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ABSTRACT 5G networks are expected to provide gigabit data rate to users via the millimeter-wave
(mmWave) communication technology. One of the major problems faced by mmWaves is that they cannot
penetrate buildings. In this paper, we utilize multihop relaying to overcome the signal blockage problem
in an mmWave band. The multihop relay network comprises a source device, several relay devices, and
a destination device and uses device-to-device communication. Relay devices redirect the source signal to
avoid the obstacles existing in the propagation environment. Each device amplifies and forwards the signal
to the next device, such that a multihop link ensures the connectivity between the source device and the
destination device. We consider that the relay devices and the destination device are affected by external
interference and investigate the bit error probability (BEP) of this multihop mmWave system. Note that the
study of the BEP allows quantifying the quality of communication and identifying the impact of different
parameters on the system reliability. In this way, the system parameters, such as the powers allocated to
different devices, can be tuned to maximize the link reliability. We derive exact expressions for the BEP
of M -ary quadrature amplitude modulation and M -ary phase-shift keying in terms of multivariate Meijer’s
G-function. Due to the complicated expression of the exact BEP, a tight lower bound expression for the BEP is
derived using a novel Mellin-approach. Moreover, an asymptotic expression for the BEP at high SIR regime
is derived and used to determine the diversity and the coding gain of the system. In addition, we optimize
the power allocation at different devices subject to a sum power constraint such that the BEP is minimized.
Our analysis reveals that optimal power allocation allows achieving more than 3-dB gain compared with
the equal power allocation. This paper can serve as a framework for designing and optimizing mmWave
multihop relaying systems to ensure link reliability.

INDEX TERMS Millimeter wave, device-to-device communication, bit error probability, multihop relaying,
Nakagami-m fading.

I. INTRODUCTION
With the exponential growth in mobile traffic, network oper-
ators are required to increase the data rate offered to their
customers. The main driving factor of the mobile traffic
growth is the bandwidth-intensive media services. In 2017,
the video traffic is expected to represent 67 % of the mobile
traffic [1]. To meet the ever growing user demand, a lot
of research effort has been invested in the last years in the
fourth generation (4G) Long Term Evolution (LTE). Several
techniques are used in 4G networks to boost the data rate
provided to the end user. These techniques include network
densification, heterogeneous network (HetNets), and carrier

aggregation to name a few. Despite these efforts, 4G net-
works cannot support the expected growth in mobile traffic.
Actually, by 2020 we foresee hundreds of times more traffic
demand [1], which requires a move to the 5G era in order to
meet the mobile customers requirements.

5G networks are expected to provide a minimum of 1 Gb/s
data rate with uniform user experience [2]. Millimeter-
wave (mmWave) communication represents the most effec-
tive solution to achieve the 5G vision [2]–[5]. In fact,
the mmWave spectrum offers a huge underutilized band
that can provide Giga-bit communication links. Neverthe-
less, several hurdles must be overcome to enable mmWave

3794
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-1800-8249


A. Chelli et al.: On BEP and Power Optimization in Multihop mmWave Relay Systems

communication to work properly. One of the major chal-
lenges faced by mmWave is that they cannot penetrate build-
ings and walls. Measurement results in [3] have shown that
for a brick wall mmWave suffer a 178 dB attenuation. For two
devices to communicate usingmmWaves, they need to rely on
a line-of-sight (LOS) link or reflection from buildings. If none
of these conditions is satisfied, the mmWave signal is blocked
due to shadowing and an outage event occurs [6], [7].

Signal outage may represent the bottleneck for mmWave
communication in delivering uniform capacity for all users
in the network. In order to deal with this problem, relaying
techniques represent a promising solution to mmWave signal
blockage [8]. We consider a typical device-to-device (D2D)
communication scenario, where a source device sends data
to a destination device over mmWave band without using the
network infrastructure. In a real-world scenario, the propaga-
tion path of the signal between these two devices contains
building walls, trees, and other types of objects. Bearing
in mind that mmWaves cannot penetrate these objects, it is
highly probable that the LOS link, between the source and the
destination devices, is blocked. To overcome this problem,
other devices laying in the propagation path between the
transmitting and the receiving devices can be utilized to redi-
rect the signal around the obstacles in the environment, such
that a multihop communication link is created. The multihop
link comprises the source device, the destination device, and
multiple relay devices. Each of the relay devices amplifies
and forwards the signal to the next device until it reaches the
destination device. The data exchange between devices takes
place using mmWave D2D communication.

In the literature, multihop relaying has been proposed
to provide connectivity for mmWave networks in [8]. The
authors investigate the performance of mmWave communica-
tion in indoor environment and analyze the effect of obstacles
on the received signal strength using diffraction theory. A pro-
tocol that uses multihop relaying for mmWave communica-
tion is proposed and evaluated using system level simulations.
Qiao et al. [9] use multihop relaying to remediate to the high
path loss of mmWave signal. Thanks to multihop relaying
the throughput can be significantly improved compared to the
single hop solution. A metric for relay selection is proposed
in [9] aiming to maximize the throughput while balancing the
traffic load across the network. A multihop concurrent trans-
mission scheme exploiting the spatial diversity of mmWaves
is proposed.

A multihop routing protocol at mmWave frequencies is
developed in [10]. The proposed protocol maximizes the
sum quality of multiple video streams subject to a mini-
mum quality constraint. In their study, Kim and Molisch [10]
did not consider the impact of fast fading and interference
on the system performance. Paper [11] addresses the same
problem as in [10] while taking into account the impact
of fast fading and interference on the system performance.
In [12], a stochastic geometry approach has been proposed to
study the connectivity in mmWave networks with multihop
relaying. It is shown that the connectivity depends on the

size and the density of obstacles and that multihop relaying
can improve the connectivity versus the single hop mmWave
strategy. In [4], the coverage of mmWave networks is studied
using a stochastic geometry approach. The physical model
used in [4] considers that the desirable signal follows a
Nakagami-m distribution, while several interferers affect the
communication link and each of these interferers is modeled
using a Rayleigh distribution.

As opposed to all prior work on mmWave, this paper
studies the bit error probability (BEP) of multihop mmWave
relay systems in the presence of external interference and
provides an exact expression for the BEP that is valid for a
wide range of modulations schemes. The study of mmWave
multihop amplify-and-forward relay systems is a challenging
task. To address this problem, we propose the use of a novel
Mellin approach to derive a lower-bound for the BEP. The
tightness of this lower-bound is illustrated through numerical
evaluations by comparing the exact BEP and its lower-bound.
The investigation of the BEP allows quantifying the link
quality of mmWave multihop relay systems and identifying
the impact of the different parameters on the system reliabil-
ity. The system parameters can then be tuned such that the
link reliability is maximized. Following this line of thought,
we derive an asymptotic expression for the BEP and exploit
it to determine the optimal power allocation strategy that
minimizes the BEP of multihop mmWave relay systems.

In this paper, we consider two devices communicating over
the mmWave band. Due to path loss attenuation and obsta-
cles blocking the LOS component between the transmitter
and the receiver a single hop communication link cannot be
established. To address this problem, the data is sent over
N hops from the transmitter to the receiver. The mmWave
network is composed of a source device S, a destination
device D, and N − 1 relay devices Rn(n = 1, . . . ,N − 1).
Each relay amplifies the signal coming from the previous
device and forwards it to the next device until it reaches the
destination device. The data exchange in each hope uses D2D
communication in the mmWave band. This D2D system can
be regarded as a multihop amplify-and-forward (AF) relay
network. In each hop, the mmWave signal undergoes a Nak-
agami fading channel. The relays and the destination devices
are affected by Ln interferers. The interferers affecting a given
device have independent identically distributed Nakagami
fading.

