

MXM Mobile PCI Express Module, a graphics interconnect standard widely

used in laptops and embedded computers.

vii

PCIe Peripheral Component Interconnect Express or PCI-express, a bus for

connecting computer expansion cards on a motherboard. Intended to

replace PCI, PCI-x and AGP.

PoE Power over Ethernet, a standard for transmitting power in addition to

data over standard Ethernet cables.

QoS Quality of Service, measurement and service guarantees for the per-

cepted quality, with regards to a variety of parameters like latency, bit

rate and transmission errors.

RAID Redundant Array of Independent Disks, a set of hard drives con�gured

together to provide redundancy, speedup or both.

VHDL Very High Speed Integrated Circuits Hardware Description Language,

a design language to program FPGAs or to simulate the hardware be-

haviour of a circuit design.

viii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Concrete goals . 2

1.3 Limitations . 2

1.4 Originality . 3

1.5 Overview . 3

2 De�nitions 4

2.1 Hems lab and DMP . 4

2.2 Caruso lab . 5

2.3 Keystoning . 6

2.4 Optical calibration and lens shift 9

2.5 Homography . 10

2.6 Perspective correction . 12

2.7 Calibration techniques . 15

2.7.1 Camera based screen recognition 15

2.7.2 Sensor-equipped screen 16

2.7.3 Marked screen camera recognition 16

2.7.4 Manual calibration . 17

2.8 PC/104 . 17

2.9 Projector technology types . 19

2.9.1 DLP . 19

2.9.2 LCoS . 20

2.9.3 LED as light source . 20

2.9.4 Laser . 20

2.10 Operating system . 21

ix

2.11 OpenCV . 21

2.12 Python . 23

2.13 Stereoscopic video in Hems lab 23

3 Implementation 25

3.1 Wanted result . 25

3.2 Development process . 26

3.2.1 Speci�cation . 26

3.2.2 Design . 26

3.2.3 Implementation and testing 27

3.3 Functionality . 28

3.4 Keyboard map . 29

3.4.1 Calibration . 30

3.4.2 Main loop . 31

3.5 Data rates . 31

3.6 Code guide . 32

3.6.1 The calibration . 33

3.6.2 The main video loop . 33

3.6.3 The supporting methods 34

3.7 Control latency . 36

3.8 Loss of pixels when warping image 36

3.8.1 Use of centered and ideally placed projectors 37

3.8.2 Use of higher resolution projectors to compensate 38

3.9 Example of use . 39

3.10 Pseudo code . 40

3.11 Speed and frame rate issue . 41

x

4 User manual 43

4.1 Control setup . 43

4.2 Usage example . 44

4.3 Calibration comparison . 51

4.4 Stage lighting . 52

4.5 Complete system design thoughts 54

4.5.1 The projector . 54

4.5.2 The controller computer 56

4.5.3 The embedded computers 57

4.5.4 Other system parts . 58

5 Discussion 59

5.1 Applications . 59

5.2 Software alternatives . 60

5.3 Hardware alternatives . 60

5.4 Advantages compared to other solutions 61

6 Conclusion 63

7 Future work 65

8 Reference list 66

A Source �les 71

B Usage examples 71

C Code example 82

D Speedup Enhancements 104

D.1 Keyboard Listener . 104

D.2 Image rescaling . 104

xi

1 Introduction

1.1 Motivation

Use of video projectors is widespread, both in consumer and professional mar-

kets. However, it is still a time consuming job to place and properly calibrate

them. Ideally, a video projector is placed straight in front and at the same

height as the screen, meaning the same spot as one would want the viewer's

head. Obviously, both the physical presence of the projector and the noise it

emits is not wanted in such a spot, which often also is the most wanted spot for

viewing. This dilemma is often solved by mounting the projector in the ceiling,

as this is a compromise with both noise and acceptable image quality. Image

skew is then introduced if the projector is at an angle compared to the ideal

spot. The image may su�er from becoming a trapezoid, rotated or leaking light

onto surfaces other than the screen, this is often correctable to some degree by

built-in calibration means.

The manual calibration process is often a tedious one, especially if the projector

is ceiling mounted and one has to climb up to reach it. The resulting quality

is varying, some projectors lack certain degrees of freedom when it comes to

warping the image, for instance is vertical keystoning still only available on

high-end equipment[6]. This means that the output image may su�er from

decreased quality, geometric errors and loss of e�ective resolution. Finally, if

the image �nally �ts the screen and the projector is tucked away in a not to

troublesome location, one must make sure not to move the projector or screen

around, as one then needs to recalibrate the projector all over again.

This calibration process needs to become more automated. Calibrating one

projector is not too troublesome for most, but when faced with an array of

projectors that are supposed to work together to create one big picture, the

time and accuracy needed to calibrate these is a key reason not to use such an

array. I want to make a solution where the projector and the computer system

it is connected to calibrates and adjust the image of each projector in an array

with as little as possible input from the user. The solution needs to be quick

and accurate, and the result should be a stand-alone application that runs on a

computer that outputs the pre-warped image to the projector, so the projector

itself requires little or no manual adjustment.

The applications of such a system is plentiful. One may use this for placing a

1

projectors where they are most suited, where they are least troublesome and

protruding, even if this is a place that is hard to reach or one needs to often

move them around. One does not need to take into account the limits of the

built-in image adjustment in the projector as this is done in software. This

may spark more creative use of projectors, they may be used not just for video

presentations, but also for lighting e�ects in stage productions or for project-

ing onto irregular surfaces normally not associated with video or visual e�ects,

such as projecting facial and bodily features onto a static doll, giving it lifelike

characteristics.

1.2 Concrete goals

In this thesis, I want to achieve the following goals

� Create a software solution that warps an image to �t the projection surface

with an easy-to-use interface.

� Examine the use cameras or light sensors to automatically identify the

screen surface.

� Make a solution that is both �exible and distributed, so each projector

has its own keystoning computer for greater extensibility.

� Use the OpenCV framework as a basis for my solution.

� Present my �ndings and results in a written report.

1.3 Limitations

The goal of this work is to make a sample application, showing some possibilities

with automated calibration. A �nished system with a full array of projectors

will not be put up, and calibration based on camera input will only be discussed,

not implemented. Tests will show whether the software made has advantages

compared to more traditional calibration methods and to �nd how this can be

used in a complete system. The system is supposed to project only onto even,

planar surfaces with no color correction.

2

1.4 Originality

The system described will di�er from existing solutions in its extensibility and

how it treats projection surfaces. It is not only a system designated to be

used for spreadsheet presentations, but a system where �exibility is key and

innovation in usage is encouraged. It shows how calibration can be done very

fast and accurate using a well-known computer vision library, and its results

should be important in the further development of Hems lab. I will also show

how it can be used as replacement and extension of stage lighting, by projecting

light and video onto both the actors, stage and stage sets.

1.5 Overview

In part 2, I will present the required background knowledge for understanding

the problems, as well as highlight the elements used to solve them. Part 3 goes

into detail on how the implementation works and describes how the di�erent

elements work together, part 4 describes more on how the system is thought

to be used in a real-life situation and which results are to be expected. The

discussion and comparison with existing systems, as well as looking at pros

and cons is in part 5, while conclusions and future work is in parts 6 and 7,

respectively.

3

2 De�nitions

In this chapter, I will list and explain the technical background for the work I

have done.

2.1 Hems lab and DMP

The Hems Lab, which this project is a part of, is a research project at the

Department of Telematics at NTNU. Its goal is to create a networked virtual

collaborative space for everything from actors practicing an opera piece, to

web conferencing, with conceived near-natural quality. The goal is to make

collaboration across great distances as easy and natural as actually being in the

same room. It is intended that at least �ve surfaces should be covered with

video projections with auto-stereoscopic multi-view projections in high to ultra-

high resolution. Additionally, several high quality cameras and surround sound

recording and playback equipment is to be �tted to provide an experience as

close to real life collaboration, as is possible with state-of-the-art technology. In

order to realize the Hems Lab, several di�culties have to be overcome, among

others the calibration of large multi-projector arrays.

The Hems lab is a realization of the collaboration principles in Distributed Mul-

timedia Plays, DMP. DMP is a proposal for a three-layer systems architecture

for virtual networked collaboration.[51] It uses ScenePro�les that describe the

characteristics with the implicit needs for all parts of a collaboration situation,

they can be used for instance describing sub-objects in a scene such as actors and

static objects, to give each sub-object the resources needed to be represented

near-naturally while keeping bandwidth use as low as possible. Each sub-object

then can be encoded and rendered with individual quality descriptions, collec-

tively creating the entire scene.[52] Other issues that may be tested in the lab

is the real-life performance testing of the AppTraNet networking protocol and

the use of ScenePro�les in media coding. The AppTraNet is a combined ap-

plication, transport and network layer protocol for e�cient transport of video

with both guaranteed QoS constraints and graceful degradation of quality when

bandwidth requirements are greater than the underlying network can handle.

It applies many principles from IPv6 and IPSec, while introducing new ele-

ments to the header useful for both the transport and application layer. This

includes ScenePro�le reference, sequence number and the physical placement of

4

the data in the �nished output image. By replacing or modifying current proto-

cols and customizing the header information, the protocol becomes less complex

and more lightweight than current protocol stack, while being more robust and

�exible when used within a DMP architecture.

2.2 Caruso lab

The research and development of this project has mostly taken place at NTNU's

Caruso lab[27], the primary lab for research in 3D technology and the principles

of DMP at NTNU's Department of Telematics. The lab equipment includes

� Two DLP projectors with XGA resolution

� Two LCoS projectors with SXGA+ resolution

� A full HD plasma screen with Motion+1 technology

� Two video cameras capable of recording HD video

� Polarizing �lters

� Polarity preserving silver screen

� Active shutter glasses, polarizing glasses and anaglyph glasses

� Two high-end computers for video rendering and 3D video playback

This equipment allows for extensible testing of both single and dual projector

technology as well as 3D video with di�erent technologies. The lab is widely

used during tech demonstrations for guests and other students to show three

dimensional video by stereoscopy and how temporal resolution increases will

a�ect viewer experience. The lessons learned in the Caruso lab will be vital

for the realization of Hems lab by proving high needs for both spatial and

temporal resolution, as well as creating a testbed for early realizations of virtual

collaboration.

1Technology that upscales temporal video resolution to 120 Hz by interpolating between
the source video frames

5

2.3 Keystoning

Keystoning is the term coined for the e�ect that happens when an image is pro-

jected at an angle onto a screen. The image is skewed and becomes a trapezoid,

where the parts furthest away from the projector becomes larger than the parts

closest to the projector. This is an unwanted e�ect, as it causes lines that was

supposed to be parallel now are at an angle, distorting the view. Some projec-

tors have built-in keystone correction, either optical or electronic, but this does

not always have desired adjustment range, and manually adjusting the projector

to eliminate the keystone e�ect properly is tedious work. Therefore, it would

be ideal to have an application that automated some of the work involved with

calibrating an image to correct keystone issues.

The e�ective resolution of the image in a given axis p is given by:

ReEffective = RProjector ×
cos(Bp+

Ap
2)

cos(Bp−
Ap
2)

[23]

for the x plane, where Bp is the angle between the projector and the screen, and

Apis the projector's beam angle, as illutrated in �gure 1 on the following page.

6

Figure 1: Illustration showing the relation between angles when calculating
keystone distortion[24]

Typical beam angle values vary between projectors, the values used here are

taken from Optima EX525ST[48] projector. By looking in the reference manual

at screen sizes for di�erent distances between the projector and the screen, it is

found that it has beam angles of approximately 80° horizontal and 64° vertical.

By increasing the angle between the screen and projector in both x- any y-axes

simultaneously, it is easy to see how much keystone a�ects e�ective resolution.

This has been done in table 1, where it is possible to see what the e�ective

resolution is for both planes as well as how much information is lost for the

given angle being applied to both axes at the same time. The loss is given by

Loss =
Rxeffective

×Ryeffective

Rxprojector
×Ryprojector

7

Rotation Horizontal resolution Vertical resolution Total pixel loss

0° 1024 768 0 %
5° 883 688 22.8 %
10° 859 615 32.8 %
20° 591 483 63.7 %
30° 372 360 82.9 %

Table 1: Loss of resolution due to keystoning

This shows that there is a quite severe loss of information when increasing angles,

this is most visible in the far edge of the keystoned image where the pixel density

is lower than in the near corner because the source image is stretched.

By �nding the largest rectangle inscribed in another while keeping the aspect

ratio, we can approximate the loss of pixels for rotated projectors. By using the

following

sin ϕ = HeightP rojector−HeightScreen

WidthScreen

where φ is the rotation angle, HeightProjector is the projector's resolution and

the HeightScreen and WidthScreen is the resulting resolution. By knowing the

ratio between width and height of the screen, Ratio, we �nd that

WidthScreen = HeightP rojector

sin ϕ− 1
Ratio

The ratio is the proportion ratio between the long and the short edge, often 4:3

or 16:9. By calculating the resulting resolution from a XGA projector where

the �nal image has to �t within the rotated output and keep the proportions of

the source, we get the following table.

Rotation Horizontal resolution Vertical resolution Total pixel loss

0° 1024 768 0 %
5° 917 688 19.8 %
10° 831 623 34.2 %
15° 761 570 44.8 %
20° 703 527 52.9 %
30° 614 460 64.0 %

Table 2: Loss of resolution due to rotation

8

The �gure 22 shows how total resolution is lost with increased rotation angle.

This means that in order to maintain as high pixel count and density as possible,

both the keystoning and rotation should be kept to a minimum. However, this

is not always possible, and as one can see from the tables, the rotation can be

quite acute while still maintaining a displayed resolution that is more than half

the projected resolution.

Figure 2: A plot showing total pixel count for rotated images

2.4 Optical calibration and lens shift

One of the problems with calibration that warps the output video imagery, is

that it will produce a loss of information. As a projector only has a limited

number of pixels, each rotation and keystoning of the image will reduce the

amount one can use for projecting to the screen. Using optical lens shift, one

can achieve a high degree of freedom with regards to placement of a projector

without having to bear the cost of loosing image resolution. However, the optics

2The plot comes from Mathematica, the input is
Hpj = 768
Bpj = 1024
Bb = (Hpj/(Sin[t Degree] + (3/4)))
Hb = Bb*(3/4)
Plot[Bb*Hb , {t, 0, 45}, PlotRange -> {{0, 45}, {0, 1000000}}, AxesLabel -> {Degrees,

Megapixels}]

9

needs to be accurate and of very high quality in order to keep image distortion

to a minimum. Today, few projectors have control over three or more axes with

lens shifting, as this is too costly and heavy for practical operation.

For remote control of lenses, a simple control bus like Inter-Integrated Circuits,

I2C[33], could be used. I2C provides a low-cost, low bandwidth serial interface

that is used in many simple applications, and its close integration with micro

controllers will enable easy implementation.

2.5 Homography

A homography is a mathematically invertible transformation for mapping two

di�erent views together. It can be used to represent the six-axis di�erence

between two planar surfaces in a three-dimensional space. This is a useful

concept for when dealing with calibration of projected images, in order to �nd a

mapping between what you see and what you are trying to project. Finding the

homography will enable recti�cation of images so that lines that are straight in

the source images, becomes straight when it is projected onto a screen.

Of the six axes of which to control a projector output, three of these, X, Y and

Z, are often done by physically moving the projector, the other three are done

either optical within the projector or by pre-warping the image before sending it

to the projector. These are described in �gure 3 where Θx, Θy and Θz describe

pitch, roll and yaw, while X, Y and Z describe physical placement and the zoom

or size of the image. All six axes are possible to adjust with physical movement

of the projector. The keystoning directions and size adjustment may be done

either with lens shifting or by calculating a three dimensional warp matrix and

using this to warp the images.

10

Figure 3: Figure showing the six axes[5]

By using an assumption of a pinhole camera, something that is possible because

a projector can be viewed as a pinhole camera in reverse, the homography H

can be calculated using the equation[38, 44]

q̃ = sHQ̃

where q̃ and Q̃ are the points in the source image and in the projected image,

respectively. The parameter s is a generic scaling factor between the images.

Each point in the source image q̃ can be described with q̃ =
[

x y 1
]T

,

correspondingly, a projected point Q̃ can be described with its coordinates in

three dimensions, Q̃ =
[

X Y Z 1
]T

. The use of the parameter Z is to

describe the depth of the projected point.

The homography H is composed of two values, the physical transformation

W and the camera intrisics matrix M . The physical transformation is again

composed of two parameters, the three dimensional rotation and the translation

vector, W =
[

R ~t
]
where R =

[
r1 r2 r3

]
and ~t is describes the pose

of the projected point relative to the source, giving a physical relation between

the source plane and image plane.

The camera intrisics matrix M is a 3x3 matrix that describes the camera's quali-

ties with regards to focal length and the o�sets of the image's center coordinates

with regards to the optical axis of the projection.

M =

 fx 0 cx

0 fy cy

0 0 1

11

where fxand fyis the pixel focal length, given as a product of the pixel density

and the lens' physical focal length, and and cxand cyis the displacement of the

image center point, both values are given in number of pixels. The matrix M

can thus be used as a constant, as it depicts the qualities of the projector as a

pinhole camera. This then gives us the following equation: x

y

1

 = s

 fx 0 cx

0 fy cy

0 0 1

 [
r1 r2 r3

−→
t

]

X

Y

Z

1

By setting the value Z for the projection to 0, it is possible reduce the expression

somewhat: x

y

1

 = sM
[

r1 r2 r3
−→
t

]

X

Y

0
1

 = sM
[

r1 r2 ~t
] X

Y

1

so that the homography is a 3x3 matrix, describable by H = sM

[
r1 r2 r3

]
,

telling that the mapping between two views is described and determined by two

dimensions of rotation and the pose of the projected point in relation to the

projector. This homography is used to describe the mapping between each

pixel in the source image and the resulting projected image, so that for every

pixel in the source psrc there is a mapping to a pixel in the projected image

pdst.

pdst = Hpsrc

where psrc and pdst is described with their coordinates psrc =

 xsrc

ysrc

1

 and

pdst =

 xdst

ydst

1

.

2.6 Perspective correction

There are basically two ways of correcting the perspective of an image projected

from a projector onto a planar surface, corner pinning and perspective transfor-

mation. Both these techniques are used in the programs, and both have pros

12

and cons. Corner pinning is a basic transformation where the user inputs where

the corners of the output is compared to where the inputs are, and the image is

stretched to �t the new corner positions, regardless of proportions of the orig-

inal image and whether or not the placement of the corners is logically sound.

Perspective transformation takes the image and through the use of a homogra-

phy manipulates any of the six axes, while having the ability to maintain the

original ratio of the image. This is because all outputs are bound to be logically

correct, for every manipulation done with the image, there is an orientation, as

a combination of scale, rotation and pose, between the projector and the screen

that will make the output �t the screen.

The best thing about corner pin calibration is its speed; by simply dragging

corners to their wanted location all warp parameters are calculated. The bad

thing is that the outputted image does not necessarily maintain the original

ratio. This may also be used as an e�ect if it is wanted, by making objects in

the displayed output seem warped compared to the real world. Another bad

feature, unless being kept under control, is how warping is done if corners are

placed incorrectly. Because the warping is done regardless of how rotation and

projector placement is done in the real world, the output may be images that

are impossible to project. Figure 4 a) and b) shows the inputted corners and

the transformed output, it is clear to see that this transformation is of no use.

Figure 4 c) shows another warped output from corner incorrect corner inputs.

13

a)

b)

c)

Figure 4: Corner pinning inputs and outputs that produce unwanted warping

14

Because such outputs are not wanted, I found a way to recognize the warp pa-

rameters that produce unwanted outputs, presented in section 3.6.1 on page 33.

These are ignored, if the user tries to input such incorrect data, the default

parameters are put in instead, the user may choose to input the corners again

to correct the faulty corner placement. However, allowed inputs still include all

possible orientations of the image, including rotation and inverting.

The perspective transformation is more logical, during a calibration and image

setup, parameters are adjusted one at a time to give a correctly warped output

image. As this is more detailed work to do from scratch than corner pinning, it

becomes somewhat more time consuming, but after the initial calibration, the

image should have correct proportions and the �nal output is highly accurate3.

As the tests in parts 3.6.1 and 4.2 show, the calibration is fast, especially if the

projectors are positioned close to optimal and the perspective transform just

does the �nal few adjustments.

2.7 Calibration techniques

The automatic calibration of projectors usually uses either cameras or sensors

to �nd the screen area. For this project, a hybrid solution is also proposed and

discussed.

2.7.1 Camera based screen recognition

This approach is used by several research projects[53, 49, 39], as it is cheap,

versatile and intuitive. It requires a camera, integral to the projector or external,

that provides a computer with a video feed of the output screen area. It is vital

that the camera covers an area greater than the projected area, that in turn

needs to be bigger than the wanted screen area. Figure 5 shows that

ACamera ⊆ AProjector ⊆ AScreen

where ACamera is the area covered by the video camera, AProjector is the area

covered by the projector and AScreen is the screen surface area. The computer

needs to get some user input on where in the projected area the desired screen is

to be placed and be able to identify all corners of the projected output, so that

3The current implementation has some troubles with retaining original image ratio, but the
use of a true homography instead of the approximated homography generated by the current
calibration, would enable perfect perspective transformation.

15

a homography can be found and the output from the projector may be warped

to �t the screen. By computing the homography between the camera and the

projector, the computer can �nd how this warp transformation needs to be, by

taking the view from the projector. Unfortunately, this approach needs a lot of

computing power, an external high quality camera and often some sort of user

input.

Figure 5: Illustration showing how the areas covered by the projector and cam-
era should overlap

2.7.2 Sensor-equipped screen

Another approach used in some systems, this system relies on integral sensors in

the display screen itself. Calibration patterns sent by the projector are identi�ed

by the sensors and sent back to the computer controlling the projector, so it can

identify exactly where the sensors, and from that implicitly the screen, is placed

in relation to the projector. From this the computer can warp the output to the

projector to �t the screen. This approach is not as �exible, as it requires sensors

to be placed exactly at prede�ned spots, so one may not make changes to the

desired screen area without moving or reprogramming the sensors. However,

it is fast, as showed in the demo video [32] by Johnny Lee[46] and potentially

highly accurate.

2.7.3 Marked screen camera recognition

The third approach to automatic calibration takes on a somewhat hybrid ap-

proach. Most video cameras have possibilities to record IR light. This may be

16

utilized by putting small, movable IR LEDs at the corners of the wanted projec-

tion screen, identifying these on a camera and generating a homography matrix

requires no or very little user input compared to the camera based recognition

in 2.7.1. It is also more �exible than the sensor-equipped screen in 2.7.2 as the

LEDs may be moved around and placed at new surfaces easily. Still, the prob-

lems from 2.7.1 with regards to camera quality and placing of the projection

area within the view of the camera applies.

