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Preface 

 

This master’s thesis is an end to a two-year Master’s in Business and Administration, majoring in 

Finance and investments. 

 

Many, if not all, industrial sectors are influenced by weather. After witnessing poor economic 

performances, or in some cases bankruptcy, due to adverse weather conditions, we decided to 

explore new ways for reducing risk. Further reading about weather derivatives, made us realize 

its growing importance, as the climate continuously changes. We firmly believe that companies, 

of all sizes, will face great challenges regarding changes in weather in the coming years, and that 

weather derivatives will be useful facing them. 

 

We want to thank Denis Becker for introducing us to such an exciting topic as weather 

derivatives, and his help and insight during the last few months as well.  We would also like to 

thank Voss fjellheisar AS for being helpful and providing us with financial data.  

 

The master thesis is written as a collaboration between Alf Martin Haugan and Jon Berge 

Rasmussen. We take full responsibility for the content of this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Abstract 

 

The weather changes continuously, and climate change affects businesses to an increasing 

degree. Many businesses’ economic performance highly depends on the weather. Tourism and 

leisure are one of several industries exposed to weather risk. High exposure to weather risk may 

lead to financial stress, or in worst case scenario bankruptcy. Many consider weather risk as an 

uncontrollable factor. However, there is an increasing conviction in the market, that weather 

derivatives can turn weather risk into a more controllable factor. One of the many reasons why 

weather derivatives are not widely seen as a risk management tool is that weather derivatives are 

not well-known among possible end-users. These are the reasons why we want to showcase 

weather derivatives as a risk management tool, and also present the challenges associated. 

 

We have narrowed our problem statement to only include ski resorts and their ability to hedge 

weather risk. This paper is going to focus on a real-life specific situation, Voss ski resort. 

However, the general purpose of the paper is to use a specific case to show that it is possible to 

apply weather derivates to reduce weather risk, and to show how it can be done. 

 

The approach we have chosen is to price snow level put options and temperature call options by 

using different pricing methods and constructing portfolios combining the two different 

derivatives. We have used four different pricing methods, Historical burn analysis, ADS, 

Historical densities, and Edgeworth densities, and after comparing the results of them, decided to 

use the Edgeworth densities method when constructing portfolios. To create optimal portfolios 

for our cause, we have chosen the minimum variance principle. 

 

Our study suggests that investing a small portion of the firm’s capital in a risk management tool 

such as weather derivatives leads to a decrease in the firm’s weather risk as a consequence of 

reduced variability in revenue. In some cases, when short-sales are possible, the expected revenue 

is higher than without an investment in weather derivatives. When short-sales are restricted, the 

expected revenue is less or equal to revenue without derivatives, which makes sense since 

weather derivatives are a zero-sum game. We hope our analysis will inspire firms exposed to 

weather risk to consider investing in weather derivatives or at least acquire more knowledge.  



  

Table of Contents 

1. INTRODUCTION ........................................................................................................................................................................ 1 

2. EXISTING LITERATURE ......................................................................................................................................................... 3 

2.1 MOTIVES FOR USING WEATHER DERIVATIVES ......................................................................................................................................... 3 
2.2 CHARACTERISTICS OF WEATHER DERIVATIVE MARKET......................................................................................................................... 5 

2.2.1 Weather derivative products ...................................................................................................................................................... 6 
2.2.2 Weather indexes............................................................................................................................................................................... 7 
2.2.3 Market participants ....................................................................................................................................................................... 9 

2.3 FORMER STUDIES SNOW DERIVATIVES................................................................................................................................................... 11 

3. DATA ...........................................................................................................................................................................................14 

3.1 METEOROLOGICAL DATA .......................................................................................................................................................................... 14 
3.1.1 Snow level .........................................................................................................................................................................................15 
3.1.2 Temperature ....................................................................................................................................................................................18 

3.2 FINANCIAL DATA ........................................................................................................................................................................................ 19 
3.3 REGRESSION AND DESCRIPTIVE STATISTICS ......................................................................................................................................... 20 

3.3.1 Regression in general and variables used ...........................................................................................................................20 
3.3.2 Monthly regression .......................................................................................................................................................................23 

3.4 SIMULATION AND ESTIMATIONS OF VALUES ......................................................................................................................................... 25 

4. METHODOLOGY ......................................................................................................................................................................27 

4.1 DERIVATIVE PRICING DIFFICULTIES........................................................................................................................................................ 29 
4.2 DERIVATIVE VALUATION AND PRICING METHODS ............................................................................................................................... 31 

4.2.1 Traditional methods.....................................................................................................................................................................31 
4.2.2 ADS, Historical Densities and Edgeworth densities ........................................................................................................33 
4.2.3 Indifference pricing method .....................................................................................................................................................36 

4.3 PORTFOLIO THEORY ............................................................................................................................................................................... 41 
4.3.1 Mean-Variance Portfolio Selection ........................................................................................................................................43 
4.3.2 Portfolio Optimization ................................................................................................................................................................43 
4.3.3 The Portfolio Frontier..................................................................................................................................................................44 
4.3.4 The Capital Allocation Line .......................................................................................................................................................44 

5. CASE STUDY: VOSS FJELLHEISAR AS – REDUCING RISK FOR SKIING RESORTS, AN 

EMPIRICAL ANALYSIS..........................................................................................................................................................46 

5.1 APPLYING PRICING METHODS.............................................................................................................................................................. 47 
5.1.1 Traditional methods.....................................................................................................................................................................47 
5.1.2 ADS, Historical Densities and Edgeworth densities ........................................................................................................47 
5.1.4 Indifference pricing method .....................................................................................................................................................50 

5.2 COMPARING PRICING METHODS .............................................................................................................................................................. 54 
5.2.1 Derivative price ..............................................................................................................................................................................54 
5.2.2 Derivative payoff............................................................................................................................................................................56 
5.2.3 Ratio of revenue & variability/risk ........................................................................................................................................60 

5. 3 CONSTRUCTING PORTFOLIOS TO REDUCE VARIANCE IN REVENUE ........................................................................................ 63 
5.3.1 Finding the optimal strike level and pricing method .....................................................................................................63 
5.3.2 Key summary of optimal strike levels ...................................................................................................................................64 
5.3.3 Creating portfolios with minimum variances in revenue.............................................................................................66 

5.4 CONCLUSION ............................................................................................................................................................................................... 71 

REFERENCES .............................................................................................................................................................................72 

APPENDIX ......................................................................................................................................................................................79 

A.1 INDIFFERENT PRICING METHOD. ............................................................................................................................................................. 79 
A.2 PORTFOLIO THEORY .................................................................................................................................................................................. 81 



  

 

Abbreviations 

 

 

ADS Alaton, Djehiche, and Stillberger 

ARA Absoulute risk aversion 

B&S Black & Scholes 

CAL Capital allocation line 

CAPM Capital asset pricing model 

CAT Cumulative average temperature 

CAWS Cumulative average wind speed 

CDD Cooling degree days 

CE Certainty equivalent 

CME Chicago mercantile exchange 

CR Cumulative rainfall 

CSL Cumulative snow level 

E Expectation 

EUMETSAT European organization for meteorological satellites 

HBA Historical Burn analysis 

HDD                           Heating degree days 

ISO Independent system operators 

MRP Market risk premium 

NOAA National Oceanic and Atmospheric Administration 

OTC                            Over the counter 

OLS Ordinary least squares 

RRA Relative risk aversion 

SD Standard deviation 

SL Snow level 

SMBRP Small medium business risk premium 

VIF Variance inflation factor 

  



  

List of Tables 

 

Table 1: Over the counter indexes ................................................................................................... 9 
Table 2: Risk exposure for end users ............................................................................................ 10 
Table 3: Weather derivative providers .......................................................................................... 11 
Table 4: Common parameters HBA .............................................................................................. 47 
Table 5: Common parameters, ADS ............................................................................................. 48 
Table 6: Parameters, ADS ............................................................................................................. 48 
Table 7: Common parameters, historical and Edgeworth densities .............................................. 49 
Table 8: Parameters, historical and Edgeworth densities .............................................................. 50 
Table 9: Common parameters, indifference method ..................................................................... 51 
Table 10: Parameters, indifference method ................................................................................... 51 
Table 11: Put option price (NOK), January .................................................................................. 54 
Table 12: Call option price (NOK), January ................................................................................. 55 
Table 13: Yearly average payoff 1978-2018, snow level put (JAN) ............................................ 57 
Table 14: Yearly average payoff 1978-2018, temperature call (JAN) .......................................... 57 
Table 15: Total payoff 1978-2018, snow level put ....................................................................... 59 
Table 16: Total payoff 1978-2018, temperature call ..................................................................... 59 
Table 17: Mean revenue with derivative divided by revenue without derivative. Snow level put.

 ....................................................................................................................................................... 61 
Table 18: Mean revenue with derivative divided by revenue without derivative. Temperature call.

 ....................................................................................................................................................... 61 
Table 19: Standard deviation of revenue with derivative divided by standard deviation of revenue 

without derivative. Snow level put. ............................................................................................... 62 
Table 20: Standard deviation of revenue with derivative divided by standard deviation of revenue 

without derivative. Temperature call............................................................................................. 62 
Table 21: Derivative prices, Edgeworth densities ......................................................................... 65 
Table 22: Yearly derivative payoff, Edgeworth densities ............................................................. 65 
Table 23: Mean revenue with derivatives as a fraction of mean revenue without derivatives ..... 65 
Table 24: Standard deviation of revenue with derivatives as a fraction of the standard deviation 

without ........................................................................................................................................... 66 
Table 25: Minimum variance weights ........................................................................................... 66 
Table 26: Expected values and standard deviations of portfolios with derivatives as ratios of 

revenue without derivatives........................................................................................................... 68 
Table 27: Minimum variance weights - short-sales not permitted ................................................ 69 
Table 28: Expected values and standard deviations of portfolios with derivatives as ratios of 

revenue without derivatives. Short-sales not permitted ................................................................ 69 
Table 29: Expected value and standard deviation of revenue of final portfolios .......................... 70 
  



  

List of figures 

 

Figure 1: Categorization of derivatives ........................................................................................... 5 
Figure 2: Call option........................................................................................................................ 6 
Figure 3: Put option ......................................................................................................................... 7 
Figure 4: Monthly cumulative snow level Bulken 2007-2018 ...................................................... 16 
Figure 5: Cumulative monthly  snow level 1978-2018 ................................................................. 16 
Figure 6: Cumulative monthly snow level, monthly grouped ....................................................... 17 
Figure 7: Histogram, cumulative snow level 1978-2018 .............................................................. 17 
Figure 8: Monthly average temperatures 2007-2018 .................................................................... 18 
Figure 9: Monthly average temperatures 1978-2018 .................................................................... 19 
Figure 10: Monthly average temperatures 1978-2018, monthly grouped ..................................... 19 
Figure 11:Regression line for the equation with actual observations plotted for snow level ....... 24 
Figure 12:Regression line for the equation with actual observations plotted for temperature ...... 25 
Figure 13: Effect of diversification ............................................................................................... 43 
Figure 14: Portfolio frontier .......................................................................................................... 44 
Figure 15: The capital allocation line ............................................................................................ 45 
Figure 16: Risk profiling ............................................................................................................... 45 
Figure 17: Indifferent prices, seller and buyer .............................................................................. 53 
Figure 18: Temperature call option, snow level put option, and strike price ................................ 55 
Figure 19: Yearly average payoff 1978-2018, snow level put ...................................................... 58 
Figure 20: Yearly average payoff 1978-2018, temperature call ................................................... 58 
Figure 21: Total payoff 1978-2018 all methods ............................................................................ 60 
Figure 22: Illustration of standard deviation, with and without derivatives ................................. 63 
Figure 23: Portfolio frontier - a combination of snow level derivative and temperature derivative

 ....................................................................................................................................................... 67 
  

https://studntnu.sharepoint.com/sites/Master2019/Shared%20Documents/General/Final.docx#_Toc8900509


 1 

 

1. Introduction 
 

 

"People probably think it is funny that we are talking about the weather, but that is the only thing 

we are talking about in the office. We live on the Yr application" (Hopland, 2018).  

These are the words of a former CEO of a Norwegian sports retailer. According to him, 

disadvantageous weather conditions were among reasons responsible for disappointing financial 

results in the first two quarters of 2018 (Nilsen, 2018). EUMETSAT, a global operational 

satellite agency that gathers data on weather, claims that over a third of the European economy is 

weather sensitive, and that several sectors such as energy, construction, and tourism require 

accurate forecasts (EUMETSAT, 2019). Similar estimations are found for the U.S. economy by 

NOAA (NOAA , 2019).  

 

Weather derivatives are financial derivatives that can be used as a risk management tool by 

companies and industries against adverse weather conditions, or by other stakeholders hoping to 

yield a profit. This is opposed to traditional derivatives, which values depend on underlying 

assets such as stocks, commodities, and (market) indexes. A weather derivative's value depends 

on weather measurements such as precipitation, temperature, humidity, and wind. The difference 

between them is that these (underlying measurements) hold no value and cannot be stored or 

traded. They are quantified in indices and introduced as underlying assets (Alexandridis & 

Zapranis, 2013, p. 1). 

 

The weather derivatives market emerged in the '90s as a result of the energy and utility industry 

deregulation. Competition grew, and demand was uncertain as monopolies faded. Stakeholders 

identified weather conditions as the primary source of revenues uncertainty due to the change in 

short-term demand and long-term supply of energy (Cao & Wei, 2003). To transfer the risk of 

adverse weather, Koch Energy and Enron made the first public transaction of weather derivatives 

in 1997. A simplified version is that Enron would pay Koch a specific amount for each degree 

the temperature fell below normal or vice versa (Perin, 1999). Rapid OTC marked expansions 

followed in Europe, Australia and Asia, and in September 1999 the first exchange-listed weather 

derivatives were presented by the CME - most of them temperature-based futures and options.  
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This master thesis aims to analyze whether and how weather derivatives can improve economic 

performance in terms of revenue and risk. This aim can be divided into two main parts. The first 

part looks at the differences and similarities of the existing pricing methods when applying them 

to the Norwegian ski resort market. The second part aims to show that even though the market 

for weather derivatives is often characterized by imperfections, uncertainties, and lack of 

knowledge, that it is possible to create a portfolio of weather derivatives that reduces the amount 

of risk for a company. To illustrate this, we will use Voss fjellheisar AS as a case example, 

hereby known as Voss ski resort. The way we conduct the case is to gather financial data from 

Voss ski resort and meteorological data in order to analyze the statistical relationship/correlation 

between weather and operating income, and hedge volumetric risk by using (constructed) 

weather derivatives as a tool of risk management 

 

The thesis will have the following structure. Chapter 2 will contain existing literature including 

derivative usage motives, hedging pros and cons, characteristics of the weather derivative market 

(risk exposure) and recent studies of snow derivative usage for ski resorts. Chapter 3 presents 

data for the cumulative snow level, data for average monthly temperature and financial data for 

Voss ski resort. In the third chapter are also data description, descriptive statistics, and regression 

analysis emphasized. In chapter 4 are we discussing the methodology, and we will have a closer 

look at different pricing methods and difficulties in pricing weather derivatives. Additionally, we 

will explain portfolio theory. Finally, in chapter 5, two weather derivatives are constructed for 

Voss ski resort, and we will apply existing pricing methods on the constructed derivates to obtain 

their values and compare revenue with and without a risk management strategy. We will also 

assemble the derivatives into a portfolio by using the minimum variance principle, then illustrate 

the optimal portfolio with and without a shorting opportunity.   
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2. Existing Literature 

2.1 Motives for using weather derivatives 
 

(McDonald, 2013) lists four motives for using derivatives. The first motive is speculation; using 

a derivative to construct a bet that is highly levered and tailored to a specific view. Initial costs of 

placing bets can be relatively small to the potential gains or losses from the bets. The second 

motive states that in some cases, derivatives provide a less costly financial outcome compared to 

combining underlying assets and will lead to reduced transaction costs. As a third motive, he 

mentions the possibility to circumvent regulatory restrictions, taxes and accounting rules by 

trading derivatives, defined as regulatory arbitrage. The fourth and last motive he lists is risk 

management. For this thesis' purpose, we are more interested in weather derivatives as a risk 

management tool, hedging weather risk/revenue affected by the weather. Therefore, we consider 

this last motive most vital. 

 

In addition to McDonald's motives, (Smith & Stulz, 1985) debate that in a progressive tax 

system, volatile cash flows can lead to a higher fraction of its income getting taxed compared to 

a steady cash flow. A firm can also redistribute income according to the tax rate, generating low 

income at a high tax rate, and more income at a low tax rate. Low volatility can also lead to a 

cost-of-debt reduction, and the possibility to reach a higher debt level, thus, greater tax 

deductions. (Tang & Jang, 2012) claims weather derivatives can help reduce the probability of 

default and the expected cost of default. According to (Froot, et al., 1993), cash flow stability 

leads to a steadier flow of profits, which are useful when investment opportunities arise. An 

additional argument, made by (DeMarzo & Duffie, 1995), is that required return on equity from 

shareholders lowers, as their ability to evaluate the administration's performance increases. 

According to (Leggio, 2007) smoothing revenues, covering excess costs, reimbursing lost 

opportunity costs, stimulating sales and diversifying investment portfolios are reasons for 

hedging weather risk. 