In a first step, we derive the exact expression of the aver-
age BEP of the multihop relay system for M -ary quadrature
amplitude modulation (M -QAM) andM -ary phase-shift key-
ing (M -PSK) in terms of multivariate Meijer’s G-function.
This latter function is quite complex and does not give a clear
insight on the behavior of the BEP. Therefore, we derive in
a second step a lower-bound for the BEP. Towards this aim,
an upper-bound for the end-to-end signal-to-interference ratio
(SIR) is derived using the inequality between the harmonic
mean and the geometric mean. The statistics of the SIR upper-
bound are then computed and utilized to determine a lower-
bound for the BEP.
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The SIR upper-bound can be regarded as a product of ratio-
nal power of ratio of Gamma random variables (RVs). Using
a novel Mellin-approach, we derive closed-form expressions
for the statistics of the SIR upper-bound. These statistics
include the Mellin transform, the probability density function
(PDF), the cumulative distribution function (CDF), and the
moment generating function (MGF). Using the PDF of the
product of the rational power of the ratio of Gamma RVs,
a lower-bound for the BEP of M -QAM and M -PSK modu-
lation schemes in multihop AF relaying systems is derived.
An asymptotic expression for the BEP at high SIR regime is
derived and used to determine the diversity and the coding
gain of mmWave AF multihop systems. Moreover, we for-
mulate the problem of optimal power allocation such that the
system BEP is minimized subject to a sum power constraint.
We show that this problem has a unique solution and derive
the expression of the optimal power allocation at different
nodes of the multihop relay network.

The rest of the paper is organized as follows. In Section II,
we present the system model. The exact expression for the
BEP is derived in Section III. Section IV is devoted for
the Mellin transform and its main useful properties. Some
preliminary results on the statistics of the product of rational
power of the ratio of Gamma RVs are presented in Section V.
Using the results of Section V, a lower-bound for the BEP is
determined in Section VI. An asymptotic expression for the
BEP is derived in Section VII. The problem of optimal power
allocation subject to a sum power constraint is formulated
and solved in Section VIII. Numerical results are illustrated
and interpreted in Section IX. Finally, Section X draws the
conclusion.

II. SYSTEM MODEL
We consider a multihop relay channel comprising a source
device S, a destination device D, and N − 1 relays
Rn(n = 1, . . . ,N − 1) as illustrated in Fig. 1. The source
and the destination devices are separated by several buildings
blocking the LOS path. Since, mmWave signal cannot pene-
trate building walls, multihop relaying is utilized to redirect
the mmWave signal around the obstacles and to establish
a communication link between the source device and the
destination device via D2D communication. The relay Rn−1
amplifies and forwards the data generated by the source node
to the relay Rn in the nth time slot. This process contin-
ues until the data reaches the destination device D in the
N th time slot. The fading channel between the relay Rn−1
and Rn, denoted as hn, follows a Nakagami distribution.
The fading in different hops are independent non-identically
distributed Nakagami distributions. Note that the Nakagami
distribution is a well accepted model for small scale fading in
mmWave [4], [13], [14].

We assume that the relay devices Rn and the destination
device D are affected by Ln(n = 1, . . . ,N ) interferers. The
fading channel between the ith interferer and relay Rn is
referred to as hIn,i and is Nakagami-m distributed. Note that
the impact of interference on the coverage and the rate of

FIGURE 1. Multihop AF relaying with co-channel interference.

mmWave systems has been taken into account in [4], [13],
and [14]. The interference has been assumed to follow a
Nakagami distribution in [4], [13], and [14].

It has been shown in [13] that a dense mmWave net-
work operates in interference-limited regime, whereas a
sparse mmWave network operates in a power-limited regime.
In this work, we consider a dense mmWave network char-
acterized by its interference-limited regime. By definition,
an interference-limited regime implies that the impact of
noise is neglected compared to the impact of interference.
Under the assumption of interference-limited regime, we can
express the received signal at relay Rn as

yn = hn
√
Pn−1xn−1 +

Ln∑
i=1

√
PIn,ihIn,ixIn,i, (1)

where Pn−1 is the power of the signal transmitted from the
relay Rn−1 and PIn,i is the power of the ith interference signal
affecting the relay node Rn. The terms xn−1 and xIn,i stand
for the transmitted symbols from the relay Rn−1 and the
ith interferer affecting Rn−1, respectively. It is reasonable to
assume that the symbols xIn,i are Gaussian distributed RVs
with unity mean power.

In AF mode, the relay Rn amplifies the received signal yn
and forwards it to the relay Rn+1. The amplification factor at
the relay Rn is denoted as Gn. The amplification process at
the relay Rn consists of generating the signal xn = Gnyn.
A possible choice for the gain expression is

G2
n =

1
Pn−1|hn|2 + N0,n

, (2)

where N0,n is the noise variance. The choice of the amplifica-
tion factor according to (2) allows limiting the output power
if the fading amplitude of the preceding hop is low. However,
this choice of the amplification factor makes the statistics of
end-to-end SIR and the performance of the multihop relay
system untractable. To cope with this problem an alternative
choice of the amplification factor is proposed in [15] to be

G2
n =

1
Pn−1|hn|2

. (3)

The amplification factor Gn in (3) is proportional to the
inverse of the channel of the previous hop, regardless of the
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interference in that hop. A drawback of the choice of the
relay gain according to (3) is that it leads to high transmission
power at relay Rn if the channel hn in the previous hop is low.
However, the choice of the relay gain as in (3) has several
advantages: (i) this type of relay serves as a benchmark for
practical AF multihop systems as mentioned in [15], (ii) at
high SIR region, a similar performance is obtained for the
AF multihop relaying system with the two relay gains (3)
and (2), and (iii) the study of the performance of multihop
AF relaying system becomes tractable if we choose the relay
gain according to (3). Using the relay gain expression in (3)
and utilizing a similar procedure as in [15], the end-to-end
SIR is expressed as

γend =

[
N∑
n=1

1
γeq n

]−1
, (4)

where

γeq n =
Pn−1h2n∑Ln
i=1 PIn,ih

2
In,i

=
γn

γIn
. (5)

The channel gain hn follows a Nakagami-m distribution.
Thus, γn = Pn−1h2n is Gamma distributed with PDF given by

fγn (γ ) =
mmnn

γ̄
mn
n 0(mn)

γmn−1 exp
(
−
mnγ
γ̄n

)
, (6)

wheremn ≥ 1/2 is a parameter describing the severity of fad-
ing for the nth hop (the link between the relays Rn−1 and Rn)
and 0(·) stands for the Gamma function [16, eq. (8.310.1)].
The term γ̄n = Pn−1E(h2n) represents the average received
power for the link between the source and the relay, where
E(·) is the expectation operator and E(h2n) is the variance of
the fading channel for the nth hop.

Path loss models for mmWave signals have been proposed
in [17] and [18] for 28 GHz and 38 GHz, respectively. Using
these models, we can express the path loss experienced by the
signal transmitted from relay Rn−1 to relay Rn as

20 log10

(
4πd0
λ

)
+ 10η log10

(
dn
d0

)
, (7)

where dn refers to the distance between the relays Rn−1 and
Rn, d0 is a free-space reference distance set to 5 meters in [17]
and [18], λ stands for the wavelength (7.78mm in 38GHz and
10.71 mm in 28 GHz), and η represents the path loss expo-
nent. Channel measurements in [17] and [18] have shown that
the value of the path loss exponent η is equal to 2.2 in 38 GHz
and 2.55 in 28 GHz. Using the path loss model for mmWaves
in (7), we can obtain the expression of the channel variance
of the nth hop as

E(h2n) =
(

λ

4πd0

)2 (d0
dn

)η
. (8)

By setting αn = mn and βn = γ̄n/mn in (6), we can rewrite
the PDF of γn as

fγn (γ ) =
γ αn−1

β
αn
n 0(αn)

exp
(
−
γ

βn

)
. (9)

Henceforth, we use the shorthand notation X ∼ G(α, β)
to denote that the RV X follows a Gamma distribution
with parameters α and β. From (9), we can write that
γn ∼ G(αn, βn). The total interference at the relay
γIn =

∑Ln
i=1 PIn,ih

2
In,i is the sum of Ln Gamma distributed

RVs PIn,ih2In,i. We assume that PIn,ih2In,i(i = 1, . . . ,Ln)
are independent identically distributed (i.i.d.) Gamma RVs
with parameter an and bn, i.e., PIn,ih2In,i ∼ G(an, bn).
It can easily be shown that the total interference γIn
is Gamma distributed with parameters Lnan and bn, i.e.,
γIn ∼ G(Lnan, bn).