2.7.4 Manual calibration

The last, and most widely used, is the manual calibration. This is performed in a

variety of ways, from manually moving the projector to a designated area where

the projected output is acceptably close to the desired screen size and shape, to

manual adjustment directly on the projector, or to manual adjustment via a web

interface available on many projectors. The limitations of manual calibration

vary from projector to projector, some projectors, like the Optima projectors at

the Caruso lab, can only adjust vertical keystone, limiting the options on where

to place it for good image quality.

To increase system �exibility, it is possible to add a physical three-axis controller

to each projector. Such controllers are capable of adjusting pitch, roll and yaw

of the projector, either for use for moving the output screen area or as a rough

preliminary calibration. The latter case enables two-tier calibration, where the

physical controls may increase actual resolution, as it decreases the need for

calibrating three axes in software.

2.8 PC/104

The hardware that was imagined to be used as a basis for this project was a

PC/104 computer. The PC/104 consortium[18] speci�es an embedded computer

standard with stackable PCB cards of compact form factor. The PCB boards,

or modules, have to �t within 96x90mm, with bus interconnect to connect other

boards above and/or below it. This is used to stack a number of modules on

top of each other, modules may have di�erent purposes such as motherboards,

graphics, I/O or specialized math coprocessors. One of the newest additions

to the standard is the PCIe/104 speci�cation[31], which use the PCIe bus as

interconnect between the modules. Modules based on this speci�cation was

17

thought to be the main hardware running the calibration software, as these

computers are cheap, versatile and may be placed almost anywhere. Figure 6

shows a PC/104+ stack, similar to those thought used. It is possible to see the

motherboard at the top, with a CPU and a cooling fan.

Figure 6: A PC/104+ stack[15]

The motherboard module is based on an Intel Atom processor, that despite

its low clock speed and performance, has become popular within many areas,

especially those with strict demands to power consumption, heat emissions or

cost. The motherboard card, Digital-Logic MSM200XP[40] has in addition to an

Intel Atom CPU, 2 GB of memory and several generic I/O ports such as sound,

network, USB and hard disk interfaces. By connecting this card to other cards

using the onboard PCIe connection, features like an ExpressCard adapter[41]

or graphics modules may be added for increased functionality.

MXM, or Mobile PCI Express Module cards are the graphics extension cards for

PCIe/104. There are a few di�erent MXM modules available today, this project

is intended to run on an AMD MXM card with a mobile version of one of their

GPU, graphical processing units. The card intended to be used in the embedded

18

computer is the Digital-Logic MSMMX104EX[42] card, featuring an MXM ATi

Radeon E2400 GPU, with embedded high-resolution video decoding and good

2D/3D performance, supporting both DirextX 10 and OpenGL 2.0[35].

A solution that was considered, was using the Tilera Tile64[54], a 64-core CPU

for massive parallel calculations or use GPU with suiting API to accomplish

speci�c parallel tasks. This demanded, however, that both existing libraries

and new code was optimized for heavy parallel execution, and while it has been

shown that OpenCV can get signi�cant speed bumps by being optimized for

many cores[3], this was considered too complex to be done at the current time.

Additionally, the Tile64 is new and neither hardware or software has had the

time to mature to fully utilize its potential.

2.9 Projector technology types

There exists a variety of di�erent technologies used in projectors, each with their

own pros and cons. This is a brief overview of the technologies that are most

relevant at the current time

2.9.1 DLP

DLP, or Digital Light Processing is a common technology for home and o�ce

projectors. At its core is a powerful light source, an array of micro-mirrors and

a color wheel. Each micro-mirror represents one or more pixels in the output

image, for every color in the color wheel, each mirror either re�ects light from

the source through the color wheel, lens and onto the screen, or to a light dump.

Lamps are today usually mercury vapor lamps with quartz arc, but some newer

models have used LED as light source.

Higher-end models split the light beams into three, one for each primary color,

and use a set of three individual micro-mirrors to get better color representation

without having the rainbowing problems. Rainbowing is the phenomenon where

one may see the individual primary colors instead of the resulting image, this

is most common in scenes with a lot of movement and high contrast, higher

rotation speeds of the color wheel also helps to eliminate this problem. Light

wheels of today may rotate at up to ten times the frame rate of the output

image, so the resulting colors may be represented quite good with very little

perceptible rainbowing.

19

2.9.2 LCoS

LCoS, or Liquid Crystal on Silicon is a newer technology with a liquid crystal

matrix on each chip instead of micro-mirrors. The chip is covered with a re-

�ecting layer under the liquid crystal, which is similar to LCDs, only that the

liquid crystals are directly on the chip. One, or three chips, if using a three-chip

system, are illuminated through a color wheel or an array of colored LEDs, and

where light passes through the liquid crystals, it passes through the lens and

onto the screen. If the light is not to be re�ected, it is absorbed on the chip.

As LCoS technology has few or no moving parts, except cooling fans, it is more

robust compared to DLP, however the technology is also younger and is not as

widespread in use for home users.

2.9.3 LED as light source

As the industry moves from conventional arc, incandescent or gas-discharge

lamps and onto using LEDs in more and more places and devices, it is only

natural that projectors receive some attention. Still, there are some major issues

with using LED lighting in projectors. Firstly, the light intensity required is

very high, and at the intensities required by projectors, most LEDs of today are

struggling to become much more e�cient or have cooler running temperatures

than their more conventional counterparts. Their color spectrum may also be

troublesome as neither true white or any of the basic colors are represented as

accurate as wanted, and color temperature may vary with running time and

device temperature.

2.9.4 Laser

Proposals of using lasers as light sources for projectors have received a lot of

attention as lasers are capable of giving both the speed, high contrast, resolution,

brightness and color accuracy even at very low input power. As light emitted

by a laser is homogeneous, colors are always accurate, beams can be controlled

fast and precise, and images can travel over great distances without loosing

sharpness. The laser projectors work in much the same way as CRT beams

scan across the �uorescent coatings of old television screens, beams can either

be three parallel, one for each color, or a single that switches color for each

20

swipe. No current technology puts laser projectors onto the consumer market,

although the closely related technology in laser television sets currently available

gives hope that it will hit the market within a few years' time.

2.10 Operating system

The calibration software is intended to work on both Linux and Windows com-

puters, so the programming language has to be multi-platform. One of the

initial thought was to run RTLinux on the embedded computers connected to

the projectors. RTLinux is an operating system optimized for real time op-

erations, where real time interruptions are prioritized for a fully deterministic

system behavior[1]. This is behavior needed for stringent real time operations

and the demands that Hems lab requires. Tests show that interrupts in RTLinux

are handled very fast, close to the hardware limit. As the operating system is

very spartan and with few features outside the strict minimum, it is able to

comply with strict real-time constraints, and tests[34] show that network jitter

is reduced when playing videos in RTLinux through VLC, a free and open video

playback client.

As no tests have been performed on computers running RTLinux, it is impossible

to conclude that it will be the best solution, however it is likely that it is

superior to most other operating systems like MS Windows and most other

*NIX-distributions when it comes to handling the real-time event requirements

of collaboration surfaces.

2.11 OpenCV

OpenCV4 was originally developed by Intel to encourage advances in com-

puter vision, giving developers a library of advanced and potentially CPU-

intensive functions. The software's prowess was proven among other when the

autonomous robot-car Stanley won the until-then impossible DARPA Grand

Challenge with OpenCV as one of its core software elements[25, 45, 4]. To-

day the project is led by Willow Garage, which maintains existing code and

recently released an updated pre1.1 beta version in addition to the aging 1.0

stable version[30]. The new version features improved functionality, but also

4CV in this case short for Computer Vision

21

potentially reduced stability. The components of OpenCV is split into several

main parts:

� CxCore contains the core functions and data structures

� CvReference is the main section with many advanced image processing

tools

� CvAux contains experimental and obsolete functionality

� HighGui contains functions for making and controlling a GUI on top of

OpenCV

� MachineLearning is the component that among others is responsible for

face recognition and feature tracking

OpenCV has been developed as an open source project over many years, and

with a large group of more or less organized developers, it has evolved into a bit

of a mess. Its documentation is insu�cient in several areas, examples are few,

and it makes several undocumented and often erroneous assumptions[17]. Its

coordinate system puts the point (0,0) in either top-left or bottom-left corner,

depending on the data structure an image is stored in, and it uses both degrees

and radians as angle units. In many cases, it seems as a programmer has

made a set of methods to suit his or her needs, with names that describes the

general functionality, with little description internals or how to use5. This often

leads to developers having to take the �trial and error� approach to �gure out

how to use a set of functions, speci�cally when methods are using data types

that may store many types of content. Arrays (CvArr*), which may represent

as di�erent things as images with several di�erent encodings, matrices or a

mapping between elements. The code is written in a mesh of C and C++, with

a Python wrapper to some of the methods. In many cases the included Python

interface causes crashes and it is generally not suited for large projects, so for my

project development I used the Google Code project ctypes-opencv[2], another

set of Python wrappers for OpenCV, which is far more stable and complete.

Despite of its �aws and shortcomings, it is a good resource, as it has a large

library of built-in functions and a few sample applications that shows basic usage

of several methods. This library is useful once the initial di�culties in using it

5Examples are cvFindHomography and cvPerspectiveTransform.

22

is solved, as it is powerful, yet quite fast. By using Python, development could

be done rapidly, due to Python's ease of use.

2.12 Python

Python is an open source programming language which is based on the notion

that it should be close to pseudo-code, and hence, easy to read and write[19]. Its

role in this project was to enable quick growth of functionality, as it requires less

organizing and lets the developer work more on functionality than debugging a

large project. The Google Code ctypes-opencv has memory management inte-

gral in its code, so close to all code written for this project is directly functional

and towards utilizing the power of the OpenCV library.

2.13 Stereoscopic video in Hems lab

Today, creating virtual 3D on a surface from stereoscopic images is possible

with a variety of technologies. The stereoscopic images are created by using

two separate sets of recorded images, one for each eye, with slightly di�erent

perspectives. Recording video with two cameras separated with approximately

the space between human eyes will give the view most suited to creating realistic

illusions of three dimensions, by separating the perspectives for each eye during

playback, the brain will interpret the video as a 3D scene.

The most widely known technique to separate images is using anaglyph imagery,

where stereo images are tinted in two di�erent colors, one for each eye, usually

red and green or red and blue. The user then wears glasses where one eye is

covered with one of the colors used for tinting the images, and the other covered

with the other color. This separates the images, giving each eye its correct

perspective. However, because this distorts colors, images have traditionally

only been in black and white. On the upside, the two images can be presented

on a single screen without any modi�cation or use of multiple projectors.

Using active shutter glasses gives a color proof rendering of the images. By

showing alternating frames for the left and right perspective at twice the wanted

reproduction frame rate, active shutters in the glasses open and close in order

to send correct images to each eye. The glasses needs to be synchronized with

the playback to be able to properly time the shutting and reopening, the shut-

ters themselves are made of small LCD screens that alternate between being

23

black, closed, or clear, open. The use of these screens means that they must be

powered, usually by internal batteries, the combination of the screens and their

power needs results in shutter glasses being more expensive and heavy than its

passive counterparts. Still, like anaglyph stereoscopy, it may be displayed with

just a single projector.

The technique preferred in the Caruso lab, which is used extensively by Depart-

ment of Telematics to demonstrate 3D technology, is the use of polarized glasses.

Using two projectors, each with its own polarization �lter, the two images are

projected simultaneously at the screen, the light polarized orthogonally for the

two. By using polarized glasses where the polarization for each eye corresponds

to that of the projector sending the images, the two images are separated. It

is more expensive to set up due to the cost of dual projectors, but the image

quality is better than what is possible using anaglyph separation and the glasses

are cheaper and lighter than active shutter glasses, giving the same or better

user experience. Figure 7 shows two sets of glasses used for viewing stereoscopic

images, anaglyph glasses on the left and shutter glasses on the right. Polarized

glasses look like the anaglyph glasses with the colored �lters replaced with light

gray �lters with orthogonal polarization.

Figure 7: Anaglyph and shutter glasses used for viewing stereoscopic projections

A fourth technology for producing stereoscopic images, has gained attention

from scientists and consumers. The use of a layer of lenticular lenses in front

of a �at screen LCD or plasma display has the ability to separate stereoscopic

images and hit the eye of the viewer with correct images for each eye, giving a

stereoscopic e�ect without requiring the user to wear any glasses. The technol-

ogy, called autostereoscopy[43], is in need of being re�ned, as current technology

only is capable of giving good 3D e�ects at a limited number of sweet spots. If

users moves from a sweet spot or tilt their head, the e�ect will diminish or be

absent, only by being in one of these spots will the 3D illusion work.

24

3 Implementation

For the demo application in this task, the goal was to show how the use of dis-

tributed control and calibration of multi-projector arrays could be done. The

implementation is done in Python, using the OpenCV library with Python wrap-

per classes. The choice to use this instead of C++ was mostly to be able to

rapidly prototype methods and test whether or not given techniques works.

Since C++ is not a programming language I am familiar with, it was easier and

faster to use a scripting language like Python. There are four di�erent versions

of the main program, with di�erent usage areas.

Single projector Stereo projectors

Perspective transform SingleProject.py StereoProject.py
Cornerpin SingleProjectCornerpin.py StereoProjectCornerpin.py

Table 3: The four versions of the calibration program

This chapter documents the speci�ed functionality for the demonstrator pro-

grams, and goes into some details on how the program works. In Appendix C

the full source code for one of the programs is enclosed.

3.1 Wanted result

The wanted outcome of this project is to design and implement a distributed

calibration of multi-projector arrays. This will help the Hems lab in reach-

ing the level of �exibility wanted, and may prove to have several other useful

purposes. The distributed model has a purpose in the DMP architecture[47] as

di�erent projectors may correspond to di�erent ScenePro�les, and can therefore

di�erentiate their resource usage when it comes to bandwidth use, resolution

and refresh rate. As many projectors usually requires a lot of time to calibrate

these to �t correctly in accordance with each other during setup, or if equip-

ment is replaced, having a single, easy interface to use for calibration will help

in speeding up the setup and maintenance times.

Many projectors still control only a few of the six axes of the output image,

in many cases they can only adjust keystone in one axis in addition to zoom.

If a separate controller is set up to control the physical pitch, yaw and roll of

the projector, this gives two interfaces, and neither is able to control as many

25

parameters as wanted. The calibration software will give a single interface to

all parameters needed to make an image �t onto a screen, regardless of how the

projector is placed in relation to the screen.

3.2 Development process

The development process for the calibration software can be split into four parts;

Speci�cation, design, implementation and testing. Most of the research of ex-

isting solutions were done while the system was being speci�ed and designed,

and the implementation and testing were for the most part a continuous iter-

ating loop where newly added code was continually tested for debugging and

veri�cation of speci�ed functionality.

3.2.1 Speci�cation

The speci�cation took inspiration both from the research done for the Hems lab

and also the existing solutions that had similar tasks. Firstly, it was important

to be able to replicate some of the previous results for projector calibration,

while at the same time maintaining focus at creating solutions that could be

useful for Hems lab. It should be easy to use while being able to perform many

tasks like corner pinning, keystoning, rotation, moving and scaling an image, as

well as being able to add masks to allow edge blending or stage e�ects. It should

have decent performance, in order to maintain frame rates at an acceptable level,

and the code should be easy to read and comprehend, in order to allow further

development or let other learn from my results.

The speci�cation called for creating a demonstrator using OpenCV that could

calibrate a projector by using warped images and masks. By giving the demon-

strator a simple interface, one could research into how the calibration could be

done and experiment with using it for instance in stage lighting settings.

3.2.2 Design

There are four versions of the program, as shown in 3 on the preceding page,

but they all are based on much the same codebase, consisting of much of the

calibration, video loop and supporting methods. The main di�erence is that the

corner pin programs have an extra step in the calibration and the stereoscopic

26

versions have two outputs and performs the calibration twice, one time for

each of them. The programs are single class, written in imperative, functional

code meant to be easy to understand, most of the code is self-documenting.

Comments have been added to explain the high-level working both for and

within all methods to make it easy to read and �nd speci�c functional parts.

As it is written in Python and uses OpenCV, it is also cross-platform and based

on open source projects, something that makes it portable, and easier to port

to hardware solutions than had it been made with proprietary software.

As the focus was on creating a demonstrator, little emphasis has been put to

design a system with a high degree of safety and reliability in a large scale, but

as the core functionality has been extensively tested, it can be assumed that it

contains few remaining errors with the existing set of functions. The possible

inputs are constrained to a set of recognized keyboard and slider inputs through

the GUI, as well as mouse inputs for the corner pin function. This gives enough

input possibilities to be able to do all the core functionality, while restricting

the input and state information to reduce the risk of undiscovered errors and

faults.

3.2.3 Implementation and testing

As the implementation and testing went simultaneously, adding the speci�ed

functionality was always followed by extensive testing to verify its behavior.

As this was my �rst work with the OpenCV library, it was also a learning

process, to �nd out how speci�c parts of the library worked and explore its

possibilities and limitations. Working iteratively, the requirements from the

speci�cation were accomplished and the design goals were reached. One of the

problems encountered was that the image warping and video viewing was not

as fast as originally planned. Playing back video in high de�nition proved to be

troublesome, as frame rates were too low for Hems lab. Future implementations

and further development can possibly change this, especially if the perspective

warping algorithms is optimized to work with a massive-parallel GPU instead

of running in the CPU. This could give near constant time to warp an image,

given that the image dimensions are not exceedingly large.

27

3.3 Functionality

The program routine starts with a series of calibration tests. The cornerpin

programs start with a blank image where the user speci�es where the corners

of the screen are located, the perspective transform version loads the latest

autosaved presets. Five calibration images are shown, and the user can modify

parameters, either via keyboard input or using a set of sliders in the control

panels, to warp the images. Only the parameters that are relevant to the speci�c

test are possible to modify. This is a manual calibration procedure that is fast

and simple, and all image warping calibrations are done on the computer, so the

projector becomes a �dumb unit� with no responsibility for image calibration.

a) b)

c) d)

e) f)

Figure 8: The calibration test images

The images are monochromatic bitmaps in VGA size, 640x480 pixels, 1 bit per

pixel, the white lines are exactly 20 pixels wide. This means that the images

su�er no compression artifacts and because the width and height of the images

28

are divisible by the width of the lines, they may be rescaled with no changes in

proportions. The vertical black lines in �gure 8a) are 135 pixels wide, and the

horizontal black lines in �gure 8b) are 95 pixels high. The need for highly ac-

curate calibration images became apparent during some early calibration tests,

where JPEG-compressed images with lines that were not completely homoge-

neous proved to cause problems and erroneous calibrations.

Figures 8a) and b) are used to adjust keystone, 8c) is to adjust rotation, 8d)

is to place the upper left corner, 8e) is an all-white image that is used to �nd

the correct size for the projector output. Figure 8 f) is an image that is shown

by the projector that is already calibrated when using the stereo calibration

programs, but it may also be put up by the single projector calibration program

to be used as a template for any other projectors being calibrated. This enables

accurate calibration of the second image to make it �t the �rst image in size

and orientation.

3.4 Keyboard map

This is the map of keyboard inputs for the projector calibration programs.

Unless otherwise indicated, functions apply in all versions of the program.

29

3.4.1 Calibration

Function Key

Move image right a
Move image left d
Move image up w

Move image down s
Rotate image right Shift + d
Rotate image left Shift + a
Rotate image up Shift + w

Rotate image down Shift + s
Keystone image right e
Keystone image left q
Keystone image up z

Keystone image down c
Zoom in +
Zoom out -
Flip image6 f

Print transformation matrix p
Save current settings Ctrl + s
Skip rest of calibration Esc
Load saved settings Ctrl + l

Load autosaved settings Shift + l
Jump to next calibration step Space

Jump back to previous calibration step Ctrl + b

Table 4: Keyboard map for the calibration part of the program

6only for non-cornerpin programs

30

3.4.2 Main loop

Function Key

Move image right a
Move image left d
Move image up w

Move image down s
Rotate image right Shift + d
Rotate image left Shift + a
Rotate image up Shift + w

Rotate image down Shift + s
Keystone image right e
Keystone image left q
Keystone image up z

Keystone image down c
Zoom in +
Zoom out -
Flip image7 f

Print transformation matrix p
Save current settings Ctrl + s
Load saved settings Ctrl + l

Load autosaved settings Shift + l
Toggle between active frames8 Tab
Reset image(s) to default Ctrl + r

Autosave and exit Space
Exit without autosaving Esc

Recalibrate frame / active frame Shift + c
Putting up reference image for calibrating other instances9 Ctrl + b

Pause the video Ctrl + p

Table 5: Keyboard map for the main loop of the program

3.5 Data rates

For a single wall in the Hems lab, the resolution needs to be at least between

6 to 10 megapixels in actual resolution. In addition, for the video to seem as

realistic as possible, refresh rates at 120 Hz or above is needed. No current single

projector is capable of displaying the spatial resolution needed, so an array of

projectors must be used. The total data rate of this exceeds all current display

7only for non-cornerpin programs
8only for stereo projectors
9only for single projectors

31

standards. As seen in Table 6, there is a need for a transmission standard that

well exceeds today's standards, in order to achieve these data rates today, one

must bundle several In�niBand[12], or 10-Gigabit Ethernet[7] interfaces.

Technology Resolution Refresh rate Color depth Gross bandwidth use

DVI 2 Megapixels 60 Hz 24 bits/pixel 2.9 Gbps
Dual-link DVI 4 Megapixels 60 Hz 24 bits/pixel 5.8 Gbps
HDMI 1.3 4 Megapixels 75 Hz 24 bits/pixel 7.2 Gbps
DisplayPort 4 Megapixels 60 Hz 30 bits/pixel 7.2 Gbps

Hems requirement 6-10 Megapixels 120 Hz 30-48 bits/pixel 21.6-57.6 Gbps

Table 6: Data rate for existing and needed display transmission standards

In table 6 the maximum gross bandwidth available for the most relevant trans-

mission standards are listed. The refresh rates and color depth are maximum for

the given resolution. All these data rates are gross and not e�ective, overhead

is not included. The net bandwidth is a bit higher, this is caused by timing

information, encryption and blanking, all contributing to an even higher band-

width usage. As the resolution of 6 to 10 Megapixels should be the e�ective

resolution, the actual resolution might be even higher, as o�-center projectors

lose some resolution. This then gives that the data rates would be even higher,

demanding new and improved links.

