
K
.W

.R
, R

.I.C
, J.B

, V.E.A
D

igital verification of identity

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

B
ac

he
lo

r’
s

pr
oj

ec
t

Karoline Wisløff Rud, Ruben Isaksen Cheung,
Jørgen Berntsen, Vegard Elshaug Almås

Digital verification of identity

Bachelor’s project in Dataingeniør
Supervisor: Deepti Mishra, Rune Hjelsvold

May 2019

Karoline Wisløff Rud, Ruben Isaksen Cheung,
Jørgen Berntsen, Vegard Elshaug Almås

Digital verification of identity

Bachelor’s project in Dataingeniør
Supervisor: Deepti Mishra, Rune Hjelsvold
May 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Digital verification of identity

Author(s)

Ruben Isaksen Cheung
Karoline Wisløff Rud
Jørgen Berntsen
Vegard Elshaug Almås

Bachelor of Science in Engineering - Computer Science
20 ECTS

Department of Computer Science
Norwegian University of Science and Technology,

20.05.2019

Supervisor Deepti Mishra
Rune Hjelsvold

Digital verification of identity

Sammendrag av Bacheloroppgaven

Tittel: Digital identitetsverifisering

Dato: 20.05.2019

Deltakere: Ruben Isaksen Cheung
Karoline Wisløff Rud
Jørgen Berntsen
Vegard Elshaug Almås

Veiledere: Deepti Mishra
Rune Hjelsvold

Oppdragsgiver: Buypass AS

Kontaktpersoner: Jørn Magne Raastad
Alexander Dreyer Johnsen

Nøkkelord: API, Android, ID-verifisering, Buypass, Scrum
Antall sider: 81
Antall vedlegg: 20
Tilgjengelighet: Åpen

Sammendrag: Med et økende antall trusler på internett blir sikker autentis-
ering viktigere og viktigere. Buypass er en av de få aktørene i
Norge som kan utstede elektronisk ID på nivå Høyt, og denne
ID’en muliggjør innlogging hos aktører som Nav, Altinn og
Skatteetaten. Dagens utstedelsesprosess er både ressurs- og
tidkrevende, og Buypass ønsket å få utviklet en prototype
til en Android applikasjon som ville muliggjøre digital iden-
titetsverifisering. Vår løsning involverer en tre-stegs verifis-
eringsprosess som består av en dokumentverifisering, en an-
siktsgjenkenning og en ”liveness check“. Applikasjonen ut-
forsker også muligheten til å benytte Near Field Communi-
cation for verifiseringen av e-pass med mobiltelefon. Den fer-
digstilte løsningen inkluderer implementasjonen av et tred-
jeparts API, samt et backend API skrevet i Node.js

i

Digital verification of identity

Summary of Graduate Project

Title: Digital verification of identity

Date: 20.05.2019

Authors: Ruben Isaksen Cheung
Karoline Wisløff Rud
Jørgen Berntsen
Vegard Elshaug Almås

Supervisor: Deepti Mishra
Rune Hjelsvold

Employer: Buypass AS

Contact Persons: Jørn Magne Raastad
Alexander Dreyer Johnsen

Keywords: API, Android, ID Proofing, Buypass, Scrum
Pages: 81
Attachments: 20
Availability: Open

Abstract: With an increasing number of Internet threats, secure au-
thentication is more important than ever. Buypass is one of
the few parties in Norway that can issue electronic IDs at
level High, which enables login to actors such as Nav, Al-
tinn and the Tax Administration (Skatteetaten). Today’s ver-
ification process is both resource and time consuming, and
Buypass wanted us to develop a prototype for an Android
application that would enable digital verification of identity.
Our solution provides a three step verification process con-
sisting of a document image validation, a face comparison
and a liveness check. It also explores the possibility of us-
ing Near Field Communication to verify e-passports using a
smartphone. The end result includes the implementation of
a third-party API, as well as a backend API written in Node.js.

ii

Preface

This bachelor thesis is written by Ruben Isaksen Cheung, Karoline Wisløff Rud, Jørgen Berntsen
and Vegard Elshaug Almås, students at NTNU in Gjøvik, department of Computer Science.

We would like to thank Buypass AS, and in particular Jørn Magne Raastad and Alexander
Dreyer Johnsen for an exciting assignment, and providing feedback and support throughout
the project. The assignment has provided experience in a development project in an exciting
area within computer science. It has been motivational to work with something that is highly
relevant and provident.

We would like to thank our supervisors Deepti Mishra and Rune Hjelsvold. They have
provided valuable guidance and expertise throughout the project. We would also like to thank
the staff of NTNU in Gjøvik who have provided assistance with problems throughout the
project.

We would lastly like to thank Keesing Technologies and their helpdesk for providing and
interesting technology and help throughout the project.

iii

Contents

Preface . iii

Contents . iv

List of Figures . ix

Listings . xi

1 Introduction . 1

1.1 Background . 1

1.2 Project Description . 1

1.3 Keesing Technologies . 1

1.4 Boundaries . 2

1.5 Scope . 2

1.6 Team Members and Roles . 2

1.7 Target Users . 3

2 Technologies and Tools . 4

2.1 Near Field Communication . 4

3 Requirements . 6

3.1 Login . 6

3.2 Use Cases . 6

3.3 Backend . 9

3.3.1 Database Requirements . 9

3.4 Frontend . 10

3.4.1 User Experience . 10

3.4.2 Camera Requirements . 10

3.4.2.1 Functional Requirements . 10

3.4.2.2 Camera UX Requirements . 11

3.5 Security Requirements . 11

3.5.1 Misuse Cases . 12

3.6 Evaluation of the Verification Process . 12

3.7 NFC Requirements . 13

3.7.1 Use Cases . 14

4 Software Development Method . 17

4.1 Scrumban . 17

4.1.1 Planning Poker . 18

4.1.2 Trello . 18

4.1.3 Toggl . 18

4.1.4 Daily Scrum . 19

iv

Digital verification of identity

4.1.5 Sprint Planning Meeting . 19

4.1.6 Sprint Review and Retrospective Meeting 19

4.1.7 Meetings with Supervisors . 19

4.1.8 Milestones . 19

4.2 Version Control . 20

5 Design . 21

5.1 System Design . 21

5.2 Backend . 21

5.3 Frontend Application . 22

5.4 GUI and UI Design . 24

5.4.1 Simplicity . 24

5.4.2 Clarity . 25

5.4.3 Consistency . 25

5.4.4 Familiarity . 25

5.4.5 Efficiency and Responsiveness . 25

5.4.6 Style . 25

5.5 Camera Design . 25

5.6 NFC Design . 27

5.7 Database . 28

5.7.1 Google Firestore . 28

5.7.2 Document Database Design . 28

6 Implementation . 31

6.1 System Overview . 31

6.2 Backend . 31

6.2.1 API . 34

6.2.2 Communication with Keesing . 36

6.2.3 Webhook . 37

6.2.4 Push Notifications . 37

6.3 Frontend . 37

6.3.1 Application Structure . 38

6.3.2 Efficiency and Responsiveness . 39

6.3.3 Slider and Popups . 41

6.3.4 Toolbar . 41

6.3.5 User Page . 42

6.3.6 Push Notifications . 43

6.3.7 Camera2 Implementation . 43

6.3.7.1 Photo Application . 44

6.3.7.2 Finding the Right Camera Size 46

6.3.7.3 Applying Camera Filters . 46

6.3.7.4 User Instructions . 46

v

Digital verification of identity

6.3.7.5 Video Application . 47

6.3.7.6 MediaRecorder . 47

6.3.7.7 Implementing Video Requirements 47

6.4 NFC . 48

6.4.1 Getting MRZ Information for the BAC Key 48

6.4.2 Implementing the NFC Reader . 48

6.4.3 Accessing and Reading the RFID Chip . 49

6.5 Database . 49

6.6 Security . 52

6.6.1 Frontend . 53

6.6.2 Backend . 53

6.6.2.1 Validating Requests . 53

6.6.2.2 Preventing DOS-attacks . 54

6.6.2.3 Secure Data Transmission . 54

6.6.2.4 Database Security . 54

6.6.3 Evaluation of the Verification Process . 55

7 Testing and User Feedback . 56

7.1 Static Code Analysis . 56

7.1.1 Frontend . 56

7.1.2 Backend . 56

7.2 Manual Testing . 57

7.3 User Testing and Feedback . 58

8 Development Process . 59

8.1 Scrumban as Development Method . 59

8.1.1 Group Meetings . 59

8.1.2 Pair Programming . 61

8.2 Sprints and Milestones . 61

8.3 Minimum Viable Product Approach . 62

8.4 Interaction with Stakeholders . 63

8.4.1 Initial Meeting with Buypass . 63

8.4.2 Initial Meeting with Keesing Technologies 63

8.4.3 Continuous Feedback . 64

8.4.4 Challenges . 64

8.4.5 Concluding Demonstration . 65

8.5 Version Control . 65

8.6 Developing the Camera Application . 66

9 Discussion . 68

9.1 Development Method and Process . 68

9.1.1 Minimum Viable Product Approach . 69

9.1.2 Testing and Development . 69

vi

Digital verification of identity

9.1.3 Implementing an API in Development . 70

9.2 User Testing . 70

9.3 Backend Solution . 71

9.4 Application Design . 72

9.5 System Security . 73

9.6 Evaluation of the Verification Process . 74

10 Conclusion . 76

Bibliography . 78

A Project assignment . 82

B Project agreement . 85

C Project Plan . 89

D Gantt Diagram . 115

E Technologies and tools . 117

F Data Flow Diagram . 119

G JSON verification result . 121

H Buypass’ website . 122

I Uploading Files from the Application . 124

I.1 Volley . 124

I.2 Retrofit 2 . 124

I.2.1 OkHttp . 124

J Test cases . 125

K API structure . 127

L Retrospective Meeting logs . 129

L.1 Sprint 1 Retrospective Meeting . 129

L.1.1 What worked well? . 129

L.1.2 What could be improved? . 129

L.1.3 What will we commit to doing in the next sprint? 129

L.2 Sprint 2 Retrospective Meeting . 129

L.2.1 What worked well? . 129

L.2.1.1 Workflow . 129

L.2.1.2 Demo . 129

L.2.2 What could be improved? . 129

L.2.2.1 Workflow . 129

L.2.2.2 UX . 130

L.2.2.3 API . 130

L.2.3 What will we commit to doing in the next sprint? 130

L.3 Sprint 3 Retrospective Meeting . 130

L.3.1 What worked well? . 130

L.3.2 What could be improved? . 130

L.3.3 What will we commit to doing in the next sprint? 130

vii

Digital verification of identity

M Sprints . 131

N Version control . 135

O Meeting logs supervisors . 136

P Meeting logs Buypass . 147

Q Toggl time reports . 154

R ESLint configuration . 157

S SSL and NGINX configuration . 158

T Application screens . 161

viii

List of Figures

1 Organization of our developing team . 3

2 Use cases involving verification using image analysis 7

3 Use cases for reading a passport using NFC. 15

4 Pie chart representing the time spent in sprint 1 18

5 Overall architecture of the project . 21

6 Backend modules communication flow with entities 22

7 Frontend Architecture . 23

8 Blueprint of the main template . 24

9 Camera GUI design . 26

10 Overview of the activities in the NFC part of the application 28

11 The Users and Verifications collection and its documents and sub collections . . 29

12 Sequence diagram showing a typical passport verification process 32

13 Sequence diagram showing how verification results are updated and queried. . 33

14 API calls, methods and parameters . 35

15 Frontend activities and helper classes . 40

16 Application introduction slider . 41

17 A selection of popups . 42

18 User Page and Verification Report . 42

19 Overview of the photo application . 45

20 The figure shows the process of detecting and reading a passport RFID chip . . 50

21 Reading the NFC tag in a passport . 51

22 SonarQube results of the frontend code . 57

23 Trello board during sprint 4 . 60

24 The total time conducted divided between the five sprints 61

25 Timeline throughout the project . 62

26 Application versions . 64

27 Workflow . 66

28 Pie charts representing time consumed to different activities within each sprint,
and of the overall project . 132

29 Go SSL certificate information . 159

30 welcome introduction . 161

31 Login procedure . 162

ix

Digital verification of identity

32 Passport or two-sided ID document choice . 162

33 Two sided ID document . 163

34 Choice of passport verification . 163

35 Camera for document photos . 164

36 Upload and error message . 165

37 Selfie activity . 165

38 Camera for face comparison . 166

39 Liveness Activity . 166

40 Liveness check - face recording . 167

41 Verification complete screen . 168

42 User page . 168

43 NFC Activity . 169

44 NFC - Scan MRZ . 170

45 NFC - Edit MRZ info . 171

46 NFC - Result . 171

x

Listings

6.1 Server file, server.js . 34

6.2 Node.js function getToken() . 36

G.1 Verification result JSON object . 121

R.1 ESLint configuation file . 157

S.1 NGINX configuration file . 158

xi

1 Introduction

1.1 Background

Buypass AS is a Norwegian IT company that specializes in developing solutions for electronic
identification, signatures and payment. Their electronic ID’s can be used to access services
like Altinn, Digipost, Skattemeldingen, medical journals, prescriptions and so on.

The way it is today Buypass cooperates with certain post offices and in order to obtain
a Buypass ID the client has to present himself with a valid ID document in order to verify
his identity. This process is both expensive and inconvenient for the clients, so Buypass are
looking for a way to make the process faster, less expensive and more user friendly.

Today most people in Norway owns a smartphone, and most of these have cameras and
NFC-readers1. Buypass are looking for an extension of their existing application, providing
the functionality to perform digital verification of identity.

1.2 Project Description

Buypass issues ID’s with different security levels. In order to get a level 4 (High) electronic
ID the client needs to identify himself to a trained post office employee with a passport. Our
project revolves around simplifying this process by letting the client identify himself through
the use of his phone. For doing remote ID proofing by using a phone there are two main
options, one consists of taking a photo of an ID-document and use image analysis to verify
it, or it can be verified by using NFC. We want to explore both these options. In order to
get a level 4 ID a passport is needed for the verification process, but in order to make the
application applicable for issuing IDs on different levels, we also include the option of using
a driver’s license.

1.3 Keesing Technologies

Keesing Technologies is a Dutch company that specializes in solutions for authenticating
ID documents and banknotes. They cooperate with international government agencies, em-
bassies and banks to provide high quality services.

Keesing has a web API, the Keesing Authentiscan API, which has functionality for checking
document authenticity by verifying them against a large database of document templates. It is
also able to perform biometric facial comparison and a liveness check which tells you whether
a person in a video is a real living person or not.

If an ID document cannot be recognized Keesing has trained helpdesk professionals that
perform manual authentication of the document. Their API can be used to authenticate both
Norwegian passports and driver’s licenses.

1Near Field Communication

1

Digital verification of identity

1.4 Boundaries

Buypass collaborates with Keesing Technologies and we will be implementing the Authentis-
can API. So far it does not support verification through NFC, but this feature is supposed to
be released in a quite near future. For this reason our application mainly focuses on passport
and driver’s license verification through photos.

1.5 Scope

Our goal is to create a prototype that demonstrates how digital ID proofing can be imple-
mented by using Keesing Technologies’ API. For this reason the main focus is on developing
functionality that demonstrates our way of performing ID proofing using a smartphone.

Security is a major concern for such an application, but due to the limited time we had
to work on the project, we decided that implementing all the security requirements for an ID
proofing app falls outside the scope of the project. For the same reason we have considered
optimizations for performance and performance testing to be outside the scope of the project.

Buypass explicitly wants to explore working with Keesing Technologies, so we will not be
exploring alternative providers of ID checking solutions. Still, because Buypass does not have
any previous experience working with Keesing’s APIs, an important part of our project is to
evaluate to what degree their API fulfills the requirements imposed by our stakeholders. For
this reason we also want to do some preliminary testing of the final product to see whether
or not this is a solution that could potentially be used for real life ID verification.

Our product is a native Android application. The main reason why we have not developed
an iOS application is that at the moment the NFC technology on iOS devices is locked for third
party developers, which means we are not able to implement the NFC part of the application
for iOS. We could have made a separate iOS application without NFC functionality, but since
our focus is to create a prototype to demonstrate how new technology can be used for ID
proofing, our priority was to create a full demo application for Android instead.

1.6 Team Members and Roles

Karoline is our chosen group leader, and scrum master, see figure 1. This gave her the fi-
nal word if there were any disputes within the group. The choice of Karoline as our group
leader was made on the background of her earlier experience in conducting a bachelor the-
sis. Vegard is the deputy head, and will in the case of Karoline’s absence function as group
leader. Jørgen is documentary responsible within the group, whether this is meeting reports
or documentation regarding the development for the product owner and the supervisors.

Due to the small size of the team for this project we have all worked as developers. In order
to foresee the necessary progress regarding functionality, documentation and code quality we
have divided the tasks into bigger modules where two and two have focused more on one
part.

With a small team we all have been involved in every technology aspect of the develop-
ment process, but we did give each team member one main area of focus. The team members
then were responsible for doing extra thorough research on the field. Jørgen had the main
responsibility for the server side of the project, Ruben, the main responsibility for the GUI and
UX, Karoline, the main responsibility for functionality of the mobile application and Vegard
the main responsibility for the security aspect of the project.

2

Digital verification of identity

Figure 1: Organization of our developing team

1.7 Target Users

Our target end users is mainly Bypass’ old costumers which consists of larger businesses
that need authentication smart cards, or private costumers that want an electronic ID. This
means anyone of age, and the target audience is large. According to Buypass they have over
2,3 million Norwegian citizens using their products [1].

3

2 Technologies and Tools

Throughout the project we have used several tools and technologies providing solutions for
problems and implementations. Following is a list providing an overview of some of the
more specific tools and technologies within our project, see appendix E for a more general
and extensive list.

API: An API1 is a tool for simplifying programming by abstracting the underlying implemen-
tation and only exposing objects and actions the developer may need [2].

REST: REST2 is a software architectural style defining constraints for creating web ser-
vices [3].

PuTTY: PuTTY is a remote terminal emulator which allows for logging onto our backend
VM3. Configured via SSH4 through NTNU’s network. SSH is used for remote command-
line login and remote command execution [4].

SSL: SSL5 is a standardized cryptographic protocol and security related technology for se-
curing communication online. See appendix S for more information and configuration
details.

Firebase: Google’s web and mobile application development platform, providing different
functionality such as Google Cloud Functions and Cloud Messaging.

Firestore: Flexible and scalable database for web and mobile applications.

Firebase Cloud Messaging: FCM6 is a cross-platform messaging solution [5].

2.1 Near Field Communication

Near Field Communication (NFC) is a technology evolved from radio frequency identification
(RFID) that enables wireless communication between two devices by bringing them within
short distance of each other (4-20 cm) [6]. NFC is used for many purposes, like in contact-less
payment, public transportation cards and electronic passports. Most newer Android phones
are equipped with an antenna that enables it to read NFC tags.

E-passports: All passports are standardized by ICAO (International Civil Aviation Organi-
zation). Since 2016 all passports are required to be Machine Readable (referred to as
Machine Readable Travel Documents/MRTD), which means that they need to have two
lines at the bottom of the passport which can be read by a machine, and which contain
information like name, date of birth, expiry date etc. This is referred to as the Machine

1Application Programming Interface
2Representational State Transfer
3Virtual Machine
4Secure Shell
5Secure Sockets Layer
6Firebase Cloud Messaging

4

Digital verification of identity

Readable Zone (MRZ). Many passports, including Norwegian passports issued after
October, 2005 [7], are so called e-passports. E-passports have a chip (called an RFID
chip) that contains all passport information, like personal data (name, age, personal
identification number etc), images and biometric info (only in new passports).

Access protocols for e-passports: Since an electronic passport can be read by any device
with an NFC reader, certain security measures are required. Otherwise one could imag-
ine personal data being stolen by someone scanning a passport through a person’s
pocket while waiting in line at the airport or in similar situations. To avoid this the
RFID-chip is protected by a Basic Access Control protocol(BAC). BAC involves calcu-
lating a key from the passport number, expiration date and date of birth and using this
to access the chip. There are many different files stored in the RFID chip. These have
different levels of security, so that only authorized readers can access the most sensitive
data. In this project we are mainly interested in two files, the DG1 file, which contains
all personal data from the MRZ (name, nationality, gender, date of birth, personal iden-
tification number and so on), and the DG2 file, which contains passport image data.
Both of these files are accessible through BAC.

More sensitive information, like fingerprints and other biometric data is protected by
another security protocol, the Extended Access Control (EAC). To pass the EAC the NFC
reading device needs to present a CVCA7-certificate that proves that it has permission
to read sensitive files.

There are also protocols for verifying the authenticity of the RFID chip itself. The Passive
Authentication protocol can be used to verify that the content of the RFID chip has not
been tampered with, and the Active Authentication protocol can be used to reveal if
the chip has been cloned [8].

7Country Verifier Certification Authority

5

3 Requirements

Keesing’s API offers three ways to make a verification safe:

1. Checking the authenticity of the chosen ID document.
2. Using facial recognition to verify that the document belongs to the person using the

app.
3. Detecting human presence in the verification through a “liveness” check.

In order to go through with these steps our application must be able to

• Take photos and a video.
• Upload these media files to Keesing for verification.
• Retrieve the verification results from Keesing.
• Inform the user when the verification result is ready.
• Convey the verification results to the user.

We will start by giving an overview and description of the most important use cases and
then we will dig deeper into the specific requirements for different aspects of the application
(camera, database, security etc).

As Keesing is not able to perform ID proofing through NFC1 yet, the NFC part of our
application is not part of the real verification process in our prototype. For this reason we
will discuss the use cases and requirements for the NFC application in its own section at the
end of the chapter.

3.1 Login

As our application will be integrated into Buypass’ existing app, which already have a se-
cure login procedure, creating a safe login is not part of our requirements. However, since
a verification process needs to be connected to a specific user, we need to create a “mock”
login screen in order to obtain a user name. This screen is only created for demonstration
purposes and will not be part of a real integration of the app. For this reason we do not have
any specific requirements to the login screen or the login security.

3.2 Use Cases

The following pages contain descriptions of the most important use cases. Figure 2 shows how
use cases related to the verification process using the phone camera relates to one another
and the different actors.

Name: Show info
Actor: User
Goal: Get more information
Description: At each verification step, the user can click an information button

in order to show more information about that particular step of the
process.

1Near-field communication

6

Digital verification of identity

Figure 2: Use cases involving verification using image analysis

7

Digital verification of identity

Name: Verify identity
Actor: User
Goal: Verify the users identity against an ID document
Description: The user verifies his identity by going through the three steps: docu-

ment photo, face photo and liveness check. The verification process
starts when the user picks passport or driver’s license as his ID docu-
ment of choice.

Name: Take document photo
Actor: User
Goal: Take a photo of the ID document
Description: The user takes a photo of the main page of his passport or his driver’s

license. If he uses a driver’s license he takes a photo of the front and
back of the document.

Name: Take selfie
Actor: User
Goal: Taking a face photo
Description: The user takes a photo of his face in order to prove that he is the

same person as the person on the ID document.

Name: Record face video
Actor: User
Goal: Record a video proving that the user is a real person
Description: The user records a two second video where he is instructed to say a

sentence or make a few grimaces in order to prove he is a real person.

Name: Verify document
Actor: Keesing Technologies
Goal: Verify the authenticity of an ID document
Description: Keesing receives a document photo and uses image analysis to per-

form an automatic verification of the document. If the document can-
not be recognized, a manual check is performed at their helpdesk.

Name: Do face match
Actor: Keesing Technologies
Goal: Check if the person on a document photo is the same as the person

on a face photo.
Description: After receiving a document photo, Keesing receives a face photo and

uses facial recognition to check that the face on the ID document
matches the face in the face photo.

Name: Do liveness check
Actor: Keesing Technologies
Goal: Check that the person on the face video is a real person
Description: Keesing receives a face video and uses video analysis and blinking

detection to verify that the person in the video is a real person.

Name: Get push notification
Actor: User
Goal: Inform the user that the result of a verification process is ready.
Description: When the result of a verification process is ready, the user should

receive a push notification letting him know that he can log in and
check the results.

8

Digital verification of identity

Name: Check verification results
Actor: User
Goal: Check the result of all completed or ongoing verification processes.
Description: The user logs in to "Min side" in order to see the result of a verification

processes. The verifications are sorted by date and time and color
coded (green = approved, red = not approved, orange = pending).
The user can click on a specific verification to show details.

Name: Check verification details
Actor: User
Goal: See details about why a verification was approved/not approved.
Description: If the user clicks on a verification in the result list he can see the out-

come of each of the verification steps (document photo, face match
and liveness check). If either of them failed a message explains why
it failed and what to do next.

3.3 Backend

The backend of our project needed to be able to handle requests from both the mobile appli-
cation and the third party API, and to work as a mediator between the two. The API would
further on need to be able to handle photo uploads, video uploads, larger JSON arrays/ob-
jects and interaction with the database.

3.3.1 Database Requirements

As we are dealing with quite sensitive data, we do not want to store more data than we need.
Our database serves two main purposes:

1. To store the result of a verification process.
2. To store data needed for communication between our server, Keesing’s server and the

user application.

The first requirement is imposed by Buypass. When a user completes a verification process
they want to be able to see the result of the verification and to know details about why
it succeeded or not. The verification result we receive from Keesing is a JSON object, see
appendix G.

All the fields of the verification result should be stored in our database although the some
of the fields (like personal ID number, document number, date of birth etc) are not strictly
necessary for our application as the verification process is not dependent on it. If our proto-
type were to be developed further, it would be useful for Buypass to be able to compare this
information from the user’s Buypass profile and the National registry, so they requested to
store the entire verification result.

The second requirement relates to what information we need to keep stored on a user
in order to facilitate communication between app, server and Keesing. Keesing uses a verifi-
cation ID to identify each verification process. Photos and videos are uploaded individually,
and so whenever a file is uploaded from the user, we need to know which verification ID
to use. Once the user has started a verification process he cannot start another verification
until the first one is either completed or aborted. For this reason we always need to store the
verification ID of an ongoing verification process.

Since we use push notifications to inform the user when Keesing is finished processing a
verification process, we also need to store an individual identification token for this purpose.

9

Digital verification of identity

With all this in the database it must support these main queries.

1. Collecting the ID of an ongoing verification process.
2. Check the status of a user’s verification processes.
3. Collect a user’s token in order to send a push.
4. Find the username associated with a given verification ID.

3.4 Frontend

As our task is to create a native Android application the frontend of our project is set to be a
smartphone which will communicate with the backend as mention over. The application will
target API level 26 as we want to aim at Google Play requirements for uploading an APK2.

3.4.1 User Experience

The application is set to be a functionality demonstrating application for Buypass, and the
design aspect of the application is important. This involves both UX3 and GUI4. We have cre-
ated a list of requirements to fulfill in order to reach the desired end result. The requirements
are inspired by the articles ”Principles of User Interface Design“ by Joshua Porter [9] and ”7
Key Attributes Of A Quality UI“ by Samella Garcia [10], and the Wikipedia article about the
principles of UI design [11].

• Simplicity - do not clutter the mobile screen.
• Clarity - make it obvious for the user what to do, and where he or she may get more

information.
• Consistency - be consistent in the theme of the app so that there is a running theme

throughout the whole application.
• Familiarity - the users familiarize in the way the application is designed.
• Efficiency and responsiveness - the inferface is responsive and it does not leave the user

waiting for longer periods unless absolutely necessary.
• Style - the style choices of the application in regards to color palettes, font, button styles

and so on should be inspired by Buypass’ style of choice.

3.4.2 Camera Requirements

The camera is important to large parts of the application’s functionality as face match, liveness
check and document check all depend on the camera. The requirements can be separated into
functional requirements and requirements related to the user experience.

3.4.2.1 Functional Requirements

Keesing Technologies uses images as the basis for a user verification. The process requires a
document photo (front and back if the user is using a driver’s license), a face photo (selfie)
and a face video. In order to process the images the following requirements must be fulfilled.

• Images must be in JPEG format with no compression.
• Videos must be in MP4 format.
• Images size must be greater than 1.5 Mb.
• Face videos must be at least 2 seconds.

2Android application package
3User Experience
4Graphical User Interface

10

Digital verification of identity

• Video size cannot exceed 5 MB.
• Image sharpness must be greater than 17 (i.e. blurred images are not accepted).
• In document images, the entire document needs to be inside the image and the docu-

ment must not be rotated.

The image quality of the document images is particularly important. If the image follows
all the previous requirements, Keesing is usually able to perform an automatic document
check, which only takes a few seconds. However, if the photo is inadequate (for example if
the entire document is not inside the image) the document is usually not recognized and
ends up having to be verified manually, which takes a lot longer. To avoid this issue we want
to design the camera and camera process in a way that minimizes the number of images of
too poor quality for automatic verification.

3.4.2.2 Camera UX Requirements

The camera application should behave in a way that makes it easy for the user to to take
valid photos for the different purposes. To accomplish this we have defined the following
requirements:

• When taking a document photo, the user should open the rear-facing camera and when
taking a selfie or face video it should open the front-facing camera. It should not be
possible to change the camera direction.
• The camera screen should show some brief instructions to remind the user of key things

to keep in mind.
• The user should be able review and re-take the image/video if he is not happy with it.
• The application should guide the user in a way that makes it easier to take document

photos correctly.
• If the captured image/video is not accepted, the user should get appropriate feedback

so that he can take a new and better one.

3.5 Security Requirements

Handling personal information is a central part of our application, so handling this informa-
tion appropriately is of course an important requirement if the app were to go into production.
In addition to general security measures, there are certain public legislations that would have
to be taken into account. The law on anti money laundering (Hvitevaskingsloven) has cer-
tain requirements for issuing electronic IDs [12] and handling of private information must
comply to GDPR5.

However since our app is just a prototype security is not the main focus. We do acknowl-
edge that this is of vital importance, but for our demonstration we have chosen to prioritize
focusing on functionality and creating an attractive demo product.

Still, in order to create a good basis for further development, we have evaluated what
we consider to be the most obvious security threats and taken action to reduce their risk. In
order to enhance the security of our application we have come up with the following security
requirements:

• All communication between the server and the application must be encrypted.
• Photo and videos taken have to be stored on the application’s internal storage.

5GDPR - General Data Protection Regulation

11

Digital verification of identity

• Files should be deleted as soon as it is no longer needed.
• All sensitive data that is stored should be encrypted.
• If data crosses a trust boundary it should be validated.
• All user input should be sanitized.
• The app should use as few third part API’s as possible.
• The server should limit the maximum number of requests within a certain time frame

to avoid DOS-attacks.

3.5.1 Misuse Cases

The following section describes some potential misuse cases for our application:

Name: Steal personal Information
Actor: Crook
Goal: To steal personal Information from another user
Description: By performing spoofing/sniffing attacks, or attack the database the

crook can potential gain personal information about a user.
Countermeasures: Securing our database, encrypting all communication between dif-

ferent components, only storing information that is necessary and
deleting information when it is no longer needed.

Name: Denial of Service attack (Backend)
Actor: Crook
Goal: To incapacitate the system so that other users cannot access it
Description: An attacker can perform a DOS attack by flooding the server with re-

quests resulting the system to be overloaded and thereby unavailable
to other users.

Countermeasures: Limiting the number of requests an IP-address can make within a
given time frame.

Name: Change verification results
Actor: Crook
Goal: To change a false verification to be approved
Description: An attacker enters the database and changes the outcome of a veri-

fication process
Countermeasures: The database can only be accessed through our server. No direct com-

munication between the application and the database.

Name: Impersonating another user
Actor: Crook
Goal: To gain a falsified electronic ID
Description: A crook steals the identification document of another user and uses

this to obtain an electronic ID in their name.
Countermeasures: The user has to prove that he is the document owner by taking a

photo of the document and his face, so that the document can be
verified and the face images can be compared.

3.6 Evaluation of the Verification Process

The last misuse case describes how a user with malicious intent could use the application
to obtain an electronic ID in another person’s name. Preventing this kind of exploits is of

12

Digital verification of identity

course a vital requirement for our product, which is why we, after recommendations from
Buypass, Keesing and BITS6 decided on a three-step verification process. Nevertheless, our so-
lution depends heavily on the Keesing API, which means that some security issues are outside
of our control. If the solutions Keesing provide for document verification, face comparison
and liveness check are not reliable, our application can not provide a reliable verification of
identity. The experience we gain from developing our application gives us information and
insight in Keesing’s solutions that could be valuable to our product owner when deciding if
(and how) they should develop a digital ID verification application for production. For this
reason evaluating how Keesing’s solutions work out in the final product is part of the project
requirements. We do not intend to do a full analysis of potential security threats in digital ID
proofing, but we want to get a general idea of what challenges it may run into.

In order to evaluate this we came up with a few potential threats where a malicious
user manages to trick the application by issuing an ID through completely normal use of the
application. Implementing countermeasures for these misuse cases is not within the scope of
our project, but we want to explore whether they are possible or not.

Name: Document printing attack
Actor: Crook
Goal: To pass the document check using a printed copy of an ID document
Description: A user obtains an image/photocopy of another person’s ID document

and passes the document check by taking a photo of that image.

Name: Trick face comparison
Actor: Crook
Goal: Trick the face comparison step by taking a photo of something that

is not the person on the document.
Description: The user passes the face comparison by uploading a fake face photo.

This could be a photo of for example document owner’s profile pic-
ture on social media, or simply a photo of the document face image.

Name: Trick liveness check
Actor: Crook
Goal: Pass the liveness check without filming an actual person
Description: The user records a video of for example a YouTube clip or similar in

order to pass the liveness check.

We also wanted to see if the process was prone to false negatives as this would lead to
a frustrating user experience. To evaluate this we simply wanted to explore if verification
process is likely to fail when a person uses their own valid ID.

3.7 NFC Requirements

As mentioned Keesing Technologies only provides ID proofing using document images and
not NFC at the moment. However, we have discussed this possibility with both Buypass and
Keesing Technologies and we know that Keesing will release this feature in the future. There-
fore we wanted our application to implement some NFC functionality. The NFC requirements
imposed by Keesing are still unclear, so we decided to develop an application that can read
the basic information from a passport. As driver’s licenses do not contain NFC tags, NFC can-
not be used for verification of driver’s licenses. The use cases related to NFC functionality are

6Bank- og finansnæringens infrastrukturselskap, a company for banking and finance infrastructure

13

Digital verification of identity

presented in figure 3. We decided on the following requirements, as we consider these likely
to be important when verification through NFC becomes available:

• The user should be able to enter expiry date, date of birth and document number as
this is necessary in order to perform BAC. The user should be able to choose between
entering this information manually and using OCR7 to read it directly from the passport
using the phone’s camera.
• The app should be able to read the RFID chip in order to retrieve information like name,

date of birth, nationality, gender, personal identification number etc.
• The app should be able to read, decode and show the passport photo from the RFID

chip as this will most likely be used for face match when the NFC feature is released.

As we do not have access to the CVCA certificate required for the Extended Access Con-
trol protocol (see section 2.1), we will not attempt to read fingerprints, biometrics or other
sensitive data.