III. EXACT BIT ERROR PROBABILITY
In this section, we derive analytical expressions for the exact
BEP of mmWave multihop relaying for different kind of
modulation schemes. The BEP conditioned on the SIR γend
of M -ary quadrature amplitude modulation (M -QAM) and
M -ary phase-shift keying (M -PSK) is approximated
as [19]

Pe|γend ≈ a · exp(−b γend), (10)

where the values of the parameters a and b are obtained using
curve fitting techniques. For instance, by fitting the exact BEP
curve for 16-QAM with the approximate expression in (10),
the values of a and b, which have the minimum least square
error for γend ranging from 0 to 30 dB are 0.0852 and 0.4030,
respectively. The BEP in presence of fading is obtained by
taking the expectation of the conditioned BEP Pe|γend in (10)
with respect to the SIR γend as

Pe = E(Pe|γend ) ≈ E(a · exp(−b γend)), (11)

where E(·) denotes the expectation operator. Using the
series expansion of the exponential function provided
in [16, eq. (1.211.1)], we can express the BEP as

Pe = E(Pe|γend ) ≈ a
∞∑
k=0

(−1)kbk

k!
E(γ kend). (12)

On the other hand, the moments of the instantaneous
SNR is written in terms of the MGF of γ−1end using [16,
eq. (3.381.4)] as

E(γ kend) =
1
0(k)

∫
∞

0
M
γ−1end

(t)tk−1 dt. (13)

It follows that the BEP is determined as

Pe = a
∞∑
k=0

(−1)kbk

k!
E(γ kend)

= a
∞∑
k=0

(−1)kbk

k!
1
0(k)

∫
∞

0
M
γ−1end

(t)tk−1 dt

= a
∫
∞

0
M
γ−1end

(t)t−1
∞∑
k=0

(−1)kbk tk

k!0(k)
dt. (14)
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Using [16, eq. (8.440)], the infinite sum in (14) is expressed as
∞∑
k=0

(−1)kbk tk

k!0(k)
= (bt)1/2J−1(2

√
bt), (15)

where J−1(·) is the Bessel function of the first kind and
of order −1. Consequently, using (14) and (15) the BEP is
obtained in a more compact form as

Pe = a
∫
∞

0
M
γ−1end

(t)b1/2t−1/2J−1(2
√
bt) dt. (16)

Since γ−1end =
∑N

n=1 γ
−1
eq,n, the MGFM

γ−1end
(t) is obtained as

M
γ−1end

(t) =
N∏
n=1

M
γ−1eq,n

(t). (17)

Utilizing [20, eq. (13)], the MGF of γ−1eq,n is determined as

M
γ−1eq,n

(t) =
0(Bn)
0(αn)

9

(
An, 1− αn;

t
wn

)
, (18)

where An = Lnan, Bn = Lnan + αn, and wn =
βn
bn
. For

ease of notation, the symbols An,Bn, and wn are utilized
henceforth. The function 9(·, ·; ·) is the Tricomi conflu-
ent hypergeometric function defined in [16, eq. (9.211.4)].
Using (17) and (18), the MGF M

γ−1end
(t) is expressed

as a product of N Tricomi hypergeometric functions as
follows

M
γ−1end

(t) =
N∏
n=1

0(Bn)
0(αn)

9

(
An, 1− αn;

t
wn

)
. (19)

Using [21, eq. (07.33.26.0004.01)], the Tricomi hyper-
geometric function 9(a; b; z) can be expressed in terms
of the Meijer’s G-function Gm,np,q (·), defined in [21,
eq. (07.34.02.0001.01)]. Thus, we can express the MGF
M
γ−1end

(t) in terms of the Meijer’s G-function as

M
γ−1end

(t) =
N∏
n=1

0(Bn)
0(αn)

G2,1
1,2

(
t
wn

∣∣∣∣ 1− An,0, αn,

)
. (20)

With the help of [21, eq. (03.01.27.0006.01)] and [21,
eq. (07.17.26.0007.01)], the Bessel function can also be writ-
ten in terms of the Meijer’s G-function as

J−1
(
2
√
bt
)
= (bt)−1/2G1,0

0,2

(
bt

∣∣∣∣ ,

0, 1

)
. (21)

Substituting (20) and (21) in (16), we obtain

Pe = a
∫
∞

0

[
N∏
n=1

0(Bn)
0(αn)

G2,1
1,2

(
t
wn

∣∣∣∣ 1− An,0, αn,

)]

t−1G1,0
0,2

(
bt

∣∣∣∣∣ ,

0, 1

)
dt (22)

To compute the integral in (22), first, we replace each of the
Meijer’s G-functions in the first line of (22) by their contour

integral representation using [21, eq. (07.34.02.0001.01)]
which yields

Pe =
a

(2π i)N

∫
∞

0

[
N∏
n=1

0(Bn)
0(αn)

]∫
C1
· · ·

∫
CN

N∏
n=1

0(−sn)

×

N∏
n=1

(
0(αn − sn)0(An + sn)

(
t
wn

)sn)
× ds1 · · · dsN t−1G

1,0
0,2

(
bt

∣∣∣∣ ,

0, 1

)
dt

=
a

(2π i)N

[
N∏
n=1

0(Bn)
0(αn)

]
×

∫
C1
· · ·

∫
CN

×

N∏
n=1

(
0(−sn)0(αn − sn)0(An + sn)

(
1
wn

)sn)
×

[∫
∞

0
t
∑N

n=1 sn−1G1,0
0,2

(
bt

∣∣∣∣ ,

0, 1

)
dt
]
ds1 · · · dsN ,

(23)

where i =
√
−1. In the last line of (23), the integral in brack-

ets is evaluated with the help of [21, eq. (07.34.21.0009.01)]
as follows∫
∞

0
G1,0
0,2

(
bt

∣∣∣∣ ,

0, 1

)
t
∑N

n=1 sn−1dt =
0
(∑N

n=1 sn
)
b−

∑N
n=1 sn

0
(
−
∑N

n=1 sn
) .

(24)

Thus, the BEP Pe is obtained as

Pe

= a

[
N∏
n=1

0(Bn)
0(αn)

]
1

(2π i)N

∫
C1
· · ·

∫
CN

0
(∑N

n=1 sn
)

0
(
−
∑N

n=1 sn
)

×

N∏
n=1

(0(−sn)0(αn − sn)0(An + sn))
(

1
bw1

)s1
. . .

(
1

bwN

)sN
ds1 · · · dsN = a

[
N∏
n=1

0(Bn)
0(αn)

]
G0,1:(2,1);...;(2,1)
2,0:(1,2);...;(1,2)

×

[
(1, 0) : 1− A1; . . . ; 1− AN ;
—– : (0, α1); . . . ; (0, αN );

1
bw1

, . . . , 1
bwN

]
, (25)

whereG0,λ:(µ(1),ν(1));...;(µ(r),ν(r))
A,C :(B(1),D(1));...;(B(r),D(r))

[·] is themultivariateMeijer’s
G-function whose expression is deduced from the expression
of the multivariate H-function defined in [22, eq. (1.3)]. Note
that the MATHEMATICA implementation of the bivariate
Meijer’s G-function is provided in [23]. Using similar meth-
ods as in [23], it is possible to implement the multivariate
Meijer’s G-function in MATHEMATICA.

IV. MELLIN TRANSFORM AND ITS PROPERTIES
The expression of the BEP in (25) is important since it allows
evaluating accurately the reliability of mmWave multihop
relay systems. However, it is difficult to get any insight on
the error behavior from the expression of the BEP in (25)
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due to the complicated expression of themultivariateMeijer’s
G-function. Therefore, we derive in Section VI an upper-
bound expression for the BEP. Towards this end, this section
presents first some background information about the Mellin
transform and its properties.