If an array of projectors is used as proposed in this thesis, the data link to each

one of them may be kept within current standards, as long as the output image

gives the resolution in both space and time that is required for the Hems lab.

Dual link DVI can be used at 120 Hz refresh rates at 1920x1080 resolution, giving

e�ectively 2 megapixels, an array consisting of at least three, preferably �ve or

more of these projectors may be used to give the output 6-10 e�ective megapix-

els. This then neglects the need for not-yet de�ned transmission speci�cations,

and by distributing calibration to several individual embedded computers, the

computational load becomes possible to handle, as each embedded computer

should be able to warp a single Full HD video stream.

3.6 Code guide

The program is split into three main parts, the calibration, the video loops and

the assisting functions.

32

3.6.1 The calibration

This part runs through a �ve or six-step calibration setup, the sixth is only

applicable for the cornerpin programs. As each calibration step has a wanted

goal, the only image parameters that are possible to modify are those that will

help the user reach this goal. Disabling the use of all other functions helps speed

up the process as the user does not need to spend time correcting consequences

if an erroneous key is pressed. If at any point the user wants to go back one

or more step, to correct any mistakes from earlier in the calibration process,

this is possible. In the corner pin calibration, if the user inputs illegal corners,

thereby producing outputs like those in �gure 4 on page 14, I found that in the

3x3 warp matrix that used as inputs to the cvWarpPerspective had values of -1

or less in either position [0,1] or [1,0]. No possible sequence of correct corner

inputs would produce this, thereby making it easy to detect and ignore these

incorrect values.

The calibration method has its own key listener as other program features avail-

able during the calibration not necessarily are applicable during regular video

playback and vice versa. The calibration is initialized using calibrate(IplImage

frame, String frameName), where frame is a reference to an image frame in the

capture and used to �nd the size of the output, and frameName is the name of

the output window to calibrate.

The accuracy of the calibration was tested at the Caruso lab at NTNU, which

has two projectors set up to display stereoscopic video. The two projectors were

aimed at a screen, and by displaying an identical test pattern on both screens,

manual settings and placement was adjusted to get the most accurate settings

possible. The adjustment of the projectors took close to an hour, and the result

was, according to the technical sta�, the most accurate calibration of the two

projectors ever. By spending three minutes with the StereoProject.py, I found

that one projector was o� by two pixels in the x axis and one in the y axis.

Some minor keystone adjustment was also needed to get the corners to overlap

precisely.

3.6.2 The main video loop

The video loop is actually split in two, one with a frame limiter, the other

without frame limiter. The idea is that if the video does not play back fast

33

enough, optimizations should be made in order to keep frame rate as high as

possible. If, on the other hand, frame rate is at correct or higher than intended,

one must see to it that it stays as close as possible to correct playback speed.

This also means that it is possible to do some more extended calculations or

add extra functionality. The accuracy of the frame rate limiter is high enough

for most purposes, as shown in �gure 9. With target frame rate of 60 frames

per seconds and an average of 60.02 frames per second after over 10.000 frames

and deviances rarely outside ± 2 frames per second, this is good enough to stop

tearing and retain good synchronization with the audio.

Figure 9: Average frame rate after over 10.000 frames

Within the video loop, some optimizations have been done, for instance is mask-

ing and rotation only performed when they are needed. This gives a good speed

bump to the frame rate, as does putting the handlers for key input and control

panel sliders in separate functions that only are called when needed. Figure 13

on page 43 shows the control panel for the two screen outputs of stereoPro-

ject.py, note that rotation, masking and �ipping is only available on Control

Panel 1, but are e�ective on both images.

3.6.3 The supporting methods

There are a number of support methods

� update1/2(int sliderPosition) updates the 3D transformation matrix with

34

position, keystoning and size, and can rotate the image ± 45º.

� �ipping(int sliderPosition) updates the 3D transformation matrix, �ipping

the image horizontally and vertically. If two outputs are used, both are

�ipped simultaneously. As orientation comes implicit in the corner pinning

programs, this is not included in them.

� maskAndRotate(int sliderPosition) calculates the intrinsic matrix for ro-

tating the image 90º, 180º or 270º and can create a mask that may be

added to the output video.

� backup(boolean manualSave) saves the current settings, either as an au-

tosave or as a manual save. The settings are appended to a text �le, so all

previous settings are stored unless manually deleted in the log �le. Manual

saves are denoted in a log with the text �Manual save:� on the preceding

line.

� load (boolean autoSave) gets the last autosaved con�guration, which is the

last line in the log if autosave is true, and gets the last manually saved

con�guration if autosave is false.

� calibStringReplace(String calibString, int value, int place) is a support

method for replacing a single value in a given place, in a con�guration

string that contains 18 values.

� keys(int keyPressed) determines actions to be performed when a key is

pressed in the video loop. keyPressed is the value that comes from OpenCV's

key listener. If the return value is -1, the program will terminate.

� mouse(int event, int x-value, int y-value, int �ags, void* param) is the

default method being called by the OpenCV mouse listener, used in the

cornerpin programs. It adds the given coordinates to an array of cvPoints.

The input values 'event', '�ags' and 'param' are not used, but as the

internal mouse listener is set up to do this method call by default, they

must be included.

� main, program start, initializes the program, it gets the video sources,

opens the control panel and video windows, starts the calibration and

runs the video loops. It also destroys all windows when the program shuts

down.

35

The position parameter in the �rst three methods are not used by these methods,

rather they acquire the information they need by other means. The reason they

are included is that the sliders in OpenCV's HighGUI classes are speci�ed to

call a given function with the position of the slider only parameter by default.

As values are changed both by keyboard and sliders, and the methods are used

by several di�erent controls, the slider value is of no use, as it is not known

which slider the position value belongs to.

3.7 Control latency

When calibrating and adjusting the image warp settings that are applied through

the software, some delay occurs. At current, the software checks for key input

events every 10 or 100 milliseconds, depending on whether it is in the loop with

frame rate limitations or not. As ITU-T G.114 states, delays of up to 200 mil-

liseconds is acceptable with voice communication and other information services

with similar demands to controlling latency[14]. Tests on the programs where

the polling delay for keyboard events were changed showed that a polling delay

of 100 milliseconds is barely noticeable, whereas it becomes more apparent if it

is increased to 200 milliseconds and beyond. This shows that control latency

is far less important than maintaining frame rates at acceptable levels, at 60

frames per second, if the control latency is 100 ms, 6 images are shown in worst

case before any change is done. Still, this is found to be within the limits of

what is acceptable, this latency is also similar to the experienced latency in

other similar tasks, like changing the TV channel.

3.8 Loss of pixels when warping image

When an image is warped, the e�ective resolution decreases. This is because

several pixels are left blank and thus unused in the output image. The more

askew the projector is compared to the screen, the more pixels are lost. Figure

10 shows how much resolution is lost, the angle between the two rectangles is

12.1°.

This leads to two di�erent options, ideally placed projectors, or using more

projectors to project the image.

36

Figure 10: A SVGA resolution frame inscribing the area covered by an XGA
resolution frame

3.8.1 Use of centered and ideally placed projectors

If all projectors are placed at their ideal placement, directly in front of the

screen, one may fully utilize their resolution. However, this causes problems

when the ideal spot for the projector is the same spot that most users would

like to use as viewing spot, or would require a lot of space if the projector is

placed behind the screen. In the Hems lab, the placing projectors within the

room that is used for cooperation would decrease the level of realism and the

usability for the lab. Placing them behind the screens is an option, but this

requires a lot of space. Finding the correct placement and carefully calibrating

the projectors may be time-consuming, as this is a manual process with high

demands for accuracy. Figure 11 shows a projector placed in the celing directly

above the viewer's head for optimal image quality.

37

Figure 11: A projector placed directly in front of the screen for minimum image
distortion

3.8.2 Use of higher resolution projectors to compensate

As my work intends to show, using projectors that are placed in a less suited

but also less disturbing spots, and using more projectors or projectors with

higher resolution, it is possible to get the same image quality as ideally placed

projectors, with increased �exibility and less space being used. The system will

also be easier to maintain and reorganize if needed, as one simply can recalibrate

the projectors to �t any new con�gurations. Because the pixel density in the far

areas of very keystoned images is low, these areas should not be used in settings

where high resolution is key, such as the Hems lab. Instead, by using masks,

one could remove these from use, and use another, better placed projector to

cover that area. This of course, assumes that the image is warped in a way that

the pixel density of the source images in the near areas are smaller than the

pixel density that the projector can provide. Figure 12 shows three projectors

using the closest areas to achieve greatest pixel density total. The gray areas

are blanked out by masks, while the light blue are used to project images onto

38

the screen.

As the overhead and loss of pixels requires that more projectors are used will lead

to a greater system cost initially, but the system will require less con�guration

time as the calibration is automatic or semi-automatic. In this sense, the initial

cost may be justi�ed and repaid in lower maintenance time.

Figure 12: Top view of three projectors placed at high angles to produce a single
high resolution image

3.9 Example of use

This calibration software has several uses, the most important is for Hems lab,

where correctly calibrated projectors are vital to provide high enough quality

for the video wall to work as a virtual collaboration surface. It may also be

used to quickly and easily connect a projector to a computer, aim the projector

at any suitable surface area and within seconds have correct keystoning on the

output video. If two projectors are used to project stereoscopic video, this is

also easy to calibrate for, by using one of the stereo versions of the program.

The work �ow when setting up an example system would be

� Place a projector so the output covers the designated screen area. If

stereoscopic output is wanted, place the other projector so it also covers

that area.

� Repeat this step for all screen areas that should be covered by the array.

� If an external camera is used and camera calibration is developed, place

the camera so it can see the entire projection surface.

39

� Start the calibration for each projector and run it through.

� Ensure that the calibration is correct for all projectors in the array.

� The high resolution display wall made through the distributed calibration

of a multi-projector array is complete.

Appendix B has a step-by-step guide on how to set up the calibration and use

the software with image examples.

3.10 Pseudo code

The demonstrator code is fairly easy to read, as it is written in imperative

Python, but a short explanation in pseudo code will give a brief overview of the

inner workings.

Listing 1: Pseudo code of the demonstrator program

1 Program s t a r t

2 Get video stream

3 e i t h e r from given input or from webcam

4 Find frame s i z e

5 Locate and Res ize masks to frame s i z e

6 Create and I n i t i a l i z e ControlPanel window

7 Create and I n i t i a l i z e Output window

8 Cal ib ra t e Output window

9 i f Corner pin

10 Get Corners

11 Get keystone parameters

12 Get r o t a t i on parameters

13 Get s i z e parameters

14 Get l o c a t i o n parameters

15 LoopVideo in Output window

16 i f f ramerate < 60 frames per second

17 LowSpeedVideoLoop

18 While t rue

19 Get frame

20 i f mask

21 Mask frame

22 i f r o t a t e

23 Rotate frame

24 Warp frame

25 Display frame

26

27 Get keyboardInput and perform i n s t r u c t i o n s

acco rd ing ly

28 Get f ramerate

29 i f f ramerate > 60 frames per second

30 break and ente r HighSpeedVideoLoop

40

31

32 e l s e

33 HighSpeedVideoLoop

34 While t rue

35 Get frame

36 i f mask

37 Mask frame

38 i f r o t a t e

39 Rotate frame

40 Warp frame

41 Wait un t i l cur rent frame ra t e = 60 frames per

second

42 Display frame

43

44 Get keyboardInput and perform i n s t r u c t i o n s

acco rd ing ly

45 Get f ramerate

46 i f f ramerate < 60 frames per second

47 break and ente r LowSpeedVideoLoop

48 Destroy a l l windows

49 Program end

3.11 Speed and frame rate issue

OpenCV is quite picky when it comes to video formats. Preferably uncom-

pressed AVI should be input video, however this is supposed to change in the

1.1 version. It is also possible to include �mpeg, a stand-alone video codec,

when building, but this is ridden with problems[20].

The transformation that warps and keystones the image is slow. This is because

the mathematics behind it is quite heavy, and it may also be because of poorly

optimized code for these kinds of transformations.

By doing the transformation with a graphics-optimized API like OpenGL or

DirectX, the issues with maintaining the frame rate at an acceptable level would

be much less severe. As many of the translations that are done when rendering

3D graphics are similar but inverse, and the transformation is invertible, using

a graphics API instead of or in addition to OpenCV could increase frame rate

to an acceptable level.

By using other video formats than uncompressed AVI, and a decent video de-

coder, it would be possible to play back more high resolution videos. At cur-

rent, the data rates for the videos played are very high when playing videos in

high de�nition, two megapixels resolution at 24 frames per seconds, 1080p@24,

and using 10 bits per color, 4:4:4 subsampling reaches over 190 megabytes per

41

second[26], increasing the frame rate �vefold to 120 Hz would also give a �vefold

increase in bit rate. At close to 1 GB/s input bit rate, not counting the audio or

looking at resolutions above two megapixels, the medium access, whether using

local disk array or an Internet connection needs to be much faster than what is

achievable today. If this is multiplied up to the resolution wanted for the Hems

lab, it is clear that some compression, either lossless or with no conceived loss

of quality, should be used in order to decrease the bit rate to some extent.

If a full system is implemented, a hardware solution of the image transformation

should be made. Because the core functions of OpenCV is implemented in C and

C++, it should be possible to make a version in VHDL to realize it on an FPGA.

The main reason the transformation is slow, is because the warping is done on

a pixel-by-pixel basis. This is not optimal for being done in a CPU, which is

better at doing heavy or sequential mathematical operations, not simple, but

parallel calculations. By utilizing this parallel nature of the transformation, one

could increase the speed and frame rate of the video to the wanted level by

performing the calculations on specialized hardware implemented on an FPGA.

Tests have proven that interleaving high- and low resolution images will give

close to the same user experience as using only high quality images[36]. Possibly,

combining this with a good video compression algorithm as h.264 or Dirac, the

combined bit rate may be possible to decrease in order to reduce the extreme

bandwidth needs that Hems lab today have.

42

4 User manual

This section discusses the implemention and describes how the program is in-

tended to work.

4.1 Control setup

When calibrating two monitors, having a screen to monitor the control param-

eters, source material and output messages will for most user be practical. This

calls for the use of three screen outputs, two for the projectors that are to be

calibrated and one for control. By having a separate screen for control, it is

easier to maintain full control rather than having to change focus between the

calibration screen and the control panel on a single screen. Figures 13 and 14

show the control panel with sliders, the source images and the text output.

Having all these on a single screen gives good control of the warped outputs.

Figure 13: The control panel interface

43

Figure 14: The source material and command output windows

4.2 Usage example

This test shows how easy setup of a single projector can be done. An XGA-

resolution DLP projector was put up at an angle and pointed to a screen, and

by using both perspective transformation and corner pinning, the image was

calibrated to �t perfectly onto the screen. Figure 15 shows the area covered by

the projector. The screen intended to be used is the rectangle formed by the

three wooden sides of the standing screen and the green tape that runs across

it.

44

Figure 15: The area covered by the projector

By placing the projector o� approximately 45° in the x plane and 20° in the y

plane, and rotated approximately 10°, the result is that the projector output

is askew and is for all practical purposes useless for any presentations unless it

is properly calibrated. Figure 16 shows a closeup of the projector to illustrate

how much it is rotated.

45

Figure 16: A closeup of the projector

Figure 17 shows the outline of the projector output, and shows the blank screen

that is used for corner pinning. By using mouse input, the user can click on

where in the blank screen the corners are to be placed in the warped images.

Because corners are placed in an ordered way, the warping automatically com-

pensates for any rotation or inverting of the image, for example if the projector

is placed on its short edge or behind the screen instead of in front.

46

Figure 17: Beginning of the corner pinning

After de�ning the corners, some calibration images are shown so that the user

can ensure the proper �t and orientation of the image. Figure 18 shows the �rst

of these images, showing that the initial �t is nearly perfect. Usually, the only

improvement needed is to correct for any inaccurate mouse input.

47

Figure 18: Standard calibration after the corner pinning

If perspective transformation is used instead of corner pinning, the calibration

starts with the same image as used in Figure 18, but the starting point is the

last used con�guration. In Figure 19, this con�guration is far away from being

optimal. In this case, the user must use keyboard input or sliders on a control

panel to make the lines parallel, rotating the image and �nding the optimal size

is the focus for later calibration screens.

48

Figure 19: Start of the normal calibration without corner pinning

In Figure 20, the resulting output image �tting on the display screen is shown.

The actual time spent to calibrate this image was between 20 and 30 seconds.

Close inspection showed a near-perfect �t to the screen, the distance between

the outer edge of the image and the frame was no more than a single pixel,

except in the area at the far right where the wooden frame surrounding the

screen makes it impossible to hit the screen.

49

Figure 20: The output video after calibration

By taking a screen shot of the warped output, it is possible to see how the

image is warped. Figure 21 shows how the warped image looks when viewed on

a monitor, and gives some insight to how much adjustment that is needed to

correct the o�set between the projector and the screen.

50

Figure 21: Screen shot of the monitor output

The output in �gures 20 and 21 is created by using corner pinning. If perspective

transformation and homographies had been used, the result would be much the

same, but the resulting image on the screen would have retained the original

aspect ratio of the video, which is 16:9. The screen area used an arbitrary ratio

close to 4:3.

4.3 Calibration comparison

Running a corner pin calibration is very fast. Start the software, click on the

corners, then ensure that keystoning, rotation and size is correct. In a simple

test, two candidates were shown how the control works, and on �rst try, both

managed to go through the calibration process with an accurate result in under

thirty seconds. The projector was initially placed in the same spot as shown in

Figure 15 on page 45, requiring adjustment in all six axes in order to properly

�t the screen.

In the calibration test, the two candidates were shown how to use both corner

51

pinning, perspective transformation and using the built-in keystone adjustment

on the projector and moving it around in the room. Then the candidates were

told to calibrate the image to �t onto a screen as accurate as they could. The

result showed that using corner pinning, both the candidates were able to get a

satis�able result after just 30 seconds, if using perspective transform the candi-

dates used in average 8 minutes to �nish the calibration.

When told to use the built-in keystone function on the projector, the candi-

dates �rst spent some time to try to adjust the image, but after realizing that

the keystone correction could not cope with the angles presented, they moved

the projector around until they found a good spot to put it. One candidate

concluded that it was possible, although hard, to place the projector in a good

spot where it was possible to adjust the image to �t, the other ended up show-

ing that by standing straight in front of the screen, holding the projector, one

could easily make the image �t. However, when faced with the question of how

practical the solution was, the candidate was quick to admit that it might not

be the best permanent solution.

This proves my point, even untrained users quickly are able to calibrate a pro-

jector using corner pinning, however that the perspective transformation and

manual calibration is much slower. My personal experience show that with some

training, the time to achieving a good calibration result with both corner pin-

ning and perspective transformation can be more than halved by a user familiar

with the system, compared to the �rst-time experience of the test candidates.

4.4 Stage lighting

Using projectors to create e�ects on theatrical and musical stages is a �eld cur-

rently being explored. Current advanced lighting technology allows for moving

lights with di�erent set patterns, refracting light prisms and uniform colors, but

not much more. Replacing this expensive lighting equipment with bright projec-

tors on rotating ball joints will allow light technicians not only to recreate these

e�ects, but also to project videos and images, warped to correct perspective,

as well as giving greater opportunity to make small and accurate adjustment

for each individual show. In Trondheim, the stage at Arbeiderforeningen was

recently renovated, in this connection they looked into using a number of pro-

jectors to cover the stage in light, as both a compliment and partial replacement

of traditional static lighting. Other stages, like Opera Company of Philadelphia

52

has already had some experiences with this[28], and are largely positive to using

projectors to create backdrops of both still and moving images. Some of the pos-

sibilities that were looked into at Arbeiderforeningen was integrating projectors

in all the surrounding walls, roof and �oor of the stage, creating a much more

discreet setup than the huge light rigs used for most stages. Also, by having

projectors that could be moved and deployed anywhere, and having a modular

stage, highly diverse stage setups could be used with rapid changes. Examples

of use could be eliminating traditional stage sets, replacing them with projection

surfaces, or creating e�ects that opens the use of new areas by reaching beyond

the edge of the stage.

Depending on the need, the projectors can be used for several di�erent tasks.

Using uniform colors and adding a circular mask will simulate a static lighting

�xture, in theory multiple �xtures can be replaced with one projector using

masks with several circular holes that simulate several di�erent spotlights. The

major issue with this technology at current is the lack of brightness, a standard

PAR64 spotlight, used as a general workhorse in most stage light setups, has a

maximum output of 1 kW, on most medium-sized stages these are used by the

dozen. Most consumer projectors of today still requires low ambient lighting to

provide a bright and vivid picture, so in order to fully utilize the possibilities

of using them as stage lights, projectors need to become much brighter that

they are at current. Both LED and laser technologies can increase brightness,

getting satisfactory results when using either a combined setup of projectors

and �xtures or full replacement still requires some more years of maturing for

the technology.

By being able to project images at stage sets, these can be very general surfaces,

but still be vivid and give great �exibility. One could imagine a large, single

colored wall on a stage where a play is performed, one or an array of projectors

could create an image of a medieval castle wall on it. If, at a point in the story,

the castle is to be attacked, the projected image could change from a normal wall

to a wall with severe damage. Other possibilities is to give the audience shutter-

or polarized glasses and use stereoscopic projection to create backdrops or stage

sets with depth and use 3D video to give the complete illusion of the actors

being in another place and time. The quick calibration and masking functions

in the software I have created, allows directors and technicians to experiment

and take use of such e�ects fast and easy, opening possibilities to unfold their

creativity.

53

4.5 Complete system design thoughts

When designing and planning for the software made for this thesis, an outline of

the �nished system was made. It speci�ed that a number of projectors should

be connected to its own embedded computer with some computing power, but

little or no storage. Video sources were to come either from a server with a

large RAID array, from a streaming source over the Internet or a combination

of these two. These embedded units were to control the calibration and warping

of the images sent to the projectors, and they should be accessible either through

direct keyboard input or over a robust connection, such as MIDI or DMX512

connection for calibration control and synchronization purposes. Alternatively,

dedicated hardware on an FPGA chip or a purpose-built hardware implementa-

tion could provide higher frame rates and lower power use, but such hardware

has not yet been designed. Figure 22 shows an overview of the elements in the

imagined future system.