It would have been interesting to explore the possibilities of doing Active and Passive
Authentication for clone detection and for verifying the chip integrity. However, to perform
Passive Authentication we would need a Country Signer Certificate Authority (CSCA) cer-
tificate which is only available to an officially commissioned document issuer [13]. It seems
like AA 8 would be possible to implement, but it proved difficult to find good documentation
on how to do this, and because cloning of passport chips probably is not the most pressing
security challenge of the application, we decided not to include AA as a requirement.

3.7.1 Use Cases

The main use cases for the NFC application is presented in figure 3 and described below:

Name: Scan MRZ9

Actor: User
Goal: Read passport number, expiration date and date of birth.
Description: The camera opens and the user scans the main page of the passport.

OCR is used to read passport number, expiration date and date of
birth and these are converted to the appropriate format for comput-
ing a BAC key.

Name: Enter MRZ manually
Actor: User
Goal: Get passport number, expiration date and date of birth from the user.
Description: The user picks the expiration date and date of birth through a date

picker dialog and enters the passport number manually.

Name: Change MRZ
Actor: User
Goal: To change expiration date, date of birth and passport number.
Description: If one of these fields have been entered/scanned incorrectly the user

can go back and change the data. The fields is then initialized to their
previously entered values.

7Optical Character Recognition
8Active Authentication

14

Digital verification of identity

Figure 3: Use cases for reading a passport using NFC.

15

Digital verification of identity

Name: Read passport
Actor: User
Goal: Read user data and passport image through NFC
Description: When the user verifies that the MRZ data is correct an animation

demonstrates how to read the passport using NFC. When the NFC
tag is discovered a BAC key is computed from the MRZ and this is
used to unlock the passport chip. The NFC reader can then read data
from the passport.

Name: Show passport data
Actor: User
Goal: Display the passport data on the screen.
Description: When the NFC reader has read the RFID chip the user is redirected

to a new page where passport data and passport photo is displayed
to the user.

16

4 Software Development Method

4.1 Scrumban

Our development project extends from February to April, and in a project perspective this
could be considered a relatively small time frame.

We chose an agile development method. The main reason for this was that the project
requirements were not completely clear from the beginning of the project and because agile
methods often work well for small teams and relatively small projects. We considered water-
fall, but due to the fact that our project depended on an API that was still being developed
and we knew the project requirements were likely to change throughout the project, we de-
cided using a more flexible development method would be beneficial. Additionally we are all
inexperienced as developers, so we were quite sure we would encounter problems regarding
estimation of time and resources. An agile method allows for more flexibility when planning
and estimating each task, which is beneficial when we know our estimates might not be very
precise. We will elaborate on this in section 4.1.1, Planning Poker.

The reasons discussed above led us to the choice of Scrum as a development method,
which would give us the option to adapt to problems and changes that might occur. Agile
development methods are normally used for smaller to medium sized projects with relative
small sized teams, and where the client is prepared to participate [14]. After evaluating sev-
eral agile development methods we came to the conclusion that Scrum was the best suited
development method for our project. Scrum uses sprints as defined work periods that focus
on different parts of the development process. We chose sprints of two weeks because this
would give us time to have something to demonstrate during our meetings with Buypass, and
it would also reduce the chance of spending an unnecessary amount of time in meetings.

As we saw our project, Scrum did not accommodate all aspects of our project. It would
allow for an agile development, but it is restrictive when it comes to changing tasks within
the sprints. We decided to combine it with Kanban, which is also an iterative process and
shares similarities with Scrum. This made for an easy integration of Kanban. The perks of
Kanban are that it offers greater visual solutions for the defined tasks of the project. Kanban
also offers the possibility to change the tasks within the sprints, and in that way provided
more flexibility [15].

We also incorporated a Minimum Viable Product approach to our development method.
We wanted to focus on creating an early prototype that would give Buypass an impression
of what we were developing so that we could receive feedback at an early stage. Between
each meeting we would then add what we considered the most important features at that
point and get new feedback at the next meeting. In this way we hoped to reduce the risk of
not being able to fulfill the most important requirements and of having to do make too large
changes based on the client’s feedback.

17

Digital verification of identity

Figure 4: Pie chart representing the time spent in sprint 1

4.1.1 Planning Poker

We used Planning Poker for time estimation of our predefined tasks. This estimation was
done in order to get an indication as to how complex our project would be, and what we
could expect to get done. Due to the inexperience with development projects the suggestions
presented by the different team members could vary from from one day to one week. We
discussed the suggestions and came to an agreement. These estimations made for our Gantt
diagram, see appendix D. The diagram includes the milestones of the project, as well as what
should be conducted during the sprints.

4.1.2 Trello

To keep track of the work tasks during the project we have used Trello. Trello is an online
tool which allows us to define our own Kanban board. We made a backlog board containing
all the general functionality that needed to be implemented in the project.

The Kanban board included the six steps:

• Backlog
• Doing
• Blocked
• Testing
• Code Review
• Done

The cards containing the tasks were moved throughout the board as they were executed,
and allowed for the other team members to see the progression.

4.1.3 Toggl

To keep track of time we have used a time tracking tool, Toggl. Toggl offered the possibility
for every member of the group to add a description and a tag, represented by the sectors in
figure 4, to each time entry. We predefined the tags, and then each member could elaborate
more in the description field of the time entry.

18

Digital verification of identity

4.1.4 Daily Scrum

We planned on conducting daily scrum meetings every day. The meetings would be structured
in a way where each member briefly elaborates on what they did the day before, and what
they would be doing the upcoming day. The meetings should help us see the bigger picture
throughout the project, and it would be a way of making sure every member had done suffi-
cient work since the last meeting and made sure that the members had a structured plan for
what to do the upcoming day. Daily scrums would hopefully make the development less vul-
nerable to occurrences where one member of the group might be away for some time. These
meetings could also offer reflection of problems and further implementations. The members
of the group should be able to raise problems in plenum, and get feedback from the other
members to help solve them.

4.1.5 Sprint Planning Meeting

Each sprint would start with a Sprint Planning Meeting. During this meeting we define the
tasks that need to be performed in order to reach our sprint goal. These tasks would then be
added to a new Trello board for the upcoming sprint, and we would loosely define the work
tasks.

4.1.6 Sprint Review and Retrospective Meeting

We wanted to have meetings with our employer at the end of each sprint during the de-
velopment phase of the project. During these meetings we would present the work we had
conducted during the sprint, receive feedback and discuss the upcoming sprint.

Within the team we would have concluding Sprint Retrospective Meetings where we could
discuss what was good about the finished sprint, what we could have done better and what
we would commit to doing in the next sprint. These meetings were supposed to make us see
what may have been slowing us down in the development process, and what we have done
that we may improve, scrap or keep doing.

4.1.7 Meetings with Supervisors

Throughout the project we would have weekly meetings with our supervisors. In preparation
for these meetings we would be sending an email containing information regarding what we
had been working on since the previous meeting, if there were any problems or questions
and what we would commit to do the upcoming week. These meetings would be good for
assuring progression throughout the project, and making sure we were on the right track.

4.1.8 Milestones

Prior to the start first sprint, during the planning stages of the project we set up five milestones
for the development work of the project. The milestones were originally set up regarding the
sprint endpoints. The estimation of what we would be able to do was made on the background
of little to no knowledge of how long the development processes would really be. These
milestones were supposed to be reached in order to deliver the desired end result.

The five milestones were originally;

15th of February: The application has a simple GUI, and is able to take a photo which it can
send to the server solution.

1st of March: The application has the functionality to send the photo taken to the third party

19

Digital verification of identity

API for verification, and the user receives feedback regarding the verification.

15th of March: Functionality for NFC reading is implemented, and the info can be sent to
the third party API for verification.

29th of March: Functionality for facial comparison and liveness check is implemented.

12th of April: Functionality and GUI completed.

4.2 Version Control

The naming convention for our version control during the development process was originally
formatted as follows:

Major.Minor.Patch

Major represents a fully release of the application. In our project it has been given the value
of one and wont change because the application will only be a prototype during devel-
opment.

Minor represents the implementation of new functionality.

Patch represents smaller implementation, bug fixes and changes to already implemented
functionality.

20

5 Design

5.1 System Design

The overall structure of the project was designed in a way to keep the mobile application
and the backend separated, see figure 5. This made way for using a client-server approach.
The server handles all communication with Keesing and Firebase, while the client application
interacts with the user and sends requests to the server in order to pass on user information
and retrieve verification results.

This model aims to minimize the possible leakage of unwanted information as well as
relieve the frontend processing by having the backend handle it. The possible error codes,
and feedback from the third party API would be translated and processed by our backend,
preventing users with malicious intent to get a hold of information of which could lead to
possible exploitation of vulnerabilities.

5.2 Backend

In order to accommodate the requirements of our backend we wanted to create a REST1 API
with JSON2 formatted payload.

We wanted to be separate the functionality of different modules within the backend of
the project, see figure 6. This would give us a better understanding and make it easier to
comprehend errors occurring during both the development process and at a later possible
release point.

The natural approach was to divide the modules where one would be handling verifica-
tion towards the third party API, one would handle the webhook listening for triggers from

1Representational State Transfer
2JavaScript Object Notation

Figure 5: Overall architecture of the project

21

Digital verification of identity

Figure 6: Backend modules communication flow with entities

the third party API and one module which would handle Firebase functionality and commu-
nication.

The verification module, as stated above, handles the verification aspect of the applica-
tion. This involves requests from the mobile application which are processed by the backend
module before being sent to the third party API, and the other way around. This module
is critical in regards to performing verifications, and contains the main functionality of the
application. This module involves everything in regards to Keesing Technologies except the
webhook itself.

The webhook module is working as a mediator between the third party API and the other
modules. The verification module is notified in order to retrieve the results, and the Firebase
module handles database storage and push notifications.

5.3 Frontend Application

As stated previously, our project is mainly a prototype that is meant to explore ID proofing
technologies and demonstrate this in a practical setting. The main focus during the develop-
ment phase of the project in regards to the application has been to implement the necessary
functionality.

The Android application part of our project was originally intended to be developed ac-
cording to MVC3. However we ended up using a somewhat more simple approach which is
illustrated in figure 7.

The application is divided into different Activities, each represented by classes extending

3Model View Controller

22

Digital verification of identity

Figure 7: Frontend Architecture

the Android Activity class. Some activity classes also communicate with other helper class-
es/interfaces and/or fragments. Each activity has one or more layout XML4 files associated
with it. Fragments are also associated with layout files. The layout files contain all view el-
ements and popups used in different activities/fragments. As the figure demonstrates, the
Activity classes (and their components) act as a combination of Model and Controller, while
the layout files represent the View.

An important principle behind this design is Separation of Concerns. We identified what
we considered to be the main user activities and created an Activity class with corresponding
layout files for each one of these. As most of the actual logic behind our application is han-
dled on the server side, the Activity classes should be quite lightweight and mainly handle
interaction with the user, managing view elements and communicating with the server.

Another important principle is avoiding duplication of code. If two user interactions are
relatively similar, they should preferably be handled in the same activity. If the same methods
are used in multiple modules, it should be written in a helper class that is available to all of
these modules.

In general it is recommended that app components depend on each other [16]. Given
the natural linear flow between activities in our app we do not really follow this guideline.
In order to streamline the verification process and make sure the user completes every step
of the process, most of the activities are launched in a pre-defined order (with a few excep-
tions where the user needs to make a decision, for example between using a passport or a
document photo). For example, the user needs to complete the document check step before
moving to the face comparison step, and face comparison must be completed before liveness
check and so on. For this reason many of our activities depend on the previous activity to be
launched and may both receive information and pass information to the previous/next activ-
ity. Since most activities can only be launched in the pre-defined order, this is probably not
likely to cause any significant problems in our app. Quite on the contrary we avoid some big
problems by designing our app this way. For example, if something goes wrong (bad internet

4Extensible Markup Language

23

Digital verification of identity

connection, server is down or similar) when the user tries initializing a verification process,
he should get an error message and not be able to try uploading photos before the verifi-
cation process has been successfully initialized. Otherwise the application would just keep
trying to upload photos to a non existing verification process, which would result in new
errors. Activities that can be launched in an ”out of order“ fashion will be treated somewhat
differently.

5.4 GUI and UI Design

Figure 8: Blueprint of the main template

In order to accommodate the requirements described in section 3.4.1 we have interpreted
the design principles and implemented the necessities we felt needed in order to reach the
desired end result. This has led to the following design implementations:

• Simplicity
• Clarity
• Consistency
• Familiarity
• Efficiency and responsiveness
• Style

5.4.1 Simplicity

The main theme of the application is shown in figure 8. The approach is to keep the amount
of buttons, titles and text to a minimum, but keep the functionality well documented and
intuitive. This is accommodated by the implemented design of the application, see section
5.4.6.

The toolbar is implemented on the bottom of the screen to keep its influence with the
main functionality presented in the middle of the screen to a minimum.

24

Digital verification of identity

5.4.2 Clarity

We wanted to provide the user with sufficient information in each step of the verification
process, but we did not want to clutter up the screen in regards to the prior requirement. The
blueprint of the application offers a information box, but it also provides a information button,
see figure 8 (Popup button). This button is rather self explanatory, and displays a popup
message providing extended information to the user of the active step in the verification
process.

5.4.3 Consistency

Within the application the theme and style stays the same throughout the entire application,
both in regards to styles of buttons, colors and how the interaction with the application is.

5.4.4 Familiarity

The application design has its inspiration from the Buypass website which includes the same
color palette and the same button designs. In that way a user would be able to tell that this is
Buypass’ application. The same goes for the interaction with the application, and if the user
is a common user to mobile applications he should be able to navigate the application with
ease. The buttons, navigation bars, popups and so on should be something that the users
have experienced before.

5.4.5 Efficiency and Responsiveness

In order to extend the application to the user, leaving him feeling involved and not left waiting
for a long time, we wanted to implement loading screens, animations and messages underway
that let’s the user know that the process is ongoing and that the application is responding. We
are also focusing on the performance of the frontend, in the way of having buttons which are
responsive, and data that is already loaded when a user requests it. This is mostly in regards
to the user page of the application, where the user is not supposed to experience any delay
whether there are many verifications or nothing at all.

5.4.6 Style

The color palette and style choice of the application is made due to inspiration from Buy-
pass’ website. Both the colors, figures and buttons are inspired or retrieved from there, see
appendix H.

5.5 Camera Design

In order to meet the camera requirements we have defined a common design pattern for
all the camera activities. Each camera activity starts with a screen that explains what kind
of picture we need, what it will be used for and how to take a valid picture. This screen
contains a camera button that opens the camera. The actual camera screen is designed in
a way that makes it intuitive for the user to interact correctly with the app. For example:
the camera button is placed in the middle of the lower part of the screen (like in most photo
applications). The button for proceeding is placed to the right and the re-take button is places
to the left, since most people associate buttons on the left side with going back and buttons
on the right side with moving to the next screen. The camera design is illustrated in figure 9.
The camera screen contains the following elements:

25

Digital verification of identity

(a) (b) (c)

Figure 9: Camera GUI design

Instruction text: On top of the screen we show the user some short instructions on what
to keep in mind when taking the photo/video. This will be specific to the type of im-
age/video that is required (document, face etc). The text disappears when the user
clicks on it and reappears if the user clicks the info button.

Information button: If the instruction text is closed an information button appears in the
upper right corner, so that the user can re-open the text box.

Camera button: Button for capturing a photo or starting a video recording. Placed at the
bottom of the screen.

Countdown timer: Only when recording video. Counts down from 2 seconds every tenth
millisecond so that the user knows when the video stops.

Re-take button: Button for re-taking a picture/video. This button is hidden until after an
image or a video has been captured. Placed in the lower left corner of the screen.

Upload button: Button for uploading the photo and proceeding to the next step in the pro-
cess. This button is also hidden until after a photo has been captured. Placed in the
lower right corner of the screen.

Preview: When an image is captured it is shown on the screen. When a video has been
recorded, a mediaplayer lets the user play the video before submitting it.

Document border: For document photos a rectangle shows where to place the document.

Note that there is no stop button for the video recorder, as the video is automatically stopped
when it reaches the desired length. In order to let the user know when the recording the
recording ends, a red dot and a timer counts down from 2 seconds. The idea behind the

26

Digital verification of identity

design is to make it difficult for the user to do things wrong. For example: the upload button
is hidden until an image is captured so that it is impossible for the user to proceed before
he has taken a picture and the camera is always opened in the direction it is supposed to be
used. The reason why the buttons are hidden and not just disabled, is that the screen looks
more clean and tidy with less buttons showing at the same time.

As mentioned in the Requirements chapter (section 3.4.2.1) Keesing requires all document
photos to show the document in the correct orientation and to show the entire document
inside the image. If this requirement is not accommodated for, it will send the photos to
helpdesk. This will significantly increase the time it takes to receive the result.

A potential problem could be that it is difficult for us to know how each user would hold
the document and the device when taking the photo. Some might hold the phone in portrait
mode and rotate the document 90 degrees in order for it to fit the screen, some might hold
the camera device in landscape mode and hold the document without rotating it and so on.
This would make it difficult for us to know whether we would need to rotate the image before
sending it to Keesing or not (and not to mention which way to rotate it).

To overcome this issue we decided that all document photos should be taken with the
phone in portrait mode. We created a small rectangle showing the user where to place the
document and we placed the instruction text on top of the screen, so that the user is prompted
to hold the phone correctly. The area around the rectangle is blurred to make it easier for the
user to focus on the document and not background noise. When a photo has been captured
only the area inside the rectangle is displayed to the user. Since this area is significantly
smaller than the uploaded photo, the idea is that even if a small part of the document were to
be outside the guiding rectangle, it will still be in the uploaded photo. Making the user believe
that the photo is smaller than it actually is will hopefully make him check the photo more
closely before uploading it, so the risk of uploading an insufficient photo will be reduced.

5.6 NFC Design

The NFC part of our application consists of four main steps:

1. Get the expiry date, date of birth and document number (MRZ info).
2. Check that the entered information is correct.
3. Read the passport using NFC.
4. Show the data that is read from the passport.

Figure 10 shows an overview of the flow between the different activities in the NFC ap-
plication. NFCStartActivity is launched when the user chooses to read his passport using
NFC. The user gets the choice between completing step 1 by entering this information man-
ually (ManualNFCActivity) or scanning it using the phone camera (ScanNfcActivity). Once
the MRZ info is entered, the user is sent to ReadNFCActivity where the step 3 is conducted.
If the user discovers that the registered MRZ is wrong he has the option of changing this
by being redirected to ManualNfcActivity. Step 3 consist of unlocking the passport by doing
BAC, reading the passport using NFC and parsing the data read from the passport. When the
passport has been read, the NFCResult is launched and the passport information is displayed
on the screen.

27

Digital verification of identity

Figure 10: Overview of the activities in the NFC part of the application

5.7 Database

We considered both SQL and NoSQL options for our database. As mentioned, the purpose of
our database is to store verification results and facilitate communication between our API,
Keesing’s API and the mobile application by being able to respond to the queries described
in section 3.3.1.

After some consideration we chose to go for Google Firestore, which is a NoSQL database.
We chose this partly because the Keesing API is still in Beta. Already in the first few weeks of
the project we experienced quite a few changes on their side and we expect more changes
may appear in the future (especially when NFC verification is implemented). Given that we
might have to change the database schema multiple times throughout the lifetime of the
project, the flexibility of a NoSQL database suits us well. In addition, all the results received
from Keesing come in the form of a JSON body which is exactly what a NoSQL database
stores. A potential limitation of a NoSQL database could be that complex queries are difficult
to implement, but as all our queries are relatively simple, we do not consider this to be a
problem.

5.7.1 Google Firestore

After deciding on a NoSQL database we decided to use Google Firestore as our database
provider. Firestore is a document database that stores data in hierarchical structures.

Firestore provides several advantages. For one thing it is simple to use. Firestore has a
graphical interface in the Google Firebase console which makes it easy to create, view and
manipulate collections manually. This makes it easy for us to create test cases and to quickly
verify that things are stored correctly. The Firestore JavaScript API provides methods to eas-
ily connect to the database and update the database from our server code. Another advan-
tage is that Firebase queries are structured in a way that makes it possible to retrieve data
at document level, without having to retrieve the entire collection, which gives us effec-
tive queries [17]. This is important for example when retrieving a verification instance for
a specific user. Firebase also provides convenient mechanisms for database security through
Firestore Security Rules [18].

5.7.2 Document Database Design

We decided to create a database consisting of two main collections. The main collection is
the Users collection. Since we have chosen a document-oriented database the data is orga-
nized in documents and collections (see figure 11). Users consists of documents identified

28

Digital verification of identity

Figure 11: The Users and Verifications collection and its documents and sub collections

by a user Id. If a user has started a verification process, the user document contains a sub
collection Verifications, which in turn contains one or more verification documents identified
by a verification ID.

Only documents can contain data fields. Each user document has three data fields, a token
used for Firebase Cloud Messages (push notifications), a verificationUrl, which contains the
URL used to update an ongoing verification process and a unique ID to verify the user.

Each verification instance contains a status field which is ”active“ if the verification process
has not been completed and ”finished“ if the process is completed. If the user has completed
all three steps of the process it also contains a verificationResults object. This object contains
fields that describe the outcome of the document check, face comparison and liveness check
(see section 3.3.1).

The Users collection is used to answer all queries for updating or checking a client’s veri-
fication status and retrieve the FCM 5 token for push notifications (query 1-3 in 3.3.1).

The last query, being able to find which username belongs to a certain verification ID, is a
bit different from the other queries. We could form a query where we loop through all users
in the collection and return the one that has a verification ID that matches the one we want,
but this would be quite inefficient if the user collection is large. Instead we chose to create

5Firebase Cloud Messaging

29

Digital verification of identity

a separate collection, Verifications (figure 11), which stores verification documents with just
one data field, the userId of belonging to that verification.

30

6 Implementation

6.1 System Overview

The application starts with a mock login screen that collects a username. As described earlier
the user can choose between verifying his identity using a driver’s license or a passport. The
process is identical, except that if he chooses driver’s license the application asks for a photo
of the front and the back of the ID document.

The actual verification process involves five different entities, the user, the client appli-
cation, the server, the database and Keesing. The first sequence diagram (Figure 12) shows
the typical interaction between these entities. The diagram assumes that the user is already
logged in and has chosen passport as the preferred ID. Once the user has chosen ID type the
application sends a request to Keesing (via the server) to create a new verification instance.
The verification ID is then stored in the database, and the user is sent through three verifica-
tion steps: document photo, face photo and liveness check. Each file is individually uploaded
to the server and then Keesing. If the file does not fulfill Keesing’s requirements for size or
sharpness an error message is returned and the user is prompted to re-take the photo/video.
When the user has completed all three steps the application informs the server that all the
required files have been uploaded and the server can then send a request to Keesing to start
verifying the uploaded files.

The second sequence diagram (figure 13) shows how a verification result is registered.
When Keesing has finished one of the verification steps they trigger a webhook on our server
with the verification ID and which step was completed. The server will then send a request
to Keesing in order to retrieve the verification results. When Keesing has finished all three
verification steps (i.e. status = finished) Firebase Cloud Messaging is used to send a push
notification to the user to inform that the result is ready. As Keesing only includes the verifi-
cation ID, we have to look up the user ID in the Verifications collection in order to send the
notification.

At any point the user can request to see verification results. The results are then fetched
from the database and the outcome of each step is displayed on the screen. For a more detailed
illustration of the data flow, please refer to the Data Flow Diagram in appendix F. The rest of
the chapter will give a more in-depth description of how the frontend and backend solutions
have been implemented.

6.2 Backend

For our backend solution we needed something that could fulfill the requirements and design
principles described earlier. We needed a technology that had the ability to handle requests
from both the mobile application and the third party API, communicate with Firebase, and
work as a mediator between all of these. We needed a framework that was well documented
and would make it easier to create an API. We chose Node.js’ framework Express.js. This is
a lightweight framework that offers methods for implementation of robust REST API’s. This
solution would to a great extent provide all the functionality we described in the requirements

31

Digital verification of identity

Figure 12: Sequence diagram showing a typical passport verification process

32

Digital verification of identity

Figure 13: Sequence diagram showing how verification results are updated and queried.

chapter, section 5.2.

Express allows for easy creation of API’s as stated above, and this goes to show in the
listing 6.1 which is a replication of our server file. This file handles all the routing and the set
up of the API in general.

33

Digital verification of identity

1 const express = r equ i r e ("express") ;
2 const s e r ve r = express () ;
3 const r a t e L i m i t = r equ i r e ("express-rate-limit") ;
4

5 const por t = 8080;
6 s e r ve r . use (express . j son ()) ;
7

8 // Environment variables
9 r equ i r e ("dotenv") . con f i g () ;

10

11 /**
12 * Rate limit for requests to API
13 * 30 requests per minute
14 */
15 s e r ve r . enable ("trust proxy") ;
16 const l i m i t e r = r a t e L i m i t ({
17 windowMs : 60 ∗ 1000 ,
18 max: 30
19 }) ;
20 s e r ve r . use (l i m i t e r) ;
21

22 // Routes
23 const v e r i f i c a t i o n s = r equ i r e ("./routes/verifications/") ;
24 const webhook = r equ i r e ("./routes/webHook") ;
25 const f i r e b a s e = r equ i r e ("./routes/firebase") ;
26

27 s e r ve r . use ("/verifications" , v e r i f i c a t i o n s) ;
28 s e r ve r . use ("/webhook" , webhook) ;
29 s e r ve r . use ("/firebase" , f i r e b a s e) ;
30

31 s e r ve r . get ("/" , (req , r e s) => {
32 r e s . send ("API for bachelor thesis, NTNU Gjoevik") ;
33 }) ;
34

35 s e r ve r . l i s t e n (port , () => console . log (‘ Server l i s t e n i n g on port ${ port } ! ‘)) ;

Listing 6.1: Server file, server.js

6.2.1 API

The API calls and methods are described in figure 14, and further elaborated in appendix K.
All of the API calls are processed through our domain; https://www.verifyid.ml. The
API is handling all the requests from the mobile application, translating and processing them
before making requests to the third party API.

JavaScript executes commands concurrently, meaning that the compiler will not wait for
a called function to complete before trying to execute the next command. As a consequence
of this we needed to make sure the code was executed in the right order, for example that
the function retrieving a token for the third party API would run before the functionality
for uploading a picture. We accomplished the desired functionality by using Promises [19].
A promise in JavaScript will allow for locking down a process until it is either fulfilled or
rejected. In practice this would mean that either a token or an error would be generated
before the process would be able to proceed. The ”getToken“ function in listing 6.2 shows an
example of how promises have been implemented. On line nine it starts by declaring that it
will return a Promise, and then on line 28 it checks whether or not the token is undefined. If
the token turns out to be undefined it will return an error saying it could not retrieve a token,
but if the token is defined the promise will return the token for use in other functions.

34

https://www.verifyid.ml

Digital verification of identity

Figure 14: API calls, methods and parameters

35

Digital verification of identity

1 const reques t = r equ i r e ("request") ;
2

3 /**
4 * Function for retrieving a token to be used in further processes regarding the

Keesing API
5 * @return token, which is used to do more processes.
6 */
7 module . expor t s = {
8 getToken : function () {
9 return new Promise (function (f u l f i l l , r e j e c t) {

10 reques t . post (
11 {
12 u r l : "URL" ,
13 form : {
14 grant_type : process . env . GRANT_TYPE ,
15 scope : process . env . SCOPE ,
16 c l i e n t _ i d : process . env . CLIENT_ID ,
17 c l i e n t _ s e c r e t : process . env . CLIENT_SECRET
18 }
19 } ,
20 (error , response , body) => {
21 console . log ("TOKEN") ;
22 console . log ("StatusCode:" , response . s tatusCode) ;
23 console . log ("StatusMessage:" , response . s tatusMessage) ;
24 //console.log("Headers:", JSON.stringify(response.headers));
25 //console.log("Body:", body);
26 l e t jsonToken = JSON . parse (body) ;
27 l e t token = jsonToken . access_ token ;
28 i f (token === undefined) {
29 r e j e c t ("Could not retrieve token. ") ;
30 } else {
31 f u l f i l l (token) ;
32 }
33 }
34) ;
35 }) ;
36 }
37 } ;

Listing 6.2: Node.js function getToken()

6.2.2 Communication with Keesing

In order to communicate with Keesing we need to have a valid access token. This is retrieved
with the getToken() function shown in listing 6.2. This token must be included in all requests
to Keesing. From Keesing’s perspective the verification process consists of three steps:

1. Initialize verification
2. Upload files
3. Start verification

The first step is handled in .../verifications and involves sending a request to Keesing to create
a verification instance and then storing the verification ID in the database.

The second step involves uploading photos and videos that are posted from the application
to .../verifications/fileupload to Keesing. The application uploads the files along with a user
ID only, so before passing the file to Keesing the verification ID must be looked up in the
database and included in the request.

The last step lets Keesing know that the necessary files have been uploaded and that they
can start processing the uploaded data. This happens when the application calls .../verifica-
tions/startverification after successfully going through the document check, face comparison

36

Digital verification of identity

and liveness check.

6.2.3 Webhook

As the time from when a verification process is started until the results are ready can be
anywhere between a few seconds and several days, we have implemented a webhook which
can be triggered when a result is ready. The route created for the webhook is https://
verifyid.ml/webhook. The webhook is triggered every time a verification step is com-
pleted (i.e. once for document check, once for face match and once for liveness check)1. The
webhook has predefined cases for what events it may receive from the third party API. If it
receives something unexpected it will respond with error code 400, bad request.

The example below shows an example of webhook a request body from Keesing.

1 {
2 " event " : " v e r i f i c a t i o n . facematch . f i n i s h e d " ,
3 " data " : {
4 " id " : " xxxxxxxxxxxxxxxxxxxx " ,
5 " v e r i f i c a t i o n _ u r l " : "/ v e r i f i c a t i o n s /xxxxxxxxxxxxxxxxxxxx "
6 }
7 }

As you can see it does not contain the actual results, so these are retrieved through a POST
request to Keesing using the verification ID (handled in verificationDone.js). The results are
then stored in the database. As all steps might not be completed at the same time, each
verification contains a status field that we update from “active” to “finished” as soon as all
checks have been conducted.

6.2.4 Push Notifications

When the status field has been set to “finished” we need to inform the user that the verification
results are ready by sending them a push notification. To implement this we use Firebase
Cloud Messaging (FCM), which was quite straightforward to implement given that we had
already created a Firebase project in order to use the Firestore database.

FCM uses a token to identify which device to send the notification to. This token is col-
lected from the client application and stored in the database every time the user logs in, so
that in case the user were to switch phones, it will be sent to the last device the user logged
into.

The push notification is sent to via the Firebase Admin SDK which handles the transmis-
sion of it. How push notifications are handled within the client application will be described
later in this chapter (section 6.3.6).

6.3 Frontend

Our task is to build a native Android application and therefore we wanted to use Android
Studio as it was well documented and it is the official integrated development environment
(IDE) for Google’s Android operating system (see section 2). We use so called activity classes
for the application logic and user interaction, and layout files to define the view elements.

1The webhook is also triggered when a PDF report of the results is ready, but since the PDF report cannot be
retrieved from the current version of Keesing’s API, we do not handle this event apart from logging that the webhook
was triggered.

37

https://verifyid.ml/webhook
https://verifyid.ml/webhook

Digital verification of identity

6.3.1 Application Structure

As previously described, the Android application is primarily built from Activity classes and
layout files, with some supporting fragments and classes. The most important activities are
described below:

Camera2Activity: Activity that launches a custom made camera to take document or face
photos.

LicenseCameraActivity: Starts up the photo verification process if the user chooses driver’s
license as ID, asks for front and back photo of the document. If the verification process
is started successfully the user can launch the camera.

LoginActivity: Mock login screen for entering username and password. Uploads username
and FCM token to the server.

ManualNfcActivity: Activity for manually entering MRZ data before reading passport NFC
tags.

NFCResultActivity: Displays information that is read from a passport NFC tag.

NFCStartActivity: Explains the process for reading passport tags and lets the user choose
between entering MRZ data manually using OCR.

PassportActivity: Starts up photo verification of passport. Asks for document photo. If a
verification is successfully started the user is sent to the camera.

PassportOrLicenseActivity: Explains the difference between using passport or license as the
ID of choice and lets the user decide.

ReadNFCActivity: Reads a passport RFID chip using NFC.

ScanMRZActivity: Reads expiry date, document number and date of birth from the MRZ
using OCR.

SelfieActivity: Explains how to take a valid face photo.

UploadActivity: Uploads images/videos to our server. Uses the ServiceGenerator class and
the FileUploadService interface in order to upload the file. Displays an error message
if something goes wrong. See appendix I for more information on the implementation.

VerificationCompleteActivity: Sends a request to the server to inform that all files have
been uploading and the verification can be processed by Keesing.

VideoActivity: Information about the liveness check.

VideoRecordActivity: Starts up the video recording application by using the two fragments
CameraSetUpVideoFragment and CameraRecordVideoFragment and the AutoFitTex-
tureView class. See section 6.3.7.

WelcomeActivity: The first activity that is launched when the app opens. Uses a slider to
explain the full verification process. See section 6.3.3.

In addition to the activities described above we use a few other classes/fragments to
support the activities:

38

Digital verification of identity

MinSideFragment: Displays the results of all verification processes a user has completed.

MyFirebaseMessagingService: Class that manages how push notifications should be dis-
played and handled.

GlobalClass: Stores the user ID of a logged in user. Contains various helper methods used
throughout the application.

HomeButtonFragment: Handles what happens if the user tries to go to the home page while
inside a verification process 6.3.2.

SectionStatePageAdapter: Manages the state of MinSideFragment (see section 6.3.4).

ServiceGenerator and FileUploadService Used in order to upload multipart form data in
UploadActivity.

As described in the Design chapter most activities are launched sequentially in a pre-
defined order. This is illustrated in figure 15. As you can see, there is a natural flow from
WelcomeActivity to VerificationCompleteActivity, although there may be different path de-
pending on the user’s choice of ID. As the figure shows, activities like UploadActivity and
Camera2Activity are launched from several different activities. This will be further described
later in this chapter. MinSideFragment can be called from almost anywhere in the application,
so this is is modelled outside the typical activity flow, together with other classes/fragments
that are used in many different activities. The implementation of MinSideFragment will be
discussed later in this chapter.

An overview of the different application screens is provided through screenshots of the
verification process in appendix T.

6.3.2 Efficiency and Responsiveness

• In-between verifications: In all steps of the verification process there are parts in-
between them where a loading screen will appear in each upload. The screen is there
for displaying a loading bar and at the same time letting the user know he has to wait
a short amount of time before proceeding to the next verification step. If the upload
is unsuccessful it will notify him to retake/recapture the photo/video. If not, the user
always has the opportunity to exit the whole verification process, as mention in section
6.3.4 when pressing the go back -or home button. The application is responsive and
always lets the user know what happens in that particular activity. When approaching
the end of the verification we inform the user when the process is almost at its end. At
the end we also inform the user by congratulating him for completing the verification
process.
• Verification result: While running the app, the list of verification result(s) is updated

repeatedly in the background. This gives the user the most updated result every time he
accesses the user page. When inside the user page it does not do background updates
instead we give the user the opportunity to refresh the list manually by swiping down.
• Activity stack: The way we have structured the app, we go from one activity to an-

other and send information to Keesing along the verification steps. If the user uploads
multiple document/face photos during a single verification process, he will get an er-
ror, so the user is not allowed to go back without interrupting the current process. To
avoid filling up the activity stack if the user wants to go back and start a new process,

39

Digital verification of identity

Figure 15: Overview of the transition between activities and their supporting classes. The activity transitions are represented by full arrows,

while dashed arrows indicates that a class uses another class. The classes labeled Supporting classes are classes that are connected to multiple

classes. The NFC activities are not included as these are shown in figure 10
.