A. DEFINITION OF MELLIN TRANSFORM AND INVERSE
MELLIN TRANSFORM
Definition 1: The Mellin transform Ms(X ) of a positive

RVX with continuous PDF fX (x) is its moment of order (s−1),
i.e.,

Ms(X ) = E
(
X s−1

)
=

∫
∞

0
xs−1fX (x)dx. (26)

The reciprocal formula allows obtaining the PDF fX (x) of a
RV X from its Mellin transformMs(X ) as

fX (x) =
1
2π i

∫
C
x−sMs(X )ds. (27)

The key reason for the importance of the Mellin transform
in studying the distribution of the product of independent RVs
stems from the following result: If X and Y are independent
positive RVs with continuous PDFs fX (x) and fY (y), then it is
well known from statistics theory that the PDF U = XY is
expressed as

fU (x) =
∫
∞

0

1
y
fX

(
x
y

)
fY (y)dy = fX ∗M fY , (28)

where the notation (∗M ) refers to the convolution in the
Mellin sense. In fact, the expression in (28) is a convolution
in the Mellin sense of fX (x) and fY (y) [24, eq. (3.4.3)]. More
importantly, the Mellin transform of the convolution in (28)
is the product of the Mellin transforms [24, eq. (3.4.2)], i.e.,

Ms(U ) =Ms(fX ∗M fY ) =Ms(X )Ms(Y ). (29)

In the sequel of this section, we present some important
properties of the Mellin transform.
Lemma 1: Let a be a positive real number and X and Y

two positive RVs, such that Y = aX. The Mellin transform of
Y is expressed asMs(Y ) = as−1Ms(X ).

Proof: Using the definition of the Mellin transform
in (26), we can express Ms(Y ) as

Ms(Y ) = E
(
Y s−1

)
= E

(
(aX )s−1

)
= E

(
as−1X s−1

)
= as−1E

(
X s−1

)
= as−1Ms(X ). (30)

Lemma 2: Let Y be a positive RV given by Y = Xα .
Then the Mellin transform of Y is derived as Ms(Y ) =
Mαs−α+1(X ). In particular, if α = −1, i.e., Y = 1

X then
Ms(Y ) =M−s+2(X ).

Proof: Applying the definition of the Mellin transform
in (26), we can writeMs(Y ) as

Ms(Y ) = E
(
Y s−1

)
= E

(
(X )α(s−1)

)
= E

(
(X )αs−α+1−1

)
=Mαs−α+1(X ). (31)

Lemma 3: Let X1, . . . ,XN be N independent positive RVs
and Y a RV given by Y =

∏N
n=1 Xn. Then the Mellin trans-

form of Y is derived asMs(Y ) =
∏N

n=1Ms(Xn).
Proof: Utilizing the definition of the Mellin transform

in (26), we can writeMs(Y ) as

Ms(Y ) = E
(
Y s−1

)
= E

( N∏
n=1

Xn

)s−1
= E

(
N∏
n=1

X s−1n

)
=

N∏
n=1

E
(
X s−1n

)
=

N∏
n=1

Ms(Xn).

(32)

Lemma 4: Let X1 and X2 be two independent positive RVs
and Y a RV given by Y = X1

X2
. Then the Mellin transform of

Y is derived asMs(Y ) =Ms(X1)M2−s(X2).
Proof: Utilizing Lemma 3, we can express Ms(Y ) as

Ms(Y ) =Ms(
X1
X2

) =Ms(X1)Ms(
1
X2

).

Using Lemma 2, we obtain Ms( 1
X2
) = M2−s(X2). Conse-

quently, Ms(Y ) =Ms(X1)M2−s(X2).

V. PRELIMINARY STATISTICAL RESULTS
Theorem 1 (Mellin Transform of the Product of Rational

Powers of Ratio of Gamma RVs): Let {Xn}Nn=1 and {Yn}
N
n=1 be

2N independent non identically distributed Gamma random
variables with Xn ∼ G(αn, βn) and Yn ∼ G(an, bn). Let Z be
defined as the product of powers of ratio of Xn and Yn, i.e.,

Z ,
N∏
n=1

(
Xn
Yn

)1/N

. (33)

The Mellin transform of the random variable Z is obtained in
closed-form as

Ms(Z ) =
N∏
n=1

(
bn
βn

) (1−s)
N 0

(
αn +

(s−1)
N

)
0
(
an +

(1−s)
N

)
0(αn)0(an)

.

(34)
Proof: See Appendix A.

Corollary 1 (The PDF of the Product of Rational Powers
of ratio of Gamma RVs): The PDF of Z is expressed as

fZ (x) =
Nx−1∏N

n=1 0(αn)0(an)

×GN ,NN ,N

(∏N
n=1

(
bn
βn

)
xN
∣∣∣ 1− a1, . . . , 1− aN

α1, . . . , αN

)
,

(35)

where Gm,np,q (·) is the Meijer’s G-function defined in [21,
eq. (07.34.02.0001.01)].

Note that the Meijer’s G-function is a standard built-in
function available in most mathematical software packages,
such as MATLAB and MATHEMATICA.
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Proof: The PDF of Z is determined by computing the
inverse Mellin transform of Ms(Z ) provided in (34) as

fZ (x) =
1
2π i

∫
C
Ms(Z )x−sds =

1
2π i

∫
C

N∏
n=1

(
bn
βn

)(1−s)/N

×

0
(
αn +

(s−1)
N

)
0(αn)0(an)

0

(
an +

(1− s)
N

)
x−sds. (36)

Making the change of variable r = s−1
N , we can rewrite the

PDF fZ (x) as

fZ (x) =
Nx−1∏N

n=1 0(αn)0(an)

1
2π i

∫
C

N∏
n=1

(
bn
βn

)−r
0 (αn + r)

×0 (an − r)
(
xN
)−r

dr =
Nx−1∏N

n=1 0(αn)0(an)

×GN ,NN ,N

∏N
n=1

(
bn
βn

)
xN
∣∣∣∣ 1− a1, . . . , 1− aNα1, . . . , αN

,
(37)

which is the desired result.
Corollary 2 (The CDF of the Product of Rational Powers

of Ratio of Gamma RVs): The CDF of Z is determined as

FZ (x) =
1∏N

n=1 0(αn)0(an)
GN ,N+1N+1,N+1

×

(∏N
n=1

(
bn
βn

)
xN
∣∣∣∣ 1− a1, . . . , 1− aN , 1α1, . . . , αN , 0

)
. (38)

Proof: Integrating the PDF expression in (35), the CDF
FZ (x) is obtained

FZ (x) =
∫ x

0
fZ (z)dz =

N∏N
n=1 0(αn)0(an)

1
2π i

×

∫
C

N∏
n=1

(
bn
βn

)−r
0 (αn + r) 0 (an − r)

×

[∫ x

0
z−Nr−1dz

]
dr (39)

Using the fact that
∫ x
0 z
−Nr−1dz = x−Nr

−Nr and that −r =
0(1−r)
0(−r) , the expression of the CDF FZ (x) reduces to

FZ (x)

=
1∏N

n=1 0(αn)0(an)

1
2π i

∫
C

N∏
n=1

(
bn
βn

)−r
0(−r)
0(1− r)

×0(αn+r)0(an−r)
(
xN
)−r

dr =
1∏N

n=1 0(αn)0(an)

×GN ,N+1N+1,N+1

(∏N
n=1

(
bn
βn

)
xN
∣∣∣ 1− a1, . . . , 1− aN , 1

α1, . . . , αN , 0

)
.

(40)

Corollary 3 (The MGF of the Product of Rational Powers
of Ratio of Gamma RVs): The MGF of Z is obtained as

MZ (t)

=

√
N

(2π)(N−1)/2
∏N

n=1 0(αn)0(an)
GN ,2N2N ,N

×

(∏N
n=1

(
bn
βn

)N
NN

tN

∣∣∣∣∣1(N , 1), 1−a1, . . . , 1−aN , 1
α1, . . . , αN , 0

)
(41)

where 1(N , 1) = 1
N ,

2
N , . . . ,

N
N .

Proof: By applying the Laplace transform on the PDF
expression in (35), the MGF in (41) is deduced with the help
of [25, eq (3.40.1.1)].