Figure 22: An overview of the system

4.5.1 The projector

In a �nished system for the Hems lab or as part of stage lighting, one would

want the projectors to ful�ll certain demands

54

� Lossless keystoning and image warping

� Two inputs, image data and control information, using robust and stan-

dardized interfaces

� High to ultra high resolution

� Very high display brightness and contrast

� Embedded computer inside the projector

� Calibration camera integral to the projector

� Low power usage and heat emissions

As seen in table 1 on page 8, the digital keystone correction reduces e�ective

resolution rapidly for increasing angles. An optical solution is therefore more

suited to achieve the greatest possible resolution and realism. Using optical tilt

and shift lenses, possibly controlled over an I2C bus, one could achieve in much

the same manner as now control over the keystoning and warping of the image.

The control signals could be sent as a separate channel, as the demands for these

signals are di�erent to the demands for the video data. Neither timeliness or

high capacity is important, latency of between 10 and 100 ms is easily enough

for the control signals.

In the test application, the keyboard input was a three-digit integral, and as the

total of di�erent control inputs total are less than 32, it is possible to encode

each control signal with as little as 5-bits. The minimum keyboard input latency

is 10 ms, thus the maximum control bandwidth needed to transmit calibration

information to a single projector is only 0.5 Kb/s. However, one would want the

possibility of using common control bus to all devices, requiring means to address

each individual projector. Looking at existing interfaces for controlling multiple

devices with low bandwidth requirements, both the existing MIDI and DMX512

speci�cations provide the needed bandwidth and robustness, being capable of

sending at 31.25 kbps and 250 kbps respectively, and both are widely used for

controlling stage light and e�ects today. Devices using MIDI and DMX512 are

both possible to daisy-chain together, and the signal cables themselves may be

very long compared to other common control interfaces like USB or FireWire.

Figure 23 shows a MIDI cable on the left, and a DMX512 connector on the

right.

55

Figure 23: MIDI[11] and DMX512[10] cables and connectors

As the projectors should be possible to place more or less anywhere, they should

be robust and produce as little heat as possible. An ideal situation would be

the use of cool-running LED or laser light sources, so that both the color wheel

and fans are redundant. By reducing the number of moving parts and the heat

produced, the projector becomes more robust, as neither shocks nor dust poses

threats the operation of the equipment. Also, by reducing the power needed by

the projector, it could be possible to use a Power over Ethernet, PoE, system

for power to eliminate the need for a separate power cable. At current, the PoE

speci�cation[8] allows for up to 15.4 watts, but it is likely that this is going to

increase with the introduction of newer speci�cations.[9]

4.5.2 The controller computer

The controller computer does not need to have a lot of resources, its main job is

to maintain control over the embedded computers in the projectors, keeping the

di�erent parts of the distributed system in sync. It can also be used to control

the calibration of the projectors, negotiate ScenePro�les with the remote host

in a collaboration setting or create homographies between an external camera

and the projectors if this solution is preferred instead of an integral camera to

each projector. It should be connected to the media management server over a

high speed LAN connection, and through it have access to the RAID array with

pre-recorded high quality material. All general control of the video projection

system in Hems lab should be done through the controller computer.

56

4.5.3 The embedded computers

The embedded computers should take care of each projector's video stream,

by decoding and warping the video stream. By using ScenePro�les, the video

stream for a given projector can be routed directly to its embedded computer,

without the need to send the entire high resolution video. This reduces the

bandwidth needed to each projector, limited by the capabilities in resolution,

refresh rate and color depth. The market for projectors with higher speci�ca-

tions than full HD, needing more than the bandwidth available through HDMI

or DisplayPort, is mainly for very speci�c markets, such as high-end digital cin-

emas. This means that one can assume that a realization of Hems lab would

use an array of full HD projectors, where each can have its own high speed data

connection.

By using compressed video streams over a network connection instead of trans-

ferring the uncompressed image as would have been done by a standard video

interface, one would save considerable amounts of bandwidth without losing im-

age quality. This then gives the possibility to use either HDMI, DisplayPort,

dual DVI, In�niBand or 10Gb Ethernet as transmission mediums, depending

on how one chooses to implement the network architecture. The interfaces can

be split in three groups, the pure video transmission cables, the serial communi-

cation cables and the general network interfaces, each with their own pros and

cons. If compressed video is to be used, the general network interfaces have the

advantage because of their ease-of-use and how the AppTraNet routing scheme

�ts in the 7 layer ISO OSI model together with Ethernet standards. On the

other hand, if uncompressed or partially processed video data is sent, the video

and serial interfaces have less overhead and better-working fault �nding and

correction.

The use of PCIe/104 as the basis for the embedded computers open up a large

number of possibilities, as one may design the computers with many di�erent

con�gurations, by including an FPGA card in the stack, it is possible to design

hardware specialized for a given task, for instance decoding and warping video,

making this very fast operations and neglecting the need for new, specialized

video interfaces.

57

4.5.4 Other system parts

Having a small camera integral to the projector would make it possible for the

projector to calibrate itself by calculating and applying a homography between

the screen and the projector. Cameras in mobile phones on the market today

have cameras with resolution in excess of 8 megapixels[22], with 12-megapixel

cameras[21] on the way, the sensors used in these phones could also be used in

a projector to provide images of high enough resolution to be able to accurately

�nd the edges of the screen and calculate the homography between the projector

and the screen. By using a compact, high-resolution camera and good screen

detection algorithms, no user input would even be necessary for calibrating the

projector correctly. If, instead of embedded cameras, one or more external cam-

eras are wanted, these should be of very high quality to ensure good calibration

results. Advantages of using stand-alone cameras are the reduced cost of having

to use less cameras and the possibility to have better sensors and optics in a

single large camera than small, integrated cameras, but the disadvantages in-

clude the extra work with setting up the cameras and possibly needing to move

them before one can use the collaboration lab.

The media management server and RAID array acts as a hub in the system,

getting in the media streams either from local storage or from another source

over the Internet, and relaying this to the projectors. It needs to handle very

large data rates and may need to decode and process some of this information

in order to route individual video streams to the correct projector. By using

ScenePro�les and DMP's ability to split a scene into sub-objects with di�erent

requirements for bandwidth, it is possible to save bandwidth and processing

power.

The thought of using small, movable IR LEDs to tell the calibrating projectors

and controller computer where the screen is, could help the automation of the

calibration, as they can be used as guide point for the cameras. By placing

the LEDs at prede�ned spots in the room, each projector could �nd out where

its projected output was in relation to where its desired output area was, and

calibrate itself accordingly. One could also imagine negotiation between the

projectors on coverage area, so that any area that can be covered with two or

more projectors are covered by the projector that has least distortion, in form

of rotation and keystone, and hence the highest pixel density for that area.

58

5 Discussion

In this section, I will look into the possibilities and limitations, and re�ect over

how this solution will stand up against other similar systems.

5.1 Applications

The use of the projector calibration demonstrators have shown that quickly

setting up an array of accurately calibrated projectors is easy, and may be a

good addition to the Hems lab in the future.

All surfaces the projector system is to be used on should be planar in order to

achieve correct warping and light intensity. At current, the programs have no

support for curving edges or surfaces. In order to achieve this, detailed light

intensity maps and curve functions have to be included[53], OpenCV does not

at current support advanced warping functions to perform these tasks.

As projectors may be placed at angles that will reduce the �nal resolution, in

order to not lose pixel density, more projectors have to be added with increasing

angles between the projectors and screen in the setup. Because of the high

modularity in using a distributed system, tiling several images into one should

not be a problem. This then means that having a high-resolution video wall

can be built using several cheap, simple projectors, and the projectors may be

placed almost anywhere. Many will then place the projectors in areas where

they are least noticeable, both visually and audibly. As the outputs can be

calibrated to �t with each other, using the corner pin method to input corners

is as fast for tiling several images as using it to �t only a single screen.

An idea for a future system would include automatic identi�cation of the surface

area through a camera. This camera could be either external or internal to the

projector, connected either to a PCIe/104-based computer located inside the

projector, or at a central location. These computers would be connected to a

central controlling computer as shown in �gure 22. In this manner, it is possible

to automatically calibrate the system as a whole, while still have detailed control

over each projector if needed.

59

5.2 Software alternatives

For calibrating projectors quickly, especially projectors which are placed in awk-

ward spots, this system is very good. For most users, the alternative is using

a manual calibration, which is much more tedious and may not prove to be as

accurate. The calibration patterns used in the calibration programs have proven

to be very good for �nding correct settings for correcting images, as the images

are created to detect and help correcting the individual parameters needed to

get a perfect perspective transformation. There exists some other software for

keystoning and corner pinning images and video. Graphics card maker nVidia

has for some time had corner pinning in their drivers, called nvKeystone[16].

This software works quite well, and because it is written speci�cally for certain

graphics processors, the warping of the images is done virtually instant. On

the downside is it often hard to adjust to correct settings, as the only input is

mouse drag-and-drop, and this often moves the wrong corner. It also requires

that the user has a GPU made by nVidia. It also has the problems with the

loss of actual resolution when warping and keystoning an image.

Another option is the powerful Video Projection Tools[29], which warps, blends

and masks video. Both nvKeystone and Video Projection Tools are available

for download for free.

5.3 Hardware alternatives

There are already some systems for large video arrays and for automatic cali-

bration of projectors. One of the most famous arrays is the Princeton Scalable

Display Wall, with a resolution of 6000 x 3000 pixels, made by 24 individual

projectors[39]. It has systems for automatic calibration and warping of output

images. This video wall is made with all projectors placed in front of the display,

taking up a lot of space, and it is not �exible when it comes to rearranging the

surface or placement of the projectors.

Johnny C. Lee describes a system that uses embedded light sensors in the display

for automatic calibration[46]. By projecting binary Gray-coded patterns, he

�nds that it is possible to uniquely identify the placement of the display screen.

This gives quick and accurate placement and warping of the image, however the

system relies on the sensors in the screen. If the system was possible to purchase

for the Hems lab, it would seemingly give fast calibration and good usability

60

results, however as it is not developed commercially, one cannot test or use this

system without developing and recreating it from scratch.

The Virtual Reality lab at NTNU's Department of Petroleum Engineering and

Applied Geophysics[13] is an example of how a room similar to Hems lab would

work, with stereoscopic views on four walls. However, this is aimed at research-

ing geological issues and training students in the use of visualization technology.

The constraints in Hems lab and DMP with regards to QoS, spatial and tempo-

ral resolution and with surround sound are quite di�erent from what exist in this

lab today, as users would have higher demands for a near-natural interaction

with humans than they do when looking at visualized geological data.

By using homographies to �nd the relation between the projectors and the

screen and then �nding the overlapping areas, the video array demonstrated

by Mitsubishi[55] uses edge blending to create a seamless image from several

projectors, with no visible edges in the overlapping areas. This system relies on

the use of GPUs to calculate the warping and blending of the images.

The multi-projector array put up in [37] uses a design philosophy not far away

from that presented in this thesis by using projectors with an integral computer

and camera. They envision the use of several of these units to create mobile

and �exible display walls, with distributed calibration and easy deployment.

The self calibrating projector in [50] uses, in addition to a camera, a two-way tilt

sensor to detect the projector's tilt. It is intended primarily for single projector

use, but give good results by being able to warp an image and project it with

correct rotation with no need for physical markings on a screen to give inputs

on how the image should be oriented.

5.4 Advantages compared to other solutions

As the system has inherent support for stereoscopic multi-projector setups, these

may be used in Hems lab or in other projects completely with no modi�cation.

This also means that setting up a 3D demonstration anywhere is faster and

takes less time than before, as time previously used to carefully position and

calibrate projectors now is redundant. It reduces the calibration time from

many minutes for manual calibration down to mere seconds, and in many cases

even more accurate.

61

By making a system based on a distributed set of self-adjusting projectors,

only synchronization and simple control information needs to be sent from a

controller computer. This �ts in with the DMP philosophy of having individual

ScenePro�les and having the possibility to route video stream packets based on

the physical location in the output image, where video images can be sent with

custom bandwidth to a speci�c projector.

Any number of projectors can be used together, as the warping is performed

distributed and each projector is connected to its own computer. This means

that the system may be used to control arrays of sizes previously unheard of,

and the time used to calibrate will remain linear as long as the shape of each

screen is rectangular. This is advantageous compared to other large arrays,

especially when the use of cameras will enable self-calibrating projectors. The

calibration time for these may be reduced to give close to the same speed for a

single projector as an array of a hundred units.

62

6 Conclusion

By developing and testing a software demonstrator using OpenCV, I have found

that making a system for distributed calibration of multi-projector arrays not

only is possible, it also provides many bene�ts by saving time, increasing accu-

racy and giving more �exible placement of projectors. The software developed

during this work is intended to run on an embedded computer either in or in

close proximity to the projector, so that each projector has its own computer,

and it relies on the use of OpenCV's core functions for most image manipula-

tion. It warps the video output for the projector to �t the projection surface,

it can rotate, scale, move and keystone images, giving freedom in all six axes,

as well as having the ability to use one image as a mask for another to create

new e�ects. By giving two calibration options, either corner pinning the image,

stretching it out to �t the surface of the screen exactly, or by perspective correc-

tion with precise adjustment possibilities, users and developers may choose the

approach that �ts best. By also having integral support for the dual-projector

output needed to provide stereoscopic images, the system �ts in with the goals

of Hems lab, and a realization of the DMP architecture. In the Hems lab, using

it can help properly calibrate and set up stereoscopic projections on �ve walls

with much less work than previously thought, and by being able to recon�gure

the projector set up often, much more research can be done with regards to

projector types and technologies. By being able to rapidly put up, calibrate

and test a multi projector array, it also becomes viable to put up a large display

wall or use the projectors for stage lighting e�ects in a large scale.

The use of cameras or other means of further automating the calibration process

has not been implemented, but the system has many expansion possibilities to

later add this into the system. The most �exible solution seems to be the use

of IR LEDs to mark the screen and, at least in the beginning, rely on exter-

nal cameras to �nd the placement of these as this is simpler and require less

resources than integrating cameras into the projectors. This could make the

calibration system automatically recognize the screen area and create a homog-

raphy between the projector and the screen, giving fully automatic calibration.

The ease of use and �exibility that the demonstrator displays, has never been

showed before, neither in hardware or software, the controls are simple and in-

tuitive, an still give great control over the result. By using an open software

library and a programming language that encourages code readability, the code

63

can easily be either ported to other programming languages or to hardware

implementation, reducing the issues with low frame rates. By using current

standard transmission interfaces, the possibility of actually realizing an entire

system becomes more probable, as I have shown, these currently have the band-

width needed to provide each computer and projector. The speed and accuracy,

combined with the vast array of possible usage areas may prove that projector

technology is far superior to other screen technologies such as �at panel displays

in settings where �exibility or screen size is important, while giving the same

levels of image quality.

64

7 Future work

The demonstrator developed and used in this project has weaknesses in that

it does not take advantage of the parallel nature of the calculations being per-

formed. By using either a pure graphics library or by realizing the program

on an FPGA, higher frame rates will be possible. This is currently the biggest

problem, as the use of high quality video today gives too low frame rate for any

use. Also, this could enable the use of other video encoding schemes, allowing

compressed video to be used. Appendix D outlines some possible alterations

that may increase the overall speed of the program that may be included in

further development.

The perspective transformation does not at current work as intended. Because

it does not maintain the ratio of the original image and is much slower than its

corner pin counterpart, it can be seen as no more than a programming warm-

up exercise. If a way to easily �nd the homography between the screen and

projector is found, it will be of more value as the output image will always be

true to the original source, in contrast to the corner pin output.

With more development time, camera-based calibration using homographies

would be possible. This could automate the whole process of calibration, thereby

giving true �plug'n'play� projectors that require no user input to achieve fast

and accurate image calibration.

65

8 Reference list

References

[1] An Introduction to RTLinux. http://www.linuxdevices.com/articles/AT3694406595.html.

Last visited 22.05.2009.

[2] ctypes-opencv - Google Code. http://code.google.com/p/ctypes-opencv/.

Last visited 22.05.2009.

[3] "CVCell" - Module developed by Fixstars that accel-

erates OpenCV Library for the Cell/B.E. processor.

http://www.�xstars.com/en/company/press/20071128.html. Last visited

22.05.2009.

[4] DARPAGrand Challenge 2005. http://www.darpa.mil/grandchallenge05/gcorg/index.html.

Last visited 22.05.2009.

[5] Elliot Scienti�c - Product - Elliot Gold Series Six-Axis

Positioner �tted with High Precision Manual Adjusters.

http://www.elliotscienti�c.com/product.asp?product=178. Last vis-

ited 22.05.2009.

[6] How Important is Keystone Correction?

http://www.aboutprojectors.com/news/2006/06/28/how-important-

is-keystone-correction/. Last visited 25.05.2009.

[7] IEEE 802.3ae 10Gb/s Ethernet Task Force.

http://www.ieee802.org/3/ae/index.html. Last visited 22.05.2009.

[8] IEEE 802.3af Part 3: Carrier Sense Multiple Access with

Collision Detection (CSMA/CD) Access Method and Physi-

cal Layer Speci�cations Amendment: Data Terminal Equip-

ment (DTE) Power via Media Dependent Interface (MDI).

http://standards.ieee.org/getieee802/download/802.3af-2003.pdf.

[9] IEEE P802.3at DTE Power Enhancements Task Force.

http://www.ieee802.org/3/at/objectives.html. Last visited 22.05.2009.

[10] Image of a DMX512 cable. http://www.jpleisure.co.uk/3PinXLRtoFemaleDMX.jpg.

Last visited 22.05.2009.

66

[11] Image of a MIDI cable. http://musikality.net/wp-

content/uploads/2009/01/midi_cable.jpg. Last visited 22.05.2009.

[12] In�niBand Roadmap: IBTA - In�niBand Trade Association.

http://www.in�nibandta.org/content/pages.php?pg=technology_overview.

Last visited 30.05.2009.

[13] IPT | VR lab, virtual reality - Institutt for petroleumsteknologi og an-

vendt geofysikk, NTNU. http://www.ntnu.no/ipt/lab/vrlab. Last visited

22.05.2009.

[14] ITU-T G.114: SERIES G: TRANSMISSION SYSTEMS

AND MEDIA, DIGITAL SYSTEMS AND NETWORKS.

http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-G.114-

200305-I!!PDF-E&type=items. Last visited 22.05.2009.

[15] Laboratory for Embedded Collaborative Systems (LECS) � Testbed

General Overview. http://lecs.cs.ucla.edu/Resources/testbed/testbed-

overview.html. Last visited 22.05.2009.

[16] NvKeystone. http://www.nvidia.com/object/feature_nvkeystone.html.

Last visited 22.05.2009.

[17] OpenCV - Wiki for RobotCub and Friends.

http://eris.liralab.it/wiki/OpenCV. Last visited 22.05.2009.

[18] PC/104 Consortium - PC/104 Speci�cations.

http://www.pc104.org/pc104_specs.php. Last visited: 22.05.2009.

[19] PEP 20 � The Zen of Python. http://www.python.org/dev/peps/pep-

0020/. Last visited 22.05.2009.

[20] Problems with opencv and �mpeg. http://evolving-

life.vox.com/library/post/problems-with-opencv-and-�mpeg.html. Last

visited 03.06.2009.

[21] Sony Ericsson - Oversikt - Satio. http://www.sonyericsson.com/cws/products/

mobilephones/overview/satio?lc=no&cc=no. Last visited 03.06.2009.

[22] Sony Ericsson - Oversikt - W995. http://www.sonyericsson.com/cws/products/

mobilephones/overview/w995?lc=no&cc=no. Last visited 22.05.2009.

67

[23] Stage Lighting Tech Pages: Combating Keystone.

http://freespace.virgin.net/tom.baldwin/keyst_deriv.html. Last vis-

ited 25.05.2009.

[24] Stage Lighting Tech Pages: Combating Keystoning.

http://freespace.virgin.net/tom.baldwin/keystoning.html. Last visited

25.05.2009.

[25] Stanford Racing :: Home. http://cs.stanford.edu/group/roadrunner//old/index.html.

Last visited 22.05.2009.

[26] Storage and Data Rates for Uncompressed Video. http://www.blackmagic-

design.com/support/detail.asp?techID=30. Last visited 22.05.2009.

[27] The Caruso Lab. http://www.item.ntnu.no/ leifarne/Caruso/TheLast vis-

ited 22.05.2009.

[28] Using Video On The Stage by Boyd Ostro�.

http://www.dvinfo.net/articles/production/videostage.php. Last vis-

ited 22.05.2009.

[29] Video Projection Tools v3.1. http://hcgilje.wordpress.com/resources/video-

projection-tools/. Last visited 22.05.2009.

[30] Welcome - OpenCV Wiki. http://opencv.willowgarage.com/wiki/. Last

visited 22.05.2009.

[31] What is PCI/104-express? http://www.pc104.org/pdfs/What_is_PCI104_Express.pdf.

[32] YouTube - Automatic Projector Calibration with Embedded Light Sensors.

http://www.youtube.com/watch?v=XgrGjJUBF_I&feature=channel.

Last visited 22.05.2009.

[33] THE I 2C-BUS SPECIFICATION. http://www.nxp.com/acrobat_download/literature/

9398/39340011.pdf, 2000. Last visited 22.05.2009.

[34] A. Ferone, M. Miralto, A. P. A real-time streaming server in the

RTLinux environment using VideoLanClient. In Department of Applied

Science, University of Naples (2007).

[35] AMD. ATI RADEON E2400 MXM-II Mod-

ule Product Brief. http://www.amd.com/us-

en/assets/content_type/DownloadableAssets/ADVCORK72799_EDG_Launch_E2400_F.pdf.

68

[36] Berge, H. The Hems Lab - Perceptual test of scene objects with variable

temporal resolution. Semester assignment at Department of Telematics

(2008).

[37] Bhasker, E. S., Juang, R., and Majumder, A. Advances towards

next-generation �exible multi-projector display walls. In EDT '07: Proceed-

ings of the 2007 workshop on Emerging displays technologies (New York,

NY, USA, 2007), ACM, p. 11.

[38] Bradski, G., and Kaehler, A. Learning OpenCV: Computer Vision

with the OpenCV Library. O'Reilly, Cambridge, MA, 2008.

[39] Chen, H., Sukhthankar, R., Wallace, G., and jen Cham, T.

Calibrating Scalable Multi-Projector Displays Using Camera Homography

Trees. In In Computer Vision and Pattern Recognition (2001), pp. 9�14.

[40] Digital-Logic. MSM200X/XU/XP Datasheet.

http://www.digitallogic.com/�leadmin/dlag/�les/ Produkte/Datasheet-

s/EMBEDDED/802370DS_E.pdf.

[41] Digital-Logic. MSMEC104EX Datasheet.

http://www.digitallogic.com/�leadmin/dlag/�les/ Produkte/Datasheet-

s/EMBEDDED/801756DS_E.pdf.