40

Digital verification of identity

we have added a "noHistory" tag to some activities, meaning that when you leave an
activity it will be removed from the stack. When you press the home -or back button
all the other activities on the stack are removed. This is done in order to unload the
memory and keep the application running smoothly. If at any point the user wants to
go back while a verification is ongoing he gets a clear message that this will interrupt
the process and he would have to start a new verification process.

6.3.3 Slider and Popups

Figure 16: A selection of the introduction slider for the application

We chose to implement a introduction slider as the user starts the application, see fig-
ure 16. This slider acts as a tutorial for the user, describing the steps of the verification pro-
cess in general. The purpose of the tutorial is to makes sure that the user is prepared for the
necessary steps of the verification process, and it provides a pointer as to what is necessary
in order to perform the verification, for example prepare the passport.

In every step of the verification process there is an ”i“ icon provided, and this represents an
information button. The user can press the button and a popup message will appear providing
info about the current step of the process, see figure 17. In some steps the popups are shown
automatically to ensure that the end users receive important information.

6.3.4 Toolbar

The toolbar was implemented to make it more simple for the user by always providing a
default menu at the bottom of the screen. We used Androids own library, ”Toolbar“, for the
implementation. The toolbar is a stand alone layout file and is included within every activity.
The two buttons on the toolbar offers the functionality of navigating back to the main screen
of the application, and to show the user page containing the verification results. These two
pages are controlled by fragments. Fragments have it’s own lifecycle within an activity, and
this implementation allows for multiple fragments in a single activity. For handling the setup

41

Digital verification of identity

Figure 17: A selection of popups

of these fragments we use a pagerAdapter2. In the layout we have a ViewPager that provides
the different views. The pagerAdapter handles the switch between fragments on the View-
Pager. Since this has to be setup in every activity, we have tried to reduce the amount of
duplicated code by making the functions global.

6.3.5 User Page

(a) (b)

Figure 18: User Page and Verification Report

2FragmentStatePagerAdapter

42

Digital verification of identity

The user page provides information about all the verification processes a user has per-
formed, see figure 18 (a). The list is sorted by the date and time the process was completed.
We have not implemented any way for the user to sort this in any other way because we are
under the impression that the latest attempt of a verification process is the one that is the
most relevant to the user. If the last attempt of a verification failed, then the user may be
interested in understanding what went wrong, and to not the repeat the same mistake in the
next attempt if the user is to blame for the decline.

The list of verifications is color coded according to the verification outcome. Red indicates
that the verification was declined, yellow indicates that the verification is pending and green
indicates an approved verification.

The verification process involves several steps, and therefore it may be interesting for
the user to know which step of the process that failed. If the user wants more information
regarding the verification, he or she may simply press the one verification from the list they
want to see more about, and they will then get a popup message containing information about
the verification, see figure 18 (b). The colors of the verification and the status is set depending
on the status of the different steps within the verification process. If the ID document, the
face match and the liveness check is approved then the verification is approved and the color
is set to green. If one of the steps mentioned above fails or is declined then the color will be
set to red because the verification process requires all the steps to be approved. Sometimes
there may take some time for a verification to be done, whether it is a unknown ID document
or the facial comparison is done manually. If that is the case for one of the steps or more, and
none of the other steps that has been performed did fail, then the color of the will be set to
yellow, representing a pending verification.

In order to inform the user of the declined steps, we are providing the user with some
info regarding the error messages we receive from Keesing’s API. We are processing the error
messages, and also providing a default message if there is an unknown error introduced.
The error messages does provide errors such as if there was no face detected or the video
of the liveness check was blurry. This provides the user with information for consideration
when trying to complete a verification process later on. It is important to not give the user
too much information regarding what went wrong, because of potential users with malicious
intent wanting to infiltrate or break the system.

6.3.6 Push Notifications

Push notifications are received and handled in the MyFirebaseMessagingService class. Here
a ”NotificationBuilder“ is used to set the header, message and icon in the notification and
to decide what happens if the user clicks on it. What happens when the user clicks on the
notification depends on whether the user is within the application or not. If the user is within
the application he is redirected directly to the user page, and if the application is closed, the
user is sent to the log in screen of the application.

6.3.7 Camera2 Implementation

In order to implement our camera design we used the Android Camera2 API, which gives
you more or less complete control of the camera. As mentioned, our goal was to customize
the camera in a way that made it intuitive and easy for the user to take the photos/videos
correctly and to meet the specific requirements for the camera functionality. To see how the
photo and video application ended up looking, please see the screenshots in appendix T.

43

Digital verification of identity

To get an overview of how the API worked we got inspiration from the Android Devel-
oper documentation [20] and several tutorias, especially Mateusz Dzuibek’s tutorial The least
you can do with Camera2 [21] and AndroidWave’s Video Recording with Camera2 API in An-
droid [22].

6.3.7.1 Photo Application

The photo application is implemented in Camera2Activity.java. The implementation uses a
range of classes from the Camera2 API [20]. The most important ones are described below.

CameraManager: System service for detecting connected cameras, getting camera charac-
teristics and connecting to a camera device.

CameraCharacteristics: Describes properties of a connected camera device (for example
output sizes and which way the lens is facing).

CaptureRequest.Builder: Uses one of the templates defined in the Android CameraDevice
class for creating a CameraCaptureSession. We use the template TEMPLATE_PREVIEW
for the regular camera preview and TEMPLATE_RECORD when recording video.

CameraCaptureSession: A session used to capturing images from the camera. It is created
by the CaptureRequest.Builder, which provides a target surface and a camera device.
Has the method setRepeatingRequests() which continuously captures images that are
used to show the camera preview and the method capture() for capturing the actual
image.

AutofitTextureView: Not part of the camera2 API, but a class that extends TextureView[23].
It is used to automatically fit a TextureView to the size of the selected camera so that
the TextureView can be used to show the camera preview.

The Figure 19 shows the most important function calls in this activity and the typical
flow when taking a photo. In order to avoid problems where the app exits before closing
the camera, we use a semaphore that is acquired while the camera is opened or closed and
released after it has opened/closed (and if there is an error or the camera is disconnected).

onCreate(): Here we set up the layout. To know how to set the layout, the activity is started
with a StringExtra3 describing the type of image that shall be captured ("front" or "back"
for document photos and "face" for face photo). We also define a stateCallback-function
that will be used when opening the camera and add onClickListeners for the different
buttons.

onResume(): Every time the activity is resumed this function handles resuming the camera
function by setting up and opening the camera.

setUpCamera: Uses the CameraManager to list the available camera devices on the phone
and to get CameraCharacteristics for each one. Loops through and picks the front cam-
era for face photos and the back camera for document photos. Then loops through the
selected camera’s possible output sizes and picks the one with a width:height ratio as
close as possible to the selected ratio 3:4. The selected size is used in configureTrans-
form() to set the size of the AutofitTextureView.

3Extras are used to pass variables from one intent to another.

44

Digital verification of identity

Figure 19: Overview of the photo application

45

Digital verification of identity

openCamera2(): When openCamera is called a camera has been selected, the output size
has been determined and an AutofitTextureView has been defined. The AutofitTex-
tureView is configured in configureTransform(). When the camera is correctly opened
the previously defined stateCallback-function is called. In the stateCallback a Captur-
eRequestBuilder is created and the AutofitTextureView is added as the target surface.
The CaptureRequestBuilder is then used to create a CameraCaptureSession. In the Cam-
eraCaptureSession

takePhoto(): Called when the user clicks the camera button. The function updates the view
so that the camera button is hidden while the accept button and retake button appear,
the area around the marked rectangle is blacked out (for document photos). The cap-
tured image is displayed by calling stopRepeatingRequests(). If the image is accepted,
the captured image is saved internally in the application and the uri 4 is passed to a
new intent which uploads the photo to the server.

restartPreview(): If the user is unhappy with the image restartPreview() is used to change
the view in order to restart the camera preview so the user can take a new photo.

6.3.7.2 Finding the Right Camera Size

One of the biggest challenges when building the camera application was configuring the
AutoFitTextureView to get the correct size. Both available camera sizes and screen sizes vary
between different types of phones, so we need to create a TextureView that matches an avail-
able camera size, has the desired width:height ratio and fits on the screen of the phone where
it is being shown. We set 3:4 as a preferred width:height ratio, loop through all available sizes
for the SurfaceTexture5 and pick the best match. This is used to set the aspect ratio of the
AutoFitTextureView.

6.3.7.3 Applying Camera Filters

As mentioned in 5.5 we wanted to create some filters to make it easier for the user to take
good document photos (as shown in figure 9). In order to create the rectangle to guide
the user we created a PNG image in PhotoShop and used an ImageView to add this to
our view. We then created a two other images, one that blurred the area around the rect-
angle and one that just covered it in black. The size of these filters are configured in an
onSurfaceTextureSizeChanged-listener so that we make sure that the filters fit each other
and that the sizes of the filters are determined after the camera preview size has been deter-
mined.

6.3.7.4 User Instructions

To give the user instructions we show use a TextView in the upper part of the screen. This
disappears when the user clicks it and can reappear by clicking an info button. To make
the app look a little more alive we use an animation to make the textbox slide up when it
disappears and slide down from the top when the user clicks the info button. The content of
the textbox changes after capturing an image to remind the user to check the quality of the
image before proceeding.

4Uniform Resource Identifier
5SurfaceTexture is an object for capturing images/videos, so these sizes represent the possible camera sizes.

46

Digital verification of identity

6.3.7.5 Video Application

The video application uses many of the same android.camera2 classes as the photo applica-
tion and the setup for the camera is quite similar. However, recording a video is a little more
complicated, so the implementation is a little different. Both setting up the video recorder and
managing the user interface requires quite a bit of code. For this reason we chose to initialize
the activity in VideoRecordActivity and then use two fragments to manage the camera. We
use the abstract class CameraSetUpVideoFragment to configure, open and close the camera,
start a preview, record video etc. Then we have CameraRecordVideoFragment, which extends
CameraSetUpVideoActivity and manages views and user interaction.

Setting up the camera preview is quite similar to the photo application. We pick the front
camera as our camera device and we use an AutofitTextureView to show the camera preview.
The difference between the regular photo app and the video app is that in addition to choosing
an output size that fits our preferred ratio, we need to make sure the mediarecorder supports
this output size. For this reason we first select the video size in chooseVideoSize(...) and then
we use the ratio we find here to select an optimal preview size.

6.3.7.6 MediaRecorder

The MediaRecorder class [24] is central to the video application. We configure the Medi-
aRecorder in setUpMediaRecorder. Here we choose mp4 as the output format and we choose
a video quality that allows us to take sufficiently long videos without exceeding the 5 MB
limit imposed by Keesing. We also need to set the orientation of the MediaRecorder so that it
matches the orientation of the camera lens. Since the livenesss check does not require sound,
we chose not to record sound in order to reduce file size. Like photos the video file is saved
internally in the application. In order not to worry about deleting the video if the user chooses
to re-take it, the output file is always set to the same file name. In that way the new video
will just overwrite the old one if the user chooses to record a new video.

When the user starts the recording we need to close the preview session and set up a new
CameraCaptureSession using the CameraDevice.TEMPLATE_RECORD template this time. We
create a new preview surface from our AutofitTextureView in order to show the video while
recording and we get a surface from the MediaRecorder as our recording surface. Both of
these are added as targets for the CameraCaptureSession. Once the CameraCaptureSession
has been configured a callback function starts the MediaRecorder.

6.3.7.7 Implementing Video Requirements

As mentioned in 3.4.2.1 videos must be at least 2 seconds and the size can be no more than
5 MB. In order to make sure these requirements are always met we have chosen to limit the
user’s control over the video. When the user presses record we use a CountDownTimer [25] to
make the recording run for 2.1 seconds before automatically stopping. All buttons are hidden
or disabled during this period, so that the user is prevented from stopping the recording too
early. In order for the user to know that the recording is running a timer shows a timer
counting down from 2 seconds next to the recording button. We do not specifically control
the video sizes, but we use the following measures to keep the video size well within the
limits:

• The quality is fixed at 480P
• We do not record audio

47

Digital verification of identity

• Duration is fixed at 2.1 seconds.

6.4 NFC

Our NFC functionality is based in the JMRTD library [26]. JMRTD is a Java implementation
of the MRTD6 standards specified by ICAO7 and it provides methods for reading, decoding
and validating electronic passports.

The JMRTD library is a quite extensive one, so to figure out how to implement our own
NFC passport reader we spent a long time reading the documentation and looking at different
code examples on GitHub. We are especially thankful for Anton Tananaev’s e-Passport NFC
Reader [27] which was a great inspiration to our implementation.

As mentioned in section 5.6, the ReadNFCActivity.java handles most of the logic behind
the reading of the passport, while the other NFC activities are mainly used as supporting
activities to get the information needed for the BAC-protocol8 and to display the result.

6.4.1 Getting MRZ Information for the BAC Key

As mentioned the document number, expiration data and date of birth is necessary in order
to unlock the passport chip by using the BAC-protocol. In the first version of our application
we did this by letting the user enter the expiration date, date of birth and document number
manually. In order for the BAC-protocol to work the dates both need to be entered on a
yymmdd-format. We soon realized that this would be very easy for the user to get wrong, so
we decided to implement a date picker dialog and then parse the selected date to our desired
format. Entering the document number is pretty straightforward, but to provide some extra
control, we control that it consists of exactly 8 characters and only numbers are allowed.

This solution worked fine, but we wanted to improve the user experience further, so we
decided to create a solution using the camera and OCR9 to read the information directly from
the passport MRZ.

We considered a few different options, and ended up using Anyline SDK’s solution for
scanning passport MRZ [28]. The reasons why we chose Anyline were mainly that they have
very well document APIs that were easy to integrate into our application and because they
provide a fast and accurate character recognition specifically adapted to scanning passports.
We signed up for a trial period for using their APIs so that we could demonstrate to Buypass
that using OCR makes the app a lot more user friendly.

In order to make sure the information was entered correctly, we ask the user to double
check it before reading the passport. If they discover an error they are redirected to Manu-
alNfcActivity. The reason why they are redirected here and not to ScanMRZActivity is that if
the OCR scanner was to read the MRZ wrong once, chances are that would probably happen
again (as the algorithm does not change between each try), so it would be safer to re-enter
the information manually.

6.4.2 Implementing the NFC Reader

The actual reading of the passport is handled in ReadNFCActivity. To make sure the user
understands how to read the passport chip, we have created an animation that shows the

6Machine Readable Travel Document
7International Civil Aviation Organization
8Basic Access Control
9Optical Character Recognition

48

Digital verification of identity

user how to do this. We insert BouncyCastle as our security provider, since JMRTD depends
on BouncyCastle for safe data transmission. Figure 20 shows an overview of how an NFC tag
is discovered, read and passed to the next intent. The main tasks of each function is described
below:

onResume(): In order to read NFC tags the phone needs to have a default NfcAdapter, if
this is not available, the user gets an error message. We also define a ”techlist“ that lets
us choose which types of NFC tags we are interested in. Since we only want to read
passport chips our techlist consist of only android.nfc.tech IsoDep, as isoDep is the
technology in passport tags. If an NfcAdapter is available a PendingIntent is created
for the adapter. The new intent is created with a Single Top Activity flag so that if the
activity is already running on top of the stack, it is not re-launched, but onNewIntent
is called instead.

onNewIntent(intent): If the tag is of the correct type (isodep) readNFC is called with the
tag and a BAC key constructed from the MRZ data as parameters.

readNFC(tag, BACkey): Performs BAC and reads the RFID chip. More about this in section
6.4.3. If the tag is read successfully NFCResultActivity is launched. Otherwise the user
gets an error message and is asked to try again.

6.4.3 Accessing and Reading the RFID Chip

As figure 21 demonstrates, when readNFC is called the discovered tag is stored in an Isodep
object. This is used to create a CardService10 and from the CardService we are able to open
a PassportService. PassportService is a central class in the JMRTD library. It lets us use our
previously created BAC key to unlock the RFID chip using a call to PassportService.doBAC().

If BAC succeeds, we use the PassportService to read an input stream containing the DG1
and DG2 file (see chapter 2.1) into a special JMRTD data structure called LDS11. From this file
structure we can access the actual files. We are then able to read all MRZ data from DG1File
and we use the subroutine getImageBitmap to get a bitmap from DG2File. DG2File contains
a list of FaceInfo12 objects which are used to store image data. In getImageBitmap we use the
FaceInfo method getFaceImageInfos to get the image objects. In some cases there might be
more than one image, but we just want the first FaceImageInfo-object as this is the passport
photo. To read the image we create an input stream and then parse the input stream into a
bitmap. A selection of MRZ data and the bitmap is then passed to the next activity, which
displays everything to the user. An example can be found in figure 46 in appendix T.

6.5 Database

As described in section 5.1, System Design, our database is separated from both the server and
the application. We decided to let all communication with the database go through our server
(no direct communication between the application and the database). This makes it easier to
secure our database since database access is denied to everyone except our server. API calls
the application makes to update or retrieve data from Firestore are routed to .../firebase, see

10Service class in JMRTD
11Logical Data Structure
12FaceInfo is a JMRTD object

49

Digital verification of identity

Figure 20: The figure shows the process of detecting and reading a passport RFID chip

50

Digital verification of identity

Figure 21: Reading the NFC tag in a passport

51

Digital verification of identity

figure 14 or appendix K, which handles the requests by calling on methods from database-
Functions.js. As database queries are executed asynchronously, we use Javascript Promises
[29] to handle the query result.

Firestore provides its own methods for writing database queries. To collect data we use
the method get(), which can be called on both documents and collections. An advantage of
the Firestore queries is that they are ”shallow“ by default, meaning that one can retrieve data
at document level without collecting the entire collection or the document’s sub collections.
This is beneficial for example when we need to retrieve the verification URL of an ongoing
verification from a user document without collecting the entire verifications sub collection.

To update the database we use either the set() or update() method. The difference is il-
lustrated in the two code examples below. UpdateStatus and storeVerificationToDb update
the ”status“ and ”verificationResults“ field of a verification document of a selected user. The
reason why we use update in updateStatus, is that we already know the status field already
exists since it is updated once a verification process is started. When updating the verifica-
tionResults field on the other hand, we do not know if this already exists, because this field
is not created until we receive a result from Keesing. That is why we use the set() method,
which creates a document containing a verificationResults field if it does not already exist.
Since we know that the document already contains a status field, we use the {merge: true}
option to merge the updated document with the old one instead of overwriting it.

1 updateStatus : function (userId , v e r i f i c a t i o n I d) {
2 return new Promise ((f u l f i l l , r e j e c t) => {
3 database
4 . doc (‘ u se r s /${ user Id }/ v e r i f i c a t i o n s /${ v e r i f i c a t i o n I d } ‘)
5 . update ({
6 s t a t u s : "finished"
7 })
8 . catch (e r ro r => {
9 r e j e c t (e r ro r) ;

10 }) ;
11 f u l f i l l ("Field updated") ;
12 }) ;
13 }
14

15

16 s t o r eVe r i f i c a t i onToDb : function (userId , v e r i f i c a t i o n I d , r e s u l t) {
17 return new Promise ((f u l f i l l , r e j e c t) => {
18 database
19 . doc (‘ u se r s /${ user Id }/ v e r i f i c a t i o n s /${ v e r i f i c a t i o n I d } ‘)
20 . s e t ({ v e r i f i c a t i o n R e s u l t s : r e s u l t } , { merge : true })
21 . then (() => f u l f i l l ("Verification results stored"))
22 . catch (e r ro r => {
23 r e j e c t (e r ro r) ;
24 }) ;
25 }) ;
26 }

6.6 Security

The following section describes how we have implemented the security requirements de-
scribed in 3.5. The application is built with the Principle of Least Privilege in mind, meaning
that the user can only access information that is absolutely necessary. We have implemented
this by using a client-server model that makes sure there is no direct communication be-
tween the user, Keesing and the database. For this reason most of the security measures are
implemented on the server side, but we have also taken a few considerations in the frontend

52

Digital verification of identity

application.

6.6.1 Frontend

In our application frontend security has two main purposes, validating and sanitizing user
input and making sure the user can not access information he should not have access to.

Input validation and sanitation: We get textual user input two places in the application,
when the user logs in and when he enters MRZ information manually (see section 5.6).
When the user enters the MRZ information manually he is asked to enter the document
number, expiration date and date of birth. When entering the document number the
application rejects anything that is not an eight digit number and when entering the
two dates, the user has to pick from a date picker dialog, so the user input here will
always be valid.

MRZ scan validation: When the MRZ is scanned optically we validate the result by using
MrzConfig.setStrictMode(true), which is a method provided by Anyline for validating
MRZ input. It is built on an algorithm developed by ICAO [30] for calculating a ”check
digit“ based on the MRZ data to verify that the MRZ has been interpreted correctly. If
the MRZ is not valid, no result will be returned.

File uploads: We ensure that no unwanted files can be uploaded by only letting the user
upload photos and videos taken within our photo application and not letting them
upload existing files.

Principle of Least Privilege: The user can only access information that is necessary in or-
der to correctly go through the verification process and later check the verification
outcome. We do inform the user if a verification step fails, but we do not give any
specific information about exactly why, say, a document check failed.

6.6.2 Backend

The backend security implementation involves mitigating server failure, input validation and
securing the data transmissions.

6.6.2.1 Validating Requests

As our server acts as a mediator between the user, the database and Keesing, it is responsible
for checking all user requests before passing them on. In order to validate the request body
we use the Express Validator middleware. We use provided methods for checking that any
uploaded user name is less than 40 characters, and to trim whitespace at the beginning and
the end. We also escape <, >, &, ’, " and / by replacing them with their corresponding HTML
entities. We then check that the request body contains the expected fields.

In the webhook we validate that the JSON objects we receive have the correct format.
Express validator lets us define our own custom check function, and we use regular expres-
sions to verify that the ID and verification URL that matches our pattern are accepted. The
verification IDs issued by Keesing are series of lowercase hexadecimal digits in groups of 8,
4, 4, 4, and 12 digits and separated by hyphens (36 characters in total), so we could make
specific regular expressions to make sure the verification ID has the right format, but after
recommendations from Keesing, we created a quite general format that accepts all 30-50
character strings containing digits, lowercase letters and hyphens. The reasoning behind this

53

Digital verification of identity

is that since Keesing’s API is still in Beta and we have experienced quite a bit of changes
throughout the project, we want our server code to be resistant to minor changes in the
verification ID format. Also, it would be difficult to do any damage with the uploaded ID
when the string length is restricted to 50 and only alphanumerical characters and hyphens
are allowed. Invalid requests receive a 422 invalid request error message.

6.6.2.2 Preventing DOS-attacks

We have used two complementary strategies for preventing DOS attacks.

1. Limiting file upload size. As only photos and videos taken inside the application (which
are limited to 2 seconds) are uploaded from the application, performing DOS-attacks
by uploading large files is already quite difficult, but as an additional security measure
we have configured the server not to accept requests with a larger request body than
5 MB. This limit is chosen because it is the maximum file size that Keesing accepts. For
more information regarding this implementation see appendix S.

2. Limiting requests per minute. We are using the Express Rate Limit middleware to limit
the maximum number of requests from the same IP address to 30 per minute.

6.6.2.3 Secure Data Transmission

Our API will be handling sensitive personal information with both photos and JSON objects.
In order to secure these sensitive data, and to accommodate Keesing Technologies’ require-
ments for a HTTPS secured webhook we have obtained a SSL-certificate for our domain.

Buypass is the only CA13 in Norway, and as our employer it was natural to look into what
they could provide regarding SSL-certificates. The certificate ensures that the communication
between the mobile application, Keesing Technologies’ API and the server is encrypted [31].
See appendix S for detailed information about configuration.

6.6.2.4 Database Security

As described in chapter 3.5 there are two major security concerns for the database. One is
that an attacker might try to change the result of a verification process and the other one is
that someone might try to access data they should not have access to.

In order to protect the integrity of our database, all user input that is sent to the database
is validated and sanitized. The only user provided data that is stored in the database is the
user ID and the FCM token. The actual verification result can only be updated when the
webhook is triggered with a verification URL. When this happens our server makes a call to
the Keesing API to collect the verification result for the requested verification and uses the
response to update the database. Of course, if an attacker knows a verification ID he could
potentially create a request that triggers the webhook. Still, all he would accomplish would
be that our server sends a request to Keesing to update the database with their response.

To prevent unauthorized users from accessing data they should not have access to, each
user is associated with a Universal Unique Identifier (UUID). Whenever a user logs into the
application a UUID is generated and sent to the server which stores it in the database. When
the server receives a request to get the verification results the UUID must be added to the
request. We then check that the UUID stored on that user matches the UUID in the request.
Ideally we would have checked the UUID for every call to our API, so that no one could start a
verification process or upload files to another user’s account. Unfortunately we did not think

13Certificate Authority

54

Digital verification of identity

about this security hole until quite late in the project, so we only had time to implement it
where we considered it to be most important.

6.6.3 Evaluation of the Verification Process

As described in chapter 3.6 evaluating the quality of the final verification process after im-
plementing Keesing’s solutions for document checking, face comparison and liveness check
is an additional goal for our project. The main purpose of this was to see whether a mali-
cious user, through normal use of the application, could obtain an e-ID in another person’s
name. Throughout the development we tested our application with countless different im-
ages/videos, so without doing any structured testing, we were already quite familiar with
the different checks by the time our prototype was ready. We used the insight we had gained
throughout the development process to come up with a few potential misuse cases that we
wanted to look at more closely (described in Requirements).

First we wanted to see if we could pass the document check using an image of a passport,
so printed out an picture of a valid passport and used this for the document check. It turned
out it was just as easy to pass the document with a photo of another ID photo as with a photo
of the actual document.

Then we wanted to see if someone could pass the face comparison for another person’s
document. From experience with Keesing’s APIs we know that their algorithm seems quite
good at detecting image faces for the face comparison, even if there is quite a bit of back-
ground noise, so for the face photo we simply took another picture of the ID document. Again,
we passed the face comparison most times we tried this.

Lastly, we tried fooling the liveness check by filming previously recorded video clips. This
did not succeed in any of the attempts we made.

When testing regular use of the application with a valid ID we discovered that as long
as the document photo was of good quality and showed the entire document, the first two
verification steps were accurate. We saw practically no valid documents failing the document
check, although some document photos did end up at helpdesk. The liveness check on the
other hand turned out to be quite prone to false negatives as some testers had difficulties
passing the liveness check without significant effort. This was an important reason why we
chose to include a popup instructing the user to say a sentence or make grimaces during the
liveness check.

55

7 Testing and User Feedback

Testing is of great importance when developing a mobile application. End users should not
experience any problematic bugs or flaws within the application at the point of release.

Buypass wanted a prototype application providing a demonstration of the possibilities
with digital ID proofing, our main area of focus during the development process has been
implementing the necessary functionality. The testing was done mostly manually as we went
on. This was due to the complications implementing the third party API functionality, and
the response codes as well as unstable availability.

7.1 Static Code Analysis

Testing the code statically for bugs, linting errors, vulnerabilities and code smells is important
in regards to both readability and possible functionality malfunctions.

7.1.1 Frontend

By using SonarQube throughout the project we have been able to minimize the amount of
bugs and vulnerabilities. This has provided us the opportunity to eliminate both bugs and
vulnerabilities within our frontend code, and to obtain both a security, maintainability and
reliability rating of an A. The security rating indicates the weaknesses a hacker might exploit,
the maintainability provides information as to how the code will be harder to update than it
should, and the reliability indicates weaknesses as to how the code will act in difference to
what is expected.

7.1.2 Backend

As for static code analysis on the backend portion of our code we have used ESLint. We have
configured ESLint to disable error messages when an unexpected console log appears in the
code. These console logs are done for tracking the processes on the server, and have been
used in order to debug, as it makes it possible to detect where the errors occur. The decision
to disable the ”no-console“ rule have been made in order to easier process the errors that
represented a possible vulnerability in the program. A solution to the unexpected console log
errors would be to remove all the logs within the code, but as this is a prototype and the code
will be handed over to Buypass we saw it best to leave it as is.

We have implemented all the recommended rules for Node.js [32], but the two rules
for ”no-process-env“ and ”no-sync“ are implemented as warnings. We have also turned on
warnings for ”no-useless-escape“ which complains about a unnecessary escape character in
our RegEx1 for JSON schema validation. The schema validation is dependent on these escape
characters, and therefore we chose to leave it on as a warning. The ”no-process-env“ rule
disallows the use of process.env which we have used in order to have the client credentials
for Keesing Technologies’ API as environment variables, and not directly in the code. The
”no-sync“ rule disallows the use of synchronous methods, but we are dependent on it in
regards to the file upload aspect of the backend. ESLint has allowed us to eliminate several

1Regular Expression

56

Digital verification of identity

Figure 22: SonarQube results of the frontend code

vulnerabilities in the code, and we are only left with some warnings regarding the rules
mentioned above. For more information regarding the configuration of ESLint see appendix
R.

7.2 Manual Testing

In order to continuously test the functionality we implemented during the development pro-
cess we have been writing manual test cases, see appendix J. The file containing the test cases
has been on the group’s Google drive, and that has provided us with the ability to perform
tests, write new and to see the state of the different tests. The test cases also contained a field
in which a mitigation has been suggested.

The manual tests on the backend of our application have been performed by using Post-
man, and the mock API of the third party API up to a certain point, when we were told it was
insufficient. The manual tests has allowed us to keep testing parallel to the implementation of
functionality. We have written simple tests within Postman which are being passed or failed
whether we receive the expected response or not, see appendix K. These tests are triggered
when we perform the desired API call, and the outcome is determined by the JSON request
bodies.

The manual tests performed on the frontend of our application has been done through
testing the implemented functionality and appearance with emulators and test phones. Both
the emulators and the test phones have been used in testing the appearance of the application.
The test phones has also been used for testing the functionality involving file uploads. This
has allowed us to easily take blurred photos, face images not containing any face, liveness
check videos not containing faces or being blurred easily.

When testing the entire verification process, as well as logging in and viewing the results
through the push notifications the manual testing has been helpful because it gives us an
idea of an interaction the end users may have had with the application. We found this more
important than the automated tests as we could uncover bugs and flaws in the way the

57

Digital verification of identity

automated tests would, but we would also test the interaction with the application.

7.3 User Testing and Feedback

The project has evolved around making a prototype application for Buypass, as stated in the
introduction, see chapter 1. It has therefore been in our interest to create an end result that is
satisfactory to them. The continuous source of feedback throughout the project has therefore
been Buypass.

The process for feedback has involved implementation of functionality and improving the
GUI of the application with each sprint, and the sprints have been concluded with the status
meetings with Buypass. During the meetings we have provided demonstrations, and we have
received feedback on the application. After the meetings, the feedback has been taken into
consideration and we have discussed how to reach the desired results.

During the development phase of the project we have had continuously implementation
with manual testing as mentioned in section 7.2 above. The manual testing involved the test
cases to be executed by the other team members, ensuring that the implemented function-
ality would work and act as intended. The disputes that occurred regarding the GUI and the
implementation of functionality was addressed in the group, and we came to an agreement
together. This ensured that we implemented what seemed like the best solution for us.

Towards the end of the project the time schedule caught up with us, and we were not
able to conduct user testing performed by outsiders of the project. User testing would have
provided information in regards to the UX within different end user groups, such as visually
impaired for both colors, font size and style. The user testing would also provide information
as to how easily a verification could be conducted by a user unknown to the system.

58

8 Development Process

Although we had a clear plan for our development method and process, we soon realized
that we had to adapt our plan according to what happened in real life. As expected many
tasks were more (or less) difficult than we expected and we frequently had to re-evaluate
or modify our goals and requirements. We also realized that sometimes we had to evaluate
the actual development method and make adjustments due to occurrences such as group
members being absent, assignments in other subjects that required intensive work over a
period of time and so on. In this chapter we aim to give an overview of how the actual
development process went down.

8.1 Scrumban as Development Method

Throughout the project we stuck to our plan of organizing the development process using a
combination of Scrum and Kanban. The sprints ended with a meeting with Buypass where we
gave a demonstration of our current functionality and received feedback. After this meeting
we discussed the past sprint in our retrospective meeting. At the beginning of each sprint
we planned the next one based on feedback from Buypass and what we considered the top
priority tasks according to our MVP approach. We were usually able to keep a routine of
starting a sprint every other Monday and ending it Friday two weeks later. However, at some
points we had to adjust this due to external factors. This could be due to Buypass having
to advance or postpone a meeting, due to multiple group members being indisposed at the
last/first day of a sprint etc. Generally we dealt with this by extending one sprint by a day or
two and shorten the next sprint by the same, or vice versa.

8.1.1 Group Meetings

We went through with sprint planning, retrospective and daily scrum meetings as described
in the Software Development Method chapter. During the daily scrum meetings we kept each
other updated on each other’s work, so the retrospective meetings mainly focused on the
actual development process and not so much the product itself (this was more the focus of
the sprint planning meetings).

In the early phase of the project we had a tendency to work a bit unorganized. Thanks to
our Kanban board and our daily scrums we usually had a general idea what everyone was
working on, but if someone got stuck on a task or did not have a clear idea how to deal with
a challenge, we did not really have any routines to deal with this. Often these problems were
difficult to pick up on during the sprints as we could all be a little to focused on our own
jobs. During the retrospective meetings we were able to discuss these problems and figure
out how to deal with them. See appendix L for the meeting logs from the three first sprints.

In the beginning, the tasks on the Kanban board were often quite large and the task
description a bit vague. The idea behind having a Kanban board was that when someone
finished a task, they could pick a new one from the To Do section, but when the tasks were
this way they often seemed a bit overwhelming and difficult for one person to start working
on. After discussing this during our retrospective meetings we started breaking down the tasks

59

Digital verification of identity

Figure 23: Trello board during sprint 4

into smaller, more specific pieces. For an example of one of our Trello boards, see figure 23.
This gave everyone more of an overview of what needed to be done to complete a task and
it encouraged us to be proactive and take initiative instead of waiting for the others to tell us
what to do.

Another challenge we encountered was that since we usually worked on distinct part of
the application and everyone sort of had their own area of competence, we became very
vulnerable to people being away from work for different reasons. An example was when we
developed the NFC reader. This was mainly researched and implemented by one of the group
members and the rest of the group had done little work with this technology. There were two
major problems with this. 1) If the person was not present, the rest of the group was unable
to continue the work, and 2) If that person did not know how to solve a problem, no one else
were really able to help. In order to overcome such issues we decided that for each of the
main development challenges (for example camera application, database implementation,
server calls to the Keesing API, uploading files etc) at least two people should work on and
be familiar with the code, so that if one person was away, the other one would know what
needed to be done. We also made sure to write some notes to document our work in a shared
document.

