
Management System for CS Assignments

Author(s)

Johan Aanesen
Brede Fritjof Klausen
Svein Are Danielsen

Bachelor of Engineering in Computer Science
20 ECTS

Department of Computer Science
Norwegian University of Science and Technology,

19.05.2019

Supervisor Ivar Farup

Management System for CS Assignments

Sammendrag av Bacheloroppgaven

Tittel: Administrasjonssystem for datavitenskapsoppgaver

Oppgave no. 53
Dato: 19.05.2019

Deltakere: Johan Aanesen
Brede Fritjof Klausen
Svein Are Danielsen

Veiledere: Ivar Farup

Oppdragsgiver: Norwegian University of Science and Technology

Kontaktperson: Christopher Frantz, christopher.frantz@ntnu.no, 61135400

Nøkkelord: Go, HTML, JavaScript, Docker, Docker-Compose, Open-
Stack, Database

Antall sider: 50
Antall vedlegg: 9
Tilgjengelighet: Åpen

Sammendrag: Prosjektets mål har vært å lage et web basert system som
simplifiserer oppgave innlevering og gjennomgang av an-
dre sine oppgaver, dette erstatter den tidligere brukte organ-
iseringen gjennom regneark. Gjennom bacheloren har sys-
temet blitt testet på, og brukt av studenter i fem forskjellige
innleveringer i tre forskjellige emner. Bruk av tilbakemeldin-
gene fra både studentene og lærerene, har resultert i et alt i
alt bedre system og applikasjon som fungerer for oppgavene
nevnt ovenfor.

i

Management System for CS Assignments

Summary of Graduate Project

Title: Management System for CS Assignments

Project no. 53
Date: 19.05.2019

Authors: Johan Aanesen
Brede Fritjof Klausen
Svein Are Danielsen

Supervisor: Ivar Farup

Employer: Norwegian University of Science and Technology

Contact Person: Christopher Frantz, christopher.frantz@ntnu.no, 61135400

Keywords: Go, HTML, JavaScript, Docker, Docker-Compose, Open-
Stack, Database

Pages: 50
Attachments: 9
Availability: Open

Abstract: The goal of this project was to create a web solution that sim-
plifies assignment submissions and peer reviewing of pro-
gramming related assignments, replacing the spreadsheets
used to organize this from before. Through the bachelor the
system has been tested on, and used by students on five dif-
ferent assignments in three different courses. Using the feed-
back from both the students and the teacher has resulted in
an overall better system and application that works for the
purposes stated above.

ii

Preface

This Bachelor thesis is written by Johan Aanesen, Brede Fritjof Klausen and Svein Are Danielsen
at NTNU Gjøvik.

We would like to thank our supervisor Ivar Farup, for extensive feedback, interesting and
educational discussions, help on the paper as well as being available throughout the project.
We would also like to thank our product owner, on behalf of NTNU, Christopher Frantz for
being available all the time, coming up with great feedback and ideas needed to complete
the project as well as being interested in our development process and helping us along the
way. Lastly we want to thank the students who used our system throughout the development
stages for giving us valuable feedback to improve the system.

iii

Contents

Preface . iii
Contents . iv
List of Figures . vii
List of Tables . viii
Listings . ix
Acronyms . x
Glossary . xi
1 Introduction . 1

1.1 Task Description . 1
1.2 Goals . 1

1.2.1 Result . 1
1.2.2 Effect . 1
1.2.3 Learning . 1

1.3 Project restrictions . 2
1.3.1 Technological . 2

1.4 User base . 2
1.5 Development framework . 2
1.6 Project Organization . 2

1.6.1 Project members . 2
1.6.2 Responsibilities and roles . 3
1.6.3 Why we chose this assignment . 3

1.7 Report layout . 4
2 Development Process . 5

2.1 Choice of method . 5
2.1.1 Argumentation . 5
2.1.2 Conclusion . 6

2.2 Execution of the method . 6
2.3 Tool usage . 7

2.3.1 Selected tools . 7
3 Requirements . 9

3.1 Use cases . 9
3.1.1 Use case-diagram . 10
3.1.2 Use case descriptions . 11

3.2 Requirements . 15
3.2.1 Functional requirements . 15
3.2.2 Non-functional requirements . 16

4 Technical Design . 17
4.1 System overview . 17
4.2 Architecture . 17

4.2.1 Service Oriented Architecture . 17
4.2.2 Model-View-Controller . 18

4.3 UI Design . 20
4.3.1 Graphic Design . 20
4.3.2 Interaction Design . 20

4.4 Database design . 23
4.5 Project/File structure . 24

5 Implementation . 27
5.1 Web server . 27

iv

Management System for CS Assignments

5.1.1 Routing . 27
5.1.2 HTTP Handlers / Controllers . 28
5.1.3 Parsing the request body . 29
5.1.4 Parsing form data . 29
5.1.5 View . 30
5.1.6 Templating . 30
5.1.7 Form Builder . 31

5.2 Database . 32
5.3 Mail service . 34
5.4 User Authentication . 36
5.5 Login Sequence . 37
5.6 Register Sequence . 38
5.7 Codebase . 38

6 Deployment . 39
6.1 OpenStack . 39
6.2 Docker . 40
6.3 Docker Compose . 40

6.3.1 Web Service . 40
6.3.2 Mail Service . 40
6.3.3 Database . 40

6.4 Makefile . 41
7 Testing and User Feedback . 42

7.1 Testing . 42
7.1.1 Unit Testing . 42
7.1.2 User Testing . 42

7.2 Quality Assurance . 42
7.3 User Feedback . 43

8 Discussion . 44
8.1 Results . 44
8.2 Choice of technical solutions . 44
8.3 Peer Review . 44
8.4 Logging . 44
8.5 Repository And Service . 44
8.6 Form Builder . 45

9 Conclusion . 46
9.1 Evaluation of the Group’s Work . 46
9.2 Final Words . 46
9.3 Future Work . 47

9.3.1 Auto-Validation Functionality . 47
9.3.2 API Based Micro Service Architecture . 47
9.3.3 Front-end . 47
9.3.4 Notification and Messaging Service . 47
9.3.5 Time-zone Error . 48
9.3.6 Feedback From Project-Owner And Students 48

Bibliography . 50
A Project Repository . 51
B Project Agreement . 52
C Project plan . 56
D Meeting Logs . 66

D.1 Record of meetings . 66
D.1.1 17.01.19 - Thursday . 66
D.1.2 28.01.19 - Monday . 66
D.1.3 11.02.19 - Monday . 66

v

Management System for CS Assignments

D.1.4 18.02.19 - Monday . 67
D.1.5 04.03.19 - Monday . 67
D.1.6 11.03.19 - Monday . 67
D.1.7 21.03.19 - Thursday . 68
D.1.8 01.04.19 - Monday . 68
D.1.9 04.04.19 - Thursday . 68
D.1.10 11.04.19 - Wednesday . 69
D.1.11 29.04.19 - Monday . 69

E Daily Logs . 70
E.1 Johan Logs . 70
E.2 Brede Logs . 78
E.3 Svein Logs . 88

F Peer Review Discussion . 100
G Screenshots . 103
H Trello Board . 112
I Toggl Summary . 120

vi

List of Figures

1 Use Case Diagram . 10

2 System View . 17
3 Webservice MVC . 19
4 UI Badges in Card example . 20
5 Initial Site Map . 21
6 Final Site Map . 22
7 Initial Database Design . 23
8 Final Database Design . 25
9 File Structure . 26

10 Form Builder screen dump . 32
11 Authentication Model . 37
12 Sequence Diagram for logging in . 37
13 Sequence Diagram for registering an user . 38

vii

List of Tables

1 Group members & roles . 3

2 Trello-board description . 7

3 Use case for registering new user . 11
4 Use case for authenticating . 11
5 Use case for logging out . 11
6 Use case for forgotten password . 11
7 Use case for joining a course through URL . 11
8 Use case for joining a course with course hash . 12
9 Use case for delivering assignment . 12
10 Use case for re-delivering assignment . 12
11 Use case for withdrawing assignment . 12
12 Use case for performing review . 12
13 Use case for updating performed review . 13
14 Use case for editing profile . 13
15 Use case for creating course . 13
16 Use case for updating course . 13
17 Use case for emailing students in a course . 13
18 Use case for creating an assignment . 14
19 Use case for updating an assignment . 14
20 Use case for generating report of all user submissions from one assignment . . 14
21 Use case for creating a submission/review form 14
22 Use case for updating a submission/review form 14
23 Use case for updating submission/review form weights 15
24 Use case for removing student from course . 15
25 Use case for updating a student’s password . 15
26 Use case for updating the FAQ . 15

27 Languages used in the project . 38

viii

Listings

5.1 Simple HTTP-server in Go . 27
5.2 Mux routing . 27
5.3 HTTP Handler . 28
5.4 Using Mux inside handlers . 28
5.5 Parsing POST-request body . 29
5.6 Parsing form data . 29
5.7 Usage of View . 30
5.8 Sample of a Template . 30
5.9 Template Plugin . 31
5.10 Plugin usage inside templates . 31
5.11 MySQL Database Connection . 32
5.12 MySQL Update Example . 33
5.13 MySQL Insert Example . 33
5.14 MySQL Fetch Example . 34
5.15 SendMail function in Go, line 217 . 35
5.16 Send mail from webservice, line 199 . 35

ix

https://github.com/go-sql-driver/mysql/#usage
https://github.com/JohanAanesen/CSAMS/blob/master/webservice/repository/user.go#L214
https://github.com/JohanAanesen/CSAMS/blob/master/webservice/repository/course.go#L172
https://github.com/JohanAanesen/CSAMS/blob/master/webservice/repository/user.go#L22
https://github.com/JohanAanesen/CSAMS/blob/master/mailservice/handler.go
https://github.com/JohanAanesen/CSAMS/blob/master/webservice/controller/register.go

Acronyms

BIDAT Bachelor in Engineering - Computer Science. 2

BPROG Bachelor in Programming. 2

FAQ Frequently Asked Questions. 15, 67

IaaS Infrastructure as a Service. 39

IDE Integrated development environment. 8

JSON JavaScript Object Notation. 29

MD Markdown. 15

NTNU Norwegian University of Science and Technology. 8

QA Quality Assurance. 42, 68

RUP Rational Unified Process. 5

TA Teaching assistant. 2, 11–15, 48, 68

UI User Interface. 4

VPN Virtual Private Network. 39

XP eXtreme Programming. 6

x

Glossary

backlog An accumulation of uncompleted work or matters needing to be dealt with. 5, 6

code review A developer reads and tests another developers code, seeing if the code stan-
dards is begin held, and securing good code quality. 5, 7

eXtreme Programming An agile development model that focuses on programming and rapid
delivery. 5

Go Programming Language A statically typed, compiled programming language designed
at Google. 1, 2

Kanban An agile development method that focuses on limiting the amount of operation
done simultaneously, for securing that a operation is done before starting on another.
5, 6

Kanban board A kanban board is an agile project management tool designed to help visu-
alize work, limit work-in-progress, and maximize efficiency. 5–7

pull request A request to merge two branches in a version control system. 7

Scrum An agile development method for software-development, based on incremental de-
livery. 5, 6

xi

1 Introduction

1.1 Task Description

The purpose of this project is to create a system that will replace the Excel spreadsheets
used by the teachers previously to organize assignment submissions and peer reviewing. The
system will give the users, both students and teachers, an easy to use tool for managing and
distributing assignment related information and tasks while also being the same place for
submitting assignments and giving/receiving feedback. The teachers are able to see student
progress in the course, expected grading based on performance, and export the information
to a format that allows for simpler grading of the student. Its main purpose is to solve the
hardships we as a group encountered through the courses we had, with a easy to use interface
and managing system.