 

A frequent objection towards weather derivate is that insurance already serves the purpose of a 

weather derivative, and according to McDonald every form of insurance is a derivative. In travel 

insurance, for example, the buyer must pay a premium to the insurance company. If a buyer is a 
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victim of theft or robbery, then insurance is valuable; if not, it holds no value. However, weather 

derivatives have some qualities that separate them from insurances. (Leggio, 2007) argues that 

weather derivatives protect the buyer from frequent small losses that occur at a high probability, 

as opposed to insurance that reduces the risk of an unexpected, low probability event, for 

example, a hurricane. (Tang & Jang, 2012) also, make a similar argument, but adds that an 

insurance claimant needs to submit a proof of loss caused by weather, which can be a demanding 

process.  Two problems often occur in the insurance business. The first one is moral hazard, 

which is opportunistic behavior after signing a contract (Kenton & Abbott, 2019). As an 

example: signing car insurance and driving recklessly. The other one, adverse selection, emerges 

due to premium pricing mechanisms. Average risk level determines insurance premium, 

resulting in high-risk firms or persons more likely to buy insurance compared to a low-risk 

firm/person. Neither moral hazard nor adverse selection is present when dealing with weather 

derivatives, and contract costs are consequently lower, since the payout of a weather derivative 

depends on an underlying objectively measured index.  

 

Unfortunately, multiple challenges may occur when using weather derivatives. In a survey 

conducted by (Tang & Jang, 2012), firms were asked to rank a list of eleven possible concerns. 

"Lack of awareness and expertise," "not beneficial," "problems in quantifying risk exposure," 

and "exposure already managed" was among the most dominant. One of the other major 

concerns, given a weather derivative is applied, is counterparty risk, which is a risk that the 

counterparty does not or cannot honor the contract. This risk usually is present in over-the-

counter markets. Another primary concern is basis risk, which is the risk that there is a difference 

between potential loss and derivative payout, i.e., the financial loss is not correlated with the 

adverse weather condition. The lack of a standardized pricing method and pricing difficulties is a 

common worry as well. We will, in section 4.1, discuss the latter thoroughly. 
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2.2 Characteristics of weather derivative market 
 

In this section, we will clarify different types of weather derivative products, weather derivative 

indexes, and market participants. Figure 1, below, offers a categorization of financial derivatives 

that Chicago mercantile exchange is, or has been, offering as futures and options (CME Group, 

2007), (CME Group, 2015) and (CME Group, 2019). Weather derivatives are often categorized 

into four main classes, namely hurricanes, wind, precipitation, and temperature. 

 

Figure 1: Categorization of derivatives 

 
 

 

In the following section, 2.2.1, are the different weather derivative products explained, while in 

section 2.2.2, we will derive different indexes for measuring weather phenomena. Afterward, in 

section 2.2.3, we will look at some of the market’s major stakeholders. 
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2.2.1 Weather derivative products 

 

There exist many different products of weather derivatives products that are both exchange-

traded and traded over the counter. Swaps, futures, and forwards are explained in more detail in 

chapter 4. In this section, however, we want to briefly present existing derivative theory 

describing put and call options, as we are going to apply these options in the empirical analysis 

in chapter 5. 

 

Figure 2 illustrate a call option, which is a right, but not an obligation, to buy an underlying asset 

at a predetermined price. For example, imagine Google is traded at 1000 USD. There is a 

common belief among experts; Google’s stock price will increase. An investor wants to secure 

his rights to buy Google for 1005 USD and pays a premium for this right. This investor will have 

a positive payoff if Google’s stock price exceeds 1005 USD, and he will choose to execute his 

right to buy. However, he will have a profit if, and only if, the payoff exceeds the option price. 

 

𝑝𝑎𝑦𝑜𝑓𝑓 𝑐𝑎𝑙𝑙 =  𝛳 ∗ max [𝑆 − 𝐾, 0] 

𝑝𝑟𝑜𝑓𝑖𝑡, 𝑜𝑟 𝑙𝑜𝑠𝑠 = 𝑝𝑎𝑦𝑜𝑓𝑓 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 

 

Where the payoff depends on the tick size, 𝛳, the predetermined execution price, K, and the 

value of the underlying, S. The investor will choose to not execute his contract right if 𝑆 − 𝐾 ≤

0. The investor’s potential profit is, in theory, unlimited. Call options’ premiums tend to be more 

expensive than put option premiums for this reason. 

 

Figure 2: Call option 
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In figure 3 a put option is illustrated. A put option gives a buyer the right to sell an underlying 

asset at a predetermined price. The main difference between a put option and a call option is that 

the payoff-structure is inverted: 

 

𝑝𝑎𝑦𝑜𝑓𝑓 𝑝𝑢𝑡 =  𝛳 ∗ max [𝐾 − 𝑆, 0] 
 

 
Figure 3: Put option 

 
 

 

2.2.2 Weather indexes 

 

In this section, we will present the most commonly used underlying weather indexes featured in 

exchange trade and over-the-counter markets. Note that in the latter, more specialized indexes 

can be constructed to please the buyer of risk protection. Although this thesis do not cover all 

weather variables, it important to explain them to describe the market’s characteristics. 

The cumulative wind speed index measures the sum of daily average wind speeds during a 

period, where duration is defined as [𝑡1, 𝑡2], and 𝑊(𝑖) is the daily average wind speed on day 

𝑖 (Alexandridis & Zapranis, 2013, p. 233). 

𝐶𝐴𝑊𝑆 =  ∫ 𝑊(𝑖)𝑑𝑠
𝑡2

𝑡1
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The Nordix wind speed index aggregates the daily deviations from a 20 year mean over a 

specified period. 𝑤20(𝑖) is the 20-year average wind speed on day 𝑖  (Benth, 2018). 

𝑁𝑊𝑆𝐼 = 100 + ∫ 𝑊(𝑖) − 𝑤20(𝑖)

𝑡2

𝑖=𝑡1

 

A cumulative rainfall index measures the sum of daily rainfall, 𝑅, on a specific date, 𝑖, over 

period, [𝑡1, 𝑡2]. 

𝐶𝑅 = ∑ 𝑅(𝑖)

𝑡2

𝑖=𝑡1

 

Similarly, a cumulative snow level (CSL) index measures the sum of daily snow level, 𝑆𝐿, on a 

specific date, 𝑖, over the period, [𝑡1, 𝑡2]. 

𝐶𝑆𝐿 = ∑ 𝑆𝐿(𝑖)

𝑡2

𝑖=𝑡1

 

The cumulative average temperature (CAT), measures the sum of average temperature, 𝑇. 

𝐶𝐴𝑇 = ∫ 𝑇(𝑖)𝑑𝑖
𝑡2

𝑡1

  

Pacific rim divides CAT index over the same duration. 

𝑃𝑎𝑐𝑖𝑓𝑖𝑐 𝑟𝑖𝑚 =
1

𝑡2 − 𝑡1
𝐶𝐴𝑇 

 

Heating degree days (HDD), and cooling degree days (CDD) measure the sum of deviations 

from a base temperature, usually 65º Fahrenheit, or 18º Celsius. (Alexandridis & Zapranis, 2013, 

p. 8) We are dismissing negative values. 

𝐻𝐷𝐷 = ∫ 𝑚𝑎𝑥 (
𝑡2

𝑡1

18 − 𝑇(𝑖), 0)𝑑𝑖 
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𝐶𝐷𝐷 = ∫ 𝑚𝑎𝑥 (
𝑡2

𝑡1

𝑇(𝑖) − 18, 0)𝑑𝑖 

This thesis highlights precipitation and temperature-based derivatives with cumulative snow 

level and average temperature respectively as the derivatives’ underlying indexes. 

Other potential indexes, although not available on CME, are displayed in the following table. 

Table 1: Over the counter indexes 

Energy 

Critical hot days 
Weather protection based of the number on days the protection period where the daily 

maximum temperature is equal or above a specific level. 

Consecutive Hot 

Days 

 
Number of consecutive days the maximum temperature is above or equal to a specific 

limit. 

Consecutive cold 

days 

 
Number of consecutive days the minimum temperature is below or equal to a specific 

limit. 

Renewables wind 
Critical low wind 

average  
 

Critical high wind  
Renewables solar 

Solar radiation 

global critical days  
 

Cumulative solar 

radiation global  
Agriculture 

Frost 
Based on the number of days when the minimum daily temperature drops below a set 

limit 

Construction 
Too many rainy 

days  
(weatherxchange, Industries) 

 

2.2.3 Market participants 

 

There are many different participants in the weather derivatives market. Table 2, by (Brockett, et 

al., 2005), shows us how several end-users are affected by the weather. The list could easily have 

been extended but was only meant to illustrate. Among other providers and end-users are 
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insurance and reinsurance companies, hedge funds, pension funds, state governments, sellers of 

meteorological data, and brokerages of structured products. 

 
Table 2: Risk exposure for end users 

 

In addition to end-users, there is also a range of providers in the weather derivatives market. 

Below we have illustrated an example of weather protection sellers, with the information 

provided by (weatherxchange, 2019). 

Hedger Weather/Index Risk 

Agriculture industry Temperature/precipitation 

Crop losses on days with extreme 

temperature or rain. 

Airports Frost, snow, wind Higher operational costs 

Beverage producers Temperature Cold summer equal lower sales 

Building material companies 

 

 

 

 

Temperature/snowfall  

Construction sites may shut down 

due to extreme cold, which 

disrupts business.  

Construction companies Temperature/snowfall/rainfall 

Unusually weather, either hot, 

cold, or rainy, can lead to 

deadlines not being met, 

declining labor efficiency, and 

stoppage  

Energy consumers Temperature Cold winters, warm summers 

Energy/power industry Temperature 

Warm winters, and cool summers 

resulting in decreased demand. 

 Wind farms Wind speed  

Hydroelectric power generation Precipitation Drought periods. 

Municipal governments Snowfall High costs of snow removal 

Ski resorts Snowfall/temperature 

Low snow level may impact the 

number of visitors and the cost of 

making artificial snow. 

Theme parks Temperature/precipitation 

Low attendance in cold and/or 

rainy days 

Transportation Wind/snowfall Cancellations 
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Table 3: Weather derivative providers 

Company Information 

Sompo Global Weather Global Specialty Insurance Company 

Swiss Re Corporate Solutions Global Weather Protection Seller 

Liberty Speciality Markets Global Specialty Insurance and Reinsurance Company 

MSI GuaranteedWeather Global Weather Risk Manager 

AXA Global Parametrics - 

Coriolis Capital Ltd Investment Fund 

 Weather Risk Management Specialist 

Nephila Capital Ltd Bermuda Investment Fund 

 Weather Risk Management Specialist 

Allianz Risk Transfer Global Insurance and Reinsurance Company 

Munich Re Global Insurance and Reinsurance Company 

 

2.3 Former studies snow derivatives  
 

Constructing a snow level put option, and a temperature call option are essential tasks in our 

assignment. Studies and theory on temperature-based derivatives are widespread. A few among 

many contributors are (Benth & Šaltytė‐Benth, 2005), (Benth & Šaltytė‐Benth, 2007) (Mraoua & 

Bari, 2007), (Alexandridis & Zapranis, 2008) and (Alexandridis & Zapranis, 2013). The 

following sections focus on results from the limited amount of studies on snow-based 

derivatives.  

 

(Tang & Jang, 2011), perform an empirical analysis that examines geographical diversification 

and financial hedging as two strategies against snowfall risk. They split risk management into 

two terms, namely operational hedging and financial hedging. Operational hedging deals with 

risk by changing the operations, while financial hedging transfer risk by insurances or acquiring 

derivatives. The article highlights that geographical diversification, as a mean by multinational 

companies, has various outcomes when it comes to the exchange rate risk. This ambiguity can 

arguably be explained by a price risk from the exchange rate, and volume risk from uncertainty 

in demand. Cash flow estimations for small and large companies are simulated by using the 

Monte Carlo-method and are regressed on snowfall and a dummy for property acquisition. 

Subsequently, by adding a property to the cash flow, they tested its effect on the cash flow 

exposure of snowfall risk. 
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Furthermore, the strategy (of reducing snowfall risk) is more effective for a one-property 

company compared to a large company with several properties. The latter may benefit more from 

financial hedging, while hedging effectiveness depends on capital levels for small companies. If 

a one-property company has vast capital reserves, geographical expansion is better for risk 

reduction if the cash flow from the newly acquired property is negatively correlated with the 

original property, while financially stressed companies that hope to reduce short-term risk should 

opt for a hedge. Another key argument in their article is the difficulty of finding the optimal 

hedge ratio for ski conglomerates. Geographical basis risk, or just spatial risk, which is the 

difference between snowfall value of a weather station and the actual snowfall value at an 

arbitrary station. Spatial risk occurs at every single property, and the correlation between and 

within the bases and snowfall indices of different properties must be considered. 

 

(Tang & Jang, 2012), constructed a snowfall forward to hedge the snowfall risk for Winter 

Sports Inc., a public traded, single-property resort. Demonstrating hedging effectiveness is 

optimal in this case, as the firm is not diversified geographically nor business-wise. The 

forward’s strike price is set to the historical mean, which equals the probability of each outcome, 

that is a positive or negative payoff. The objective is to minimize cash flow volatility. To find 

optimal hedge they regress unhedged, operating cash flow against quarterly and annual snowfall 

to find an effective hedge. Monte-Carlo simulation is used as well, generating estimates of cash 

flow alternatives in order to test the statistical significance of the regression. Furthermore, Tang 

& Yang present the results of this hedging strategy in the period 1991-2003 by displaying 

cashflow with and without a derivative present. Cash flow volatility was reduced by 25.8% at 

most, when actual snowfall was high. They argue that it is more efficient to use snowfall 

forwards as a risk management tool in months with high snowfall levels. 

 

(Beyazit & Koc, 2010), construct a snow level put option within the framework of Black & 

Scholes option pricing for Palandoken, a ski resort in the east of Turkey. The rationale of the 

article/study is that tourism has a significant impact on Turkey’s economic development; hence it 

is crucial to reduce risks associated. They have a strong belief that the market potential for skiing 

resorts is significant, as 55% of Turkey lies between 1500 and 3000 meters above sea level. 

Daily average snow level data is gathered from November to March in the period 1975-2006. 
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They were not able to discover a particular distribution nor correlation between profits and snow 

level, as opposed to for example temperature. “Generalized Edgeworth Expansion”, developed 

by (Jarrow & Rudd, 1982), (Rubenstein, 1994) and (Rubenstein, 2000), is applied to deal with 

non-normality present in cumulative snow level data, such as skewness and kurtosis. Two 

regressions are performed between profit as its dependent variable, and cumulative snow level as 

an independent variable to find the models’ theta, which is a multiplier for the put option’s 

payoff. The period for cumulative snow level differs between 90 (December-February) and 151 

(November-March) days. All this gave put option prices from three different pricing methods, 

later discussed in our methodology chapter, and their implied volatilities of profits. 

 

(Bank & Wiesner, 2011), conduct a qualitative survey, interviewing 61 Austrian ski lift operators 

regarding weather derivatives. Vulnerability to climatological risk, the importance of 

climatological risk, adaptability of ski lift operators, the reasoning for weather derivative usage 

or non-usage are the five topics in the survey. Determining factors of usage of weather 

derivatives was the purpose of this study. A large fraction of the responders answered they 

thought climate change is important, or very important, and approximately 80 percent rely on 

artificial snow, whereas only one responder considered weather derivatives as a risk management 

tool. Regarding vulnerability, 72,1 percent said their risk exposure from the weather was very 

high. A quarter replied that over 50 percent of their operating income was at risk due to sub-

optimal weather. In 55 percent of the cases, the board was responsible for risk management, 

while 21 percent got help from external consultants. More surprisingly is the fact that over 50 

percent told the questionnaires they did not estimate risk. Those who did were mainly large 

companies with a low degree of weather exposure. The results display the lack of basic 

framework and capacity to use derivatives in question. Most commonly, the main reason for 

using weather derivatives, is that insurance products do not cover weather risk. Arguments 

against weather derivatives are counterparty risk, basis risk, and high transaction costs, which 

aligns with theory. Other arguments are lack of expertise, knowledge, and even awareness. The 

survey finally revealed the market potential for weather derivatives, as 40 percent responded they 

might be willing to try this instrument  
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3. Data 
 

When collecting data, we have chosen to use daily data transformed into monthly data. The main 

reason is that if we were to use seasonal data, we would lose the variations between the different 

months of the year, while using daily data would give a lot of spurious correlations. It would 

most likely be tough to find any correlation between the weather and revenue.  

 

3.1 Meteorological data 

 

The data used was collected from The Norwegian Meteorological Institute and was retrieved 

from their websites www.senorge.no and http://eklima.met.no   

When collecting data on the weather, it is crucial to find the right quantity and quality of data.   

“Without an appropriate quantity of relevant, high-quality data, pricing and management of 

weather risk would be unfeasible” (Dunis & Karalis, 2003). As we can see “previous studies use 

datasets containing historical data from 5 to 230 years to fit various models. However, 

considering a very long period, the datasets will be affected by trends like urban effects. On the 

other hand, when studying tiny datasets, there is a possibility that important dynamics of the 

temperature process will not be revealed which will result to an incorrect model and mispricing 

of the corresponding weather contracts” (Alexandridis & Zapranis, 2013, p. 38). 

 

One of the problems that we encountered were as Alexandridis and Zapranis described it, that 

“some stations had to be moved during the years or to be replaced by more modern equipment; 

as a result, jumps will occur on the data” (Alexandridis & Zapranis, 2013, p. 38). Relocation of 

stations led to some difficulties with collecting the data for both snow level and temperature. We 

will address this problem later.   