During the sprint planning meetings we had more of a product focus. We usually started
by discussing the feedback from Buypass and decided on what we wanted to implement by
the next meeting with them. Based on the experience from the last sprint, we then discussed
which one of the items from the product backlog that would make the greatest improvement
of the product. In general our first priority was to implemented the changes our client sug-
gested. This was partly because our main objective is to create a product that satisfies their
requirements and because we thought it would give a good impression of us as a team to be
able to present a product that better adapted to the client already at the next meeting. We
also appreciate that our partners in Buypass are experienced project managers, which means
their feedback is likely to be valuable to our development process.

Additionally we had weekly meetings with our supervisors from NTNU. At these meetings
we primarily discussed the development process itself and made sure we were on the right
track regarding our priorities. See appendix O for a selection of meeting logs.

60

Digital verification of identity

Figure 24: The total time conducted divided between the five sprints

8.1.2 Pair Programming

In the beginning of the project our plan was to use pair programming. in that way it would
always be two people with the knowledge and it would not matter if one of us was absent.
It could also increase the quality of our work since everything is double checked. Although
this sounds good in theory, we quickly learned that in some cases this was a bit counterpro-
ductive. If a task is not particularly challenging, using pair programming felt like a bit of a
waste of time. On challenging application modules, like the camera implementation and the
communication with Keesing, pair programming was very useful. In the development of these
modules we frequently got stuck due to quite small programming errors, and these were a
lot easier to avoid or discover when two people were working together.

8.2 Sprints and Milestones

Due to complications during the development process we saw the need to adjust both the
milestones and the contents of each sprint in regards to the progression. The agile form of
development allowed for this, and it helped both us and Buypass come to a better satisfaction
and agreement as to how the application should both act and look. During the project we have
reached several milestones representing implementation of functionality, demonstrations and
completion of the project, and the milestones of the project are listed below:

Milestone 1 - 8th of February: The application did have a simple GUI with the ability to
take photo.

Milestone 2 - 14th of February: The communication between the application and the server
was established, and we were able to send simple JSON objects between the two.

Milestone 3 - 7th of March: We were able to upload a photo to the third party API for a
verification.

Milestone 4 - 11th of March: The application’s implemented NFC reader was able to ex-
tract information from a passport.

Milestone 5 - 15th of March: We were able to conduct a verification of an ID document,
performing both the face comparison and liveness check in addition.

61

Digital verification of identity

Figure 25: The total time week to week throughout the entire project. Sprint one of the development

process started in week six

Milestone 6 - 20th of March: The webhook was triggered when the verification results were
done, and we were able to retrieve the results and storing it in the database.

Milestone 7 - 27th of March: The push notifications was working properly. The GUI was
updated in regards to feedback from previous meetings. Bugs and vulnerabilities were
eliminated from the application.

Milestone 8 - 10th of April: Recorded demonstration of the application, demonstrating all
the implemented functionality.

Milestone 9 - 12th of April: Elimination of bugs and vulnerabilities in the frontend code of
the application.

During the five sprints of the project we conducted 1105 hours of work, see figure 24 for
distribution between the sprints. This leaves us with an average of 27,625 hours of work each
conducted to the project in the development phase. Including the time conducted to research
and planning in the project planning phase of the project we have conducted 1374 hours of
work, see figure 25 for the total time from week to week during the project and appendix Q
for the Toggl time reports. The distribution of the hours conducted during the sprints, as well
as more in-depth description of the five sprints can be found in appendix M.

8.3 Minimum Viable Product Approach

Throughout the project we have used a Minimum Viable Product (MVP) mindset when de-
ciding which features to develop. Our MVP strategy involved creating an overall plan for
when we hoped to reach different milestones, but the day-to-day and week-to-week planning
largely focused on the question “What is the most important thing in order for the application

62

Digital verification of identity

to work?”.

In the early phase of the project the objective was quite simple: creating an application
that could register a username, take photos and videos and upload these to the server, and
a backend that could start a verification at Keesing’s and then upload necessary files in the
correct format. The way we saw it, creating an application that could take the user through the
verification process would represent a minimum of what our application should be able to do.
When creating the first prototype we were mainly focused on the concrete steps that needed
to be implemented, and we paid less attention to things like GUI, security and database
management. For one thing this enabled us to get early feedback from Buypass. Another
thing it gave us a sense of security to know that the most essential part of the application was
in place so that we were free to choose which aspects of the application to focus on in further
development. As we knew the basic functionality was there we were able to spend quite a lot
of time designing the GUI, developing the NFC reader and implementing a solution to handle
verification results.

8.4 Interaction with Stakeholders

8.4.1 Initial Meeting with Buypass

Our first meeting with Buypass regarding the project occurred on the 18th of January, for
meeting log see appendix P. Prior to this meeting our initiate starting point had been the
project assignment, see appendix A, researching the different technologies and tools men-
tioned. During the first meeting we constructed a more updated scope for the assignment.
The redefined scope involved the development of a native Android application with a back-
end solution of our choice where we decided on a RESTful API, as mentioned in chapter
1.

8.4.2 Initial Meeting with Keesing Technologies

During the planning phase of our project we did not have access to much information about
Keesing Technologies apart from what we could find on their website and what we had
learned from our initial meeting with Buypass. We were supposed to have a meeting with a
representative from Keesing quite early, but due to this representative being indisposed, this
meeting was postponed several weeks. In the meantime, in order to get started, we received
a detailed integration manual for their API and a link to a web based API documentation.
We were initially a little confused by this since the two documentations seemed surprisingly
different given that they were supposed to describe the same API, and since the integration
manual was a lot more extensive and explained the process and server calls a lot more in
detail, we assumed this was the one we should use.

Up until the meeting with Keesing (on the 22nd February, see appendix P for meeting logs)
we worked on implementing a document check using the API described in the integration
manual and we succeeded at creating a server call that could upload a document photo and
get this verified by Keesing. During this meeting we were informed that Keesing actually of-
fered two separate APIs and that we should use the API in the web based documentation[33]
and not the integration manual.

After receiving this information we needed to make quite a few changes to what we had
decided so far. For one thing, the first documentation had stated that we needed a static IP
address for our server, but when using the second API, this was no longer required. For this

63

Digital verification of identity

reason we re-evaluated our server solution (this will be discussed later in the report). We also
had to re-write all calls to Keesing, as the verification process was conducted quite differently
using the new API. Luckily most of our work on the client application was quite independent
of what we had implemented on the server side, so here it did not set us back that much.

During the initial meeting we also got new information regarding the NFC functionality.
We were informed that this would be in the testing phase at the end of February, but it was
uncertain if or when this would be available to us.

8.4.3 Continuous Feedback

Figure 26: The different version changes from the first version to the left to the last on the right

As mentioned in chapter 7, section 7.3, Buypass provided continuous feedback throughout
the project by demonstrations, meetings and email exchanges. This feedback was taken into
consideration and implemented for the next demonstration that would occur, see appendix
P for meeting logs.

During our meeting on the 1st of March we received feedback for providing more verbose
explanations throughout the verification process. This feedback was taken into consideration
and implemented for the upcoming demonstration on the 20th of March. During this demon-
stration we presented the verbose explanation implemented by pupops and more informative
buttons. After the demonstration we received feedback on how the verbose explanations and
the application could seem a bit too technical and formal. They wanted us to create more of
a informal dialogue with the users, and this was implemented for the next demonstration.
See figure 26 for some of the changes in the GUI throughout the development process.

8.4.4 Challenges

During our implementation of the Keesing API we learned that the API documentation we
used was still under development, so we ran into a few challenges along the way.

File uploads The API documentation stated that photos and videos must be individually
uploaded as form data and a mock server could be used to check that the format was

64

Digital verification of identity

correct. We tried several different approaches and formats but were unable to fulfill the
upload. Buypass put us in touch with one of their in-house developers, and we initiated
conversations with Keeing Technologies’ helpdesk. We were not able to uncover the
possible error within our code, not by the help of Keesing or the in house developer.
After a couple of days of conversation with Keesing Technologies’ helpdesk we were
able to perform an upload. The upload provided now the wrong status code in regards
to the documentation, and after this point we had continuous conversation with their
helpdesk uncovering flaws with status and error codes.

“Grumpy Servers” Around mid March we encountered an unexplanatory error with our
previous implemented functionality, see the listing below.

1 SyntaxError : Unexpected token < in JSON at p o s i t i o n 0

We were unable to locate the file containing the error, and the code had been working
prior to the sudden error. After an hour the functionality would then work again without
any changes to the code. A couple of days later we were still experiencing the same
error, and we approached Keesing’s helpdesk. The issue was addressed and we were
told that their servers had been down at the time, and this provided an explanation
to the error. We continued experiencing unstable servers during the early stages of the
day throughout the project, and we adapted by trying not to be dependent on their
servers during these hours. This workaround has mostly included frontend work such
as GUI improvements, NFC functionality or implementation of the Camera2 API. By
conversation with Keesing’s helpdesk and planned demonstrations the servers were
not scheduled for any down time during our requested time.

Beta testing At one point during the development process, in advance to the meeting with
Buypass on the 20th of March we disclosed the information during an email exchange
with Keesing’s helpdesk that their API was in the beta stages of testing. Up to this point
both we and Buypass were under the impression that the NFC functionality was the only
part of their API that was in the implementation and testing stages. This information
was a bit of a relief to us as it gave an explanation to some of the problems we had
experienced up until that point.

8.4.5 Concluding Demonstration

On the 10th of April we had a concluding demonstration for Buypass at their premises in
Gjøvik. This involved a recorded demonstration of the implemented functionality within our
application. The demonstration would mark the end of the application implementation, and
we would here on out focus on increasing the readability, maintainability and the security
aspect of our code in regards to bugs and vulnerabilities.

8.5 Version Control

During our development process we have deviated from the intended naming convention of
versions, where as the last digit, the intended patch number, has been implemented more
as a functionality implementation number. We usually worked in branches named after the
functionality that was being developed in that branch (for example “camera” or “toolbar”)
and creating a new patch name for each added functionality simply got a little confusing,
given that we were often working on multiple features in parallel.

65

Digital verification of identity

Figure 27: Workflow

Our version control is illustrated in figure 27. The figure represents how the master is the
head of the branch and contains the latest working version of the application. Some versions
consists of more implementation than others. This has to do with our agile development
style, and the constant improvement or implementation to some areas of the application.
See appendix N for more extensive information regarding the different versions.

8.6 Developing the Camera Application

The camera functionality is a central aspect of our application and for this reason we have
given a lot of thought to which method to use for this. Given our minimum viable product
mindset our first goal was to get our application up and running. Early in the process it
was important to us to start experimenting with the Keesing API and in order to do this we
needed to quickly implement a working camera application. We started out by implementing
the camera application that is built in the phone. This implementation was fairly easy and it
allowed us to start testing the Keesing API early on.

Still there were some significant down sides to this method, the most important one being
that we had little control over the camera. Whenever the camera was launched we switched
from our application to the camera application, so we had little control over how this would
behave. The camera app would both look and behave differently on different types of phones.
Not all phones allowed the user to retake a photo that was unsuccessful and only some devices
let us decide whether to open the front or back camera. Moreover some phones allowed the
user to edit the photo after taking it, which for obvious reasons should not be allowed.

Another great drawback of the built in camera application was that we were not able to
customize our camera app to our specific needs. Many of the camera requirements were im-

66

Digital verification of identity

possible to meet unless we implemented our own application and given that some of these
were quite essential to both the functionality and user experience, we decided this was nec-
essary.

Android has two options for implementing a custom camera, the camera API, which is not
too hard to implement, but which was deprecated in API level 21 [34] and the much more
complicated, but also more powerful Camera2 API. As our camera targets higher API levels
we choose to use the Camera2 API.

It is fair to say that implementing the Camera2 API required significantly more work than
our first solution and we did not start working on this until quite late in the process. The main
reason why we did not implement this from the start was partly our MVP approach to the
project and partly that early on we were all quite inexperienced in Java/Android program-
ming, so understanding the rather complex Camera2 API seemed a bit out of reach. However
throughout the project we learned a lot and after most of the basic functionality of our app
was working we decided to give it another shot. Luckily through our development process
we had learned a lot about Android programming, and when making a second attempt at
implementing a custom camera, the Camera2 API did not seem as overwhelming as before.

67

9 Discussion

9.1 Development Method and Process

Looking back we think Scrum as a development method worked quite well in our case. We
knew from the very beginning that the project requirements were far from set in stone, and as
it turned out, many of the requirements changed or evolved throughout the project. Initially
the project requirements were quite simple, as reflected in the original milestones in section
4.1.8 and in our project plan (appendix C). As Scrum does not require too detailed long
term planning, it allowed us to start developing the application and experimenting with the
Keesing’s APIs at an early stage. This proved to be important, as we ran into quite a few time
consuming challenges along the way. Another important point was that many of the product
requirements did not become clear until after developing the initial features. With regards to
this the meetings with the product owner, sprint retrospective meetings and sprint planning
meetings were valuable. Here we got to discuss the features we had implemented and reflect
on what needed to be implemented in order to further improve the product. The use of push
notifications is a good example. Originally this was not part of the product requirements
since we initially had little information about how Keesing would communicate the results
of a verification process. After developing the initial prototype of the application we started
testing the practical use of their APIs. We soon learned that quite often a document photo
would end up at helpdesk, which means a result was not immediately available. This made
us realize the need for a way to alert the user when a result is ready, so we added push
notifications to our requirements. Such changes were usually not problematic since we re-
evaluated the product requirements every sprint.

A challenge with using Scrum and Kanban the way we did is that it requires the team
members to take a lot of initiative. As described in section 8.1.1 we initially struggled creating
tasks that were small and well contained enough. Although we had daily scrums where we
allocated tasks to each team member, there were still quite a few occasions where people
felt unsure regarding what to work on. We tried handling this by improving the Kanban
board and by talking about it in our daily scrums, but it still led to frustration and poor
productivity at times. This problem was mostly evident in the first half of the project. As
described earlier an initial problem was that we all had very distinct areas of competence.
Some team members only had experience with certain modules on the server side, while
some had only worked on the Android application, so if someone got stuck on a problem it
was hard to find alternative tasks to work on in the meantime. After a while, when we made
sure everyone had a more broad area of competence it got a lot better. Still, as our project
had limited time and resources, making the most out of what we had was essential. By having
a better course of action for what to do when these situations arose we probably could have
increased the total productivity.

Another challenge was that as a consequence of our initiative-based way of allocating
tasks, people tended to pick tasks involving new development from the To do column over
“boring” tasks like refactoring, testing and code review. Given that developing new function-
ality was indeed the main focus of the development process this was not entirely a bad thing,

68

Digital verification of identity

but it did have the consequence that these tasks were neglected or postponed at times. In
general this was not a huge problem, but we did have some bugs, cases of unnecessary code
duplication and so on that might have been avoided if testing, refactoring and code review
had higher priority at an early stage.

9.1.1 Minimum Viable Product Approach

As mentioned earlier we have kept a Minimum Viable Product (MVP) approach to the devel-
opment process. This product minded development has ensured the implementation of the
necessary functionality, in order to provide a satisfactory prototype for Buypass. Given that
we are all quite inexperienced as software developers, it was difficult to estimate the amount
of time and resources required for the different tasks, so while planning the project it was
hard for us to say how much functionality we could realistically expect to develop. We feel
that the MVP mindset helped us identify the most important tasks and keep the most impor-
tant employer requirements on top of our priority list. For example, it would not really have
mattered if we had a great camera application if we were unable to get the files verified by
Keesing. We also think it reduced the risk of spending too much time fine tuning a feature
and not having time to implement other important features.

Still there were some down sides to this approach. For one thing it did mean that some
features, security in particular, was somewhat neglected until quite late in the process as it
was not essential to create a demo app. Another disadvantage was that it led to re-doing
work in some areas because the initial implementation needed improvement.

The camera implementation is a good example of how the MVP approach was incorpo-
rated. As described in chapter 8.6 we started out by implementing a simple camera solution
before deciding to start over and implement the more complicated Camera2 API halfway
through the project. In retrospect this did mean we sort of did twice the work, and in theory
implementing the Camera2 API right away would have saved us hours of work. However, in
real life this might not have been the case. Early on we had a lot of trouble understanding
how the Camera2 API worked, so if we would have committed to creating a custom camera
application from the very beginning, it might have gone a long time before we had been able
to start developing other modules that were dependent on the camera functionality. Figuring
out how to communicate and upload files to Keesing turned out to be quite time consuming,
so we believe it was the right decision to start working on this early on. We also discovered
that after working on the project for a few months we had learned a lot. When we decided
to start working on the custom camera, we realized that the Camera2 API did not seem as
difficult as it was at the earlier stage, so we were probably able to create the camera faster
than we would have earlier in the project. Hence we might not have saved all that much
time/resources by implementing the Camera2 API right away.

9.1.2 Testing and Development

Looking back at the testing aspect of the project we probably would have benefited from
automated API tests. This would have allowed easier validation of the functionality in our
API when changes to the source code occurred. We spent quite a lot of time performing
manual testing in Postman, so automated API tests would probably have saved us quite some
time. We tried implementing automated tests in the Android application using the Espresso
library. The problem was that large parts of the application require the user to take a photo
or read an NFC tag, and these processes are difficult to simulate through automated testing.

69

Digital verification of identity

We did write a few tests in order to check that all user interface elements appeared the way
they were supposed to, but since we had to test most of this functionality manually, these
tests did not really provide much valuable information.

9.1.3 Implementing an API in Development

As described in chapter 8, the Development Process chapter, there were quite a few cases
of miscommunication in the beginning of the project that led to a quite significant delay in
the development process. This was largely due to some unfortunate circumstances, and we
were not able to have a clarifying meeting with Keesing until several weeks into the project.
We do take some self-criticism in this situation, as we could have made absolutely sure we
implemented the correct API from the beginning. We may not have been able to get an earlier
meeting, but we could perhaps have worked harder to contact Keesing directly (and not just
via Buypass) in order to get answers to our most pressing questions. Still we think we handled
the situation quite well. Instead of focusing on the setbacks we saw the conducted work as
part of the process of getting to know Keesing and their methods, and we immediately started
implementing the correct API. Our idea of developing the client application and the server
in parallel worked well in this case. When implementing the new API, we had to change
large parts of the server code, but since the way the application code was independent to the
communication with Keesing, we did not have to make any changes here. This experience
also made us pay more attention to keeping a close dialog with both Keesing and Buypass in
order to avoid similar issues in the future.

Throughout the project we have been focused on always being proactive and try not
to let problems out of our control affect our productivity. In the beginning of the project,
bottlenecks like miscommunication and lack of documentation slowed us down quite a lot.
We frequently (while waiting for a response from Keesing) spent hours trying to solve a
problem that could easily be solved once we got their response. As mentioned in the previous
chapter the problems were sometimes related to changes or errors on Keesing’s API, which
meant that we occasionally spent hours or even days trying to fix code that was not actually
malfunctioning.

However after a while we learned that in most cases, the best thing we could do when
encountering a strange or unexpected error was to send an email about the issue right away
and then proceed to work on modules that were not dependent on Keesing’s API. Neither
the camera application nor the NFC reader depend on any calls to Keesing, and since they
both required quite a bit of work, we were able to keep our productivity up by shifting our
focus to these modules. In this way we always had work to do, and we avoided spending an
unnecessary amount of time fixing issues that might not even be related to our code at all.

9.2 User Testing

In retrospect we realize that lack of user testing is a major weakness in our project. As de-
scribed in chapter 8 we have mainly focused on creating a product that satisfies the product
owner and in the middle of developing the application based on their feedback, we sort of
”forgot“ the importance of feedback from target end users. User friendliness is an important
requirement for our project and there is no doubt that it would be useful to get feedback
from people with no prior knowledge of the application. Since everyone in the group knows
the application inside out it is difficult for us to evaluate how the user experience of a typical

70

Digital verification of identity

end user would be.

This would be of particular relevance to the camera application. As described in section
3.4.2.1 document photos that are of sufficient quality could be verified automatically, and if
the quality is insufficient, they are redirected to Keesing’s helpdesk and the response time is
a lot longer. Given that the main purpose of the camera application design is to make it easy
for the user to upload valid photos, it would be very useful to get a group of users to test
the application using a valid ID. Ideally they would all pass all three steps, but if it turned
out a large portion of the users were unable to take sufficient photos to get their document
approved right away, we would have to reconsider the user instructions and camera design.

We did originally plan on conducting user testing once we had the main functionality in
place and then make adjustments based on the user feedback. Unfortunately as we spent a lot
of time fine tuning the user interface and functionality according to feedback from Buypass,
by the time we felt we had developed a prototype fit for user testing, we realized we had
underestimated the amount of planning and work required to conduct valuable user testing.
At that point in the process we would have had little time to actually make adjustments
based on the test results. We also knew that we had quite a bit of work left for fixing bugs
and vulnerabilities, and cleaning up our code. It was important to us that we could deliver
code that is readable, easily maintainable and well documented, so we decided our time
would be better spent getting the project ready for Buypass to take over than conducting
more or less improvised user testing.

In retrospect it is hard to say whether or not we made the right call at the end of the
project, but we do believe we should have planned and set aside more time for user testing
earlier on in the process. We have indeed received very useful feedback from our meetings
with Buypass, but real user feedback would have provided another dimension to it.

9.3 Backend Solution

We originally considered several different approaches for our backend solution. Originally
our plan was to have a ”serverless“ solution using Google Cloud Functions. Using Cloud
Functions would have meant minimal set up and configuration of our server, automatic scal-
ing and basically no need for server maintenance. We had already decided on using Firebase
for our database and for push notifications, so using Cloud Functions would have meant this
could be implemented quite seamlessly. Unfortunately, as mentioned in chapter 8, Develop-
ment Process, some miscommunication/misunderstandings led us to believe that we needed
a static IP address to implement the Keesing API, and since this was not possible when using
Cloud Functions we decided to create a Node.js server on a VM1.

During our initial meeting with the Norwegian Keesing representative (see 8.4.2) we dis-
covered that we were to implement a different API that did not require a static IP address,
we considered going back to our original plan of using Cloud Functions. This would mean
re-doing all the work we had done in the meantime, but if it would mean easier integra-
tion with Firebase, easier implementation of a RESTful API etc, we might still have saved
time in the long run. Still, we decided to keep our backend solution. One reason was that
we had already done a fair amount of work that would probably take quite some time to
re-do in Cloud Functions and we were already worried that we had gotten behind schedule
due to implementing a different API than the one we ended up using. But more importantly,

1Virtual Machine

71

Digital verification of identity

although Cloud Functions are written in JavaScript/TypeScript the syntax is a bit peculiar,
so transferring it to a backend solution not using Cloud Functions would mean quite a lot
of code would need to be changed. We knew that if Buypass were to further develop our
solution, they would run the backend service on their own servers, so we figured having a
Node.js server on a VM would mean easier integration into Buypass’ existing solutions.

9.4 Application Design

As none of the group members have any previous experience with app development, devel-
oping our product has been a ”learn as you go“ process. We have learned a lot about Android
development throughout the project and there is no doubt that if we were to start over, we
probably would have done things a bit differently. This is perhaps most apparent in the de-
sign pattern of the application. As described in chapter 5 our application is mainly built up
by Activity classes with their XML layout files and a few supporting fragments and other
helper classes. The idea was that the client application logic would be lightweight and sepa-
rating everything into Activities would make both implementing and reading our code quite
straightforward. It would also allow us to start developing right away and to get familiar with
Android Studio and Android programming.

With hindsight we do see that there may have been more organized and perhaps better
ways to design the app. For one thing it may have been beneficial to reduce the number of
Activities in the application. We have mentioned responsiveness as an important UX require-
ment, and in some cases using fragments instead of activities could perhaps made our app
more responsive. This is why we use a fragment, and not an activity for the User Page (”Min
Side“). This screen can be reached from anywhere inside the app, so instead of creating a
new activity every time, we just re-use a fragment. This approach could also be done is some
other activities. Examples could be UploadActivity and Camera2Activity. These activities are
reused multiple times throughout the verification process and instead of having to create a
new activity every time we take a photo or upload a file, we could have created fragments
that could have been re-used. This could have given us some potential benefits:

• It would be easier to pass information between screens. Whenever the either of these
activities are launched we need to pass a string extra letting the activity know which
type of photo (document or face) to take or which type of file to upload and UploadAc-
tivity needs an extras containing the file uri. If using fragments instead, we could just
retrieve this information from the calling activity.
• We would not have to create a new activity every time.
• Each verification step could have a neat and logical structure of an Activity class that has

one fragment for user information, one for taking a photo/video and one for uploading
the file attached to it.
• We could attach the toolbar to the Activity class and not have to repeat it in every one

of the fragments (less duplication of code).

One could probably also argue that we could have made our code more modular by sep-
arating the background logic from the Activity classes. Android Developers recommend that
Activities are only used for handling the user interface and interacting with the operating
system [16] and mostly this is exactly what our activity classes do. However some of them
also have a bit more background logic, like communicating with the server (LoginActivity,

72

Digital verification of identity

PassportActivity, LicenseCameraActivity, UploadActivity, VerificationCompleteActivity etc) or
analyzing and manipulating data before presenting it to the user (MinSideFragment). It may
have been beneficial to extract this logic into a separate module in order to make the code
more maintainable and not to mention easier to test. Still, most of our activities/fragments,
with the possible exception of MinSideFragment, have such simple background logic, that
we do not consider it too much of a problem to keep this inside the activity/fragment. An-
other advantage is that having the server calls inside the activity/fragment classes simplifies
the synchronization of concurrent work as all code that should be executed after receiving a
response can be called in the onResponse()-callback.

9.5 System Security

As mentioned in the Requirements chapter, chapter 3, we did not aim towards implementing
all security requirements that would have been necessary for a real world ID proofing appli-
cation. Still, it was important to us that we would avoid the most obvious threats. Given our
MVP2 mindset we started working on system security quite late in the development process,
as functionality took priority over security in our project requirements.

In retrospect we see that although this may have let us start developing functionality
at an early stage, it may also have increased the total workload of our project as we had
to rewrite quite a bit of existing code in order to improve application and server security.
For some security requirements, like validating/sanitizing input and limiting the number of
requests per minute, this worked quite well. Through the developing the main functionality
we realized where this was needed, and once we decided on allowed values and how to
implement it, adding these security measures to the app went quite fast.

For more complex security requirements on the other hand, this approach did not work
as well. Up until quite late in the process our database security consisted of Firebase Secu-
rity Rules, which does not allow anyone except our server to change or access data in the
database. However, a little too late we realized that anyone could send a POST request with
the userId of any user to www.verifyid.ml/firebase/getallverifications and get a list of all their
verification results, including personal information like document number, personal identifi-
cation number etc. To overcome this security hole we created more or less an ad hoc solution
where a UUID3 was used to verify the identity of the user making the request (as described
in chapter 6.6.2.4). However we do realize that this is not exactly an optimal solution. Au-
thenticating the client requests would probably have been solved in a better either by using
session cookies that are generated on the server side after the user has successfully logged in
(we assume Buypass’ login is safe) or by a token based authentication.

The main reason why we did not implement this was that early on in process we did not
see the need to authenticate users since log in in would be handled by Buypass. Later we
realized that even though the user will already be logged in when entering our application,
we still need to authenticate requests they make to the server. Unfortunately this realization
happened at a time in the process where we did not have time to implement this feature.

2Minimal Viable Product
3Universal Unique Identifier

73

Digital verification of identity

9.6 Evaluation of the Verification Process

During the entire lifetime of the project we have given quite a lot of thought to whether or
not we consider the solution we have implemented to be a reliable and safe way to perform
digital ID proofing. As described in section 6.6.3 we have uncovered quite a few weaknesses
with the actual verification process. Since both the document check and face comparison can
be fooled quite easily, anyone with access to a copy of another person’s ID document could
easily impersonate that person and get an ID in their name. All they have to do is take a
document photo of the copy, take a face photo of the document image and then just use their
own face for the liveness check.

Of course, in a real world setting, stealing someone’s identity is not quite that easy. When
the app is integrated into Buypass’ existing app, the document name would be cross checked
against the registered user name, so an impostor would first have to log into the victim’s
Buypass account and then manage to issue the ID to himself instead of the other person.
We assume that Buypass’ login is safe, so passing this obstacle would be quite a challenge to
most attackers. Still, the whole motivation for creating an ID verification application is that a
regular login is not safe enough to order an ID with security level High, so if our application
does not include an additional security step it would serve no purpose.

The way we see it, our implementation of digital ID proofing is a good starting point for
further development, but not yet a complete solution. One could argue that it is difficult
(although definitely not impossible) to obtain a high quality copy of someone’s passport or
driver’s license, and in that way our application does make it significantly more difficult to
impersonate someone else. Nevertheless we have considered some suggestions to things that
could have been done differently.

Once Keesing releases functionality for verification through reading the RFID chip with
the phone’s NFC reader, it would be possible to implement what we would consider a much
more reliable document check than by using a document photo. NFC would eliminate the
possibility of going through the verification process without access to a real ID document
and it could open up to a range of possible additional security measures.

• If the application could obtain a CVCA certificate to do Extended Access Control and
the phone has a fingerprint reader, one could add fingerprint verification to the process.
• Passive Authentication and Active Authentication could be used to check if the RFID

chip has been tampered with or cloned.
• One can extract high resolution face images from the passport for the face verification

step.

We also think there might be alternative ways to do the face comparison and liveness
check. The way it is now, the liveness check does not perform any kind of face recognition, so
the person in the video recording could easily be a completely different person than the one
in the document image. We also know that the face match can be fooled by a taking a photo
of another photo. However, if face recognition could be implemented as part of the liveness
check, we could possibly achieve a safer and more user friendly process. For one thing the
verification process would be one step shorter, which means less work for the user. Secondly
it would be more difficult to trick the face comparison step. For an impostor it would probably
be easy to find a face photo of a potential victim as for most people this could be achieved
through a simple Google search. Finding a good quality face video on the other hand, would

74

Digital verification of identity

probably pose more of a challenge and as the liveness check seems quite good at detecting
whether or not the video shows a real person, this could be a method that would be more
resilient to fraud.

75

10 Conclusion

When developing our product the main objective has been to create a prototype of an An-
droid application that can showcase how digital ID proofing could be implemented using the
APIs provided by Keesing Technologies. The current method for ID verification is expensive,
inconvenient and time consuming, and we wanted to demonstrate an alternative solution.
Through our project we have fulfilled this task to a certain extent, by implementing the func-
tionality Keesing Technologies’ API has provided and tied it all together within our Android
application.

As the time frame of the project was quite limited we had to make some tough decisions
when deciding which aspects we would focus on. We implemented a three step solution con-
sisting of a document check, face comparison and liveness check. Each step is meant to target
a distinct security aspect; document validity, user identity and determining user presence. All
these steps depend on the camera application. The implementation of the Camera2 API has
been of big importance as it has allowed us to customize the camera according to our specific
requirements. This makes for an easier, more secure verification process, and a more user
friendly experience.

Although NFC verification is not yet supported by Keesing’s API, this technology is very
likely to be used for passport verification in the future. We took the NFC functionality as far
as we could by extracting the information that could be extracted with our security clearance.
This will hopefully make future development easier, and it demonstrates the possibilities of
NFC.

We also made it a priority to create an attractive and user friendly product. We wanted
to motivate our stakeholders to keep developing the product after our project is over, and
we believe creating a nice looking application that fits their typical application design is a
good selling point. This was an important motivation for us when we decided to spend quite
a lot of time developing a custom camera application tailored for our needs and paying extra
attention to details that might affect the user experience in a positive way.

Another objective has been to get experience working with the ID proofing technologies
Keesing provides and gain insights to their strengths and weaknesses on behalf of Buypass.
There is little doubt that the application we have developed is not yet a complete, safe way
to perform digital verification of identity. The way we see it, this is partly due to limitations
in our implementation and partly due to limitations in the currently provided functionality.
Both the application and the verification process itself have some significant flaws, but we
hope that our work can provide a good starting point for further development.

We do see great potential in digital ID proofing as a concept, especially if incorporating
the use of NFC, and we do believe that a refined, thoroughly tested ID proofing application
could eventually be a very good alternative to the manual process that is used today.

After working on this project for about five months we have learned a lot about software
development and extended our skills within programming and team work. This has been the
first long term project any of us have participated in and we feel that it has given us a taste of

76

Digital verification of identity

software development in a real world context, as opposed to a normal school project. As our
report demonstrates we have run into quite a few bumps in the road, but we believe this has
been an important learning experience when it comes to dealing with unexpected challenges.
The importance of keeping a close dialog with stakeholders have possibly been one of the
most valuable lessons from this project. When running into problems, we have learned to be
proactive and at any given day focus on problem solving and the factors we can control. We
think these are important skills to bring into our professional lives.

Another great learning experience has been the large range of technologies we have been
able to explore during this project. The end product itself uses many new, interesting tech-
nologies which have been exciting to work with. Additionally we have learned a lot from
having to research and evaluate different technologies and tools when deciding which ones
to include in the product. Overall we have truly enjoyed working on this project and we be-
lieve it has been a very important experience in order to prepare us for a career in software
engineering.

77

Bibliography

[1] Buypass. Amount of users using buypass id. https://www.buypass.no/
selskapet. [Online; accessed 14-May-2019].

[2] Wikipedia contributors. Application programming interface — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Application_
programming_interface&oldid=895664282, 2019. [Online; accessed 9-May-
2019].

[3] Wikipedia contributors. Representational state transfer — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php?title=
Representational_state_transfer&oldid=896116624, 2019. [Online;
accessed 9-May-2019].

[4] Wikipedia contributors. Secure shell — Wikipedia, the free encyclopedia. https://
en.wikipedia.org/w/index.php?title=Secure_Shell&oldid=890240515,
2019. [Online; accessed 26-April-2019].

[5] Firebase. Firebase cloud messaging. https://firebase.google.com/docs/
cloud-messaging. [Online; accessed 9-May-2019].

[6] Nærfeltskommunikasjon. https://no.wikipedia.org/wiki/N\T1\
aerfeltskommunikasjon. [Online; accessed 25-april-2019].

[7] Fra 1. april kommer du ikke inn i USA uten riktig pass. https://www.dagbladet.
no/tema/fra-1-april-kommer-du-ikke-inn-i-usa-uten-riktig-pass/
60436340. [Online: accessed 08-March-2019].

[8] Overview security mechanisms in ePassports. https://readid.com/blog/
Overview-security-mechanisms-in-ePassports. [Online; accessed 09-may-
2019].

[9] Joshua Porter. Principles of user interface design. http://bokardo.com/
principles-of-user-interface-design/. [Online; accessed 3-May-2019].

[10] Samella Garcia. 7 key attributes of a quality ui. https://www.webdesignerdepot.
com/2016/12/7-key-attributes-of-a-quality-ui/. [Online; accessed 2-
May-2019].

[11] Wikipedia contributors. Principles of user interface design — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Principles_
of_user_interface_design&oldid=887071432, 2019. [Online; accessed 6-May-
2019].

[12] Lov om tiltak mot hvitvasking og terrorfinansiering (hvitvaskingsloven). https:
//lovdata.no/dokument/NL/lov/2018-06-01-23/. [Online; accessed 06-May-
2019].

