
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

B
ac

he
lo

r’
s

pr
oj

ec
t

Mathias Stifjeld
Henrik Trehjørningen
Herman Tandberg Dybing

Creating a social space in VR

Bachelor’s project in Bachelor in Programming[Games|
Applications]
Supervisor: Christopher Frantz

May 2019

Mathias Stifjeld
Henrik Trehjørningen
Herman Tandberg Dybing

Creating a social space in VR

Bachelor’s project in Bachelor in Programming[Games|Applications]
Supervisor: Christopher Frantz
May 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Creating a social space in VR

Author(s)

Mathias Stifjeld
Henrik Trehjørningen
Herman Tandberg Dybing

Bachelor in Programming [Games|Applications]
20 ECTS

Department of Computer Science
Norwegian University of Science and Technology,

20.05.2019

Supervisor Christopher Frantz

Creating a social space in VR

Sammendrag av Bacheloroppgaven

Tittel: Lage et sosialt rom i VR

Dato: 20.05.2019

Deltakere: Mathias Stifjeld
Henrik Trehjørningen
Herman Tandberg Dybing

Veiledere: Christopher Frantz

Oppdragsgiver: Progress Interactive

Kontaktperson: Christopher Frantz, christopher.frantz@ntnu.no

Nøkkelord: Bachelor, Virituel Virkelighet, VR, Programmering, Spill,
Oculus, Vive, Dart, Dam, Rom størrelse, Skalerbarhet

Antall sider: 43
Antall vedlegg: 6
Tilgjengelighet: Åpen

Sammendrag: VR teknologi og hardware har blitt en moden teknologi,
dette betyr at fokus har bevegd seg over til utvikling av
VR applikasjoner. Dette er viktig i vårt tilfelle fordi i opp-
gaven utforsker vi utvikling av en VR applikasjon i Unity som
allerede har bred støtte for VR, detaljrik dokumentasjon og
et stort samfunn av utviklere. I denne oppgaven diskuterer vi
utviklingsprosessen av et rammeverk for utvikling av sosiale
VR rom. Vi har også utført diverse forsøk i forskjellige rom-
størrelser for å teste spillerenes reaksjon på dette. Det vi fant
ut er at for å sosialisere med andre mensker så vil ikke et rom
i 1:1 skala være stort nok.

i

Creating a social space in VR

Summary of Graduate Project

Title: Creating a social space in VR

Date: 20.05.2019

Authors: Mathias Stifjeld
Henrik Trehjørningen
Herman Tandberg Dybing

Supervisor: Christopher Frantz

Employer: Progress Interactive

Contact Person: Christopher Frantz, christopher.frantz@ntnu.no

Keywords: Thesis, Viritual Reality, VR, Programming, Oculus, Vive,
Dart, Checkers, Room size, Scalability, Game, Bachelor

Pages: 43
Attachments: 6
Availability: Open

Abstract: VR technology and hardware is a mature technology, this
means the focus has moved over to the development of VR
applications. This is notable in our case because our thesis
will explore the development of a VR application in Unity
which already has wide support for VR, a detailed documen-
tation and a large community of developers. In this thesis
we discussed the development process of a framework for
developing social VR spaces. We also conducted some exper-
iments on different sized rooms to test the players reactions
to different sized rooms, our findings show that in order to
socialize with other people a 1:1 scale room is not sufficient.

ii

Preface

We would like to thank Christopher Frantz for being supervisor. He provided answers to our
questions, guidance and encouragement during the project.

iii

Contents

Preface . iii

Contents . iv

List of Figures . vi

Listings . viii

1 Introduction . 1

1.1 Target audience . 1

1.2 Project description . 1

1.3 Background . 1

1.4 Project organization . 1

1.4.1 Roles and responsibilities . 2

1.4.2 Group rules . 2

1.5 Report structure . 3

2 Requirements . 4

2.1 Task description . 4

2.2 Technical Solution . 4

2.3 Standards . 5

2.3.1 Code Standards . 5

2.3.2 Project Standards . 5

3 Technical Design . 7

3.1 Solution Architecture . 7

3.2 Program flow . 7

3.2.1 Minigames . 8

3.2.2 Scaling the room . 10

4 Development Process . 11

4.1 Development tools . 11

4.1.1 Unity . 11

4.1.2 Version control . 11

4.2 Scrum . 11

4.3 Workflow . 12

4.4 Schedule . 12

4.4.1 Planned schedule . 12

4.4.2 Actual schedule . 13

4.4.3 Sprint 1 . 13

4.4.4 Sprint 2 . 14

4.4.5 Sprint 3 . 14

iv

Creating a social space in VR

4.4.6 Sprint 4 . 15

5 Implementation . 16

5.1 Approximating aerodynamics for throwing darts 16

5.2 Checkers . 16

5.3 Room generator . 19

5.4 Implementing a movement system . 22

5.5 Script for Testing . 25

6 Testing and Experimenting . 27

6.1 Testing the scale of the room . 27

6.2 Testing the darts throwing . 29

7 Discussion . 31

7.1 Results of the room scale experiment . 31

7.1.1 Results . 31

7.1.2 Suggested improvements for the experiment 35

7.1.3 Future research . 36

7.2 Feedback from testing the darts throwing . 36

7.3 Communication options and quick chat . 37

7.4 Changing Unity version . 38

7.5 Reverting to a previous version of the SteamVR framework 39

7.6 Networking . 39

7.7 Minigames we did not implement . 40

7.7.1 Rock, paper, scissors . 40

7.7.2 Bespoke card game . 40

8 Conclusion . 41

8.1 Future Work . 41

Bibliography . 42

A Project Description . 44

B Project Agreement . 46

C Experiment questionnaire . 50

D Results of the experiment . 54

E Rooms from the experiment about room size . 64

F Meeting Logs . 67

F.1 Supervisor meetings . 67

F.2 Sprint meetings . 68

v

List of Figures

1 Server client architecture . 7

2 Program flow activities . 9

3 Program flow rock paper scissors . 9

4 Program flow scaling . 10

5 Original Gantt chart . 12

6 Actual Gantt chart . 13

7 Experiment Gantt chart . 13

8 Flowchart of checkers logic . 21

9 example of room generation . 22

10 UI for creating Room . 22

11 Comfort level, all results . 32

12 Time spent, all results . 33

13 Player capacity, all results . 34

14 Dart throwing technique . 36

15 Customisable configuration of quick chat, from Rocket League. Note that any
of these messages can be sent with only two key presses. 38

16 Comfort level, all results . 55

17 Time spent, all results . 56

18 Player capacity, all results . 57

19 Average values . 57

20 Comfort levels, no prior experience . 58

21 Comfort levels, 1-4 hours prior experience . 58

22 Comfort levels, 5+ hours prior experience . 59

23 Time spent, no prior experience . 59

24 Time spent, 1-4 hours prior experience . 60

25 Time spent, 5+ hours prior experience . 60

26 How many players could fit in the room, no prior experience 61

27 How many players could fit in the room, 1-4 hours prior experience 62

28 How many players could fit in the room, 5+ hours prior experience 63

29 Room 1 . 64

30 Room 2 . 65

31 Room 3 . 65

32 Room 4 . 66

vi

Creating a social space in VR

33 Room 5 . 66

vii

Listings

5.1 Simplified aerodynamics and collision for darts. 17

5.2 Algorithm for placing of the checkers pieces . 19

5.3 Getting the prefabs and Instantiate them . 20

5.4 Moving piece prefabs according to the generator function 20

5.5 Moving the teleportation points corresponding to the player. 24

5.6 Script for testing roomscale . 26

viii

1 Introduction

Virtual reality (VR) is not a new concept. It has been around for decades. Its first widespread
commercial releases to the consumer market occurred during the 1990s, but it fell off the
radar and out of the general consumers mind in during the 2000s. It has recently experi-
enced a resurgence since 2010 when the first prototype for the Occulus Rift was designed,
and later others such as the HTC Vive and PlayStation VR. In addition to these there has
been numerous companies developing VR-related products. Looking at the "Gartner hype cy-
cle for emerging technologies", since 2017[1] VR has entered into the mainstream far into
the so-called "plateau of productivity" and was off the chart by 2018[2]. With VR becoming
increasingly mainstream and widespread among consumers, the time is ripe for VR games.

1.1 Target audience

This thesis is mainly intended for people interested in developing VR games or just people
with interest in VR in general. Knowledge about basic programming and Unity as well as
familiarity with VR and its concepts is expected.

1.2 Project description

Our project was to make a room-scale environment, like a cottage, for socializing in VR. It
should be possible to interact with parts of the environment and do activities such as playing
familiar games like checkers and darts with your friends. The project aimed at being inte-
grated with an existing networking solution developed by the Product Owner (company we
were working for). We were also going to explore options to add communication functional-
ities, such as quick chat.

This meant we would need to make a system for scaling and potentially generating the
room in which it all were supposed to take place. We would need a generalised framework for
board games that would make it easy to implement multiple games (i.e. both checkers and
chess), so as to not make unnecessary work for implementing more than one board game.

1.3 Background

The project was initiated by Progress Interactive, a game company in Hamar, with the intent
to create a larger game. The finished game will be a Massively Multiplayer Online Role-
Playing Game (MMORPG), set in a medieval setting, focusing on interacting with animals
with different kinds of challenges and interacting with other players. In the context of the
product owner’s perspective, our project aims at serving as a social space/hub in which play-
ers can hang out with their friends and do crafting and other activities such as play board
games between other activities that the full game has to offer.

1.4 Project organization

During the project, we used Scrum, an agile software development model. We chose Scrum
due to us being familiar with it, the size of the team and because of the highly agile nature

1

Creating a social space in VR

of game development where features might be added, improved or removed on a regular
basis. Because of our team size, however, we could not have anyone dedicated only to any
administrative role as everyone would be required to be part of the development team to work
on the project itself. The different Scrum roles within the group were therefore of secondary
importance and available to be switched around freely if we felt someone was doing a poor
job at that particular role. If one role had a particularly heavy workload compared to the
other roles, we would switch the responsibility of that around so no one had to do all the
work. We will go more closely into scrum and our use of it in section 4.2.

1.4.1 Roles and responsibilities

The initial assignment of roles and the responsibilities we paired with said roles looked like
this:

• Internal

◦ Scrum Master (Henrik)

· Clearing obstacles
· Establishing a good relationship between team and product owner as well as

others outside the team
· Facilitate meeting for the team
· Planning, retrospective and daily stand-up
· Convene meetings
· Prepare meetings

◦ Secretary (Mathias)

· Take notes in meetings

◦ Project leader (Herman)

· Make everyone show up on time
· Mediate internal conflicts

• External

◦ Product owner (Progress Interactive, Richard Barlow)
◦ Supervisor (Christopher Frantz)

1.4.2 Group rules

The group agreed on a set of rules for the group so that we would have something to fall
back on should an issue occur within the group.