1.2 Goals

1.2.1 Result

The goal for this project is to develop and deliver a working system to replace the one used
today with shared spreadsheets for submitting computer science assignment, and performing
peer review by the students. The system shall also give the lecturer a complete overview of
all submissions and reviews, as well be able to generate a report for each assignment and
course.

1.2.2 Effect

The current system used for handling peer reviews between the students is sub optimal, and
is a problem both for the students and the lecturers, a new system would simplify this for
both sides. A new system should make it seamless for the student to perform a review on
another student without having to look through a spreadsheet to find another students work
to perform a review, but just click a button, and get a review to perform instantly.

The lecturer will have a plain and simple user interface to get an overview of submissions
and perform reviews for all students, on all assignment, in all courses.

1.2.3 Learning

In this project, our learning goals are to gain more knowledge about:

• Working with a bigger project from the planning phase
• Working closely with a product owner
• Programming larger applications in Go Programming Language
• Working with full-stack programming
• System architecture

1

Management System for CS Assignments

1.3 Project restrictions

The product owner want to have a working system delivered by the 16th of May, that can be
used for the next semesters courses.

1.3.1 Technological

The product owner wishes to use Go Programming Language as the main language for de-
velopment for this project. Go has to be used for the back-end part of the system, with no
specification on the front-end. The project has some technological restrictions in the descrip-
tion of it, made by the product owner, shown here:

Back-end Has to be programmed with Go Programming Language.

Infrastructure The system has to be deployed on OpenStack, using Docker as the chosen
container technology.

Database Has to be local, using containers to serve it.

1.4 User base

The product is a system to be used by lecturers and students, for their Computer Science
courses, where they want to customize their submission forms, and optionally use the peer
review feature for their students.

Teachers will be the main user for this system, as they will be administrators for the system.
They will use the system to create courses, assignments, submission and review forms,
and generate reports from assignments.

Teaching assistant will use the system as the teachers, but with fewer privileges.

Students will use the system to submit their assignments and see details about deadlines for
assignment, and perform reviews on their fellow students in the course.

1.5 Development framework

In this project, we planned on using an agile method for developing. For more details on the
development, framework see chapter 2 Development Process.

1.6 Project Organization

1.6.1 Project members

The members partaking in this project are from different programs, where two is from BPROG
and one from BIDAT at NTNU i Gjøvik. In terms of our education, there are some courses that
benefit us in regard to this project.

Front-end development

• IMT2291 - Web Technology
• IMT1362 - Experience Design

2

Management System for CS Assignments

Back-end development

• IMT2681 - Cloud Technologies
• IMT2571 - Data Modelling and Database Systems
• IMT2021 - Algorithmic Methods

Operational

• IMT2282 - Operating Systems

Documentation and report

• IMT2243 - Software Engineering

1.6.2 Responsibilities and roles

The responsibilities and roles for the group was setup as seen in Table 1.

Name Role
Christopher Frantz Product Owner
Johan Aanesen Project leader
Brede Fritjof Klausen Member and QA tester
Svein Are Danielsen Member

Table 1: Group members & roles

1.6.3 Why we chose this assignment

The group had several reasons to why we wanted to do this assignment in particular. Through
the courses of our bachelor degrees some of the assignments required peer reviewing as an
additional task after the assignments were delivered. This was organized through a spread-
sheet which made it difficult to see the overall progress of the reviews done, and who has
done how many. There were always some students who did not perform their reviews and
as such, some students did not receive the reviews they should. There was also cases of stu-
dents that would say they reviewed another users assignment, but the user never received
any feedback. This has been a continuous hardship throughout the courses and the group
thought it would be beneficial to create a web based solution that streamlines this process.

This assignment is a bit special compared to a traditional bachelor assignment were you
deliver a thesis based on research to see if a task is possible and feasible to do. Instead we
are delivering a functional product that will be used in future courses, and already has been
tested on this years IMT3673 Mobile Programming, IMT4307 Serious Games and IMT2531
Graphics Programming. The group wanted to create a system from the bottom and make it
usable for both students and the teachers. The group members are all going into software
consulting and development after the studies, so much of the incentive was to take a project
from start to finish and deliver the working system.

After the first initial meeting with the product owner, the group confirmed the overall vision
of the project with our own thoughts and vision of what issues from the past courses that we
could solve with this system. A lot of the motivation for this project came from wanting to
rectify the negative feedback we had from the previous delivery system in place.

3

Management System for CS Assignments

1.7 Report layout

Introduction Describing the thesis, with goals, restrictions, project details and organisation.

Development Process Describes the development method used for this projects and the
tools used for development.

Requirements Shows set requirements for the system and use cases.

Technical Design Gives an insight about the system overview, architecture, database and UI
design.

Implementation Shows how the system is implemented, with different aspects of the sys-
tem.

Deployment Shows how the system is deployed for using it.

Discussion Shows results, and choices made under the development.

Conclusion A short closing chapter to present evaluation of the group work, and closing
words for the thesis.

4

2 Development Process

2.1 Choice of method

The group has developed a system for managing Computer Science assignment for a four to
five month period. The group is composed of three developers and a product owner, that is
a highly technical competent person, that will be a part of the team developing this system.

The product owner has his office at the university, and wish to be closely involved in the
development, with rapid communication and discussion. This made the development method
to an agile approach, where the product owner can quickly come with input and requests for
new features, if it was needed.

The project had a tight schedule to create an usable version of the system, that was used in
a course at the same time as the development. Because the product owner is a lecturer in
the same course, he wanted to use the system for gathering assignments and peer reviews
from the students. The system was deployed in different iterations, with different features
developed in between them.

2.1.1 Argumentation

With the lack of specified requirements from the start of the project, any non-agile develop-
ment methods can be excluded as Waterfall, and Rational Unified Process as it seams unnec-
essary complex, with regards to our team size. And the amount of time that would have been
used to plan the project, would not make it possible to develop any early versions for live
testing with a course.

The group has chosen to look at three development models that seems to be relevant for this
assignment: Kanban, Scrum, eXtreme Programming.

Kanban

With Kanban [1] the group is always informed on the amount of tasks that is ongoing at
the same time. This secures having unfinished tasks in production like documentation, and
secures more code review in the process.

A Kanban board will also give a good overview of tasks that is up next, ongoing, ready for
code review or finished. The board can be split into different columns, to show what state a
task is currently in, table 2 shows how our table is arranged.

As the backlog can be prioritized for the next tasks to be developed, with a Up Next column,
the product owner can change the priority for tasks. And this makes Kanban very applicable
for this projects, as the product owner wants different features in the final system.

The group has previous experience with using Kanban for development, especially performing
code review continuously.

Scrum

Scrum [2] is an agile development model, that allows rapid releases, and fills most of the
groups requirements for choosing a model. It allows to start early on with the development,

5

Management System for CS Assignments

without having the requirement specifications finished.

Scrum has different roles for the team: Product owner, Scrum Master and Scrum Team, which
would fit our development team well.

Since the project leader will have some absence geographically half way into the project,
doing a full approach of Scrum will not fit our team. But we will take aspects from Scrum
sprints, with larger periods with goals to complete bigger features, can be seen appendix C.
And smaller periods, weekly, where we work on tasks from week to week. Starting the week
with meetings and planning, and finishing the week with bug-fixing and finishing up code.

eXtreme Programming

XP has five basic values; communication, simplicity, feedback, courage and respect which fits
well into the project, when communication and feedback is an essential part of it. In this
model the developers needs to be receptive to changes under the development, as the product
owner is in contact with the developers all the time [3].

Pair programming is also a part of XP, where two and two developers works together, where
one writes code, and the other observes. As our team consists of three people throughout the
project, this becomes a bad choice as a model.

2.1.2 Conclusion

There is one development method that sticks out, that has the characteristics wishes to use.
The product owner indicates to rapid development, with frequently contact, that suggest
that the project group should choose an agile method. The assignment is presented with
some main features, and is therefore natural to pick a method with rapid development.

The group wanted to use mainly Kanban with some aspects from Scrum. From Kanban we
used Kanban board, and a backlog open for the product owner. From Scrum we want to
adapt the sprints to periods, where we divided the development time for the main features
into three main periods, and had a variation of weekly sprints. Where we started the weeks
with meetings with the product owner, the supervisor and then within the group. Start de-
veloping new features from Monday, work throughout the week, and finish up ongoing tasks
on Fridays, or fix bugs found throughout the week.

2.2 Execution of the method

Weekly meetings

On the weekly meetings with the product owner we started with showing and discussing
newly implemented features to the product owner, discussing how they have been imple-
mented and design decisions. Then going on to the next features in the backlog, and/or
talking about new features, that the product owner would have ready for the meeting, or
think about under the meeting.

After the meetings the group would discuss internally what tasks we were currently working
on, and what tasks we would go on after. Then delegate tasks, and discuss how to approach
difficult tasks we were facing, to get a knowledge about what the rest of the group was
working on and let every member get a whole overview of the projects progression.

6

Management System for CS Assignments

Workflow

Under the development the group used a workflow called Git Feature Branch Workflow [4].
This works the way that all new features is made in a new branch, that then is merged with
the master branch through a pull request. This secures that the master branch always contains
production-ready code, and does makes it easier for the developers to perform code review.

Code review were performed on the pull requests by the other group members, looking for
possible bugs, and checking if the feature implemented is working as it should. By testing
the new feature on different systems, we could also test system compatibility for the feature.
Only when all of the other group members had approved the pull request, it would be merged
into the master branch.

Meeting with supervisor

The group had weekly meetings on Mondays with the supervisor, for updating him about
the project, as well to discuss the project, and ask for advice on less technical tasks with the
project. As the supervisor also is a highly technical competent professor, he could come with
advice from another point of view.

2.3 Tool usage

The group has agreed on different tools that will be used for the project and the development.
The tools selected was chosen so every group member had an overview of what the others
where working on and keeping information of the development streamlined. The tools used
was necessary in terms of getting the most out of the agile process, keeping an overview of
progress as well as detecting irregularities under the development process.

2.3.1 Selected tools

Trello

Trello1 is a collaboration tool used to organize projects into boards. We have used Trello as
our Kanban board and organized tasks for the development. The setup for our Trello-board
can be seen in table 2.

Column Description
Backlog Contains all untouched user stories. These are made by the product owner,

or the group; based on requirements by the product owner. All user stories
starts in this column.

Up Next User stories picked out by the project leader or the product owner, that the
other team members pick out when available. This column had a maximum
of 6 user stories.