78

https://www.buypass.no/selskapet
https://www.buypass.no/selskapet
https://en.wikipedia.org/w/index.php?title=Application_programming_interface&oldid=895664282
https://en.wikipedia.org/w/index.php?title=Application_programming_interface&oldid=895664282
https://en.wikipedia.org/w/index.php?title=Representational_state_transfer&oldid=896116624
https://en.wikipedia.org/w/index.php?title=Representational_state_transfer&oldid=896116624
https://en.wikipedia.org/w/index.php?title=Secure_Shell&oldid=890240515
https://en.wikipedia.org/w/index.php?title=Secure_Shell&oldid=890240515
https://firebase.google.com/docs/cloud-messaging
https://firebase.google.com/docs/cloud-messaging
https://no.wikipedia.org/wiki/N\T1\ae rfeltskommunikasjon
https://no.wikipedia.org/wiki/N\T1\ae rfeltskommunikasjon
https://www.dagbladet.no/tema/fra-1-april-kommer-du-ikke-inn-i-usa-uten-riktig-pass/60436340
https://www.dagbladet.no/tema/fra-1-april-kommer-du-ikke-inn-i-usa-uten-riktig-pass/60436340
https://www.dagbladet.no/tema/fra-1-april-kommer-du-ikke-inn-i-usa-uten-riktig-pass/60436340
https://readid.com/blog/Overview-security-mechanisms-in-ePassports
https://readid.com/blog/Overview-security-mechanisms-in-ePassports
http://bokardo.com/principles-of-user-interface-design/
http://bokardo.com/principles-of-user-interface-design/
https://www.webdesignerdepot.com/2016/12/7-key-attributes-of-a-quality-ui/
https://www.webdesignerdepot.com/2016/12/7-key-attributes-of-a-quality-ui/
https://en.wikipedia.org/w/index.php?title=Principles_of_user_interface_design&oldid=887071432
https://en.wikipedia.org/w/index.php?title=Principles_of_user_interface_design&oldid=887071432
https://lovdata.no/dokument/NL/lov/2018-06-01-23/
https://lovdata.no/dokument/NL/lov/2018-06-01-23/

Digital verification of identity

[13] Security Mechanisms in electronic ID documents. https://www.bsi.bund.de/EN/
Topics/ElectrIDDocuments/SecurityMechanisms/securEAC/eac_node.
html. [Online; accessed 09-may-2019].

[14] Ian Sommerville. Software Engineering. Addison-Wesley Publishing Company, USA, 9th
edition, 2010.

[15] Kanban vs. scrum: What are the differences? https://leankit.com/learn/
kanban/kanban-vs-scrum/.

[16] Android Developers. Guide to app architecture. https://developer.android.
com/jetpack/docs/guide. [Online; accessed 02-May-2019].

[17] Store and sync app data at global scale. https://firebase.google.com/
products/firestore/. [Online; accessed 20-February-2019].

[18] Get Started with Cloud Firestore Security Rules. https://firebase.google.com/
docs/firestore/security/get-started. [Online; accessed 20-February-2019].

[19] javascript.info. Promise. https://javascript.info/promise-basics. [Online;
accessed 1-May-2019].

[20] android.hardware.camera2. https://developer.android.com/reference/
android/hardware/camera2/package-summary.html. [Online; accessed 14-
March-2019].

[21] Mateusz Dziubek. The least you can do with Camera2. https://android.jlelse.
eu/the-least-you-can-do-with-camera2-api-2971c8c81b8b. [Online; ac-
cessed 16-March-2019].

[22] Video Recording with Camera2 API in Android. https://androidwave.com/
video-recording-with-camera2-api-android/. [Online; accessed 26-march-
2019].

[23] AutofitTextureView. https://github.com/googlesamples/
android-Camera2Basic/blob/master/Application/src/main/java/
com/example/android/camera2basic/AutoFitTextureView.java. [Online;
accessed 20-March-2019].

[24] MediaRecorder. https://developer.android.com/reference/android/
media/MediaRecorder. [Online; accessed 18-March-2019].

[25] CountDownTimer. https://developer.android.com/reference/android/
os/CountDownTimer. [Online; accessed 30-April-2019].

[26] JMRTD API Doc. https://www.javadoc.io/doc/org.jmrtd/jmrtd/0.7.11.
[Online: accessed 08-March-2019].

[27] e-Passport NFC Reader. https://github.com/tananaev/passport-reader.
[Online; accessed 07-march-2019].

[28] Anyline SDK. https://anyline.com/.

79

https://www.bsi.bund.de/EN/Topics/ElectrIDDocuments/SecurityMechanisms/securEAC/eac_node.html
https://www.bsi.bund.de/EN/Topics/ElectrIDDocuments/SecurityMechanisms/securEAC/eac_node.html
https://www.bsi.bund.de/EN/Topics/ElectrIDDocuments/SecurityMechanisms/securEAC/eac_node.html
https://leankit.com/learn/kanban/kanban-vs-scrum/
https://leankit.com/learn/kanban/kanban-vs-scrum/
https://developer.android.com/jetpack/docs/guide
https://developer.android.com/jetpack/docs/guide
https://firebase.google.com/products/firestore/
https://firebase.google.com/products/firestore/
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://javascript.info/promise-basics
https://developer.android.com/reference/android/hardware/camera2/package-summary.html
https://developer.android.com/reference/android/hardware/camera2/package-summary.html
https://android.jlelse.eu/the-least-you-can-do-with-camera2-api-2971c8c81b8b
https://android.jlelse.eu/the-least-you-can-do-with-camera2-api-2971c8c81b8b
https://androidwave.com/video-recording-with-camera2-api-android/
https://androidwave.com/video-recording-with-camera2-api-android/
https://github.com/googlesamples/android-Camera2Basic/blob/master/Application/src/main/java/com/example/android/camera2basic/AutoFitTextureView.java
https://github.com/googlesamples/android-Camera2Basic/blob/master/Application/src/main/java/com/example/android/camera2basic/AutoFitTextureView.java
https://github.com/googlesamples/android-Camera2Basic/blob/master/Application/src/main/java/com/example/android/camera2basic/AutoFitTextureView.java
https://developer.android.com/reference/android/media/MediaRecorder
https://developer.android.com/reference/android/media/MediaRecorder
https://developer.android.com/reference/android/os/CountDownTimer
https://developer.android.com/reference/android/os/CountDownTimer
https://www.javadoc.io/doc/org.jmrtd/jmrtd/0.7.11
https://github.com/tananaev/passport-reader
https://anyline.com/

Digital verification of identity

[29] JavaScript Promises: an Introduction. https://developers.google.com/web/
fundamentals/primers/promises. [Online; accessed 03-May-2019].

[30] Machine Readable Travel Documents, Part 3: Specifications Common to all
MRTDs. https://www.icao.int/publications/Documents/9303_p3_cons_
en.pdf. [Online; accessed 12-March-2019].

[31] Buypass AS. Buypass Go SSL. https://www.buypass.no/ssl/products/acme.
[Online; accessed 26-April-2019].

[32] JS Foundation. Rules:node.js and common.js. https://eslint.org/docs/rules/.
[Online; accessed 3-May-2019].

[33] Keesing Technologies. Verification services api (v1.0). https://verificationsrv.
docs.apiary.io/#. [Online; accessed 1-May-2019].

[34] Camera. https://developer.android.com/reference/android/hardware/
Camera. [Online; accessed 11-March-2019].

[35] json.org. Introducing json. https://www.json.org/. [Online; accessed 9-May-
2019].

[36] Wikipedia contributors. Plug-in (computing) — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Plug-in_(computing)
&oldid=892555943, 2019. [Online; accessed 30-April-2019].

[37] Wikipedia contributors. Java (programming language) — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?title=Java_
(programming_language)&oldid=895521846, 2019. [Online; accessed 6-May-
2019].

[38] Wikipedia. Ssh file transfer protocol — wikipedia,. https://no.wikipedia.org/
w/index.php?title=SSH_File_Transfer_Protocol&oldid=15265562, 2015.
[Online; accessed 24-April-2019].

[39] Node.js Foundation. About node.js. https://nodejs.org/en/about/. [Online;
accessed 30-April-2019].

[40] Node.js Foundation. Express. https://expressjs.com/. [Online; accessed 25-
April-2019].

[41] JS Foundation. Eslint. https://www.npmjs.com/package/eslint. [Online; ac-
cessed 3-May-2019].

[42] Android Developer. Volley overview. https://developer.android.com/
training/volley. [Online; accessed 30-April-2019].

[43] Square. Retrofit 2. https://square.github.io/retrofit/. [Online; accessed
30-April-2019].

[44] Future Studio. Retrofit 2 tutorial. https://futurestud.io/tutorials/
retrofit-2-how-to-upload-files-to-server. [Online; accessed 30-April-
2019].

80

https://developers.google.com/web/fundamentals/primers/promises
https://developers.google.com/web/fundamentals/primers/promises
https://www.icao.int/publications/Documents/9303_p3_cons_en.pdf
https://www.icao.int/publications/Documents/9303_p3_cons_en.pdf
https://www.buypass.no/ssl/products/acme
https://eslint.org/docs/rules/
https://verificationsrv.docs.apiary.io/#
https://verificationsrv.docs.apiary.io/#
https://developer.android.com/reference/android/hardware/Camera
https://developer.android.com/reference/android/hardware/Camera
https://www.json.org/
https://en.wikipedia.org/w/index.php?title=Plug-in_(computing)&oldid=892555943
https://en.wikipedia.org/w/index.php?title=Plug-in_(computing)&oldid=892555943
https://en.wikipedia.org/w/index.php?title=Java_(programming_language)&oldid=895521846
https://en.wikipedia.org/w/index.php?title=Java_(programming_language)&oldid=895521846
https://no.wikipedia.org/w/index.php?title=SSH_File_Transfer_Protocol&oldid=15265562
https://no.wikipedia.org/w/index.php?title=SSH_File_Transfer_Protocol&oldid=15265562
https://nodejs.org/en/about/
https://expressjs.com/
https://www.npmjs.com/package/eslint
https://developer.android.com/training/volley
https://developer.android.com/training/volley
https://square.github.io/retrofit/
https://futurestud.io/tutorials/retrofit-2-how-to-upload-files-to-server
https://futurestud.io/tutorials/retrofit-2-how-to-upload-files-to-server

Digital verification of identity

[45] Square. Okhttp. https://square.github.io/okhttp/. [Online; accessed 30-
April-2019].

[46] NGINX INC. What is nginx. https://www.nginx.com/resources/glossary/
nginx/. [Online; accessed 24-April-2019].

81

https://square.github.io/okhttp/
https://www.nginx.com/resources/glossary/nginx/
https://www.nginx.com/resources/glossary/nginx/

A Project assignment

82

ID-verifisering på nett

Buypass leverer blant annet digitale ID-er på nivå Høyt, som muliggjør at en person kan identifisere

seg gjennom digitale tjenester, både privat og i jobbsammenheng (for eksempel ID-porten). For å få

opprettet og utdelt en digital ID på nivå Høyt må brukerens fysiske identitet verifiseres. I dag gjøres

dette gjennom en manuell prosess, hvor en må møte opp personlig f.eks. på et postkontor, fylle ut

papirer og identifisere seg ved bruk av for eksempel pass.

Dagens prosess er manuell, tidkrevende, kostbar og vanskelig å integrere med digitale løsninger.

Buypass ønsker å teste ut en ny digital metode for å verifisere og utstede en digital ID på nivå Høyt.

Oppgaven

Utvikle en digital løsning for å verifisere en brukers identitet. Løsningen bør være mobil web-basert og

basere seg på å kombinere eksisterende byggeklosser for å bygge en slik løsning – for eksempel ved

å lese digitalt innhold i moderne pass ved hjelp av NFC på mobiltelefon, bruke kameraet på mobilen til

å ta bilde av et ID-dokument, sammenligne bilde av ansikt tatt med mobilkamera med bilde på ID-

dokument, online videosamtale med kundeservice osv. Brukervennlighet og sikkerhet må være i

fokus. Oppgaven vil gå opp et nytt og uutforsket territorium innen ID verifisering og bruk av nye

tjenester i Norge.

Ønsker til endelig løsning

 Kjører i en nettleser på telefon, desktop og nettbrett, men med hovedfokus på mobil

 Tilbyr brukerregistrering med oppslag mot folkeregisteret

 Opplasting av bildekopi av pass med verifisering

 Mulighet for videosamtale mellom bruker og Buypass for endelig verifisering

Programmering

Oppgaven vil bl.a. bestå i:

 Integrasjon mot APIer fra Buypass og våre partnere

 Web-app utvikling, foretrukket rammeverk er React

 Grensesnitt mellom tjeneste, server og database

 Verifisere, teste og utvikle et fungerende grensesnitt

 Teste og utvikle mot ny teknologi

 Utfordre et eksisterende system og tankegang med nye tanker og teknologi

Oppdragsgiver Buypass AS

Kontaktperson Jørn Magne Raastad eller Alexander Dreyer Johnsen

Adresse Nydalsveien 30A, 0484 Oslo

Telefon 926 33 060 / 977 65 888

Epost jorn.raastad@buypass.no eller Alexander.Johnsen@buypass.no

Studentgruppen vil gjennom prosjektet få erfaring med:

 Utvikling av web-app med Reactjs

 UX

 Digitale IDer og sikkerhet knyttet til slike IDer

 Ny teknologi innen ID-verifisering

Oppgaven passer best for en gruppe på 3 til 4 personer, hvor minst én har interesse for og litt

bakgrunn fra UX/tjenestedesign.

Om selskapet

Buypass AS er en ledende leverandør av brukervennlige og sikre løsninger for elektronisk

identifikasjon, elektronisk signatur og betaling. Vi tilbyr en komplett portefølje av tjenester for

identifisering og kryptering av informasjon gjennom hele den elektroniske verdikjeden. Buypass er

også Norges eneste utsteder av internasjonalt godkjente SSL-sertifikater.

Selskapets største kunde og samarbeidspartner er Norsk Tipping, der Buypass leverer tjenesten for

identifisering og betaling på alle digitale flater (mobiltelefon, nettbrett, web).

Buypass ble etablert i 2001, og har siden starten satset tungt på å bygge opp et unikt

kompetansemiljø for utvikling av brukervennlige sikkerhetsløsninger som tilfredsstiller markedet og

myndighetenes strengeste sikkerhetskrav. Buypass leverer løsninger til bruk både i

forbrukermarkedet, private bedrifter og offentlige virksomheter.

Selskapet har ca. 80 fast ansatte, samt et varierende antall innleide/engasjerte fordelt på våre

kontorer i Oslo og på Gjøvik. Kontoret på Gjøvik er lokalisert i gangavstand fra NTNU campus, og vi

rekrutterer jevnlig fra NTNU Gjøvik både lokalt og til kontoret i Oslo.

B Project agreement

85

C Project Plan

89

Prosjektplan

Karoline Wisløff Rud karoliwr@stud.ntnu.no

Ruben Isaksen Cheung rubenic@stud.ntnu.no

Vegard Elshaug Almås vegardea@stud.ntnu.no

Jørgen Berntsen jorgbern@stud.ntnu.no

24. april 2019

1

Innhold

1 Mål og rammer 3
1.1 Bakgrunn . 3
1.2 Prosjektm̊al . 3

1.2.1 Effektmål . 3
1.2.2 Resultatmål . 3

1.3 Rammer . 4

2 Omfang 4
2.1 Fagomr̊ade . 4

2.1.1 NFC og lesing av passinformasjon 4
2.1.2 UX . 4
2.1.3 Keesing AuthentiScan . 4
2.1.4 Node.js . 4
2.1.5 GDPR . 5

2.2 Avgrensing . 5
2.3 Oppgavebeskrivelse . 6
2.4 Use Cases . 6
2.5 Arkitektur . 8

3 Prosjektorganisering 8
3.1 Ansvarsforhold og roller . 8
3.2 Rutiner og regler i gruppa . 11

4 Planlegging, oppfølging og rapportering 11
4.1 Hovedinndeling av prosjektet . 11
4.2 Valg av SU-modell . 11
4.3 Valg av metode og tilnærming . 13
4.4 Plan for statusmøter og beslutningspunkter i perioden 13

5 Organisering av kvalitetssikring 14
5.1 Dokumentasjon, standardbruk og kildekode 14

5.1.1 Programmeringsspr̊ak . 14
5.2 Konfigurasjonsstyring . 14

5.2.1 Bitbucket og Trello . 14
5.2.2 Versjonskontroll . 15
5.2.3 Testing . 16

5.3 Risikoanalyse . 16
5.3.1 Mulige utvidelser av oppgaven 16

6 Plan for gjennomføring 17
6.1 Work Breakdown Structure . 17
6.2 Milepæler og beslutningspunkter 17
6.3 Tids- og ressursplan . 18

A Gantt-diagram 25

2

1 Mål og rammer

1.1 Bakgrunn

V̊ar oppdragsgiver, Buypass AS, er en ledende leverandør av brukervennlige og
sikre løsninger for elektronisk identifikasjon, elektronisk signatur og betaling p̊a
mobiltelefon, nettbrett og web. Løsningene tas i bruk b̊ade av forbrukere, private
bedrifter og offentlige virksomheter. Digital ID er en viktig del av dette. De
digitale ID-ene kommer p̊a ulike niv̊aer. Slik det er i dag innebærer registrering
for, og utdeling av digital ID p̊a niv̊a Høyt at brukeren m̊a verifisere sin identitet
ved å fysisk møte opp p̊a et postkontor for å fylle ut papirer og identifisere seg
med gyldig dokumentasjon. Dette er b̊ade tidkrevende og kostbart, s̊a Buypass
ønsker n̊a å utvikle en ny digital metode for å verifisere fysisk identitet, slik at
digital ID kan utstedes uten personlig oppmøte.

1.2 Prosjektm̊al

1.2.1 Effektm̊al

Applikasjonen skal benyttes innenfor et omr̊ade som i dag kan sees p̊a å være
gammeldags etter dagens standarder. Det blir applikasjonen sin jobb å avskaffe
den tid- og ressurskrevende prosessen for verifisering ved bestilling av elektronisk
ID p̊a niv̊a Høyt. Per dags dato er det ansatte p̊a postkontor sin jobb å verifisere
personer som bestiller, men de har gjerne lite erfaring med dette og feil kan
forekomme.

Prosessen forutsetter at den ansatte ved postkontoret klarer å skille et falskt
ID-dokument fra et ekte, og verifiserer at personen med tilhørende id-dokument
er personen den utgir seg for å være. Postkontor har gjerne korte åpningstider,
og er ikke like tett lokalisert over hele Norge. Det kan derfor være b̊ade tid- og
ressurskrevende for ansatte, eller enkeltpersoner å f̊a utstedt disse elektroniske
ID-ene. I helsesektoren benyttes det i stor grad ID-kort, og de har egne ansatte
dedikert til h̊andtering av ID-kort, og disse vil kunne løses ut ved å benytte
denne løsningen.

Vi har ikke tilgang p̊a data over hvor mye ressurser som g̊ar med p̊a dagens
løsning, men vi regner med at det skal være mulig å kunne redusere disse tallene
betraktelig.

1.2.2 Resultatm̊al

Målet for prosjektet er å lage en fungerende native Android applikasjon for
mobil og nettbrett. Denne skal kunne sjekke om et godkjent ID-dokument (pass
eller førerkort) er gyldig ved hjelp av enten NFC-leser (kun pass), eller ved
bilde av ID-dokumentet. Deretter skal brukeren kunne ta et bilde av seg selv
med kameraet p̊a mobilen/nettbrettet, og applikasjonen skal kunne verifisere at
dette er den samme personen som p̊a ID-dokumentet.

3

1.3 Rammer

Vi skal lage en native app for Android-telefoner. Vi vil ta i bruk API fra Keesing
AuthentiScan for gyldighetssjekk av ID-dokumenter og sammenlikning av bilde
p̊a ID-dokument med bilde tatt med kamera.

2 Omfang

2.1 Fagomr̊ade

2.1.1 NFC og lesing av passinformasjon

NFC (Near Field Communication) er en teknologi som gjør at to elektroniske
enheter kan utveksle informasjon dersom de bringes innen fire centimeter fra
hverandre[19]. Systemet brukes blant annet for kontaktløs betaling, i nøkkelkort
og i elektroniske pass. Alle norske pass utstedt etter oktober 2005[12] er e-pass
med RFID-brikke (Radio-Frequency Identification) som kan leses ved hjelp av
NFC[14]. BAC-protokoll (Basic Access Control) beskytter RFID-brikken slik
at passet ikke kan leses for eksempel gjennom lommen til en person. Denne
fungerer slik at MRZ (Machine Readable Zone) først m̊a leses. En individuell
tilgangsnøkkel kalkuleres ut ifra det som leses her, og leseren bruker denne
nøkkelen for å f̊a tilgang til å lese av RFID-brikken[4].

2.1.2 UX

UX-design (User experience design) g̊ar ut p̊a å styrke brukernes tilfredsstillel-
se ved å fokusere p̊a å forbedre brukervennlighet, tilgjengelighet og glede ved
interaksjon med produktet[18]. Med utgangspunkt i UX-pyramiden, se figur 1,
vil vi fokusere p̊a de nederste byggestenene i pyramiden først. Dette sikrer en
funksjonell applikasjon, og er nødvendig før man kan fokusere p̊a å finpusse den
for å kunne tilby den beste brukeropplevelsen.

2.1.3 Keesing AuthentiScan

Keesing Technology er et nederlansk selskap som har verdens største samling
av ID-dokumenter fra over 200 land (pass, ID-dokumenter, førerkort, visum
og liknende)[8]. Selskapet samarbeider med blant annet internasjonale myndig-
heter, ambassader og konsulater for å holde høy kvalitet p̊a tjenestene sine.
Selskapet har utviklet produktet AuthentiScan, som er en automatiskert pro-
gramvare for å autentisere ID-dokumenter[9]. Pass kan autentiseres enten ved
hjelp av scanning av den elektroniske informasjonen i passet (NFC) eller ved å
ta bilde av passet og autentisere det mot Keesings database[10].

2.1.4 Node.js

For utvikling av server-siden ved applikasjonen v̊ar vil vi benytte Node.js. Node
er et open-source cross-plattform system for kjøring av server- og nettverksap-

4

Figur 1: UX-pyramiden laget i Microsoft Visio

plikasjoner, og det benyttes for å eksekvere JavaScript utenfor nettleseren[20].
Vi vil benytte Express.js som er et rammeverk basert p̊a Node, og gjør det
lettere å utvikle serversiden ved applikasjonen[15].

2.1.5 GDPR

Som det kommer frem i oppgavebeskrivelsen, vil denne oppgaven innebære at
det skal h̊andteres sensitive data. Pass og førerkort skal behandles ved scan eller
bilde, og vil bli sendt til Keesing Technologies for verifisering. Av denne grunnen
blir det viktig å ta hensyn til GDRP (General Data Protection Regulation), p̊a
norsk kalt personvernfordringen. Det vil være en høy prioritet å sørge for at
personopplysninger ikke kommer p̊a avveie ved lagring eller behandling, men
ogs̊a å sørge for at dersom personopplysninger lagres gjøres dette i henhold til
GDPR[1, 2].

2.2 Avgrensing

Oppgaven v̊ar er i samhandling med arbeidsgiver begrenset til utvikling av en
native applikasjon for mobil og tablet med Android operativsystem. Oppdragsgi-
veren er hovedsakelig ute etter en prototype p̊a applikasjonen, s̊a vi vil foreløping
ikke lage noen iOS versjon. Dersom Android-versjonen blir vellykket, vil det
selvfølgelig være ønskelig å utvikle en iOS versjon, men dette vil ikke inng̊a i

5

Figur 2: Use Case-diagram

v̊art prosjekt. Dersom det blir tid og mulighet kan en eventuell utvidelse være å
lage en web-basert versjon av applikasjonen som kan benyttes p̊a mobil, tablet
og pc. Dog vil dette være en stor utvidelse og sannsynligvis være vanskelig å
rekke i tide. Hovedfokuset vil være å implementere all funksjonalitet vi ser for
oss n̊a i startfasen, og dersom noe funksjonalitet nedprioriteres underveis kan
den hentes frem igjen dersom vi ser vi har tid til å implementere det.

2.3 Oppgavebeskrivelse

V̊ar oppgave er å lage en native mobilapplikasjon for Android som gjør det mulig
å verifisere brukeres identitet slik at digital ID p̊a niv̊a Høyt kan utstedes. Dette
skal gjøres ved at brukeren leser av innholdet i et gyldig identifikasjonsbevis ved
hjelp av NFC eller kameraet p̊a mobilen, og disse opplysningene sjekkes mot
Keesing Technologies sitt API. Deretter vil brukeren ta et bilde av seg selv der-
som ID-dokumentet godkjennes. Dette bildet sammenliknes deretter med bildet
eller ansiktsbiometrien i ID-dokumentet for å verifisere brukerens identitet, se
figur 3.

2.4 Use Cases

Aktuelle Use Cases er beskrevet nedenfor. En oversikt over Use Cases og aktører
er fremstilt i figur 2, og typisk interaksjon med applikasjonen vises i sekvensdia-
grammet i figur 3.

6

Navn: Initiere verifiseringsprosess
Aktør: Bruker
Mål: Sette igang verifiseringsprosessen
Beskrivelse: Brukeren ønsker å registrere seg for å motta ID p̊a niv̊a Høyt og

starter derfor verifiseringsprosessen.

Navn: Ta bilde
Aktør: Bruker
Mål: Ta bilde av ansikt eller ID-dokument
Beskrivelse: Brukeren tar et bilde av ID dokumentet som skal autentiseres eller

ansiktet sitt for verifisering. Dersom brukeren skal laste opp bilde
av ID-dokument vil det være mulig å ta bilde, og å laste opp fra
kamerarullen. Bilde for ansiktgjenkjenning vil kun være mulig ved
å ta bilde direkte i applikasjonen.

Navn: Autentisere ID-dokument vha. bilde
Aktør: Keesing

Mål: Å autentisere et dokument vha. Keesing API
Beskrivelse: Bilde av ID-kort sendes til Keesing Authentiscan. Dette sjekkes

mot deres database og godkjennes dersom det er gyldig.

Navn: Lese NFC-brikke i pass
Aktør: Bruker
Mål: Hente ut informasjon som ligger i RFID-brikken
Beskrivelse: Først m̊a informasjon fra MRZ leses, denne gir tilgang til RFID-

brikken som leses ved hjelp av NFC-leser p̊a telefonen.

Navn: Autentisere pass ved hjelp av NFC
Aktør: Keesing
Mål: Sjekke om pass er gyldig vha. informasjonen som er lest vha NFC.
Beskrivelse: Informasjonen som leses ved hjelp av NFC sendes til Keesing Aut-

hentiscan. Her sjekkes informasjonen og vi f̊ar vite om passet er
gyldig eller ikke.

Navn: Ansiktsverifisering
Aktør: Keesing
Mål: Verifisere at personen som bruker applikasjonen er den samme

som personen som eier passet.
Beskrivelse: Brukeren tar et bilde med kamera p̊a mobilen (selfie). Deretter

brukes Keesings API for ansiktsgjenkjenning til å sammenlikne
dette bilde med bildet p̊a ID-dokumentet.

7

Navn: Melding vedrørende verifisering
Aktør: Keesing
Mål: Opplyse brukeren om at autentiseringen var vellykket.
Beskrivelse: Responsen p̊a verifisering fra Keesing inneholder en statuskode.

Denne statuskoden skal formidles til brukeren p̊a en brukervenn-
lig m̊ate som opplyser om hvordan verifiseringen har g̊att, og gir
informasjon om hvordan verifiseringen eventuelt har feilet.

Navn: Loggføre verifiseringsprosess
Aktør: Server

Mål: Å loggføre verifiseringsprosess med statuskoder
Beskrivelse: Resultatet av verifiseringsprosessen loggføres, slik at det er mulig å

undersøke loggen for å se hvorfor en verifisering har vært mislykket
eller lignende.

Navn: Lagre kundedata
Aktør: Database
Mål: Lagre relevante kundedata.
Beskrivelse: N̊ar verifisering er vellykket vil relevante kundedata lagres i data-

basen. I v̊ar demonstrasjonsapplikasjon vil dette være en database
vi setter opp p̊a v̊ar server, men dersom applikasjonen kommer ut
p̊a markedet vil dette være Buypass sin egen database.

2.5 Arkitektur

Figur 4 viser oversikt over hovedkomponentene i applikasjonen v̊ar. Vi har to
hovedmoduler; klient og tjener. Klientmodulen interagerer med brukeren og sen-
der deretter informasjon videre til tjeneren. Her konverteres data til et format
som kan kommunisere med Keesing sitt API. Sjekking av informasjon fra ID-
dokument, ansiktsgjenkjenning osv. skjer p̊a Keesing sin side. Resultatet av det-
te sendes s̊a tilbake til serveren, som videresender dette til klientapplikasjonen.
Vi har valgt MVC (Model View Controller) som arkitektur i klientapplikasjonen.
Logikken i programmet vil ligge i Model, s̊a det er gjennom denne modulen kli-
entapplikasjonen kommuniserer med serveren. Brukergrensesnittet styres i View
og vi har en Controller-modul som h̊andterer input fra brukeren i form av taste-
trykk, kamerabilder og NFC. View vil alts̊a vise knapper og informasjon til
brukeren, Controller vil h̊andtere hva som skjer n̊ar brukeren interagerer med
applikasjonen. Dette vil igjen trigge at noe skjer i Model, som igjen oppdaterer
View basert p̊a dette.

3 Prosjektorganisering

3.1 Ansvarsforhold og roller

Karoline er valgt som gruppeleder, og vil ha det siste ordet ved uenigheter innad
i gruppen. Dette valget er tatt p̊a bakgrunn av hennes sterke faglige kompetan-

8

Figur 3: Sekvensdiagram

9

Figur 4: Overordnet komponentarkitektur laget i Visio

se, samt erfaring fra tidligere bacheloroppgave. Vegard er valgt som nestleder,
og vil dermed fungere som leder ved de anledninger Karoline er fraværende.
Jørgen er utpekt dokumentansvarlig. Han vil ha ansvar for å skrive referater fra
gruppemøter, og å dokumentere arbeidsprosessen for veilederne og arbeidsgiver.

P̊a grunn av størrelsen p̊a gruppen i prosjektet vil alle være utviklere n̊ar den
tiden kommer. Det er ikke slik at hver enkelt skal kode en modul i applikasjonen
alene, men hver person vil gjerne f̊a hovedansvaret for hver sin modul. Det
blir da denne personen sitt ansvar å se til at nødvendig fremdrift, tilstrekkelig
dokumentasjon og kvalitet p̊a kildekode overholdes etter de standarder som er
bestemt innad i gruppen.

For å sikre kompetanse p̊a alle omr̊ader og for å kvalitetssikre de ulike aspek-
tene ved oppgaven har vi definert noen spesielle temaer hver enkelt skal sette seg
ekstra godt inn i. Dette innebærer at personen skal gjøre grundig research p̊a
dette emnet, slik at vi kan drive internundervisning innad i gruppen. Personen
har ogs̊a ansvar for å følge opp, og sikre at denne jobben blir gjennomført p̊a en
god m̊ate.

Ruben har hovedansvaret for UX. Dette er basert p̊a hans interesse og bak-
grunn fra grafisk design, samt valgfaget Computer Graphics som han hadde un-
der sitt utvekslingsopphold. Karoline har hovedansvaret for implementasjon av
Keesing Technologies sitt API. Jørgen har hovedansvaret for oppsett av server,
og kommunikasjonen mellom klienten og serveren. Vegard har hovedansvaret for
sikkerhet. Dette er basert p̊a hans erfaring fra de to valgfagene: nettverkssikker-

10

het og programvaresikkerhet.

3.2 Rutiner og regler i gruppa

Gruppen har bestemt at det skal jobbes rutinemessig med bacheloroppgaven.
Det er blitt fastsl̊att at det skal jobbes hver ukedag, mandag til fredag, med
kjernetid fra klokken kvart over ni til fire. Denne rutinen skal overholdes s̊a
fremt det ikke g̊ar p̊a bekostning av forelesninger og seanser i andre emner. Den-
ne avgjørelsen er tatt p̊a bakgrunn av at det i arbeidslivet vil være nødvendig å
innfinne seg i de rutiner arbeidsplassen har, og vil forhindre sporadisk jobbing.
Det skal oppn̊as et minimum med 30 arbeidstimer i uken per person til pro-
sjektet, s̊a fremt dette ikke hindres av stor arbeidsmengde i andre emner, reise,
sykdom, eller andre personlige årsaker.

Man er pliktig i å møte p̊a forh̊andsbestemte møter, men dersom man av
årsaker, nevnt i avsnittet over, ikke har mulighet, skal dette meldes ifra om i s̊a
god tid som mulig.

Hvis utdelt arbeidsmengde blir for mye og man ikke klarer å forholde seg
til avtalte tidsfrister, m̊a vedkommende melde dette i fra til enten prosjektleder
eller gruppemedlemmer. Gruppen og vedkommende blir enige om endringer som
m̊a gjøres for at arbeidet skal komme i m̊al. Om ikke vedkommende tar kontakt
kan det forekomme tilsnakk fra enten gruppeleder eller gruppemedlemmer om at
vedkommende m̊a øke produktiviteten. Dersom det ikke p̊afaller noen endringer
skal det rapporteres til veilederne, og vi vil ta det videre derfra, men det kan i
verste fall ende med utkastelse fra gruppen.

Arbeidstimer skal dokumenteres ved hjelp av det nettbaserte verktøyet Toggl1.
Dette gjøres for å kunne dokumentere de arbeidstimene hvert medlem har gjen-
nom prosjektet, og det skal skrives en beskrivelse av hva tiden brukes p̊a. P̊a
denne m̊aten oppn̊ar vi ogs̊a effekten av å kunne effektivisere de omr̊adene vi
ser vi benytter for mye tid p̊a.

Vi vil benytte Trello2 for å kunne planlegge og dokumentere arbeidsfly-
ten. Dette er med p̊a å sikre fremdriften, for ved å benytte Trello mot Gantt-
skjemaet, se vedlegg A, kan vi se hva som skal gjøres, og skulle vært gjort til
forskjellige tider.