 

In the regression, we are only using data from December 2007 to December 2018, as this is the 

period where we have financial data. For the period from December 2012 to December 2014, we 

do not have snow level data hence this period has been excluded. When pricing weather 

derivatives using historical Burn analysis, ADS, historical densities and Edgeworth densities we 

will use the full period of collected data from 1978 to 2018 with the exceptions that we will 

mention later.  

http://www.senorge.no/
http://eklima.met.no/
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3.1.1 Snow level 

 

One of the challenges with collecting data for snow level is that there are no weather stations 

located in the area of Voss ski resort. Therefore, we chose to use data from the weather station 

Bulken. This weather station is an official weather station operated by The Norwegian 

Meteorological Institute and can be categorized as nonpartisan and trustworthy for both an issuer 

and a buyer of a weather derivative. Bulken is located an “as the crow flies distance” of 8,25 km 

from Voss ski resort and lays at an altitude of 328 meters above sea level, while the altitude of 

Voss ski resort varies between 285 and 964 meters above the mean sea level. To verify that we 

can use the data from Bulken, we have used satellite data from senorge.no and checked the 

correlation between the places.  

 

When it comes to deciding the right amount of quantity of samples, we have chosen to collect 

data from December 1978 up until April 2018. As discussed earlier moving or upgrading 

weather stations can cause missing data, as is the case for Bulken. From December 2012 to 

December 2014 the weather station was closed for maintenance. So, the total quantity of samples 

became therefore 38 seasons (December to April) or 180 months based on 8170 daily 

observations. Previous studies have as mentioned earlier contained between 5 and 230 years of 

historical data. We therefore think that 38 seasons is a satisfying number of samples and have 

therefore chosen not to compute variables for the period missing and instead exclude the period 

from the collected data.  The data we have collected consists of daily snow levels converted into 

cumulative monthly and seasonally data.  

 

In figure 4, we can see the snow level data from 2007-2018 that is used in the regression. The 

data we have found shows monthly cumulative snow levels. We can observe that we have 

months with almost no snow at all and months with high levels of snow. The range between the 

minimum and maximum snow level is respectively 143 cm and 3065 cm, while the average for 

months is 983,28. 
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Figure 4: Monthly cumulative snow level Bulken 2007-2018 

 

 

In figure 5, which shows snow level from 1978, we observe that the range has increased in 

comparison to the data set from 2007, which is not unexpected as we here have more samples. 

We also see that the average has also increased which indicates that there was more snow in the 

years before 2007 than after. 

 

Figure 5: Cumulative monthly snow level 1978-2018 
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In figure 6 we have organized the monthly cumulative snow level according to the different 

months, and we can see that the three first months of the year has higher cumulative snow levels 

than April and December. 

 

 

Figure 6: Cumulative monthly snow level, monthly grouped 

 

 

 

In figure 7, we present cumulative snow level for January, in the period 1978-2018 as an 

illustration of non-normality. Normally distributed data is an assumption in several pricing 

methods for weather derivatives. It is therefore necessary to address issues regarding non-

normally distributed data when pricing weather derivatives. 

 

 

Figure 7: Histogram, cumulative snow level 1978-2018 
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3.1.2 Temperature  

 

The data for temperature is collected from two locations, Bø up to 2003 and Hangur from 

December 2007 up to December 2018. The reason for this is what we have discussed earlier that 

stations can be closed down or moved. When it comes to the temperatures, we have chosen to 

collect data from December 1978 up until December 2018. Unfortunately, we do not have data 

for the period from January 2004 to December 2007, as a consequence we have chosen to 

exclude this period. We have collected the daily average temperature and used it to compute the 

monthly and seasonal average temperature. The data gives us a total of 36 seasons and 180 

months based on 7740 daily observations.  

 

 

Figure 8 illustrates the monthly average temperatures for the period 2007-2018. As the data 

illustrates, there is considerable variation in the monthly average temperature for different 

months. 

 

Figure 8: Monthly average temperatures 2007-2018 

 

 

Moreover, in Figure 9 we have the temperatures from 1978 to 2018. What is interesting to see is 

that if we calculate the average temperature in figure 8, it is more than one degree higher than in 

figure 9, which indicates that it has been a lower average temperature has been measured in 

recent years.   
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Figure 9: Monthly average temperatures 1978-2018 

 

 

Since we are going to look at different weather options for the different months, it is also 

necessary to take a look at the evolution of the average temperatures for the different months, as 

illustrated in figure 10.     

 

 

Figure 10: Monthly average temperatures 1978-2018, monthly grouped 

 

 

 

3.2 Financial data 

 

With help from Voss ski resort we have collected data for their daily income from December 

2007 to December 2018. Voss ski resort regards December-April to be their main season, and we 



 20 

 

have therefore collected data for this period. Unfortunately, we have not been able to obtain an 

outline of their operating cost. We have therefore taken a closer look at what is the most 

significant costs for a ski resort. Payroll costs and costs connected to having employees are two 

of the significant costs for a ski resort, and even though ski resorts often hire temporary staff, 

they cannot just send the staff home from day to day without pay, due to tariffs and the 

employment protection act. We can therefore not conclude that the cost to the staff is much 

different on a day with little snow from a day with more snow. One of the other significant costs 

for a ski resort is snow machines. These machines are often costly and have high fixed cost. 

Even though electricity and water are substantial costs, the expenses of buying and maintaining 

the snow machines are so high that we can say that the variations in cost are not substantial. We 

have also checked the yearly labor costs and operating costs for Voss resort on (Proff.no, 2019), 

and observe that the variations in costs are minimal. We are therefore confident that we can use 

the total income. 

 

Due to a confidentiality agreement between ourselves and Voss ski resort, we are not going to 

project any of the exact numbers of financial data. All calculations are done with the correct data, 

and all final products are found by using the correct data. However, we will not show any 

calculations containing this data, nor will we show an overview of the financial data. We will 

show all the correct payoffs. The revenue without derivative will be illustrated as “100%” and 

we will show revenue with derivative as the exact percentage of the revenue without derivative.    

 

 

3.3 Regression and descriptive statistics 

3.3.1 Regression in general and variables used 

 

The first thing that we have to do before we can determine if we can generate any weather 

derivatives is that we have to find out if there is any causation between snow level/temperature 

and annual sales. “Causal inference is the identification of the cause or causes of a phenomenon, 

by establishing covariation of cause and effect, a time-order relationship with the cause 

preceding the effect, and the elimination of plausible alternative causes” (Shaughnessy, et al., 
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2000, p. 25). To be able to find out if there are any causal inference, we are going to use 

regression analysis.” Regression analysis is a statistical technique that attempts to “explain” 

movements in one variable, the dependent variable, as a function of movements in a set of other 

variables, called the independent (or explanatory) variables, through the quantification of a single 

equation” (Studenmund, 2013, p. 5). To conduct the regression analysis we are going to use the 

software SPSS by IBM. 

 

To find out how much of the variation in sales is explained by the weather, we are going to use 

the coefficient of determination (𝑅2). 𝑅2 is the ratio of the explained sum of squares to the total 

sum of squares. “The higher 𝑅2 is, the closer the estimated regression equation fits the sample 

data” (Studenmund, 2013, p. 51). 𝑅2 can not decrease if another variable is added. We are 

therefore going to use the adjusted coefficient of determination (adjusted 𝑅2). 

 

We use the Ordinary Linear Squares method to estimate as correctly and in an as straightforward 

manner as possible. (Studenmund, 2013) lists three main reasons why to use OLS. Firstly, OLS 

is relatively easy to use. Secondly, the goal of minimizing the sum of the squared residuals is 

entirely appropriate from a theoretical point of view. Lastly, OLS estimates have several useful 

characteristics. (Studenmund, 2013, p. 37) It is crucial when we are using OLS as an estimation 

technique for the regression that we check if conclusions are reliable and consistent with 

underlying assumptions. Hence, we have to check for autocorrelation, multicollinearity, and 

heteroskedasticity.  

 

According to (Studenmund, 2013), autocorrelation or serial correlation implies that the value of 

the error term from one period depends in some systematic way on the value of the error term in 

other periods, and it occurs most frequently in time series data sets. Since we are using a time-

series data set, autocorrelation may be a problem. The most common consequence of serial 

correlation is that it causes OLS to no longer be the minimum variance estimator (of all the linear 

unbiased estimators) and causes the OLS estimates of the Standard Error to be biased, leading to 

unreliable hypothesis testing (Studenmund, 2013, p. 331). To uncover any autocorrelation, we 

are going to use the Durbin-Watson d test. In the Durbin-Watson d test, we have a null 

hypothesis that the correlation coefficient rho is equal to zero and an alternative hypothesis of 
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rho being greater than zero. If we end up rejecting the null hypothesis, we can conclude that we 

have significant autocorrelation.   

 

Multicollinearity can cause troubles for the regression equation. If we have multicollinearity, it 

can lead to rejecting a relevant variable (type 2 error). In type 2 errors, according to 

(Studenmund, 2013), will estimates remain unbiased and the variances and standard errors of 

estimates will increase if we have multicollinearity.  To detect if we have any severe 

multicollinearity, we are using the variance inflation factor (VIF). If the VIF index shows that we 

have multicollinearity it does not necessarily mean that it is a problem. If all the variables are 

significant and we have a high 𝑅2, then multicollinearity will not be a problem.  

One of the traditional assumptions that must be met in order to use OLS is as explained by 

(Studenmund, 2013, p. 102) that the error term has a constant variance (no heteroskedasticity). If 

there is heteroskedasticity the variance of the distribution of the error term would change for 

each observation or range of observations. (Studenmund, 2013) recommend using a white test to 

detect heteroskedasticity. Detecting heteroskedasticity can be done by finding the residuals and 

then see how much of the residual is explained by the dependent variables and the squared of the 

dependent variables. If then 𝑛 ∗ 𝑅2 is higher than the chi-squared value then we have 

heteroskedasticity, according to (MacKinnon & White, 1985).   

 

We have used two main weather variables to try to explain the changes in the revenue of Voss 

ski resort. The first variable is snow level, and the second variable is temperature, both explained 

earlier. In addition to the two weather variables, we have also used a variable for when most 

people have a day off. This variable has the value equal to the total number of days off during the 

month.  

 

In our search to find out if the weather can explain the variations in revenue, we are using both 

linear and non-linear regression, and we are going to look at it at a monthly perspective. In the 

non-linear regression, we will create two new variables “𝑠𝑛𝑜𝑤 𝑙𝑒𝑣𝑒𝑙 ∗ 𝑠𝑛𝑜𝑤 𝑙𝑒𝑣𝑒𝑙” and 

“𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ∗  𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒” which will give us quadratic equations. Weather and revenue 

do not necessarily have a linear correlation, and by using quadratic equations, it might give us a 

higher coefficient of determination. 
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3.3.2 Monthly regression 

 

In an effort to explain the variations in monthly sales, we have conducted a regression with 

monthly sales as the dependent variable, with the following variables: 

 

𝑆 =  𝑆𝑎𝑙𝑒𝑠 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ 

𝑆𝐿 =  𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑆𝑛𝑜𝑤 𝐿𝑒𝑣𝑒𝑙 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ 

𝑇 =  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑛𝑡ℎ𝑠 

𝐷 =  𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑜𝑓𝑓 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑚𝑜𝑛𝑡ℎ  

 

We have checked for autocorrelation, multicollinearity, and heteroskedasticity for all 

regressions, and we have found none with significant impact on any of the monthly regressions. 

The regression that gave the highest adjusted coefficient of determination is a non-linear 

regression with the following independent variables: Snow level, snow level squared, 

temperature, temperature squared and days off. The adjusted coefficient of determination is 

0,738, which shows a high degree of the revenue’s variation is explained by these variables. We 

get the following regression equation;  

 

𝑆 =  284 489,467 +  2656,650𝑆𝐿  −  0,725𝑆𝐿2   −  380 422,23𝑇 −  27 862,790𝑇2  

+  98 563,433𝐷  

 

One thing we need to take in to consideration, when we are going to use this regression to create 

weather derivatives, is that we cannot use days off as a variable since it is not a weather 

phenomenon. Additionally, we can only use simple linear regression, as opposed to multivariate 

regression. We have not been able to find pricing methods that take multivariate or non-linear 

regression into consideration. We are therefore going to do two univariate linear regressions with 

one independent variable in each of them — one with cumulative snow level as the independent 

variable, and one with temperature as the independent variable. 

 

We then get the following regressions for snow level and temperature, respectively. 
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𝑆𝑎𝑙𝑒𝑠 = 2 328 206,44 +  1093.037𝑆𝐿 

𝑆𝑎𝑙𝑒𝑠 = 2 567 528,89 − 308,154.76𝑇 

 

The regressions have adjusted coefficients of determination of respectively 0,370 and 0,319. The 

last two values in the regression equations above, 1093,037 and -308,154.76, for snow level and 

temperature respectively, are the thetas in the pricing of the weather derivatives. The concept of 

the theta will be explained in chapter 4. 

 

The correlation for monthly cumulative snow level and sales is illustrated in figure 11, while the 

correlation for monthly average temperature and sales in figure 12. 

 

 

 

 
 

Figure 11:Regression line for the equation with actual observations plotted for snow level 
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Figure 12:Regression line for the equation with actual observations plotted for temperature  
 

 
 

 

 

3.4 Simulation and estimations of values  

 

The benefit of simulating and estimating values is that we get more comprehensive data. We 

have therefore decided to do simulations of earlier values and estimations of missing values. 

However, there is a risk involved when estimating values. The estimated values are only an 

approximation of the true value, not the exact value. 

 

For temperature, we are missing values for the period 2002 up to and including 2007, and for 

snow level, we are missing the values from December 2012 up to and including April 2014. To 

estimate these missing values, we are using an estimation technique recommended by 

(Alexandridis & Zapranis, 2013, p. 90). In this technique, you first the average of the seven years 

before and after the missing value, and the average of all years, then the mean of these two will 

be the estimated value. This estimation is illustrated by Alexandridis and Zapranis (2013) with 

the following three equations.  
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𝑇𝑡,𝑚𝑖𝑠𝑠 =  
(𝑇𝐴𝑣𝑦,𝑡+ 𝑇𝐴𝑣𝑑,𝑡)

2
                         (1) 

𝑇
𝐴𝑣𝑦,𝑡 = 

1

𝑁

 ∑ 𝑇𝑡,𝑦𝑟
𝑁
𝑦𝑟=1                             (2) 

𝑇𝐴𝑣𝑑,𝑡 =  
 ∑ 𝑇𝑡−1 7

𝑖=1 + ∑ 𝑇𝑡+1
7
𝑖=1

2
                  (3) 

 

 

Since we have weather data from 1978, we wanted to simulate the sales revenue for every year 

from 2007 back to 1978. We believe that this simulation will give us a better foundation for 

making an optimal portfolio. To simulate data, we are going to use the Monte Carlo method, 

with the following regression as the backbone of the simulation.  

 

𝑆 =  𝑆𝑎𝑙𝑒𝑠 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ 

𝑆𝐿 =  𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑆𝑛𝑜𝑤 𝐿𝑒𝑣𝑒𝑙 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ 

𝑇 =  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑛𝑡ℎ𝑠 

 

𝑆 =  1 204 814,37 +  3 038,142𝑆𝐿  −  0,812𝑆𝐿2   −  391 722,32𝑇 −  28 872,184𝑇2 

 

The simulated value will be created based on the regression above added a term with the inverse 

of the normal cumulative distribution of the standard deviation (error), where we have put the 

mean equal to zero, the standard deviation equal to the standard error of the regression and 

probability as random.  

 

 

It is important to emphasize that we have not used any simulated or estimated values in the 

construction of the regression or the creation of the derivative prices. The reason is that the 

regression is used to create the simulations and because we wanted to only include actual values 

in the estimation of the derivative prices. We have only used the simulated and estimated values 

to find the optimal strike prices and to find the optimal portfolio.  

                       

 

 



 27 

 

4. Methodology 

 

We will in the following sections look at challenges occurring when pricing weather derivatives, 

as well as different pricing methods, but first we present a framework, heavily inspired by 

(Alaton, et al., 2002) and CME Group. A general weather option/derivative can be described 

using:  

 

• The contract type  

• The length of the contract period 

• The underlying (weather) index. 

• The strike price, K. 

• The tick size 

• Location.  

• Premium paid to seller from buyer (negotiable)  

• Upper payout limit (contract dependent) 

 

The contract type states which type of derivative we are dealing with. Most common types are 

options, forwards, futures, and swaps. Recall that weather cannot be stored or traded, so it is 

essential to highlight the fact that only cash will change hands when a contract expires. An 

option is a choice in the future whether to buy or sell the underlying index at a predetermined 

strike price, K. A call option will only be exercised if the value of the underlying index exceeds 

the strike price at contract end, while the same is true for a put option if the strike price exceeds 

the underlying index. A forward contract is a customized contract between two parties to buy or 

sell an asset, in this case, the underlying weather index, at a specified price at a future date (Dhir, 

2019). This contract type is particularly well suited for hedging, considering the non-

standardization. Swaps are over the counter agreements to exchange risk during a specified 

period between two parties. Usually, one side is paying a fixed price, while the other paying a 

variable price. Futures are standardized forward contracts. 

 

The contract length can theoretically be any chosen duration, but most commonly as monthly or 

seasonally lengths. Due to meteorologist’s ability to forecast weather, are daily and even weekly 
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contracts to an extent redundant.  Taking CME as an example, they offer futures and options on a 

monthly and a seasonal basis. It is possible to choose to buy a single winter month, or the winter 

period, November to February. We will opt for a similar approach as well, considering how rare 

snowfall or low temperatures are in spring and summer months. 