[42] Digital-Logic. MSMMX104EX Datasheet.

http://www.digitallogic.com/�leadmin/dlag/�les/ Produkte/Datasheet-

s/EMBEDDED/801725DS_E.pdf.

[43] Dodgson, N. Autostereoscopic 3D Displays. Computer 38, 8 (Aug. 2005),

31�36.

[44] Heikkila, J., and Silven, O. A four-step camera calibration procedure

with implicit image correction. pp. 1106�1112.

[45] Hendrik Dahlkamp, Adrian Kaehler, D. S. S. T., and Bradski, G.

Self-supervised Monocular Road Detection in Desert Terrain. In Stanford

University (2006).

[46] Lee, J. C., Dietz, P. H., Maynes-Aminzade, D., Raskar, R., and

Hudson, S. E. Automatic projector calibration with embedded light sen-

sors. In UIST '04: Proceedings of the 17th annual ACM symposium on

69

User interface software and technology (New York, NY, USA, 2004), ACM,

pp. 123�126.

[47] Lie, A., and Ronningen, L. Distributed multimedia plays with QoS

guarantees over IP. pp. 12�15.

[48] Optoma. EX525ST-M DLP Projector Product Manual.

http://asia.optoma.com/UploadFiles/DownloadFiles/Brochure/Brochure_080814024841.pdf.

[49] Raij, A., and Pollefeys, M. Auto-calibration of multi-projector display

walls. vol. 1, pp. 14�17 Vol.1.

[50] Raskar, R., and Beardsley, P. A self-correcting projector. vol. 2,

pp. II�504�II�508 vol.2.

[51] Rønningen, L. A. Part 1: Introduction to DMP The DMP system and

physical architecture. http://www.item.ntnu.no/ leifarne/TheLast visited

25.05.2009.

[52] Rønningen, L. A. Part 9: ScenePro�les The DMP system and physical ar-

chitecture. http://www.item.ntnu.no/ leifarne/TheLast visited 25.05.2009.

[53] Ruigang Yang, A. M., and Brown, M. S. Camera-Based Calibra-

tion Techniques for Seamless Multiprojector Displays. IEEE Transac-

tions on Visualization and Computer Graphics 11, 2 (2005), 193�206.

Member-Brown, Michael and Member-Majumder, Aditi and Member-Yang,

Ruigang.

[54] Tilera Corporation. TILE64 Processor Overview.

http://www.tilera.com/pdf/ProductBrief_Tile64_Web_v3.pdf.

[55] van Baar, J., Raskar, R., Raskar, R., Baar, J., Chai, J. X., and

Chai, J. X. A Low-Cost Projector Mosaic with Fast Registration. In

Asian Conference on Computer Vision (ACCV) (2002).

70

Appendix

A Source �les

An archive of the demonstrators are located at folk.ntnu.no/nordbryh/Diplom/Demonstrator.zip

or in electronic versions attached to this thesis. In order to run, OpenCV in

version 1.0 or above must be installed and properly set up with its .dll �les

added to the path.

Unzip the archive and launch with one or two video �les as parameters (samples

are located in the /video/ folder), or no parameters to use a web cam. The two

included video �les are sample video �les from Microsoft Windows, reencoded

to uncompressed AVI.

B Usage examples

This is a step-by-step example of how the software works. For clarity, I started

out with a warped output on the display screen and corrected it, taking screen

shots for every step. It should be possible to follow and replicate this process

closely.

Figure 24: Corner pin inputs

71

First, four corners are given, in this case they are placed so that the image needs

calibration to �t the screen. The corners are given in the sequence bottom left,

bottom right, top left, top right, however, on some computers, this needs to

be reversed to get correct orientation of the image. As far as I have tracked

it, the problem lies in either the operating system or graphics drivers, as all

input parameters down to the warp matrix, as well as program versions, can

be identical between computers, but still produce di�erent orientations of the

image.

Figure 25: Vertical lines before correction

In the �rst calibration step, the vertical bars should be aligned by using keyston-

ing to make them parallel. Using rotation, size adjustment and placement will

make it easy to �nd when the lines are correctly aligned.

72

Figure 26: Vertical lines after correction

When the lines are parallel, press Spacebar to jump to next step.

Figure 27: Horizontal lines before correction

Again a set of lines, these are horizontal. Align these like those in the previous

73

step with keystoning and the use of rotation, size and placement for help.

Figure 28: Horizontal lines after correction

Now the output is starting to look better. When satis�ed with how parallel

these lines are, press Spacebar.

Figure 29: Rotation adjustment before correction

74

Correcting the rotation is in this example a bit redundant, as the previous two

steps already has given us close to perfect rotation. However, if this is not the

case, this step uses a cross that lets the user verify and correct the rotation

angle.

Figure 30: Rotation adjustment after correction

By placing the cross in the lower left corner, it is clear that the rotation has

been corrected. Spacebar to continue.

75

Figure 31: Size adjustment before correction

This step lets the user size the image to correct size, by using an all-white image

that is scaled to �t the output screen area.

Figure 32: Size adjustment after correction

76

After rescaling it to �t the largest possible area, it is possible to jump to the

last calibration step.

Figure 33: Corner placement before correction

This �nal step lets the user place the corner of the screen, by using this and

the previous step correctly, the correct �t and placement of the output screen

is ensured.

77

Figure 34: Corner placement after correction

The image is now calibrated properly, and placed at the wanted spot. By

pressing Spacebar one last time, the program starts and the input video is

warped to �t the calibration result.

Figure 35: Warped video after calibration

78

Yours sincerely, on a web cam that feeds video to the program, warped to �t.

After the initial calibration, it is still possible to alter all settings for the image,

as well as rotating and adding masks.

Figure 36: Warped, inverted and �ipped output

The image can be stretched to any trapezoid shape using corner pinning and

keystoning.

79

Figure 37: Warped and masked output

Figure 38: Warped, rotated and masked output

Mask image �les put in the folder named '/masks', preferably in jpg format will

automatically be added to the program. The images are added to the source

image with inverted colors, making black areas in the source image become

80

transparent, white areas are masked out and all colors are inverted. This was

done because it was the best way to both have transparent and black areas.

Figure 39: Warped, �ipped and masked output

Images used as masking will have an inverted color space, so to get correct

colors, one needs to invert the colors before the image is put in the mask folder.

The use of color images as masks is a nice e�ect, and may be used for many

purposes.

81

C Code example

Listing 2: Source code for StereoProjectCornerpin.py
1 from opencv import *

2 from math import s in , cos , tan , p i

3 import os

4 import time

5 import datetime

6 import plat form

7

8 ###Creating g l o b a l parameters

9 alpha = 1

10 beta = −1
11 activeFrame=1

12 mask =cvCreateImage (cvS ize (1 ,1) , 8 , 3)

13 hiFPS=0

14 maxFPS=60

15 capture1 = cvCreateFi leCapture (None)

16 capture2 = cvCreateFi leCapture (None)

17 r o t a t i on=cvCreateMat (2 ,3 ,CV_32FC1)

18 matrix1=cvCreateMat (3 ,3 ,CV_32FC1)

19 matrix2=cvCreateMat (3 ,3 ,CV_32FC1)

20 bas i sMatr ix1=cvCreateMat (3 ,3 ,CV_32FC1)

21 bas i sMatr ix2=cvCreateMat (3 ,3 ,CV_32FC1)

22

23 #####Updating image 1 from Control Panel 1 input

24

25 def update1 (pos) :

26 g l oba l matrix1

27 g l oba l bas i sMatr ix1

28 matr i se=cvCreateMat (3 ,3 ,CV_32FC1)

29 matr i se=matrix1

30

31 ####Gett ing data from CP and performing ca l c u l a t i on s

32

33 rotx=cvGetTrackbarPos (" ro ta t i on x" , " con t ro l panel1 ")

34 roty=cvGetTrackbarPos (" ro ta t i on y" , " con t ro l panel1 ")

35 s i z e=cvGetTrackbarPos (" s i z e " , " con t ro l panel1 ")

36 posx=cvGetTrackbarPos (" po s i t i on x" , " con t ro l panel1 ")

37 posy=cvGetTrackbarPos (" po s i t i on y" , " con t ro l panel1 ")

38 keysx=cvGetTrackbarPos (" keystone x" , " con t ro l panel1 ")

39 keysy=cvGetTrackbarPos (" keystone y" , " con t ro l panel1 ")

40 rotx=((rotx −500)* pi) /1000
41 roty=((roty −500)* pi) /1000
42 s i z e =((s i z e −1000)* pi) /4000
43

44 ####Inse r t i ng new data in warp matrix

45

46 matr i se [1 , 0] =bas i sMatr ix1 [1 ,0]+ s in (rotx)

47 matr i se [0 , 1] =bas i sMatr ix1 [0 ,1]+ s in (roty)

48 matr i se [2 ,2]=(1−(2* s i n (s i z e)))

49 matr i se [0 ,2]= bas i sMatr ix1 [0 ,2]+ posx−500
50 matr i se [1 ,2]= bas i sMatr ix1 [1 ,2]+ posy−500
51 matr i se [2 ,0]= bas i sMatr ix1 [2 ,0]+(f l o a t (keysx−500) /250000)
52 matr i se [2 ,1]= bas i sMatr ix1 [2 ,1]+(f l o a t (keysy−500) /250000)
53 matrix1=matr i se

54

55 ####Updating image 2 from Control Panel 2 input

56 def update2 (pos) :

57 g l oba l matrix2

58 g l oba l bas i sMatr ix2

59 matr i se=cvCreateMat (3 ,3 ,CV_32FC1)

60 matr i se=matrix2

61

62 ####Gett ing data from CP and performing ca l c u l a t i on s

63

64 rotx=cvGetTrackbarPos (" ro ta t i on x" , " con t ro l panel2 ")

65 roty=cvGetTrackbarPos (" ro ta t i on y" , " con t ro l panel2 ")

66 s i z e=cvGetTrackbarPos (" s i z e " , " con t ro l panel2 ")

67 posx=cvGetTrackbarPos (" po s i t i on x" , " con t ro l panel2 ")

82

68 posy=cvGetTrackbarPos (" po s i t i on y" , " con t ro l panel2 ")

69 keysx=cvGetTrackbarPos (" keystone x" , " con t ro l panel2 ")

70 keysy=cvGetTrackbarPos (" keystone y" , " con t ro l panel2 ")

71 rotx=((rotx −500)* pi) /1000
72 roty=((roty −500)* pi) /1000
73 s i z e =((s i z e −1000)* pi) /4000
74

75 ####Inse r t i ng new data in warp matrix

76 matr i se [1 , 0] =bas i sMatr ix2 [1 ,0]+ s in (rotx)

77 matr i se [0 , 1] =bas i sMatr ix2 [0 ,1]+ s in (roty)

78 matr i se [2 ,2]=(1−(2* s i n (s i z e)))

79 matr i se [0 ,2]= bas i sMatr ix2 [0 ,2]+ posx−500
80 matr i se [1 ,2]= bas i sMatr ix2 [1 ,2]+ posy−500
81 matr i se [2 ,0]= bas i sMatr ix2 [2 ,0]+(f l o a t (keysx−500) /250000)
82 matr i se [2 ,1]= bas i sMatr ix2 [2 ,1]+(f l o a t (keysy−500) /250000)
83 matrix2=matr i se

84

85 ###Updating ro ta t i on and masking of both images

86

87 def maskAndRotate (pos) :

88 g l oba l mask

89 g l oba l alpha

90 g l oba l beta

91 g l oba l r o t a t i on

92 g l oba l capture1

93 g l oba l capture2

94

95 ###Creating mask

96

97 masks=os . l i s t d i r (' . / masks ')

98 mask_src = cvLoadImage (" . / masks/"+masks [cvGetTrackbarPos ("mask" , " con t ro l

panel1 ")])

99 cvConvertImage (mask_src , mask_src , 1)

100 cvRes ize (mask_src , mask , CV_INTER_AREA)

101

102 ###Creating ro ta t i on matrix

103

104 r o ta t e=cvGetTrackbarPos (" ro ta t e " , " con t ro l panel1 ")

105 cv2DRotationMatrix (cvPoint2D32f (mask . width /2 , mask . he ight /2) , 90* rotate ,

1 , r o t a t i on)

106

107 ###Backing up parameters from both Control Panels

108

109 def backup (man) :

110 handle = open (" ca l ibSte reoLog2 . txt " , "a")

111 l o g l i n e = []

112

113 ###Adding "Manual save" to d i f f e r e n t i a t e between autosaves and manual

backup

114

115 i f man :

116 l o g l i n e . append ("Manual save : \ n")

117

118 ###wri t ing a l l parameters to l og f i l e

119

120 l o g l i n e . append (s t r (−1))
121

122 l o g l i n e . append (s t r (cvGetTrackbarPos (" r o t a t i on x" , " con t ro l panel1 ")))

123 l o g l i n e . append (s t r (cvGetTrackbarPos (" r o t a t i on y" , " con t ro l panel1 ")))

124 l o g l i n e . append (s t r (cvGetTrackbarPos (" s i z e " , " con t ro l panel1 ")))

125 l o g l i n e . append (s t r (cvGetTrackbarPos (" keystone x" , " con t ro l panel1 ")))

126 l o g l i n e . append (s t r (cvGetTrackbarPos (" keystone y" , " con t ro l panel1 ")))

127 l o g l i n e . append (s t r (cvGetTrackbarPos (" po s i t i on x" , " con t ro l panel1 ")))

128 l o g l i n e . append (s t r (cvGetTrackbarPos (" po s i t i on y" , " con t ro l panel1 ")))

129 l o g l i n e . append (s t r (cvGetTrackbarPos ("mask" , " con t ro l panel1 ")))

130 l o g l i n e . append (s t r (cvGetTrackbarPos (" ro ta t e " , " con t ro l panel1 ")))

131

132 l o g l i n e . append (s t r (cvGetTrackbarPos (" r o t a t i on x" , " con t ro l panel2 ")))

133 l o g l i n e . append (s t r (cvGetTrackbarPos (" r o t a t i on y" , " con t ro l panel2 ")))

134 l o g l i n e . append (s t r (cvGetTrackbarPos (" s i z e " , " con t ro l panel2 ")))

135 l o g l i n e . append (s t r (cvGetTrackbarPos (" keystone x" , " con t ro l panel2 ")))

136 l o g l i n e . append (s t r (cvGetTrackbarPos (" keystone y" , " con t ro l panel2 ")))

137 l o g l i n e . append (s t r (cvGetTrackbarPos (" po s i t i on x" , " con t ro l panel2 ")))

83

138 l o g l i n e . append (s t r (cvGetTrackbarPos (" po s i t i on y" , " con t ro l panel2 ")))

139

140 handle . wr i te ((" " . j o i n (l o g l i n e))+"\n")

141 handle . c l o s e ()

142 pr in t " saved s e t t i n g s ! "

143

144 ###Loading e i t h e r autosaves (1) or manual saves (0)

145

146 def load (autosaves) :

147 l og = open (" ca l ibSte reoLog2 . txt " , " r ")

148 txt= "1 500 500 1000 500 500 500 500"

149 saved="Manual save : \ n"

150 i f autosaves :

151 f o r l i n e in log :

152 txt=l i n e

153 e l s e :

154 next=0

155 f o r l i n e in log :

156 i f next :

157 txt=l i n e

158 next=0

159 i f l i n e == saved :

160 next=1

161 l og . c l o s e

162 return txt

163

164 ###Method used to rep lace a s i n g l e va lue in a s t r ing , used to ease th ing s in the

c a l i b r a t i o n method

165 ###Sp l i t s s t r i n g in to i t s i nd i v i dua l pieces , r ep lac ing the va lue at the p lace

ind i ca t ed with the va lue given

166

167 def ca l i bS t r i ngRep la c e (ca l i bS t r i ng , value , p lace) :

168 i=0

169 ##f ind ing numbers of va lues in the input s t r i n g

170 t ry :

171 whi le (1) :

172 i+=1

173 s t r (c a l i b S t r i n g . s p l i t () [i])

174 i f i >100:

175

176 ###used to de t e c t and stop any i n f i n i t e loops

177 pr in t " over f low in s t r ingRep lace . Too long input

s t r i n g "

178 sys . e x i t (−1)
179 except IndexError :

180 i−=1
181 i f i n t (p lace)>i :

182 pr in t "Attempted r ep l a c e po s i t i on does not e x i s t ! "

183 pr in t p lace

184 pr in t i

185 return None

186 endResult=""

187 i i =0

188

189 ###put t ing va lues back in place , up to the p lace tha t i s to be rep laced

190 whi le i i <in t (p lace) :

191 endResult=endResult+(c a l i b S t r i n g . s p l i t () [i i])+" "

192 i i+=1

193

194 ###ins e r t i n g wanted va lue at wanted pos i t i on

195 endResult=endResult+(value)+" "

196 i i+=1

197

198 ###Putt ing back r e s t o f va lues

199 whi le i i <=i :

200 endResult=endResult+(c a l i b S t r i n g . s p l i t () [i i])+" "

201 i i+=1

202

203 return endResult

204

205 def c a l i b r a t e (frame , frameName) :

206 g l oba l spots

207 g l oba l bas i sMatr ix1

84

208 g l oba l bas i sMatr ix2

209 g l oba l matrix1

210 g l oba l matrix2

211

212 #####Stereoscop ic add−on t e s t

213 matrix=cvCreateMat (3 ,3 ,CV_32FC1)

214 bas i sMatr ix=cvCreateMat (3 ,3 ,CV_32FC1)

215 s t e r e o=0

216 i f frameName=="output1" :

217 s t e r e o=1

218 cp=" con t ro l panel1 "

219 ncp=" cont ro l panel2 "

220 matrix=matrix1

221 e l i f frameName=="output2" :

222 s t e r e o=2

223 cp=" con t ro l panel2 "

224 ncp=" cont ro l panel1 "

225 matrix=matrix2

226

227 ###loading c a l i b r a t i o n images

228

229 ca l ibCorner_src = cvLoadImage (" c a l i b r a t i o n /Calib−corner .bmp") ;

230 ca l ibCorner=cvCreateImage (cvS ize (frame . width , frame . he ight) , 8 , 3)

231 cvRes ize (cal ibCorner_src , ca l ibCorner , CV_INTER_AREA) ;

232

233 ca l ibCross_src = cvLoadImage (" c a l i b r a t i o n /Calib−c r o s s .bmp") ;

234 ca l i bCro s s=cvCreateImage (cvS ize (frame . width , frame . he ight) , 8 , 3)

235 cvRes ize (ca l ibCross_src , ca l ibCross , CV_INTER_AREA) ;

236

237 ca l i bFu l l_s r c = cvLoadImage (" c a l i b r a t i o n /Calib−f u l l .bmp") ;

238 c a l i bFu l l=cvCreateImage (cvS ize (frame . width , frame . he ight) , 8 , 3)

239 cvRes ize (ca l ibFu l l_src , c a l i bFu l l , CV_INTER_AREA) ;

240

241 ca l ibHor i sont_src = cvLoadImage (" c a l i b r a t i o n /Calib−ho r i z on ta l .bmp") ;

242 ca l i bHor i s on t=cvCreateImage (cvS ize (frame . width , frame . he ight) , 8 , 3)

243 cvRes ize (ca l ibHor i sont_src , ca l ibHor i sont , CV_INTER_AREA) ;

244

245 c a l i bVe r t i c a l_s r c = cvLoadImage (" c a l i b r a t i o n /Calib−v e r t i c a l .bmp") ;

246 c a l i bV e r t i c a l=cvCreateImage (cvS ize (frame . width , frame . he ight) , 8 , 3)

247 cvRes ize (ca l i bVer t i c a l_s r c , c a l i bVe r t i c a l , CV_INTER_AREA) ;

248

249 cal ibEnd_src = cvLoadImage (" c a l i b r a t i o n /Calib−end .bmp") ;

250 cal ibEnd=cvCreateImage (cvS ize (frame . width , frame . he ight) , 8 , 3)

251 cvRes ize (calibEnd_src , calibEnd , CV_INTER_AREA) ;

252

253 dst = cvCreateImage (cvS ize (frame . width *2 , frame . he ight *2) , 8 , 3)

254

255 ca l ibBlank_src = cvLoadImage (" c a l i b r a t i o n /Calib−blank .bmp") ;

256 ca l ibBlank=cvCreateImage (cvS ize (frame . width , frame . he ight) , 8 , 3)

257 cvRes ize (cal ibBlank_src , cal ibBlank , CV_INTER_AREA) ;

258

259 ###Actual c a l i b r a t i o n

260 ###Only the va lues tha t are r e l e van t to a given t e s t i s p o s s i b l e to modify

261 ###These are saved be fore next s t ep

262

263 pr in t " c a l i b r a t i o n w i l l now commence : "

264 i=−1
265

266 spots =[]

267 params=load (1)

268

269 whi le (i <0) :

270

271 ###Gett ing corners from mouse input

272 i f i==−1:
273 s r c=ca l ibBlank

274 dst=ca l ibBlank

275 cvSetMouseCallback (frameName , mouse , param=None)

276 pr in t "Cl ick bottom l e f t corner "

277 i i =0

278

279 i +=.5

280 i f i ==−.5:

85

281 i f l en (spots)==4:

282 i +=.5

283 pt_array = CvPoint2D32f * 4

284 c1 =pt_array (* (cvPoint2D32f (0 ,0) , cvPoint2D32f (s r c . width , 0) ,

cvPoint2D32f (0 , s r c . he ight) , cvPoint2D32f (s r c . width , s r c . he ight))

)

285 c2 =pt_array (* (cvPoint2D32f (max(0 , spots [0] . x*2) ,max(0 , spots [0] . y

*2)) , cvPoint2D32f (max(0 , spots [1] . x*2) ,max(0 , spots [1] . y*2)) ,

cvPoint2D32f (max(0 , spots [2] . x*2) ,max(0 , spots [2] . y*2)) ,

cvPoint2D32f (max(0 , spots [3] . x*2) ,max(0 , spots [3] . y*2))))

286

287 bas i sMatr ix = cvGetPerspectiveTransform (c1 , c2 , bas i sMatr ix)

288

289 ##Check for i n v a l i d corner inputs , i f found , r e s e t the warp matrix

290 i f (bas i sMatr ix [0 ,1]<−1 or bas i sMatr ix [1 ,0]<−1) :
291 pr in t " Inva l i d data , r e s e t t i n g image trans format ion matrix to

de f au l t "