• Repeated missed attendance - After not showing up three times within a reasonable
time frame, supervisor will be contacted.
• Not meeting deadlines - If deadlines are not met three times and it is not due to

external factors, supervisor will be contacted.
• Not performing their role in the group satisfactorily - Discuss in the group if the role

should be switched over to another member. If necessary, supervisor will be contacted.

Working Hours

We decided our base working hours to be Monday to Friday 09:00 - 17:00.

2

Creating a social space in VR

1.5 Report structure

The thesis consists of eight chapters. Here we will briefly go over the chapters following this
one and look at what they are about.

2. Requirements - This section details requirements and limitations we had to follow.
3. Technical Design - In this chapter we will be looking at the design details for the archi-

tecture of the solution and the program flow for different components of the project.
4. Development Process - Here we will look at some of the major tools/technologies we

used. We will also take a look at how we worked, our development model and how we
used it, the individual sprints and our plan for the project vs what actually happened.

5. Implementation - This chapter will discuss how we created different things, problems
we encountered during the implementation, how we solved them.

6. Testing and User Feedback - In this chapter we will take a look at the tests/experi-
ments we did and what we got from them.

7. Discussion - Here we will be discussing the results from the experiment, what we did
and did not do during the project, what could have been done different, changes made
during the project.

8. Conclusion - In this chapter we will be evaluating the project as a whole and concluding
any findings we did. We will also discuss how the work could be continued in the future.

3

2 Requirements

In this chapter we will discuss the requirements laid down by the employer, both in terms of
content of the application and the technical requirements.

2.1 Task description

Virtual reality offers socialization at a distance for physically isolated and anxious or anti-
social individuals. The goal of the project is for students to create social VR environment,
where players can play familiar games in a room-scale environment, similar to a cottage. The
students will work for an external Game Development company based in Hamar, although
occasional assistance will be provided on the Gjøvik campus by company staff. Art assets,
core systems and feedback on programming implementation will be provided by the com-
pany. The programming assignment needs to submitted, checked for appropriateness and
then feedback provided to the students at regular intervals.

2.2 Technical Solution

• Develop a bespoke Raknet-based multiplayer solution for Unity3d using a master-client1

architecture and the external company’s remote log in server.
• Investigate voice-based communication options
• C# client and server-side VR implementation of familiar mini games in Unity3d, such

as:

◦ Checkers
◦ Darts
◦ Rock, paper, scissors
◦ Bespoke card game (external company provides graphics and design)

• Virtual Reality implementation using Steam VR for compatibility with both Oculus VR
equipment and the HTC Vive.
• Students submit code to the external company URL in a private git repository. The

Computing Department in Gjøvik will also have access to the URL to monitor progress.

1The product owner has since clarified that they meant server-client architecture.

4

Creating a social space in VR

2.3 Standards

A requirement given to us by the product owner was their standards, both in terms of code
standards as well as more general project standards. These standards were in place to smooth
the development and to make sure that there were no misunderstandings due to the structure
of the code or the use of external tools. The coding standards specifies things like naming
convention, immutability and inheritance, while the project standards specified for example,
version of unity, usage of version control(git) and branch philosophy (feature branching) etc.

2.3.1 Code Standards

1. Classes, public/protected member functions and property names use PascalCase
2. Method parameters, private member functions and local method variables are camel-

Case
3. Fields are prefixed with an underscore and then follow camelCase e.g. fieldName. i.e.

No C++ m prefix e,g, m_fieldName.
4. Fields are private and have a public property getter e.g. FieldName get return _field
5. No hungarian e.g. m_iHaveMadeMistake
6. Interfaces prefixed with the letter I e.g. ISaveData
7. Static classes like Singletons should have a suffix e.g. GameManager.
8. Static member variables do not necessarily need to be prefixed with s_, although that

is acceptable.
9. Structs should be immutable data containers - Structs should not contain object refer-

ences, otherwise they should be made into classes.
10. All code should be within the Progress.Rec namespace. (Rec standards for recreation.)
11. Datatype structs and classes should have the suffix _t .
12. Unity serialisable objects should have a script at their root e.g. the provided SceneRoot

or PrefabRoot. This can be used for initialisation, asset management and optimization.
13. All Unity classes must inherit from the ManagedBehaviour class instead of the standard

MonoBehaviour.
14. Use PropertyDrawers and attributes rather than custom editors based upon types, since

this tends to raise the likelihood of serialisation bugs.

2.3.2 Project Standards

1. Use Unity 2018.2.141.
2. Pull, commit, and push regularly.
3. Ensure you merge new changes from master into your feature branch occasionally, so

your merges with the mainline are easier and are less likely to cause problems.
4. Ensure you use meaningful commit messages.
5. Avoid making partial or mixed commits. All file changes and dependencies for a coding

task should be included within a single commit. Phases of completion are allowed.
6. Merge and test changes before pushing to the master branch.
7. Do not push changes to metafiles where the guids have changed. This will break refer-

ences within scenes.
8. Force serialise assets to text. Do not use binary serialisation for scene files, which will

make tracking changes and merging more challenging.
9. Use the provided google spreadsheet for reserving scene files so that they are locked.

10. Make changes to prefabs separately from instances placed in the scenes. You can drag
in a new instance of the prefab from the Project Window, save your changes and then

5

Creating a social space in VR

remove it.

Following the requirements, we will next take a look at the technical design for the project,
and after that we will go on to talk about the process of development.

6

3 Technical Design

In this chapter of the thesis, we are going to be taking a look at the technical design for the
project. We will start by taking a look at the solution architecture. We will then move on to
talking about the program flow for various components of the project.

3.1 Solution Architecture

The original project, along with networking and further features, was intended to operate
using a standard server-client solution. That means every player has/is a client that sends
state information to a company-owned server. The server then does any necessary computa-
tion (if there is any that is required from the server end) or synchronisation and shares state
with other clients in the same instance/area – as shown in Figure 1. In the end we did not
manage to integrate networking functionality due to additional evaluation. We will explore
this in chapter 7.

Figure 1: Typical Server client architecture

3.2 Program flow

Rather than developing a single coherent system, we were tasked with developing a frame-
work that could be used to compose a customised system. Thus there is no overarching pro-
gram flow, but it can be divided into multiple program flows.

7

Creating a social space in VR

3.2.1 Minigames

Because the project aimed to provide an environment where players could play the virtual
equivalent of familiar physical games, we consulted with the product owner and together
decided that the mechanics of these games would not be programmatically controlled. What
we mean by this is that for e.g. the game of checkers, the program does not stop players
from making moves prohibited by the rules of checkers; instead, the players enforce the rules
themselves (or agree to break them, as the case may be). Any conflicts arising between players
would be resolved using a designated method, described in 3.2.1.

Because the program does not enforce the rules of these games, there would be no game
logic or program flow for the minigames themselves, merely for setting up the environment
for playing said game when the players request it. That would mean, setting up a board with
pieces to move for board games like chess and checkers, or a table with cards for the different
card games. This is shown in Figure 2. There could potentially be a menu to select different
pieces or game boards to instantiate (for chess, checkers etc.) or cards for different types of
card games (Boards, pieces and card faces could be provided by the company or even possibly
the community / the players themselves if the company wishes to take that approach).

One potentially beneficial side effect of this approach is that players could make up new
games themselves, using existing boards/pieces/cards. It would also let the players represent
regional or cultural variants of existing games, or popularly accepted modifications to the
rules. As long as all players agree what the rules are, the only limiting factors are imagination
and available pieces.

The exception to this ruleless approach is the conflict resolution system, described in 3.2.1.
It would abide by the "rules of the game", whatever the game may be. Letting this system be
customisable by players could introduce unfairness. This system should just start a menu of
some kind or just a countdown before the result is shown. It still follows the same flow for
setting it up as both players participating in it need to want to "play" it and be ready to do so.

Conflict resolution / decision making

One of the minigames were also going to double as a tool for making decisions in cases where
people could not agree with each other on their own, such as splitting loot or the likes. There
are many different ways this can be done, such as a coin flip or a dice roll. The product
owner wanted it to be rock paper scissors for this game, despite being aware that it is not
truly random and is affected by skill[3].

Rock paper scissors is a game that is mostly standardised and has minimal possibility for
customizing by players, and as mentioned, it could introduce unfairness if left to the players
how this minigame works[3]. As such, it would be implemented with the standard rules
of the game. Rock paper scissors would still follow the same basic flow of setting up the
environment / starting the game as the other minigames like detailed in the above, though
using UI elements instead of physical pieces. The players would then pick what they wanted,
and the game would count down and reveal the picks of the two players as well as who won
at the same time. Figure 3 shows how a regular game of rock paper scissors is played.

Ultimately, we did not implement rock paper scissors for decision making (or any other
decision making mechanism for that matter), nor the framework for card games. We will
discuss why we did not implement these features in section 7.7.

8

Creating a social space in VR

Figure 2: Program flow for activities in the room.

Figure 3: Program flow for the Rock paper scissors minigame.

9

Creating a social space in VR

3.2.2 Scaling the room

Figure 4 shows a possibility for the program flow of a system for scaling the room like we
were tasked with at first. This might not be good as it would keep on checking for players
in the room which, would most often be unnecessary work for the system, and it could then
potentially randomly rescale the room when no one is expecting it.

Another solution could be to have it just stop after scaling the room and then scale again
if a new player enters the room or if someone exits it can check again in case it was the player
with the smallest play area that left. It could also just run again the next time the room loads,
but that would mean no one with a smaller play area could join mid session, so it would
perhaps be best to run the check when someone enters or exits the room.

In order to explore the different options systematically, we decided (in agreement with
the product owner) to divert from the original plan and devised an experiment to evaluate
whether it was at all feasible to make this project with 1:1 room scaling and movement and
for multiple people. We describe the details of the experiment in section 6.1

Figure 4: Program flow for scaling the room.

Before discussing implementation-related aspects in greater detail, we discuss the devel-
opment process we followed and describe changes in greater detail.

10

4 Development Process

This chapter is about the process by which we worked on our thesis. We will talk a little about
the major tools we used during development. We will also talk about our choice of model for
software development and how we used it. Following that we will look at our workflow and
go into our planned schedule and what actually happened. We will then go into some detail
about what we did during the different sprints.

4.1 Development tools

This section will talk about some of the major tools and programs we used while developing
the project.

4.1.1 Unity

We used Unity version 2018.3.4f1[4] for reasons explained in section 7.4. We spent the first
few days / week becoming familiar with Unity since not all of us had much experience work-
ing with it prior to the project. With Unity, we mainly wrote code in C# using Microsoft Visual
Studio.

4.1.2 Version control

For version control we mainly used git bash with Github when working on our own stuff in
a temporary repo. When dealing with the company’s repo for the project, we used Bitbucket
and Sourcetree, a git desktop client and GUI.

4.2 Scrum

As touched upon in the introduction, we chose to use Scrum for this project. The reason
being that we were familiar with it, a small team and that developing games is a highly agile
process. In this section we will take a closer look at scrum and how we used it during the
project.