VI. LOWER-BOUND ON THE BIT ERROR PROBABILITY
The exact expression for the end-to-end SIR is given by (4).
In order to get a simpler expression for the BEP than (25),
we need first to find an upper-bound for the end-to-end SIR
γend. Towards this aim, we utilize the well known inequality
between the geometric mean and the harmonic mean. LetHN
and GN denote the harmonic mean and the geometric mean,
respectively, for the variables γeq,1, . . . , γeq,N. The harmonic
mean HN , N (

∑N
n=1 1/γeq,n)

−1, whereas the geometric
mean GN ,

∏N
n=1 γ

1/N
eq,n . Using (4) and the fact that HN ≤

GN , we can obtain an upper-bound for the end-to-end SIR as

γend ≤ γup =
1
N

N∏
n=1

γ
1/N
eq,n =

1
N

N∏
n=1

(
γn

γIn

)1/N

. (42)

We recall that γn and γIn are both Gamma distributed with
γn ∼ G(αn, βn) and γIn ∼ G(Lnan, bn). Applying Theorem 1
and Lemma 1, the Mellin transform of γup is obtained as

Ms(γup) =
N∏
n=1

(
bn
βn

) (1−s)
N
(
1
N

)s−1 0 (αn + (s−1)
N

)
0(αn)

×

0
(
Lnan +

(1−s)
N

)
0(Lnan)

. (43)

Using the transformation of RVs, Corollary 1, and
Corollary 2, we can determine the expressions of the PDF,
the CDF, and theMGF of the upper-bound γup in closed-form
as follows. The PDF expression is obtained as

fγup (x) =
Nx−1∏N

n=1 0(αn)0(Lnan)
GN ,NN ,N

×

(∏N
n=1

(
bn
βn

)
(Nx)N

∣∣∣9(1− Lnan)
α1, . . . , αN

)
, (44)

where9(1−Lnan) = 1−L1 a1, . . . , 1−Lnan, . . . , 1−LNaN .
The CDF Fγup (x) is determined as

Fγup (x) =
1∏N

n=1 0(αn)0(Lnan)
GN ,N+1N+1,N+1

×

(∏N
n=1

(
bn
βn

)
(xN )N

∣∣∣9(1− Lnan), 1
α1, . . . , αN , 0

)
. (45)
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Mγup (t) =

√
N

(2π)(N−1)/2
∏N

n=1 0(αn)0(Lnan)
GN ,2N2N ,N

(∏N
n=1

(
bn
βn

)N
NNN

tN

∣∣∣∣∣1(N , 1), 1− a1, . . . , 1− aN , 1
α1, . . . , αN , 0

)
. (46)

The MGFMγup (t) is evaluated as (46), as shown at the top of
this page.

Using (44), we can derive a lower-bound Pe,low for the
average BEP as

Pe,low

=

∫
∞

0
Pe|γup fγup (x) dx =

∫
∞

0

a exp(−bx)x−1∏N
n=1 0(αn)0(Lnan)

×GN ,NN ,N

(∏N
n=1

(
bn
βn

)
(Nx)N

∣∣∣9(1− Lnan)
α1, . . . , αN

)
dx

=

∫
∞

0

a exp(−bx)∏N
n=1 0(αn)

x−1∏N
n=1 0(Lnan)

1
2π i

∫
C

N∏
n=1

(
bn
βn

)−r
×0 (Lnan − r) 0 (αn + r) (Nx)−Nrdxdr

=
a∏N

n=1 0(αn)0(Lnan)

1
2π i

∫
C

N∏
n=1

(
bn
βn

)−r
×0 (αn + r) 0 (Lnan − r)

×

[∫
∞

0
exp(−bx)x−1(Nx)−Nrdx

]
dr

=
a∏N

n=1 0(αn)0(Lnan)

1
2π i

∫
C

N∏
n=1

(
bn
βn

)−r
0(αn+r)

×0 (Lnan − r) bNr0(−Nr)dr . (47)

Using the Gauss multiplication formula [26, eq. (6.1.20)],
we can write

0(−Nr) = (2π )
1
2 (1−N )N−Nr−

1
2

N−1∏
k=0

0

(
k
N
− r

)
. (48)

Utilizing (47) and (48), we can express the BEP as

Pe,low =
a(√

2π
)N−1√

N
∏N

n=1 0(αn)0(Lnan)
GN ,2N2N ,N

×

(∏N
n=1

(
bn
βn

) (N
b

)N ∣∣∣9(1− Lnan),2
( k
N

)
α1, . . . , αN

)
,

(49)

where 2
( k
N

)
= 1, . . . , 1− k

N , . . . , 1−
N−1
N .

Karagiannidis et al. [27] proposed bounds for the BEP of
multihop AF relay networks over Nakagami fading. First,
the end-to-end signal-to-noise ratio is upper-bounded using
the inequality between the geometric and the harmonic
means. The upper-bound is expressed as a product of rational
powers of Gamma RVs. Karagiannidis et al. [27] derive the
statistics of the upper-bound by first computing the MGF of
the product of rational powers of Gamma RVs. This operation
involves the computation of N -folds integral1 which makes
this task quite challenging. Once the MGF is determined,
the expression of the PDF is deduced from it using the inverse
Laplace transform. Utilizing this PDF, a lower-bound for the
BEP is computed.

1N corresponds to the number of hops in the multihop relay network.

Our work differs from [27] in several aspects. We inves-
tigate in this paper multihop relaying for mmWave com-
munication whereas [27] considers multihop relaying for
traditional microwave frequencies. Moreover, as opposed
to [27], we consider in our work the impact of interference on
the performance of multihop relay networks over Nakagami
channels which makes the addressed problem more general
and more difficult to solve. For obtaining a BEP lower-bound
for such kind of systems, we need first to derive the statistics
of the product of rational power of the ratio of Gamma RVs.
The MGF-approach proposed in [27] is not easy to apply for
the problem considered in this paper. Therefore, we propose
in this paper a novelMellin-approach for evaluating the statis-
tics of the product of rational power of the ratio of Gamma
RVs. Note that the MGF-approach is very suitable for eval-
uating the statistics of the sum of RVs, whereas the Mellin-
approach is well suited for the evaluation of the statistics of
the product and the ratio of RVs this is mainly due to the
properties of the Mellin transform [see Section IV].

VII. ASYMPTOTIC BIT ERROR PROBABILITY
In this section, we derive an asymptotic closed-form expres-
sion for the average BEP. This asymptotic expression allows
to get an insight on the system performance as well as the
impact of different system parameters on the BEP of multi-
hop AF relay networks. The average BEP can generally be
obtained by averaging the conditional error probability over
the SIR, i.e.,

Pe =
∫
∞

0
Pe|γend fγend (x) dx, (50)

where the expression of the conditional probability Pe|γend is
provided in (10).

Using the expression of γend in (4), we can obtain an upper-
bound γup for the end-to-end SIR γend as follows

γend =

[
N∑
n=1

1
γeq n

]−1
≤ min(γeq 1, . . . , γeqN) = γup. (51)

In the following, we derive an approximate expression for the
PDF of γup. We start by determining the CDF of γup

Fγup (x) = P(γup ≤ x) = 1− P(γup ≥ x)
= 1− P(min(γeq 1, . . . , γeqN) ≥ x)

= 1−
N∏
n=1

P(γeq n ≥ x) = 1−
N∏
n=1

(1− Fγeq n(x))

=

N∑
n=1

Fγeq n(x)−
∑
n,n′

Fγeq n(x)Fγeq n′ (x)

+ . . .+ (−1)N+1
N∏
n=1

Fγeq n(x) ≈
SIR�1

N∑
n=1

Fγeq n(x).