4 Planlegging, oppfølging og rapportering

4.1 Hovedinndeling av prosjektet

4.2 Valg av SU-modell

Vi har valgt å bruke Scrum som SU-modell (Systemutviklingsmodell). Ingen i
gruppen har noe særlig erfaring med systemutviklingsprosjekter fra før, s̊a vi er

1Toggl er et arbeidsverktøy for og lettere dokumentere arbeidstimer ved prosjektarbeid, se
https://toggl.com/where-did-time-go/

2Trello er et arbeidsverktøy for å kunne planlegge arbeidsoppgaver, og for å dokumentere
arbeidsflyt, se https://trello.com/

11

Figur 5: Organisasjonskart laget i Microsoft Visio

forberedt p̊a å støte p̊a en del utfordringer med tanke p̊a estimering av tid og
ressurser. Samtidig vil det være gunstig å f̊a arbeidsgiveren sin tilbakemelding
underveis p̊a hva som er bra, og hva som bør endres. Vi tenker derfor at pland-
revne metoder, som f.eks fossefall kan være lite egnet fordi disse gir lite rom for
fleksibilitet[13] og at en smidig utviklingsmodell passer bedre.
Smidige metoder passer gjerne godt for sm̊a/middels store prosjekter med rela-
tivt sm̊a team der kunden er innstilt p̊a å være delaktig i utviklingsprosessen[13].
Dette stemmer godt overens med v̊art prosjekt.
Etter å ha vurdert ulike smidige utviklingsmodeller falt valget v̊art p̊a Scrum.
Begrunnelsen for dette er at Scrum er en relativt ukomplisert modell som legger
godt til rette for fleksibilitet, samarbeid, involvering av kunden og inkrementell
utvikling[13]. Daglige Scrum-møter vil dessuten sørge for at alle i gruppen til
enhver tid er oppdatert p̊a hva de andre i gruppen holder p̊a med, slik at vi
er bedre rustet til å h̊andtere eventuelt fravær/sykdom og til å kunne hjelpe
hverandre med arbeidsoppgaver dersom det er behov for dette.
Vi har lagt opp til to uker lange sprinter med Sprint Planning Meeting og
Sprint Retrospective Meeting henholdsvis før og etter hver sprint. Sprintleng-
den ble valgt fordi vi kom frem til at en uke vil bli s̊apass kort tid at det vil
g̊a med unødvendig mye tid til møter, planlegging osv, og det vil bli vanskelig
å ha klart et nytt inkrement ved enden av hver sprint. Med tanke p̊a at vi alle
er ganske uerfarne ønsker vi hyppig kontakt med kunden for å være sikre p̊a at
vi er p̊a rett spor. Vi føler derfor at sprinter p̊a tre til fire uker blir for lange.
Møtene med Buypass vil derfor sammenfalle med Sprint Retrospective Meeting
og skje annenhver fredag. Under disse møtene vil vi oppdatere Buypass p̊a hva
vi har gjort i den siste sprinten og demonstrere ny funksjonalitet. Buypass vil
ikke være tilstede under Sprint Planning Meeting, men vi vil bruke møtet med

12

dem til å f̊a innspill til hva vi skal jobbe med i neste sprint.
Ettersom valget falt p̊a Scrum fant vi ogs̊a ut at denne SU-modellen kan

forbedres. Ved og i tillegg benytte oss av Kanban[6] vil vi kunne kombinere
disse utviklingsmodellene for å effektivisere v̊ar arbeidsflyt. Kanban er ogs̊a en
iterativ prosess som har likheter med Scrum. Dette gjør at Kanban enkelt kan
tilpasses til v̊ar allerede eksisterende SU-modell, Scrum. Kanban tilbyr bedre
visuelle løsninger slik at arbeidsoppgaver kan enkelt representeres ved hjelp av
utviklingsverktøy som Toggl og Trello. Vi loggfører arbeidsoppgaver med Toggl,
og benytter oss av et Kanban/Scrumboard representert i Trello. Ved Toggl vil
alle medlemmer av gruppen legge inn individuelt hvor lenge man har brukt p̊a
de forskjellige arbeidsoppgavene man er satt opp p̊a og markerer det med en
“tag” som bestemmer hvilke kategori det hører til. Slik kan vi summere opp og
vise til statistikk for hva vi har brukt tid p̊a. Trello er et verktøy som viser fram
arbeidsoppgaver som skal gjøres (backlog), som er under arbeid, og hva som er
ferdig. Det byr dermed p̊a muligheter som gjør det enklere å visualisere ulike
arbeidsoppgaver.

4.3 Valg av metode og tilnærming

Vi vil ha fokus p̊a inkrementell utvikling. Vi ønsker p̊a et tidlig tidspunkt å
kunne ha en enkel prototype av applikasjonen med et enkelt brukergrensesnitt
og noe grunnleggende funksjonalitet p̊a plass, slik at vi gradvis kan legge til
funksjonalitet og forbedre design/UX. “Minimal Viable Product” st̊ar sentralt
i tankegangen v̊ar. Dette innebærer at vi ønsker å f̊a p̊a plass et fungerende
produkt med den mest grunnleggende funksjonaliteten tidlig, slik at man kan f̊a
fortløpende tilbakemelding fra kunden og dermed videreutvikle produktet[16].

Utviklingen vil ogs̊a i stor grad være gjenbruksorientert. Keesing Technolo-
gies sin løsning AuthentiScan har allerede godt fungerende løsninger for verifi-
sering av ID-dokumenter og ansiktsgjenkjenning[7]. Ettersom vi har tilgang til
deres API’er vil v̊ar hovedoppgave være å sy sammen en løsning tilpasset de
kravene Buypass stiller til produktet.

4.4 Plan for statusmøter og beslutningspunkter i perioden

Gjennom prosjektperioden vil vi f̊a tett oppfølging av veilederne v̊are, Rune
Hjelsvold og Deepti Mishra, heretter omtalt som veilederne. Det er planlagt
ukentlige møter, mandager klokken elleve. I forkant av møtene skal veilederne
motta en liten rapport som besvarer tre hovedpunkter: hva som har blitt gjort
siden forrige møte; hva det er gruppen ønsker å diskutere, gjerne med støtte i
dokumentasjon; hva som er planen for den kommende uken.

Det første møtet med Buypass AS forekom fredag 18. januar, og det ble
p̊a dette møtet avklart at vi skal ha møter fredag hver andre uke, fra og med
1. februar klokken elleve. Disse møtene vil forekomme over Skype, men lenger
ut i prosjektet hvor det kan bli hensiktsmessig med fysiske demoer vil det bli
lagt opp til møter deretter. Møtene med arbeidsgiver vil forekomme ved slutten
av hver sprint, og vi vil p̊a denne m̊aten kunne gi arbeidsgiver oppdateringer

13

p̊a fremdriften, diskutere veien videre og demonstrere det vi har utviklet under
den siste sprinten. Disse møtene vil ogs̊a åpne for justeringer av funksjonalitet,
milepæler og det konkrete m̊alet for applikasjonen. Dette er viktig ved valget av
en smidig utviklingsmodell, for man vet ikke om man oppn̊ar det man planlegger
i startfasen av prosjektet.

5 Organisering av kvalitetssikring

5.1 Dokumentasjon, standardbruk og kildekode

5.1.1 Programmeringsspr̊ak

V̊ar oppdragsgiver har gitt oss muligheten til å velge om vi ønsker å skrive
applikasjonen v̊ar i Java eller Kotlin. Android-applikasjoner har tradisjonelt blitt
skrevet i Java, men den siste tiden har Kotlin blitt mer og mer populært. Kotlin
har en del fordeler Java ikke har, som for eksempel lambda-uttrykk og inline-
funksjoner, samt at de unng̊ar null-referanser, noe som er et stort problem i
Java[11]. Til tross for dette har vi likevel bestemt oss for å skrive applikasjonen
v̊ar i Java. Dette skyldes hovedsakelig to ting. For det første har vi ganske
begrenset tid å bruke p̊a å lære oss et nytt programmeringsspr̊ak og ettersom
flere av oss har tidligere erfaring med Java vil vi mest sannsynlig bruke en god
del mindre tid p̊a å lære syntaks og kodestruktur. For det andre finnes det langt
flere kodeeksempler i Java, slik at det er lettere å feilsøke koden. Buypass har
ogs̊a informert oss om at de har mer kompetanse i Java enn Kotlin, s̊a det blir
mest sannsynlig lettere for oss å f̊a veiledning fra deres side dersom vi skriver i
Java.
For å sikre at koden er leselig og for å redusere sjansen for feil, vil vi følge
Google Java Style Guide[5]. Til å sikre at denne standarden følges vil vi bruke
programmet CheckStyle.

5.2 Konfigurasjonsstyring

5.2.1 Bitbucket og Trello

Skylagring av kode vil bli gjennomført ved bruk av Bitbucket. Dette vil bidra til
tilgjengelig kode p̊a en private repository blant oss p̊a gruppen. Ved å benytte
oss av dette vil vi videre opprette branches ut fra master, hvor sist fungerende
versjon av den ferdigstilte applikasjonskoden ligger.

Vi følger en liste over generell arbeidsflyt ved koding, og det er viktig at
denne prosessen følges for å sikre god kodekvalitet og en ryddig arbeidsprosess.

1. Velg et kort fra backlogen i Trello og merk det med utvikleren sitt navn

2. Opprett en tilhørende branch og bruk den lokalt

3. Skriv tester

4. Skriv kode

14

5. Flytt kortet til Testing

6. Test funksjonalitet gjennom tester og manuelt (hvis mulig)

7. Hvis OK, opprett en pull request, koble denne til Trellokortet og flytt
kortet til kodegjennomgang.

Ved valg av en oppgave fra backlogen skal man først opprette en branch
fra Trello ved å velge Bitbucket - Create Branch. Dette tillates ved hjelp av en
tilleggsfunksjon i Trello. Navnet p̊a branchen skal være det samme som navnet
p̊a kortet i Trello. Etter at branchen er opprettet skal en flytte kortet til under
arbeid. P̊a denne m̊aten kan man se hvem som jobber med hva til en hver tid,
og det gjør det enkelt for de andre gruppemedlemmene og kunne se hva man
holder p̊a med, eller bist̊a med hjelp ved problemer.

Dersom man mener en modul er ferdig, og testene ikke feiler skal en pull
request opprettes. Etter at denne er opprettet flyttes kortet i Trello til kode-
gjennomgang, og kobler det til pull requesten. En annen p̊a gruppa skal da se
p̊a pull requesten og gjennomg̊a koden for å se om den er god nok, og deretter
godkjenne og merge med master. Lukk source branchen, og flytt kortet i Trello
til ferdig. Dersom den som gjør kodegjennomgang mener at koden ikke innfrir
krav for funksjonalitet eller kvalitet skal man flytte kortet i Trello tilbake til
backlogen, og gi tilbakemelding i form av kommentar p̊a kortet i Trello. Da vil
prosessen starte p̊a nytt, og innehaveren av kildekoden vil ha ansvar for å rette
opp i de feil som ble p̊apekt under kodegjennomgangen.

5.2.2 Versjonskontroll

Det er viktig at gruppen er samstemte rundt formalitetene i utviklingsfasen.
Dette handler i stor grad om hvordan vi benytter Git3. Arbeidsflyten for ver-
sjonskontroll er illustrert ved figur[6], og nummereringen av versjoner vil fore-
komme p̊a følgende format;

Major . Minor . Patch v e r s i o n . Bui ld number

Major representerer en full lansering av applikasjonen, og dette vil i løpet
av v̊art prosjekt ikke skje. Derfor vil dette tallet være null gjennom hele v̊art
prosjekt, og vi vil evaluere om det er hensiktsmessig å inkludere det. Minor re-
presenterer en ny funksjonalitet, eller en stor forandring i hvordan applikasjonen
oppfører seg. Patch versjon representerer fiksing av bugs i applikasjonen. Build
number representerer fiksing av bugs spesifikke for en bruker/tester i prosjekt-
perioden. Disse endringene kan inkluderes ved lansering av patch versjon, for å
hindre at det innføres for mange sm̊a versjoner av applikasjonen.

Slik som figur 6 illustrerer skal det foretas en fork av master dersom en ny
versjon skal iverksettes. Denne navngis etter formatet listet over, og er basert
p̊a hva slags implementasjon som skal foretas. Den nye versjonen vil inneholde
flere grener hvor gruppemedlemmene kan jobbe individuelt, eller sammen, uten
forstyrrelser fra de andre medlemmene sin kode. Den nye versjonen skal ikke

3Git er et open source-distribuert versjonskontrollverktøy, se https://git-scm.com/

15

merges (flettes) med master dersom den ikke er feilfri, i form av at funksjonalitet
som er implementert skal fungere. Det er viktig at alle grener som er opprettet
i versjonsgrenen fungerer sammen, og hele applikasjonen skal testes grundig før
den merges med master.

Master representerer den sist oppdaterte, fungerende versjonen av applika-
sjonen. Den oppdaterte versjonen vil være klar til å bli demonstrert for kunden.
Endringer eller nye funksjonaliteter kunden ber om at legges til vil for̊arsake at
en ny versjon av applikasjonen vil bli opprettet.

5.2.3 Testing

I applikasjonen v̊ar vil det være behov for manuelle tester, ettersom det skal
tas bilder, scannes pass osv. Vi vil likevel ta i bruk testrammeverket Espresso
for automatisert testing av brukergrensesnitt. Dette er et rammeverk for And-
roid Studio som tilbyr API’er for å skrive tester som simulerer interaksjon med
applikasjonen[3]. For å lete etter bugs og potensielle problemer i koden vil vi
benytte statisk kodeanalyse ved verktøyet SonarQube. Dette er et verktøy som
kan rapportere om duplisering av kode, kompleks kode, hvor stor dekningsgrad
testene har, osv[17]. Vi vil bruke Test-Driven Development som et ledd i kva-
litetsikringen av koden. Hver gang vi legger til ny funksjonalitet skal vi derfor
gjennom følgende steg[21]:

1. Skrive test

2. Kjøre test (denne skal feile)

3. Skrive kode

4. Teste

5. Refaktorere

5.3 Risikoanalyse

Vi har utarbeidet en risikoanalyse som skal st̊a i fokus hvis noe uheldigvis g̊ar
galt under prosjektperioden. Denne analysen er illustrert i figur 8. Vi har valgt å
demonstrere tre ulike fargekoder som best̊ar av rødt, gult, og grønt felt. Fargene
representerer hvilke grad av risiko koden er. En akseptabel risiko er vist som
grønn farge. Dette er risikoer det vil være unødvendig å forberede seg p̊a, enten
p̊a grunn av den lave sannsynligheten eller den lave risikoen. Gul farge er en
middels risiko og tiltak vurderes individuelt. Rød farge har størst verdi og tiltak
er nødvendig. Se figur 7.

5.3.1 Mulige utvidelser av oppgaven

Fordi det er mye usikkerhet knyttet til omfanget av oppgaven vil vi legge en plan
for mulige utvidelser dersom oppgaven v̊ar viser seg å være for lite kompleks.
Vi er p̊a det n̊aværende tidspunkt litt usikre p̊a hvor mye av funksjonaliteten vi

16

trenger som faktisk er tilgjengelig gjennom Keesing sitt API (vi venter fortsatt
p̊a fullstendig dokumentasjon). Vi er derfor litt bekymret for at dersom Keesing
kan brukes til mer eller mindre all funksjonalitet, vil v̊ar oppgave bli litt for
liten i forhold til hva som er forventet av en bacheloroppgave.
Vi vil diskutere muligheten for mulige utvidelser av oppgaven med Buypass
under møtet 1. februar, men per n̊a har vi følgende forslag til utvidelser:

• Å lage en webapplikasjon i tillegg til mobilapplikasjon

• Å lage en innloggingsportal

• Å initiere videosamtale med kundeservice hos Buypass

6 Plan for gjennomføring

Som nevnt tidligere vil vi jobbe i sprinter p̊a to uker. Det er ganske mye usik-
kerhet knyttet til hvor lang tid vi kommer til å bruke p̊a de ulike modulene,
s̊a vi har ingen detaljert tidsplan for n̊ar de ulike delene skal implementeres.
Ren planlegging og fordeling av oppgaver vil skje p̊a Sprint Planning Meeting
i forkant av hver sprint. Vi har likevel laget en grov plan for n̊ar vi planlegger
å jobbe med de ulike arbeidsoppgavene og n̊ar vi har som m̊al å n̊a de ulike
milæpælene vi har definert, se vedlegg A.

6.1 Work Breakdown Structure

Vi har laget et WBS-diagram (Work Breakdown Structure), se figur 9. Dette
gjenspeiler Gantt-diagrammet, se vedlegg A, og viser hvordan komponentene
er avhengig av hverandre for ferdigstillelse. De nederste operasjonene/modulene
m̊a p̊a plass før en prosess/modul p̊a et niv̊a over kan gjøres, og det viser p̊a
denne m̊aten hvilke komponenter man er nødt til å prioritere. Diagrammet er
laget p̊a et overordnet niv̊a, og det kan forekomme feil som en følge at vi n̊a
er i planleggingsfasen og eventuelle utfordringer og forandringer kan oppst̊a
underveis i prosjektet.

6.2 Milepæler og beslutningspunkter

Som det allerede fremkommer i prosjektplanen benytter vi oss av en smidig
utviklingsmodell som gjør det vanskelig å fastsette datoer for milepæler. Selv
om gruppen innehar lite erfaring med større utviklingsprosjekter har vi likevel
valgt å sette opp m̊al for hver av sprintene, og vi mener disse m̊a oppn̊as for
å n̊a m̊alet om en ferdigstilt applikasjon. Vi har valgt å sette opp mange mile-
pæler, for p̊a denne m̊aten kan vi evaluere ved hver endte sprint om m̊alet er
innen rekkevidde basert p̊a disse. Det vil være beleilig og kunne komme med,
og f̊a, tilbakemeldinger til/fra arbeidsgiver tidlig, for klarhet rundt eventuelle
justeringer av den ferdige applikasjonen. Det er ikke viktig at tidsfristene rundt
milepælene overholdes til punkt og prikke, og de er mer ment som retningslinjer

17

for den smidige utviklingen. Det er vanskelig å estimere hva som er oppn̊aelig
innenfor en to ukers sprint, og vi vil ha overestimert eller underestimert p̊a visse
punkter.

• Milepæl 1: 15. februar - Applikasjonen har et enkelt grensesnitt, og kan
ta bilde som kan sendes til server.

• Milepæl 2: 1. mars - Applikasjonen kan sende bildet man har tatt til
Keesing for verifisering, og brukeren f̊ar beskjed om dokumentet er god-
kjent eller ikke.

• Milepæl 3: 15. mars - NFC-lesing av dokument er implementert, og man
sende det til Keesing for verifisering. Mottar beskjed om dokumentet er
gyldig eller ikke, dersom det er et ID-dokument.

• Milepæl 4: 29. mars - Brukeren kan ta bilde av ansiktet og sende til
Keesing s̊a de kan kjøre en ansiktsverifisering imot de dokumenter de har
motatt, og se om det er samme person eller ikke.

• Milepæl 5: 12. april - Funksjonalitet i applikasjon skal være ferdigstilt,
men finpuss og testing kan gjenst̊a.

• Milepæl 6: 12. mai - Rapport og applikasjon er ferdig og leveres.

6.3 Tids- og ressursplan

Se vedlegg A for Gantt-diagram.

• Sprint 1: 1. - 15. feb - Research Server/Node.js/Express.js.
Etabler server med enkel funksjonalitet som spesidfiseres p̊a møtet med
Buypass 1. februar, eller ved sprint planning meeting mandag 4. februar.
Research Android Studio/Java, og lag et enkelt grensesnitt med imple-
mentasjon av kamera og ta bilde.
Research Keesing API.

• Sprint 2: 18.feb - 1. mar - Research NFC og implementasjon av det.

• Sprint 3: 4. - 15. mars - Research ansiktsgjenkjenning hos Keesing og
implementer dette.

• Sprint 4: 18. - 29. mars - Implementasjon av verifisering ved ansiktsgjen-
kjenning.

• Sprint 5: 1. - 12. april - Implementasjon av gjenværende funksjonalitet,
finpuss av applikasjon og testing.

• Sprint 6: 23. april - 12. mai - Finpuss av applikasjon og rapportskriving.

18

Figur 6: Versjonskontroll ved utvikling

19

Figur 7: Riskikoanalyse

20

Figur 8: Riskikoanalyse

21

Figur 9: WBS-figur laget i visio

22

Referanser

[1] Lover og regler. https://www.datatilsynet.no/

regelverk-og-verktoy/lover-og-regler/. [Online; accessed 22-
January-2019].

[2] Virksomhetens plikter. https://www.datatilsynet.no/

rettigheter-og-plikter/virksomhetenes-plikter/. [Online; accessed
22-January-2019].

[3] Test ui for a single app. https://developer.android.com/training/

testing/ui-testing/espresso-testing. [Online: accessed 30-January-
2019].

[4] Federal Office for Information Security. Security mechanisms in
electronic id documents. https://www.bsi.bund.de/EN/Topics/

ElectrIDDocuments/SecurityMechanisms/securBAC/bac_node.html,
2019. [Online; accessed 17-January-2019].

[5] Google java style guide. http://checkstyle.sourceforge.

net/reports/google-java-style-20170228.html?fbclid=

IwAR2bawhOFqZw8ygnJIUxc9G40oAYOhI8dTINtUpCg6xHB58f_

0L1N2PHvBA#s3.3-import-statements. [Online; accessed 25-January-
2019].

[6] Kanban vs. scrum: What are the differences? https://leankit.com/

learn/kanban/kanban-vs-scrum/.

[7] Infographic: Automated id verifications with keesing
authentiscan. https://keesingdocumentchecker.com/

infographic-automated-id-verifications-with-keesing-authentiscan/.
[Online; accessed 21-January-2019].

[8] Keesing technologies - about us. https://www.keesingtechnologies.

com/about-us/. [Online; accessed 22-January-2019].

[9] Keesing technologies - keesing authentiscan standard. https://www.

keesingtechnologies.com/automated-id-checking/standard/. [On-
line; accessed 22-January-2019].

[10] Keesing authentiscan - integration manual version 1.42. [dato: 14-05-2018].

[11] Comparison to java programming. https://kotlinlang.org/docs/

reference/comparison-to-java.html/. [Online; accessed 22-January-
2019].

[12] Odd R Lange. Fra 1. april kommer du ikke inn i usa uten riktig pass.
Dagbladet, Mar 2016.

[13] Ian Sommerville. Software Engineering. Addison-Wesley Publishing Com-
pany, USA, 9th edition, 2010.

23

[14] Odd R Valmot. Passet kjenner deg. Teknisk Ukeblad, Feb 2011.

[15] Wikipedia contributors. Express.js — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Express.js&

oldid=875960505, 2018. [Online; accessed 22-January-2019].

[16] Wikipedia contributors. Minimum viable product — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php?title=

Minimum_viable_product&oldid=870722777, 2018. [Online; accessed 21-
January-2019].

[17] Wikipedia contributors. Sonarqube — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=SonarQube&

oldid=875137323, 2018. [Online; accessed 30-January-2019].

[18] Wikipedia contributors. User experience design — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php?title=

User_experience_design&oldid=874311100, 2018. [Online; accessed 16-
January-2019].

[19] Wikipedia contributors. Near-field communication — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php?title=

Near-field_communication&oldid=877746177, 2019. [Online; accessed
17-January-2019].

[20] Wikipedia contributors. Node.js — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Node.js&oldid=

879075496, 2019. [Online; accessed 22-January-2019].

[21] Wikipedia contributors. Test-driven development — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php?title=

Test-driven_development&oldid=879976508, 2019. [Online; accessed 25-
January-2019].

24

Appendices

A Gantt-diagram

31
4

11
18

25
4

11
18

25
1

8
15

22
29

6
13

Fe
b

'1
9

M
ar

 '1
9

Ap
r '

19
M

ay
 '1

9

B
ac

he
lo

ro
pp

ga
ve

 P
ro

sj
ek

t

Re

se
ar

ch
 -

An
dr

oi
d

St
ud

io
 o

g
Ja

va

Re

se
ar

ch
 -

N
od

e.
js

 /
Ja

va
Sc

rip
t

Et
ab

le
r s

er
ve

r m
ed

 e
nk

el
 fu

nk
sj

on
al

i..
.

Im
pl

em
en

te
re

 k
od

e
fo

r å
 n

å
m

ile
pæ

l..
.

Ta
 b

ild
e

m
ed

 a
pp

lik
as

jo
n

Re
se

ar
ch

 K
ee

si
ng

 A
PI

Im
pl

em
en

te
re

 A
PI

-k
al

l f
ra

 s
er

ve
r

Im
pl

em
en

te
re

 k
om

m
un

ik
as

jo
n

kl
ie

nt
...

Se
nd

e
bi

ld
e

av
 d

ok
um

en
t t

il
Ke

es
in

g
...

Re
se

ar
ch

 N
FC

Im
pl

em
en

ta
sj

on
 a

v
N

FC
 le

se
r o

g
ko

bl
...

Le
se

 N
FC

-b
rik

ke
 i

pa
ss

 m
ed

 m
ob

il
og

...

Im

pl
em

en
ta

sj
on

 a
v

ve
rif

is
er

in
g

gj
en

...

Ta

 b
ild

e
av

 a
ns

ik
t o

g
ve

rif
is

er
e

m
ot

 b
i..

.

Fi

np
us

s
og

 G
U

I

Al

l f
un

ks
jo

na
lit

et
 im

pl
em

en
te

rt

Ap

pl
ik

as
jo

n
og

 ra
pp

or
t f

er
di

g

Ra

pp
or

t

P
ow

er
ed

 b
y

T
C

P
D

F
 (

w
w

w
.tc

pd
f.o

rg
)

25

D Gantt Diagram

115

31
4

11
18

25
4

11
18

25
1

8
15

22
29

6
13

Fe
b

'1
9

M
ar

 '1
9

Ap
r

'1
9

M
ay

 '1
9

B
ac

he
lo

ro
pp

ga
ve

 P
ro

sj
ek

t

Re

se
ar

ch
 -

An
dr

oi
d

St
ud

io
 a

nd
 Ja

va

Re

se
ar

ch
 -

N
od

e.
js

 /
Ja

va
Sc

rip
t

Es
ta

bl
is

h
se

rv
er

 w
ith

 s
om

e
fu

nc
tio

na
l..

.

Im

pl
em

en
t c

od
e

to
 re

ac
h

m
ile

st
on

e
...

Ta
ke

 p
ho

to
 w

ith
 th

e
ap

pl
ic

at
io

n

Re

se
ar

ch
 K

ee
si

ng
 A

PI

Im

pl
em

en
t A

PI
 c

al
l f

ro
m

 s
er

ve
r

Im
pl

em
en

t c
om

m
un

ic
at

io
n

be
tw

ee
n

...

Se

nd
 p

ho
to

 o
f d

oc
m

en
t t

o
Ke

es
in

g
fo

...

Re

se
ar

ch
 N

FC

Im

pl
em

en
t N

FC
 re

ad
er

 a
nd

 c
on

ne
ct

i..
.

Re
ad

 N
FC

-c
hi

p
in

 p
as

sp
or

t w
ith

 m
ob

i..
.

Im
pl

em
en

t f
ac

ia
l v

er
ifi

ca
tio

n

Ta

ke
 p

ho
to

 o
f f

ac
e

an
d

ve
rif

ic
at

e
it

a.
..

To
uc

h
up

 a
nd

 G
U

I

Al

l f
un

ct
io

na
lit

y
im

pl
em

en
te

d

Ap

pl
ic

at
io

n
an

d
re

po
rt

 fi
ni

sh
ed

Re
po

rt

P
ow

er
ed

 b
y

T
C

P
D

F
 (

w
w

w
.tc

pd
f.o

rg
)

E Technologies and tools

Overleaf: Online LATEXeditor, which allows for sharing. Our preferred choice for writing our
bachelor thesis.

Google Drive: Online file- and storage sharing solution. Allows for sharing of documents
within a group.

Bitbucket: Web based version control repository for source code and development projects.

Git: Version control system for handling code uploads to repositories.

Trello: Online visual tool for task organization.

Toggl: An online time tracking tool which allows time entry tags and descriptions.

Cisco AnyConnect Secure Mobility Client: VPN1 for allowing remote use of NTNU’s net-
work.

JSON: JSON2 is a lightweight data-interchange format [35].

Android Studio: The official IDE3 for Android, and is designed specifically for Android de-
velopment.

Plugins: A software component that adds a specific feature to an existing computer pro-
gram [36].

SonarLint: Extension for improving code quality. It acts like a spell checker, notifying
us while coding in regards of code complexity, bugs and coding standards.

Java: Java is a class based, object oriented programming language, and is designed to have
as few implementation dependencies as possible [37].

Visual Studio Code: Code editor used for our backend development.

Plugins: sftp: SFTP4 is a network protocol for safely transfering files over a unsecure net-
work. It offers the functionality such as copying, editing, renaming and deletion
of files [38].

Prettier: Code formatter for Node.js amongst other programming languages. Built in
presets for formatting of JavaScript code, making it more readable and making
sure coding standards are followed.

Node.js: An asynchronous event driven JavaScript runtime coding environment. It is de-
signed to build scalable network applications, and may handle several connection con-
currently and when there is no work it will sleep [39].

npm: npm5 is the default package manager for Node.js. It allows for downloading packages
1Virtual Private Network
2JavaScript Object Notation
3Integrated development environment
4SSH File Transfer Protocol
5Node.js package manager

117

Digital verification of identity

which may help the development process.

Express.js: A lightweight framework for Node.js which allows for quick and easy creation
of a robust API, and web applications in general [40].

ESLint: A tool for detecting code patterns and vulnerabilities in JavaScript code [41].

Postman: API tool for sending requests and receiving responses. It allows for JSON format-
ted payload amongst others, and provides for tests of API’s.

SonarQube: Acts as an online server providing information regarding code quality. It is able
to detect bugs, code smells, security vulnerabilities and duplication of code.

Adobe Photoshop: A graphic design software (raster graphics editor) used for creating the
GUI of the application.

Microsoft Visio: Microsoft program for creating diagrams and drawings

118

F Data Flow Diagram

119

G JSON verification result

1 {
2 " id " : "7 b473e7c034d40dbae19d275c871aedb " ,
3 " reference_number " : "7 b473e7c034d40dbae19d275c871aedb " ,
4 " s t a t e " : " f i n i s h e d " ,
5 " c rea ted_a t " : "2015−01−07T14:03:43Z " ,
6 " e r ro r " : " n u l l " ,
7 " r e s u l t s " : {
8 " s t a t u s " : " ok " ,
9 " d e s c r i p t i o n " : " V e r i f i c a t i o n f i n i s h e d s u c c e s s f u l l y " ,

10 " remarks " : nul l ,
11 " r e p o r t _ u r l " : nul l ,
12 " checks " : [
13 {
14 "name" : " mrz_reading " ,
15 " d e s c r i p t i o n " : "MRZ reading " ,
16 " s t a t u s " : " ok " ,
17 " message " : "MRZ read s u c c e s s f u l l y "
18 }
19] ,
20 " document " : {
21 " doc_type " : "PASSPORT " ,
22 " document_number " : "999999990" ,
23 " given_names " : "OLA" ,
24 " surname " : "NORDMANN" ,
25 " gender " : " male " ,
26 " da t e_o f _b i r t h " : "1965−03−10" ,
27 " n a t i o n a l i t y " : "NOR" ,
28 " personal_number " : "11111111111" ,
29 " va l id_ through " : "2024−03−09" ,
30 " i s su ing_coun t ry " : " Norway "
31 }
32 } ,
33 " face_comparison " : {
34 " match " : true ,
35 " e r ro r " : n u l l
36 } ,
37 " l i v ene s s_check " : {
38 " a l i v e " : true ,
39 " e r ro r " : n u l l
40 }
41 }

Listing G.1: Verification result JSON object

121

H Buypass’ website

122

Digital verification of identity

123

I Uploading Files from the Application

I.1 Volley

For uploading regular JSON objects we have used a HTTP library called Volley. This enables
the possibility for our android application to do network requests. It supports raw texts,
images and JSON [42].

I.2 Retrofit 2

Retrofit 2 [43] is a HTTP client tool for uploading media files. It uses two different classes
which is provided by the OkHttp (section I.2.1) library:

• RequestBody - used for sending a text or value.
• MultipartBody.Part - used for sending a file which includes the binary file data, name

on the file and the content type.

Using Retrofit 2 it needs to declare the interface which is in the form of an multipart post
request. This will allow to encapsulate multiple files and strings into one single post request.
Further on, it has to generate a service client for the upcoming upload. This is done by creating
a ServiceGenerator that will connect to the given URL address resulting in a client enabled
to execute network requests on that specific address [44].

I.2.1 OkHttp

OkHttp is an open source project included in the Retrofit 2 client tool as mentioned in section
I.2. OkHttp is an HTTP client which allows for multiple HTTP requests [45].