 

The underlying index states what kind of weather variable we are dealing with. There are 

different kinds of weather variables such as rainfall, snowfall, and temperature. Existing 

literature mainly uses temperature indexes such as HDD or CDD. They are the sums of 

deviations from a reference level of temperature, often 18 degree Celsius. As an example, if the 

temperature is one degree Celsius below 18, it is referred to as 1 HDD. We will use both a 

temperature and a snowfall index, separately, in our case study, as these are most relevant. A 

contract written on the cumulative amount of snow during a period 𝑡 = 0 to 𝑇 is: 

 

𝐶𝑆𝐿 = ∑ 𝑆𝐿𝑡

𝑇

𝑡

 

 

Where 𝐶𝑆𝐿 and 𝑆𝐿𝑡 denotes cumulative snow level and snow level respectively. The payoff, 𝑋, 

of a snow level put option would then be: 

 

𝑋 = 𝜃max {𝐾 − 𝐶𝑆𝐿, 0} 

 

Where K is the strike price, and 𝜃 is tick size. A contract written on mean temperature during a 

period of n days is written: 

 

�̅�𝑛 =
1

𝑛
∑ 𝑇𝑖

𝑛

𝑖=1

 

 

Where �̅�𝑛 denotes mean temperature, and 𝑇𝑖 temperature of day i. and n the number of days in a 

certain period. The payoff, γ, of a temperature call option would then be: 
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γ = θmax {�̅�𝑛 − 𝐾, 0} 

 

The tick size represents the amount of money that the option holder receives for each index point 

the underlying index exceeds (call option) or fall below (put option) the strike price. One may 

look at it as a sort of payoff multiplier, and the payoff’s magnitude is decided of the strike level 

additionally. 

 

Location means the weather station that is used to obtain meteorological data for the underlying 

index. The station should be an official station, to avoid inaccurate data. Most transactions are 

based on using one weather station, although weighted combinations of multiple stations can be 

used (Alexandridis & Zapranis, 2013, p. 9). 

 

 

4.1 Derivative pricing difficulties 

 

There are many risks when trying to price a weather derivative correctly. Two major types of 

risks arising in weather derivative trading, or pricing, are geographical basis risk, or spatial risk, 

and basis risk. Geographical basis risk is the risk of writing a derivative contract from a (non-

local) weather station where the weather deviates from local conditions. (Brockett, et al., 2005), 

defines this risk as present when a contract is written on a different place the hedger wants to 

cover. Weather risk is highly localized, and weather is tough to predict accurately and 

consistently, even though meteoritical science has advanced. According to (Tang & Jang, 2011) 

this is due to varying micro-climates of different locations. It would not be reasonable for a 

Stockholm based firm to buy heating degree contracts based on a weather station located in 

Dallas. (Woodard & Garcia, 2008) display an increase in hedging effectiveness if a non-local 

derivative for a weather variable is highly geographically correlated. Basis risk is represented by 

the risk of low correlation between hedged volume and the underlying weather index 

(Alexandridis & Zapranis, 2013). This risk can be illustrated by a CPU producer like for example 

Intel hedging wind-speed. There is probably low or no correlation present. (Ederington, 1979) 

has shown that the degree of basis risk can have a significant effect on a hedging instrument’s 

utility. Research on the basis risk is relatively limited. In a study of four U.S ISOs, (Brockett, et 
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al., 2005) concluded that undiversified companies should not use a linear hedging strategy. One 

possible way to reduce basis risk is to write a weather derivative on the difference between two 

weather indexes at two different places. There is an apparent tradeoff between hedging 

effectiveness, spatial risk, and basis risk. 

 

Comparing the two, (Brockett, et al., 2005) underline that established financial derivatives are 

based on share price, bonds, exchange rates, commodities, or currency, while the underlying of a 

weather derivative defines the measure of weather conditions. The inability to store an 

underlying weather variable, for example, snow, from one year to another is a fact that (Tang & 

Jang, 2011) highlight to mark property differences between traditional derivatives and weather 

derivatives. A reminder given by them is that, unlike underlying assets of classic derivatives, a 

man holds no control over the weather. For example, in real life, a stock price can be influenced 

by information such as press releases on the stock exchange. 

 

 (Xu, et al., 2008), concludes that an application of standard pricing model for financial 

derivatives to price weather derivatives is impossible, because weather is untradeable, i.e., the 

weather risk market is incomplete. This belief is supported by (Cao & Wei, 2004), who stress the 

fact that weather derivatives cannot provide a riskless hedge. Risk-neutral valuation by no-

arbitrage does not hold. These opinions are also shared by (Brockett, et al., 2005) who states the 

Black-Scholes method, which is the most successful derivative pricing method, works under the 

assumption of complete markets. It does not work in incomplete markets, such as the weather 

derivate market, i.e., where a self-financing strategy cannot replicate all claims. The lack of 

liquidity in weather derivatives does not coincide with the B&S-based no-arbitrage model. 

Weather variables do not share similar properties, and there is no similarity in the distributional 

assumption in weather events, which results in the absence of market pricing. The weather 

derivative market’s illiquidity is the consequence of valuation problems (Masala, 2014). 

 

OTC market has historically been relatively big compared to exchange-traded weather derivative 

market, as it eliminates basis risk, but it does not provide price transparency, and counterparty 

risk is present when trading. Credit risk is another obstacle when pricing weather derivatives, at 

least in the OTC market. Credit risk is the risk that a counterparty fails a contractual obligation. 
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A central topic, after Enron’s demise, is hedging effectiveness when the buyer faces credit risk 

(Brockett, et al., 2005). 

 

Not all weather derivative pricing methods takes the financial market into consideration. An 

actuarial valuation is formulated within a framework that ignores the financial markets. It 

neglects the fact that weather affects liquid asset prices in some way, and that weather 

derivatives partially could be hedged by these (Brockett, et al., 2005). Local weather indices 

have a low correlation with prices of other financial assets, such as exchange and interest rate 

risk. Thus, it is difficult to substitute the underlying with a linked exchanged security to solve the 

problem with an incomplete market (Hamisultane, 2008). 

 

 

4.2 Derivative valuation and pricing methods 

4.2.1 Traditional methods 

 

A method based on statistical analysis is the actuarial method or insurance method. Users of this 

methodology may be companies in property, automobile, health, and life insurance among others 

(Cao & Wei, 2003). To derive the distribution of all possible outcomes for the settlement index, 

are we using meteorological data and forecasts (Jewson, et al., 2005), as quoted in (Alexandridis 

& Zapranis, 2013). The risk-free rate is used to discount the expected payoff calculated by 

historical data. In other words, we are linking a probabilistic analysis to the insured event. 

Actuarial pricing relies on the law of large numbers, which states that repeating an experience, 

independently, several times, the estimated expected value continuously improves the 

approximation of the true value (Hamisultane, 2008). The actuarial method is not the most 

common method, considering most weather derivatives contracts have underlying variables 

following predictable patterns that have a high probability of reoccurring (Cao & Wei, 2003), in 

contrast to a low probability event like a typhoon.  

 

Another method is the Historical burn analysis (HBA). HBA is a simulation based on historical 

data. The average payoff of the weather derivatives in previous n periods is calculated. Ten to 
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thirty years of time series are commonly used (Cao, et al., 2004). In actuarial methods, expected 

payoffs are being discounted at the risk-free rate, which is not the case when using HBA.   

 

Assume that finding a snow level put option for February is the objective. Start by gathering 

historical snow level values in February, 𝑦1, 𝑦2, . . . 𝑦𝑛 for n years/periods.  

With these we get the historical payoffs, 𝑥𝑖, as well as the put option’s price by averaging the 

historical payoffs,  

 

𝑃𝑟𝑖𝑐𝑒 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖= . 

 

𝑥 = 𝑚𝑎𝑥(𝐾 − 𝑦, 0) 

 

Where 𝐾 = 𝑆𝑡𝑟𝑖𝑘𝑒 𝐿𝑒𝑣𝑒𝑙  and 𝑦 =  𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑛𝑜𝑤 𝑙𝑒𝑣𝑒𝑙 

 

 

The most important assumption is that historical weather derivative payoff reflects the potential 

payoff distribution, a notion that history will repeat itself with equal probability (Hamisultane, 

2008), as quoted in (Alexandridis & Zapranis, 2013). A notable benefit of this model is that the 

computations are simple, since temperature follows a normal distribution, and there is no need to 

solve stochastic differential equations. Another advantage is that the model is based on a few 

assumptions, such as constant (temperature) mean, variance, and autocorrelation over time, 

hence stationarity. Independent and identically data distribution for different years is also 

assumed. Even though many consider HBA as a benchmark approach, it has major flaws, seeing 

that none of the assumptions hold. (Temperature) time series does contain seasonality, jumps, 

and trends, while there is evidence that volatility and temperature average are heterogeneous for 

different historical periods (Dischel, 1999), which can be confirmed by our meteorological data 

on snow level and temperature. Additionally, HBA does not include forecasting and is therefore 

deemed partial and faulty. (Benth & Šaltytė‐Benth, 2012, pp. 110-111), point out that in a time 

series model for precipitation on monthly aggregated values, the number of data points for 

cumulative precipitation in a given month can get very small, which in turn results in very few 

non-zero payoff data, and yields a highly uncertain value of expectation, hence price estimate. 
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According to them using a stochastic model with vast amounts of data instead of HBA will lead 

to higher statistically reliability of the description of the underlying variable. Their last argument 

is HBA being unsuited for finding changes in price over time, as burn analysis produces a 

constant forward price that does not change with time. (Cao & Wei, 2003) apply burn analysis to 

a call option written on the three-month (January, February, and March) cumulative HDDs for 

Atlanta, Chicago, and New York. They found massive variability in the pricing estimate when 

using different period lengths. In light of all this, HBA remains an acceptable proxy of pricing, 

as its implementation is straightforward (Jewson, et al., 2005). 

 

 

 

4.2.2 ADS, Historical Densities and Edgeworth densities 

 

Pricing by Alaton, Djehiche, and Stillberger (ADS) is a methodology based on the studies of 

(Alaton, et al., 2002), which used (Black & Scholes, 1973) as a framework. Pricing by ADS can 

be used on any weather variable. Mostly temperature modeling has been conducted in prior 

studies, but we will use this method to develop a pricing tool for snow level options, as in 

(Beyazit & Koc, 2010), and a temperature-based call option. In their study from 2010, they start 

by uncovering a stochastic process describing the weather variable, 𝑆𝑡, is used to form monthly 

or yearly cumulative snow levels, 𝑀𝑛,  for year/month i.  

 

The following notation is used in calculations shown in this section. Historical meteorological 

data is used to compute mean and variance. 

 

 

𝛷: cumulative distribution function for the standard normal distribution. 

𝜎𝑛: standard deviation of data. 

𝜇𝑛: mean of average cumulative monthly/annual/seasonal temperature or snow level.  

𝐾: strike level. 

𝑟: risk-free rate. 

𝑀𝑛: cumulative snow level or average temperature on a yearly/monthly or seasonal basis. 
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𝑆𝑖: daily snow level or daily average temperature. 

𝑀𝑛 is 𝑁 ∼ (𝜇𝑛, 𝜎𝑛
2). 

𝜃: option payout multiplier/tick size. A beta-coefficient in a (simple) regression model is a proxy 

for this value since the parameter shows how much the dependent variable changes when the 

independent variable changes with one unit. 

 

𝐸(𝑀𝑛) = 𝜇𝑛  

𝑉𝑎𝑟(𝑀𝑛) = 𝜎𝑛
2 

𝛼𝑛 =
𝐾 − 𝜇𝑛

𝜎𝑛
 

 

The price of a put option is now calculated from the following formula: 

 

𝑝(𝑡) = 𝜃𝑒−𝑟(𝑡𝑛−𝑡)𝐸[max{𝐾 − 𝑀𝑛, 0}] 

= 𝜃𝑒−𝑟(𝑡𝑛−𝑡) ∫ (𝐾 − 𝑥)𝑓𝑀𝑛
(𝑥)𝑑𝑥

𝐾

0

 

=  𝜃𝑒−𝑟(𝑡𝑛−𝑡) [(𝐾 − 𝜇𝑛) (𝛷(𝛼𝑛) − 𝛷 (−
𝜇𝑛

𝜎𝑛
)) +

𝜎𝑛

√2𝜋
(𝑒−

𝛼𝑛
2

2 − 𝑒
− 

1
2

(
𝜇𝑛
𝜎𝑛

)
2

)]     (1) 

 

Equation 1 determines the price of a put option in terms of a normal distribution. 

𝑡𝑛 − 𝑡 is the contract holding period. For example will February in a non-leap year be 𝑡𝑛 − 𝑡 ≈

7,67%. 𝑒−𝑟(𝑡𝑛−𝑡) represents a discount factor. This discount factor will be bigger if the contract 

period is bigger. When using the mean as a measure, it will give each years’ observations equal 

weights. 

Inversely to a put option, a pricing formula for a call option is displayed by equation 2: 

 

𝑐(𝑡) = 𝜃𝑒−𝑟(𝑡𝑛−𝑡)𝐸[𝑚𝑎𝑥{𝑀𝑛 − 𝐾, 0}] 

= 𝜃𝑒−𝑟(𝑡𝑛−𝑡) ∫ (𝑥 − 𝐾)𝑓𝑀𝑛
(𝑥)𝑑𝑥

∞

𝐾
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= 𝜃𝑒−𝑟(𝑡𝑛−𝑡)((𝜇𝑛 − 𝐾)𝛷(−𝛼𝑛) +
𝜎𝑛

√2𝜋
𝑒−

𝛼𝑛
2

2 )                    (2) 

𝑀𝑛 = ∑ 𝑆𝑖

𝑛

𝑖=1

 

 

 

Historical and Edgeworth densities are frequently used methods when pricing weather 

derivatives. In a table of cumulative snow level statistics, (Beyazit & Koc, 2010) showed us that 

normality was not present, as measures for skewness and kurtosis did not coincide with this. 

Skewness and kurtosis should be close to 0 and 3, respectively. Due to this (Beyazit & Koc, 

2010) applies densities of the normal distribution function, 𝑎(𝑥), drawn out from historical data 

of cumulative snow levels using the first two moments. This pricing method is known as 

“Historical Densities.”  In addition to the notation mention earlier in this section, the following 

notation will be used when calculating historical and Edgeworth densities: 

 

𝐷: number of days in the period 

𝜉: skewness. 

𝜅: kurtosis. 

𝑎(𝑥): density of normal distribution function of cumulative snow levels or average temperature. 

𝑥: cumulative snow level or average temperature on a yearly/monthly or seasonal basis. 

 

Below we have a put option price formula for historical densities: 

 

𝑝 = 𝑒−𝑟(𝑡𝑛−𝑡)
1

∑ 𝑎𝑗(𝑥)  𝑁
𝑗=1

∑ 𝑎𝑗(𝑥)max (𝐾 − ∑ 𝑆𝑖(𝑡𝑛), 0)

𝐷

𝑖=1

 
𝑁

𝑗=1
        (3) 

𝑎(𝑥) =
1

𝜎√2𝜋
𝑒

−( 
(𝑥−𝜇𝑥)2

2𝜎𝑥
2 )

 

 

A difference between historical densities and “ADS” is that each observation (of weather 

phenomena) is weighted differently. Lower cumulative values of snow levels are weighted more 

heavily; hence a higher payoff is more influential in the historical densities approach. 
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Recall both “ADS” and historical densities assume normality, which does not necessarily hold 

for weather data. To modify a non-normal distribution, we use “Generalized Edgeworth Series 

Expansion,” as shown by (Stuart & Ord, 1987),  as a method to adjust densities. We then get the 

following put-formula when pricing weather derivatives using Edgeworth densities. 

 

𝑝 = 𝑒−𝑟(𝑡𝑛−𝑡)
1

∑ 𝑓𝑗(𝑥)  𝑁
𝑗=1

∑ 𝑓𝑗(𝑥)max (𝐾 −  ∑ 𝑆𝑖(𝑡𝑛), 0)

𝐷

𝑖=1

         (4) 
𝑁

𝑗=1
 

𝑓(𝑥) = [1 + (
1

6
) 𝜉(𝑥3 − 3𝑥) + (

1

24
) (𝜅 − 3)(𝑥4 − 6𝑥2 + 3)

+ (
1

72
) 𝜉2(𝑥6 − 15𝑥4 + 45𝑥2 − 15)] 𝑎(𝑥) 

 

To transform the put-formula into a call-formula for historical and Edgeworth densities, we need 

to reverse the last term of the formula in both equations 3 and 4 from: max (𝐾 −  ∑ 𝑆𝑖(𝑡𝑛), 0)𝐷
𝑖=1   into 

max (∑ 𝑆𝑖(𝑡𝑛) − 𝐾, 0)𝐷
𝑖=1  . 

 

4.2.3 Indifference pricing method 

 

The following section is heavily inspired by the work of (Brockett, et al., 2005), (Xu, et al., 

2008), and (Alexandridis & Zapranis, 2013).  

The foundation of the indifference pricing approach uses the principle of equivalent utility. The 

idea is that we define the indifferent buy price, 𝐹𝑖, as the price at which a buyer or seller is 

indifferent between  

i) buying the insurance/derivative now and receiving payout at expiration and  

ii) not paying the price, and not receiving a payoff.  

For complete derivation of price formulas, please go to appendix A1. 