In Progress User stories under development. A single or multiple group members is as-
signed to a single user story. This column had a maximum of 3 user stories.

Peer Review User stories that are marked as done by a developer, and needs to be re-
viewed before it can be put into production.

Code Done User stories that are no longer in progress, reviewed and put into produc-
tion.

Table 2: Trello-board description

1https://trello.com/

7

https://trello.com/

Management System for CS Assignments

GitHub

GitHub2 was chosen by the group as everyone is comfortable with it and has experience from
using it from before. GitHub was used for version control and storage for the source code
under development.

GitHub has an issue-tracker built-in where the developers or the product owner could add
any kind of issues, bugs or new features.

Toggl

Toggl3 is a time tracking tool, that offers both a web-site and mobile-application for tracking
time. This was used to count hours logged by the developers, so the group members could
see their own time, as well as the others.

OpenStack

OpenStack4 is a web-based service for controlling instances, where we put our production
system, and several testing systems. This was provided by the school, NTNU. Our usage of
OpenStack can be read at section 6.1.

Discord

Discord5 was used as the main communication channel outside meetings. Discord is a com-
munication application, with a chat feature with many functionalities. Discord allows the
users to create their own servers for free, where we had only the three developers, as well
as the product owner in different topic based chat-channels. In the channel with the product
owner we could contact him for questions, or vice versa, and this was highly used throughout
the project.

Google Drive

Google Drive6 were used for storing documents that did not fit into the repository on GitHub.
Mostly used for storing the document for the project plan, figures, diagrams and spreadsheets
from user feedback 7.3.

JetBrains IDE

For the coding the group used two different IDE; JetBrains IntelliJ7 and GoLand8. IntelliJ is
mainly an IDE for Java-development, but supports other languages lige Go. GoLand is the
equal IDE for IntelliJ, but focused on Go. This environment gave us live feedback on syntax
correction and variable referencing within the whole project.

2https://github.com
3https://toggl.com
4https://openstack.org
5https://discord.gg
6https://drive.google.com
7https://www.jetbrains.com/idea/
8https://www.jetbrains.com/go/

8

https://github.com
https://toggl.com
https://openstack.org
https://discord.gg
https://drive.google.com
https://www.jetbrains.com/idea/
https://www.jetbrains.com/go/

3 Requirements

3.1 Use cases

Since the development method was so agile, a lot of the use cases was developed along side
the process. Further in this chapter we will elaborate several use cases in high level, with a
few in detail, to give an overall better overview of the functionality we have developed in the
system.

9

Management System for CS Assignments

3.1.1 Use case-diagram

Figure 1: Use Case Diagram

10

Management System for CS Assignments

3.1.2 Use case descriptions

Use Case Register
Actor Student, TA or Teacher
Goal Create new user with name, email and password
Pre-condition The email is valid and does not exist in system database
Description User fills in name, email and password and clicks on the register-button.

If the email belongs to the user s/he will receive an email to confirm the
new user creation.

Table 3: Use case for registering new user

Use Case Log in
Actor Student, TA or Teacher
Goal Authenticating to the system with email and password
Pre-condition User is already registered with their email
Description User fills in email and password and clicks on the login-button.

If the user already is logged in, and opens the website on a fresh tab, the
user will be automatically logged in, if the last visit did not exceed the
session-time.

Table 4: Use case for authenticating

Use Case Log out
Actor Student, TA or Teacher
Goal Log out of the system
Pre-condition User is already signed in
Description User clicks on log out-button. The user will be logged out

Table 5: Use case for logging out

Use Case Forgotten password
Actor Student, TA or Teacher
Goal Create new password
Pre-condition User is already registered with their email
Description User clicks on forgotten password and enters the relevant email. The

user will then get an email to change the password.

Table 6: Use case for forgotten password

Use Case Join course through URL
Actor Student, TA or Teacher
Goal Join course on the site through URL, for unlocking access to assignments
Pre-condition User has the join-course URL
Description The user pastes the URL into their browser, and if they are logged in, they

will successfully join the course. If the student is not logged in, they will
get sent to the login-page. Authenticating them self with successfully join
the course. And if the user hasn’t registered an user, the user can register
a user and gets the email to confirm and join course.

Table 7: Use case for joining a course through URL

11

Management System for CS Assignments

Use Case Join course with hash
Actor Student, TA or Teacher
Goal Joining a course on the site, for unlocking access to assignments
Pre-condition User has the course hash
Description User goes to front page of the website, and enters the course hash into

the input field right below the menu bar, and clicks the appended button
to the field.

Table 8: Use case for joining a course with course hash

Use Case Deliver assignment
Actor Student
Goal Submit assignment
Pre-condition User is student in course with assignment due
Description User goes to the course page and select due assignment under the as-

signment tab. And then fills out the submission form for assignment and
clicks on deliver-button

Table 9: Use case for delivering assignment

Use Case Re-deliver assignment
Actor Student
Goal Update delivered assignment
Pre-condition User is student in course with assignment due and has delivered assign-

ment
Description User goes to the course page and select delivered assignment under the

assignment tab. User changes something on assignment and then clicks
on re-deliver-button to update assignment

Table 10: Use case for re-delivering assignment

Use Case Withdraw assignment
Actor Student
Goal Delete delivered assignment
Pre-condition User is student in course with assignment due and has delivered assign-

ment
Description User goes to the course page and select delivered assignment under the

assignment tab. And then clicks on withdraw-button

Table 11: Use case for withdrawing assignment

Use Case Perform review
Actor Student
Goal Perform review on another students assignment
Pre-condition User is student in course with assignment delivered before deadline
Description User goes to the course page and select delivered assignment under the

assignment tab. The user clicks on reviews-tab, and selects a review to do
on another students assignment and then fill out the form and submits

Table 12: Use case for performing review

12

Management System for CS Assignments

Use Case Update review
Actor Student
Goal Update performed review on another students assignment
Pre-condition User is student in course with assignment delivered before deadline and

has performed the review.
Description User goes to the course page and select delivered assignment under the

assignment tab. The user clicks on reviews-tab, and selects performed
review. The user then updates the review form and submits

Table 13: Use case for updating performed review

Use Case Edit profile
Actor Student, TA or Teacher
Goal Edit the profile, add/change secondary email or change password
Pre-condition User is logged in
Description User goes to the profile site and clicks on edit. The user can add/change

secondary email and change password

Table 14: Use case for editing profile

Use Case Create course
Actor TA or Teacher
Goal Create a course
Pre-condition User is a teacher
Description User goes to dashboard and on the site for courses. User clicks on new-

button and fills out the data and creates the course

Table 15: Use case for creating course

Use Case Update course
Actor TA or Teacher
Goal Update a course
Pre-condition User has created a course
Description User goes to dashboard and on the site for courses. User clicks on a

created course and enter the changes and submits

Table 16: Use case for updating course

Use Case Email course
Actor TA or Teacher
Goal Email all students in a course
Pre-condition User has created a course and there is more than zero students in course
Description User goes to dashboard and on the site for courses. User clicks on email

students-button on a created course. The user fills the subject and mes-
sage and sends the email.

Table 17: Use case for emailing students in a course

13

Management System for CS Assignments

Use Case Create assignment
Actor TA or Teacher
Goal Create an assignment
Pre-condition User has created a course
Description User goes to dashboard and on the site for courses. User goes to the

assignment site and clicks on the new-button. User fills in fields and
submit.

Table 18: Use case for creating an assignment

Use Case Update assignment
Actor TA or Teacher
Goal Update an assignment
Pre-condition User has created a course and an assignment
Description User goes to dashboard and on the site for courses. User goes to the

assignment site and clicks on the new-button. User fills in fields and
submits.

Table 19: Use case for updating an assignment

Use Case Generate submissions report
Actor TA or Teacher
Goal Generate report of all submissions from one assignment
Pre-condition User has created an assignment and students has submitted their assign-

ment
Description User goes to dashboard and on the site for courses. User goes to the

assignment site and clicks on the see-submissions-button. User clicks on
generate report and opens file in excel office.

Table 20: Use case for generating report of all user submissions from one assignment

Use Case Create submission/review form
Actor TA or Teacher
Goal Create a submission/review form for an assignment
Pre-condition User is a teacher
Description User goes to submission/review form site and clicks on new, then cus-

tomizes the form and submits

Table 21: Use case for creating a submission/review form

Use Case Update submission/review form
Actor TA or Teacher
Goal Update a submission/review form
Pre-condition User has crated a submission/review form and form is not assigned to

an assignment
Description User goes to submission/review form site and clicks on existing form,

then updates the form and submits

Table 22: Use case for updating a submission/review form

14

Management System for CS Assignments

Use Case Update submission/review form weights
Actor TA or Teacher
Goal Update weights on submission/review form
Pre-condition User has crated a submission/review form
Description User goes to submission/review form site and clicks on existing form,

then updates the weights and submits

Table 23: Use case for updating submission/review form weights

Use Case Remove a student from course
Actor TA or Teacher
Goal Remove a student from a course
Pre-condition User is teacher of a course that has more than zero students
Description User goes to manages student site and chooses the course and student,

then clicks on remove-button

Table 24: Use case for removing student from course

Use Case Update a student’s password
Actor TA or Teacher
Goal Update a student’s password from a course
Pre-condition User is teacher of a course that has more than zero students
Description User goes to manages student site and chooses the course and student,

then clicks on change password-button and chooses to use the auto gen-
erated password or a custom password

Table 25: Use case for updating a student’s password

Use Case Update the FAQ
Actor TA or Teacher
Goal Update the FAQ
Pre-condition A FAQ exists
Description User goes to FAQ site and clicks on edit-button, then edits the MD text

and submits

Table 26: Use case for updating the FAQ

3.2 Requirements

3.2.1 Functional requirements

Remove Students The teacher should be able to remove students from the course, e.g., in
case of an abandoned account, duplicate sign up, etc.

Confirm Delivered Assignment The student should get an explicit feedback that the sub-
mission was successful (to feel confident that everything works).

Deleteable User Submission Students should be able to withdraw their delivered submis-
sion.

Default Weight And Input Type When starting to edit a form, the user should be able to

15

Management System for CS Assignments

specify the default type of entry (since it often repeats) and default weight for any
newly created field.

Order List Allow lists to be ordered by clicking on columns. List of interest: Participants,
submissions, reviews, etc.

Manual Activation Of Review Instead of relying only on the system for activating reviews,
it would be good to be able to override the system and manually activate the reviewing
process instead.

Manage Assigned Reviews The teacher(admin) should be able to view the assigned reviews
to individual students and modify those. For example in the case of empty repository
or test users, those should be excluded from the reviewing process - which may require
manual reassignment.

Allow For Minor Changes In Forms Allow for minor modifications of forms that do not in-
volve structure. For example, teacher(admin) should be able to fix some typos or adjust
descriptions. The teacher should also be able to activate/modify weights.

Modify Default Settings For Weights Submission forms generally don’t have weights, whereas
review forms effectively always have weights. The current settings can lead to mistaken
activation of weights when editing assignments.

Log For Submission And Review Add logging of submission and review submissions. This
could make retracing/following easier. Looking ahead: Provide hooks for logs to dis-
cord.