(52)
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At high SIR, the terms of the first order are dominant which
explain the approximation in (52). Taking the derivative of
CDF Fγup (x) with respect to x, we can determine an approxi-
mate expression for the PDF fγup (x) as

fγup (x) ≈
N∑
n=1

fγeq n(x). (53)

Using a similar procedure as in [28, Appendix I], the PDF of
fγeq n(x) is determined as

fγeq n(x) =
xαn−1

wαnn B(αn,An)

(
1+

x
wn

)−Bn
. (54)

Utilizing (50) and (53), we approximate the BEP as

Pe ≈
∫
∞

0
Pe|γup fγup (x) dx =

∫
∞

0
a exp(−bx)fγup (x) dx

≈

∫
∞

0
a exp(−bx)

(
N∑
n=1

fγeq n(x)

)
dx. (55)

In (55), the first term in the integral has its maximum at x = 0.
This term is monotonically decreasing and decays very fast to
null as x increases. The behaviour of the PDFs fγeq n(x) around
x = 0 has more impact in the evaluation of the integral in (55)
[29], [30]. Using the series expansion of (1 + x)α as x → 0
and utilizing (54), we can approximate the PDFs fγeq n(x) as

fγeq n(x) ≈
xαn−1

wαnn B(αn,An)
. (56)

It follows that the BEP at high SIR is approximated as

Pe ≈
∫
∞

0
a exp(−bx)

(
N∑
n=1

xαn−1

wαnn B(αn,An)

)
dx

=

N∑
n=1

ab−αn0(αn)
wαnn B(αn,An)

=

N∑
n=1

ab−αn0(αn)α
αn
n

SIRαnn A
αn
n B(αn,An)

. (57)

In (57), we used the relationship wn = SIRnAn/αn, where
SIRn stands for the average SIR at the nth hop. From (57),
it can be deduced that the BEP of the system can be reduced
by increasing the SIR at all the links of the multihop relay net-
work. If only one single hop has a low SIR, this will degrade
the whole system BEP performance. Numerical results in
Section IX show that the approximation in (57) is very tight
at high SIR. Therefore, using the expression in (57) both the
diversity gain dg and the coding gain cg of the system are
deduced as

dg = αm = min{α1, . . . , αN } (58)

cg =
ab−αm0(αm)α

αm
m

Aαmm B(αm,Am)
, (59)

where m is the subscript of αm = min{α1, . . . , αN }. This
implies that the BEP performance is governed by the hop
that has the worst propagation condition for the desired signal
which is the hop with the smallest value of αn. We can
conclude from (58) that at high SIR regime the slope of the

BEP is given by αm, whereas the number of interferers at this
hop has no impact on the slope of the BEP.

It has to be noted that at high SIR regime the lower-bound
of the BEP provided by (49) has the same slope as the exact
BEP in (25). In other words, the diversity order of the lower-
bound in (49) is equal to αm.

Proof: See Appendix B.

VIII. SYSTEM OPTIMIZATION
In this section, we aim to determine the optimal power
allocation at the source device and the relay devices
Rn (n = 1, . . . ,N − 1) such that the BEP is minimized.
This optimization is performed subject to a sum power
constraint. The total power PT is equal to the sum of
the power P0 assigned to the source device and the pow-
ers Pn (n = 1, . . . ,N − 1) assigned to the relays Rn,
i.e., PT =

∑N
n=1 Pn−1. We consider that the transmitters

have knowledge about the channel statistics. More specifi-
cally, the source device knows the average power E(h21) of
the channel between the source and the relay R1. Similarly,
the relay Rn−1 knows the value of the average power E(h2n) of
the channel between the relaysRn−1 andRn. The optimization
problem is formulated as follows

minimize
P0,...,Pn−1,...,PN−1

Pe

subject to
N∑
n=1

Pn−1 = PT

P0, . . . ,Pn−1, . . . ,PN−1 > 0. (60)

To solve this optimization problem, we need first to express
the error probability Pe in (57) in terms of the powers
P0, . . . ,Pn−1, . . . ,PN−1. To this end, we express the average
SIR of the nth hop as follows

SIRn =
γ̄n

γ̄In
=
Pn−1E(h2n)

γ̄In
. (61)

Using (57), (61), and (8), the BEP Pe can now be expressed as

Pe =
N∑
n=1

Cn
(Pn−1)αn

, (62)

where

Cn =
a b−αn0(αn)α

αn
n γ̄

αn
In (4πd0)

2αndηαnn

λ2αndηαn0 Aαnn B(αn,An)
. (63)

The optimization problem in (60) is rewritten using (62) as

minimize
P0,...,Pn−1,...,PN−1

Pe =
N∑
n=1

Cn
(Pn−1)αn

subject to
N∑
n=1

Pn−1 = PT

P0, . . . ,Pn−1, . . . ,PN−1 > 0. (64)

Next, we first prove that the optimal solution that minimize
the BEP is unique and then provide an exact expression
for the optimal powers P∗0, . . . ,P

∗

n−1, . . . ,P
∗

N−1. To prove
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the uniqueness of the solution, we have to show that the
optimization problem in (64) is convex. We recall that for
an optimization problem to be convex, the objective function
should be convex, the equality constraints should be linear,
and the inequality constraints should be convex [31]. For
our optimization problem (64), both the equality and the
inequality constraints are linear. Thus, to show that the opti-
mization problem in (64) is convex, it suffices to prove that
the objective function is convex. Towards this end, we will
use the fact that the sum of convex functions is a convex
function [31]. Since the objective function in (64) is a sum
of N functions, we need to show that each of these functions
is convex. By computing the second derivative of each terms,
we obtain
∂2
(
Cn (Pn−1)−αn

)
∂P2n−1

= Cnαn(αn + 1) (Pn−1)−αn−2 . (65)

Since Cn ≥ 0 and the severity of fading parameter αn ≥
1/2, then

(
Cn (Pn−1)−αn

)
is convex for n = 1, . . . ,N . Con-

sequently, the objective function in (64) is convex and the
optimization problem in (64) has a unique solution.

In the following, we determine the optimal values of the
powers P∗0, . . . ,P

∗

n−1, . . . ,P
∗

N−1 which minimize the BEP.
First, we write the Lagrangian of (64) as

L(P0, . . . ,PN−1, λ, κ0, . . . , κN−1)

=

N∑
n=1

Cn
(Pn−1)αn

+ λ

(
N∑
n=1

Pn−1 − PT

)
−

N∑
n=1

κn−1Pn−1,

(66)

where λ, κ0, . . . , κN−1 are the Lagrangian coefficients. Using
the fact that the Karush–Khun–Tucker conditions are neces-
sary for an optimal solution, we obtain

∂L
∂Pn−1

∣∣∣∣
(P∗0,...,P

∗

N−1,λ
∗,κ∗0 ,...,κ

∗

N−1)
= 0 for 1 ≤ n ≤ N (67)

N∑
n=1

P∗n−1 − PT = 0 (68)

κ∗n−1P
∗

n−1 = 0 for 1 ≤ n ≤ N . (69)

Since the objective is tominimize the BEP
∑N

n=1 Cn/ (Pn−1)
αn ,

we can deduce from (69) that κ∗n−1 = 0 (n = 1, . . . ,N )
since the power allocated to each node is strictly positive, i.e.
P∗n−1 > 0 for n = 1, . . . ,N . Using (67), we get

λ∗ =
αnCn(

P∗n−1
)αn+1 ∀n = 1, . . . ,N . (70)

Utilizing (70), we can find a relation between the optimal
powers at each hop as

α1C1(
P∗0
)α1+1 = αnCn(

P∗n−1
)αn+1 ∀n = 2, . . . ,N (71)

P∗n−1 =
[
αnCn
α1C1

]1/(αn+1) (
P∗0
)(α1+1)/(αn+1)

= 3n
(
P∗0
)(α1+1)/(αn+1)

∀n = 2, . . . ,N . (72)

Using (68) and (72), we find a relation between P∗0 and the
total power PT as

N∑
n=1

P∗n−1 = P∗0 +
N∑
n=2

3n
(
P∗0
)(α1+1)/(αn+1)

= PT . (73)

The optimal power P∗0 is determined by solving (73) numeri-
cally using standard root-finding algorithms such as gradient
descent andNewton’smethod. After determiningP∗0, the opti-
mal power P∗n−1 is computed using (72). Note that if the
severity of fading for all the hops is the same, i.e., α1 = . . . =
αn . . . = αN = α, a closed-from expression for the optimal
power P∗0 is obtained as

P∗0 =
PT

1+
∑N

n=23
′
n

, (74)

where

3′n = [Cn/C1]1/(α+1) =
[
γ̄ αInd

ηα
n Aα1B(α,A1)

γ̄ αI1d
ηα
1 AαnB(α,An)

]1/(α+1)
. (75)

The expression of the optimal power P∗n−1 is obtained as

P∗n−1 = 3
′
nP
∗

0 =
3′nPT

1+
∑N

i=23
′
i

. (76)

The optimal power strategy attempts to improve the quality
of the links that suffer from the worst communication con-
ditions by allocating more power to these worst links. This
strategy allows maintaining a balance between the SIR levels
in different hops, which minimizes the BEP. As discussed in
Section VII, if the SIR drops for a single hop, the whole sys-
tem performance degrades. To avoid such situation, the power
at different nodes should be allocated according to (76) which
minimizes the BEP. From (76), it can be deduced that the opti-
mal power P∗n−1 at the relay Rn−1 increases if 3

′
n increases.