When using Scrum, you work in iterations of a set length called sprints. After some dis-
cussion, we decided on a sprint length of two weeks as the time frame for the project was
not that long and we wanted to get more than just a couple sprints in before the end.

Scrum traditionally has a meeting at the beginning of each sprint called sprint planning
meeting, and one at the end of each sprint divided into two, the sprint review and sprint
retrospective. The sprint planning meeting is used to discuss the upcoming sprint and decide
what should be done during the coming sprint. For the end of sprint meeting, the sprint
review is to show what we did or did not do during the sprint, and the sprint retrospective is
for the team to reflect on the past sprint, what went well and what can be improved upon.

We decided to merge these meetings into one meeting at the start of each sprint in order
to minimize the number of meetings and make it easier for the company we were working
for to coordinate with us.

11

Creating a social space in VR

Scrum also has short daily meetings called Daily scrum or Daily stand-up. This is a meeting
in which people say what they did yesterday and what they are planning to do today. They
also say if they see any problems with what they are going to do or that day. In the end, we
did not make much use of these because we were always in the same room working together
and therefore we felt that we had little need for these meetings.

You can read more about the philosophies of scrum and the various aspect of it at The
Scrum Guide[5].

4.3 Workflow

The workflow for the project went like this. We would start the sprints with the sprint planning
meeting on Monday with the company. There we would decide what we would work on for
the coming sprint and add it to our sprint backlog. Once that was done, we would start
working on the things that needed to be done. We worked on separate things, or in groups /
pair programming if needed. If we meet problems we could not solve by ourselves, we would
ask the others for help and collectively take a look at it. At the end of the sprints (and the
beginning of the next sprint), we would present what we had done at the sprint review with
the company.

4.4 Schedule

Here we will take look at what our plan for the project was. We will also take a look at what
actually happened, the contents of the each of the sprints, and why the things that happened
did happen.

4.4.1 Planned schedule

We made an initial Gantt chart for the project. It was very high level and really only detailed
the sprints and when we were going to stop developing and start writing the thesis. This was
because we did not know what the company wanted when and had no idea for what the
different sprints would contain, see Figure 5.

Figure 5: Original Gantt chart.

12

Creating a social space in VR

4.4.2 Actual schedule

Reality did not turn out quite as we had planned however. We ended up doing an unforeseen
experiment that really threw the original Gantt chart into shambles. The experiment also
took more time than we first had anticipated, which led to time constraints on other things.

Figure 6: Actual Gantt chart.

From the Gantt chart in Figure 6 we can see the impact the experiment had on the planned
project timeline. It effectively took up two and a half sprints, which in turn left us with three
and a half sprints to actually work on the project. This in turn led to time constraints and
having to prioritize some features over others. The timeline for the experiment itself was
something like Figure 7. We will not go into detail about the experiment here, you can read
more about that in section 6: testing.

Figure 7: A Gantt chart showing the experiment broken down to different components.

Looking at Figure 7 we see that most of the time for the experiment was used in preparing
all that we needed. It took more time than we had imagined as we were not aware of all
that needed to be done in order to actually conduct an experiment like formalities such as
information and consent forms and needing to check if we had to apply for approval from
Norsk senter for forskningsdata(NSD). That further shrunk our remaining time compared to
what we had recalculated for. When everything was ready, conduction the experiment went
fairly smoothly with no major roadblocks. Analyzing the data did not take all that much time
either and we quickly turned it into usable graphs and charts.

4.4.3 Sprint 1

The first sprint we started by getting to know Unity and how it works. We then started on
the task of generating a room using the size of the available play area. We quickly noticed
the fact that the smallest room were not very big and not all of the planned activities would

13

Creating a social space in VR

fit into an area that small, let alone more than one person. We talked to the Product Owner
about it at the sprint retrospective, and he gave some suggestions that could offset this while
still keeping in line with the original idea of 1:1 scale and movement. These were:

• Windows.
• Counters at the edge of play area (you get extended view so that it does not feel as

cramped, but not more actual play space).
• Able to see/throw over the “boundary” between rooms but not walk.
• Boundaries themselves have the content.
• Teleportation between multiple “rooms”/modules (suggestion from our side).

We had a bit of a hard time visualising exactly what we were supposed to do and got that
cleared up during the retrospective. For this sprint we spent quite some time familiarising
ourselves with Unity. Because of that we did not finish all the tasks we were given. We finished
most, but the big one that was unfinished was the room generation tool.

4.4.4 Sprint 2

At the sprint meeting, the Product Owner decided that we should keep using the old version
of SteamVR (for more on that see section 7.5).

We finished the tool for generating rooms and tried making some of the room sizes and fill
them with furniture to see how we felt about the size. We concluded that we clearly needed
to do something different than what we had originally been tasked with, and so we needed
proof that this was the case. We decided to do an experiment on this and got it green lighted
by the Product Owner. We started preparing for the experiment. We finished filling the rooms
with furniture and placed some objectives and made a teleport between multiple modules
the size of the play area that always kept you in your relative position in the play space. And
started working on the required formalities for the experiment.

At the retrospective for this sprint, we had yet to finish some things that were on the list.
These things were:

• Interactable objects.
• Different movement modes (other than walking and our specialized teleportation).
• Nested prefabs (i.e. tiles with furniture in them).
• Doors.

It was largely due to the experiment taking half the sprint. We ended up using the next
couple originally planned sprints for the experiment too.

4.4.5 Sprint 3

We presented our findings and the data from the experiment to the Product Owner and he
agreed that we should rather do it in some other way than the one he had initially wanted.
The networking was not yet ready from their side, but perhaps soon. Thus we started working
on the minigames. During this sprint we made both darts and checkers and prepared a little
demo where you could try out the darts. We tried it and let some colleagues try it as well in
order to get some feedback on it.

At this point we were done with the experiment and could therefore focus on the sprints.
Because of that we managed to complete most of the tasks planned for the sprint. We did not
do the rock paper scissors minigame as we were still holding off on that (see subsection 7.7.1),
and we did not manage to do the card game during this sprint either.

14

Creating a social space in VR

4.4.6 Sprint 4

We were nearing the end of the active development period and it was a possibility that the
networking would never come. We started researching communication as there would be
limited to no time to actually implement any form on communication, but we wanted to at
least have had a look at it even if we did not get to implement any. We were ready for the
possibility of a last minute networking crunch to get that up and running, but in the end that
did not happen.

We decided to take some time off during Easter, after we had been a weekend at Progress
Interactive working (more on that in section 7.6). That meant we had only one week left
which we spent looking at communication. We still had not done any networking, but that
was out of the question at this point. Other than that, we completed what we had been
assigned to do this sprint, namely the dive into communication options.

Next we will go into the details of implementing the features of the project which we have
been outlining in chapter 2 and 3.

15

5 Implementation

In this chapter, we provide a detailed description of our implementation of various features,
motivate the decisions made during development, and discuss potential improvements.

5.1 Approximating aerodynamics for throwing darts

Without anything resembling aerodynamics, there was no way to ensure that the thrown darts
hit with the tip first. Since the project was part of a larger game, and games need a degree of
verisimilitude, it was important that we made the darts behave reasonably similar to real darts
while ensuring that the darts throwing was fun. So we needed to create an approximation of
aerodynamics that was accurate enough to be believable. We have simplified and summarized
the effects of aerodynamics on a moving object as follows:

• It slows the object down by exerting drag, which increases with velocity
• It turns the object so that the center of drag is behind the center of mass

As we were only going to use this simplified model of aerodynamics to throw darts at
low speeds over distances shorter than 5 meters, any loss of velocity we applied to the darts
would not be very noticeable. We therefore decided to only implement the second point.
We originally implemented this by linearly interpolating the dart’s forward vector towards
its velocity vector, taking both its speed and the elapsed time into account. When the tip
of the dart struck something, we would check to see if the sine of the angle between the
dart’s forward vector and its velocity vector would be less than 0.5. If it was, the dart had hit
more or less straight on, and it would stick. However, because Unity’s internal physics update
happens before OnTrigger functions, darts moving faster than a certain speed would bump
into the darts board and bounce off before we compared the forward vector and the velocity
vector, causing the dart to not stick in the board even when it hit straight on.

In addition, some of our testers commented that they would pick up the dart with one
controller and use the other controller to ensure the dart was pointing forward before they
threw it. It detracted from the experience and took additional time. We solved this problem
and the collision problem mentioned above by making a small change to our aerodynamics
and collision. Instead of linearly interpolating the darts forward vector towards its velocity
vector, any moving dart would simply change its forward vector to match its velocity vector.
This means that players will not have to adjust the orientation of the dart prior to throwing,
and also that we can simply assume that the dart will always hit straight on, solving both a
technical problem and a design problem in one stroke. The final code is shown in Figure 5.1

5.2 Checkers

When it came to the development of the checkers board game we discussed different ap-
proaches to how we wanted board games to behave.

• Have strict rules of movement of pieces. (e.g. not allowed to place piece unless valid
move)

16

Creating a social space in VR

Listing 5.1: Simplified aerodynamics and collision for darts.� �
public class Aerodynamics : Monobehaviour
{

public Transform aeroTransform;
public Rigidbody aeroRigidbody;

void Update ()
{

float speed =
aeroRigidbody.velocity.magnitude *

Time.deltaTime;

if (speed > 0.002f)
{

// Ugly line breaks to fit the page
// Not present in actual code
aeroTransform.rotation =

Quaternion.LookRotation
(aeroRigidbody.velocity);

}
}

private void OnTriggerEnter (Collider other)
{

if (other.isTrigger == false)
{

aeroRigidbody.isKinematic = true;
}

}
}� �
• grid based or not. (e.g. pieces snap to the grid of the board game when placed)
• have no rules of movement, players move pieces and place them where they want to.

(rules enforced by the players them self)

While discussing these different approaches we decided that the first approach of strict rules
sort of enforced grid based placing for the user to get a picture of allowed and disallowed
moves.

For the third approach we felt like it would not make sense to implement grid based
placing because one of the main advantages to this approach is that it replicates real life the
best, and a grid based system would interfere with this.

We then started to discuss which approach to go for, and ended up with the third (no
rules) approach because of a couple of reasons

• Feels most natural
• more flexible (easier to implement similar gametypes)
• Easier to implement (no grid based placing or enforcing of rules)
• more reliable (no edge cases of rules to handle)

17

Creating a social space in VR

but we also realized that this approach had some obvious drawbacks

• no cheat prevention
• misplacing of pieces

As we were going for a system where we could with minimal effort create other board
games we started to break down features that would be reusable with minimal refactoring.

1. An interchangeable playing board where the game would be played.
2. A system to place playing pieces to the specification of the game.
3. A system of interacting with the pieces
4. A way to reset the game to the starting position

Firstly, we identified that the first and fourth system is in all practical applications the same
system and this system is reliant on a specific function for each game played, we therefore
separated this into three distinct functions. One for calculating where to place a piece, one
for getting the piece from a prefab and one for moving said prefab to its proper location.
Using the local scale of the game board we then scale both the pieces and the locations of
these accordingly so that we can scale the game board to whatever size makes sense for the
setting. With this system in place, the two latter functions are interchangeable and only the
prefabs for the pieces and the algorithm to place these in a grid is unique for different games,
in this case the GenerateCheckers is the function for generating a checkers game, while the
two other functions are usable for other board games.