This two-state model has following assumptions 

• Two market players, namely investor/hedger and seller/issuer. Both players want to 

construct their portfolio to optimize final wealth at time T. 
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• At current time (𝑡 = 0) both hedger and issuer try to optimize their wealth at time 𝑇. In 

between these states no exchanges are permitted. 

• Two assets are present in the financial market, a risky asset with a return r, and a risk-free 

rate of return 𝑟𝑓. Both are gross rates of return. A weather derivative’s arbitrary 

underlying weather variable/index is also present. 

• Wealth maximization of a buyer is subject to a utility function, more specifically a 

negative exponential one 

 

The calculations in this section will be conducted using the following notation:  

𝑋: Revenue 

𝜆: Absolute risk aversion 

𝑋𝑖
𝑤𝑜: Portfolio value without a weather derivative/risky asset, 𝑖 denotes b or s (buyer or seller). 

𝑋𝑖
𝑤: Portfolio value with derivative/risky asset 

(𝑥𝑏 − 𝑎𝑏): Amount spent on a risk-free asset 

𝑥𝑏: Investor’s initial wealth 

𝑥𝑠: Seller’s initial wealth 

𝑎𝑏: Amount invested in risky production 

𝑎𝑠: Issuer’s invested amount in capital market 

𝑟𝑓: Risk-free rate of return 

𝑟𝑏: Return of risky production 

𝑟𝑠: Return from capital market 

𝑢: utility 

�̂�: Certainty equivalent (CE) of stochastic wealth 

𝐶𝐸:  the required certain amount that makes the investor indifferent whether he invests in a 

weather derivative or not. 
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�̃�: Stochastic wealth 

𝑞𝑖: 1+𝑟𝑖 , where 𝑖 = s, b, or f. 

𝑘: Units/shares of the derivative. 

𝑊𝑇: Payoff at time T. This is a function of an underlying index, (I). 

µ𝑥: Expected wealth 

𝜎𝑥
2: variance wealth at time T 

𝐸(𝑊): Expected payoff at time T. 

𝜌𝑞𝑠,𝑊
: Correlation between payoff and market return. 

𝜎𝑞𝑏,𝑊
: Co-variance between return on risky activity and payoff. 

 

Recall that 𝑎𝑠 is the amount of the initial wealth the seller invests in the capital market. The 

asterisk denotes the optimal amount invested, in this case with (𝑤) and without (𝑤𝑜) a 

derivative present. 

 

𝑎𝑠
𝑤𝑜∗ =

𝐸(𝑞𝑠) − 𝑞𝑓

𝜆𝑠𝜎𝑞
2

𝑠

                              (5) 

𝑎𝑠
𝑤∗ =

𝐸(𝑞𝑠) − 𝑞𝑓 + 𝜆𝑠𝑘𝜎𝑞𝑠,𝑊

𝜆𝑠𝜎𝑞
2

𝑠

           (6) 

 

Intuitively, with a derivative present, 𝑎𝑠
𝑤∗: 

 

i) Increases if risky production expected rate of return is high. 

ii) If covariance between market’s rate of return and the derivative payoff is negative, 

𝑎𝑠
𝑤∗ decreases. This statement makes sense since W leads to negative cash flow. 

iii) If risk-free return is relatively “good” compared to the return of the market, the 

amount invested will decrease.  
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Below, we have the price formula for the issuer/seller. For a complete derivation of the price 

formula, please go to appendix A.1. In the formulas, 𝐹𝑠 equals the present value of expected 

derivative payoff, 𝐸(𝑊), in an additional to a risk premium, 𝜋𝑠. 

 

𝐹𝑠 =
1

𝑞𝑓
(𝐸(𝑊) −

1

2
𝜆𝑠𝑘𝜎𝑊

2 (𝜌𝑞𝑠,𝑊
2 − 1) −

𝜎𝑊

𝜎𝑞𝑠

((𝐸(𝑞𝑠) − 𝑞𝑓)𝜌𝑞𝑠,𝑊
)      (7)           

𝜋𝑠 = −
1

2
𝜆𝑠𝑘𝜎𝑊

2 (𝜌𝑞𝑠,𝑊
2 − 1) −

𝜎𝑊

𝜎𝑞𝑠

((𝐸(𝑞𝑠) − 𝑞𝑓)𝜌𝑞𝑠,𝑊
 

𝐹𝑠 =
1

𝑞𝑓
𝐸(𝑊) + 𝜋𝑠       

 

i) Under the condition that 𝐸(𝑞𝑠) − 𝑞𝑓 > 0, will 𝜋𝑠 > 0, but only if 𝜌𝑞𝑠,𝑊
≤ 0.  

ii) The risk premium might become negative if the correlation between 𝑞𝑠 and 𝑊 has a high 

positive value.  

iii) If 𝜆𝑠 = 𝜌𝑞 𝑠,𝑊
= 0, then 𝜋𝑠 = 0.  

 

We can derive similar steps as in the previous section for the hedger, to find optimal amount of 

wealth put in to risky production with the following formulas: 

 

𝑎𝑏
𝑤𝑜∗ =

𝐸(𝑞𝑏) − 𝑞𝑓

𝜆𝑏𝜎𝑞𝑏
2

                               (8) 

𝑎𝑏
𝑤∗ =

𝐸(𝑞𝑏) − 𝑞𝑓 − 𝜆𝑏𝑘𝜎𝑞𝑏,𝑊

𝜆𝑏𝜎𝑞𝑏
2

           (9) 

 

i) A negative covariance between return on production and derivative payoff makes the 

hedger increase  𝑎𝑏
𝑤∗. 
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ii) Amount invested in production decreases absolute risk aversion increases, all other 

parameters constant. 

 

Below we have the indifferent price formula of the buyer: 

 

𝐹𝑏 =
1

𝑞𝑓
(𝐸(𝑊) +

1

2
𝜆𝑏𝑘𝜎𝑊

2 (𝜌𝑞𝑏,𝑊
2 − 1) −

𝜎𝑤

𝜎𝑞𝑏

((𝐸(𝑞𝑏) − 𝑞𝑓)𝜌𝑞𝑏,𝑊       (10)   

𝜋𝑏 =
1

2
𝜆𝑏𝑘𝜎𝑊

2 (𝜌𝑞𝑏,𝑊
2 − 1) −

𝜎𝑤

𝜎𝑞𝑏

((𝐸(𝑞𝑏) − 𝑞𝑓)𝜌𝑞𝑏,𝑊   

𝐹𝑏 =
1

𝑞𝑓

(𝐸(𝑊) + 𝜋𝑏)                   

 

The first expression on equation 10’s right-hand side is always negative. If one assumes 𝐸(𝑞𝑏) >

𝑞𝑓, the second expression on the equation’s right-hand side is positive and the correlation 

negative. Thus, the value of 𝜋𝑏  is parameter dependent. 

A trading requirement is that the hedger must be willing to pay a price that is equal or higher 

than the seller price, i.e., 𝐹𝑏 > 𝐹𝑠. This will only happen if: 

 

1

2
𝜆𝑏𝑘𝜎𝑊

2 (𝜌𝑞𝑏,𝑊
2 − 1) −

𝜎𝑤

𝜎𝑞𝑏

((𝐸(𝑞𝑏) − 𝑞𝑓)𝜌𝑞𝑏,𝑊 > −
1

2
𝜆𝑠𝑘𝜎𝑊

2 (𝜌𝑞𝑠,𝑊
2 − 1) −

𝑞𝑊

𝜎𝑞𝑠

((𝐸(𝑞𝑠) −

𝑞𝑓)𝜌𝑞𝑠,𝑊
, equivalently  𝜋𝑏 > 𝜋𝑠. 

 

A critic on the indifference pricing method from (Xu, et al., 2008), is that it implies the buyers’ 

possibility to adjust the optimal production level, which in many sectors is farfetched. Although 

the method is simple, it depends too much on its parameters, especially the absolute risk aversion 

parameter. (Carr, et al., 2001) argues that the application of this method in real life is not widely 

considered acceptable due to problems specifying input correctly, as mentioned above, which 

potentially makes this method very inaccurate. It is not even sure the negative exponential utility 
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function is the best fit, as others as an alternative may be applied, for example, the mean-

variance suggested by (Brockett, et al., 2005).  

 

4.3 Portfolio Theory  

 

Optimal portfolio choice is inspired by the mean-variance concept which was developed by 

Markowitz in the 1950s. It is a dominant framework for coping with security markets and 

investment management. Mean-variance efficiency means there is a trade-off between risk and 

return. Optimal portfolio choice of individuals builds the foundation of CAPM, and the 

following framework stems from (Copeland, et al., 2004), with supplementing notation from 

(Paraschiv, 2018). 

 

Portfolio theory has the following assumptions (Copeland, et al., 2004, pp. 147-148): 

 

• Frictionless markets 

- No transaction costs 

- No taxes 

- Perfectly divisible securities 

- Perfect competition 

- No short-sale restrictions 

• Investors have mean-variance preferences 

• Investor maximizes expected utility 

• Investors maximize expected utility of wealth 

• Under mean-variance preferences, investors only care about expected wealth and the 

variance of wealth. This is the case if: 

 

i) Investors have quadratic utility functions 

ii) Returns are normally distributed 

An advantage of portfolio diversification is that investing in more assets yields the same 

expected return at a smaller variance than each asset individually. 
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Assume that we have a portfolio with 𝑁 risky assets and denote the uncertain return of asset 𝑖 by 

𝑟�̃�. Let 𝑥�̃� denote the fraction of wealth invested in asset 𝑖. The portfolio return is: 

 

𝑟�̃� = 𝑥1𝑟�̃� + 𝑥2𝑟2̃ + ⋯ + 𝑥𝑁�̃�𝑁 = ∑ 𝑥𝑖𝑟�̃�

𝑁

𝑖=1

 

 

The portfolio return is uncertain, considering this is a futuristic measure. However, we can 

calculate the expected return of a portfolio by using this formula: 

 

𝐸[�̃�𝑝] = 𝑥1𝐸[�̃�1] + ⋯ + 𝑥𝑁𝐸[�̃�𝑁] = ∑ 𝑥𝑖𝐸[�̃�𝑖]
𝑁
𝑖=1 = µ′𝑥  

 

where µ is a vector of expected returns.  

 

The portfolio’s variance is: 

 

𝑉𝑎𝑟(�̃�𝑝) = 𝑉𝑎𝑟 (∑ 𝑥𝑖𝑟�̃�

𝑁

𝑖=1

) = ∑ 𝑥𝑖
2𝑉𝑎𝑟(

𝑁

𝑖=1

𝑟�̃�) + ∑ 𝑥𝑖𝑥𝑗𝐶𝑜𝑣(𝑟�̃�, 𝑟�̃�) 

𝑖≠𝑗

 

(Copeland, et al., 2004, p. 128) 

 

Let V be the covariance matrix of asset returns, hence: 

 

𝑉𝑎𝑟(�̃�𝑝) = 𝑥′𝑉𝑥 

 

Including several assets, which are not perfectly correlated, generally reduces the portfolio 

volatility. This is called diversification. 

 

If the number of assets included in the portfolio increases, the variance will approach the average 

covariance. 

 

lim
𝑁→∞

𝑉𝑎𝑟(𝑟�̃�) = �̅� 
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This component, �̅�, which is called the market risk or systematic risk, this risk is undiversifiable. 

The other factor of the portfolio return variance is known as diversifiable risk or unsystematic 

risk. As the numbers of securities increases, unsystematic risk converges towards zero. A 

relatively small number of assets is satisfactory to achieve a substantial diversification effect. 

 

Figure 13: Effect of diversification 

 

(Paraschiv, 2018, p. 20) 

 

 

4.3.1 Mean-Variance Portfolio Selection 

 

Under mean-variance preferences, there is a trade-off between risk and return regarding portfolio 

selection. We can either 

i) Set a certain level of expected return µ̅ and minimize risk or 

ii) Set a certain level of risk and maximize expected return 

Given a certain level of expected return, a portfolio is mean-variance efficient if its variance is 

lower than all other portfolios with the same return. The collection of these mean-variance 

efficient portfolios is called the efficient frontier. 

 

4.3.2 Portfolio Optimization 

The derivation of variance minimizing portfolio weights is found in appendix A.2, in equation 1. 
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4.3.3 The Portfolio Frontier 

 

By varying the level of expected return and compute the implied return standard deviations, we 

get the possibility to plot the efficient frontier in mean-variance space, and the efficient frontier 

can be illustrated as a trajectory in the mean-variance space. The portfolio that has the lowest 

variance overall is then called the Global Minimum Variance Portfolio. 

 

 

Figure 14: Portfolio frontier 

 

(Paraschiv, 2018, p. 27) 

 

Most of the individual assets will lie to the right of the frontier. Risk reduction is a result of 

combining securities into portfolios. An investor with mean-variance preferences holds a 

portfolio that is located on the frontier. Adaptation below 𝑃∗ will never happen, as it is 

inefficient, while the subset above 𝑃∗ is called the efficient frontier. 

 

4.3.4 The Capital Allocation Line 

 

The risk-free asset in combination with any risky portfolio is called the Capital Allocation Line 

(CAL). The CAL with maximal slope is the efficient frontier. Its slope is often referred to as 

reward to variability ratio. All portfolios that are located on the efficient frontier have the same 
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reward to variability ratio. When we later are creating optimal portfolios of weather derivatives, 

there will be more than one optimal portfolio, and all will be located on the efficient frontier. 

Which portfolios that are chosen depends on personal preferences. The efficient frontier is the 

half line 𝑟𝑓 + √𝐻𝜎𝑝 

 

 

Figure 15: The capital allocation line 

 

(Copeland, et al., 2004, p. 150) 

 

Figure 16: Risk profiling 

 

(Paraschiv, 2018, p. 38)  
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5. Case study: Voss Fjellheisar AS – Reducing risk for skiing resorts, an 

empirical analysis  

 

In this case study we will assess how a ski resort can hedge the risk of unfavorable weather in 

their main season. The business we are using to illustrate these possibilities is Voss Fjellheisar 

AS. The challenges with a shortage of snow and problematically high temperatures are not 

challenges that will automatically solve themselves; on the contrary, they will only get worse. A 

research paper by (Marty, et al., 2017) as (Willsher, 2017) cited in The Guardian, explains that if 

global warming is limited to 2 degrees Celsius, a goal set in the Paris agreement of 2014, the 

snow cover in the alps will be reduced by 30 percent. If global warming exceeds 2 degrees 

Celsius, the loss of snow cover could be as high as 70 percent. Such a dramatic decrease in snow 

cover would have a dramatic impact on European ski resorts. According to Nils Magne 

Nedreberg, chairman of Harpefossen ski resort in Sogn og Fjordane, Norway, they need at least 

100 days with snow to break even, but by 2080 may only as few as 40 to 60 percent of 

Norwegian ski resorts have a skiing season that lasts longer than 100 days (Kleiven, 2017). We 

are therefore going to create a portfolio consisting of two weather derivatives, snow level and 

temperature, to see if we can reduce the fluctuated revenues for the ski resort, and their risk of 

bankruptcy  

 

In this case study, we will apply the derivative pricing techniques described theoretically earlier 

in this paper. We will start with creating the derivatives based on snow level and temperature by 

using Historical Burns Analysis (HBA), pricing method of Alaton, Djehiche, and Stillberger 

(ADS), historical densities and Edgeworth densities. Then we compare the different pricing 

methods and discuss which method we will use when creating a portfolio. Before we can 

construct a portfolio, we have to find the optimal strike levels. Here we are going to use some 

theory about snow production and snow levels. We will in addition use the derivative pricing 

technique indifference pricing. Typically, it is usual to use indifferent pricing to find the 

derivative price. However, we are going to stick to the four most common used methods 

mentioned earlier and use indifferent pricing as a tool to find out at which snow level buyer and 

seller are both indifferent. The indifference pricing method will help us decide the optimal strike 
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levels. When we have found the strike levels, we will find the optimal weight of snow level 

derivative and temperature derivative in the portfolio.  

 

5.1 Applying pricing methods 
 

5.1.1 Traditional methods 

5.1.1.1 Historical Burns Analysis (HBA) 

 

When finding the derivative price by using Historical Burns Analysis, we first have to find 𝑥 =

 𝑚𝑎𝑥(𝐾 − 𝑦, 0), which is the cumulative snow level below or the average temperature above 

the set strike level. Then we can find the price for the different strike levels  

 

𝑃𝑟𝑖𝑐𝑒 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖= .  

 

As we can see in table 4, do we have 𝑛 =  35 in January, February, March and April, while we 

have only 34 in December. An overview of the prices can be found in table 11 and 12. 

 

 
Table 4: Common parameters HBA 

Common Parameters 

n Jan-Apr 35 

n Des 34 

 

 

5.1.2 ADS, Historical Densities and Edgeworth densities 

 

5.1.2.1 ADS 

 

The first pricing method we are going to use is the pricing method of Alaton, Djehiche, and 

Stillberger, also known as ADS. Since we have the snow level derivative as a put option and the 

temperature derivative as a call option, we need to use the formulas for both put and call options, 

as mentioned in section 4.2.2. 
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𝑝(𝑡) =  𝜃𝑒−𝑟(𝑡𝑛−𝑡) [(𝐾 − 𝜇𝑛) (𝛷(𝛼𝑛) − 𝛷 (−
𝜇𝑛

𝜎𝑛

)) +
𝜎𝑛

√2𝜋
(𝑒−

𝛼𝑛
2

2 − 𝑒
− 

1
2(

𝜇𝑛
𝜎𝑛

)
2

)] 

 

𝑐(𝑡) = 𝜃𝑒−𝑟(𝑡𝑛−𝑡)((𝜇𝑛 − 𝐾)𝛷(−𝛼𝑛) +
𝜎𝑛

√2𝜋
𝑒−

𝛼𝑛
2

2 )    

 

Since we are creating different weather derivatives for the different months, we have categorized 

the different parameters into those who are common for all months, and those who are different. 