Optional Form Input Have an option to make an item optional selectively in the forms
would be good.

Show Assignment Status Indicate the assignments that are closed. and open. Perhaps an
additional review label would be good for assignments that have a review stage.

Grab A Review Let users "grab" the reviews them self, i.e show the user how many minimum
reviews s/he has to do and provide an option to "grab" a review to do. Also have the
option to do more reviews than needed.

Display When A User Joins Course In the course participants tab, it would be good to see
when a user joined the course.

See Users Performed Reviews In addition to being able to see the reviews a user has re-
ceived for their submission, it would be good to have a separate overview of the reviews
a user has done.

Display Statistics In Percentage Display standard deviation in calculated percentage for re-
views, both in individual view and summary sheet.

Submission Status Show if an assignment has been delivered by the user or not.

Markable Textbox for repository URL When delivering the repository URL, make it a link
or button to easier open.

Change Review Add possibility to edit delivered review before deadline is over.

3.2.2 Non-functional requirements

Branding Brand the system properly. Clearly state what the name of the system is.

Extendable Make the system able to be extended with future development.

16

4 Technical Design

4.1 System overview

In this chapter we will go through the technical aspects and design of the finished system as
well as the smaller parts of the system. In Figure 2 you can see how the system is deployed
on the OpenStack infrastructure. The system is deployed through separate containers using
Docker-compose in Docker on a Linux virtual machine, and can access the outside world
through the security group settings in place. Docker-compose lets us have a shared virtual
network between the containers so they can communicate with each other, this is done by
specifying which ports each container can be accessed through. The ports are only available
locally unless the security group has opened them for the external networks.

Because of the nature of Docker and running everything in containers, the high level system
architecture for the project is a service oriented architecture. In the lower level architecture,
inside the containers or services, we used the Model-View-Controller architecture.

Figure 2: System View

4.2 Architecture

4.2.1 Service Oriented Architecture

Service oriented architecture [5] means that the system is run in services and can be inter-
preted like the system is divided into different sub systems that contain themselves. In our
project we are currently running four services to maintain the system functionality, although
there were six. We are currently running the webservice, mailservice, dbservice and Adminer.
Adminer is just a standalone 3rd party package for a simple GUI interface to interact with
the dbservice. dbservice is the MySQL image/server running in a container, keeping all the
tables and data for the whole system. The webservice serves all the pages to the user, handles

17

Management System for CS Assignments

all the requests made, and is the core of the system. The mailservice will act upon receiving
specific payloads, and send emails to the users specified therein.

All our services are built through Docker-Compose which again builds their correlating Dock-
erfiles to ensure that they are built correctly and maps to the correct ports on the internal
network.

The two services that we removed were the schedulerservice and the peerservice. The main
objective of these were to schedule tasks ahead of time, in reality it was to schedule submis-
sion deadlines and run the peer-review distribution algorithm at the deadline.

4.2.2 Model-View-Controller

Before we started coding we already decided on using the Model-View-Controller (MVC)
pattern [6] for the architecture of the system. This is implemented in both the webservice
and mailservice, although a bit different from each other. The idea of the pattern is that the
model holds the data, the view displays the data, and the controller updates model with new
data, or inserts data from the model to the view. It is somewhat close to a three layered model.

Model

The model part holds all the structs or classes, and is where the data exists. The model layer
is the bottom layer of this architecture, and the layer that communicates with the database.
In our project, and especially the webservice, the model layer was divided further into a
service layer and a repository layer as you can see in Figure 3. The repository layer holds
all the functions needed to update, insert and fetch data from the database, by taking data
from a model, or populating one, while the service layer is used to hold all the pointers to
the repository layer’s functionality. The service layer acts like a tunnel for the information
stream, and gives the controller access to all its functionality through one pointer.

18

Management System for CS Assignments

Figure 3: Webservice MVC

View

The view displays the web page to the users, this can be seen as all the template files in
our project. Through the http/template package in Go, the template files can have different
template tags that allows the controller to insert data into it. It is also through the view that
the user can interact with the site through forms and input fields. The information provided
in such fields are sent to the controller through POST requests when forms are submitted.

Controller

The controller has a tight connection with both the model and the view layer, because it
controls the data flow between them. In our project this is the layer where all requests are
directed. For GET requests, the controller usually takes data from the model layer, and inserts
it into the view layer before it is presented to the user with all the correct information. For
POST requests, the controller is receiving data from the user or another service, and updates
the model layer with this new information.

19

Management System for CS Assignments

4.3 UI Design

4.3.1 Graphic Design

The User Interface was designed with simplicity and clarity in mind. We used Bootstrap 4
to create a clean and responsive design throughout the system. The interaction between the
system had always some connection to the courses or assignments, and therefore we used a
card/block styled look that each class or assignment was contained inside. This makes the
interface intuitive because all the information related to a specific course is inside each own
block and naturally further information available through the buttons that resides inside
it. Through badges and meaningful coloring schematics we show basic information that is
relevant to each assignment or course inside the course blocks, while the detailed information
is displayed in the designated pages. An example of this can be seen in figure 4.

For the button choices we wanted a blended design where the buttons does not stand out, but
still were obvious that they were buttons. For the most important buttons, like the submission
buttons, we would add more color to them, but otherwise we would place them in strategic
positions that instantly lets the users know that they were indeed, buttons. Take an example
from Figure 4 where the important information lies in the badges and the deadlines, while
the button is blended into the background, yet it is very apparent that it will lead the user to
the detailed assignment page.

Figure 4: UI Badges in Card example

Screenshots of the final system is added in Appendix G.

4.3.2 Interaction Design

The group had a vague idea of how the website should look like and how the users would
navigate it, therefore we created a site map as seen in Figure 5. This initial design allowed us
to speed the development at the start of the project, because we knew at least the basic pages
of the site and what functionality they required. The actual pages changed during the process
according to the always changing functional requirements. The most major changes to the
initial site map was to implement an admin dashboard to control all the admin functionality,

20

Management System for CS Assignments

instead of having it appear inside every sub page. Another large part of the change was taking
out all of the automatic validation pages.

Figure 5: Initial Site Map

The final sitemap is as you can see in Figure 6 largely modified to fit all the admin/teacher
functionality in one convenient place. A reason to structure the admin functionality into the
admin pages was to avoid cluttering of the template files used in the rest of the pages available
to the user.

Another reason for separating the admin functionality into the admin pages, was to not clutter
the normal pages with buttons. Most of the functionality we developed were for the admin
users, and it might be very unnatural to keep in certain pages because it would be too much
buttons or interaction points in one page. This had an impact on the graphic designing as
well because we always wanted the website to be easy to understand for all the users.

All the pages has an navigation bar at the top to ensure that the users always can go back to
the front page, and where it is natural, back buttons on the page itself to go back one step.

21

Management System for CS Assignments

Figure 6: Final Site Map

22

Management System for CS Assignments

4.4 Database design

Through our studies it has been a great focus on using relational databases and normalization
of data. MySQL was the natural choice to implement the database in, because all the group
members has gone through several courses directly or indirectly using this technology. It has
the ability for data transactions, which allowed us to program for redundancy and stability.

The first database design was initially planned for the first milestone cycle, where we tried to
figure out the basic tables needed to implement the users, courses, assignments, submissions
and peer review. Figure 7 shows how we designed it. We did not want to spend too much
time at the initial model because of the iterative approach to the system development, but it
was created as a basic database structure to continue building on.

Figure 7: Initial Database Design

Through the development the database design changed quite a lot to fit the needs of the
application, and it has several times been refactored and made more efficient. Figure 8 shows
the final design of the database, and all its connections. The Forms part of the database
structure needed to be modified in so that it was both flexible in terms of different types of
input structures inside the form. We wanted the teacher to create forms much like Google
Forms1. As you can see both the review forms and submission forms use the forms table
to store the actual data of each form in the fields table, making the flexible and reusable
approach we wanted possible.

The user_reviews table and the user_submissions table are very similar in both appearance
and the data they contain, but we decided that because of the nature of the different type of

1https://www.google.com/forms/about/

23

https://www.google.com/forms/about/

Management System for CS Assignments

information they contain, they should stay separated.

We have also added a user_pending and validation table to ensure that new users must reg-
ister with valid emails, this was implemented as a result of actual users unable to write in
their correct emails and thus being unable to log back in at a later time.

The logging table was also extensively worked on to ensure that each log would contain all
the necessary data it might need to display accurate and informational logs for the admin
users to take advantage of.

4.5 Project/File structure

The project and file structure is largely governed by the container structure at the high level.
In figure 9 you can see how our project folder is split into the different containers/services,
which therein have their own structures.

The dbservice structure has a volume mounted data folder in order to keep the data even if the
container is shut down. Further it includes a Makefile which tells Docker to specifically mount
the volume, and insert the "database.sql" and "database_insert.sql" files into the container on
build time in order to setup the database correctly.

The other services are built on the same server layout, with a "main.go" excecutable that
initializes database connection and further utilizes the "server.go" files in order to launch the
http endpoints and router functionality.

The mailservice has no inside folders, but has the functionality separated into different files.
It has a variant of the MVC architecture, but since it is setup as an API endpoint for the
webservice to communicate through, it does not have a View layer.

Unlike the mailservice, the Webservice has a lot more functionality and it separates this into
related folders. As shown in Figure 3 the model layer is split up as previously described, into
the model, service and repository folders.

24

Management System for CS Assignments

Figure 8: Final Database Design

25

Management System for CS Assignments

Figure 9: File Structure

26

5 Implementation

5.1 Web server

We will be showing how the group has used Go’s features as a programming language for
back- and front-end development. All the code examples is a representation of how we did
it in the project, for a more detailed view of how we did it in the production code, see the
Git-repository (Appendix A).

Creating a HTTP-server in Go is a simple task [7], as it has a HTTP-package builtin to the
standard libraries. All needed is to call a function called ListenAndServe from the net/http
package. This function takes in two arguments: a string, the address for the server, and a
handler, that can be nil. In the example 5.1 will start a HTTP-server at the localhost with the
port 80, without a handler. This example also shows how to create a request-handler for the
root URL, sent to a function called ExampleHandler.

Listing 5.1: Simple HTTP-server in Go� �
1 package main
2
3 import (
4 "fmt"
5 "net/http"
6)
7
8 func main() {
9 http.HandleFunc("/", ExampleHandler)

10
11 http.ListenAndServe(":80", nil)
12 }� �
5.1.1 Routing

In this project, a package called Mux made by Gorilla1 has been used for handling the routing
for all requests.

Mux allows us to route specific handlers to specific HTTP request methods, as in native Go
you would have to condition check for what kind of request method was called for a specific
route. This let us route many routes to handlers with a single type of request method. In the
code sample 5.2 it is shown how we implemented Mux for handling our routes.

Listing 5.2: Mux routing� �
1 import (
2 "net/http"
3 "github.com/gorilla/mux"
4)
5
6 func main() {

1https://www.gorillatoolkit.org/

27

https://www.gorillatoolkit.org/

Management System for CS Assignments

7 router := mux.NewRouter ()
8
9 router.HandleFunc("/", ExampleGetHandler).