Generating Checkers (Listing 5.2)

For the main logic of the checkers game we have the GenerateCheckers function, which in the
case of another board game would be substituted by another generator function, the main
part of this function is to place the pieces on every other tile for the three first rows, first for
white and then for black and it will call on the PlacePiece function which takes the prefab of
the piece as well as the x,y coordinates.

Getting and Instantiate the pieces (Listing 5.3)

For the placing of the object, we create its game object with the prefab and sets its parent to
be the game board, as well as placing it in the array and calling the movePiece function to
move it

Moving the pieces to the right place (Listing 5.4)

In the last function we start by scaling the piece to the scale of the game board and then
transforming its position according to the scale and x,y coordinates. The flowchart of this
logic can be seen on this flowchart: Figure 8

1. Generate Checkers, this is the checkers main logic
2. int y = 0, this is the loop for the white pieces, iterating over row 0,1 and 2
3. PlacePiece(int x, int y, GameObject color), initiates the piece with the prefab given (in

this instance it is the color of the checkers piece, but it could be a black rook or a white
queen for chess)

4. MovePiece(p, x, y). with the x,y coordinates and a reference to the gameobject, we
move the piece to its location

5. int y = 7 t, this is the loop for the black pieces, iterating over row 7, 6 and 5. When y

18

Creating a social space in VR

Listing 5.2: Algorithm for placing of the checkers pieces� �
private void GenerateCheckers ()
{

//white
for (int y = 0; y < 3; y++)
{

bool oddRow = (y % 2 == 0);
for (int x = 0; x < 7; x += 2)
{

PlacePiece ((oddRow) ?
x : x + 1, y, whitePiecePrefab);

}
}
//black
for (int y = 7; y > 4; y--)
{

bool oddRow = (y % 2 == 0);
for (int x = 0; x < 7; x += 2)
{

PlacePiece ((oddRow) ?
x : x + 1, y, darkPiecePrefab);

}
}

}� �
> 4 is false. The program exits

6. same as 3
7. same as 4

5.3 Room generator

When we decided to run the experiment discussed in 6.1, The need to be able to generate
different rooms with differing size and arrangement became apparent. after some discussion,
we decided on these key functions:

1. The ability to insert any tileable prefabs for walls and floor
2. Be able to create several rooms in one scene, defining the corners x,y,z coordinates
3. specifying the size, both in terms of height and floor area, specified in tiles.
4. The ability to use different sized prefabs with the use of a factor, where 1 is 1x1m

If we take a look on the Gantt chart for the experiment Figure 7, the breakdown of the ex-
perimenting, we can see that it took 3 weeks to preparing the experiment. It was during these
weeks that we created the rooms and figured that we needed a room generation tool, The
experiment initially required 10 rooms and this would be tedious to implement by hand, plus
for futureproofing, we wanted a systematic way to create rooms. After creating the rooms,
we can then manually add furniture, but there is nothing stopping us to add furniture to
modules (each floor-tile, 2x2m) beforehand so that the rooms generated would already be
fitted.

19

Creating a social space in VR

Listing 5.3: Getting the prefabs and Instantiate them� �
private void PlacePiece(

int x,
int y,
GameObject color)

{
GameObject piece = Instantiate(color)

as GameObject;
piece.transform.SetParent(transform);
Piece p = piece.GetComponent <Piece >();
pieces[x, y] = p;
MovePiece(p, x, y);

}� �
Listing 5.4: Moving piece prefabs according to the generator function� �

private void MovePiece(Piece p, int x, int y)
{

p.transform.localScale =
Vector3.Scale(

p.transform.localScale ,
transform.localScale);

Vector3 xPos = Vector3.right *
x *
transform.localScale.x;

Vector3 yPos = Vector3.forward *
y *
transform.localScale.y;

p.transform.position =
(xPos) +
(yPos) +
Vector3.up *
0.1f;

}� �
UI

The UI for the room generation is quite simple: Figure 10 but it has the features needed and
as it is for development purposes we felt that adding the UI in VR did not make sense, as the
rooms were created in a mouse/keyboard environment. The program lets you create several
spaces in a single Unity Scene, but there is not a function for "merging" rooms, this will have
to be done manually as of now.

functionality

When we create a room with the room generator, it spawns the tiles and names them based on
their coordinates in the scene and for the wall tiles, it also names them based on its direction.
Figure 9 The functionality of the room generator is based on what we needed for running
the experiments, and not what we would like to have in it for a tool in the actual framework
including features such as:

• change the shape of the room (e.g. rectangular rooms)

20

Creating a social space in VR

Figure 8: Flowchart of checkers logic

21

Creating a social space in VR

• "merging rooms" meaning that if two rooms overlap, the overlapping tiles would be
removed so that the two rooms become one
• create furnished rooms, possibly ability to choose the theme of the interior

Another approach we had was to look around for other unity room generators, for example
the works of DunGen [6] Which has a lot of cool features and good reviews, but for our
purpose most of the implemented features were not applicable in our case, plus the fact that
the software cost 75 USD made us just create it ourselves.

Figure 9: example of room generation

Figure 10: UI for creating Room

5.4 Implementing a movement system

As written in the project plan, the product owner initially wanted the virtual environment to
have the same dimensions as the player’s play area. This meant that we would not need to
implement any movement system, as the player could simply walk around their play area.

22

Creating a social space in VR

However, when we ran our experiment (discussed in 6.1), we were using rooms larger than
the play area we had available. Because of this, we needed a way to move around the entire
room, so we started looking at options for a movement system. The options we considered
were:

• Variable movement speed. We discussed the feasibility of making the player’s move-
ment speed proportional to the room size, so that moving from one side of the play
area to the opposite side would always take the player across the virtual room. The
product owner was in favor of this solution, claiming that teleportation could damage
immersion. However, this would create a cognitive dissonance between how far the
player feels they are moving and how far they see that they are moving. This cognitive
dissonance would be further reinforced if the play area is rectangular, as movement
along the long sides would be faster than movement along the short sides. Such cog-
nitive dissonance is a known cause of motion sickness [7], which arguably would be a
significantly greater obstacle to immersion than teleportation in a game that has magic.
We therefore decided this option was unsuitable for our needs.
• Traditional movement. Movement controlled by pressing buttons or moving analog

sticks. The player is stationary, and moves the in the virtual reality by using the hand
controllers. This also causes a slight cognitive dissonance, though motion sickness does
not seem to be very common.
• Teleportation. The SteamVR asset pack for Unity includes a fully fleshed out telepor-

tation system, allowing developers to designate areas or points as a valid destination
for teleportation. Players can teleport by pointing at a valid destination and pressing a
button. This instant movement generally does not cause motion sickness. Our product
owner suggested we change this system so that the player is moved to the destination
gradually instead of instantly, but we believe the resulting cognitive dissonance would
likely cause motion sickness.

Because the SteamVR asset pack for Unity has a teleportation system we could use, tele-
portation would be faster to implement than a traditional movement system. The earlier we
could run the experiment, the more time we would have to make use of the data, so we
decided we would implement teleportation. However, there was a design problem: with the
addition of teleportation, players could walk to the virtual wall at one end of their play area,
teleport to the opposite wall, and walk to the other side of the play area, going through
the virtual wall. This would undermine the game’s verisimilitude, causing players to be less
invested in the game world.

Our solution requires some explanation:

1. When the player teleports using the SteamVR framework for Unity, the virtual position
of the play area moves with them.

2. Each of our rooms was composed of one or more modules, and each module had the
same dimensions and orientation as the play area.

3. The SteamVR framework keeps track of the player’s position in the play area, and this
information is accessible through a public function.

4. By giving one of these modules the same starting position as the play area, the play-
ers position relative to the play area would always equal their position relative to the
module - prior to teleportation.

23

Creating a social space in VR

Listing 5.5: Moving the teleportation points corresponding to the player.� �
public class TeleportPointMovement : Monobehaviour
{

private Vector3 startPosition;
private Vector3 playerPosition;

void Start()
{

startPosition = this.transform.position;
}

void Update ()
{

// Ugly line breaks added to fit the page
// Not present in actual code
playerPosition =

FindObjectOfType <SteamVR_Camera >
(). head.localPosition;

float newX =
startPosition.x + playerPosition.x;

float newZ =
startPosition.z + playerPosition.z;

Vector3 newPosition = new Vector3
(newX , startPosition.y, newZ);

this.transform.SetPositionAndRotation
(newPosition , this.transform.rotation);

}
}� �

In order to keep point 4 valid after teleportation, we had to ensure that the play area would
always have the same position as one of the modules. We did this by placing a SteamVR
teleportation point - a single valid teleportation destination - in each module at the same
position relative to that module as the player’s starting position relative to the play area. We
also gave each of these teleportation points a simple script. Every frame, this script would
ask for the position of the player relative to the play area, and move the teleportation point
to the same position relative to its module. The full script is in Listing 5.5.

Admittedly, having every single teleportation point ask for the player’s position every
frame is not very efficient. We could instead have had a single script moving every tele-
port point. Making the teleport points children of the modules they are in would also save
us the memory needed to keep track of the starting positions, and it would let us have the
room generator discussed in 5.3 create the teleport points for us instead of placing them all
manually.

24

Creating a social space in VR

5.5 Script for Testing

For the Testing of the different sized rooms we first discussed having a automated script shuf-
fling the order of the rooms and then spawn the player in those rooms in sequence. However
after some discussing about the player being influenced by the size of the previous room we
decided to break the immersion in between rooms, as discussed in chapter 6. Because of this
decision the scope of the script behind the testing was drastically reduced and we could save
some development time. All our script needed to do was control the objectives and record
the time spent, the objectives we are referring to are white sphere manually placed in the
level that the player is instructed to touch as seen in Figure 32.

First for the preparation, we used random.org [8] to randomize the sequence (1,2,3,4,5)
50 times and importing it to a excel sheet so that we could report the time spent while the
participants were answering the questionnaire (C), as well as loading up the next scene man-
ually. That means that all that was left was reporting the time spent from touching the first
objective until the last objective was touched and this could be achieved by two classes, one
for each objective, destroying itself when touched by a vr controller, the other one counting
time spent and counting the remaining objectives.

Pseudocode

As we can see in the pseudocode 5.6 we have structured the code into two classes, one
is attached to the objective prefab and the other one is attached to a generic gameobject
containing scripts. We will not be discussing the first class too much, as its only function is to
look for collisions and destroy itself if collided with the players controller. The second class
does a couple of things, first we have some variables, ints and floats, containing time spent
and objectives.