 

 

Table 5: Common parameters, ADS 

Common Parameters 

𝜃𝑆𝐿 1093,037 

𝜃𝑇 308154,76 

𝑟𝑓 0,0188 

𝜋 3,14159 
 

 
Table 6: Parameters, ADS 

 Parameters 

  January February March April December 

Snow level 𝑡𝑛 − 𝑡 0,08493151 0,07671233 0,08493151 0,08219178 0,08493151 

 𝜇𝑛 1074,66667 1313,15385 1517,41026 594,430769 489,230769 

 𝜎𝑛 737,591344 779,605145 876,75476 689,613162 336,257949 

 𝛼𝑛 -1,3214183 -1,5561132 -1,6166553 -0,7169683 -1,1575363 

       
Temperature 𝑡𝑛 − 𝑡 0,08493151 0,07671233 0,08493151 0,08219178 0,08219178 

 𝜇𝑛 -3,9798011 -3,354475 -0,2633532 3,19586452 -3,1397201 

 𝜎𝑛 3,64406287 3,22501052 2,36700096 2,13409489 3,28232933 

 

 

The Thetas (θ) indicate the payout in NOK per unit (centimeter or Celsius) over or under the 

strike level is the respective betas of the independent variables from the regression. To find the 

risk-free rate, we have used the yearly average of a ten-year Norwegian government bond for 

2018, which is 1,88 percent (Norges Bank, 2019). 𝑡𝑛 − 𝑡 is equal to 
𝑛

365
, where n is equal to the 
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number of days in each of the respective months, this term of the equation will give us the 

correct risk-free rate for each of the months. 𝜇𝑛 is the mean of the cumulative snow level or 

average monthly temperature, and 𝜎𝑛 is the standard deviation, both illustrated in table 6. Also in 

this table, we have  𝛼𝑛 which equals to  
(𝑆𝑡𝑟𝑖𝑘𝑒 𝑙𝑒𝑣𝑒𝑙 −𝜇𝑛)

𝜎𝑛
  for all the particular strike levels. 

 

We have chosen to calculate the derivative prices for snow level in the range 100 to 2000, and 

for temperature from -5 to 3,5 degrees Celsius. An overview of the prices can be found in table 

11 and 12. 

 

 

5.1.2.2 Edgeworth and Historical 

 

To calculate the derivative price, we are using these formulas for respectively historical densities 

and Edgeworth densities, as explained earlier.  

 

𝑝 = 𝑒−𝑟(𝑡𝑛−𝑡)
1

∑ 𝑎𝑗(𝑥)  𝑁
𝑗=1

∑ 𝑎𝑗(𝑥)max (𝐾 −  ∑ 𝑆𝑖(𝑡𝑛), 0)

𝐷

𝑖=1

 
𝑁

𝑗=1
 

𝑝 = 𝑒−𝑟(𝑡𝑛−𝑡)
1

∑ 𝑓𝑗(𝑥)  𝑁
𝑗=1

∑ 𝑓𝑗(𝑥)max (𝐾 −  ∑ 𝑆𝑖(𝑡𝑛), 0)

𝐷

𝑖=1

         
𝑁

𝑗=1
 

 

To transform the put-formula into a call, we need to reverse the last term of the formula in both 

the equations from: max (𝐾 −  ∑ 𝑆𝑖(𝑡𝑛), 0)𝐷
𝑖=1   into max (∑ 𝑆𝑖(𝑡𝑛) − 𝐾, 0)𝐷

𝑖=1  . 

 

 

 

 
Table 7: Common parameters, historical and Edgeworth densities 

Common Parameters 

𝑟𝑓 0,0188 

𝜃𝑆𝐿 1093,037 

𝜃𝑇 308154,76 
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Table 8: Parameters, historical and Edgeworth densities 

Parameters 

    January February March April December 

Snow Level 1/∑a(x)  68,15209371 73,28539442 81,2175638 58,4813 30,4758978 

  1/∑f(x)  66,94221408 76,33332606 82,5628912 49,5830238 30,5428749 

              

Temperature 1/∑a(x)  0,362634173 0,332550737 0,22888271 0,22003854 0,32272769 

  1/∑f(x)  0,406192162 0,358643019 0,25047287 0,22050821 0,31072125 

 

The risk-free rate (𝑟𝑓) and the thetas for snow level and temperature are found the same way as 

in the ADS calculations, including using 𝑡𝑛 − 𝑡 equal to 
𝑛

365
, to find the monthly rate.  

 

We start by calculating 𝑎(𝑥) and 𝑓(𝑥), and then we calculate the 1/∑𝑎(𝑥) and 1/∑𝑓(𝑥) as seen 

in table 8. When we have computed the put price from the price formula, we multiply the answer 

with the respective thetas, and we get the derivative prices for the different strike levels. 

Moreover, an overview of the prices can be found in table 11 and 12. 

 

5.1.4 Indifference pricing method 

 

 

In this paper, we are going to use indifference pricing as a method in addition to theory of 

weather to find the optimal strike levels, not the derivative price, opposed to HBA, ADS, 

Historical, and Edgeworth densities. The reason for this is that we already have many useful 

pricing techniques, but we think that conducting an estimation using the indifference pricing 

technique will give us further insight that will be helpful. Indifference pricing method gives us an 

insight of the negotiation process between buyer and seller. We conduct the indifferent pricing 

method by solving the following to equations. 

 

 

𝐹𝑠 =
1

𝑞𝑓
(𝐸(𝑊) −

1

2
𝜆𝑠𝑘𝜎𝑊

2 (𝜌𝑞𝑠,𝑊
2 − 1) −

𝜎𝑊

𝜎𝑞𝑠

((𝐸(𝑞𝑠) − 𝑞𝑓)𝜌𝑞𝑠,𝑊
) 

 

 

𝐹𝑏 =
1

𝑞𝑓
(𝐸(𝑊) +

1

2
𝜆𝑏𝑘𝜎𝑊

2 (𝜌𝑞𝑏,𝑊
2 − 1) −

𝜎𝑤

𝜎𝑞𝑏

((𝐸(𝑞𝑏) − 𝑞𝑓)𝜌𝑞𝑏,𝑊 



 51 

 

𝐹𝑠 calculates for a seller’s perspective, and 𝐹𝑏 for a buyer’s perspective. 

 

Table 9: Common parameters, indifference method 

Common Parameters 

𝑟𝑓 0,16 % 

𝐸(𝑞𝑠) 100,57 % 

𝐸(𝑞𝑏) 100,62 % 

𝐾 1,00 

λs 0,0000010 

𝑅𝑅𝐴 1,5 

 

 
Table 10: Parameters, indifference method 

Parameters 

  January February March April December 

ARA 0,0000004274273 0,0000003293439 0,0000003571142 0,0000012761168 0,0000004606376 

 

 

𝑟𝑓 is found using the same risk-free rate as in the previous pricing methods, divided by 12 

months, giving 0,16%.  

 

𝐸(𝑞𝑠) and 𝐸(𝑞𝑏) are based on respectively  𝐸(𝑟𝑠), and 𝐸(𝑟𝑏) added 100 percent.  

 

To calculate 𝐸(𝑟𝑠), we use the equation: 

 

𝐸(𝑟𝑠) = 𝑀𝑅𝑃 + 𝑟𝑓  

 

So, to find 𝐸(𝑟𝑏) we are going to use the CAPM with an added Small Business Risk Premium. 

This gives us the equation:  

 

𝐸(𝑟𝑏) = 𝑀𝑅𝑃 ∗ 𝛽 + 𝑟𝑓 + 𝑆𝐵𝑅𝑃  

 

The Markets Risk Premium (MRP) is based on a publication from PwC stating that the MRP of 

the Norwegian market is 5 percent (Pwc and The Norwegian Society of Financial Analysts, 
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2016). Since we are looking at it with a monthly perspective, we have to divide the MRP on 12 

months.  

 

To find the beta (𝛽) of the market, we have gone across the border to Sweden and used the 𝛽 of 

Skistar AB, which is traded on the Nasdaq Stockholm index. We acknowledge that this 𝛽 may 

not be 100% representative to Voss ski resort, due to geographical basis risk and the fact that it is 

two different companies. However, in the calculation of indifference prices, we will make 

adjustments below to obtain a more valid measure. To find the 𝛽 we had to perform regression 

using monthly data from January 1994, when Skistar AB went public an up until today’s date. 

The regression is conducted by using two variables:  

 

 

𝐸𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛 𝑆𝑘𝑖𝑠𝑡𝑎𝑟 = 𝑅𝑒𝑡𝑢𝑟𝑛 𝑆𝑘𝑖𝑠𝑡𝑎𝑟 − 𝑟𝑓 

And 

𝑅𝑖𝑠𝑘 𝑃𝑟𝑒𝑚𝑖𝑢𝑚 𝑀𝑎𝑟𝑘𝑒𝑡 = 𝑅𝑒𝑡𝑢𝑟𝑛 𝑁𝑎𝑠𝑑𝑎𝑞 𝑆𝑡𝑜𝑐𝑘ℎ𝑜𝑙𝑚 − 𝑟𝑓 

 

 

It is important to emphasize that the risk-free rate used above is not the same as the risk-free rate 

used earlier. This risk-free rate is based on the Swedish 10-year government bond for each of the 

months from January 1994. The regression gives then a 𝛽 of 0,505. The reason we are using 

Skistar is that they are controlling large portions of the ski resort business in both Norway and 

Sweden. We are adding a Small Business Risk Premium (SBRP) because Voss ski resort is a 

relatively small company, especially compared to the multi-billion conglomerate Skistar. We 

have based on information from an article in Magma magazine (Kaldestad, 2017) and a 

publication from (Pwc and The Norwegian Society of Financial Analysts, 2016) chosen to set the 

SBRP to 3 percent. The SBRP is a yearly risk premium, so we are dividing it on 12 months.  

 

We are only going to look at indifference pricing with a contract size equal to 1 for simplicity. 

Therefore,  𝐾 = 1. 

The Relative Risk Aversion (RRA) is not straightforward to estimate. However, Gandelman and 

Hernandez-Murillo estimate that the RRA for Norway is around 1,16 (Gandelman & Hernández-
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Murillo, 2015). Because of the uncertainty have we decided to use a precautionary approach, and 

set the RRA equal to 1,5. The Absolute Risk Aversion (ARA) is initially found by dividing the 

RRA with the operating income. Since we only operate with revenue, we will divide the RRA 

with the revenue.  

 

𝐴𝑅𝐴 =
𝑅𝑅𝐴

𝑅𝑒𝑣𝑒𝑛𝑢𝑒
 

 

We will, therefore, get a different ARA for the different months as illustrated in table 10. 

 

λs is the Absolute Risk Aversion for the seller. “The typical risk aversion parameters for market 

participants are around 10−6” (Monoyios, 2004, p. 251).  We have therefore chosen to set:  

 

λs =  10−6 

 

 

In figure 17, the sellers’ and buyers’ indifferent prices, 𝐹𝑠, and 𝐹𝑏 respectively, for December are 

illustrated. 

 

 
Figure 17: Indifferent prices, seller and buyer 

 
 

These illustrations, like this for December, will be helpful when we later discuss which strike 

prices to use in the portfolio. 
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5.2 Comparing pricing methods 
 

 

In the following section, we would like to showcase the results of using different pricing 

methods. Illustrations in this section only cover the month of January and will be illustrated with 

tables and figures.  

 

 

5.2.1 Derivative price 

 

In the table below, we can see the relation of the weather derivative's price and strike level for 

different methods. When comparing the results of the different pricing methods, we can see that 

ADS has the lowest pricing range. ADS has the most expensive price at strike level 200, but at 

strike level 1100 it has the lowest price.  

 

 

 

 

 

 
Table 11: Put option price (NOK), January 

Strike 
Historical 

densities 
Edgeworth 

densities ADS HBA 

100 - - 1,092 - 
200 1,605 3,127 4,655 2,589 
300 10,399 19,674 11,146 15,504 
400 23,068 42,893 21,043 33,280 
500 45,851 81,403 34,830 61,900 
600 72,850 125,778 52,977 94,749 
700 104,602 175,323 75,926 131,711 
800 144,745 232,983 104,065 175,576 
900 194,954 297,957 137,711 226,144 
1000 257,882 371,100 177,097 284,161 
1100 331,153 449,652 222,355 349,628 
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Table 12: Call option price (NOK), January 

Strike 
Historical 

densities 
Edgeworth 

densities ADS HBA 

-3 540,307 734,171 313,075 290,105 
-2.75 471,248 656,162 283,735 261,491 
-2.5 402,189 578,152 256,386 232,876 
-2,25 337,986 504,407 230,977 205,654 

-2 279,558 435,973 207,452 180,121 
-1.75 232,466 374,476 185,745 158,039 
-1.5 200,993 326,555 165,786 140,870 
-1.25 174,993 284,624 147,499 125,463 

-1 148,993 242,693 130,804 110,055 
-0.75 122,994 200,762 115,618 94,647 
-0.5 96,994 158,832 101,855 79,240 
-0.25 74,115 121,466 89,428 65,153 

0 57,256 93,122 78,251 53,707 
0.25 41,381 66,272 68,234 42,701 
0.5 25,506 39,423 59,293 31,696 
0.75 15,885 23,150 51,341 24,212 

1 10,649 14,435 44,299 19,370 
1.25 9,439 12,795 38,085 17,169 
1.5 8,229 11,154 32,624 14,967 
1.75 7,019 9,514 27,844 12,766 

2 5,808 7,874 23,677 10,565 
 

 

 
Figure 18: Temperature call option, snow level put option, and strike price 
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Visually, these graphs are in the intersection of linearity and convexity. Recall the methodology 

chapter. We highlighted the fact that lower cumulative snow level, thus high payoff, are more 

weighted in the historical densities and Edgeworth densities approach. Hence when a relatively 

high strike level is chosen for snow level derivatives, derivative price increase more in the 

methods as mentioned earlier. Stated differently – when the probability of payout grows, the 

price increase is more significant for densities approaches. Put-call-parity implies the opposite is 

true for the temperature-based call option. HBA weights all payoffs equally, with constant 

probability, which was one of the most significant drawbacks, considering it is not in line with 

the real distribution of cumulative snow level nor temperature. 

 

5.2.2 Derivative payoff 

 

In the tables below, 13 and 14 respectively, yearly payoff is calculated by deducting the sum of 

revenue with a derivative from the sum revenue without derivative at a set strike level and 

dividing it by the number of years in the period we are looking at, which is 41 years in this case. 

That way, we get an average yearly payoff in a particular month considered. HBA yields payoff 

close to zero, with the least variability, while ADS' performance has historically given highest 

payoff (ranking wise), as well as deviation from the mean. Averagely, density approaches give 

the most negative results due to the pricing mechanisms. Weather derivative are known as a 

zero-sum game, and as we can see in table 13, are Edgeworth densities and HBA the only one 

that gives a negative payoff at all strike levels. This means that historical densities and ADS 

gives the buyer a positive payoff, and a possible seller would therefore be reluctant to sell such a 

derivative. This increases Edgeworth densities and HBAs standings as the best pricing methods 

for this situation. For the temperature derivatives are we most interested in the temperatures 

below zero degrees Celsius. In table 14, we can see that all of the pricing methods has a negative 

yearly payoff when the strike level is below zero.   
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Table 13: Yearly average payoff 1978-2018, snow level put (JAN) 

STRIKE 
Historical 

densities 
Edgeworth 

densities ADS HBA 

100 0 0 -1,090 0 

200 795 -728 -2,249 -189 

300 3,970 -5,305 3,240 -1,134 

400 7,777 -12,048 9,833 -2,435 

500 11,520 -24,032 22,592 -4,529 

600 14,967 -37,962 34,916 -6,933 

700 17,472 -53,249 46,258 -9,637 

800 17,984 -70,253 58,817 -12,847 

900 15,495 -87,507 72,940 -15,694 

1000 9,005 -104,212 90,049 -17,273 

1100 727 -117,773 109,849 -17,749 

 

 

 
Table 14: Yearly average payoff 1978-2018, temperature call (JAN) 

STRIKE 
Historical 

densities 
Edgeworth 

densities ADS HBA 

-3 -291,589 -485,453 -63,899 -41,386 

-2.75 -248,024 -432,937 -60,096 -38,266 

-2.5 -203,392 -379,355 -57,214 -34,079 

-2.25 -162,427 -328,849 -55,081 -30,095 

-2 -125,796 -282,211 -53,387 -26,359 

-1.75 -97,554 -239,564 -50,562 -23,127 

-1.5 -80,738 -206,299 -45,288 -20,615 

-1.25 -67,891 -177,522 -40,181 -18,360 

-1 -55,044 -148,744 -36,663 -16,105 

-0.75 -42,197 -119,966 -34,652 -13,851 

-0.5 -29,350 -91,188 -34,063 -11,596 

-0.25 -18,497 -65,848 -33,680 -9,534 

0 -11,408 -47,275 -32,289 -7,859 

0.25 -4,928 -29,820 -31,682 -6,249 

0.5 1,552 -12,365 -32,149 -4,638 

0.75 4,783 -2,481 -30,598 -3,543 

1 5,886 2,100 -27,699 -2,835 

1.25 5,217 1,862 -23,373 -2,512 

1.5 4,548 1,623 -19,799 -2,190 

1.75 3,880 1,384 -16,905 -1,868 

2 3,211 1,146 -14,623 -1,546 
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Figure 19: Yearly average payoff 1978-2018, snow level put 