124

J Test cases

125

Te
st

 c
as

e
- L

og
in

Ex
pe

ct
ed

 o
ut

co
m

e
Su

cc
es

s (
Y/

N
)

Pr
ob

le
m

M
iti

ga
tio

n
U

se
rn

am
e/

pa
ss

w
d

Su
cc

es
sf

ul
 lo

gi
n

Y
U

se
rn

am
e/

 n
o

pa
ss

w
d

U
na

bl
e

to
 a

tt
em

pt
 lo

gi
n

Y
N

o
us

er
na

m
e/

 p
as

sw
d

U
na

bl
e

to
 a

tt
em

pt
 lo

gi
n

Y
N

ei
th

er
 u

se
rn

am
e

or
 p

as
sw

d
U

na
bl

e
to

 a
tt

em
pt

 lo
gi

n
Y

Te
st

 c
as

e
- S

lid
er

 tu
to

ria
l

Ex
pe

ct
ed

 o
ut

co
m

e
Su

cc
es

s (
Y/

N
)

Pr
ob

le
m

M
iti

ga
tio

n
G

o
th

ro
ug

h
tu

to
ria

l
Sw

ip
e

th
ro

ug
h,

 o
r p

re
ss

 "n
es

te
",

 p
re

ss
 "f

er
di

g"
Y

Pr
es

s
"h

op
p

ov
er

"
Sk

ip
 th

e
tu

to
ria

l,
co

m
e

to
 lo

gi
n

Y

Te
st

 c
as

e
- V

er
ifi

ca
tio

ns
 u

pl
oa

d
Ex

pe
ct

ed
 o

ut
co

m
e

Su
cc

es
s (

Y/
N

)
Pr

ob
le

m
M

iti
ga

tio
n

Re
tr

ie
ve

 to
ke

n
w

ith
 c

or
re

ct
 c

re
de

nt
ia

ls
 (s

er
ve

r)
Re

tr
ie

ve
 to

ke
n

fo
r o

th
er

 p
ro

ce
ss

es
, 2

00
 (O

K)
Y

Re
tr

ie
ve

 to
ke

n
w

ith
 in

co
rr

ec
t c

re
de

nt
ia

ls
U

na
bl

e,
 4

00
 (B

ad
 re

qu
es

t)
Y

Re
tr

ie
ve

 e
nt

ry
 p

oi
nt

 (s
er

ve
r)

En
tr

y
po

in
t f

or
 v

er
ifi

ca
tio

n
ac

ce
ss

, 2
00

Y
In

iti
at

e
ve

rif
ic

at
io

n
in

st
an

ce
 (s

er
ve

r)
St

at
us

 c
od

e
20

1
(C

re
at

ed
)

Y
U

pl
oa

d
ph

ot
o

of
 d

oc
um

en
t

Su
cc

es
sf

ul
 u

pl
oa

d,
 p

ro
ce

ed
 to

 n
ex

t s
te

p,
 2

00
Y

U
pl

oa
d

to
o

sm
al

l J
PE

G
 fi

le
U

ns
uc

ce
ss

fu
l u

pl
oa

d,
 re

ta
ke

 p
ho

to
, 4

40
 (I

nv
al

id
 fi

le
)

Y
U

pl
oa

d
bl

ur
re

d
ph

ot
o

of
 d

oc
um

en
t

U
ns

uc
ce

ss
fu

l u
pl

oa
d,

 re
ta

ke
 p

ho
to

, 4
43

 (I
nv

al
id

 fi
le

)
Y

U
pl

oa
d

to
o

sh
or

t v
id

eo
U

na
bl

e,
 re

st
ric

tio
ns

 s
et

 to
 le

ng
th

 a
nd

 s
iz

e,
 4

40
Y

U
pl

oa
d

to
o

bi
g

vi
de

o
fil

e
U

na
bl

e,
 re

st
ric

tio
ns

 s
et

 to
 le

ng
th

 a
nd

 s
iz

e,
 4

40
Y

U
pl

oa
d

fil
e,

 w
ro

ng
 fi

le
 ty

pe
U

na
bl

e,
 4

00

Y
U

pl
oa

d
fil

e,
 n

o
fil

e
at

ta
ch

ed
 (s

er
ve

r)
U

na
bl

e,
 4

00
 (R

es
ou

rc
e

no
t f

ou
nd

)
Y

U
pl

oa
d

fil
e

ty
pe

 tw
o

tim
es

 re
st

ric
te

d
to

 o
ne

 (s
er

ve
r)

U
na

bl
e,

 e
rr

or
 c

od
e

40
0

(B
ad

 re
qu

es
t)

Y
U

pl
oa

d
on

ly
 o

ne
 fi

le
 ty

pe
 "f

ac
e"

 (s
er

ve
r)

U
na

bl
e

to
 p

er
fo

rm
 fa

ce
 c

om
pa

ris
on

Y
St

ar
t v

er
ifi

ca
tio

n
pr

oc
es

s (
se

rv
er

)
St

at
us

 c
od

e
20

0
(O

K)
Y

St
ar

t v
er

ifi
ca

tio
n

pr
oc

ee
s,

 w
ro

ng
 v

er
ifi

ca
tio

n
ID

 (s
er

ve
r)

U
na

bl
e,

 e
rr

or
 c

od
e

40
4

(N
ot

 fo
un

d)
Y

St
ar

t v
er

ifi
ca

tio
n

pr
oc

es
s,

 fi
ni

sh
ed

 v
er

ifi
ca

tio
n

(s
er

ve
r)

U
na

bl
e,

 e
rr

or
 c

od
e

40
0

Y
St

ar
t v

er
ifi

ca
tio

n
pr

oc
es

s,
 n

o
fil

es
 u

pl
oa

de
d

(s
er

ve
r)

U
na

bl
e,

 e
rr

or
 c

od
e

40
0

Y

Te
st

 c
as

e
- M

in
 s

id
e/

 v
er

ifi
ca

tio
n

re
su

lts
Ex

pe
ct

ed
 o

ut
co

m
e

Su
cc

es
s (

Y/
N

)
Pr

ob
le

m
M

iti
ga

tio
n

G
et

 re
su

lt
of

 fi
ni

sh
ed

 v
er

ifi
ca

tio
n

pr
oc

es
s (

se
rv

er
)

Su
cc

es
sf

ul
Y

G
et

 re
su

lt
of

 n
on

 e
xi

st
in

g
ve

rif
ic

at
io

n
(s

er
ve

r)
U

na
bl

e,
 e

rr
or

 c
od

e
40

4
Y

G
et

 re
su

lt
of

 u
nf

in
is

he
d

ve
rif

ic
at

io
n

(s
er

ve
r)

U
na

bl
e,

 e
rr

or
 c

od
e

40
0

Y
Li

st
 a

ll
ve

rif
ic

at
io

ns
 p

er
fo

rm
ed

 b
y

us
er

 w
hi

ch
 h

av
e

so
m

e
Li

st
 o

f t
he

 v
er

ifi
ca

tio
ns

 p
er

fo
rm

ed
Y

Li
st

 v
er

ifi
ca

tio
ns

 s
o

th
at

 th
e

lis
tv

ie
w

 is
 sc

ro
lla

bl
e

Sc
ro

ll
do

w
n

to
 s

ee
 m

or
e

ve
rif

ic
at

io
ns

Y
Re

fr
es

h
th

e
lis

t o
f v

er
ifi

ca
tio

ns
 b

y
dr

ag
gi

ng
 li

st
 d

ow
n

Re
fr

es
h

th
e

lis
t (

if
no

t v
is

ua
l i

n
ap

p
ch

ec
k

se
rv

er
 lo

g)
Y

Pr
es

s
a

ve
rif

ic
at

io
n

in
 li

st
 to

 s
ee

 d
et

ai
le

d
in

fo
rm

at
io

n
Po

pu
p

pr
ov

id
in

g
de

ta
ile

d
in

fo
rm

at
io

n
Y

U
se

r p
ag

e
w

he
n

th
er

e
is

 n
o

ve
rif

ic
at

io
ns

 fo
r t

he
 u

se
r

Pr
ov

id
e

m
es

sa
ge

 s
ta

tin
g

th
at

 th
er

e
is

 n
o

ve
rif

ic
at

io
ns

 y
et

Y
Re

tr
ie

ve
 re

su
lts

 w
he

n
w

eb
ho

ok
 is

 tr
ig

ge
re

d
(s

er
ve

r)
Th

e
w

eb
ho

ok
 tr

ig
ge

rs
 fu

nc
tio

na
lit

y
fo

r r
et

rie
vi

ng
 th

e
re

su
lts

 o
f t

he
 v

er
ifi

ca
tio

n,
 a

nd
 s

to
re

s i
t i

n
th

e
da

ta
ba

se
Y

Pu
sh

 n
ot

ifi
ca

tio
n,

 d
oc

um
en

t t
o

he
lp

de
sk

Pu
sh

 n
ot

ifi
ca

tio
n

no
t s

en
t a

s
th

e
ve

rif
ic

at
io

n
is

 st
ill

 o
ng

oi
ng

Y

Pu
sh

 n
ot

ifi
ca

tio
n,

 li
ve

ne
ss

 n
ot

 p
er

fo
rm

ed
Pu

sh
 n

ot
ifi

ca
tio

n
no

t s
en

t a
s

th
e

ve
rif

ic
at

io
n

is
 st

ill
 o

ng
oi

ng

Y
Pu

sh
 n

ot
ifi

ca
tio

n,
 fa

ce
 c

om
pa

ris
on

 n
ot

 p
er

fo
rm

ed
Pu

sh
 n

ot
ifi

ca
tio

n
no

t s
en

t a
s

th
e

ve
rif

ic
at

io
n

is
 st

ill
 o

ng
oi

ng

Y
Pu

sh
 n

ot
ifi

ca
tio

n,
 e

ith
er

 o
ne

 o
f t

he
 a

bo
ve

 n
ot

 p
er

fo
rm

ed
 b

ut
 th

e
ot

he
r t

w
o

or
 o

ne
Pu

sh
 n

ot
ifi

ca
tio

n
no

t s
en

t a
s

th
e

ve
rif

ic
at

io
n

is
 st

ill
 o

ng
oi

ng

Y
U

se
r p

re
ss

 p
us

h
no

tif
ic

at
io

n
w

he
n

no
t i

n
th

e
ap

pl
ic

at
io

n
U

se
r i

s
ta

ke
n

to
 lo

g
in

 s
cr

ee
n

Y
U

se
r p

re
ss

 p
us

h
no

tif
ic

at
io

n
w

hi
th

in
 th

e
ap

pl
ic

at
io

n
U

se
r i

s
ta

ke
n

to
 th

e
us

er
 p

ag
e

Y

Te
st

 c
as

e
- A

pp
lic

at
io

n
flo

w
 (G

en
er

al
 fl

ow
 w

ith
 b

ut
to

ns
)

Ex
pe

ct
ed

 o
ut

co
m

e
Su

cc
es

s (
Y/

N
)

Pr
ob

le
m

M
iti

ga
tio

n
U

se
r c

ho
os

es
 p

as
sp

or
t f

or
 v

er
ifi

ca
tio

n,
 p

re
ss

 h
om

e
be

fo
re

 p
ho

to
s

Sc
re

en
 s

ay
in

g
th

at
 th

is
 w

ill
 c

an
ce

l t
he

 v
er

ifi
ca

tio
n

pr
oc

es
s (

Ye
s/

N
o)

Y
Ch

oo
se

s t
o

ca
nc

el
 h

om
e

Re
su

m
es

 th
e

ve
rif

ic
at

io
n

pr
oc

es
s

Y
Ch

oo
se

s t
o

be
 ta

ke
n

to
 h

om
e

sc
re

en
Is

 ta
ke

n
to

 th
e

fir
st

 sc
re

en
, a

nd
 is

 n
ow

 a
bl

e
to

 c
ho

os
e

ei
th

er
 p

as
sp

or
t o

f l
ic

se
ns

e
ag

ai
n

Y
Th

e
ab

ov
e

ap
pl

ie
s

to
 a

ll
st

ag
es

 o
f t

he
 v

er
ifi

ca
tio

n
pr

oc
es

se
s-

--

--

--

--

--

--

--

--

--

--

--

-

--
--

--
--

--
--

U
se

r p
re

ss
es

 b
ut

to
n

to
 ta

ke
 a

 p
ho

to
 w

ith
in

 th
e

ap
p

O
ur

 c
am

er
a

op
en

s
up

 a
nd

 a
 p

op
up

 m
es

sa
ge

 u
p

to
p

co
m

es
 to

 s
ig

ht
h,

 p
ro

vi
di

ng
 in

st
ru

ct
io

n
fo

r t
he

 p
ho

to
Y

Th
e

us
er

 p
re

ss
es

 th
e

in
st

ru
ct

io
ns

 p
op

up
Th

e
in

st
ru

ct
io

n
po

pu
p

cl
os

es
Y

Th
e

us
er

 p
re

ss
es

 th
e

in
fo

 ic
on

 to
 g

et
 th

e
in

fo
rm

at
io

n
ag

ai
n

Th
e

in
st

ru
ct

io
n

po
pu

p
op

en
s

Y
Th

e
us

er
 ta

ke
s

a
ph

ot
o

Th
e

ph
ot

o
is

 n
ow

 a
bl

e
to

 b
e

re
vi

ew
ed

 b
y

th
e

us
er

Y
Th

e
us

er
 p

re
ss

es
 b

ut
to

n
to

 re
ta

ke
 p

ho
to

Th
e

ph
ot

o
go

es
 a

w
ay

, a
nd

 th
e

us
er

 is
 a

bl
e

to
 ta

ke
 a

 p
ho

to
 a

ga
in

Y
Th

e
us

er
 a

pp
ro

ve
s

th
e

ph
ot

o
an

d
pr

es
se

s
th

e
bu

tt
on

 to
 g

o
on

Th
e

ph
ot

o
is

 b
ei

ng
 u

pl
oa

de
d

an
d

th
e

us
er

 is
 ta

ke
n

to
 th

e
ne

xt
 st

ep
Y

Th
e

ab
ov

e
ap

pl
ie

s
to

 th
e

vi
de

o
fu

nc
tio

na
lit

y
as

 w
el

l--

--

--

--

--

--

--

--

--

--

--

--

-

--

--

--
--

Th
e

us
er

 p
re

ss
es

 th
e

us
er

 p
ag

e
bu

tt
on

 in
 o

rd
er

 to
 s

ee
 th

e
ve

rif
ic

at
io

ns
Th

e
us

er
 p

ag
e

w
ill

 a
pp

ea
r

Y
Th

e
us

er
 p

re
ss

es
 th

e
sa

m
e

bu
tt

on
 a

ga
in

Th
e

us
er

 p
ag

e
w

il
cl

os
e

Y
Th

e
us

er
 p

re
ss

es
 H

om
e

w
hi

le
 in

 th
e

us
er

 p
ag

e
Th

e
us

er
 is

 ta
ke

n
ho

m
e

if
he

 a
cc

ep
ts

 a
nd

 s
ta

ys
 if

 h
e

pr
es

se
s

no
Y

K API structure

127

U
RL

D

es
cr

ip
tio

n
M

et
ho

d
Pa

ra
m

et
er

(s
)

Re
tu

rn
 v

al
ue

(s
)

Po
st

m
an

 te
st

Ve

rif
yi

d.
m

l/

G
ET

«A
PI

 fo
r b

ac
he

lo
r

th
es

is
, N

TN
U

 G
jø

vi
k»

te

st
s[

"B
od

y
m

at
ch

es
 s

tr
in

g"
] =

 re
sp

on
se

Bo
dy

.h
as

("
AP

I f
or

 b
ac

he
lo

r t
he

si
s,

 N
TN

U
 G

jø
vi

k"
);

/v
er

ifi
ca

tio
ns

/
Ca

ll
fo

r i
ns

ta
nt

ia
tin

g
a

ve
rif

ic
at

io
n

pr
oc

es
s

PO

ST

re
fN

o
- s

tr
in

g,
 u

ni
qu

e
us

er

re
fe

re
nc

e)

st
at

us
M

es
sa

ge

va
r d

at
a

=
JS

O
N

.p
ar

se
(r

es
po

ns
eB

od
y)

;
 te

st
s[

"I
ns

ta
nt

ia
te

 v
er

ifi
ca

tio
n

pr
oc

es
s"

] =
 d

at
a.

st
at

us
M

es
sa

ge
 =

=
"V

er
ifi

se
rin

gs
pr

os
es

se
n

ha
r s

ta
rt

et
";

/v

er
ifi

ca
tio

n/
fil

eu
pl

oa
d

Ca
ll

fo
r u

pl
oa

di
ng

im

ag
e/

vi
de

o
fil

e
PO

ST

FO
RM

fil

e
–

fil
e

up
lo

ad

ty
pe

 –
 s

tr
in

g,
 ty

pe
 o

f u
pl

oa
d

us
er

Id
 –

 s
tr

in
g,

 u
ni

qu
e

us
er

re

fe
re

nc
e

st
at

us
M

es
sa

ge

/v
er

ifi
ca

tio
ns

/s
ta

rt
ve

rif
ic

at
io

n
Ca

ll
fo

r s
ta

rt
in

g
a

ve
rif

ic
at

io
n

pr
oc

es
s

PO
ST

us

er
Id

 –
 s

tr
in

g,
 u

ni
qu

e
us

er

re
fe

re
nc

e
st

at
us

Co
de

va

r d
at

a
=

JS
O

N
.p

ar
se

(r
es

po
ns

eB
od

y)
;

 te
st

s[
"S

ta
rt

 v
er

ifi
ca

tio
n

pr
oc

es
s

if
no

t s
ta

rt
ed

, r
es

po
ns

e
20

0"
] =

 d
at

a.
st

at
us

Co
de

 =
=

20
0;

 te

st
s[

"S
ta

rt
 v

er
ifi

ca
tio

n
al

re
ad

y
st

ar
te

d,
 re

sp
on

se
 5

00
"]

 =
 d

at
a.

st
at

us
Co

de
 =

=
50

0;

/v
er

ifi
ca

tio
ns

/g
et

pd
fr

ep
or

t
N

ot
 fu

nc
tio

ni
ng

PO

ST

us
er

Id
 –

 s
tr

in
g,

 u
ni

qu
e

us
er

re

fe
re

nc
e

/f
ire

ba
se

/u
pl

oa
du

se
r

Ca
ll

fo
r s

to
rin

g
us

er

an
d

to
ke

n
in

 d
at

ab
as

e
PO

ST

us
er

 –
 st

rin
g,

 u
ni

qu
e

us
er

re

fe
re

nc
e

to
ke

n
–

FC
M

 to
ke

n
U

U
ID

 –
 U

U
ID

 fo
r i

de
nt

ify
in

g
in

re

ga
rd

s
to

 re
tr

ie
va

l o
f

ve
rif

ic
at

io
n

da
ta

42
2,

 «
Br

uk
er

na
vn

et
 e

r
ik

ke
 g

yl
di

g»
 /

m
es

sa
ge

va
r d

at
a

=
JS

O
N

.p
ar

se
(r

es
po

ns
eB

od
y)

;
 te

st
s[

"m
es

sa
ge

 o
k

if
us

er
na

m
e

va
lid

 a
nd

 to
ke

n
pr

ov
id

ed
"]

 =
 d

at
a.

m
es

sa
ge

 =
=

"O
K"

;
 te

st
s[

"t
ok

en
 o

r u
se

rn
am

e
no

t p
ro

vi
de

d"
] =

 d
at

a.
st

at
us

M
es

sa
ge

 =
=

"N
oe

 g
ik

k
ga

lt"
 &

&
 re

sp
on

se
Co

de
.c

od
e

==
=

42
2;

 te

st
s[

"t
ok

en
 o

r u
se

rn
am

e
no

t v
al

id
"]

 =
 d

at
a.

st
at

us
M

es
sa

ge
 =

=
"N

oe
 g

ik
k

ga
lt"

 &
&

 re
sp

on
se

Co
de

.c
od

e
==

=
42

2;

/f
ire

ba
se

/g
et

al
lv

er
ifi

ca
tio

ns

Ca
ll

fo
r r

et
rie

vi
ng

 a
ll

ve
rif

ic
at

io
ns

PO

ST

us
er

Id
 –

 s
tr

in
g,

 u
ni

qu
e

us
er

re

fe
re

nc
e

Ve
rif

ic
at

io
ns

 a
rr

ay
,

em
pt

y
or

 n
ot

va

r d
at

a
=

JS
O

N
.p

ar
se

(r
es

po
ns

eB
od

y)
;

 te
st

s[
"U

se
r w

ith
 n

ot
 v

er
ifi

ca
tio

ns
"]

 =
 d

at
a.

ve
rif

ic
at

io
ns

.is
Em

pt
y(

);
 te

st
s[

"N
o

us
er

na
m

e
pr

ov
id

ed
"]

 =
 d

at
a.

ve
rif

ic
at

io
ns

.is
Em

pt
y(

);
 te

st
s[

"U
se

r w
ith

 se
ve

ra
l o

r o
ne

 v
er

ifi
ca

tio
ns

"]
 =

 !d
at

a.
ve

rif
ic

at
io

ns
.is

Em
pt

y(
);

/w
eb

ho
ok

/
Ca

ll
fo

r t
rig

ge
rin

g
th

e
w

eb
ho

ok

PO
ST

ev

en
t –

 st
rin

g,

“v
er

ifi
ca

tio
n.

fin
is

he
d”

 /
“v

er
ifi

ca
tio

n.
re

po
rt

.c
re

at
ed

”
/

“v
er

ifi
ca

tio
n.

liv
en

es
s.

fin
is

he
d”

 /
“v

er
ifi

ca
tio

n.
fa

ce
m

at
ch

.fi
ni

sh
ed

”

va

r d
at

a
=

JS
O

N
.p

ar
se

(r
es

po
ns

eB
od

y)
;

 te
st

s[
"I

nv
al

id
 w

eb
ho

ok
 e

ve
nt

"]
 =

 d
at

a.
m

es
sa

ge
 =

=
"I

nv
al

id
 re

qu
es

t"
;

 te
st

s[
"P

us
h

no
tif

ic
at

io
n

al
re

ad
y

se
nt

"]
 =

 d
at

a.
st

at
us

M
es

sa
ge

 =
=

"P
us

h
no

tif
ic

at
io

n
al

re
ad

y
se

nt
";

L Retrospective Meeting logs

L.1 Sprint 1 Retrospective Meeting

L.1.1 What worked well?

We have learned a lot, and all the mistakes/problems throughout the sprint will help us in
the report. We actually reached our sprint goal, even though we ran into several problems.
The last week we were good at putting down the hours needed to reach our goal. We made
the decision to create a server on our own due to lack of communication in the last week.
But Buypass were satisfied with our solution.

L.1.2 What could be improved?

Need to evaluate all different sides of a solution, so that there is no implementation of a
solution that will not be used, like the serverless Firebase implementation again. The last
week there were more defined work tasks, and this gave a better workflow. At the same time
we need to be better at conducting work within all the different aspects of the project. This
is important so that we are not dependent on one person for a specific task or problem. Get
better at writing and reflecting around the choices we make.

L.1.3 What will we commit to doing in the next sprint?

Sprint 2 goal, implement a lot more functionality in the apiary documentation

L.2 Sprint 2 Retrospective Meeting

L.2.1 What worked well?

L.2.1.1 Workflow

The first week of the sprint we focused on working in parallel where Vegard worked on
Firestore, Jørgen worked on the server solution of parsing incoming multipart/form-data
and Karoline and Ruben worked on uploading the multipart from the application. This has
enabled us to work on several different problems at the same time, and by rotating this
throughout the project we will ensure that we are not dependent on one person for a specific
problem.

L.2.1.2 Demo

The demonstration went well, and the application works well with the backend and the
logging to the database. The flow of the application is fine, but there are some improvements.

L.2.2 What could be improved?

L.2.2.1 Workflow

During the last days of the sprint we saw that the time limit was catching up on us. This
made us prioritize the lacking functionality on the server regarding the file upload, and as
this makes the chance to find the solution four times bigger, it also restricts the progress on
other aspects. This is something that we need to consider, but as for this time it happened it

129

Digital verification of identity

was okay because there were no other priorities in the application.

We need to be better at writing javadoc for our functions, and in general.

L.2.2.2 UX

Take the user more through the process before hand, as well as during the verification process.
Have a little tutorial before hand maybe, and include both figures and much more text in
order to clarify what the user is going to do, and what the purpose of it is. We can also
eliminate the main screen, not really relevant.

L.2.2.3 API

We we’re not able to reach our goal of uploading the photo to Keesing, but we are close. We
are apparently lacking the proper file extension in the upload, and we’re looking into it.

L.2.3 What will we commit to doing in the next sprint?

Get the file upload to work, and also implement a NFC reader for passports.

L.3 Sprint 3 Retrospective Meeting

L.3.1 What worked well?

Everyone has always tasks to do, we have been good at delegating tasks. There has been a
high level of productivity, and we’re getting better and better at the parallel working. The
time we have dedicated to working on the project is being used in a productive way

We reached the sprint goal, and we’re on route for the end goal.

L.3.2 What could be improved?

Smaller merges rather than big ones that take up more time.

Get better at documenting choices we make, and why we do it. Also documenting prob-
lems that occur.

L.3.3 What will we commit to doing in the next sprint?

Implementing push notifications, "user page" for the user and complete the GUI for demon-
stration purpose. Maybe extend the NFC functionality. Maybe take a look at Camera2 API.

130

M Sprints

Sprint 1 - 4th to 15th of February The sprint goal was to start on the Android application,
and implementing the camera functionality. We wanted to make our own camera, im-
plementing the Camera2 API. We also wanted to establish connection with Keesing
Technologies, the third party company which would handle the verification aspect of
the application. We also wanted to create our server, and to establish connection be-
tween the mobile application and the server.

The sprint planning meeting was conducted on the 4th of February, but prior to this
we had a meeting with Buypass on Friday the 1st of February. During this meeting we
discussed a work around for the disclosed information prior to the meeting. The third
party company handling the verification aspect of the application did not have the func-
tionality for NFC yet. We were told that the functionality would be in place by the end
of February, and we scheduled a meeting with Buypass and the Norwegian representa-
tive of Keesing for the upcoming week. Unfortunately this meeting was postponed into
the next sprint due to illness.

We implemented the camera within the application relatively fast in a way of starting
an intent which launched the existing camera application of the mobiles. We went on
to implement the camera2 API but we came to the conclusion after working with it for
some time that we were not going to be spending more time on it at this stage of the
development process, and that we would come back to it at a later point. This would
allow us to focus on implementing the functionality regarding the verification process,
and we felt that this was the right choice as the application now was able to take a
photo.

During our sprint retrospective meeting we concluded that we were happy with the
result of the sprint. We learned a lot during the first sprint, and it was a realization for
us in the way that not everything will run smoothly in development work. We made
decisions on our own regarding the server solution, and also the camera implementa-
tion at that time. We chose to go with an easier implementation, and we would come
back to it at a later time when we had more functionality implemented.

We saw some things that we could improve on, such as dedicating more time to research
before settling on a solution. This improvement was made due to the choice we made
of using Firebase as our server solution, before we decided to make our own server
with Node.js and Express.js. We also saw during the last week of the sprint that when
we defined the tasks better for each of us the work flow got better.

During this sprint we conducted 211 hours, 50 minutes and 54 seconds. We have sep-
arated the time conducted into categories provided in figure 28.

Sprint 2 - 18th of February to 1st of March The sprint goal for sprint 2 was to verify a
passport at Keesing through the use of our application, and there after store the verifi-
cation in the database. We also wanted to incorporate a NFC reader for this sprint.

131

Digital verification of identity

(a) Sprint 1 (b) Sprint 2

(c) Sprint 3 (d) Sprint 4

(e) Sprint 5 (f) Overall project

Figure 28: Pie charts representing time consumed to different activities within each sprint, and of the

overall project

132

Digital verification of identity

During this sprint we had issues regarding file uploads to Keesing Technologies’ API,
and did note reach our sprint goal due to this issue. We worked on the problem a lot,
and Keesing was contacted regarding the issue.

We made an decision to work on the NFC reader of the application, and by doing that
we isolated the problem of the file upload and made the development progress.

We had a status meeting with Buypass by the end of the sprint, and got some feedback
on the GUI of the application. This feedback mainly focused on the user experience
of the application, and how they wanted us to take the user on a ”journey“ through
the application. They wanted us to make more use of verbal explanations, and also to
make it less formal. Take the user more through the process before hand, as well as
during the verification process. Have a little tutorial before hand maybe, and include
both figures and much more text in order to clarify what the user is going to do, and
what the purpose of it is.

In the sprint retrospective meeting we we are pretty happy with the result of the de-
velopment process, even though we did not reach our sprint goal. The sprint goal was
hard to reach due to the problems that occurred during the sprint, but we were happy
with the work done in the sprint. We had a high level of productivity, and the parallel
working in the group were doing better and better. The parallel working is conducted
as a precaution for development work. It allows two people to work on the same field of
development/technology, and at the same time it makes it less probable to be affected
by personal problems.

During this sprint we conducted 220 hours, 23 minutes and 2 seconds. The time is
illustrated in figure 28.

Sprint 3 - 4th to 15th of March The main goal of sprint 3 was to be able to go through a
whole verification process, uploading photos and to get the results from Keesing. This
was lacking a bit from the previous sprint in form of the file uploads. We we are also
hoping to get the NFC reader implemented for the sprint.

We concluded that when we would run into more problems as we did in the previ-
ous sprint we could perhaps work with something else the next day, as it did become
demotivating to work for days on something we were unable to implement.

During the sprint retrospective meeting we all agreed that we we are happy with how
we are always doing something. The members of the group is always conducting some
work related to the project. We saw during this sprint the advantages of having smaller
merges rather than too big ones, as it got a bit problematic solving some merge conflicts
during this sprint. This is something we proceeded with for the next sprints. We also
agreed on that we would be better at documenting choices we made, even though we
did not write much about them. Just include a small note about why we did what we
did.

During sprint 3 we conducted 250 hours, 31 minutes and 52 seconds. This is illustrated
in figure 28.

Sprint 4 - 18th to 29th of March The goal of sprint 4 was to have a proper demonstration
of the application for Buypass, with just some GUI touch up remaining. We also had to
just make some small changes to the code regarding our webhook to make it work, and

133

Digital verification of identity

look into downloading the PDF report from Keesing. We would also focus on writing
tests and test cases if the time aspect would allow it. As we talked about in the first
sprint, we would now go back on the camera, and implement the Camera2 API. This
would allow for us to make a customizable camera, making it more user friendly.

The sprint goals where met to a certain extent, where we had a demonstration with
the Camera2 API implemented and the webhook working fine. We got feedback on
the application, and took this feedback with us for the next sprint. This feedback was
regarding the push notifications and how to make them more stable, small bug fixes
and some more work on the GUI to make it even more user friendly.

During sprint 4 we conducted 174 hours, 51 minutes and 8 seconds. This is illustrated
in figure 28.

Sprint 5 - 1st to 12th of April The goal of sprint 5 was to take the feedback we received
during our presentation in the last sprint, and apply the changes needed to the ap-
plication. We also wanted to minimize the amount of bugs in the application, and to
make it as user friendly as we could. The end goal of the sprint was a demonstration for
Buypass on Wednesday the 10th, where they would do a recording of the application,
showing what it could do. This would also be the meeting with Buypass for this sprint,
and the last two days were conducted to bug fixing and testing of the application.

During sprint 5 we conducted 241 hours, 54 minutes and 17 seconds. This is illustrated
in figure 28.

134

N Version control

Version 1.0.0 Enabled our first working camera application. A button has been initialized
and set to start the camera intent. This invoked and launched the existing camera
application. In this version we enabled the functionality to take a picture.

Version 1.1.0 This version contained a lot of new functionality. A GUI within the require-
ments to style was implemented, and enabled the user to navigate through the applica-
tion. Both driver’s license and passport verifications was implemented. The application
was able to take a picture, and to upload the it to the integration manual API. The imple-
mented NFC reader was working. We implemented popups which provided information
and guidance to the user upon every functionality choice. Snackbar functionality was
implemented, providing information in regards to successful, or not, uploads.

Version 1.1.1 The app was now communicating with our RESTful API which was made with
Node.js. This version offered the functionality for images and recordings to be uploaded
to our server. The server would then send the request to Keesing’s API. The server
would receive the results from the API and send it to the application. The server would
further on communicate with the Firestore database and send a push notification to
the application. The result could be reviewed in the application.

Version 1.1.2 A new simple user page was constructed which displayed the full verification
result from Keesing. Version 1.1.2 was the first fully functional application ready for
demonstration purposes.

Version 1.1.3-old A new GUI design and improved UX. Automatic popups were disabled,
and a information button was introduced that would show the popups. A toolbar was
implemented with two buttons, a home button and a user page button. We improved
our camera functionality by implementing the Camera2 API. This version has also re-
stricted the SDK1 level to a minimum of 26. A new and improved user page GUI was
also introduced.

Version 1.1.3 The last and most updated version. This version contains a new GUI. It fo-
cused more on UX, and provides a information box in every screen. The user page was
improved by making a list out of all the verification results the user may have and a
popup showing the report when pressing a specific verification instance. Within the
camera we introduced a rectangular border where the document should be placed,
making it harder for the user to provide an insufficient photo.

1Software Development Kit

135

O Meeting logs supervisors

136

8.5.2019 Spørsmål til Deepti 15/1 - Google Dokumenter

https://docs.google.com/document/d/16pTkjzGosFPC-zkrM4qIifE_Wl1W7X4eANwDnlZ4kMg/edit 1/1

Veiledning 15/1

Hvordan er det med offentliggjøring av kildekode og eventuell ferdig nettside/applikasjon,
kan dette holdes unna offentliggjøring men være åpent for sensur?
Ikke noe problem, men sensur må se hvordan kildekoden er i form av god kode-praksis

Kan vi ha ukentlige møter, eller om ikke mulig, annenhver uke? Gjerne til en fast dag og
tidspunkt så fremt dette lar seg gjøre?

What type of process?
API as a architectural drawing
Do we need to let them read the thesis
We dont want to public any secrets
Be careful with the data
Store it locally, safe

Discuss english and norwegian

Organize the group properly, maybe a tech lead or security leader

Conflicts - make rules for the bad days
Inform Deepti and Rune early on, tell them if warnings are given to a person for not showing
up.

Reflect and analyticals over source code, that needs to be good, but it’s more important to
write a good thesis

Pair programming may be good for periods

Be active, and present as much as possible for meetings with Buypass

Define the main goal for reflecting in may
Project goals
Result goals - what did we do to help them achieve this

Plan meetings with Buypass to show them what is done within sprints, but if there is not
much done, then there may not be a need to meet as much
More frequent meetings in the beginning

Mandag klokka 11, Ukentlige møter med Deepti og Rune
Tre punkter:

1. Hva har vi gjort siden siste møle?
2. Hva er det vi ønsker å diskutere, referere til dokumenter og andre ting?
3. Hva er planen for den kommende uken?

Spesifikt si hva som skal gjennomgås, kapittel det og det i det og det dokumentet slik at vi
får bedre feedback

8.5.2019 møtereferat21jan - Google Dokumenter

https://docs.google.com/document/d/14yTtT1OzcQGHVE1QN6Y7hulVz1Xoze2ON9B2HDJVeyM/edit# 1/2

Møte med rune 21. januar 19
Tilstede var Rune, Karoline, Ruben og Jørgen

Evaluere Kotlin mot Java, men foreløpig Java i tet.

Rolleinndeling

Tips:
● Prøv ikke å fordel for absolu�, de�e er sårbart dersom en arbeidsoppgave er mindre kompleks

enn en annen. Mindre utny�else av ressurser, men det er mer sikkert og man er ikke sårbar
dersom en person er borte eller mindre effek�v.

● Robusthet versus effek�vitet, men vær fleksible og kjør gjerne parprogrammering eller inndeling i
par noen ganger.

● Må gjerne inndele i «eksperter» som kan coache hverandre, og muligens holde workshops
innimellom.

Fremdrift
Det mest grunnleggende må på plass først, hovedfunksjonaliteten �l applikasjonen.

Risikohåndtering, fokuser på de største u�ordringene. Ta det med størst usikkerhet først, start med
keesing og implementasjon av API først for eksempel.

Scrum
Ved hver sprint, skal det kjøres et scrum planning mee�ng, da gjennomgår vi hva som har bli� gjort
og hvor effek�vt de�e har vært, retrospec�ve mee�ng. Sam�dig må vi se på hva som er planlagt å
gjøre fremover, og om de�e er mulig eller må justeres.

Gjennomgå punkter:
Hva skjer de neste ukene?

- Noe som gjør at man må jobbe mindre?
- Hva er det vik�gste å få på plass?
- Se på hvor mange �mer vi har og hvor mye vi kan få �l på disse �mene?
- Es�mere og dokumentere underveis for å muligens endre funksjonalitet ved å se om man klarer

å nå de milepælene som er sagt
- Beny�e det retrospek�ve hvor og se hvor bra man fungerer som team, og hva man har få� gjort i

løpet av den forrige sprinten
o Jobber man bra sammen?
o Er man på rik�g vei?
o Må vi endre på gruppesammensetning dersom vi har delt inn?

Milepæler
Milepæler som må vise �l hvordan man ligger an i prosjektet, ikke for o�e og ikke for sjelden. Gjerne
mer sjelden dersom det er mer usikkerhet. I starten vedrørende Keesing bør vi ha flere, og det er
vanskelig å es�mere e�ersom det er usikkerhet kny�et �l det. Det er mye mulig det er enkelt å
håndtere API’et og det løser seg fort, men det kan også hende vi må se e�er løsninger som må
implementeres og det tar mer �d.

Demo muligens hver andre sprint for å få �lbakemelding, milepæler e�er to-tre sprinter. Trengs
systema�kk for å vite at man ikke kommer ut helt feil.

8.5.2019 møtereferat21jan - Google Dokumenter

https://docs.google.com/document/d/14yTtT1OzcQGHVE1QN6Y7hulVz1Xoze2ON9B2HDJVeyM/edit# 2/2

Testing
Sjekke for gode rammeverk for android tes�ng, finnes mye i web-basert programmering.

Lurt å ha en testplan, med tanke på hva slags tes�ng.

Vi må beny�e enhetstes�ng, og sam�dig se på tes�ng for hele prosjektet. Selv om en modul kjører og
fungerer som den skal alene så vil den muligens ikke fungere ved implementasjon i hele
applikasjonen.

Sjekk e�er OWASP-tes�ng.

Se e�er automa�sering av rammeverk for tes�ng, som går gjennom workflowen �l applikasjonen.

Legg �l re�e for en god teststrategi �dlig

Code review bør gå på tvers av inndeling dersom vi deler inn absolu�.