In unity there are several base functions that are called at specific times during runtime,
these scripts is a function from MonoBehaviour, MonoBehaviour is the base class from which
every Unity script derives. In this script we will be using the void start() and void update().
Start is called on the frame when a script is enabled just before any of the Update methods
are called the first time, and update is ran once every frame as long as the program runs.

1. Start In the start function, we count all the objectives
2. update We check once per second if any objectives has been touched, and if all objec-

tives has been finished we stop the application and log the time spent

while the performance of the test most likely would not be greatly impacted by checking
each frame (we group the objectives under one gameobject and count its children instead of
checking the whole scene) we still do the check once per second as Unity will run as many
frames as possible so even a small impact per check will be a large impact. As we can see
in the pseudocode 5.6, we do every check once per second in the update function, in the
Objective class we do the check in a OnTriggerEnter function, which checks every frame, but
for the other checks it is sufficient to do once per second, as we will only be reporting time
spent in whole seconds, and this will make unity have to do these checks approcimatly 1/90
as often.
In the next chapter we will discuss why this experiment was needed, what the goals of the
experiment was and also, of course our findings.

After implementation, we will now talk about an experiment we did and then go into

25

Creating a social space in VR

Listing 5.6: Script for testing roomscale� �
Clas s Ob jec t i ve

check i f anything c o l l i d e s
check i f what c o l l i d e d i s tagged " hand "

Destroy o b j e c t i v e

C la s s Coun te r s c r i p t
f l o a t t imer
i n t ob jec t i vecount , seconds and t o t a l o b j e c t i v e s

s t a r t (runs once at s t a r t of a p p l i c a t i o n)
count a l l gameobjects tagged " o b j e c t i v e s "
s t o r e the amount of o b j e c t i v e s in t o t a l o b j e c t i v e s
s e t ob j e c t i v e coun t to equal t o t a l o b j e c t i v e s

update (runs once per frame)
t imer += time . DeltaTime ;
check i f t imer i s l a r g e r than 1

recount the o b j e c t i v e s
reduce t imer by one
check i f ob j e c t i v e coun t i s smal l e r than 1

log the seconds spent
qu i t the a p p l i c a t i o n

check i f f i r s t o b j e c t i v e i s touched
inc rea se seconds by one� �

some testing of what was implemented and then we will take a look at results of these.

26

6 Testing and Experimenting

In this chapter we will discuss tests and experiments we conducted during the development
process. These have provided us with valuable quantitative and qualitative feedback, which
we have used to inform our design choices. The results, as well as our interpretation of the
results, will be presented and discussed in Chapter 7.

6.1 Testing the scale of the room

Around the middle of March, our product owner said they wanted the game’s "home base"
level, with up to 4-players, to scale 1:1 to match the play area of the player with the smallest
play area, to a minimum of 2x2 meters. We believed that 2x2 meters would not be nearly
enough to have four players performing the activities available in this level, but we needed
solid data to back up our claim. We conducted an experiment between the 21st of March and
the 25th. The motivation was to find out how large the level needed to be to fulfill the needs
of the product owner.

The questions we wanted to answer were:

1. How many people can comfortably fit in these rooms, while performing day-to-day
activities such as the minigames described in the project requirements (see Appendix
A)? In the finished game, this level serves as a home base, so as level designers we need
to ensure that it is not only large enough for four people, but also that it is suitable for
the kind of activities you might do with guests at your home.

2. Are these rooms comfortable to move around in? Why/why not? To assist in our level
design, it would be beneficial to understand how factors such as ceiling height, percent-
age of floor area taken up by furniture, windows etc. impacts how comfortable people
feel in a room.

3. Does any prior experience with virtual reality the participants may have impact the re-
sults? How? For the finished game, having data on how humans adapt to virtual reality
after repeated exposure could help predict how new players change their behaviour
as they become familiar with the environment, which could potentially improve the
quality of level design.

We looked at earlier work to find answers to these questions, and found numerous studies
that dealt with perception of distance and/or scale in immersive virtual environments. In
particular, we found the following studies interesting:

• Gooch and Willemsen, 2002[9], Evaluating Space Perception in NPR Immersive Environ-
ments. Particularly, this study found that in a walking task, subjects perceived distances
as roughly 66% of the real distance, and that linear perspective cues can convey abso-
lute distance.
• Messing and Durgin, 2005[10], Distance Perception and the Visual Horizon in Head-

Mounted Displays. Particularly, this study found that the compression of perceived dis-
tance is a function of the head-mounted display. It does not change with distance, and

27

Creating a social space in VR

is unaffected by graphical quality, persisting even viewing a live-feed of the real world.
• Sinai, Krebs, Darken, Rowland and McCarley, 1999[11], Egocentric Distance Perception

in a Virutal Environment using a Perceptual Matching Task. Particularly, this study found
that a perceptual matching task may result in significantly more accurate distance judg-
ment than other methods, and that ground texture had significant effect on accuracy,
though it does not establish an exact cause for this.
• Willemsen and Gooch, 2002[12], Perceived Egocentric Distances in Real, Image-Based,

and Traditional Virtual Environments. Particularly, this study found that graphical qual-
ity may not have any significant effect on distance compression, and suggests that the
head-mounted display is one cause of compression.
• Witmer and Kline, 1998[13], Judging Perceived and Traversed Distance in Virtual Envi-

ronments. Particularly, this study suggests that traversing a distance improves the ability
to estimate that distance, and that the type of movement does not affect the estimation.
• Witmer and Sadowski, 1998[14], Nonvisually Guided Locomotion to a Previously Viewed

Target in Real and Virtual Environments. Particularly, this study suggests that practicing
distance estimation in a virtual environment can impair real world distance estimation,
and that practicing real-world distance estimation can improve distance estimation in
a virtual environment.

While it was interesting to us to see that all of the above-mentioned studies reached the
conclusion that distances are perceived as shorter in immersive virtual environments, none
of them explored how that impacts how crowded a room feels or what role, if any, experience
with virtual reality plays in this. As for how comfortable the rooms are to move around in,
we did not find any studies that explore how this compressed depth perception affects how
cramped a room feels. Studies on color and furniture arrangement in interior design were
deemed too inconclusive to be of significant use to us. Studies on lighting in interior design
were deemed not applicable, as the lighting models used for real-time lighting in games
usually differ greatly from real light.

In preparation for the experiment, we developed a system for generating unfurnished
rooms (discussed in 5.3), and with it prepared five models of rooms of varying shape and
size, composed of one or more 2x2 meter modules, fully furnished and with objectives to be
gathered. The rooms we prepared were as follows:

1. One module (2x2 meters, 4 square meters)
2. Two modules, linked with teleportation (2x4 meters, 8 square meters)
3. Three modules arranged to resemble a corridor, linked with teleportation (2x6 meters,

12 square meters)
4. Four modules arranged in a square, linked with teleportation (4x4 meters, 16 square

meters)
5. Three modules arranged in an L shape, linked with teleportation (4x4 meters minus

2x2 meters, 12 square meters)

You can find screenshots of the rooms showing their layout as well as where the objectives
in the rooms are in Appendix E.

We prepared a set of questions (see Appendix C) for the participants, starting with asking
how much VR experience they had, followed by two questions for each room and finally
ending in a free text question where they could write any comments or thoughts they had

28

Creating a social space in VR

about the experiment. We gave them a short verbal introduction to what they were going to
do (try to get a feel of the room and touch the objectives we had placed around the rooms),
and how to move around in our rooms (Walking and a variation of the standard SteamVR
teleportation 5.4). After the introduction, the process was as follows:

1. The rooms are arranged in a random order. The order is recorded and associated with
the participant number, so that we know which of the now random room numbers
corresponds to which room.

2. The participant answers the question of how much experience they have with virtual
reality.

3. The participant puts on the equipment and explores the first room of their random room
order. A script measures how much time it takes the participant to finish exploring the
room.

4. The participant takes off the equipment and answers two questions about the room
they just explored.

5. Repeat step 3 and 4 for the remaining four rooms.
6. Finally, the participant writes down any comments, questions or general feedback.

We wanted to reduce the impact of deviations caused by comparing rooms to earlier rooms
as well as preempting experimental fatigue. This is why we had the participants take off the
equipment and answer questions between rooms, instead of letting them explore every room
before answering the questions. It also ensured that the memory of each room was fresh
when the questions were answered. Minimizing deviations is also why we randomized the
order in which the rooms were presented, so any deviations would hopefully cancel each
other out.

We will present the results and discuss our interpretation of the results in the next chapter.

6.2 Testing the darts throwing

Prior experience with implementing throwing in virtual reality led us to believe that imple-
menting a system for throwing in a way that is satisfying for the players is significantly more
complicated than simply letting the player pick things up and fling them. With that in mind,
we quickly implemented a prototype of throwable darts with an approximation of aerody-
namics (5.1), and started gathering qualitative feedback. The people at Progress Interactive
supplied us with a Unity prefab of a dartboard they had made. We wrote down verbal feed-
back, but we did not measure or record the exact results. The process was more or less as
follows:

1. The player throws three darts at a darts board from a distance of 2.5 meters.
2. The player fetches the darts and repeats the process from step 1, until they do not want

to throw darts anymore.
3. Verbal feedback is provided at any point during or after this process.

Among our colleagues, throwing in virtual reality is widely considered to be significantly
less accurate compared to throwing in reality. We believe this is partially due to the lack of
precision manipulation of the projectile during the release, using the fingers. In virtual reality,
the projectile is either held or not held; there is no middle ground. It could also be partially
because computer simulated physics in games is an approximation sacrificing accuracy for

29

Creating a social space in VR

the ability to run with only the limited computing power of the computers available to the
average consumer[15]. Nevertheless, we did discover a technique that substantially improved
accuracy, which we will discuss as part of the results of this experiment in the next chapter.

Following this description of the performed experiments, we will now turn to the presen-
tation and discussion of the experimental results.

30

7 Discussion

In this chapter we will discuss the experiment and tests we did and also any major decisions
done over the course of the project. We will start by looking at the results from the room
scale experiment, and any findings we did when looking at the data. Then we will look at
flaws and potential improvements for our experiment. Following that we will talk a little
about future research that could be done with basis in our experiment. After that we will go
over the feedback from the testing of the darts and what we did with that. We will then go
into detail about options for communication, and what would be best for this type of game.
We will touch upon the reasons for changing the Unity version and why we kept using the
old SteamVR framework. Finally we will talk about why did not do networking and some
minigames that we originally were going to do.

7.1 Results of the room scale experiment

In this section we will present the results of the performed experiment and discuss our in-
terpretations of the results. We further propose how the experiment could be improved, and
sketch further experiments we would like to perform based on these results. The complete
results can be found in Appendix D. To reiterate, these were the questions we tried to answer:

1. How many people can comfortably fit in these rooms, while performing day-to-day
activities such as the minigames described in the project requirements (see Appendix
A)?

2. Are these rooms comfortable to move around in? Why/why not?
3. Does any prior experience with virtual reality the participants may have impact the

results? How?