292 bas i sMatr ix [0 ,0]=1

293 bas i sMatr ix [0 ,1]=0

294 bas i sMatr ix [0 ,2]=0

295 bas i sMatr ix [1 ,0]=0

296 bas i sMatr ix [1 ,1]=1

297 bas i sMatr ix [1 ,2]=0

298 bas i sMatr ix [2 ,0]=0

299 bas i sMatr ix [2 ,1]=0

300 bas i sMatr ix [2 ,2]=1

301

302 cvSetTrackbarPos (" ro t a t i on x" , cp , 500)

303 cvSetTrackbarPos (" ro t a t i on y" , cp , 500)

304 cvSetTrackbarPos (" s i z e " , cp , 1000)

305 cvSetTrackbarPos (" po s i t i on x" , cp , 500)

306 cvSetTrackbarPos (" po s i t i on y" , cp , 500)

307 cvSetTrackbarPos (" keystone x" , cp , 500)

308 cvSetTrackbarPos (" keystone y" , cp , 500)

309 matrix [0 ,0]= bas i sMatr ix [0 , 0]

310 matrix [0 ,1]=0+ bas i sMatr ix [0 , 1]

311 matrix [0 ,2]=0+ bas i sMatr ix [0 , 2]

312 matrix [1 ,0]=0+ bas i sMatr ix [1 , 0]

313 matrix [1 ,1]= bas i sMatr ix [1 , 1]

314 matrix [1 ,2]=0+ bas i sMatr ix [1 , 2]

315 matrix [2 ,0]=0+ bas i sMatr ix [2 , 0]

316 matrix [2 ,1]=0+ bas i sMatr ix [2 , 1]

317 matrix [2 ,2]= bas i sMatr ix [2 , 2]

318 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

ro ta t i on x" , cp)) , 1+(9*(s te reo −1)))
319 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos (" ro ta t i on y

" , cp)) , 2+(9*(s te reo −1)))
320 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos (" s i z e " , cp)

) , 3+(9*(s te reo −1)))
321 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos (" keystone x

" , cp)) , 4+(9*(s te reo −1)))
322 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos (" keystone y

" , cp)) , 5+(9*(s te reo −1)))
323 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos (" po s i t i on x

" , cp)) , 6+(9*(s te reo −1)))
324 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos

(" po s i t i on y" , cp)) , 7+(9*(s te reo −1)))
325

326 e l s e :

327 whi le i i < len (spots) :

328 cvC i r c l e (src , spots [i i] , 3 , CV_RGB(255 ,255 ,255) , 1 , 8 , 0

)

329 dst=s r c

330 i i+=1

331

332 i f i <−1:
333 pr in t " a l ready at beginning "

334 i=−1
335

336 cvShowImage (frameName , dst)

337

338 keyPressed=cvWaitKey (10)

339 i f keyPressed==27:

86

340 i=0

341 bas i sMatr ix [0 ,0]=1

342 bas i sMatr ix [0 ,1]=0

343 bas i sMatr ix [0 ,2]=0

344 bas i sMatr ix [1 ,0]=0

345 bas i sMatr ix [1 ,1]=1

346 bas i sMatr ix [1 ,2]=0

347 bas i sMatr ix [2 ,0]=0

348 bas i sMatr ix [2 ,1]=0

349 bas i sMatr ix [2 ,2]=1

350 cvSetTrackbarPos (" ro t a t i on x" , cp , 500)

351 cvSetTrackbarPos (" ro t a t i on y" , cp , 500)

352 cvSetTrackbarPos (" s i z e " , cp , 1000)

353 cvSetTrackbarPos (" po s i t i on x" , cp , 500)

354 cvSetTrackbarPos (" po s i t i on y" , cp , 500)

355 cvSetTrackbarPos (" keystone x" , cp , 500)

356 cvSetTrackbarPos (" keystone y" , cp , 500)

357 matrix [0 ,0]= bas i sMatr ix [0 , 0]

358 matrix [0 ,1]=0+ bas i sMatr ix [0 , 1]

359 matrix [0 ,2]=0+ bas i sMatr ix [0 , 2]

360 matrix [1 ,0]=0+ bas i sMatr ix [1 , 0]

361 matrix [1 ,1]= bas i sMatr ix [1 , 1]

362 matrix [1 ,2]=0+ bas i sMatr ix [1 , 2]

363 matrix [2 ,0]=0+ bas i sMatr ix [2 , 0]

364 matrix [2 ,1]=0+ bas i sMatr ix [2 , 1]

365 matrix [2 ,2]= bas i sMatr ix [2 , 2]

366 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos (" ro ta t i on x" ,

cp)) , 1+(9*(s te reo −1)))
367 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos (" ro ta t i on y" ,

cp)) , 2+(9*(s te reo −1)))
368 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos (" s i z e " , cp)) ,

3+(9*(s te reo −1)))
369 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos (" keystone x" ,

cp)) , 4+(9*(s te reo −1)))
370 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos (" keystone y" ,

cp)) , 5+(9*(s te reo −1)))
371 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos (" po s i t i on x" ,

cp)) , 6+(9*(s te reo −1)))
372 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

po s i t i on y" , cp)) , 7+(9*(s te reo −1)))
373

374 i f (s t e r e o==1) :

375 bas i sMatr ix1=bas i sMatr ix

376 matrix1=matrix

377 e l i f s t e r e o==2:

378 bas i sMatr ix2=bas i sMatr ix

379 matrix2=matrix

380 whi le (i <5) :

381 i f i <0:

382 c a l i b r a t e (frame , frameName)

383 break

384 i f i ==0:

385 pr in t " adjust v e r t i c a l keystone un t i l l i n e s are p a r a l e l l "

386 s r c= c a l i bV e r t i c a l

387 i +=0.5

388

389 i f i ==0.5:

390 cvSetTrackbarPos (" ro ta t i on x" , cp , i n t (params . s p l i t ()

[1+(9*(s te reo −1))]))
391 cvSetTrackbarPos (" keystone x" , cp , i n t (params . s p l i t ()

[4+(9*(s te reo −1))]))
392 cvSetTrackbarPos ("mask" , cp , i n t (params . s p l i t () [8]))

393 cvSetTrackbarPos (" ro ta t e " , cp , i n t (params . s p l i t () [9]))

394 cvSetTrackbarPos (" ro ta t i on x" , ncp , i n t (params . s p l i t ()

[10−(9*(s te reo −1))]))
395 cvSetTrackbarPos (" ro ta t i on y" , ncp , i n t (params . s p l i t ()

[11−(9*(s te reo −1))]))
396 cvSetTrackbarPos (" s i z e " , ncp , i n t (params . s p l i t () [12−(9*(

s te reo −1))]))
397 cvSetTrackbarPos (" keystone x" , ncp , i n t (params . s p l i t ()

[13−(9*(s te reo −1))]))
398 cvSetTrackbarPos (" keystone y" , ncp , i n t (params . s p l i t ()

[14−(9*(s te reo −1))]))

87

399 cvSetTrackbarPos (" po s i t i on x" , ncp , i n t (params . s p l i t ()

[15−(9*(s te reo −1))]))
400 cvSetTrackbarPos (" po s i t i on y" , ncp , i n t (params . s p l i t ()

[16−(9*(s te reo −1))]))
401 i f i ==1:

402 s r c= ca l i bHor i s on t

403 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

ro ta t i on y" , cp)) , 2+(9*(s te reo −1)))
404 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

s i z e " , cp)) , 3+(9*(s te reo −1)))
405 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

keystone y" , cp)) , 5+(9*(s te reo −1)))
406 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

po s i t i on x" , cp)) , 6+(9*(s te reo −1)))
407 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

po s i t i on y" , cp)) , 7+(9*(s te reo −1)))
408 pr in t " adjust ho r i z on ta l keystone un t i l l i n e s are p a r a l e l l

"

409 i +=0.5

410 i f i ==1.5:

411 cvSetTrackbarPos (" ro ta t i on y" , " con t ro l panel "+s t r (s t e r e o

) , i n t (params . s p l i t () [2+(9*(s te reo −1))]))
412 cvSetTrackbarPos (" keystone y" , " con t ro l panel "+s t r (s t e r e o

) , i n t (params . s p l i t () [5+(9*(s te reo −1))]))
413 cvSetTrackbarPos ("mask" , " con t ro l panel "+s t r (s t e r e o) , i n t

(params . s p l i t () [8]))

414 cvSetTrackbarPos (" ro ta t e " , " con t ro l panel "+s t r (s t e r e o) ,

i n t (params . s p l i t () [9]))

415 cvSetTrackbarPos (" r o t a t i on x" , ncp , i n t (params . s p l i t ()

[10−(9*(s te reo −1))]))
416 cvSetTrackbarPos (" r o t a t i on y" , ncp , i n t (params . s p l i t ()

[11−(9*(s te reo −1))]))
417 cvSetTrackbarPos (" s i z e " , ncp , i n t (params . s p l i t () [12−(9*(

s te reo −1))]))
418 cvSetTrackbarPos (" keystone x" , ncp , i n t (params . s p l i t ()

[13−(9*(s te reo −1))]))
419 cvSetTrackbarPos (" keystone y" , ncp , i n t (params . s p l i t ()

[14−(9*(s te reo −1))]))
420 cvSetTrackbarPos (" po s i t i on x" , ncp , i n t (params . s p l i t ()

[15−(9*(s te reo −1))]))
421 cvSetTrackbarPos (" po s i t i on y" , ncp , i n t (params . s p l i t ()

[16−(9*(s te reo −1))]))
422 i f i ==2:

423 s r c= ca l i bCro s s

424 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

ro ta t i on x" , cp)) , 1+(9*(s te reo −1)))
425 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

s i z e " , cp)) , 3+(9*(s te reo −1)))
426 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

keystone x" , cp)) , 4+(9*(s te reo −1)))
427 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

po s i t i on x" , cp)) , 6+(9*(s te reo −1)))
428 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

po s i t i on y" , cp)) , 7+(9*(s te reo −1)))
429 pr in t " ro ta t e un t i l c r o s s i s a l i gned with plane "

430 i +=0.5

431 i f i ==2.5:

432 cvSetTrackbarPos (" s i z e " , " con t ro l panel "+s t r (s t e r e o) , i n t

(params . s p l i t () [3+(9*(s te reo −1))]))
433 cvSetTrackbarPos (" keystone x" , " con t ro l panel "+s t r (s t e r e o

) , i n t (params . s p l i t () [4+(9*(s te reo −1))]))
434 cvSetTrackbarPos (" keystone y" , " con t ro l panel "+s t r (s t e r e o

) , i n t (params . s p l i t () [5+(9*(s te reo −1))]))
435 cvSetTrackbarPos ("mask" , " con t ro l panel "+s t r (s t e r e o) , i n t

(params . s p l i t () [8]))

436 cvSetTrackbarPos (" ro ta t e " , " con t ro l panel "+s t r (s t e r e o) ,

i n t (params . s p l i t () [9]))

437 cvSetTrackbarPos (" ro t a t i on x" , ncp , i n t (params . s p l i t ()

[10−(9*(s te reo −1))]))
438 cvSetTrackbarPos (" ro t a t i on y" , ncp , i n t (params . s p l i t ()

[11−(9*(s te reo −1))]))
439 cvSetTrackbarPos (" s i z e " , ncp , i n t (params . s p l i t () [12−(9*(

s te reo −1))]))

88

440 cvSetTrackbarPos (" keystone x" , ncp , i n t (params . s p l i t ()

[13−(9*(s te reo −1))]))
441 cvSetTrackbarPos (" keystone y" , ncp , i n t (params . s p l i t ()

[14−(9*(s te reo −1))]))
442 cvSetTrackbarPos (" po s i t i on x" , ncp , i n t (params . s p l i t ()

[15−(9*(s te reo −1))]))
443 cvSetTrackbarPos (" po s i t i on y" , ncp , i n t (params . s p l i t ()

[16−(9*(s te reo −1))]))
444 i f i ==3:

445 s r c= ca l i bFu l l

446 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

ro ta t i on x" , cp)) , 1+(9*(s te reo −1)))
447 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

ro ta t i on y" , cp)) , 2+(9*(s te reo −1)))
448 pr in t " adjust s i z e un t i l proper f i t "

449 i +=0.5

450 i f i ==3.5:

451 cvSetTrackbarPos (" ro ta t i on x" , " con t ro l panel "+s t r (s t e r e o

) , i n t (params . s p l i t () [1+(9*(s te reo −1))]))
452 cvSetTrackbarPos (" r o t a t i on y" , " con t ro l panel "+s t r (s t e r e o

) , i n t (params . s p l i t () [2+(9*(s te reo −1))]))
453 cvSetTrackbarPos (" keystone x" , " con t ro l panel "+s t r (s t e r e o

) , i n t (params . s p l i t () [4+(9*(s te reo −1))]))
454 cvSetTrackbarPos (" keystone y" , " con t ro l panel "+s t r (s t e r e o

) , i n t (params . s p l i t () [5+(9*(s te reo −1))]))
455 cvSetTrackbarPos ("mask" , " con t ro l panel "+s t r (s t e r e o) , i n t

(params . s p l i t () [8]))

456 cvSetTrackbarPos (" ro ta t e " , " con t ro l panel "+s t r (s t e r e o) ,

i n t (params . s p l i t () [9]))

457 cvSetTrackbarPos (" ro t a t i on x" , ncp , i n t (params . s p l i t ()

[10−(9*(s te reo −1))]))
458 cvSetTrackbarPos (" ro t a t i on y" , ncp , i n t (params . s p l i t ()

[11−(9*(s te reo −1))]))
459 cvSetTrackbarPos (" s i z e " , ncp , i n t (params . s p l i t () [12−(9*(

s te reo −1))]))
460 cvSetTrackbarPos (" keystone x" , ncp , i n t (params . s p l i t ()

[13−(9*(s te reo −1))]))
461 cvSetTrackbarPos (" keystone y" , ncp , i n t (params . s p l i t ()

[14−(9*(s te reo −1))]))
462 cvSetTrackbarPos (" po s i t i on x" , ncp , i n t (params . s p l i t ()

[15−(9*(s te reo −1))]))
463 cvSetTrackbarPos (" po s i t i on y" , ncp , i n t (params . s p l i t ()

[16−(9*(s te reo −1))]))
464 i f i ==4:

465 s r c= ca l ibCorner

466 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

ro ta t i on x" , cp)) , 1+(9*(s te reo −1)))
467 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

ro ta t i on y" , cp)) , 2+(9*(s te reo −1)))
468 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

s i z e " , cp)) , 3+(9*(s te reo −1)))
469 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

po s i t i on x" , cp)) , 6+(9*(s te reo −1)))
470 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos ("

po s i t i on y" , cp)) , 7+(9*(s te reo −1)))
471 pr in t " p lace in upper l e f t corner "

472 i +=0.5

473 i f i ==4.5:

474 cvSetTrackbarPos (" ro ta t i on x" , " con t ro l panel "+s t r (s t e r e o

) , i n t (params . s p l i t () [1+(9*(s te reo −1))]))
475 cvSetTrackbarPos (" ro ta t i on y" , " con t ro l panel "+s t r (s t e r e o

) , i n t (params . s p l i t () [2+(9*(s te reo −1))]))
476 cvSetTrackbarPos (" s i z e " , " con t ro l panel "+s t r (s t e r e o) , i n t

(params . s p l i t () [3+(9*(s te reo −1))]))
477 cvSetTrackbarPos (" keystone x" , " con t ro l panel "+s t r (s t e r e o

) , i n t (params . s p l i t () [4+(9*(s te reo −1))]))
478 cvSetTrackbarPos (" keystone y" , " con t ro l panel "+s t r (s t e r e o

) , i n t (params . s p l i t () [5+(9*(s te reo −1))]))
479 cvSetTrackbarPos ("mask" , " con t ro l panel "+s t r (s t e r e o) , i n t

(params . s p l i t () [8]))

480 cvSetTrackbarPos (" ro ta t e " , " con t ro l panel "+s t r (s t e r e o) ,

i n t (params . s p l i t () [9]))

481 cvSetTrackbarPos (" ro ta t i on x" , ncp , i n t (params . s p l i t ()

89

[10−(9*(s te reo −1))]))
482 cvSetTrackbarPos (" ro t a t i on y" , ncp , i n t (params . s p l i t ()

[11−(9*(s te reo −1))]))
483 cvSetTrackbarPos (" s i z e " , ncp , i n t (params . s p l i t () [12−(9*(

s te reo −1))]))
484 cvSetTrackbarPos (" keystone x" , ncp , i n t (params . s p l i t ()

[13−(9*(s te reo −1))]))
485 cvSetTrackbarPos (" keystone y" , ncp , i n t (params . s p l i t ()

[14−(9*(s te reo −1))]))
486 cvSetTrackbarPos (" po s i t i on x" , ncp , i n t (params . s p l i t ()

[15−(9*(s te reo −1))]))
487 cvSetTrackbarPos (" po s i t i on y" , ncp , i n t (params . s p l i t ()

[16−(9*(s te reo −1))]))
488

489 dst = cv . cvCreateImage (cv . cvS ize (frame . width *2 , frame . he ight *2) ,

8 , 3)

490 i f s t e r e o==1:

491 cvWarpPerspective (src , dst , matrix1 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

492 i f s t e r e o==2:

493 cvWarpPerspective (src , dst , matrix2 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

494 cvShowImage (frameName , dst) ;

495

496 ###Finding ac t ions to perform for key input

497

498 keyPressed=cvWaitKey (10)

499 i f keyPressed !=−1:
500 ###Movement of image

501 i f keyPressed==100:

502 posx=cvGetTrackbarPos (" po s i t i on x" , cp)

503 posx+=1

504 cvSetTrackbarPos (" po s i t i on x" , cp , posx)

505 e l i f keyPressed==97:

506 posx=cvGetTrackbarPos (" po s i t i on x" , cp)

507 posx−=1
508 cvSetTrackbarPos (" po s i t i on x" , cp , posx)

509 e l i f keyPressed==119:

510 posy=cvGetTrackbarPos (" po s i t i on y" , cp)

511 posy−=1
512 cvSetTrackbarPos (" po s i t i on y" , cp , posy)

513 e l i f keyPressed==115:

514 posy=cvGetTrackbarPos (" po s i t i on y" , cp)

515 posy+=1

516 cvSetTrackbarPos (" po s i t i on y" , cp , posy)

517 e l i f keyPressed==43:

518 s i z e=cvGetTrackbarPos (" s i z e " , cp)

519 s i z e+=1

520 cvSetTrackbarPos (" s i z e " , cp , s i z e)

521 e l i f keyPressed==45:

522 s i z e=cvGetTrackbarPos (" s i z e " , cp)

523 s i z e−=1
524 cvSetTrackbarPos (" s i z e " , cp , s i z e)

525 e l i f keyPressed==65:

526 roty=cvGetTrackbarPos (" ro ta t i on y" , cp)

527 roty−=1
528 cvSetTrackbarPos (" ro t a t i on y" , cp , roty)

529 e l i f keyPressed==68:

530 roty=cvGetTrackbarPos (" ro ta t i on y" , cp)

531 roty+=1

532 cvSetTrackbarPos (" ro t a t i on y" , cp , roty)

533 e l i f keyPressed==83:

534 rotx=cvGetTrackbarPos (" ro ta t i on x" , cp)

535 rotx+=1

536 cvSetTrackbarPos (" ro t a t i on x" , cp , rotx)

537 e l i f keyPressed==87:

538 rotx=cvGetTrackbarPos (" ro ta t i on x" , cp)

539 rotx−=1
540 cvSetTrackbarPos (" ro t a t i on x" , cp , rotx)

541 e l i f keyPressed==101:

542 keysx=cvGetTrackbarPos (" keystone x" , cp)

543 keysx−=1
544 cvSetTrackbarPos (" keystone x" , cp , keysx)

90

545 e l i f keyPressed==113:

546 keysx=cvGetTrackbarPos (" keystone x" , cp)

547 keysx+=1

548 cvSetTrackbarPos (" keystone x" , cp , keysx)

549 e l i f keyPressed==122:

550 keysy=cvGetTrackbarPos (" keystone y" , cp)

551 keysy+=1

552 cvSetTrackbarPos (" keystone y" , cp , keysy)

553 e l i f keyPressed==99:

554 keysy=cvGetTrackbarPos (" keystone y" , cp)

555 keysy−=1
556 cvSetTrackbarPos (" keystone y" , cp , keysy)

557

558 ###Backup current s e t t i n g s

559 e l i f keyPressed==19:

560 backup (1)

561

562 ###Print ing current tranformation matrix

563 e l i f keyPressed==112:

564 i f s t e r e o==1:

565 i t 1=0

566 i t 2=0

567 pr in t "Transformation matrix f o r output"+s t r (s t e r e o)

568 f o r i t 1 in range (0 ,3) :

569 f o r i t 2 in range (0 ,3) :

570 pr in t " ["+s t r (i t 1)+" , "+s t r (i t 2)+"] "+s t r (matrix1 [i t1 ,

i t 2])

571 pr in t ""

572 e l s e :

573 i t 1=0

574 i t 2=0

575 pr in t "Transformation matrix f o r output"+s t r (s t e r e o)

576

577 f o r i t 1 in range (0 ,3) :

578 f o r i t 2 in range (0 ,3) :

579 pr in t " ["+s t r (i t 1)+" , "+s t r (i t 2)+"] "+s t r (matrix2 [i t1 ,

i t 2])

580 pr in t ""

581

582 ###Next c a l i b r a t i on s tep

583 e l i f keyPressed==32:

584 i +=0.5

585

586 ###Jump back one c a l i b r a t i o n s tep

587 e l i f keyPressed==2:

588 i−=1.5
589 params=ca l i bS t r i ngRep la c e (params , s t r (

cvGetTrackbarPos (" ro ta t i on x" , cp)) , 1+(9*(

s te reo −1)))
590 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos (" ro ta t i on y

" , cp)) , 2+(9*(s te reo −1)))
591 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos (" s i z e " , cp)

) , 3+(9*(s te reo −1)))
592 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos (" keystone x

" , cp)) , 4+(9*(s te reo −1)))
593 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos (" keystone y

" , cp)) , 5+(9*(s te reo −1)))
594 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos (" po s i t i on x

" , cp)) , 6+(9*(s te reo −1)))
595 params=ca l i bS t r i ngRep la c e (params , s t r (cvGetTrackbarPos

(" po s i t i on y" , cp)) , 7+(9*(s te reo −1)))
596

597 ###Escaping r e s t o f c a l i b r a t i on

598 e l i f keyPressed==27:

599 pr in t " sk ipp ing r e s t o f c a l i b r a t i o n "

600 i=5

601

602 ###Loading a prev i ou s l y manual saved s e t t i n g

603 e l i f keyPressed==12:

604 params=load (0)

605 cvSetTrackbarPos (" ro t a t i on x" , " con t ro l panel1 " ,

i n t (params . s p l i t () [1]))

606 cvSetTrackbarPos (" ro t a t i on y" , " con t ro l panel1 " ,

91

i n t (params . s p l i t () [2]))

607 cvSetTrackbarPos (" s i z e " , " con t ro l panel1 " , i n t (

params . s p l i t () [3]))

608 cvSetTrackbarPos (" keystone x" , " con t ro l panel1 " ,

i n t (params . s p l i t () [4]))

609 cvSetTrackbarPos (" keystone y" , " con t ro l panel1 " ,

i n t (params . s p l i t () [5]))

610 cvSetTrackbarPos (" po s i t i on x" , " con t ro l panel1 " ,

i n t (params . s p l i t () [6]))

611 cvSetTrackbarPos (" po s i t i on y" , " con t ro l panel1 " ,

i n t (params . s p l i t () [7]))

612 cvSetTrackbarPos ("mask" , " con t ro l panel1 " , i n t (

params . s p l i t () [8]))

613 cvSetTrackbarPos (" ro ta t e " , " con t ro l panel1 " , i n t (

params . s p l i t () [9]))

614 cvSetTrackbarPos (" r o t a t i on x" , " con t ro l panel2 " ,

i n t (params . s p l i t () [1 0]))

615 cvSetTrackbarPos (" r o t a t i on y" , " con t ro l panel2 " ,

i n t (params . s p l i t () [1 1]))

616 cvSetTrackbarPos (" s i z e " , " con t ro l panel2 " , i n t (

params . s p l i t () [1 2]))

617 cvSetTrackbarPos (" keystone x" , " con t ro l panel2 " ,

i n t (params . s p l i t () [1 3]))

618 cvSetTrackbarPos (" keystone y" , " con t ro l panel2 " ,

i n t (params . s p l i t () [1 4]))

619 cvSetTrackbarPos (" po s i t i on x" , " con t ro l panel2 " ,

i n t (params . s p l i t () [1 5]))

620 cvSetTrackbarPos (" po s i t i on y" , " con t ro l panel2 " ,

i n t (params . s p l i t () [1 6]))

621

622 ###Loading l a s t saved s e t t i n g (autosave)

623 e l i f keyPressed==76:

624 params=load (1)

625 cvSetTrackbarPos (" r o t a t i on x" , " con t ro l panel1 " ,

i n t (params . s p l i t () [1]))

626 cvSetTrackbarPos (" r o t a t i on y" , " con t ro l panel1 " ,

i n t (params . s p l i t () [2]))

627 cvSetTrackbarPos (" s i z e " , " con t ro l panel1 " , i n t (

params . s p l i t () [3]))

628 cvSetTrackbarPos (" keystone x" , " con t ro l panel1 " ,

i n t (params . s p l i t () [4]))

629 cvSetTrackbarPos (" keystone y" , " con t ro l panel1 " ,

i n t (params . s p l i t () [5]))

630 cvSetTrackbarPos (" po s i t i on x" , " con t ro l panel1 " ,

i n t (params . s p l i t () [6]))

631 cvSetTrackbarPos (" po s i t i on y" , " con t ro l panel1 " ,

i n t (params . s p l i t () [7]))

632 cvSetTrackbarPos ("mask" , " con t ro l panel1 " , i n t (

params . s p l i t () [8]))

633 cvSetTrackbarPos (" ro ta t e " , " con t ro l panel1 " , i n t (

params . s p l i t () [9]))

634 cvSetTrackbarPos (" r o t a t i on x" , " con t ro l panel2 " ,

i n t (params . s p l i t () [1 0]))

635 cvSetTrackbarPos (" r o t a t i on y" , " con t ro l panel2 " ,

i n t (params . s p l i t () [1 1]))

636 cvSetTrackbarPos (" s i z e " , " con t ro l panel2 " , i n t (

params . s p l i t () [1 2]))

637 cvSetTrackbarPos (" keystone x" , " con t ro l panel2 " ,

i n t (params . s p l i t () [1 3]))

638 cvSetTrackbarPos (" keystone y" , " con t ro l panel2 " ,

i n t (params . s p l i t () [1 4]))

639 cvSetTrackbarPos (" po s i t i on x" , " con t ro l panel2 " ,

i n t (params . s p l i t () [1 5]))

640 cvSetTrackbarPos (" po s i t i on y" , " con t ro l panel2 " ,

i n t (params . s p l i t () [1 6]))

641

642 ###for debug purposes

643 e l s e :

644 pr in t keyPressed

645 pr in t " Ca l ib ra t i on complete \n"

646 backup (0)

647

648 ###using a re ference image on the screen tha t i s not used

92

649 i f s t e r e o==1:

650 s r c=cal ibEnd

651 dst = cv . cvCreateImage (cv . cvS ize (frame . width *2 , frame . he ight *2) , 8 , 3)

652 cvWarpPerspective (src , dst , matrix1 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

653 i f s t e r e o==2:

654 s r c=cal ibEnd

655 dst = cv . cvCreateImage (cv . cvS ize (frame . width *2 , frame . he ight *2) , 8 , 3)

656 cvWarpPerspective (src , dst , matrix2 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

657 cvShowImage (frameName , dst)

658

659 ###Determining act ion for a key input

660

661 def keys (keyPressed) :

662 g l oba l activeFrame

663

664 ###Movement of image

665 i f keyPressed==100:

666 posx=cvGetTrackbarPos (" po s i t i on x" , " con t ro l panel "+s t r (

activeFrame))

667 posx+=1

668 cvSetTrackbarPos (" po s i t i on x" , " con t ro l panel "+s t r (activeFrame) ,

posx)

669 e l i f keyPressed==97:

670 posx=cvGetTrackbarPos (" po s i t i on x" , " con t ro l panel "+s t r (

activeFrame))

671 posx−=1
672 cvSetTrackbarPos (" po s i t i on x" , " con t ro l panel "+s t r (activeFrame) ,

posx)

673 e l i f keyPressed==119:

674 posy=cvGetTrackbarPos (" po s i t i on y" , " con t ro l panel "+s t r (

activeFrame))

675 posy−=1
676 cvSetTrackbarPos (" po s i t i on y" , " con t ro l panel "+s t r (activeFrame) ,

posy)

677 e l i f keyPressed==115:

678 posy=cvGetTrackbarPos (" po s i t i on y" , " con t ro l panel "+s t r (

activeFrame))

679 posy+=1

680 cvSetTrackbarPos (" po s i t i on y" , " con t ro l panel "+s t r (activeFrame) ,

posy)

681 e l i f keyPressed==43:

682 s i z e=cvGetTrackbarPos (" s i z e " , " con t ro l panel "+s t r (activeFrame))

683 s i z e+=1

684 cvSetTrackbarPos (" s i z e " , " con t ro l panel "+s t r (activeFrame) , s i z e)

685 e l i f keyPressed==45:

686 s i z e=cvGetTrackbarPos (" s i z e " , " con t ro l panel "+s t r (activeFrame))

687 s i z e−=1
688 cvSetTrackbarPos (" s i z e " , " con t ro l panel "+s t r (activeFrame) , s i z e)

689 e l i f keyPressed==65:

690 roty=cvGetTrackbarPos (" ro ta t i on y" , " con t ro l panel "+s t r (activeFrame))

691 roty−=1
692 cvSetTrackbarPos (" ro t a t i on y" , " con t ro l panel "+s t r (activeFrame) , roty)

693 e l i f keyPressed==68:

694 roty=cvGetTrackbarPos (" ro ta t i on y" , " con t ro l panel "+s t r (activeFrame))

695 roty+=1

696 cvSetTrackbarPos (" ro t a t i on y" , " con t ro l panel "+s t r (activeFrame) , roty)

697 e l i f keyPressed==83:

698 rotx=cvGetTrackbarPos (" ro ta t i on x" , " con t ro l panel "+s t r (activeFrame))

699 rotx+=1

700 cvSetTrackbarPos (" ro t a t i on x" , " con t ro l panel "+s t r (activeFrame) , rotx)

701 e l i f keyPressed==87:

702 rotx=cvGetTrackbarPos (" ro ta t i on x" , " con t ro l panel "+s t r (activeFrame))

703 rotx−=1
704 cvSetTrackbarPos (" ro t a t i on x" , " con t ro l panel "+s t r (activeFrame) , rotx)

705 e l i f keyPressed==101:

706 keysx=cvGetTrackbarPos (" keystone x" , " con t ro l panel "+s t r (activeFrame))

707 keysx−=1
708 cvSetTrackbarPos (" keystone x" , " con t ro l panel "+s t r (activeFrame) ,

keysx)

709 e l i f keyPressed==113:

710 keysx=cvGetTrackbarPos (" keystone x" , " con t ro l panel "+s t r (

93

activeFrame))

711 keysx+=1

712 cvSetTrackbarPos (" keystone x" , " con t ro l panel "+s t r (activeFrame) ,

keysx)

713 e l i f keyPressed==122:

714 keysy=cvGetTrackbarPos (" keystone y" , " con t ro l panel "+s t r (

activeFrame))

715 keysy+=1

716 cvSetTrackbarPos (" keystone y" , " con t ro l panel "+s t r (activeFrame) ,

keysy)

717 e l i f keyPressed==99:

718 keysy=cvGetTrackbarPos (" keystone y" , " con t ro l panel "+s t r (

activeFrame))

719 keysy−=1
720 cvSetTrackbarPos (" keystone y" , " con t ro l panel "+s t r (activeFrame) ,

keysy)

721

722 ###Reset t ing image to d e f au l t

723 e l i f keyPressed==114:

724 g l oba l matrix1

725 g l oba l matrix2

726 backup (0)

727 pr in t " r e s e t t i n g "

728

729 cvSetTrackbarPos (" ro t a t i on x" , " con t ro l panel1 " , 500)

730 cvSetTrackbarPos (" ro t a t i on y" , " con t ro l panel1 " , 500)

731 cvSetTrackbarPos (" s i z e " , " con t ro l panel1 " , 1000)

732 cvSetTrackbarPos (" keystone x" , " con t ro l panel1 " , 500)

733 cvSetTrackbarPos (" keystone y" , " con t ro l panel1 " , 500)

734 cvSetTrackbarPos (" po s i t i on x" , " con t ro l panel1 " , 500)

735 cvSetTrackbarPos (" po s i t i on y" , " con t ro l panel1 " , 500)

736 cvSetTrackbarPos ("mask" , " con t ro l panel1 " , 0)

737 cvSetTrackbarPos (" ro ta t e " , " con t ro l panel1 " , 0)

738 cvSetTrackbarPos (" ro t a t i on x" , " con t ro l panel2 " , 500)

739 cvSetTrackbarPos (" ro t a t i on y" , " con t ro l panel2 " , 500)

740 cvSetTrackbarPos (" s i z e " , " con t ro l panel2 " , 1000)

741 cvSetTrackbarPos (" keystone x" , " con t ro l panel2 " , 500)

742 cvSetTrackbarPos (" keystone y" , " con t ro l panel2 " , 500)

743 cvSetTrackbarPos (" po s i t i on x" , " con t ro l panel2 " , 500)

744 cvSetTrackbarPos (" po s i t i on y" , " con t ro l panel2 " , 500)

745

746 matrix1 [0 ,0]=1

747 matrix1 [0 ,1]=0

748 matrix1 [0 ,2]=0

749 matrix1 [1 ,0]=0

750 matrix1 [1 ,1]=1

751 matrix1 [1 ,2]=0

752 matrix1 [2 ,0]=0

753 matrix1 [2 ,1]=0

754 matrix1 [2 ,2]=1

755 matrix2 [0 ,0]=1

756 matrix2 [0 ,1]=0

757 matrix2 [0 ,2]=0

758 matrix2 [1 ,0]=0

759 matrix2 [1 ,1]=1

760 matrix2 [1 ,2]=0

761 matrix2 [2 ,0]=0

762 matrix2 [2 ,1]=0

763 matrix2 [2 ,2]=1

764

765 ###Saving image parameters

766 e l i f keyPressed==19:

767 backup (1)

768

769 ###Exi t ing and autosaving

770 e l i f keyPressed==32:

771 backup (0)

772 return −1
773 ###Exit without autosaving (escape)

774 e l i f keyPressed==27:

775 return −1
776

777 ###Reca l i b ra t ing ac t i v e frame

94

778 e l i f keyPressed==67:

779 backup (0)

780 pr in t " Reca l i b ra t ing ac t i v e frame"

781 frame = cvQueryFrame (capture1)

782 dumpframe=cvQueryFrame (capture2)###to maintain sync between v ideos

783 cal ibEnd_src = cvLoadImage (" c a l i b r a t i o n /Calib−end .bmp")

784 cal ibEnd=cvCreateImage (cvS ize (frame . width , frame . he ight) , 8 , 3)

785 cvRes ize (calibEnd_src , calibEnd , CV_INTER_AREA)

786

787 i f activeFrame==1:

788 matrix2

789 s r c=cal ibEnd

790 dst = cv . cvCreateImage (cv . cvS ize (frame . width *2 , frame . he ight *2) , 8 ,

3)

791 cvWarpPerspective (src , dst , matrix2 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

792 cvShowImage ("output2" , dst)

793 c a l i b r a t e (frame , " output1")

794

795 e l s e :

796 matrix1

797 s r c=cal ibEnd

798 dst = cv . cvCreateImage (cv . cvS ize (frame . width *2 , frame . he ight *2) , 8 ,

3)

799 cvWarpPerspective (src , dst , matrix1 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

800 cvShowImage ("output1" , dst)

801 c a l i b r a t e (frame , " output2")

802

803 ###Switch ac t i v e frame

804 e l i f keyPressed==9:

805 i f activeFrame==1:

806 activeFrame=2

807 e l s e :

808 activeFrame=1

809

810 ###pr in t transformation matrix

811 e l i f keyPressed==112:

812 i f activeFrame==1:

813 i t 1=0

814 i t 2=0

815 f o r i t 1 in range (0 ,3) :

816 f o r i t 2 in range (0 ,3) :

817 pr in t " ["+s t r (i t 1)+" , "+s t r (i t 2)+"] "+s t r (matrix1 [i t1 , i t 2])

818 pr in t ""

819 e l s e :

820 i t 1=0

821 i t 2=0

822 f o r i t 1 in range (0 ,3) :

823 f o r i t 2 in range (0 ,3) :

824 pr in t " ["+s t r (i t 1)+" , "+s t r (i t 2)+"] "+s t r (matrix2 [i t1 , i t 2])

825 pr in t ""

826 ###Loading a prev i ou s l y manual saved s e t t i n g

827 e l i f keyPressed==12:

828 params=load (0)

829 cvSetTrackbarPos (" ro ta t i on x" , " con t ro l panel1 " , i n t (params . s p l i t

() [1]))

830 cvSetTrackbarPos (" ro ta t i on y" , " con t ro l panel1 " , i n t (params . s p l i t

() [2]))

831 cvSetTrackbarPos (" s i z e " , " con t ro l panel1 " , i n t (params . s p l i t () [3])

)

832 cvSetTrackbarPos (" keystone x" , " con t ro l panel1 " , i n t (params . s p l i t

() [4]))

833 cvSetTrackbarPos (" keystone y" , " con t ro l panel1 " , i n t (params . s p l i t

() [5]))

834 cvSetTrackbarPos (" po s i t i on x" , " con t ro l panel1 " , i n t (params . s p l i t

() [6]))

835 cvSetTrackbarPos (" po s i t i on y" , " con t ro l panel1 " , i n t (params . s p l i t

() [7]))

836 cvSetTrackbarPos ("mask" , " con t ro l panel1 " , i n t (params . s p l i t () [8])

)

837 cvSetTrackbarPos (" ro ta t e " , " con t ro l panel1 " , i n t (params . s p l i t ()

[9]))

95

838 cvSetTrackbarPos (" ro t a t i on x" , " con t ro l panel2 " , i n t (params . s p l i t

() [1 0]))

839 cvSetTrackbarPos (" ro t a t i on y" , " con t ro l panel2 " , i n t (params . s p l i t

() [1 1]))

840 cvSetTrackbarPos (" s i z e " , " con t ro l panel2 " , i n t (params . s p l i t ()

[1 2]))

841 cvSetTrackbarPos (" keystone x" , " con t ro l panel2 " , i n t (params . s p l i t

() [1 3]))

842 cvSetTrackbarPos (" keystone y" , " con t ro l panel2 " , i n t (params . s p l i t

() [1 4]))

843 cvSetTrackbarPos (" po s i t i on x" , " con t ro l panel2 " , i n t (params . s p l i t

() [1 5]))

844 cvSetTrackbarPos (" po s i t i on y" , " con t ro l panel2 " , i n t (params . s p l i t

() [1 6]))

845

846 ###Loading l a s t saved s e t t i n g (autosave)

847 e l i f keyPressed==76:

848 params=load (1)

849 cvSetTrackbarPos (" ro t a t i on x" , " con t ro l panel1 " , i n t (params . s p l i t

() [1]))

850 cvSetTrackbarPos (" ro t a t i on y" , " con t ro l panel1 " , i n t (params . s p l i t

() [2]))

851 cvSetTrackbarPos (" s i z e " , " con t ro l panel1 " , i n t (params . s p l i t () [3])

)

852 cvSetTrackbarPos (" keystone x" , " con t ro l panel1 " , i n t (params . s p l i t

() [4]))

853 cvSetTrackbarPos (" keystone y" , " con t ro l panel1 " , i n t (params . s p l i t

() [5]))

854 cvSetTrackbarPos (" po s i t i on x" , " con t ro l panel1 " , i n t (params . s p l i t

() [6]))

855 cvSetTrackbarPos (" po s i t i on y" , " con t ro l panel1 " , i n t (params . s p l i t

() [7]))

856 cvSetTrackbarPos ("mask" , " con t ro l panel1 " , i n t (params . s p l i t () [8])

)

857 cvSetTrackbarPos (" ro ta t e " , " con t ro l panel1 " , i n t (params . s p l i t ()

[9]))

858 cvSetTrackbarPos (" r o t a t i on x" , " con t ro l panel2 " , i n t (params . s p l i t

() [1 0]))

859 cvSetTrackbarPos (" r o t a t i on y" , " con t ro l panel2 " , i n t (params . s p l i t

() [1 1]))

860 cvSetTrackbarPos (" s i z e " , " con t ro l panel2 " , i n t (params . s p l i t ()

[1 2]))

861 cvSetTrackbarPos (" keystone x" , " con t ro l panel2 " , i n t (params . s p l i t

() [1 3]))

862 cvSetTrackbarPos (" keystone y" , " con t ro l panel2 " , i n t (params . s p l i t

() [1 4]))

863 cvSetTrackbarPos (" po s i t i on x" , " con t ro l panel2 " , i n t (params . s p l i t

() [1 5]))

864 cvSetTrackbarPos (" po s i t i on y" , " con t ro l panel2 " , i n t (params . s p l i t

() [1 6]))

865

866 ###Pausing the video

867 e l i f keyPressed==16:

868 pr in t "pause , p r e s s any key to cont inue "

869 capture1

870 capture2

871 masking=cvGetTrackbarPos ("mask" , " con t ro l panel1 ")

872 r o ta t e=cvGetTrackbarPos (" ro ta t e " , " con t ro l panel1 ")

873

874 frame1 = cvQueryFrame (capture1)

875 frame2 = cvQueryFrame (capture2)

876

877 maskedFrame1=cvCreateImage (cvS ize (frame1 . width , frame1 . he ight) ,

8 ,3)

878 rot frame1=cvCreateImage (cvS ize (frame1 . width *2 , frame1 . he ight *2) , 8 ,3)

879 maskedFrame2=cvCreateImage (cvS ize (frame1 . width , frame1 . he ight) , 8 ,3)

880 rot frame2=cvCreateImage (cvS ize (frame1 . width *2 , frame1 . he ight *2) , 8 ,3)

881 dst1 = cv . cvCreateImage (cv . cvS ize (frame1 . width *2 , frame1 . he ight *2) , 8 ,

3)

882 dst2 = cv . cvCreateImage (cv . cvS ize (frame1 . width *2 , frame1 . he ight *2) ,

8 , 3)

883

884 cvAddWeighted (frame1 , alpha , mask , beta , 0 . 0 , maskedFrame1)

96

885 cvAddWeighted (frame2 , alpha , mask , beta , 0 . 0 , maskedFrame2)

886

887 cvWarpAffine (maskedFrame1 , rotframe1 , rotat ion ,CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS, cvSca l a rA l l (0))

888 cvWarpAffine (maskedFrame2 , rotframe2 , rotat ion ,CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS, cvSca l a rA l l (0))

889

890 cvWarpPerspective (rotframe1 , dst1 , matrix1 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

891 cvWarpPerspective (rotframe2 , dst2 , matrix2 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

892

893 cvShowImage ("output1" , dst1)

894 cvShowImage ("output2" , dst2)

895

896 keyPressed=cvWaitKey (10)

897 whi le (keyPressed==−1) :
898 keyPressed=cvWaitKey (10)

899

900 ###For debug operat ions

901 e l s e :

902 pr in t keyPressed

903

904 ###Mouse event l i s t e n e r , used as f i r s t s t ep in the c a l i b r a t i o n

905

906 def mouse (event , x , y , f l a g s , param) :

907 g l oba l spots

908

909 i f event ==1:

910 spots . append (cvPoint (x , y))

911 i f l en (spots)==1:

912 pr in t "Cl ick bottom r i gh t corner "

913 e l i f l en (spots)==2:

914 pr in t "Cl ick top l e f t corner "

915 e l i f l en (spots)== 3 :

916 pr in t "Cl ick top r i gh t corner "

917 #pr in t len (spo t s)

918 #pr in t s t r (x)+", "+s t r (y)

919

920

921 ###Video loop for low framerate performance .