 
 

 
Figure 20: Yearly average payoff 1978-2018, temperature call 

 
 

 

 

In table 15 & 16 total payoff for the period 1978-2018 is displayed. We are computing total 

payoff by subtracting the sum revenue with a derivative from the sum revenue without derivative 
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Table 15: Total payoff 1978-2018, snow level put 

STRIKE 
Historical 

densities Edgeworth densities ADS HBA 

100 0 0 -29,780 0 

200 51,122 2,331 -31,738 -7,594 

300 133,430 -10,029 -38,833 -21,314 

400 322,258 -113,912 176,915 -60,405 

500 561,219 -290,905 477,312 -115,287 

600 821,708 -546,355 819,664 -183,975 

700 1,079,751 -817,401 1,046,329 -255,425 

800 1,294,897 -1,221,142 1,419,806 -351,728 

900 1,482,120 -1,670,952 1,738,017 -458,213 

1000 1,572,925 -2,185,657 2,143,811 -587,306 

1100 1,559,016 -2,726,200 2,591,100 -726,898 

 

 

 

 
Table 16: Total payoff 1978-2018, temperature call 

STRIKE 
Historical 

densities Edgeworth densities ADS HBA 

-3 -17,470,372 -23,165,450 -1,048,876 -1,746,165 

-2.75 -15,040,093 -20,719,839 -967,860 -1,702,146 

-2.5 -12,550,773 -18,215,187 -923,598 -1,599,087 

-2.25 -10,229,842 -15,796,540 -907,047 -1,486,330 

-2 -8,310,821 -13,608,996 -876,787 -1,391,686 

-1.75 -6,495,349 -11,469,262 -827,682 -1,243,074 

-1.5 -4,878,935 -9,465,233 -787,951 -1,089,880 

-1.25 -3,418,388 -7,577,786 -784,647 -944,610 

-1 -2,591,260 -6,245,266 -654,199 -834,645 

-0.75 -1,841,287 -4,980,652 -573,294 -728,994 

-0.5 -1,091,314 -3,716,038 -562,776 -623,343 

-0.25 -483,604 -2,629,713 -556,547 -528,256 

0 -148,704 -1,899,327 -488,425 -454,301 

0.25 91,594 -1,301,729 -430,870 -388,268 

0.5 331,892 -704,130 -425,552 -322,236 

0.75 343,878 -516,250 -313,920 -282,617 

1 355,864 -328,369 -245,699 -242,998 

1.25 367,850 -140,489 -216,695 -203,379 

1.5 379,836 47,392 -222,909 -163,759 

1.75 343,070 92,354 -183,522 -137,347 

2 306,304 137,317 -172,029 -110,934 
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Figure 21: Total payoff 1978-2018 all methods 

 
 

5.2.3 Ratio of revenue & variability/risk 

 

The first two tables in this section display revenue with derivatives (mean values in the period 

1978-2018) for a given strike price divided by revenue without derivative. These are based on 

data from January. For snow level put options, a recurring feature is that HBA stays relatively 

close to 100% in the given strike range. ADS' ratio varies, while historical and Edgeworth 

densities decrease when strike price increases. Inversely, the different methods have comparable 

properties for temperature call options. 
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Table 17: Mean revenue with derivative divided by revenue without derivative. Snow level put. 

 

STRIKE 
Historical 

densities 
Edgeworth 

densities ADS HBA 

100 100.00% 100.00% 99.98% 100.00% 

200 100.01% 99.99% 99.96% 100.00% 

300 100.07% 99.90% 100.06% 99.98% 

400 100.14% 99.78% 100.18% 99.96% 

500 100.21% 99.56% 100.42% 99.92% 

600 100.28% 99.30% 100.64% 99.87% 

700 100.32% 99.02% 100.85% 99.82% 

800 100.33% 98.71% 101.08% 99.76% 

900 100.29% 98.39% 101.34% 99.71% 

1000 100.17% 98.08% 101.66% 99.68% 

1100 100.01% 97.83% 102.02% 99.67% 

 

 

Table 18: Mean revenue with derivative divided by revenue without derivative. Temperature call. 

 

STRIKE 
Historical 

densities 
Edgeworth 

densities ADS HBA 

-3 94.64% 91.07% 98.82% 99.24% 
-2.75 95.44% 92.04% 98.89% 99.30% 
-2.5 96.26% 93.02% 98.95% 99.37% 
-2.25 97.01% 93.95% 98.99% 99.45% 

-2 97.69% 94.81% 99.02% 99.52% 
-1.75 98.21% 95.59% 99.07% 99.57% 
-1.5 98.51% 96.20% 99.17% 99.62% 
-1.25 98.75% 96.73% 99.26% 99.66% 

-1 98.99% 97.26% 99.33% 99.70% 
-0.75 99.22% 97.79% 99.36% 99.75% 
-0.5 99.46% 98.32% 99.37% 99.79% 
-0.25 99.66% 98.79% 99.38% 99.82% 

0 99.79% 99.13% 99.41% 99.86% 
0.25 99.91% 99.45% 99.42% 99.89% 
0.5 100.03% 99.77% 99.41% 99.91% 
0.75 100.09% 99.95% 99.44% 99.93% 

1 100.11% 100.04% 99.49% 99.95% 
1.25 100.10% 100.03% 99.57% 99.95% 
1.5 100.08% 100.03% 99.64% 99.96% 
1.75 100.07% 100.03% 99.69% 99.97% 

2 100.06% 100.02% 99.73% 99.97% 
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Below, we have two tables that illustrate the standard deviation of revenue with derivative in the 

period 1978-2018 divided by the standard deviation of revenue without derivative in the same 

period. 

Table 19: Standard deviation of revenue with derivative divided by standard deviation of revenue without derivative. Snow 
level put. 

 

STRIKE 
Historical 

densities 
Edgeworth 

densities ADS HBA 

100 100.00% 100.00% 100.00% 100.00% 
200 99.90% 99.90% 99.90% 99.90% 
300 99.45% 99.45% 99.45% 99.45% 
400 98.91% 98.91% 98.91% 98.91% 
500 98.18% 98.18% 98.18% 98.18% 
600 97.39% 97.39% 97.39% 97.39% 
700 96.58% 96.58% 96.58% 96.58% 
800 95.68% 95.68% 95.68% 95.68% 
900 94.76% 94.76% 94.76% 94.76% 
1000 93.84% 93.84% 93.84% 93.84% 
1100 92.89% 92.89% 92.89% 92.89% 

 

Table 20: Standard deviation of revenue with derivative divided by standard deviation of revenue without derivative. 
Temperature call. 

 

STRIKE 
Historical 

densities 
Edgeworth 

densities ADS HBA 

-3 97.63% 97.63% 97.63% 97.63% 
-2.75 97.68% 97.68% 97.68% 97.68% 
-2.5 97.75% 97.75% 97.75% 97.75% 
-2.25 97.80% 97.80% 97.80% 97.80% 

-2 97.89% 97.89% 97.89% 97.89% 
-1.75 98.02% 98.02% 98.02% 98.02% 
-1.5 98.12% 98.12% 98.12% 98.12% 
-1.25 98.23% 98.23% 98.23% 98.23% 

-1 98.34% 98.34% 98.34% 98.34% 
-0.75 98.47% 98.47% 98.47% 98.47% 
-0.5 98.61% 98.61% 98.61% 98.61% 
-0.25 98.71% 98.71% 98.71% 98.71% 

0 98.81% 98.81% 98.81% 98.81% 
0.25 98.91% 98.91% 98.91% 98.91% 
0.5 99.03% 99.03% 99.03% 99.03% 
0.75 99.07% 99.07% 99.07% 99.07% 

1 99.17% 99.17% 99.17% 99.17% 
1.25 99.26% 99.26% 99.26% 99.26% 
1.5 99.35% 99.35% 99.35% 99.35% 
1.75 99.44% 99.44% 99.44% 99.44% 

2 99.54% 99.54% 99.54% 99.54% 
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One of this case study's primary purposes was using weather derivatives to hedge weather risk. 

These tables clearly show an equal reduction in standard deviation for all pricing methods, albeit 

a small one. 

Figure 22: Illustration of standard deviation, with and without derivatives 

 

 

 

 

 

 

 

 

 

The line chart suggests snow level derivative as a more efficient tool for reducing revenue 

variability compared to the temperature derivative. 
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When deciding the strike price, many variables need to be considered. The temperature is 
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two degrees Celsius. The mean of the average temperatures for the different months are ranging 

from -3,9 to 3 degrees Celsius, so the cost of a weather derivative at a strike level equal to -2 or 

lower will be substantial. We have therefore chosen to use strike levels in the range -2 to -1.  

 

To find a strike level for the snow level derivative we will try to find a bare minimum snow 

level, that will still give the ski resort the possibility to run efficiently. The reason why we are 

looking at the bare minimum is that the weather derivatives purpose is, in this case, is to give the 

business a safeguard against the worst periods of snowfall. If we first look at it at a daily basis, 

then a 10 cm snow level would be a bare minimum, if we also assume an average of 30 days 

each month, will we have a monthly cumulative snow level of 300 cm. Since this is a bare 

minimum, we are also going to use a strike level of 400, 500 and 600. The reason for this 

increase in strike level is because 300 is the bare minimum and most months have significant 

higher snowfall and therefore are also the expectations of the costumers higher. 

 

We have chosen to use Edgeworth densities as our preferred pricing method when creating our 

portfolios both for snow level and temperature. One of the reasons is that it takes into account 

that snow level is not normally distributed. Another reason is that Edgeworth densities gives the 

seller an extra risk premium, which could be necessary considering that the weather derivatives 

market still is uncharted territory for many.  

 

 

 

5.3.2 Key summary of optimal strike levels 

 

In the following tables, we present key summaries, such as derivative price, payoff, and revenue 

ratios, and standard deviation ratios, when using Edgeworth densities for the optimal strike 

levels. 
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Table 21: Derivative prices, Edgeworth densities 

Derivative Price Edgeworth 

 

Strike 

level 
January February March December 

Snow Level 300 19,674 6,829 3,894 69,908 

 400 42,893 21,440 10,639 136,875 

 500 81,403 42,712 22,189 218,340 

 600 125,778 70,164 36,239 306,123 

      
Temperature -2 435,973 532,459 2,975,418 1,024,098 

 -1 242,693 271,076 1,936,982 438,125 

      

 

 

 
Table 22: Yearly derivative payoff, Edgeworth densities 

Derivative Payoff Edgeworth 

 Strike level January February March December 
Snow Level 300 -5,305 -245 798 -27,359 

 400 -12,048 -2,778 691 -46,147 

 500 -24,032 -7,095 -275 -64,122 

 600 -37,962 -13,326 -1,955 -76,166 
      

Temperature -2 -282,211 -331,927 -2,374,633 -858,156 

 -1 -148,744 -152,324 -1,571,995 -369,984 

 

 

 

 
Table 23: Mean revenue with derivatives as a fraction of mean revenue without derivatives 

Mean revenue with derivative divided by mean revenue 

without 

 

Strike 

level 
January February March December 

Snow Level 300 99.90% 100.00% 100.01% 99.21% 

 400 99.78% 99.96% 100.01% 98.66% 

 500 99.56% 99.89% 100.00% 98.14% 

 600 99.30% 99.79% 99.97% 97.79% 

      
Temperature -2 94.81% 94.86% 67.13% 75.15% 

 -1 97.26% 97.64% 78.24% 89.29% 
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Table 24: Standard deviation of revenue with derivatives as a fraction of the standard deviation without 

Standard deviation of revenue with derivative (Edgeworth) 

 

Strike 

level 
January February March December 

Snow Level 300 99.45% 99.86% 99.91% 97.27% 

 400 98.91% 99.56% 99.79% 95.31% 

 500 98.18% 99.17% 99.61% 92.84% 

 600 97.39% 98.69% 99.39% 90.17% 

      

Temperature -2 97.89% 96.54% 102.13% 93.01% 

 -1 98.34% 97.36% 101.64% 95.75% 

      

 

 

As seen in this key summary, an investment in any derivative, except March temperature, will 

decrease the standard deviation of the revenue. The mean revenue will also decrease or stay 

approximately the same.  

 

 

5.3.3 Creating portfolios with minimum variances in revenue 

 

The matrix below shows the weight combinations of snow level derivative and temperature 

derivative, which yield the lowest possible portfolio variance at a given strike level combination. 

 

 
Table 25: Minimum variance weights 

Minimum Variance Weights of Portfolios 

  January February March December 

         
Strike 

levels SL T SL T SL T SL T 

300, -1 -151.98% 251.98% -368.71% 468.71% 124.52% -24.52% -84.25% 184.25% 

300, -2 -89.45% 189.45% -266.79% 366.79% 159.28% -59.28% -72.02% 172.02% 

400, -1 -60.38% 160.38% -333.50% 433.50% 140.78% -40.78% 79.89% 20.11% 
400, -2 -46.81% 146.81% -246.56% 346.56% 170.73% -70.73% -8.73% 108.73% 
500, -1 80.21% 19.79% -268.43% 368.43% 167.41% -67.41% 209.61% -109.61% 
500, -2 22.09% 77.91% -211.30% 311.30% 189.94% -89.94% 54.11% 45.89% 
600, -1 206.81% -106.81% -187.88% 287.88% 194.92% -94.92% 296.95% -196.95% 
600, -2 93.89% 6.11% -169.70% 269.70% 209.69% -109.69% 113.72% -13.72% 
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From portfolio theory, recall that our model has no restrictions on non-negative weights, which 

means short-selling is not disallowed. For example, in January at strike price 300, to minimize 

portfolio variance, short-sell the snow level derivative and go long in the temperature derivative. 

In stock trading, a relevant argument against this strategy would be the possibility for unlimited 

losses (if the stock price increases). The same risk does not apply in this option-trade since 

cumulative snow levels cannot have negative values, and the maximal potential loss is 300 ∗ 𝜃. 

If we were to (short)-sell a temperature call, there are natural risk limitations as well, considering 

a temperature's volatility cannot be compared to stocks. 

 

The distribution of weights is very uneven, heavily favoring one derivative. Only in December, 

at strike combination 500, -2, we get approximately one half in each derivative. We want to 

showcase one portfolio in an example below. 

 

Figure 23: Portfolio frontier - a combination of snow level derivative and temperature derivative 
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In figure 23, we have drawn the portfolio frontier. The horizontal axis displays the portfolio 

standard deviation as a fraction of the standard deviation of revenue without derivative in 

December, while the vertical axis returns the portfolio mean as a fraction of mean revenue 

without derivative in December. Blue dots indicate that the portfolio weights are non-negative, 

i.e. 0 ≤ 𝑤𝑖 ≤ 1, 𝑖 = 1,2, in this area. Red dots highlight negative weights, while the green dot 

marks the combination that yields the lowest possible portfolio variance. Investors will never 

adapt to a point below this on the frontier, due to inefficiency. Ski resorts can set a specific 

expected return, and minimize risk, or set a certain level of risk and maximize expected return. 

Regardless, there are several ways to spend initial wealth. It will always be a trade-off between 

risk and return, as well as the buyer's risk aversion. A risk-neutral investor would try to 

maximize mean-variance-ratio, 
𝑅𝑝

𝜎𝑝
. In this example, one can argue that it is not worth losing 

approximately 25% of the company's income to reduce variance by 7% 

 

 

 

Table 26: Expected values and standard deviations of portfolios with derivatives as ratios of revenue without derivatives 

 

 

Short-selling is not necessarily a possibility. Few if any financial institutions would be willing to 

facilitate a shorting where they would most likely lose money. The only companies who would 

possibly be interested are local businesses in Voss who would benefit from hedging the risk of 

 

Without 

derivative 400, -2 400, -1 300, -2 300, -1 600, -2 600, -1 500,  -2 500, -1 

December          

E 100% 73.10% 96.78% 57.82% 80.93% 100.90% 114.55% 87.59% 107.85% 

SD 100% 93.00% 95.28% 92.08% 95.34% 90.12% 85.53% 92.40% 91.73% 

January          

E 100% 92.48% 95.75% 90.25% 93.25% 99.03% 101.48% 95.86% 99.10% 

SD 100% 97.77% 98.25% 97.43% 97.70% 97.39% 97.05% 97.86% 98.17% 

February          

E 100% 82.28% 89.91% 81.15% 88.95% 86.48% 93.59% 84.22% 91.60% 

SD 100% 93.33% 94.09% 87.68% 93.17% 95.10% 96.37% 94.23% 95.28% 

March          

E 100% 123.26% 108.89% 119.50% 105.35% 136.00% 120.60% 129.56% 114.66% 

SD 100% 99.57% 99.74% 99.75% 99.89% 98.83% 99.08% 99.23% 99.45% 
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too high temperatures or too little snow. So, the only possibilities are to find such business or pay 

an extra premium to a financial institution. Since it could be difficult to short weather 

derivatives, we have chosen to also look at it under the assumption that shorting is not possible. 