7.1.1 Results

To respond to question 1 and 2, we explored the results across different room sizes as shown
in figures 11, 12 and 13 below. Figure 11 shows the results for question 1, figure 13 shows
the results for question 2, and figure 12 shows how much time players spent in each room.

From the results depicted in the graphs, we can see that the data seems to scale mostly
linearly with the area of the room. Room three and room five have the same area, but different
shapes, and the results for these two rooms are nearly identical. This suggests that the shape
of the room might not play any significant role, but more testing is needed. If the results
continue to scale linearly with room area, we would need a room of roughly twenty square
meters to satisfy the product owner’s desire to have four players in the room. This addresses
question 1.

Had we more time, we could have prepared multiple variants of each room, each variant
deviating from the standard room in a single factor such as light level, presence of windows,
ceiling height etc. Changing only one factor at a time would have let us attribute any changes
in the participants comfort level to that attribute, which would provide an understanding of
why the room is or is not comfortable. We have looked for similar work in research papers on

31

Creating a social space in VR

Figure 11: Comfort level, all results

32

Creating a social space in VR

Figure 12: Time spent, all results

33

Creating a social space in VR

Figure 13: Player capacity, all results

34

Creating a social space in VR

interior design, but have not found anything exploring the impact of each factor separately.
As it stands, we have only measured what difference changing the area of the room makes,
and so we have not sufficiently addressed question 2.

To address question 3, we divided the results into three groups based on the participants
experience with virtual reality. The groups were as follows:

• Group 1: No prior experience, five participants.
• Group 2: One to four hours prior experience, six participants.
• Group 3: Five or more hours prior experience, six participants.

Arranged in this manner, we found the following results:

• Group 2 spent slightly less time exploring the rooms than the other two groups. We
think this is because group 1 needed time to adjust to their first encounter with virtual
reality, and some participants in group 3 spent some additional time actively looking
for flaws.
• Group 1 perceived room one and two, the smallest rooms, to be significantly less com-

fortable compared to the results of the other two groups. They also perceived the three
other rooms to be more comfortable.
• Group 3 found every room to be able to fit fewer people than the other two groups,

suggesting that more experienced players feel they need more room than less experi-
enced players. In the smallest room, 2x2 meters (the size the product owner wanted
four people in), every single participant in group 3 reported that the room could only
fit one person. For comparison, 60% of group 1 and 66.67% of group 2 reported that
the room could fit two people, and the remaining participants all reported that it could
fit one person.
• Group 1 found room three and five, both twelve square meters, to be able to fit more

people than the larger room four, which was sixteen square meters. This may be because
walking from one end of the room to the other is longer.

Interestingly, the data suggests that players with little or no experience need more room to
feel comfortable, and more experienced players can feel comfortable in smaller rooms but do
not tolerate as many actors (other players/non-player characters) before they feel the room
is cramped. In any case, we have clearly established that experience does make a measurable
and significant difference, and we have some data on what difference it makes.

7.1.2 Suggested improvements for the experiment

For the question of how many players could comfortably fit in a room, when we wrote the
questionnaire, it did not occur to us that anyone would want to answer zero or above five. In
hindsight, instead of presenting options from one to five, it might have been better to let the
participants write any number. This may have skewed the results somewhat, since for any
answer of one or five it is possible that the participant would have answered zero or above
five instead, had that been an option.

Of the five rooms we used, room three and room five had the same area, but different
shape. In hindsight this was useful because the results suggest that the shape of the room
might not play any significant role in how comfortable and spacious the room is perceived to
be. However, since we do not have similar comparisons for the other rooms and our sample
size is relatively small, this might be a fluke. If we ever run this experiment again we would

35

Creating a social space in VR

like to have multiple sets of three rooms, with all rooms in a set sharing the same area but
different shapes. This would make any resulting findings more credible.

As discussed in 7.1.1, we should have prepared multiple variants of each room, in order
to measure how factors such as light level, ceiling height and presence of windows affect the
participants comfort level and possibly other metrics as well.

Several participants, and a few of our colleagues, have commented that the ceiling of the
rooms should have been higher (the ceiling was fixed at two meters). This may have made
the rooms feel less comfortable than they would have been otherwise, especially for taller
participants. We did not record the height of participants, so we do not know exactly what
difference, if any, this would have made.

In the sprints following the experiment, we implemented darts throwing and a checkers
game. Having those activities in the rooms used in the experiment could have given the
participants a better idea of how much space they would need to perform activities, resulting
in more accurate data.

7.1.3 Future research

We still do not know what factors other than room area affect comfort level, or how those
factors could affect other metrics. In order to find out, we would like to run the experiment
again, implementing the changes suggested in 7.1.2 and with a significantly larger sample
size. We believe that the results would be interesting for both level designers and interior
designers.

7.2 Feedback from testing the darts throwing

Looking at the second experiment, we gained tractable practical insights for the improvement
of physical games in VR. While testing different ways of throwing darts, we found a technique
that seems to improve accuracy greatly, depicted in figure 14. By holding the dart between the
darts board and the thrower’s chest, rapidly accelerating the hand towards the darts board
and flicking the wrist to give the dart extra speed, some testers were able to consistently land
all three darts within 20 centimeters of each other. One tester commented that this is very
similar to how professional darts players throw.

Figure 14: Dart throwing technique

36

Creating a social space in VR

Before discovering the better throwing technique, testers who felt they were not able to
throw hard enough tried throwing in an arc. Some of these testers commented that the ceiling
was too low (again, it was only 2 meters) and that the darts were striking the ceiling. This
was after the experiment discussed in 7.1, so there was nothing stopping us from simply
increasing the height of the ceiling by 20 centimeters. We did not get any more complaints
about the ceiling height after that.

Some of the people we tested with claimed that the target zones on a modern darts board
are much too small to reliably hit in virtual reality, even with professional darts throwing
techniques. In response to this, the artists at Progress Interactive redesigned the darts board
to match a finding of a medieval darts board. This new board had significantly larger target
zones, but this came too late for us to test what difference this made.

7.3 Communication options and quick chat

The product owner wanted the finished game to allow players to communicate with each
other, but it had to be appropriate for minors as well as adults. This meant that we could not
use a traditional text chat, nor Voice over Internet Protocol (VoIP, also called IP telephony),
as both would allow players to potentially share inappropriate content. In short, any open
system in which the users can say, write or depict whatever they want would not be suitable.
This leaves us with the following options:

• A moderated text chat with a swear filter. Most MMORPG’s have some functionality
of this kind. However, it is not very practical in virtual reality. The players do not have
a physical keyboard, and though it would be possible to have an in-game keyboard,
typing out messages by pointing and clicking at one button at a time would take a lot
of time, making it unsuitable for all but the most relaxed of situations.
• An emote system. Since a text chat is not suitable for our needs, we will not explain

emotes in the context of text based chat systems. In non-text based chat systems, an
emote is an animation used to communicate via the body language of the player’s
avatar. Emotes may or may not be accompanied by sound effects or prerecorded dia-
logue. Games such as From Software’s Dark Souls[16] have used emotes as the only
means of real-time communication with success, but one major flaw of this option is
that since the communication often takes place entirely via body language, it can take
quite some time to make oneself understood. In addition, moving in any way such as
walking or fighting while the animation plays will change the body language, making
it more difficult to interpret correctly. Since combat is a major element of MMORPG’s,
this makes emotes without accompanying text unsuitable for our needs.
• A Quick Chat system. In a Quick Chat system, users communicate via short messages

predefined by the developer. These can be text messages or prerecorded voice messages.
In either case, the messages can have additional effects, e.g. telling another player to
move to a given location could create a marker at that location, providing the other
player with clear directions in an instant. These systems emphasize near-instant com-
munication, so it must be designed in such a way that players can navigate to any of
the predefined messages quickly. Some games have implemented this by presenting a
wheel encircling the middle of the screen, divided into sections containing one message
per section. By moving the cursor and clicking (or moving the analog stick if using a
controller) one of these sections, players can select the message they want in the span

37

Creating a social space in VR

of a second. This implementation would map nicely to the circular touchpads on the
HTC Vive’s controllers or the analog sticks of the Oculus Rift. An example of a quick
chat system is shown in figure 15.

Figure 15: Customisable configuration of quick chat, from Rocket League. Note that any of these mes-

sages can be sent with only two key presses.

7.4 Changing Unity version

The project plan originally said we were to use Unity version 2018.2.14f1, because that was
what Progress Interactive was using for this project. However, less than a week into develop-
ment the product owner wanted us to change to Unity version 2018.3.4f1, primarily because
it had nested prefabs and prefab variants. We will briefly explain what these terms mean, and
why they are useful to us.

From the Unity documentation[17]: "You can include Prefab instances inside other Prefabs.
This is called nesting Prefabs. Nested Prefabs retain their links to their own Prefab Assets, while
also forming part of another Prefab Asset". Before nested prefabs, if you wanted a prefab to
contain an instance of another prefab, the child would become a part of the parent prefab and
would no longer be an instance of its prefab asset. Because of this, any changes to the child
would not be applied to its former prefab asset or other instances of said prefab asset unless
you manually made the same changes to the prefab asset. And even then, further changes
to the prefab would not affect any other prefab that contains an instance of it. They would
also have to be changed manually. With nested prefabs, changes to a prefab can be applied
to instances that are children of other prefabs and vice versa. This is significantly less time
consuming and less prone to human error.

From the Unity documentation[18]: "A Prefab Variant inherits the properties of another

38

Creating a social space in VR

Prefab, called the base. Overrides made to the Prefab Variant take precedent over the base Pre-
fab’s values". Before prefab variants, if you wanted three different versions of the same thing,
you would have to create every shared attribute three times. In order to change one of these
shared attributes, you would have to make the change in every version manually. Alterna-
tively you could create a tool for creating new versions and changing existing ones, but that
would assume you to be a skilled programmer. With prefab variants, you can simply change
the base prefab. This feature lets non-programmers create new variants fast without rely-
ing on programmers. For smaller companies, the cost of employing skilled programmers and
developing their own tools can be insurmountable. By increasing the productivity of non-
programmers and letting small companies get away with fewer employees, this makes it
easier for small companies to turn a profit, which in turn promotes growth in the games
industry.

As for why we did not update to an even newer Unity version, the product owner made it
clear that though they wanted us to integrate with a company-provided networking solution,
they did not want us to worry about integrating with the larger game. This project was more
of a proof of concept, and as such the highest priority was to get it playable fast so we could
use it to playtest and gather data that would be useful in designing the final version. The extra
work needed to update to an even newer version of Unity would take precious development
time.

7.5 Reverting to a previous version of the SteamVR framework

Valve released an update to the SteamVR framework (SteamVR 2.0) that Progress Interac-
tive’s existing systems were not compatible with, and Valve did not update the documen-
tation, so we could not figure out how to get everything to work in the new version. The
product owner figured that reverting to the version they had been using previously would be
significantly less work than trying to update everything to the new version. Since our highest
priority was to get the prototype playable fast, it made sense to revert to the previous version.