922

923 def videoLoop (framecount , f r ames inc e l a s t , la s tcount , FPS , frame1) :

924

925 ###Loading g l o b a l parameters

926 matrix1

927 matrix2

928 alpha

929 beta

930 mask

931 activeFrame

932 g l oba l hiFPS

933 g l oba l maxFPS

934 g l oba l capture1

935 g l oba l capture2

936

937 ###crea t ing empty images with s i z e according to source

938 ###Used for masks , ro t a t i ons and de s t ina t i on images

939 maskedFrame1=cvCreateImage (cvS ize (frame1 . width , frame1 . he ight) , 8 ,3)

940 rot frame1=cvCreateImage (cvS ize (frame1 . width *2 , frame1 . he ight *2) , 8 ,3)

941 maskedFrame2=cvCreateImage (cvS ize (frame1 . width , frame1 . he ight) , 8 ,3)

942 rot frame2=cvCreateImage (cvS ize (frame1 . width *2 , frame1 . he ight *2) , 8 ,3)

943 dst1 = cvCreateImage (cv . cvS ize (frame1 . width *2 , frame1 . he ight *2) , 8 , 3)

944 dst2 = cvCreateImage (cv . cvS ize (frame1 . width *2 , frame1 . he ight *2) , 8 , 3)

945

946 ###The loop i t s e l f

947 whi le True :

948 framecount+=1

949

950 ###Grabbing frames from source video

951 frame1 = cvQueryFrame (capture1)

952 frame2= cvQueryFrame (capture2)

953 i f not frame1 or not frame2 :

97

954

955 ###Reloading source i f no frames are a v a i l a b l e

956 capture1 = cvCreateFi leCapture (captureF i l e1)

957 capture2 = cvCreateFi leCapture (captureF i l e2)

958 frame1 = cvQueryFrame (capture1)

959 frame2 = cvQueryFrame (capture2)

960

961 i f not frame1 or not frame2 :

962

963 pr in t "Error when loop ing video , e x i t i n g . . . "

964 break

965

966 ###showing image be fore transformat ions

967 cvShowImage (" source mater ia l " , frame1)

968

969 ###Gett ing mask and ro ta t i on parameters

970 masking=cvGetTrackbarPos ("mask" , " con t ro l panel1 ")

971 r o ta t e=cvGetTrackbarPos (" ro ta t e " , " con t ro l panel1 ")

972

973 ###Choosing correc t s teps , f o r performance only needed operat ions are

performed

974 ###Warping of source image w i l l o f course always be done .

975

976 ###I f both masking and ro ta t i on operat ions are needed

977 i f masking !=0 and ro ta t e !=0:

978 cvAddWeighted (frame1 , alpha , mask , beta , 0 . 0 , maskedFrame1)

979 cvAddWeighted (frame2 , alpha , mask , beta , 0 . 0 , maskedFrame2)

980

981 cvWarpAffine (maskedFrame1 , rotframe1 , rotat ion ,CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS, cvSca l a rA l l (0))

982 cvWarpAffine (maskedFrame2 , rotframe2 , rotat ion ,CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS, cvSca l a rA l l (0))

983

984 cvWarpPerspective (rotframe1 , dst1 , matrix1 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

985 cvWarpPerspective (rotframe2 , dst2 , matrix2 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

986

987 ###I f only ro ta t i on i s needed

988 e l i f masking !=0 and ro ta t e==0:

989 cvAddWeighted (frame1 , alpha , mask , beta , 0 . 0 , maskedFrame1)

990 cvAddWeighted (frame2 , alpha , mask , beta , 0 . 0 , maskedFrame2)

991

992 cvWarpPerspective (maskedFrame1 , dst1 , matrix1 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

993 cvWarpPerspective (maskedFrame2 , dst2 , matrix2 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

994

995 ###I f only masking i s needed

996 e l i f masking==0 and ro ta t e !=0:

997 cvWarpAffine (frame1 , rotframe1 , rotat ion ,CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS, cvSca l a rA l l (0))

998 cvWarpAffine (frame2 , rotframe2 , rotat ion ,CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS, cvSca l a rA l l (0))

999

1000 cvWarpPerspective (rotframe1 , dst1 , matrix1 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

1001 cvWarpPerspective (rotframe2 , dst2 , matrix2 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

1002

1003 ###I f ne i ther operat ions are needed

1004 e l i f masking==0 and ro ta t e==0:

1005 cvWarpPerspective (frame1 , dst1 , matrix1 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

1006 cvWarpPerspective (frame2 , dst2 , matrix2 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

1007

1008 ###The loop cannot , under any normal cirumstance end here .

1009 e l s e :

1010 dst1=frame1

1011 dst2=frame2

1012

1013 ###Detect ing i f keys are pressed

98

1014 keyPressed=cvWaitKey (100)

1015 i f keyPressed !=−1:
1016 i f keys (keyPressed)==−1:
1017 sys . e x i t (0)

1018

1019 ###Crude FPS counter and s t a t i s t i c s management

1020 th i s f ramet ime=time . ctime (time . time ())

1021 i f th i s f ramet ime==la s t count :

1022 f r ame s i n c e l a s t+=1

1023 e l s e :

1024 i f f r ame s i n c e l a s t !=0:

1025 FPS . append (f r ame s i n c e l a s t)

1026 t ry :

1027 pr in t s t r (f r ame s i n c e l a s t)+" current "+s t r (sum(FPS , 0 . 0) / l en (FPS)) + "

average fps , " + s t r (sum(FPS , 0))+ " t o t a l frames . "

1028

1029 ###Jump to high speed loop i f framerate i s above th re sho l d

1030 i f f r ames ince l a s t >maxFPS :

1031 pr in t "FPS too high , en te r ing monitor mode"

1032 hiFPS=1

1033 break

1034 except ZeroDiv i s i onError :

1035 pr in t "no FPS"

1036 f r ame s i n c e l a s t=0

1037 l a s t count=time . ctime (time . time ())

1038

1039 ###Disp lay ing the warped images

1040 cvShowImage ("output1" , dst1)

1041 cvShowImage ("output2" , dst2)

1042

1043

1044 ###Video loop with FPS con t ro l s fo r when performance i s h igher than needed

1045

1046 def videoFPSLoop (framecount , f r ames ince l a s t , la s tcount , FPS , frame1) :

1047

1048 ###Loading g l o b a l parameters

1049 matrix1

1050 matrix2

1051 alpha

1052 beta

1053 mask

1054 activeFrame

1055 g l oba l hiFPS

1056 g l oba l maxFPS

1057 g l oba l capture1

1058 g l oba l capture2

1059

1060 ###Saving time for FPS cont ro l

1061 lastFrame = datetime . datetime . now()

1062

1063 ###crea t ing empty images with s i z e according to source

1064 ###Used for masks , ro t a t i ons and de s t ina t i on images

1065 maskedFrame1=cvCreateImage (cvS ize (frame1 . width , frame1 . he ight) , 8 ,3)

1066 rot frame1=cvCreateImage (cvS ize (frame1 . width *2 , frame1 . he ight *2) , 8 ,3)

1067 maskedFrame2=cvCreateImage (cvS ize (frame1 . width , frame1 . he ight) , 8 ,3)

1068 rot frame2=cvCreateImage (cvS ize (frame1 . width *2 , frame1 . he ight *2) , 8 ,3)

1069 dst1 = cv . cvCreateImage (cv . cvS ize (frame1 . width *2 , frame1 . he ight *2) , 8 ,

3)

1070 dst2 = cv . cvCreateImage (cv . cvS ize (frame1 . width *2 , frame1 . he ight *2) , 8 ,

3)

1071

1072 ###The loop i t s e l f

1073 whi le True :

1074 framecount+=1

1075

1076 ###Grabbing frames from source video

1077 frame1 = cvQueryFrame (capture1)

1078 frame2= cvQueryFrame (capture2)

1079 i f not frame1 or not frame2 :

1080

1081 ###Reloading source i f no frames are a v a i l a b l e

1082 capture1 = cvCreateFi leCapture (captureF i l e1)

1083 capture2 = cvCreateFi leCapture (captureF i l e2)

99

1084 frame1 = cvQueryFrame (capture1)

1085 frame2 = cvQueryFrame (capture2)

1086

1087 i f not frame1 or not frame2 :

1088

1089 pr in t "Error when loop ing video , e x i t i n g . . . "

1090 break

1091

1092 ###showing image be fore transformat ions

1093 cvShowImage (" source mater ia l " , frame1)

1094

1095 ###Gett ing mask and ro ta t i on parameters

1096 masking=cvGetTrackbarPos ("mask" , " con t ro l panel1 ")

1097 r o ta t e=cvGetTrackbarPos (" ro ta t e " , " con t ro l panel1 ")

1098

1099 ###Choosing correc t s teps , f o r performance only needed operat ions

are performed

1100 ###Warping of source image w i l l o f course always be done .

1101

1102 ###I f both masking and ro ta t i on operat ions are needed

1103 i f masking !=0 and ro ta t e !=0:

1104 cvAddWeighted (frame1 , alpha , mask , beta , 0 . 0 , maskedFrame1)

1105 cvAddWeighted (frame2 , alpha , mask , beta , 0 . 0 , maskedFrame2)

1106

1107 cvWarpAffine (maskedFrame1 , rotframe1 , rotat ion ,CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS, cvSca l a rA l l (0))

1108 cvWarpAffine (maskedFrame2 , rotframe2 , rotat ion ,CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS, cvSca l a rA l l (0))

1109

1110 cvWarpPerspective (rotframe1 , dst1 , matrix1 , (CV_INTER_LINEAR

+CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

1111 cvWarpPerspective (rotframe2 , dst2 , matrix2 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

1112

1113 ###I f only ro ta t i on i s needed

1114 e l i f masking !=0 and ro ta t e==0:

1115 cvAddWeighted (frame1 , alpha , mask , beta , 0 . 0 , maskedFrame1)

1116 cvAddWeighted (frame2 , alpha , mask , beta , 0 . 0 , maskedFrame2)

1117

1118 cvWarpPerspective (maskedFrame1 , dst1 , matrix1 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

1119 cvWarpPerspective (maskedFrame2 , dst2 , matrix2 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

1120

1121 ###I f only masking i s needed

1122 e l i f masking==0 and ro ta t e !=0:

1123 cvWarpAffine (frame1 , rotframe1 , rotat ion ,CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS, cvSca l a rA l l (0))

1124 cvWarpAffine (frame2 , rotframe2 , rotat ion ,CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS, cvSca l a rA l l (0))

1125

1126 cvWarpPerspective (rotframe1 , dst1 , matrix1 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

1127 cvWarpPerspective (rotframe2 , dst2 , matrix2 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

1128

1129 ###I f ne i ther operat ions are needed

1130 e l i f masking==0 and ro ta t e==0:

1131 cvWarpPerspective (frame1 , dst1 , matrix1 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

1132 cvWarpPerspective (frame2 , dst2 , matrix2 , (CV_INTER_LINEAR+

CV_WARP_FILL_OUTLIERS) , cvSca l a rA l l (0))

1133

1134 ###The loop cannot , under any normal cirumstance end here .

1135 e l s e :

1136 dst1=frame1

1137 dst2=frame2

1138

1139 ###Detect ing i f keys are pressed

1140 keyPressed=cvWaitKey (10)

1141 i f keyPressed !=−1:
1142 i f keys (keyPressed)==−1:
1143 sys . e x i t (0)

100

1144

1145 ####Crude FPS counter , management and s t a t i s t i c s

1146 th i s f ramet ime=time . ctime (time . time ())

1147 i f th i s f ramet ime==la s t count :

1148 f r ame s i n c e l a s t+=1

1149 e l s e :

1150 i f f r ame s i n c e l a s t !=0:

1151 FPS . append (f r ame s i n c e l a s t)

1152 t ry :

1153 pr in t s t r (f r ame s i n c e l a s t)+" current "+s t r (sum(FPS , 0 . 0) / l en (FPS))

+ " average fps , " + s t r (sum(FPS , 0 . 0))+ " t o t a l frames . "

1154

1155 ###Jump to low speed loop i f framerate i s too low

1156 i f (f r ame s i n c e l a s t < (maxFPS/2) and f r ame s i n c e l a s t != 0) :

1157 pr in t "FPS below threshhold , en t e r ing non−monitor−mode"
1158 hiFPS=0

1159 break

1160 except ZeroDiv i s i onError :

1161 pr in t "no FPS"

1162 f r ame s i n c e l a s t=0

1163 l a s t count=time . ctime (time . time ())

1164

1165 ###Sleep ing un t i l i t i s time to d i s p l ay the frame

1166 time . s l e ep (max(f l o a t (((1 . /maxFPS) *1000000)−(datetime . datetime . now()−
lastFrame) . microseconds) /1000000 , 0))

1167 lastFrame = datetime . datetime . now()

1168

1169 ###Disp lay ing the warped frames

1170 cvShowImage ("output1" , dst1)

1171 cvShowImage ("output2" , dst2)

1172

1173 ###Main program s t a r t

1174 i f __name__ == "__main__" :

1175 pr in t s t r (plat form . system ())+" "+s t r (plat form . r e l e a s e ())+ " "+ s t r (sys .

getwindowsvers ion ())+" . . . "

1176

1177 ###Gett ing g l o b a l parameters

1178 matrix1

1179 matrix2

1180 alpha

1181 beta

1182 mask

1183 activeFrame

1184 hiFPS

1185 capture1

1186 capture2

1187

1188 ###i n i t i a l i z i n g capture

1189 capture = None

1190 i f l en (sys . argv)==1:

1191 pr in t "Capturing from webcam , debug only . . . "

1192 capture1 = cvCreateCameraCapture (0)

1193 capture2 = capture1

1194

1195 ###Gett ing video source from input parameters

1196 e l i f l en (sys . argv)==3:

1197 captureF i l e1=sys . argv [1]

1198 captureF i l e2=sys . argv [2]

1199

1200 pr in t "Capturing from f i l e , source path : "+captureF i l e1+ " and " +

captureF i l e2+" . . . "

1201 capture1 = cvCreateFi leCapture (captureF i l e1)

1202 capture2 = cvCreateFi leCapture (captureF i l e2)

1203 e l s e :

1204 pr in t "You must s p e c i f y the path o f two video f i l e s when launching t h i s

s c r i p t "

1205 sys . e x i t (−1)
1206

1207 ###I f no capture media can be found

1208 i f not capture1 :

1209 i f not capture2 :

1210 pr in t "Could not i n i t i a l i z e captur ing . . . "

1211 sys . e x i t (−1)

101

1212

1213 ###Grabbing frame for s i z e measurement and check

1214 frame1 = cvQueryFrame (capture1)

1215 frame2 = cvQueryFrame (capture2)

1216 i f not (frame1 . width==frame2 . width and frame1 . he ight==frame2 . he ight) :

1217 pr in t " source s aren ' t o f i d e n t i c a l s i z e . They must have i d e n t i c a l he ight&

width"

1218 pr in t s t r (frame1 . width) +" "+ s t r (frame2 . width)+" " + s t r (frame1 . he ight)+"

" + s t r (frame2 . he ight)

1219 pr in t frame1 . width==frame2 . width

1220 pr in t frame1 . he ight==frame2 . he ight

1221 sys . e x i t (−1)
1222

1223 ###counting number of masks in f o l d e r and r e s i z i n g mask master to f i t source

1224 num_masks=0

1225 mask2=cvCreateImage (cvS ize (frame1 . width , frame1 . he ight) , 8 , 3)

1226 cvRes ize (mask , mask2 , CV_INTER_AREA) ;

1227 mask=mask2

1228 masks=os . l i s t d i r (' . / masks ')

1229 f o r f i l e in os . l i s t d i r (' . / masks ') :

1230 num_masks+=1

1231

1232 ###Creating Control Panel windows

1233 cvNamedWindow (" con t ro l panel1 ")

1234 cvResizeWindow (" con t ro l panel1 " ,300 ,500)

1235 cvNamedWindow (" con t ro l panel2 ")

1236 cvResizeWindow (" con t ro l panel2 " ,300 ,500)

1237

1238 ###Loading l a s t used parameters

1239 params=load (1)

1240

1241 ####Adding t rackbars to Control Panels

1242 cvCreateTrackbar (" r o ta t i on x" , " con t ro l panel1 " , i n t (params . s p l i t () [1]) ,

1000 , update1)

1243 cvCreateTrackbar (" r o ta t i on y" , " con t ro l panel1 " , i n t (params . s p l i t () [2]) ,

1000 , update1)

1244 cvCreateTrackbar (" s i z e " , " con t ro l panel1 " , i n t (params . s p l i t () [3]) , 2000 ,

update1)

1245 cvCreateTrackbar (" keystone x" , " con t ro l panel1 " , i n t (params . s p l i t () [4]) ,

1000 , update1)

1246 cvCreateTrackbar (" keystone y" , " con t ro l panel1 " , i n t (params . s p l i t () [5]) ,

2000 , update1)

1247 cvCreateTrackbar (" po s i t i on x" , " con t ro l panel1 " , i n t (params . s p l i t () [6]) ,

2000 , update1)

1248 cvCreateTrackbar (" po s i t i on y" , " con t ro l panel1 " , i n t (params . s p l i t () [7]) ,

2000 , update1)

1249 cvCreateTrackbar ("mask" , " con t ro l panel1 " , i n t (params . s p l i t () [8]) , num_masks

−1, maskAndRotate)

1250 cvCreateTrackbar (" ro ta t e " , " con t ro l panel1 " , i n t (params . s p l i t () [9]) , 3 ,

maskAndRotate)

1251

1252 cvCreateTrackbar (" r o ta t i on x" , " con t ro l panel2 " , i n t (params . s p l i t () [1 0]) ,

1000 , update2)

1253 cvCreateTrackbar (" r o ta t i on y" , " con t ro l panel2 " , i n t (params . s p l i t () [1 1]) ,

1000 , update2)

1254 cvCreateTrackbar (" s i z e " , " con t ro l panel2 " , i n t (params . s p l i t () [1 2]) , 2000 ,

update2)

1255 cvCreateTrackbar (" keystone x" , " con t ro l panel2 " , i n t (params . s p l i t () [1 3]) ,

1000 , update2)

1256 cvCreateTrackbar (" keystone y" , " con t ro l panel2 " , i n t (params . s p l i t () [1 4]) ,

2000 , update2)

1257 cvCreateTrackbar (" po s i t i on x" , " con t ro l panel2 " , i n t (params . s p l i t () [1 5]) ,

2000 , update2)

1258 cvCreateTrackbar (" po s i t i on y" , " con t ro l panel2 " , i n t (params . s p l i t () [1 6]) ,

2000 , update2)

1259

1260 ###Updating a l l parameters to proper ly d i s p l ay image

1261 update1 (0)

1262 update2 (0)

1263 maskAndRotate (0)

1264

1265 ###Creating output images

1266 cvNamedWindow("output1" , 0)

102

1267 c a l i b r a t e (frame1 , " output1")

1268

1269 cvNamedWindow("output2" , 0)

1270 c a l i b r a t e (frame2 , " output2")

1271

1272 cvNamedWindow (" source mater ia l ")

1273

1274 ###I n i t i a l i z i n g framerate counters and s t a t i s t i c a l mater ia l

1275 framecount=0

1276 f r ame s i n c e l a s t=0

1277 l a s t count=0

1278 FPS=[]

1279 hiFPS=0

1280

1281 ###Loop for jumping between high and low framerate loops

1282 whi le (1) :

1283 i f hiFPS==1:

1284 pr in t " ente r ing high FPS mode"

1285 videoFPSLoop (framecount , f r ames ince l a s t , la s tcount , FPS , frame1)

1286 i f hiFPS==0:

1287 pr in t " ente r ing low FPS mode"

1288 videoLoop (framecount , f r ames ince l a s t , la s tcount , FPS , frame1)

1289

1290 ###Destroying a l l windows and c leaning up for c l o s i n g of the program

1291 cvDestroyWindow ("output1")

1292 cvDestroyWindow ("output2")

1293 cvDestroyWindow (" source mater ia l ")

1294 cvDestroyWindow (" con t ro l panel1 ")

1295 cvDestroyWindow (" con t ro l panel2 ")

1296

1297 cvWaitKey ()

103

D Speedup Enhancements

The last days before submission, during the cleanup of the code, some improve-

ments on how to speed up the code was discovered by chance. The two major

improvements were in the keyboard event listener and the upscaling of images.

The suggested changes have been included in an experimental version, called

testBed.py. This is a version of SingleProjectCornerpin.py, with the changes

outlined here. It is not thoroughly tested and known errors include problems

with masks when the image is rotated.

D.1 Keyboard Listener

It seems as though the keyboard listener in openCV runs in the same thread

as the rest of the program, and the polling delay that is given when calling it

actually halts the running of the program for that time. This means that having

a 100 ms polling interval gives a 90 ms added delay per frame versus having

a 10 ms polling interval. Obviously, setting this as low as possible is the best

solution to increase frame rate. Setting the delay to 0, lets the program wait

inde�nitely, and because the delay must be an integer, 1 ms is the lowest possible,

using this gives a signi�cant increase in frame rate. This will also increase

the maximum bandwidth usage for the program to 5 kb/s. Even with several

embedded computers using this at the same time, both MIDI and DMX512 still

will have no problems handling the tra�c loads.

By replacing

1 keyPressed=cvWaitKey (10)

with

1 keyPressed=cvWaitKey (1)

the program video runs smoother, in most cases.

D.2 Image rescaling

One of the problems encountered during initial programming was that the dis-

played image would not retain its initial shape if it is rotated, and masks added

to the image would not �t, because the height and width of the image was

104

�ipped. This was solved by upscaling the image to double size while doing most

of the work on it, this also had the e�ect that warping the image produced less

visible jaggy edges. By not upscaling the image, the warping is much faster, as

there is less data that needs processing, but the outer edges of an image might

be clipped.

By removing all references to the doubling of the sizes for the images, for instance

1 dst = cvCreateImage (cvS i ze (frame . width *2 , frame . he ight *2) , 8 , 3)

and instead using

1 dst = cvCreateImage (cvS i ze (frame . width , frame . he ight) , 8 , 3)

one can get good speed increases. Tests with uncompressed AVI in 720p shows

that one can get frame rates in the area of 30 frames per second while adding

e�ects on the image, using a current high-end computer.

In addition to these two speedups, the testBed.py has removed the two di�erent

video loops, replacing them with only one. This was done because of the lack of

improvement in using the high-speed loop, the time used for closer monitoring

of the frame rate was not signi�cant compared to other parts of the code. I

have also experimented with combining the key listener and wait interval for

the frame rate lock, by combining the two lines

1 keyPressed=cvWaitKey (10)

and

1 time . s l e ep (max(f l o a t (((1 . /maxFPS) *1000000)−(datet ime . datet ime . now()−
lastFrame) . microseconds) /1000000 , 0))

to a single operation, using the key wait interval to slow down operations if

the frame rate is too high, but this has not worked very well because the key

listener seems to be less accurate with regards to timing than the built-in timers,

producing irregular frame rates that often were either too slow or too fast.

The speedups I have found are probably not the only ones that are possible, and

they are not tested and debugged enough to be put into the �nal code. With

some more work, these probably could have been re�ned to work properly.

105

	Title Page
	Problem Description
	masteroppgave.pdf