Methods("GET")
10 router.HandleFunc("/", ExamplePostHandler).

Methods("POST")
11 router.HandleFunc("/{ message}", HelloHandler).

Methods("GET")
12
13 http.ListenAndServe(":80", router)
14 }� �
5.1.2 HTTP Handlers / Controllers

All request handlers have two arguments in their functions, a response writer and a request,
these functions is used as the controller for the MVC-architecture. The first parameter, the
ResponseWriter handles all the response data, that goes back to the client that perform the
request, like the response header, status code and content. In the sample code 5.3 shows how
to set the content type and status code for a request, and output a simple string.

Listing 5.3: HTTP Handler� �
1 func ExampleHandler(w http.ResponseWriter , r *http.

Request) {
2 w.Header ().Set("Content -Type", "text/html;␣

charset=utf -8")
3 w.WriteHeader(http.StatusOK)
4 w.Write ([] byte("Hello␣World"))
5 }� �

Mux inside handlers

Mux also gives us a helper function for retrieving parameters in the URL. All values retrieved
from the URL will be the a string type. And if this needs to be converted to any other types,
it can be done with the builtin string converter.

Fetching URL parameters with Mux is shown in the code sample 5.4.

Listing 5.4: Using Mux inside handlers� �
1 func HelloHandler(w http.ResponseWriter , r *http.

Request) {
2 vars := mux.Vars(r)
3
4 message := vars["message"]
5 if message == "" {
6 message = "World"
7 }
8
9 w.Write ([] byte("Hello␣" + message))

10 }� �

28

Management System for CS Assignments

5.1.3 Parsing the request body

JSON is one of the most commonly used for sending data over HTTP-requests, as many pro-
gramming languages has support for parsing and encoding JSON. In the code sample 5.5
shows how we handle JSON data sent over the request body.

On line 16 the empty initialized struct is passed as a reference which lets the decoder write
data into it. As the struct is declared with a JSON-tag on line 8 and 9, it lets the decoder reads
in the JSON-data and maps it to the related variables.

Listing 5.5: Parsing POST-request body� �
1 import (
2 "log"
3 "encoding/json"
4 "net/http"
5)
6
7 type ExampleStruct struct {
8 Id int ‘json:"id"‘
9 Message string ‘json:" message"‘

10 }
11
12 func ExamplePostHandler(w http.ResponseWriter , r *

http.Request) {
13 decoder := json.NewDecoder(r.Body)
14
15 data := ExampleStruct {}
16 err := decoder.Decode (&data)
17 if err != nil {
18 log.Println(err.Error())
19 return
20 }
21
22 log.Println(data.Id , data.Message)
23 }� �
5.1.4 Parsing form data

Handling data from a form with Go can be done with just fetching the field-names from the
request. All values fetched this way will be as a string, and can converted to other types with
the builtin packages for string-conversion.

Listing 5.6: Parsing form data� �
1 import (
2 "log"
3 "net/http"
4)
5
6 func ParseForm(w http.ResponseWriter , r *http.

Request) {
7 name := r.FormValue("name")
8 message := r.FormValue("message")
9

29

Management System for CS Assignments

10 log.Println(name , message)
11 }� �
5.1.5 View

We implemented a view based on an Go web application example by Joseph Spurrier [8],
where the view handles the loading of template files and plugins. This makes it flexible to
create several views and reuse files, and keep the file count down. The view is created with
the request to handle some base variables. Then the name is declared, which is the template
file within the template folder. Declaring more variables is optional, but useful for creating a
dynamic page. The Vars variable is a map with string keys with interface as values, that makes
it possible to have all kind of types as values. Lastly the view will render everything, to the
ResponseWriter.

Listing 5.7: Usage of View� �
1 func ExampleHandler(w http.ResponseWriter , r *http.

Request) {
2 v := view.New(r)
3 v.Name = "path/to/template"
4
5 v.Vars["Message"] = "World"
6 v.Vars["Todo"] = [] string{"Task␣1", "Task␣2", "

Task␣3"}
7
8 v.Render(w)
9 }� �

5.1.6 Templating

Go’s package html/template2 provides a rich templating language for HTML templating, that
gives us the possibility to display data in a structured way.

One of the big benefits of using the native HTML templates from Go, is that is built with
security in mind, so everything that is rendered will be automatically escaped.

In the code sample 5.8 we can see how different kind of types can be used for displaying
data. This example shows how to print out a single value, and loop over a slice and display
the values inside it.

Listing 5.8: Sample of a Template� �
1 <!DOCTYPE html >
2 <html >
3 <head >
4 <title >Go Template Example </title >
5 </head >
6 <body >
7 <h1>Hello {{ .Message }}</h1 >
8 <h2>Todo -List:</h2 >
9

10 {{ range .Todo }}
11 {{ . }}

2https://golang.org/pkg/html/template/

30

https://golang.org/pkg/html/template/

Management System for CS Assignments

12 {{ end }}
13
14 </body >
15 </html >� �
Plugins

Plugins is helper functions used inside templates, and needed because the basic support for
handling data inside Go’s template does not support enough operations, and does not have
any support for checking conditions on different value types. In the listing 5.9 it is shown how
a plugin is made, using the function map from the html/template package. Several function
maps can be created inside a single plugin, for grouping functions maps.

Listing 5.9 shows a simple example for a "Hello World" program with functions map, and
listing 5.10 show how it is used inside the template.

Listing 5.9: Template Plugin� �
1 import "html/template"
2
3 func Plugin () template.FuncMap {
4 f := make(template.FuncMap)
5
6 f["HELLO"] = func(name string) string {
7 if name == "" {
8 return "Hello␣World"
9 }

10
11 return "Hello␣" + name
12 }
13
14 return f
15 }� �

Listing 5.10: Plugin usage inside templates� �
1 <!DOCTYPE html >
2 <html >
3 <head >
4 <title >Go Template Example </title >
5 </head >
6 <body >
7 <h1 >{{ HELLO .Message }}</h1 >
8 </body >
9 </html >� �

5.1.7 Form Builder

A form builder was created from scratch for making forms for the submissions and peer-
reviews for the system. It was built with native JavaScript, and have a single dependency
(Sortable3) for a drag and drop feature, but will still work without it, but will not support the
drag and drop feature. The script is built up with 3 classes, FormBuilder, Form and Field. The

3https://github.com/SortableJS/Sortable

31

https://github.com/SortableJS/Sortable

Management System for CS Assignments

FormBuilder-class is a to wrap up all the code into a single class, that initializes the script. The
Form-class handles all interactive functionalities, and holds all the data for the form. And the
Field handles each individual field in the form, keep the data, and handles interactions with
each single field.

The form builder allows several field-types; text-field, textarea, select-bar, checkbox, URL, num-
ber-input and a paragraph, which is used for displaying text only [9].

In figure 10 there is a screen shot off how the form builder looks like.

Figure 10: Form Builder screen dump

5.2 Database

Go does not have any SQL drivers in their standard packages, but it has a list of recognized
public drivers4 where we decided on using the go-sql-driver/mysql driver which is included
in, and pass the compatibility test suite5.

The database is built on the MySQL 5.6 Docker Image and settings further customized through
our docker-compose file. Further elaboration on this can be read in Chapter 6.

Connecting to the database is done through simple code

Listing 5.11: MySQL Database Connection� �
1 import "database/sql"
2 import _ "github.com/go-sql -driver/mysql"
3
4 db , err := sql.Open("mysql", "user:password@/dbname

")� �
The connection is always initialized through the main.go file in each service using the database,
and fetched through the different controllers and functions. This makes the system use as few

4https://github.com/golang/go/wiki/SQLDrivers
5https://github.com/bradfitz/go-sql-test

32

https://github.com/go-sql-driver/mysql/
https://hub.docker.com/_/mysql
https://github.com/go-sql-driver/mysql/#usage
https://github.com/golang/go/wiki/SQLDrivers
https://github.com/bradfitz/go-sql-test

Management System for CS Assignments

as possible connections to the database, so it will not crash because of max connection pa-
rameters inside the database service.

The connection lets us run queries, transactions and executions on the database through the
Go code, and is a simple way of handling data throughout the system. Below we will showcase
different examples of how we update, insert and fetch data from the database.

Listing 5.12: MySQL Update Example� �
1 // UpdatePassword for a user
2 func (repo *UserRepository) UpdatePassword(id int ,

hashedPassword string) error {
3 query := "UPDATE␣users␣SET␣password␣=␣?␣WHERE␣id␣

=␣?"
4
5 tx, err := repo.db.Begin()
6 if err != nil {
7 return err
8 }
9

10 _, err = tx.Exec(query , hashedPassword , id)
11 if err != nil {
12 tx.Rollback ()
13 return err
14 }
15
16 err = tx.Commit ()
17 if err != nil {
18 tx.Rollback ()
19 return err
20 }
21
22 return err
23 }� �

Listing 5.13: MySQL Insert Example� �
1 // InsertUser to a course , gives a relationship

between a user and a course in the database
2 func (repo *CourseRepository) InsertUser(userID int

, courseID int) error {
3 // Query string
4 query := "INSERT␣INTO␣usercourse␣(userid ,␣

courseid)␣VALUES␣(?,␣?)"
5 // Begin transaction
6 tx, err := repo.db.Begin()
7 if err != nil {
8 return err
9 }

10 // Execute query with parameters
11 _, err = tx.Exec(query , userID , courseID)
12 if err != nil {
13 tx.Rollback ()
14 return err
15 }

33

https://github.com/JohanAanesen/CSAMS/blob/master/webservice/repository/user.go#L214
https://github.com/JohanAanesen/CSAMS/blob/master/webservice/repository/course.go#L172

Management System for CS Assignments

16 // Commit transaction
17 err = tx.Commit ()
18 if err != nil {
19 tx.Rollback ()
20 return err
21 }
22 // Return no error
23 return nil
24 }� �

Listing 5.14: MySQL Fetch Example� �
1 // FetchHash hashed password for a user
2 func (repo *UserRepository) FetchHash(id int) (

string , error) {
3 var result string
4
5 query := "SELECT␣password␣FROM␣users␣WHERE␣id␣=␣?

"
6
7 rows , err := repo.db.Query(query , id)
8 if err != nil {
9 return result , err

10 }
11
12 defer rows.Close ()
13
14 for rows.Next() {
15 err = rows.Scan(& result)
16 if err != nil {
17 return result , err
18 }
19 }
20
21 return result , err
22 }� �
5.3 Mail service

When planning to implement the mailservice to the system, it was estimated around one to
two weeks to get it done. This estimation was not based on experience, or any estimation
model, it was just estimated of how complicated we thought it would be. The estimate was
not correct as the mailservice was implemented within a day.

This was because Go had an internal package that implemented the Simple Mail Transfer
Protocol (RFC 5321) called "net/smtp". All you need to send an email with this package
is the authentication which consists of identity, user name/email, password and host. Then
the message in a byte array consisting of the addressing of emails (to, cc or bbc), the email
addresses, subject and then the message. The final element is just to send the email with the
server and port, the authentication, the email it’s sent from, the emails it’s sent to and the
message. Altogether it’s only needed two functions to send an email in Go.