Må ha et øye for tes�ng gjennom kodefasen, og code review skal gjøres unna. Ikke la denne hope seg
opp slik at man plutselig har flere �mer eller dager med code review.

Generelt
For �lbakemelding på bacheloroppgave, skriv hva som er ny� og endret, samt hva vi vil ha
�lbakemelding på i starten av dokumentet. Kom heller med li� og li� ny� innimellom, og ikke masse
av gangen. Da blir det le�ere å skulle gi �lbakemelding dersom det er snakk om 30 minu�er
istedenfor tre �mer.

8.5.2019 møtereferat28jan - Google Dokumenter

https://docs.google.com/document/d/1l4pfElSiXAma1siGJvFMswI61g1PE5QcLdpYZNjXt_M/edit 1/1

Møte mandag 28/1

Prosjektplan

Arkitekturmodel

Vedlig generell. Hva er serveren sin funksjonalitet, kun kommunikasjon, eller er det mer?

Use case
Fikse pilene, og gjøre det i Visio. Ikke la applikasjon være en egen en, muligens ha selvak�vering?

Sekvensdiagram
Fikse så brukeren ini�erer prosesser

Ansiktsgjenkjenning
Trenger de�e å inkluderes, siden det håndteres av Keesing?

Utvidelse
Oppgaven kan virke liten, og hva er det vi da kan utvide med?

Kan man utvide �l å få lansert applikasjonen på web også?

Det må skrives om at det er en risiko for at det er for lite å gjøre, og de�e må diskuteres. Hva gjør vi
dersom det er for mye eller for lite arbeid?

Ordvalg
Dokumentasjonsansvarlig, ikke sekretær.

Testing
Prøv å integrere automa�sert tes�ng, og om vi ikke finner noen verktøyer så må vi skrive egne scripts.

Automa�ser alt som kan automa�seres, og dersom det trengs input noen steder så gjør man det
manuelt om man ikke får automa�sert.

Start med å skrive test caser, og dere�er tester, men da må også kravspesifisering være noenlunde i
orden.

Kravspesifiering
Presenter det som at det kan komme flere krav underveis, de�e er vik�g for en smidig
utviklingsmodell.

8.5.2019 møtereferat4feb - Google Dokumenter

https://docs.google.com/document/d/1fEqAyEFrS7HIqjNPkxeOxcA-FJ4XBCfi50fQJn5-o2w/edit 1/1

Møte 4/2 Deepti og rune

Diskuter i rapporten hva slags database vi vil bruke, det er en fin prosess for rapporten.
Sette oss inn i databasene, og SQL, se på hva vi mener er det riktige og bruke, og deretter
få feedback fra Deepti og Rune.

Vi finner det vanskelig å implementere et “eget” kamera, og kan allerede . Håper å få det til
Hva er fordelene og ulempene med begge kameraene. Hvorfor vil vi helle har et kamera i
applikasjonen istedenfor å bruke det vi allerede har? Argumenter for dette i rapporten også.

Få mest mulig erfaring med API’et, da blir det lettere å få stilt spørsmål.
Få hentet ut informasjon på visse punkter, så vi vet hva buypass vil ha.

Bryt ned sprint backlog, det gjør det lettere å jobbe parallelt. Bryt ned det som tar mer enn to
dager, lettere å holde oversikt. Det gir også mer mestringsfølelse ved at man faktisk får
krysset av noe i Trello.

Team - ta avgjørelser og jobb deretter. Mulig vi velger feil, men vi er produktive og jobber
selv om det ikke er det beste å jobbe med. Gjør det lettere å jobbe videre.
Vi har ikke hatt noen diskusjoner ennå, men det er viktig å huske på at det kan bli problemer.
Dokumenter diskusjoner, og få disse punktene ned for å benytte i prosjektrapporten.
Hvordan tar vi avgjørelser, på bakgrunn av hva Buypass vil ha senere eller om det går på
hva som er best for oss å benytte.

Prøv å være generelle, dersom vi vil benytte en database og dersom den skal byttes så
påvirker det ikke så mye kode. Lag uavhengig kode, fordi det gjør det lettere å endre visse
kodesnutter senere.

Branches - huske å merge master inn i versjoner dersom det kommer bugs så de kommer
inn i de forskjellige versjonene.

8.5.2019 møtereferat18feb - Google Dokumenter

https://docs.google.com/document/d/1mf85OU1dqeSI22pTIcMvchIZgF9G8SygvQEaq8NWd0Y/edit 1/1

Møtereferat 18. februar

Setup a database for client data, and logging the server traffic.

We think the camera quality is good enough for now. We should systematically test different
camera situations, different light, and other thing that may interfere with the quality.

Need to plan more ahead, send documents to Buypass more in advance to make sure that
they are reminded of the meetings, and they are prepared for the meeting.

NoSQL - for now at least
SQL - maybe later
Start looking at MongoDB querying and data modeling. Shared data, you can use FK or do a
hierical tree.
Makes it easier for the later when we get the requirements, because the research is done
already.

Keep the workflow, and open up for the possibilities that you may go back on a decision.
Always going back on decisions - not good.

8.5.2019 Møte med Rune 25/2 - Google Dokumenter

https://docs.google.com/document/d/1KKW0IRV4nfcbWYz36aKqK-DnskaOrX2S3cAY0yJEMB8/edit 1/1

Møte med Rune 25/2

Noter rundt jobben ved å flytte koden fra en plattform til en annen. Få det på plass i
rapporten.

Problematikk i det å gå tilbake rundt kode. Ser man et problem når man gjennomgår kode,
så lag en issue. Gjør commits rundt issues, derfor kan man se når man endret en issue og
lettere se endringer hvor det gikk galt.

8.5.2019 Møtereferat 4/3 - Google Dokumenter

https://docs.google.com/document/d/1IVlTDf9_jjZDD88wZfOFonTn9duSiI2VAhpKp7kGJlE/edit 1/1

Møtereferat 4/3

Hvorfor nådde vi ikke målet? Ta det med videre, og noter hva som kan gjøres annerledes.
Notere ned rundt hva som er gjort og ikke, hva som er lært og ikke. Viktigheten ligger i
jobben som har blitt gjort, har vi tatt initiativ. Det er mange ganger i arbeidslivet at man møter
mangelfull eller eksperimentell funksjonalitet i teknologier. Fortsette å skrive ned valg vi tar,
ved å ta valg om å gå for NFC, at vi isolerer problematikk for å ikke være avhengig av den.

Få skrevet ned litt mer når det gjelder retrospective. Det er viktig i sammenheng med at vi
skal diskutere resultatene ved et senere tidspunkt gjennom diskusjon og konklusjon. Gå
tilbake på valg i retrospective, er de fortsatt effektive og de beste valgene?
Bør vi jobbe mer i par, individuelt? Tenke gjennom alt sånn.

Hvordan ble timeplanen i praksis i forhold til hvordan vi satte opp først og underveis.

Begynne å gå gjennom rådata, referater, timeplaner osv. Tematiser det og prosessen rundt
hva som har skjedd på det området.

I konklusjonen, hva er naturlig å gjøre videre? Hva ville vi gjort/bør Buypass gjøre?

Retrospective, hva gjør vi videre basert på en diskusjon som er basert på resultatene.Gå
dypere inn i resultatene for å hele tiden ha prosessforbedring. Se litt mer på det overordnede
rundt hvordan det skal lages, ikke hvordan det lages.

8.5.2019 Møte 18/3 - Google Dokumenter

https://docs.google.com/document/d/1P8haDq5-zrh5KI_IjBkiBYgMMupDRw1dCHcuBqiNg_M/edit 1/1

Møtereferat Mandag 18/3

Kontakte Buypass etterpå

Dokumentere for hva som er automatisert og hva som er manuelt.
Unit og application tests, tester litt forskjellige ting.

Dokumentere hva slags påvirkning vi har mot Keesing API.

Kanskje kjøre noen flere forsøk ved verifisering.

Se på det med sikkerhet knyttet til server og database.

8.5.2019 Møtereferat 25/3 - Google Dokumenter

https://docs.google.com/document/d/1V85qBvhl6HFVQtdC4pbYAzi6ldMXOIj6n8J-8XdTaqU/edit 1/1

Møtereferat 25/3

Diskuter rundt de to mulighetene vi hadde med implementasjon av kamera, intent launching
camera eller camera2 API. VIktig med tanke på reflektering i rapporten. Ville vi gjort det
annerledes, dersom vi hadde visst at vi skulle fått det til som vi gjør nå. Det viktige er
diskusjoner, så ta med dette videre.

Diskuter rundt hvordan vi har jobbet i forhold til det at Keesing har vært problematisk, og
hvordan vi har gjort dette. Vi har tross alt vært beta-testere, og det har vært problematisk til
tider. Hva gjorde vi for å komme oss rundt problemene, og hvordan har vi sørget for å
minimere at vi har klart å komme oss rundt det. Vi har løst dette ganske godt.

Kanskje vi kan se på hvordan buypass sin login er, og dermed implementere en. Kan vi se
hvordan buypass vil implementere vår funksjonalitet og dermed få merget dette på best
mulig vis.

Diskuter rundt arbeidsmetoden, ved “parprogrammering”.

P Meeting logs Buypass

147

8.5.2019 Møtereferat Buypass 18/1 - Google Dokumenter

https://docs.google.com/document/d/148pcDqLYivfx64IBtO86n-XJgCRhNDz6wj3Llw5fk1c/edit 1/2

Møtereferat med Buypass AS 18/1

Alle gruppemedlemmer var tilstede på skype-møte med Jørn fredag 18/1 klokken 10.

Det ble avklart at hovedprioriteten ved oppgaven er å få på plass en native Android app,
med scaling for både mobil og tablet.
Denne applikasjonen skal ta for seg ansiktsverifisering ved bestilling av enten elektronisk id
eller mobil id. Dette er for å slippe den tid- og ressurskrevende delen hvor man må møte opp
på postkontoret for å gjennomgå et personlig oppmøte med identifikasjon, det er da opp til
den postansatte å verifisere at personen er den den utgir seg for å være. Dette ender ofte
med feil ettersom de postansatte ikke har nok erfaring med denne prosessen eller nok
kjennskap til id-kort som pass og førerkort. Dersom personen får hentet ut sitt id-kort vil man
etter noen dager motta en aktiveringskode fra Buypass for id-kortet.
I helsesektoren benyttes det i stor grad id-kort, og de har egne ansatte dedikert til id-kort, og
det vil være mye penger å spare på denne løsninger. Det samme gjelder for leger som må
reise langt for å få utstedt disse id-kortene.

Det er et nytt EU-regelverk i gang, men det vil ta litt tid før dette skal revideres i Norge, men
vi kan anta at reglene blir noenlunde det samme som for EU.

IDmee er en norsk avlegger av DnB som tilbyr omtrent den løsningen vi ønsker å lage. Det
er mulig å gjøre research på deres, samt andre løsninger ute i Europa.

Leverandøren av API’et vi skal benytte er lokalisert i Belgia eller Nederland. De sitter på mye
kompetanse innen id-kort, og har alle godkjente id-kort i sin database. Dersom det kommer
et id-kort som skal verifiseres som ikke godkjennes automatisk går dette videre til et
ekspertpanel som skal godkjenne eller underkjenne dette. Dersom sjekken på id-kortet går
automatisk vil det være snakk om sekunder, og ved manuell godkjenning er det snakk om
minutter.

Keesing Technologies var i ferd med å implementere liveness detection i november, og
denne må vurderes opp mot andre slike, som IDmee sin løsning.
De har løst dette med matching av bilder med id-kort som ligger i backend.
Jørn tror det med å ta bilde av seg selv for godkjenning ligger i løsningen deres.
Test-api’et ligger mest sannsynlig tilgjengelig, og Jørn skal sende det.

Det blir skype-møter med Buypass hver andre fredag klokken ti til elleve, og det starter fra
og med 1. februar.

Det vil være et begrenset antall personer vi kan kjøre lokal testing på, og det vil i stor grad
gjelde for de involverte i prosjektet, muligens de rundt oss involvert i prosjektet dersom de er
inneforstått med det.

Ta utgangspunkt i at teknologien for ansiktsgjenkjenning og diverse teknologier levert av
Keesing Technologies er gode, og vi skal heller fokusere på implementasjonen av disse. Det

8.5.2019 Møtereferat Buypass 18/1 - Google Dokumenter

https://docs.google.com/document/d/148pcDqLYivfx64IBtO86n-XJgCRhNDz6wj3Llw5fk1c/edit 2/2

må begrunnes dersom vi skal benytte annen teknologi, og valg må tas på vegne av
dokumentasjon og refleksjon.

For å utvikle server-siden av applikasjonen er Node.js fint å bruke, og for å utvikle
Android-applikasjonen ser Buypass gjerne at vi benytter Kotlin eller Java, og dersom det er
snakk om web er det fint å benytte React.js.

Vi får tilsendt diverse designelementer av Buypass når det kommer til logoer og andre
ikoner.

Vi kan benytte bitbucket eller github for kildekode, så fremt dette gjøres i et privat repository.
Google disk kan benyttes, men vi må se det an når det kommer til API og koden mot API’et.

Sikkerhetsmessig skal vi ta utgangspunkt i OWASP.

For veien videre til neste møte må vi gjøre research på tilsendt dokumentasjon og reelle
teknologier.
Det bør lages en arkitekturskisse, over komponenter/moduler og hvordan disse snakker
sammen. Det bør også inndeles hvem som jobber med hvilke komponenter, lage en
overordnet plan. Denne planen bør utformes med hensyn på arbeidsmengde og tidsbruk.

8.5.2019 Møtereferat Buypass 1/2 - Google Dokumenter

https://docs.google.com/document/d/1XwRdT0R21CHPn3ldDLSDhItBnSkGi46ZbLhQCvGrMgk/edit 1/1

Møtereferat med Buypass 1/2

Det er noe uklarhet vedrørende NFC/RFID og når denne funksjonaliteten kommer på plass.
Funksjonaliteten skal være på plass mot slutten av februar, men det er usikkert når API’et
kan håndtere det. Det er uansett ønskelig at vi skal implementere en NFC-leser som kan
hente ut informasjonen som ligger lagret i pass. Det er ikke sikkert denne informasjonen blir
benyttet, men det gir muligheten for videre utvidelse dersom API’et kommer på plass.

Forslag for videre utvidelser er webapplikasjon som nå er nevnt av veiledere og
arbeidsgiver, derfor vil dette være en utvidelse om vi ser vi har tid til dette. Samtidig ble det
nevnt en videosamtale med kundeservice i Buypass, og her er de i samtaler med en annen
aktør som skal håndtere videooverføringen.
VI ble anbefalt å benytte Firebase, AWS eller Azure som rammeverk for server, og vi har
valgt å benytte Firebase ettersom det var den de anbefalte mest. Det skal også lages en
log/database på serveren som skal lagre vellykkede tilfeller av verifisering og der det feilet.
Dette er for at Buypass skal kunne se på kundedata i en databasetabell, og se
hendelsesforløp og eventuelle feilkoder i loggen.

Vi har fått tilgang til nøklene for å benytte API’et nå, men det kan hende at registrering av
IP-adresse er nødvendig. Det er avtalt at et møtet med Keesing sin representant og
Alexander fra Buypass skal forekomme neste uke enten tirsdag, onsdag eller torsdag.

Vi vil motta telefoner for testing av applikasjonen, og dette skal Buypass håndtere så fort
som mulig. Buypass vil sette oss i kontakt med deres UX-ansvarlig, og da vil vi få mer input
på hvordan applikasjonen skal se ut og motta forskjellige designelementer.

Det ble enighet om at vi skal presentere alt vi har gjort på neste møte, og at vi gjerne forteller
for mye enn for lite. Dersom vi har noe å vise til kan vi gjerne presentere en demo, som gir
en god indikasjon på hvordan vi ligger an. Dersom vi føler vi når noen milepæler underveis
kan vi gjerne dele disse via mail.

8.5.2019 Møtereferat 22/2 - Google Dokumenter

https://docs.google.com/document/d/1PqSvr74ULPGRUwPH1JFQUwIJsTGCOEZpf9uHyHXoz0I/edit 1/1

Møtereferat 22. februar

Tilstede på videomøtet fredag 22.02 var Keesing sin representant i Norge Jonas, Alexander
og Jørn fra Buypass og alle gruppemedlemmene.

Autorisering
Tok opp problematikken rundt det å få hentet ut en access token. command “curl
https://linkt-to-token -d ‘grant_type:client_credentials&scope=public_api…..’”, men vi har ikke
fått til å gjøre dette om til et POST-kall. Dette problemet kan videresendes til Buypass for å
få hjelp av noen “inhouse” der, evt til Keesing om vi oppdager at problemet ligger der.

Dokumentasjon
Ta utgangspunkt i https://verificationsrv.docs.apiary.io/# ettersom denne går på det å
iverksette en prosess, mens integrasjonsmanualen går mer på hvordan det administrative
rundt ansikts- og id-verifisering håndteres, og funksjonalitet rundt dette. Se bort ifra
integrasjonsmanualen nå. Dette gjør at det ikke lenger er nødvendig med statisk IP, og vi må
revurdere om vi skal benytte oss av en VM med server, eller om vi skal gå tilbake til
løsningen vi ville ha med Firebase.

Ansiktsgjenkjenning
Krever to bilder, men dette ene bildet skal være fra id-dokumentet som er lastet opp.

Svartid
Pass går gjennom sjekken med en gang omtrent 99% av gangene ifølge Jonas, og dersom
det går til Keesing Helpdesk skal det gå fort der også.
De nyeste norske førerkortene vil gå til helpdesk ettersom de ikke er ferdig opplært ennå.
Ellers skal førerkortene stort sett gå gjennom. Dette gjør at vi må benytte oss av push varsler
til telefonene, og dette ble vi anbefalt å bruke Firebase til.

NFC
NFC er ikke på plass ennå på grunn av sykdom, men de er i gang med å finne nye utviklere
som skal gjøre dette ferdig. For å kunne hente ut all informasjonen fra pass må man først
hente ut nøkkelen man kan låse opp resten av informasjonen.
Det ligger mye informasjon på nivå 1, og dette vil muligens holde for oss.

Liveness check
Jonas trodde denne gjorde en ansiktsgjenkjenning, men han var ikke sikker på dette.

8.5.2019 Møtereferat Buypass 1/3 - Google Dokumenter

https://docs.google.com/document/d/1hOj-XJcww2GTZUXLUGd4HbuJ7pBBJ5Y3omA1tHdqxyQ/edit 1/1

Møtereferat med Buypass 1/3

Helpdesk er kontaktet vedrørende API-kallet for opplasting av filer. Håper på svar, og fiksing
av problemet fortest mulig.

Se etter eksempler i liknende applikasjoner. Benytt verbose forklaringer. og ta brukeren
gjennom hele prosessen. Kan få satt opp et møte med UX-designerne til Buypass ved et
møte i Oslo på et senere tidspunkt.

Database, benytt id fra Keesing som nøkkelen til dokumenter i verifications collectionen.
Lagre den pågående nøkkelen, for å kunne sjekke status på denne lettere..
Lagre rapport som kommer fra Keesing, alt skal med. Brukes til statistikk og analyse.

Jørn tok oss gjennom slides fra et seminar torsdag 28.2 for å vise hvor relevant det vi jobber
med er, og for å motivere.

Dersom det stopper seg opp lenger hos Keesing eller løsningen på problemet ikke kommer
med en gang så kjører vi på med NFC, og implementasjonen av dette.

8.5.2019 Spørsmål til Buypass 20/3 - Google Dokumenter

https://docs.google.com/document/d/1Df8hjKq-JWFnaRjSIUIDjBkTGtB_O6-7IOgC6nzCO3M/edit 1/1

Møte hos Buypass 20/3

Keesing
API’et er som vi fikk opplyst forrige uke, i beta-testing. Det gir mer svar på mangelfull
dokumentasjon og at det er såpass ustabilt. Vi kan kjøre to tilnærmede like
verifiseringsprosesser hvor det blir to helt ulike resultater.

Vi henvendte oss også til Keesing på grunn av de ustabile resultatene på
ansiktsgjenkjenning og liveness, men fikk da til svar at ansiktsgjenkjenning noen ganger ikke
vil utføres, og noen ganger vil. Angående liveness så sa de at dette ikke er aktivert for
kontoen vi benytter, men vi har ved noen anledninger sett at dette har blitt godkjent, eller
underkjent. Det har også vært tilfeller hvor den ikke kjøres, men vi har fått error-koder som at
den ikke finner noe ansikt, og det tyder på at det er aktivert, og at den prøver å gjennomføre
det.

GUI
Tilbakemelding på GUI.
Vi har tatt utgangspunkt i fargepalett og designelementer fra nettsiden deres. Vi har tatt til
ettertanke det å veilede brukeren mer gjennom prosessen, i form av popups og slidere.

PDF
All funksjonalitet utenom PDF-rapport er implementert, men det gjenstår finpussing og mer
testing.
PDF-rapport får vi ikke hentet ut, selv om webhooken trigges, for vi får bare
{"error":"not_found","error_description":"Record not found"}.
Vi sendte mail angående dette til Keesing på mandag, men har ennå ikke fått noe svar fra
dem.
Det kan dog virke som at de ikke genererer noen PDF ennå, og at denne funksjonaliteten
ikke er implementert fra deres side.

NFC
Vil dere vi skal se videre på NFC-sjekking, i form av å kunne finne ut om MRZ er blitt tuklet
med, gyldighet av pass. Eller er dette noe dere ser på som irrelevant i og med at Keesing
etterhvert skal håndtere det uansett.

Webhook
Det kan virke som at keesing trigger webhooken med en gang vi etterspør
verifiseringsresultatene, og at den bare trigger uansett. For selv om den trigger PDF så er
ikke dette noe som fungerer.

Mer folkelig, og hyggeligere. Man snakker til en kunde, og man vil etablere en dialog med
kunden.
Camera2 API

Q Toggl time reports

154

Summary Report
January 01, 2019 – April 12, 2019

TOTAL HOURS: 1374:05:25

136.1 h

108.9 h

81.7 h

54.4 h

27.2 h

0.0 h

1
4

:5
0

8
0

:4
6

8
5

:5
0

8
7

:2
4

9
2

:4
9

1
2

1
:0

2

8
6

:2
8

1
3

6
:3

5

1
2

2
:5

8

1
2

8
:3

5

1
2

0
:1

1

5
4

:3
9

1
2

7
:4

5

1
1

4
:0

9

1/1 -

1/7

1/15 -

1/21

1/29 -

2/4

2/12 -

2/18

2/26 -

3/4

3/12 -

3/18

3/26 -

4/1

4/9 -

4/15

USER DURATION

KW Karoline W Rud 371:59:37

RU Rubche 349:48:49

JR Jrberntsen 341:17:45

AM Amleveg 310:59:14

PROJECT DURATION

Bacheloroppgave 1374:05:25

Page 1/2Jrberntsen's workspace

Summary Report
February 04, 2019 – April 12, 2019

TOTAL HOURS: 1105:14:18

136.1 h

108.9 h

81.7 h

54.4 h

27.2 h

0.0 h

92:49

121:02

86:28

136:35

122:58
128:35

120:11

54:39

127:45

114:09

2/4 -

2/10

2/11 -

2/17

2/18 -

2/24

2/25 -

3/3

3/4 -

3/10

3/11 -

3/17

3/18 -

3/24

3/25 -

3/31

4/1 -

4/7

4/8 -

4/14

USER DURATION

KW Karoline W Rud 291:45:11

RU Rubche 276:02:30

AM Amleveg 268:49:34

JR Jrberntsen 268:37:03

PROJECT DURATION

Bacheloroppgave 1105:14:18

Page 1/2Jrberntsen's workspace

R ESLint configuration

1 {
2 " env " : {
3 " node " : true ,
4 " es6 " : t rue
5 } ,
6 " extends " : " e s l i n t : recommended " ,
7 " g l o b a l s " : {
8 " Atomics " : " readonly " ,
9 " SharedArrayBuffer " : " readonly "

10 } ,
11 " parserOpt ions " : {
12 " ecmaVersion " : 2018
13 } ,
14 " r u l e s " : {
15 " no−console " : " o f f " ,
16 " ca l lback−re turn " : 2 ,
17 " g lobal−r equ i r e " : 2 ,
18 " handle−ca l lback−e r r " : 2 ,
19 " no−buf fer−cons t ru c to r " : 2 ,
20 " no−mixed−r e q u i r e s " : 2 ,
21 " no−new−r equ i r e " : 2 ,
22 " no−path−concat " : 2 ,
23 " no−process−e x i t " : 2 ,
24 " no−r e s t r i c t e d −modules " : 2 ,
25 " no−sync " : " o f f " ,
26 " no−process−env " : " o f f "
27 }
28 }

Listing R.1: ESLint configuation file

The ESLint configuration file, see listing R.1, contains the rules defined for our setup of
ESLint. It includes the most important rules for Node.js [32]. The rules are defined within
the rules object of the JSON file. ”off“ or 0 represents that the rule is disabled, 1 represents
that the rule is on as a warning and 2 represents that the rule is on as an error.

157

S SSL and NGINX configuration

First in order to obtain a SSL certificate for our domain we had to install Certbot.

1 $ sudo add−apt−r e p o s i t o r y ppa : c e r t b o t / c e r t b o t

This would allow us to install Certbot’s NGINX package by running the following com-
mand:

1 $ sudo apt−get i n s t a l l python−cer tbo t−nginx

NGINX is open source software for web serving, reverse proxying, caching, load balancing,
media streaming, and more [46]. We have used it as a reverse proxy for our server solution.
It allowed us to redirect all the inbound and outgoing traffic to our domain through to the
the server running on the VM’s localhost at port 8080.

1 s e r ve r {
2 server_name v e r i f y i d . ml www. v e r i f y i d . ml ;
3 l o c a t i o n / {
4 proxy_pass ht tp :// l o c a l h o s t :8080;
5 proxy_ht tp_ver s ion 1 .1 ;
6 proxy_set_header Upgrade $http_upgrade ;
7 proxy_set_header Connection ’ upgrade ’ ;
8 proxy_set_header Host $host ;
9 proxy_cache_bypass $http_upgrade ;

10 }

Listing S.1: NGINX configuration file

In order to obtain a SSL certificate for our domain we needed to confirm the NGINX
configuration by editing the ”default“ file within ”/etc/nginx/sites-available/“ directory as
in listing S.1. We would use NGINX as a reverse proxy. In practice this would route all the
incoming traffic to our domains https://verifyid.ml and https://www.verifyid.
ml to our backend VM on localhost:8080.

We restricted the maximum size for file uploads in NGINX to 5 MB. This was accommo-
dated by adding a restrictive line of code to the http object within the ”nginx.config“ file:

1 ht tp {
2 c l ient_max_body_s ize 5M;
3 . . .
4 }

After the Nginx configuration was done we had to allow NGINX through the firewall,
simply by the following command:

1 $ sudo ufw allow ’ Nginx Ful l ’

We then had to obtain a certificate which would grant the communication encryption we
needed. By using certbot and Buypass’ Go SSL [31] we obtained a certificate by running the
following command:

1 $ c e r t b o t c e r t o n l y −−nginx −d v e r i f y i d . ml −d www. v e r i f y i d . ml −−s e r ve r
’ h t t p s :// api . buypass . com/acme/ d i r e c to ry ’

158

https://verifyid.ml
https://www.verifyid.ml
https://www.verifyid.ml

Digital verification of identity

Figure 29: Go SSL certificate information

159

Digital verification of identity

For info about the SSL-certificate of our domain see figure 29. The date of issue is the
24th of April due to the fact that we needed to change our domain name as the previous one,
https://www.verifyid.gq was suspended.

160

https://www.verifyid.gq

T Application screens

(a) (b) (c)

(d) (e)

Figure 30: Describes the introduction slider providing the user with general information of the verifi-

cation process and the necessary steps.

161

Digital verification of identity

(a) (b) (c)

Figure 31: shows when launching the application it asks for permission using the camera and access to

media files as this has to be allowed for using our app. After allowing this, the user may log in.

(a) (b)

Figure 32: (a) is the main screen of the application, and this is where the user starts the verification

process, deciding between a two sided or one sided ID document. (b) represents the information popup

the user may access if he or she finds the information provided in the main screen to be insufficient or

vague.

162

Digital verification of identity

(a) (b)

Figure 33: represents the two steps in order to perform a verification with a two sided ID document.

In between (a) and (b) a photo has been taken of one of the two sides of the ID document. In (a) the

button for taking a photo of the back of the ID document is gray and disabled in order to show the user

that the front photo needs to be taken first.

(a) (b)

Figure 34: (a) shows the GUI if the user is to perform a verification with a passport. This choice fur-

ther offers the possibility to perform a verification through NFC or photos. (NFC verification is not yet

implemented, but offers the functionality to extract passport information that could be used at a later

time). Figure (b) represents an informational popup regarding passport verification.

163

Digital verification of identity

(a) (b) (c)

(d)

Figure 35: shows how the GUI of the camera is implemented for document photos. (a) shows how an

information window provides the user with information regarding the photo. Both (a) and (b) provides

a document border to where the document should be within. (c) allows the user to review the photo,

and provides information as to some regular flaws with the photos.

164

Digital verification of identity

(a) (b)

Figure 36: represents an upload, either video or photo. (a) provides the user with a message saying that

the upload is underway, and also a loading circle. There is also a snackbar at the bottom of the screen

stating that the upload was successful and this screen would soon change. (b) represents an upload

that has failed, providing the user with some of the usual reasons for these fails.

(a) (b)

Figure 37: represents the facial comparison step of the verification process, and provides information

on the step.

165

Digital verification of identity

(a) (b) (c)

Figure 38: shows the implemented camera for the face comparison step. It allows the user to take a

photo and review it, and provides information to the user.

(a) (b)

Figure 39: shows the verification step of the process, and provides information on the step

166

Digital verification of identity

(a) (b) (c)

(d) (e)

Figure 40: represents the camera provided for the liveness check. (a) shows the starting point, providing

the user with information and allows for starting a recording. (b) provides the same with the exception

of the information popup. (c) represents an ongoing recording, with the remaining duration on the

bottom of the screen to the left of the record button. (d) allows the user to review the video, and (e)

provides the possibility to re-take or upload the video.

167

Digital verification of identity

(a)

Figure 41: show the screen that greet the user as he or she has completed the verification process. It

provides information as to where the verification results can be found, if it is done.

(a) (b) (c)

Figure 42: show the user page of the application. (a) shows a user with no verifications, and simply

displays a message stating that the user has no verifications. (b) shows a user that has several verifica-

tions, and the colos of the text represents the status of the processes. (c) shows the verification report

that provides the user with information as to what step in the verification process that went wrong, and

why if there is a known error.

168

Digital verification of identity

(a) (b)

Figure 43: (a) Two alternatives for scanning the passport with NFC; one for obtaining the MRZ; the

other one for manually insert of personal information. (b) Information regarding the NFC process.

169

Digital verification of identity

(a) (b) (c)

(d)

Figure 44: (a) A message pop ups with information regarding how to scan MRZ. The data inside the

markings (red rectangle) is what the MRZ scan needs (b) The process. (c) Information about checking

the provided information is correct. (d) User may confirm or edit the inserted details from the scan.

170

Digital verification of identity

(a) (b) (c)

Figure 45: (a) Manually or edit passport information. (b) Information about checking the provided

information is correct. (c) User may confirm or edit the inserted details.

(a) (b)

Figure 46: (a) After confirming the provided information an animation shows how the user should scan

the passport. (b) On successfully scanning the passport, it will show the result.

171

K
.W

.R
, R

.I.C
, J.B

, V.E.A
D

igital verification of identity

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

B
ac

he
lo

r’
s

pr
oj

ec
t

Karoline Wisløff Rud, Ruben Isaksen Cheung,
Jørgen Berntsen, Vegard Elshaug Almås

Digital verification of identity

Bachelor’s project in Dataingeniør
Supervisor: Deepti Mishra, Rune Hjelsvold

May 2019

	Preface
	Contents
	List of Figures
	Listings
	Introduction
	Background
	Project Description
	Keesing Technologies
	Boundaries
	Scope
	Team Members and Roles
	Target Users

	Technologies and Tools
	Near Field Communication

	Requirements
	Login
	Use Cases
	Backend
	Database Requirements

	Frontend
	User Experience
	Camera Requirements
	Functional Requirements
	Camera UX Requirements

	Security Requirements
	Misuse Cases

	Evaluation of the Verification Process
	NFC Requirements
	Use Cases

	Software Development Method
	Scrumban
	Planning Poker
	Trello
	Toggl
	Daily Scrum
	Sprint Planning Meeting
	Sprint Review and Retrospective Meeting
	Meetings with Supervisors
	Milestones

	Version Control

	Design
	System Design
	Backend
	Frontend Application
	GUI and UI Design
	Simplicity
	Clarity
	Consistency
	Familiarity
	Efficiency and Responsiveness
	Style

	Camera Design
	NFC Design
	Database
	Google Firestore
	Document Database Design

	Implementation
	System Overview
	Backend
	API
	Communication with Keesing
	Webhook
	Push Notifications

	Frontend
	Application Structure
	Efficiency and Responsiveness
	Slider and Popups
	Toolbar
	User Page
	Push Notifications
	Camera2 Implementation
	Photo Application
	Finding the Right Camera Size
	Applying Camera Filters
	User Instructions
	Video Application
	MediaRecorder
	Implementing Video Requirements

	NFC
	Getting MRZ Information for the BAC Key
	Implementing the NFC Reader
	Accessing and Reading the RFID Chip

	Database
	Security
	Frontend
	Backend
	Validating Requests
	Preventing DOS-attacks
	Secure Data Transmission
	Database Security

	Evaluation of the Verification Process

	Testing and User Feedback
	Static Code Analysis
	Frontend
	Backend

	Manual Testing
	User Testing and Feedback

	Development Process
	Scrumban as Development Method
	Group Meetings
	Pair Programming

	Sprints and Milestones
	Minimum Viable Product Approach
	Interaction with Stakeholders
	Initial Meeting with Buypass
	Initial Meeting with Keesing Technologies
	Continuous Feedback
	Challenges
	Concluding Demonstration

	Version Control
	Developing the Camera Application

	Discussion
	Development Method and Process
	Minimum Viable Product Approach
	Testing and Development
	Implementing an API in Development

	User Testing
	Backend Solution
	Application Design
	System Security
	Evaluation of the Verification Process

	Conclusion
	Bibliography
	Project assignment
	Project agreement
	Project Plan
	Gantt Diagram
	Technologies and tools
	Data Flow Diagram
	JSON verification result
	Buypass' website
	Uploading Files from the Application
	Volley
	Retrofit 2
	OkHttp

	Test cases
	API structure
	Retrospective Meeting logs
	Sprint 1 Retrospective Meeting
	What worked well?
	What could be improved?
	What will we commit to doing in the next sprint?

	Sprint 2 Retrospective Meeting
	What worked well?
	Workflow
	Demo

	What could be improved?
	Workflow
	UX
	API

	What will we commit to doing in the next sprint?

	Sprint 3 Retrospective Meeting
	What worked well?
	What could be improved?
	What will we commit to doing in the next sprint?

	Sprints
	Version control
	Meeting logs supervisors
	Meeting logs Buypass
	Toggl time reports
	ESLint configuration
	SSL and NGINX configuration
	Application screens