7.6 Networking

In the project plan, the project was going to integrate with an existing networking solution
from Progress Interactive, which the product owner told us would be finished around Easter.
We were invited to come to Progress Interactive’s offices to work over the first weekend of
Easter. In a sprint meeting two weeks prior, we had been told that this weekend we were to
work on integrating with the networking solution, but it was not yet finished. Instead, the
product owner wanted us to work on refactoring the Unity project we used for our experiment
(6.1) and integrating it with the project’s primary repository. As we were nearing the end of
the sixth and final sprint, Progress Interactive had still not provided a finished networking
solution. We will therefore instead describe in broad terms one way we could have used an
example networking solution, based on our impressions of what Progress Interactive had
planned.

As described in 2.2, we were to develop "a bespoke RakNet-based[19] multiplayer solu-
tion for Unity3d using a master-client architecture and the external company’s remote log
in server". Using RakNet makes this job significantly easier, since it already has Unity inte-
gration and many features that we would otherwise have to implement ourselves. Object
replication, security, and an extensive lobby system is already implemented and ready for us

39

Creating a social space in VR

to use. Progress Interactive’s remote login server would authenticate players before letting
them into the lobby system.

7.7 Minigames we did not implement

There were some minigames in the project requirements that we ended up not implement-
ing for various reasons. We will discuss the reasons for why we did not implement these
minigames here.

7.7.1 Rock, paper, scissors

An integral part of the rock paper scissors game would be the synchronisation of the two play-
ers involved, the game itself is not something one can play alone. Because of this, we could
not implement this feature until after we had the networking in place. We instead planned
for this feature to be one of the first things implemented after we got the networking up and
running as a proof that the networking solution was actually working properly. Because we
did not receive the networking solution before our implementation deadline, we could not
implement this feature.

7.7.2 Bespoke card game

According to the project description (see Appendix A), the graphics and design of the card
game was to be provided by Progress Interactive. However, this was a "nice to have"-feature,
to be implemented only if there was enough time (see project plan, Appendix Put project
plan in appendix). We left this feature in the project backlog until the start of the final sprint,
when we decided to abandon it due to time constraints.

40

8 Conclusion

At the start of this project, we set out to make a social space in VR where friends could hang
out and do activities together. To do this, we had to make a social space for them to be in and
flesh it out with activities to do.

The social space were to be in the form of a room with the feeling of a small cottage. The
original idea from the Product Owner was to have this room be the size of the play area of
the player with the smallest play area in the group. This proved to be too small and so we
had to gather conclusive evidence of this. We did that in the form of an experiment where
we asked how people felt about the size of a few different rooms. We go into detail about
how we made and conducted the experiment in section 6.1. We managed to gather data that
pointed to the fact that this was indeed the case and we needed another solution. We discuss
the results in section 7.1.

The activities to do were in the form of minigames. These were relatively straightforward
to make and there were no major hurdles from our side. Nevertheless there were problems.
Mainly that we didn’t get what was promised from the Product Owner, which led to the
postponing and eventual abandonment of some minigames. See section 7.7 for a closer look
at why.

We ran a test on one of the minigames, darts, to get feedback on how people felt about
it and if there were anything we could do to make it better. It turned out to be a little too
difficult and we figured the best way to make it easier was to change the dart board. More
on the dart experiment in section 6.2 and the results in section 7.2.

8.1 Future Work

From here the project could get networking in place and completion of the minigames we
didn’t do.

Future work on our research would be testing more/other factors than just the room size.
That would be as alluded to in subsection 7.1.2, light level, ceiling height and windows and
the things suggested by our Product Owner that we listed in subsection 4.4.3, counters at the
edge of the play area to stop you from moving but extending your view beyond and being
able to see over boundaries between rooms. It would also be interesting to test more closely
whether the shape of the room had any impact.

there are many more things to say

41

Bibliography

[1] Gartner. Top trends in the gartner hype cycle for emerging technologies, 2017, 2019.

[2] Gartner. 5 trends emerge in the gartner hype cycle for emerging technologies, 2018,
2019.

[3] Wikipedia contributors. Rock‚ paper‚ scissors — Wikipedia, the free encyclopedia, 2019.
[Online; accessed 18-May-2019].

[4] Unity. Unity download archive, 2019.

[5] Jeff Sutherland and Ken Schwaber. The scrum guide, 2019.

[6] Aegon Games LTF. Dungen, May 2019.

[7] Craig R Sherman. Motion sickness: Review of causes and preventive strategies. Journal
of travel medicine., 9(5):251–256, 2002.

[8] Random.org. Random.org, May 2019.

[9] Amy Ashurst Gooch and Peter Willemsen. Evaluating space perception in npr immersive
environments. In Proceedings of the 2Nd International Symposium on Non-photorealistic
Animation and Rendering, NPAR ’02, pages 105–110, New York, NY, USA, 2002. ACM.

[10] Ross Messing and Frank H. Durgin. Distance perception and the visual horizon in head-
mounted displays. ACM Trans. Appl. Percept., 2(3):234–250, July 2005.

[11] Michael J Sinai, William K Krebs, Rudy P Darken, JH Rowland, and JS McCarley. Ego-
centric distance perception in a virutal environment using a perceptual matching task.
In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, volume
43(22), pages 1256–1260. SAGE Publications Sage CA: Los Angeles, 1999.

[12] Peter Willemsen and Amy A Gooch. Perceived egocentric distances in real, image-based,
and traditional virtual environments. In Proceedings IEEE Virtual Reality 2002, pages
275–276. IEEE, 2002.

[13] Bob G Witmer and Paul B Kline. Judging perceived and traversed distance in virtual
environments. Presence, 7(2):144–167, 1998.

[14] Bob G Witmer and Wallace J Sadowski Jr. Nonvisually guided locomotion to a previ-
ously viewed target in real and virtual environments. Human factors, 40(3):478–488,
1998.

[15] C. Hecker. Physics in computer games, 2000.

[16] From Software. Dark souls: Prepare to die edition, 2019.

[17] Unity. Nested prefabs, 2019.

42

Creating a social space in VR

[18] Unity. Prefab variants, 2019.

[19] RakNet. Raknet 4, 2019.

43

A Project Description

44

Title: Resocialization for Vulnerable Individuals in VR multiplayer
Level: BSc
Study programme: BPROG
Owner: Richard Barlow
Department: IDI Gjøvik
Project relevance: excited
Category: Health
Team size: 1-3

Description

Virtual reality offers socialisation at a distance for physically isolated and anxious or antisocial
individuals. The goal of the project is for students to create social VR environment, where
players can play familiar games in a room-scale environment, similar to a cottage.

The students will work for an external Game Development company based in Hamar, although
occasional assistance will be provided on the Gjøvik campus by company staff. Art assets, core
systems and feedback on programming implementation will be provided by the company.

The programming assignment needs to submitted, checked for appropriateness and then
feedback provided to the students at regular intervals.

Technical Solution

- Develop a bespoke Raknet-based multiplayer solution for Unity3d using a master-client
architecture and the external company’s remote login server.

- Investigate voice-based communication options
- C# client and server-side VR implementation of familiar minigames in Unity3d, such as:

- Checkers
- Darts
- Rock, paper, scissors
- Bespoke card game (external company provides graphics and design)

- Virtual Reality implementation using Steam VR for compatibility with both Oculus VR
equipment and the HTC Vive.

- Students submit code to the external company URL in a private git repository. The
Computing Department in Gjøvik will also have access to the URL to monitor progress.

B Project Agreement

Sometimes you need to include a PDF document in the appendix. It is perfectly acceptable to
have most of this page blank as it acts as a cover page for the appendix. We use pdfpages for
this include. It lets you specify which pages to include, currently we have left it blank with
[pages={-}] but you could use [pages={1-3}] for example

46

 1 av 3

Norges teknisk-naturvitenskapelige universitet

Vår dato

Vår referanse

Prosjektavtale

mellom NTNU Fakultet for informasjonsteknologi og elektroteknikk (IE) på Gjøvik (utdanningsinstitusjon), og

__

___ (oppdragsgiver), og

__

__

___ (student(er))

Avtalen angir avtalepartenes plikter vedrørende gjennomføring av prosjektet og rettigheter til anvendelse av de
resultater som prosjektet frembringer:

1. Studenten(e) skal gjennomføre prosjektet i perioden fra ____________ til______________ .

Studentene skal i denne perioden følge en oppsatt fremdriftsplan der NTNU IE på Gjøvik yter veiledning.
Oppdragsgiver yter avtalt prosjektbistand til fastsatte tider. Oppdragsgiver stiller til rådighet kunnskap og
materiale som er nødvendig for å få gjennomført prosjektet. Det forutsettes at de gitte problemstillinger det
arbeides med er aktuelle og på et nivå tilpasset studentenes faglige kunnskaper. Oppdragsgiver plikter på
forespørsel fra NTNU å gi en vurdering av prosjektet vederlagsfritt.

2. Kostnadene ved gjennomføringen av prosjektet dekkes på følgende måte:

 Oppdragsgiver dekker selv gjennomføring av prosjektet når det gjelder f.eks. materiell, telefon/fax,
reiser og nødvendig overnatting på steder langt fra NTNU på Gjøvik. Studentene dekker utgifter for
ferdigstillelse av prosjektmateriell.

 Eiendomsretten til eventuell prototyp tilfaller den som har betalt komponenter og materiell mv. som
er brukt til prototypen. Dersom det er nødvendig med større og/eller spesielle investeringer for å få
gjennomført prosjektet, må det gjøres en egen avtale mellom partene om eventuell
kostnadsfordeling og eiendomsrett.

3. NTNU IE på Gjøvik står ikke som garantist for at det oppdragsgiver har bestilt fungerer etter hensikten, ei heller
at prosjektet blir fullført. Prosjektet må anses som en eksamensrelatert oppgave som blir bedømt av intern og
ekstern sensor. Likevel er det en forpliktelse for utøverne av prosjektet å fullføre dette til avtalte
spesifikasjoner, funksjonsnivå og tider.

Norges teknisk-naturvitenskapelige universitet

Fakultet for informasjonsteknologi og elektroteknikk

2

4. Alle bacheloroppgaver som ikke er klausulert og hvor forfatteren(e) har gitt sitt samtykke til publisering, kan

gjøres tilgjengelig via NTNUs institusjonelle arkiv hvis de har skriftlig karakter A, B eller C.

Tilgjengeliggjøring i det åpne arkivet forutsetter avtale om delvis overdragelse av opphavsrett, se «avtale om
publisering» (jfr Lov om opphavsrett). Oppdragsgiver og veileder godtar slik offentliggjøring når de signerer denne
prosjektavtalen, og må evt. gi skriftlig melding til studenter og instituttleder/fagenhetsleder om de i løpet av
prosjektet endrer syn på slik offentliggjøring.