The email and email password are stored as environment variables to strengthen the security

34

https://github.com/JohanAanesen/CSAMS/blob/master/webservice/repository/user.go#L22
https://golang.org/pkg/net/smtp/#Client.Mail

Management System for CS Assignments

as the code is public on GitHub.

Listing 5.15: SendMail function in Go, line 217� �
1 package main
2
3 import (
4 "net/smtp"
5 "os"
6 "strings"
7)
8
9 // sendMail sends the mail to recipient(s)

10 func sendMail(toType string , recipients []string ,
subject string , message string) error {

11
12 users := strings.Join(recipients , ",")
13
14 // Get authentication
15 auth := smtp.PlainAuth("", "noreply@example.com",

"123 abcPassword", "smtp.gmail.com")
16
17 // Write message
18 msg := []byte(toType + ":␣" + users + "\nSubject:

" + subject + "\n" + message)
19
20 // Send mail and check for errors
21 err := smtp.SendMail("smtp.gmail.com :587", auth ,

"noreply@example.com", recipients , msg)
22 if err != nil {
23 return err
24 }
25
26 return nil
27 }� �
Because it was so simple to implement the mailservice, it was decided to make the service as
user-friendly as possible to use. The way the service was implemented was to have an GET
handler to give feedback that it doesn’t support GET requests. The POST handlers checked if
the payload isn’t empty and if the mail authentication code is correct. The mail authentication
is there so only the system, that has the code, can email others. If everything checks out, the
email get sent. The figure below, listing 5.16, shows how simple there is to send an email
from the webservice.

Listing 5.16: Send mail from webservice, line 199� �
1 package controller
2
3 import (
4 "github.com/JohanAanesen/CSAMS/webservice/shared/

mail"
5 "net/http"
6)
7
8 // RegisterPOST validates register requests from

users

35

https://github.com/JohanAanesen/CSAMS/blob/master/mailservice/handler.go
https://github.com/JohanAanesen/CSAMS/blob/master/webservice/controller/register.go

Management System for CS Assignments

9 func RegisterPOST(w http.ResponseWriter , r *http.
Request) {

10
11 // Get mailservice
12 mailService := mail.Mail{}
13
14 // Send email
15 err = mailService.SendSingleRecipient("

noreply@example.com", "Example␣subject", "
Example␣message")

16 if err != nil {
17 ErrorHandler(w, r, http.

StatusInternalServerError)
18 log.Println("mail.MailForgottenPassword ,␣",

err.Error ())
19 return
20 }
21 }� �
In the aftermath it would be better to actually use an estimation model to estimate how long
it would take to implement. It would also be better to research a little more before starting
to get a better grip of how the implementation would be.

5.4 User Authentication

User Authentication was handled through the user of Go’s bcrypt6 package together with
Gorilla Sessions7. The bcrypt package has the functionality to hash the user passwords, which
we again store in the database. It also has the functionality to compare a string to the hashed
string stored, and return whether it is correct. Gorilla Sessions was used to store session data
about the user inside the server, while setting a cookie on the client side with a key relating
to this data.

In Figure 11 you can see a high level approach to how the authentication process is com-
pleted, where the user gives email and password as input, the server then fetches the hashed
password from the database and compares it through the bcrypt package. If the password
matches then a session is created and the user is logged in.

6https://godoc.org/golang.org/x/crypto/bcrypt
7http://www.gorillatoolkit.org/pkg/sessions

36

https://godoc.org/golang.org/x/crypto/bcrypt
http://www.gorillatoolkit.org/pkg/sessions

Management System for CS Assignments

Figure 11: Authentication Model

5.5 Login Sequence

Figure 12: Sequence Diagram for logging in

37

Management System for CS Assignments

5.6 Register Sequence

Figure 13: Sequence Diagram for registering an user

5.7 Codebase

In Table 5.7 you can see the distribution of languages used in the system.

Language Percent Rounded Lines
Go 58.6% 12 000
HTML 22.6% 4 600
Markdown 9.1% 1 800
JavaScript 5.7% 1 200
SQL 2.3% 500
Other 1.0% 160
CSS 0.7% 150

Table 27: Languages used in the project

38

6 Deployment

6.1 OpenStack

OpenStack was used as Infrastructure as a Service (IaaS) for this system, which meant we
didn’t have to think about any hardware for developing the system. The school provided us
with the resources we needed for creating instances to run the production and development
environments on.

OpenStack allowed us to select image type, flavor type and set security groups which makes
it highly customizable, and this is also very similar to other big cloud service providers, as
AWS1, Microsoft Azure2 and Google Cloud3.

As OpenStack is hosted by the NTNU i Gjøvik, and they have blocked outside access, we had
to be on the Eduroam network, or use a VPN to use the system, or connect to the instance
running it.

Flavor

Under a discussion early on in the project with the product owner, we talked about what
kind of power an instance would need to maintain the system. We assumed we would need
a powerful instance at the peak user-usage, so we went with a flavor with 2 VCPUs, 8GB of
RAM and 40GB of persistent storage, called m1.medium.

Instance

Ubuntu 4 was the choice of operating system, as it has good support for most software, and
are one of the largest Linux distributions. The version selected was number 18.04, as it latest
long term supported version for Ubuntu servers.

Shared access

The instances are paired up with only one public key, which only made it possible for one
client to connect to the instance. At first the group members had one instance each for de-
veloping, but when we had an instance in production, only one had access to it.

To solve this problem, a SSH-tunnel was created. One group member setup a Raspberry PI5,
and gave remote access to the rest of the group. And used the Raspberry PI as the client
for the key pair for the production instance. This way all group members could access the
production instance, in case something happened to it, and the other group members were
unavailable.

1https://aws.amazon.com/
2https://azure.microsoft.com/
3https://cloud.google.com/
4https://www.ubuntu.com/
5https://www.raspberrypi.org/

39

https://aws.amazon.com/
https://azure.microsoft.com/
https://cloud.google.com/
https://www.ubuntu.com/
https://www.raspberrypi.org/

Management System for CS Assignments

Security Groups

We only chose to open a few ports for the system, port 80 and 443 for HTTP/HTTPS requests,
and port 8080 for HTTP request to Adminer6.

The amount of ports open were reduces to only a few, and only TCP for making the attack
surface for the system as small as possible.

6.2 Docker

Docker was installed on the virtual machine using Snap7 to ensure we got the latest ver-
sion. Further we created Dockerfiles written in yaml, for all the services we developed. The
Dockerfile lets us create a set of instructions Docker will use when building the images.

The services we coded in Go were set up in a special way through multi-stage building,
allowing us to minimize the sizes of the containers, so they do not include the whole Go
library [10]. This made the containers lightweight at 20MB, while a normal build of the
container would render it at around 800MB.

6.3 Docker Compose

Docker Compose is a tool for defining and running multi-container Docker applications8. It
let us insert different environmental variables into the services, as well as connecting them
through an internal network created by Docker.

The docker-compose.yml file was set up to start the different services in the system with each
corresponding Dockerfiles. Except for the Adminer service which we just pulled the image
from Docker Hub9. Docker Compose allowed us to say which services were dependent on
each other, so it would build the most important service first. Docker Compose also handled
what ports were open from the local network, to the external network and which containers
should be able to talk to each other.

6.3.1 Web Service

The Web Service was built through the multi-stage building process as mentioned earlier, by
copying the project files into the Go image, building it, and copying out the built certificates
and built files. The Dockerfile also exposes the port the service will use, in this case port
8088. Further the Docker Compose connects the service to the database by dependent tags
and environmental variables used for connecting to it.

6.3.2 Mail Service

The Mail Service was built and deployed the same way as the Web Service, although on port
8085.

6.3.3 Database

The Database is the simplest build of them all, where the Dockerfile uses the MySQL 5.7
image from Docker Hub and copies in the "database.sql" and "database_insert.sql" files into

6https://www.adminer.org/
7https://snapcraft.io/
8https://docs.docker.com/compose/
9https://hub.docker.com/_/adminer

40

https://www.adminer.org/
https://snapcraft.io/
https://docs.docker.com/compose/
https://hub.docker.com/_/adminer

Management System for CS Assignments

the image. This makes the service setup the tables and most basic data so the database is
ready to operate for the system. The Docker Compose would then set all the credentials for
the service.

To insert previous data from an earlier database, we would connect to the database service
through the Adminer service, and execute the previously exported insert data as a query.

For dependency reasons, we had the data folder from the database service mounted locally
on the virtual machine. This made the data redundant even if the service were to go down,
simply restarting the service would automatically load all previously stored data from this
volume, and the service would also write all data to this mounted volume.

6.4 Makefile

We created a Makefile to automate the deployment of the system on the server, it includes a
few couples of commands that let us build, run, clean or stop the service.

The build command would pull the latest code from GitHub, and then run Docker Compose
with the "–build" command to ensure that the new code is built into a new container, instead
of running a previously created container.

The run command would simply run the Docker Compose with the containers available.

The clean command deletes the mounted data folder from the db service, fetches new code
from GitHub and builds the containers. This results in a fresh edition of the system and
requires the administrator to import previous data into the database.

The stop command would just stop the running containers, meaning taking the system of-
fline.

41

7 Testing and User Feedback

7.1 Testing

The group talked about test driven development in the planning phase. Test driven develop-
ment means to first create the test and then create the code that validates the test [11]. The
method was rejected as the actual development method because it was more time-consuming
than expected.

Creating tests for functionality we did not really know how to create at the time, resulted in
a lack of progress and overall delay of functionality for milestones. Most of the unit testing
was thus discarded because it was unsuitable for the functionality we developed, as well as
we wanted to focus on progressing the application. However we had extensive user testing
on the system, following three iterations of improvements and feedback. The development
team themselves also tested the system thoroughly between every pull request.

The system was mostly tested by actual users and test protocols managed by a QA tester.

7.1.1 Unit Testing

The fundamentals of unit testing means to check a function with valid data, while assuring
that the correct data is returned [12]. This makes it suitable for normal functions that do
calculations or formats data in any way, most of our unit tests are inside the util package
because it has these types of functions.

Most of the functionality on the system lies within the controller functionality, these controller
functions are triggered through a series of requests to the server and are highly unsuitable
for unit testing. This is one of the reasons why our project does not have that many unit tests
in particular.

7.1.2 User Testing

The group had an early milestone to deploy a working prototype for the course Mobile/Wear-
able Programming. The students used this prototype to deliver their assignments and check
for vulnerabilities. The project went through three layers of user testing: alpha testing done
by the group before deploying to project owner, black box testing done by the project owner
and functional testing done by the students on the final system.

The main source for finding vulnerability, bugs and design flaws was the project owner. The
admins on the system has the most functionality to test and the project owner is also going
to use the system after this thesis is done, so he wanted it to be robust and bug free. There
were also some students that went the extra mile and helped to look for flaws while using
the system. Because of this, both the teacher and student user-type was represented.