 

 
Table 27: Minimum variance weights - short-sales not permitted 

Minimum Variance Weights of Portfolios 

  January February March December 

         
Strike 

levels SL T SL T SL T SL T 

300, -1 0% 100% 0% 100% 100% 0% 0% 100% 

300, -2 0% 100% 0% 100% 100% 0% 0% 100% 

400, -1 0% 100% 0% 100% 100% 0% 79.89% 20.11% 
400, -2 0% 100% 0% 100% 100% 0% 0% 100% 
500, -1 80.21% 19.79% 0% 100% 100% 0% 100% 0% 
500, -2 22.09% 77.91% 0% 100% 100% 0% 54.11% 45.89% 
600, -1 100% 0% 0% 100% 100% 0% 100% 0% 
600, -2 93.89% 6.11% 0% 100% 100% 0% 100% 0% 

 

 

 

 
Table 28: Expected values and standard deviations of portfolios with derivatives as ratios of revenue without derivatives. 

Short-sales not permitted 

  
Without 

derivative 600, -2 600, -1 500, -2 500, -1 400, -2 400, -1 300, -2 300, -1 

December                   

E 100 % 97,79 % 97,79 % 87,59 % 98,14 % 75,15 % 96,78 % 75,15 % 89,29 % 

SD 100 % 90,17 % 90,17 % 92,40 % 92,84 % 93,01 % 95,28 % 93,01 % 95,75 % 

January                   

E 100 % 99,03 % 99,30 % 95,86 % 99,10 % 94,81 % 97,26 % 94,81 % 97,26 % 

SD 100 % 97,39 % 97,39 % 97,86 % 98,17 % 97,89 % 98,34 % 97,89 % 98,34 % 

February                   

E 100 % 94,86 % 97,64 % 94,86 % 97,64 % 94,86 % 97,64 % 94,86 % 97,64 % 

SD 100 % 96,54 % 97,36 % 96,54 % 97,36 % 96,54 % 97,36 % 96,54 % 97,36 % 

March                   

E 100 % 99,97 % 99,97 % 100,00 % 100,00 % 100,01 % 100,01 % 100,01 % 100,01 % 

SD 100 % 99,39 % 99,39 % 99,61 % 99,61 % 99,79 % 99,79 % 99,91 % 99,91 % 
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When excluding the possibility of shorting, the expected value decreases, and the standard 

deviation increases. So, it is no doubt that that shorting would be beneficially, but it could be 

challenging to do. 

 

 

 
Table 29: Expected value and standard deviation of revenue of final portfolio 

   Shorting allowed Shorting Not allowed 

    December January February March December January February March 

  
Without 

derivative (600, -1) (600, -1) (300, -2) (600, -2) (600, -2/-1) (600, -1) (any, -2) 
(600, -2/-

1) 

                    

E 100 % 114,55 % 101,48 % 81,51 % 136,00% 97,79 % 99,30 % 94,86 % 99,97 % 

SD 100 % 85,53 % 97,05 % 87,68 % 98,83 % 90,17 % 97,39 % 96,54 % 99,39 % 

 

 

 

When deciding which strike levels to use, we have chosen the levels based on the minimum 

variance principle. It is possible to use various principles, and none is better than the other. For 

example, could we have used the highest expected value or best Sharpe ratio, because peoples' 

adaptations are based on personal preferences. It is important to emphasize that all calculations 

of expected value and standard deviations are made using 40 years of historical data and are 

therefore not an accurate prediction of the future, but an illustration of historical values. In table 

29, we can see the end-portfolio for each of the months, with and without the possibility of 

shorting.   
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5.4 Conclusion  
 

 

In conclusion, we can see that different pricing methods gives widely different prices. However, 

all the pricing methods we have chosen to use returns a lower variation in revenue. We can also 

conclude that by using the Edgeworth densities pricing method and combining the two weather 

derivatives, snow level, and temperature, to a portfolio, will further reduce the variance in 

revenue. The strike levels and the weighting of snow levels and temperatures in each portfolio 

depend on personal preferences. We have chosen to use the principle of minimum variance and 

have ended up with the portfolio illustrated in table 29.   

Our main objective in this paper has not been to create a perfect hedging tool for Voss ski resort. 

It has been to show that even though the market for weather derivatives often is characterized by 

imperfections, uncertainties and lack of knowledge, that it is possible to use weather derivatives 

to reduce the risk of unfavorable weather, not just on paper but also in real life.  

Although we have been able to use weather derivatives as a tool of risk management, there still 

exists imperfections and weaknesses that are important to address. Basis risk, as explained in 

depth previously, is an imperfection that should always be taken into consideration. In chapter 3, 

the adjusted coefficient of determination confirms that revenue variation is not explained in full 

by the independent variable(s), which is more or less the definition of basis risk. In the same 

chapter, we demonstrated the challenges of collecting data, more specifically gathered data from 

multiple weather stations, none of them 100% representative for Voss Ski Resort. Gathering data 

from different stations no located at the ski resort contributes to an increase in the geographical 

spatial/basis risk.  

For further research and improvement, we will recommend looking at the possibility of using 

multivariate, and/or non-linear regression when calculating the tick size used in derivative 

pricing. This could improve the adjusted coefficient of determination, which in turn should 

decrease basis risk.  Using not only simple linear regression, would most likely further improve 

weather derivatives as a risk management tool.  
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Appendix 
 

A.1 Indifferent pricing method. 
 

For both the seller and buyer assume utility as a function of risk aversion and revenue. 

𝑢(𝑋) =  −𝑒−𝜆𝑋                                                           (1) 

Revenue without derivative, 𝑋𝑠
𝑤𝑜 , depends on initial wealth, 𝑥𝑠, and amount invested in capital 

markets, 𝑎𝑠. 

𝑋𝑠
𝑤𝑜 = (𝑥𝑠 − 𝑎𝑠)𝑞𝑓 + 𝑎𝑠𝑞𝑠                                       (2) 

𝑞𝑓 = 1 + 𝑟𝑓, 𝑞𝑠 = 1 + 𝑟𝑠,          𝑞𝑏 = 1 + 𝑟𝑏   (3) 

𝑟𝑏 is buyer’s return, while 𝑟𝑠 is seller’s return, and 𝑟𝑓 is risk free rate of return. 

 

𝑋𝑠
𝑤 is the seller’s revenue with a derivative. K is the number of units, and 𝐹𝑠 is the derivative 

price a seller needs. 𝑊𝑇 is the derivative’s payoff, which depend on the underlying weather index 

I. 

𝑋𝑠
𝑤 = (𝑥𝑠 − 𝑎𝑠 + 𝑘𝐹𝑠)𝑞𝑓 + 𝑎𝑠𝑞𝑠 − 𝑘𝑊𝑇(𝐼)          (4) 

Equalizing equation (2) and equation (4): 

sup
𝑎𝑠

𝐸[𝑢(𝑋𝑠
𝑤𝑜)] = sup

𝑎𝑠

𝐸[𝑢(𝑋𝑠
𝑤)]                                (5) 

Approximating the certainty equivalent, �̂�, of the utility function using Taylor expansion or 

Pratt’s theorem in equations in six to nine. µ𝑥 represents expected wealth, while �̃� is stochastic 

wealth. 

𝑈(�̂�) = 𝐸[𝑈(�̃�)]                                                           (6) 

→  �̂� = µ𝑥 −
1

2
𝜆𝜎𝑥

2                                                        (7) 

• Put (7) into (6) and get (8). 

sup
𝑎𝑠

[𝐸(𝑋𝑠
𝑤𝑜) −

1

2
𝜆𝑠𝜎2(𝑋𝑠

𝑤𝑜)] = sup
𝑎𝑠

[𝐸(𝑋𝑠
𝑤) −

1

2
𝜆𝑠𝜎2(𝑋𝑠

𝑤)]                  (8) 
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• Setting (3), then (4), into (7), we get expressions for certainty equivalents with and 

without derivative respectively. E denotes expectation, 𝜆 the risk parameter (absolute), 

and 𝜎 is either variance or co-variance. 

𝐶𝐸𝑠
𝑤𝑜 = 𝑥𝑠𝑞𝑓 + 𝑎𝑠(𝐸(𝑞𝑠) − 𝑞𝑓) −

1

2
𝜆𝑠𝑎𝑠

2𝜎𝑞𝑠
2            (9) 

 

𝐶𝐸𝑠
𝑤 = 𝑥𝑠𝑞𝑓 + 𝑘 𝐹𝑠𝑞𝑓 + 𝑎𝑠(𝐸(𝑞𝑠) − 𝑞𝑓) − 𝑘𝐸(𝑊) −

1

2
𝜆𝑠𝑎𝑠

2𝜎𝑞𝑠
2 −

1

2
𝜆𝑠𝑘2𝜎𝑊

2

+ 𝜆𝑠𝑎𝑠𝑘𝜎𝑞𝑠,𝑊
                                                               (10) 

 

• 𝐹. 𝑂. 𝐶: 
𝜕𝐶𝐸𝑠

𝑤𝑜

𝜕𝑎𝑠
= 0 

→ 
𝜕𝐶𝐸𝑠

𝑤𝑜

𝜕𝑎𝑠
= 𝐸(𝑞𝑏) − 𝑞𝑓 − 𝜆𝑠𝑎𝑠𝜎𝑞

2
𝑠

= 0 

𝑎𝑠
𝑤𝑜∗ =

𝐸(𝑞𝑠) − 𝑞𝑓

𝜆𝑠𝜎𝑞
2

𝑠

                                                       (11) 

• 𝐹. 𝑂. 𝐶: 
𝜕𝐶𝐸𝑠

𝑤

𝜕𝑎𝑠
= 0 

→ 
𝜕𝐶𝐸𝑠

𝑤

𝜕𝑎𝑠
= 𝐸(𝑞𝑠) − 𝑞𝑓 − 𝜆𝑠𝑎𝑠𝜎𝑞

2
𝑠

+ 𝜆𝑠𝑘𝜎𝑞𝑠,𝑊
= 0 

𝑎𝑠
𝑤∗ =

𝐸(𝑞𝑠) − 𝑞𝑓 + 𝜆𝑠𝑘𝜎𝑞𝑠,𝑊

𝜆𝑠𝜎𝑞
2

𝑠

                                      (12) 

• We set (11) into (9) and (12) into (10) and solve for 𝐹𝑠 to find the indifference price for 

the seller. 𝜌 is the correlation coefficient. 

𝐹𝑠 =
1

𝑞𝑓
(𝐸(𝑊) −

1

2
𝜆𝑠𝑘𝜎𝑊

2 (𝜌𝑞𝑠,𝑊
2 − 1) −

𝜎𝑊

𝜎𝑞𝑠

((𝐸(𝑞𝑠) − 𝑞𝑓)𝜌𝑞𝑠,𝑊
),            

𝜋𝑠 = −
1

2
𝜆𝑠𝑘𝜎𝑊

2 (𝜌𝑞𝑠,𝑊
2 − 1) −

𝜎𝑊

𝜎𝑞𝑠

((𝐸(𝑞𝑠) − 𝑞𝑓)𝜌𝑞𝑠,𝑊
                           (13) 

𝐹𝑠 =
1

𝑞𝑓
𝐸(𝑊) + 𝜋𝑠                                                            (14) 
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• Buyer’s solution 

𝑎𝑏
𝑤𝑜∗ =

𝐸(𝑞𝑏) − 𝑞𝑓

𝜆𝑏𝜎𝑞𝑏
2

                                                        (15) 

𝑎𝑏
𝑤∗ =

𝐸(𝑞𝑏) − 𝑞𝑓 − 𝜆𝑏𝑘𝜎𝑞𝑏,𝑊

𝜆𝑏𝜎𝑞𝑏
2

                                    (16) 

𝐹𝑏 =
1

𝑞𝑓
(𝐸(𝑊) +

1

2
𝜆𝑏𝑘𝜎𝑊

2 (𝜌𝑞𝑏,𝑊
2 − 1) −

𝜎𝑤

𝜎𝑞𝑏

((𝐸(𝑞𝑏) − 𝑞𝑓)𝜌𝑞𝑏,𝑊 ,   

𝜋𝑏 =
1

2
𝜆𝑏𝑘𝜎𝑊

2 (𝜌𝑞𝑏,𝑊
2 − 1) −

𝜎𝑤

𝜎𝑞𝑏

((𝐸(𝑞𝑏) − 𝑞𝑓)𝜌𝑞𝑏,𝑊            (17)           

𝐹𝑏 =
1

𝑞𝑓

(𝐸(𝑊) + 𝜋𝑏)                                                            (18) 

A.2 Portfolio theory 
 

Activum 𝑗. (𝑗 = 1,2, … , 𝑁) 

Return: 𝑅𝑗 

Expectation: 𝜇𝑗 = 𝐸(�̃�𝑗) 

Variance: 𝜎𝑗
2 = 𝜎𝑗𝑗 = 𝑉𝑎𝑟(�̃�𝑗) 

Co-variance: 𝜎𝑗𝑘 = 𝐶𝑜𝑣(�̃�𝑗 , �̃�𝑘) 

Vector/matrix notation: 

Return vector (𝑁𝑥1): �̃� = (�̃�𝑗) 

Expectation vector (𝑁𝑥1): µ = (µ𝑗) 

Variance co-variance matrix (𝑁𝑥𝑁): 𝑉 = (𝜎𝑗𝑘) 

Weight vector (𝑁𝑥1): 𝑊 = (𝑊𝑗) 

Inverted variance co-variance matrix (𝑁𝑥𝑁): 𝑉−1 

Transposition operator: T 

Assumptions: 

- Linearly independent activas. The variance-covariance matrix V is symmetric and 

positive definite, such that the symmetric, inverse variance-covariance matrix 𝑉−1 

exists. 
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- At least two activas have different expectation 

 

Portfolio relations and matrix rules: 

• Stochastic return: �̃�𝑝 = 𝑊′�̃� = �̃�′𝑊 

• Mean return: µ𝑝 = 𝐸(�̃�𝑝) = 𝑊′𝜇 = 𝜇′𝑊 

• Variance: 𝜎𝑝
2 = 𝑉𝑎𝑟(�̃�𝑝) = 𝑊′𝑉𝑊 

• N-summation vector: 𝑒𝑁 = 𝟏 (𝑎 𝑁𝑥1 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑜𝑛𝑒𝑠) 

• 0𝑁 = 𝟎 (𝑎 𝑁𝑥1 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑧𝑒𝑟𝑜𝑠) 

• Note that negative weights (“short sales”) are not precluded. 

 

The optimization problem is to choose portfolio weights that: 

 

• Minimize the portfolio variance 𝜎𝑝
2 

• Subject to a given portfolio mean 𝜇𝑝 = �̅� 

• And subject to the budget restriction ∑ 𝑥𝑗 = 1𝑁
𝑗=1  

 

min
𝑊

1

2
𝑊𝑇𝑉𝑊 

𝑠. 𝑡.        𝑊𝑇 = �̅� 

           𝑠. 𝑡.     𝑊𝑇𝑒 = 1           

 

• Lagrange: 𝐿 =
1

2
𝑊𝑇𝑽𝑊 − 𝜆1[𝑊𝑇 − µ̅] − 𝜆2[𝑊𝑇𝑒 − 1] 

• Lagrange multipliers: 𝜆1(µ̅) and 𝜆2(𝑒) 

• F.O.C 

∂L

∂W
= VW − 𝜆1𝜇 − 𝜆2𝑒 = 0𝑁 

• Reformulated: 𝑉𝑊 = 𝜆1𝜇 + 𝜆2𝑒 

• Premultiplying by the inverse inverse covariance matrix 𝑉−1 to find the weights of the 

frontier portfolio 𝑊 = 𝜆1𝑉−1𝜇 + 𝜆2𝑉−1𝑒 (**) 
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• The optimal weight for asset 𝑗 = 1,2, . . , 𝑁 in frontier portfolio having mean µ̅:  

𝑥𝑗 = 𝜆1(�̅�) ∑ 𝑉𝑗𝑘
−1

𝑁

𝑘=1
𝜇𝑘 + 𝜆2(µ̅) ∑ 𝑉𝑗𝑘

−1          (1)
𝑁

𝑘=1
 

• Where 𝑉𝑗𝑘
−1 is the element in 𝑗-th row and 𝑘-th column of 𝑉−1. 

• Premultiply (**) by mean vector: 𝜇𝑇𝑊 = 𝜆1𝜇𝑇𝑉−1 µ + 𝜆2µ𝑇𝑉−1𝑒 

• And then by summation vector: 𝑒𝑇𝑊 = 𝜆1𝑒𝑇𝑉−1 µ + 𝜆2𝑒𝑇𝑉−1𝑒 

• Definition of “information constants”: 

 

𝑎 ≡ 𝜇𝑇𝑉−1𝜇 > 0 

𝑏 ≡ 𝜇𝑇𝑉−1𝑒 = 𝑒𝑇𝑉−1𝜇 

𝑐 ≡ 𝑒𝑇𝑉−1𝑒 > 0 

𝑑 ≡ 𝑎𝑐 − 𝑏2 > 0 

 

• The left-hand side are, respectively, the desired mean �̅� and the number one, giving two 

equations in the unknown Lagrange multipliers: 

𝑎𝜆1 + 𝑏𝜆2 = �̅� 

𝑏𝜆1 + 𝑐𝜆2 = 1 

𝜆1 = 𝜆1(�̅�) =
𝑐�̅� − 𝑏

𝑑
 

𝜆2 = 𝜆2(�̅�) =
𝑎 − 𝑏�̅�

𝑑
 

 

• All frontier portfolios (without any additional restrictions on the weights) satisfy:  

𝜎𝑝
2 =

(𝑎 − 2𝑏𝜇𝑝 + 𝑐µ𝑝
2)

𝑑
 

 

 

 

 