Den totale besvarelsen med tegninger, modeller og apparatur så vel som programlisting, kildekode mv. som inngår
som del av eller vedlegg til besvarelsen, kan vederlagsfritt benyttes til undervisnings- og forskningsformål.
Besvarelsen, eller vedlegg til den, må ikke nyttes av NTNU til andre formål, og ikke overlates til utenforstående uten
etter avtale med de øvrige parter i denne avtalen. Dette gjelder også firmaer hvor ansatte ved NTNU og/eller
studenter har interesser.

5. Besvarelsens spesifikasjoner og resultat kan anvendes i oppdragsgivers egen virksomhet. Gjør studenten(e) i sin

besvarelse, eller under arbeidet med den, en patentbar oppfinnelse, gjelder i forholdet mellom oppdragsgiver
og student(er) bestemmelsene i Lov om retten til oppfinnelser av 17. april 1970, §§ 4-10.

6. Ut over den offentliggjøring som er nevnt i punkt 4 har studenten(e) ikke rett til å publisere sin besvarelse, det
være seg helt eller delvis eller som del i annet arbeide, uten samtykke fra oppdragsgiver. Tilsvarende samtykke
må foreligge i forholdet mellom student(er) og faglærer/veileder for det materialet som faglærer/veileder
stiller til disposisjon.

7. Studenten(e) leverer oppgavebesvarelsen med vedlegg (pdf) i NTNUs elektroniske eksamenssystem. I tillegg
leveres ett eksemplar til oppdragsgiver.

8. Denne avtalen utferdiges med ett eksemplar til hver av partene. På vegne av NTNU, IE er det
instituttleder/faggruppeleder som godkjenner avtalen.

9. I det enkelte tilfelle kan det inngås egen avtale mellom oppdragsgiver, student(er) og NTNU som regulerer
nærmere forhold vedrørende bl.a. eiendomsrett, videre bruk, konfidensialitet, kostnadsdekning og økonomisk
utnyttelse av resultatene. Dersom oppdragsgiver og student(er) ønsker en videre eller ny avtale med
oppdragsgiver, skjer dette uten NTNU som partner.

10. Når NTNU også opptrer som oppdragsgiver, trer NTNU inn i kontrakten både som utdanningsinstitusjon og som
oppdragsgiver.

11. Eventuell uenighet vedrørende forståelse av denne avtale løses ved forhandlinger avtalepartene imellom.
Dersom det ikke oppnås enighet, er partene enige om at tvisten løses av voldgift, etter bestemmelsene i
tvistemålsloven av 13.8.1915 nr. 6, kapittel 32.

Norges teknisk-naturvitenskapelige universitet

Fakultet for informasjonsteknologi og elektroteknikk

3

12. Deltakende personer ved prosjektgjennomføringen:

NTNUs veileder (navn): __

Oppdragsgivers kontaktperson (navn): ___

Student(er) (signatur): ___ dato ____________

 ___ dato ____________

 ___ dato ____________

 ___ dato ____________

Oppdragsgiver (signatur): ___ dato ____________

Signert avtale leveres digitalt i Blackboard, rom for bacheloroppgaven.

Godkjennes digitalt av instituttleder/faggruppeleder.

Om papirversjon med signatur er ønskelig, må papirversjon leveres til instituttet i tillegg.

Plass for evt sign:

Instituttleder/faggruppeleder (signatur): ____________________________________ dato ____________

C Experiment questionnaire

50

Questionaire for VR-Test

How much previous experience do you have with VR (Oculus, Vive or similar)

zero or very little experience
1-4 hours
5 hours or more

Room number 1

Do you feel that the room is big enough to comfortably move around in?

Strongly agree
Somewhat agree
No opinion
Somewhat disagree
Strongly disagree

How many players do you feel would comfortably fit in the room?

1
2
3
4
5 or more

Room number 2

Do you feel that the room is big enough to comfortably move around in?

Strongly agree
Somewhat agree
No opinion
Somewhat disagree
Strongly disagree

How many players do you feel would comfortably fit in the room?

1
2
3
4
5 or more

Room number 3

Do you feel that the room is big enough to comfortably move around in?

Strongly agree
Somewhat agree
No opinion
Somewhat disagree
Strongly disagree

How many players do you feel would comfortably fit in the room?

1
2
3
4
5 or more

Room number 4

Do you feel that the room is big enough to comfortably move around in?

Strongly agree
Somewhat agree
No opinion
Somewhat disagree
Strongly disagree

How many players do you feel would comfortably fit in the room?

1
2
3

4
5 or more

Room number 5

Do you feel that the room is big enough to comfortably move around in?

Strongly agree
Somewhat agree
No opinion
Somewhat disagree
Strongly disagree

How many players do you feel would comfortably fit in the room?

1
2
3
4
5 or more

Any comments on the experiment or anything you would like to share

D Results of the experiment

54

Creating a social space in VR

Figure 16: Comfort level, all results

55

Creating a social space in VR

Figure 17: Time spent, all results

56

Creating a social space in VR

Figure 18: Player capacity, all results

Figure 19: Average values

57

Creating a social space in VR

Figure 20: Comfort levels, no prior experience

Figure 21: Comfort levels, 1-4 hours prior experience

58

Creating a social space in VR

Figure 22: Comfort levels, 5+ hours prior experience

Figure 23: Time spent, no prior experience

59

Creating a social space in VR

Figure 24: Time spent, 1-4 hours prior experience

Figure 25: Time spent, 5+ hours prior experience

60

Creating a social space in VR

Figure 26: How many players could fit in the room, no prior experience

61

Creating a social space in VR

Figure 27: How many players could fit in the room, 1-4 hours prior experience

62

Creating a social space in VR

Figure 28: How many players could fit in the room, 5+ hours prior experience

63

E Rooms from the experiment about room size

Figure 29: The one module room.

64

Creating a social space in VR

Figure 30: The two module room.

Figure 31: The three modules in a corridor room.

65

Creating a social space in VR

Figure 32: The four modules in a square room.

Figure 33: The three modules in an L shape room.

66

F Meeting Logs

F.1 Supervisor meetings

04.10.2018 - Bachelor Information Meeting

Discussion of the process and setup of the thesis. Deadlines for submission of documentation.
Introduction to the process and the sessions to help with writing the thesis....

16.01.2019

Met with supervisor to discuss the project. Actions:

1. Roles in the group.
2. Language for thesis.
3. Discussing scope with Project Owner.
4. Risk management for the project.

06.03.2019

Met with supervisor to discuss the project. Actions:

1. Planned experiment on room sizes / Figured out what we needed to do for our planned
experiment.

2. Figured out whether we needed to submit for GDPR approval.

27.03.2019

Met with supervisor to discuss the project. Actions:

1. Discussed how the experiment had gone and how to process the data we had collected.

07.05.2019

Met with supervisor to talk about the report. Actions:

1. Editing the bibliography.
2. Framing of the thesis.
3. How our experiment differs from testing in the usual sense.
4. The chapters of the thesis, what goes where and some in depth about these chapters

specifically:

• Technical design vs Implementation
• Development process
• Conclusion
• Contents of the appendix.

5. Good habits for writing (e.g. write down notes of anything you realise while writing
something else. That way you don’t forget it and can flesh it out later).

67

Creating a social space in VR

F.2 Sprint meetings

18.02.2019

Actions:

• Continue using the old version of SteamVR for now. Isolate steamvr code as much as
possible
• What can we do better:

◦ Kind of hard to do stuff (room scaling)
◦ Kind of hard to visualize how it is supposed to end up -> bigger picture before

start working

• In regards to space:

◦ Some of the activities require more space than a single room provide
◦ Teleportation between multiple “rooms”
◦ 2m still not very far to throw something
◦ Able to see/throw over the “boundary” between rooms but not walk
◦ Hard to stuff many people in a 2x2 room. Easier with more rooms
◦ Social spaces vs rec-room
◦ Tiles are not supposed to scale
◦ Slots on walls where you can drop objects (i.e. shelf, cabinet)
◦ When you reach the wall it has a shelf/box that’s like a bottomless bag
◦ Boundaries themselves have the content
◦ Kitchen can be white-boxed

• Next Sprint:

◦ Nested prefab tiles
◦ Cabinets with slots to interact with things
◦ Attach images to the tasks

04.03.2019

Actions:

• How things have been / are going:

◦ Play spaces:

· Tool to generate play spaces
· Generated the minimum and maximum play spaces
· Started to fill in some of them.
· They feel small. Rooms may feel smaller due to lack of peripheral vision
· The smallest one is too small, not room for two people

◦ Movement and networking

· Teleport in play spaces relative to position. Teleport points (maintain offset)
· Experiment on this? (movement)
· Make a gif of this? (gyazo is a good tool for this. 8 second clips without

paying)

◦ Yet to finish:

68

Creating a social space in VR

· Interactable objects
· Different movement modes
· Nested prefabs (i.e. tiles with furniture in them)
· Doors

26.03.2019

Actions:

• Rooms too small for 4 people
• 2x2m with interactables in the wall is still crazy tiny
• Following sprint:

◦ Multiplayer not ready yet. After this friday.
◦ Start board games
◦ Do as much logic and games as possible and do the networking when we visit in

Hamar.
◦ Have a look at how other have done board games in VR
◦ Card and darts

15.04.2019

Actions:

• Status update:

◦ Darts - working, might make dart board keep track of points + synchronization
◦ Checkers - working, the board does not enforce the rules on its own.

• Last week - what to do?

◦ Research quick chat system in vr, add it to the report, from now till the 21st
◦ Networking implementation from 22nd to 28th

69

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

B
ac

he
lo

r’
s

pr
oj

ec
t

Mathias Stifjeld
Henrik Trehjørningen
Herman Tandberg Dybing

Creating a social space in VR

Bachelor’s project in Bachelor in Programming[Games|
Applications]
Supervisor: Christopher Frantz

May 2019

	Preface
	Contents
	List of Figures
	Listings
	Introduction
	Target audience
	Project description
	Background
	Project organization
	Roles and responsibilities
	Group rules

	Report structure

	Requirements
	Task description
	Technical Solution
	Standards
	Code Standards
	Project Standards

	Technical Design
	Solution Architecture
	Program flow
	Minigames
	Scaling the room

	Development Process
	Development tools
	Unity
	Version control

	Scrum
	Workflow
	Schedule
	Planned schedule
	Actual schedule
	Sprint 1
	Sprint 2
	Sprint 3
	Sprint 4

	Implementation
	Approximating aerodynamics for throwing darts
	Checkers
	Room generator
	Implementing a movement system
	Script for Testing

	Testing and Experimenting
	Testing the scale of the room
	Testing the darts throwing

	Discussion
	Results of the room scale experiment
	Results
	Suggested improvements for the experiment
	Future research

	Feedback from testing the darts throwing
	Communication options and quick chat
	Changing Unity version
	Reverting to a previous version of the SteamVR framework
	Networking
	Minigames we did not implement
	Rock, paper, scissors
	Bespoke card game

	Conclusion
	Future Work

	Bibliography
	Project Description
	Project Agreement
	Experiment questionnaire
	Results of the experiment
	Rooms from the experiment about room size
	Meeting Logs
	Supervisor meetings
	Sprint meetings