7.2 Quality Assurance

A script was created in PowerShell to automate the quality check on the Go code in the
project. The script ran mod verify, go vet, go fmt, golint, gocyclo and go test. This made it
much faster to check if something was wrong and gave a good overview of what needed

42

https://www.ntnu.edu/studies/courses/IMT3673/2018/1#tab=omEmnet
https://www.ntnu.edu/studies/courses/IMT3673/2018/1#tab=omEmnet
https://github.com/golang/go/wiki/Modules#quick-start
https://golang.org/cmd/vet/
https://golang.org/cmd/gofmt/
https://github.com/golang/lint
https://github.com/fzipp/gocyclo
https://golang.org/pkg/testing/

Management System for CS Assignments

to be changed. The script also removed the mistake of forgetting one of the commands. An
identical script written in bash was later added.

The tests for the project wasn’t any good for finding bugs as mentioned in section 7.1. A test
protocol was created to check if there were any bugs in the project before each deployment.
The group also had an own unwritten protocol to thoroughly check each new functionality
before making a pull request.

7.3 User Feedback

The extensive testing done by users resulted in a lot of feedback, have a look at section 3.2.1
for the implemented feedback and section 9.3.6 for the unimplemented feedback.

43

https://github.com/JohanAanesen/CSAMS/blob/master/docs/useCaseTest.md
https://github.com/JohanAanesen/CSAMS/blob/master/docs/useCaseTest.md

8 Discussion

8.1 Results

The final project do not have the auto-validation feature which was one of the main mile-
stones, but have succeeded in getting all the other basic and more high level functionalities
that the project owner wanted. The project did not have all the requirements before starting
because the project used an agile development method and got all the requirements through-
out the development timeline. The final project works as it was intended and got a little more
improved by each iteration to the course that was testing the system.

8.2 Choice of technical solutions

The system was deployed on OpenStack1 because that’s what the original requirement stated.

8.3 Peer Review

The Peer Review was one of the largest initial functionality requirements because the Product
Owner wanted the students to be able to review each other submissions. This functionality
ended up having a major refactor after the first edition was released, because the automated
aspect of the first version made it necessary to create complex algorithms for every small
special case. This discussion has been further elaborated in the course Professional Program-
ming, written by the project leader Johan, and is available under Appendix F.

8.4 Logging

The original way to log something to the database in the project was to use only one function
"LogToDB(log model.Log)" with a log struct parameter. That function again checked the con-
taining enumerated type in a switch and passed the data to another function that inserted
the log to the database.

This solution had one huge problem, the user had to first create a variable of the log struct
and fill in the information manually, but the user also had to know which exact variables
should be filled in the struct. This wasn’t a problem at the start of the project because it
was under 10 logging events, but at the end of the project there was slightly more than 40
different logging events. The solution to this problem was to create one function for each
logging event where the parameters was more clear. The function still worked as the old one,
where it pointed to a switch which then again pointed to the function inserting the data to
the database. This resulted in a lot of code that could be replaced by only one function, but
this way it was really clear which function to use when logging different events.

8.5 Repository And Service

We decided to create more layers between the controller and the database for this system, and
this was done adding two layers, repository and a service layer. The repository layer would

1https://www.openstack.org/

44

https://www.openstack.org/

Management System for CS Assignments

be the one closest to the database, executing all queries and handle transactions between the
back-end application and the database.

At the start of the project we let the repository layer be used by controllers, but after a while
this ended up creating a code base with near to duplication, as the database calls may have
small differences that did different things. So this is where the service layer was added, to
separate the controller and the repository layer. This made it possible to reuse the repository
functions for different functionalities as we could handle the data in the service layer with
Go, and not do more work on the database.

We decided to gather all services into one single service struct for reducing lines of code in
the controllers, as well as making readability of the code better. As anyone who reads the
code can see that the data fetched for a functionality is used by services, and then specified
what kind of service that was used. This also made expanding the code easier, as you would
only have to follow the pattern used, and adapt it to the business model needed.

8.6 Form Builder

Since the product owner wanted to create submission forms for assignments, and review
forms for the peer-review, we decided to create a form builder from scratch, based on the
functionalities from Google Forms. The choice of making it in native JavaScript was made
because it gives a better backwards compatibility’s on older browsers, and possibilities for
expanding it. The form builder is dependent on using Bootstrap as the style sheet, and another
JavaScript library called Sortable2, used for a more interactive user interface. Using Sortable
was a choice made, as creating a sorting library our self would have taken up too much time,
and the integration of Sortable was easily done, as the API for it was well documented.

The result of the form builder was far better than expected, as how configurable it got, both
for the end-user and for developing it. So the hours used for planning how the code should
be structured was worth the time.

2https://github.com/SortableJS/Sortable

45

https://github.com/SortableJS/Sortable

9 Conclusion

9.1 Evaluation of the Group’s Work

The group has throughout the bachelor worked together as a team with great communica-
tion, work dedication and interest in what we have developed. Through teamwork, we have
managed to create a system more complex that we imagined on the start of the bachelor, and
we have learned a lot from it. The group has mostly been working separately from each own
home, but everyone has always been available at the set times and even when they were not
working.

Through the great communication with the other group members and Product Owner, we
have managed to rectify issues in short periods of time, and always improve the overall code
of the system. As a team we have been able to solve technical problems by discussing and
improving it, and the close dialog with the Product Owner has helped us extensively when
designing and implementing the different functionality. The project leader has been effective
when it comes to communicating with both the supervisor, Product Owner and group, and
has been able to share work and responsibility of different functionality between us. Every
group member has always had something to work on, and because of the large amount of
feedback and functionality that could be implemented, every group member could work on
something they felt dedicated about and interested in.

Because we are a separated group in terms of BIDAT and BPROG, we could share expertise
between us that further expanded our ability to think, learn and develop. The group has been
able to think about ideas together, spin them around and develop the best solution to each
problem that we could think of. Through extensive code reviewing during pull request we
have also been improving overall code quality, functional dependency and learning outcome
from the functionalities we have developed.

The final system is the result of intensive work, collaboration and communication, and we
think the work we have done reflects upon this.

9.2 Final Words

Through over 1300 hours of work, we have had the possibility to learn how to use different
technologies, develop a system from the ground up and work cooperative. We have managed
to develop a system that has already been used by three different courses to deliver their
assignments, while working closely with the Product Owner. The group has been able to
decide, in a large degree, the methods and technologies used to create the system. There
have been a few setbacks, but they have always resulted in creating an overall better system.
Through 52 pull requests, 1400+ commits, nearly 20.000 lines of code, weekly meetings
and excellent teamwork, we have gotten a lot of experience that we will take with us from
working on this bachelor.

We have met the goal of the Bachelor by creating a functional system to manage students
assignments, proven by the students who have used the system throughout this semester. The
finished system is something we as a group, as well as the Product Owner is proud of, and it
will be used in future courses as well.

46

Management System for CS Assignments

9.3 Future Work

In this section we have compiled a list of subjects and functionality that can be further devel-
oped on the system. It consists mostly of ideas received from feedback, or functionality and
refactoring the group think will improve the system.

9.3.1 Auto-Validation Functionality

Auto-Validation was one of the large functionalities we planned ahead of the development
start, but was later discarded because of time restraints and the Product Owner wanted the
peer reviewing process to be refined and smoother.

The Auto-Validation functionality should enable the students to get feedback on their sub-
mitted code by having the server run different kinds of linting and code quality checks much
like SonarQube1. Another future would be to have the users deploy their web applications
on a cloud, and have the server check all the specified API endpoints.

9.3.2 API Based Micro Service Architecture

Something we realized towards the end of the development cycle was that the Model layer of
the webservice got really big as described in Chapter 4. For future work and easier scalability
and modularity, it would be effective to change the service and repository layer inside the
model layer, to stand alone services that are available through Rest API [13]. Making the
different services standalone simplifies unit testing for each service, because the necessary
functions are contained within and are not dependent on any other service.

The Micro Service architecture would also allow the system to use technologies like Kuber-
netes to enable resource monitoring and scaling throughout the system.

Through the course of this bachelor all the group members have gone through job interviews
and application processes for real software companies, and through our experience it seems
like this is the industry standard when it comes to web applications.

9.3.3 Front-end

Changing the front end from the Go Templating solution that we are currently using, to a
front-end framework like Angular or React. It is important to mention that this would require
the Micro Service API structure of the back end as mentioned above.

The most extensive front-end frameworks enables the developer to move the controller and
view layer into it, while using API endpoints for the model layer. This can greatly improve
code quality across the system because it requires the developer to separate the code.

We thought about this approach before starting development of the system, but because the
Product Owner wanted the system to be primarily programmed in Go, we decided that it
would go against the requirement.

9.3.4 Notification and Messaging Service

A notification service or notification functionality paired with messaging capabilities on sub-
mitted assignments and in the review process is something that has been mentioned by both
the students and the Product Owner, in terms of functionality they would want implemented.
Unfortunately time constraints kept us from developing this at the end, but it is planned to

1https://www.sonarqube.org/

47

https://kubernetes.io/
https://kubernetes.io/
https://angular.io/
https://reactjs.org/
https://www.sonarqube.org/

Management System for CS Assignments

be implemented after the bachelor is delivered, as part of the course Rapid Prototyping.

The functionality is in short terms, the ability to write comments on submissions while re-
viewing them, as well as receiving this comments on your own submissions. To complement
the commenting, it would require a notification system to let the users know they have re-
ceived comments and direct the users to the location of interest. The notification system can
be further developed to notify users when the deadline is closing in, or the teacher has opened
up for submissions on an assignment.

9.3.5 Time-zone Error

One of the system requirements was to have the possibility to quickly change the timezone.
The solution to this goal was to use environment variables. This way, the person deploying
the system could just the change a variable one place from ex. "Europe/Oslo" to "Ameri-
ca/Chicago" and the system time would be changed all over. The variable was originally
used in Go and JavaScript, but had to be changed to only be used in the Go files. The envi-
ronment variable and JavaScript’s way of handling time-zones wasn’t good enough, so the
timezone was later just hard-coded for JavaScript.
If someone wants to change the time-zone, they have to look for the "TODO : time" in the
project and change to the preferred time-zone.

9.3.6 Feedback From Project-Owner And Students

Show Logs For Scheduler Expose log information in the UI, so the admin sees what has
been triggered and when. (Scheduler was later removed)

Simulate Student Perspective The teacher should be able to simulate the student’s perspec-
tive to preview what students see.

Deletable Course, Assignment And Forms Allow the user to delete course, assignment and
forms, but ask for confirmation and log the activity.

Copy Forms Allow copying of existing forms and adaptation.

Separate Display With Actual Deadline For any deadline, provide an actual deadline and
a displayed deadline. Sometimes the actual deadline could be set slightly later to deal
with situations of heavy load.

Allow Late Submissions And Include In Review Pool Allow selective late submission and
automatically include in review cycles. Late submissions can happen in the case of
system glitches as well as unforeseen medical cases.

Override Final Mark Allow the admin to override the final (calculated) review points.

Reward Reviewers The reviewer should be rewarded for doing the review.

Non Edit Admin Have a non-edit admin mode for TA’s who should be able to see the progress,
but not be able to modify anything.