Using the expression of 3′n in (75), it can be concluded that
3′n increases if: (i) the interference level γ̄In affecting the nth
relay is larger than the interference level γ̄I1 affecting the
first relay, or (ii) the power attenuation due to the distance
travelled by the signal is larger for the nth hop compared to
the first hop.2 In these cases, the power P∗n−1 allocated to the
relay Rn−1 should be larger than the power P∗0 allocated to the
source device.

IX. NUMERICAL RESULTS
In this section, the analytical results presented in the previ-
ous section are evaluated numerically and illustrated. First,
the expression of the PDF of the product of the rational
power of the ratio of Gamma RVs is validated by Monte
Carlo simulations. Then we provide the results for the exact
BEP together with its corresponding lower-bound to check
the tightness of the proposed bound as well as the effect of
the number of hops on the performance. Finally, the effect of

2Note that the power attenuation due to the travelled distance increases
proportionally with the distance between communicating devices. This
implies that if the distance dn between the relay Rn−1 and the relay Rn is
larger than the distance between the source device and the first relay R1,3′n
and P∗n−1 increase, i.e. more power should be allocated to the relay Rn−1.
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FIGURE 2. Comparison between the analytical results (44) and the Monte
Carlo simulation for the PDF of the upper-bound γup for two and three
multihop scenarios.

the number of interferes on the BEP performance is illustrated
and discussed.

In Fig. 2, we illustrate the PDF of the SIR upper-bound
γup. From this figure, it can be seen that a good match is
obtained between the analytical expression of the PDF pre-
sented in (44) and the Monte Carlo simulations.3 This facts
confirms the validity of the analytical expression of the PDF
in (44) as well as the correctness of Corollary 1. In Fig. 2,
we depict the PDF of γup for two different scenarios. In the
first scenario, we have a two-hop relay network with both
the relay node and the destination node affected by three
interferes each, i.e., L1 = L2 = 3. The fading channel of
the interferes affecting the relay and the destination have a
severity of fading a1 = 3.1 and a2 = 2.3, respectively.
The fading channel experienced by the desired signal have
a severity of fading α1 = 1.5 and α2 = 1.3 for the first and
the second hop, respectively. In the second scenario, we add
a second relay and have in total there hops with parameters
α1 = 1.5, α2 = 1.3, and α3 = 2. The number of interferes in
the second scenario is set to L1 = L2 = L3 = 3. The severity
of fading for the interference links is a1 = 3.1, a2 = 2.3, and
a3 = 2.
In Fig. 3, we depict both the exact result and the lower-

bound for the BEP for the case of 16-QAM modula-
tion scheme. The lower-bound expression is given by (49)
whereas for the curve of the exact result is obtained through
Monte Carlo simulation. The exact analytical expression for
the BEP is given by (25) in terms of the multivariate Meijer’s
G-function. This function is evaluated numerically inMATH-
EMATICA. In Fig. 3, we illustrate the impact of the number
of hops on the system performance. A two-hop and a five-hop
relay networks are considered. In our simulation, the desired
signal undergoes identically distributed fading channels in
all the links and the value of αn = 2.5 for all the hops.
Note that the expression of the exact BEP in (25) is valid

3The results for the Monte Carlo simulations are obtained by using
100 million samples.

FIGURE 3. Exact and lower-bound results for the BEP of 16-QAM
modulation scheme over an AF multihop system over Nakagami-m
channels.

for both cases of identically and non-identically distributed
fading channels. The number of interferes is equal to 3 at each
node, i.e., Ln = 3. The severity of fading on the interference
link is set to an = 2.7. From Fig. 3, it can be noticed that
the error probability deteriorates as the number of hops in
the system increases. Moreover, the proposed bound is quite
tight at low and medium SIR region. The tightness of the
lower-bound decays for high SIR regime but remains within
an acceptable range.

We notice as well from the trend of the curves at high SIR
that the slope of the BEP is not affected by the number of
hops. This fact is confirmed by (58) from which it can be
concluded that the slope of the BEP at high SIR is not affected
by the number of hops N but depends only on the minimum
value αm = min(α1, . . . , αN ). Since for both the two-hop and
the five-hop scenarios, we kept the value of αn unchanged,
it is natural that we obtain the same slope of the BEP curves at
high SIR even if the number of hops varies. It has to be noted
that at high SIR regime the BEP lower-bound in (49) has the
same slope as the exact BEP in (25). This fact is proven in
Appendix B where we show that the BEP lower-bound has
the same diversity order of the exact BEP, which is equal
to αm.
In Fig. 4, we illustrate the impact of the number of interfer-

ers on the BEP. In the considered scenario, we have a three-
hop relay network with i.i.d. fading channels on each hop and
we set the value of αn to 1.5. The number of interferers at
each node is kept the same in each of the curves illustrated
in Fig. 4, while the severity of fading for the interference link
is set to an = 1.2. The BEP results shown in this figure are
obtained for the case of a BPSK modulation scheme. We set
the transmission power Pn at each node to a constant value
P0 and consider the case where the interferers have equal
power, i.e., PIn,i = P [see (5)]. We denote by ζ the ratio of
P0 and P, i.e., ζ = P0/P. Note that ζ is different from the
SIR per hop. Numerical results, which are not presented here,
showed that if the SIR per hop is kept the same, the number

3804 VOLUME 6, 2018



A. Chelli et al.: On BEP and Power Optimization in Multihop mmWave Relay Systems

FIGURE 4. The impact of the number of interferes on the BEP over
a 3 hops AF relaying system.

of interferes would have almost no impact on the BEP. There-
fore, we illustrate instead the BEP versus the SIR ζ in Fig. 4.
From this figure, we can conclude that the BEP decreases
as ζ increases. Moreover, for a fixed value of ζ the BEP
decreases as the number of interferers decreases. Note that
since each of the interferes have equal power then the increase
of number of interferers results in the drop of the total SIR and
consequently the BEP performance deteriorate as the number
of interferers Ln increases. For all the curves in Fig. 4, it can
be noticed that the slope at high SIR is the same. This is due
to the fact that the parameters αn(n = 1, . . . ,N ) are kept the
same for all the curves in Fig. 4. Actually, it can be deduced
from (58) that the slope of the BEP at high SIR depends only
on the parameter αm = min(α1, . . . , αN ) and is not affected
by the number of interferers Ln. In Fig. 4, we plot as well
the asymptotic result for the BEP given by (57). At high
SIR, a good match is obtained between the exact and the
asymptotic results for the BEP. This justifies the use of the
asymptotic BEP in (57) to determine both the diversity order
and the coding gain of the system.

In Fig. 5, we depict the BEP versus the sum power PT for
the cases of equal and optimal power allocations.We consider
in the investigated scenario a three-hop network composed
of a source device, destination device and two relay devices.
For the optimal power allocation scheme, the total power
PT is split between the different devices (the source and
the relays) according to (76). In the investigated scenario,
the mean power of the interference γ̄I1 affecting the relay R1
is set to 0.1 and 0.01. Whereas the interference mean powers
affecting the relay R2 and the destination node D are equal
to γ̄I2 = γ̄I1 and γ̄I3 = 100γ̄I1, respectively. Thus, the third
hop suffers from higher interference compared to the first and
the second hop. In order to minimize the BEP, a much larger
power should be allocated to the relay R2. From Fig. 5, it can
be observed that the BEP decreases by using optimal power
allocation compared to the equal power allocation scheme.
The gain achieved thanks to optimal power allocation com-
pared to the equal power allocation is equal to 3.5 dB if we

FIGURE 5. BEP performance with optimized and equal power allocation
for a three-hop network.

have a target BEP of 10−2 and for γ̄I1 = 0.1. For a target
BEP of 10−3 and γ̄I1 = 0.01, the optimal power allocation
strategy allows achieving a gain of 3.8 dB compared to the
equal power allocation scheme. It can be seen from Fig. 5 that
the BEP decays as the interference decays. In Fig. 5, a perfect
match is obtained between the numerical expressions and the
Monte Carlo simulations which proves the validity of the our
results.

X. CONCLUSION
This paper investigated the BEP of mmWave AF multihop
relaying systems in presence of external interference. In a first
step, we derive the exact expression of the average BEP of
the multihop relay system for M -QAM and M -PSK in terms
of multivariate Meijer’s G-function. This latter function is
complicated and does not allow getting a clear insight on the
behaviour of the BEP. Therefore, it was required to derive
a bound for the BEP of mmWave multihop relaying systems.
To this aim, we determined an upper-bound for the end-to-end
SIR as a product of the rational power of the ratio of Gamma
RVs. Using a novel Mellin-approach, we derived closed-form
expressions for the statistics of the SIR upper-bound, such
as the Mellin transform, the PDF, the CDF, and the MGF.
The correctness of the PDF expression has been validated
by Monte Carlo simulations. Utilizing the PDF of the SIR
upper-bound, a lower-bound for the BEP of M -QAM and
M -PSK modulation schemes in multihop AF relaying sys-
tems in presence of interference have been determined. This
lower-bound is expressed in terms of a Meijer’s G-function.
A simple asymptotic expression for the BEP is also derived
which allowed getting a clear insight of the effect of the
different system parameters on the BEP performance.

Numerical results have shown that the tightness of the pro-
posed BEP lower-bound especially at low SIR. Our analysis
revealed that the BEP performance deteriorates if the number
of hops increases. If we assume equal SIR per hop, the BEP
performance is mainly governed by the hop with the worst
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propagation condition for the desired signal. If the number
of interferers is increased while keeping the same level of
SIR per hop unchanged, almost no variation in the BEP is
observed. However, if the interference level increases with the
number of interferers added while keeping the fading channel
for the desired signal unchanged, the BEP deteriorates but the
slope of the BEP at high SIR regime remains the same.

Moreover, we formulated the problem of BEP minimiza-
tion of multihop mmWave relay network subject to a sum
power constraint. We showed that this problem admits a
unique solution and derived analytical expression for the
optimal power allocation at each hop. Our numerical study
revealed that the optimal power allocation allows achieving
more than 3 dB gain compared to the equal power allocation
scheme. A perfect match between our analytical results and
Monte Carlo simulations proves the validity of our results.

APPENDIX A
PROOF OF THEOREM 1
In this appendix, we provide the proof for the Mellin trans-
form of the product of rational powers of ratio of Gamma
RVs. The RV Z is given by

Z =
N∏
n=1

(
Xn
Yn

)1/N

=

N∏
n=1

(Un)1/N =
N∏
n=1

Vn (A.1)

Using Lemma 3 and Lemma 2, we can derive the Mellin
transform of Z as

Ms(Z ) =
N∏
n=1

Ms(Vn) =
N∏
n=1

M 1
N s−

1
N +1

(Un) . (A.2)

Since Un is the ratio of two independent positive RVs
Un =

Xn
Yn
, we can evaluate the Mellin transform of Un using

Lemma 4 as

Mt (Un) =Mt (Xn)M2−t (Yn). (A.3)

In the following, we determine theMellin transformsMt (Xn)
andM2−t (Yn). TheMellin transformMt (Xn) is computed as

Mt (Xn) =
∫
∞

0
x t−1fXn (x)dx

=

∫
∞

0
x t−1

xαn−1

β
αn
n 0(αn)

exp
(
−
x
βn

)
dx

=

(
1
βn

)1−t
0(αn − 1+ t)

0(αn)
. (A.4)

As Yn is Gamma distributed, its Mellin transform Mt (Yn)
has a similar expression to Mt (Xn). The Mellin transform
Mt (Yn) can obtained as

Ms(Yn) =
(

1
bn

)1−s
0(an − 1+ s)

0(an)
. (A.5)

The expression ofM2−t (Yn) is deduced from (A.5) by setting
s to 2− t as

M2−t (Yn) =Ms(Yn)
∣∣∣
s=2−t

=

(
1
bn

)t−1
0(an + 1− t)

0(an)
.

(A.6)

Utilizing (A.3), (A.4), and (A.6), the Mellin Transform
Mt (Un) is determined as

Mt (Un) =Mt (Xn)M2−t (Yn)

=

(
bn
βn

)1−t
0(αn − 1+ t)

0(αn)
0(an + 1− t)

0(an)
. (A.7)

To obtain the expression ofMs(Z ), we need first to compute
M 1

N s−
1
N +1

(Un) which is deduced from Mt (Un) as

M 1
N s−

1
N +1

(Un) =Mt (Un)
∣∣∣
t= 1

N s−
1
N +1

=

(
bn
βn

)(1−s)/N
0(αn + (s− 1)/N )

0(αn)

×
0(an + (1− s)/N )

0(an)
. (A.8)

Using (A.2) and (A.8), the Mellin Transform of Z is deter-
mined as in (34).

APPENDIX B
DIVERSITY ORDER OF (49)
In this appendix, we show that the diversity order of the
lower-bound of the BEP in (49) has a diversity order equal
to αm = min{α1, . . . , αN }. Towards this end, we rewrite the
lower-bound in (49) as

Pe,low = C · GN ,2N2N ,N

(
z
∣∣A
B

)
, (B.1)

where C = a(√
2π
)N−1√

N
∏N
n=1 0(αn)0(Lnan)

, A = 9(1 −

Lnan),2
( k
N

)
and B = α1, . . . , αn, . . . , αN . Note that A

comprises 2N elements, while B comprises N elements. The
argument z of the Meijer’s G-function in (B.1) is expressed
in terms of the average SIR at the nth hop SIRn as

z =

(
N∏
n=1

(
bn
βn

))(
N
b

)N
=

N∏
n=1

(
Nαn

bLnanSIRn

)
. (B.2)

In (B.2), we used the relationship between the SIR at the nth
hop, SIRn, and the parameters bn and βn which is given by
bn
βn
=

αn

LnanSIRn
. Note that at high SIR regime SIRn → ∞

for n = 1, . . . ,N and consequently the term z in (B.2) tends
to zero.

Using the relationship between the H-Fox function
and the Meijer’s G-function in [32, eq. (2.9.1)] as well
as the asymptomatic expression for the H-Fox function
in [32, Corollary 1.11.1], we obtain an asymptotic expression
for the lower-bound of the BEP in (B.1) at high SIR regime as

lim
SIR→∞

Pe,low = lim
z→0

C · GN ,2N2N ,N

(
z
∣∣A
B

)
= Cemzαm + o(zαm ), (B.3)

where

em =
N∏
i=1
i 6=m

0(αi − αm)
N∏
i=1

0(Liai + αm)
N−1∏
k=0

0(
k
N
+ αm)

(B.4)
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and o(·) pertains to the Landau notation defined as
limz→0 |o(z)/z| = 0. From (B.3), it can be deduced that the
diversity order of the lower-bound Pe,low is equal to αm, thus
both the exact BEP in (25) and its lower-bound Pe,low in (49)
have the same slope at high SIR regime.
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