Remove Unsigned Students Add ability to list and remove students that are not signed up
to any course. Implement an all students, and not-assigned students selection in the
student management sections.

Let User Leave Course Allow students to withdraw themselves from a course, but retain
data in case s/he rejoins.

Group Based Assignments Add a different kind of assignment type: a group assignment.

48

Management System for CS Assignments

Students can sign up to a group (or create one) and submit together The group may
then be involved in reviewing other groups assignments. All members of the group
share the resulting marks.

Review Non-reviewed Submission If a student didn’t get any reviews on his/hers assign-
ment submission, let the teacher add a review manually.

Layout Radio Buttons Vertically Lay out radio buttons vertically if the description is too
long to maintain horizontal layout.

See Performed Reviews If the deadline for reviewing has expired the user should still be
able to see the review they created

Review Status Admin should see on dashboard overview whether reviewing is active or not.

Ask Before Deleting Assignment Submission When a user requests a withdrawal of the
assignment submission, present a dialog to confirm the withdrawal.

Disable A Field In Review And Submission Forms Allow admin to remove a field from view
(not delete) in review and submission view, even after the submission/review has
started.

Respond To Feedback Implement a way for the students to respond to received review.

Flag A Submission When a student is reviewing a submission, let the user flag a question if
it’s something unclear or hard to evaluate.

Private Repository Warning Let peer reviewers notify the relevant student if the repository
is private i.e not accessible.

Dark Theme Add dark theme to avoid making the users eyes tired.

Ability To Add Screenshot Add the ability to add screenshot to review and submissions.

Ability To Chat When reviewing another student, the reviewer should be able to chat with
said student.

Email User When Profile Is Edited The system should email the user if their profile has
been edited in any way.

Give Deadline Warning The system should send an email if the user hasn’t delivered the
assignment and it’s only X time left until the deadline is due.

49

Bibliography

[1] Jon Terry. What is kanban? https://www.planview.com/resources/articles/
what-is-kanban/, 2019.

[2] Scrum.org. What is scrum? https://www.scrum.org/resources/
what-is-scrum, 2019.

[3] Don Wells. Extreme programming: A gentle introduction. http://www.
extremeprogramming.org/, 2013.

[4] Atlassian. Git Feature Branch Workflow. https://www.atlassian.com/git/
tutorials/comparing-workflows/feature-branch-workflow, 2019.

[5] Service-oriented architecture (SOA). https://www.ibm.com/support/
knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pegl_
serv_overview.html, 2019.

[6] Design Patterns MVC Pattern. https://www.tutorialspoint.com/design_
pattern/mvc_pattern.htm, 2019.

[7] Go Web Examples: HTTP Server. https://gowebexamples.com/http-server/,
2019.

[8] Joseph Spurrier. Go web app example - views, request workflow, and view plugins.
http://www.josephspurrier.com/go-web-app-example-views/, 2016.

[9] HTML Input Types. https://www.w3schools.com/html/html_form_input_
types.asp, 2019.

[10] Building Docker Containers for Go Applications | CalliCoder. https://www.
callicoder.com/docker-golang-image-container-example/, 2018.

[11] Test-Driven Development (TDD). https://technologyconversations.com/
2014/09/30/test-driven-development-tdd/, 2014.

[12] Unit Testing - Software Testing Fundamentals. http://
softwaretestingfundamentals.com/unit-testing/, 2019.

[13] Roy T Fielding and Richard N Taylor. Architectural styles and the design of
network-based software architectures, volume 7. University of California, Irvine Doc-
toral dissertation, 2000.

50

https://www.planview.com/resources/articles/what-is-kanban/
https://www.planview.com/resources/articles/what-is-kanban/
https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-scrum
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pegl_serv_overview.html
https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pegl_serv_overview.html
https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pegl_serv_overview.html
https://www.tutorialspoint.com/design_pattern/mvc_pattern.htm
https://www.tutorialspoint.com/design_pattern/mvc_pattern.htm
https://gowebexamples.com/http-server/
http://www.josephspurrier.com/go-web-app-example-views/
https://www.w3schools.com/html/html_form_input_types.asp
https://www.w3schools.com/html/html_form_input_types.asp
https://www.callicoder.com/docker-golang-image-container-example/
https://www.callicoder.com/docker-golang-image-container-example/
https://technologyconversations.com/2014/09/30/test-driven-development-tdd/
https://technologyconversations.com/2014/09/30/test-driven-development-tdd/
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/unit-testing/

A Project Repository

https://github.com/JohanAanesen/CSAMS

51

https://github.com/JohanAanesen/CSAMS

B Project Agreement

52

C Project plan

56

Management system for CS assignments

Svein Are Danielsen
sveiad@stud.ntnu.no

Johan Aanesen
johanaan@stud.ntnu.no

Brede Fritjof Klausen
bredefk@stud.ntnu.no

May 16th 2019

1

1 Goals and limits

1.1 Background

Managing over a hundreds of assignments several times in a semester, in a
single course can be challenging. With help from the students with peer review
assessments, and for the students to get a instant respond on their codes, based
on the standards and requirements set by the lecturer. Time will saved both for
the lecturer, and for the students looking for feedback.

1.2 Project goals

1.2.1 Effect goal

Computer Science lecturers get a tool that efficiently and seamlessly can au-
tomate assignment validation, and can automatically assign peer review for
students. The system should make it more clear what is expected from the stu-
dents, and giving them extra learning in doing peer review anonymously on each
others code. This will remove miss understandings that exists in the current
peer review, and assignment delivery systems.

1.2.2 Result goal

Replace existing systems and deliver a working solution for automating com-
puter science assignment validation and assigning students to peer review as-
signments.

1.2.3 Learning goal

• Learn to work with a project from the planning phase, all the way til the
finished product.

• Learn to work with the product owner on-site in a agile method.

• Become better at Go, and full-stack programming.

• Become better at estimating programming tasks, and project-features for
real life application.

1.3 Limits

The project is time-limited until May 16, when the application has it’s due date
for the product owner.
The thesis is time-limited until May 20, set by the school. Internally in the
project group, the due date for the thesis is set to May 16.
There are no software limits for this project. All languages, frameworks and
code is publicly available, or the product owner has the licences.

2

2 Scope

2.1 Subject area

Main scope for this project is programming.
Cloud programming will be the main subject area within this project, as the
project requires the application to be cloud-based.
Web development will be the secondary subject area, where the front-end of the
application will be a website, for all users. And information will be stored in a
relational-database.
Container technology will be used for making the software non-dependant of
any operation system.

2.2 Delimitation

Online system, written in Go on the back-end. Needs to be deployed on Open-
Stack with underlying container technology, running with a local database. The
system should work with Go-programming assignments, and be extendable to
other programming languages.

2.3 Task description

The group will develop a system that a lecturer easily can deploy on the schools
infrastructure, OpenStack, and configure for their specific course. The system
will be needs to be able to create custom submission forms for different course
assignments. The system needs to be using the application programming in-
terfaces from several websites using Git-repository-technology, mainly GitHub
and Bitbucket. After a assignment is done, the system need to distribute review
forms to the students, making them peer review themselves.
The system also must do a queued responds for the students, with a config-
urable validation of the submitted assignment, that will within short time give
a feedback to the student.

3 Project organization

3.1 Responsibilities and roles

Here is the list of the group members name and roles.

Name Role
Johan Aanesen Project leader
Brede Fritjof Klausen Member
Svein Are Danielsen Member

The project leader will be the one responsible for contacting the supervisor and
the product owner.

3

3.2 Routines and rules

The group members are committed to work on the project between 09:00 and
16:00 every day of the week except for compulsory lectures and meetings.
All members should be available either in person or online during this time.

The group has weekly meetings with the supervisor, Ivar Farup, Mondays at
13:15, in room A218.
If the group cannot meet, it must be reported to the supervisor no later than
the first Friday before the meeting.

The group has meetings with the product owner, Christopher Frantz, every
Monday at 12:00, in the Ametyst-building.
If the group cannot meet with the product owner, it must report to them no
later than the first Friday before the meeting.

Ordinary working hours for joint work, are from 09:00 to 16:00, unless oth-
erwise agreed. Each member must work weekly for at least 30 hours, and is
responsible for their own logging.
Lost working hours can be retaken by working in the weekends, or longer work-
ing days.

For exceptions and special cases where the group is not assembled, each member
will be responsible for performing the weekly workforce and how it is distributed.

Tasks will be discussed and distributed in plenary session - each group member
will be responsible for performing these at the agreed time.
Should insecurity arise during work tasks or other problems during this period,
the relevant members are obliged to take this up with the rest of the group.

Group members are obliged to ask the group for help when they are stuck or are
consuming too much time on a given task. In worst cases Project Leader can
assign the task to another group member in order to keep the project moving
forward.

3.2.1 Rules

• If a member does not have the opportunity to meet, this should be reported
preferably one day in advance. Valid justification for any certificate is
required.

• If a group member feels that another group member is not contributing
enough, this must be addressed with the given member. If he or she
continues to do the same, the group will take the problem to the supervisor
for counseling. Continuous lacking of contribution will in the worst case
lead to exclusion from the group.

4

• Disagreements on major decisions where the group does not arrive at an
agreement, then the issue should be addressed with the supervisor before
a possible decision is made.

• At each meeting, each group member must, if possible, submit a progress
plan/status report.

• At each meeting, a meeting record shall be written, which shall be available
to the entire group.

4 Planning, monitoring and reporting

4.1 Main division of the project

The group will be using Kanban [1] with some elements from Scrum [2] as the
development method. The reason for this choice, is that Kanban gives the group
the ability for more flexible planning, clearer focus throughout the development
cycle. And will use weekly cycles that can resemble Scrum-sprints, but will
used for focusing on specific back-stories. Mondays will be used for meet-ups
and planning for the rest of the week, and Fridays will be used for debugging.
The rest of the week will we used for development, and writing the thesis.

The group will be present on-site, and have access to the product owner daily,
that will be present on Mondays for creating stories for the back-log.

Trello [3] will be used as the Kanban-board, [4] which is a board-based web-
site, for personal use, or team-based work.

4.2 Plan for status meetings and decision points during
the period

For the project the group will have continuous contact with the product owner
on a chatting application called Discord. [5] There will also be meetings every
Monday where the group can ask for direction, or input on the development.
The group has set of four weeks for the main features in the application, in three
phases.

5 Organization of quality assurance

5.1 Documentation, standard use and source code

• Every member has to write documentation while writing the code.

• Reasons why the member chose or changed the solution, it should be
written in the report as it’s happening. (i.e don’t start on documentation
when you’re done coding, but meanwhile.)

5

• If the code comes from another source than yourself, the link or name of
person should be included in the documentation for the relevant function.

• Use tabs, not spaces!

• Thoroughly test code before issuing a pull-request to the master branch.

• Pull-request has to be reviewed and approved by the rest of the team
before merging.

• Follow the key points of test driven development.

• Lint and cycle code before issuing pull requests, with golint, go vet, go
fmt.

• Update Trello [3] as you go and link boards to commits/pull-requests.

• Follow ”Internal Peer Review Checklist” when doing peer review.

• Every friday, write a short recap what you have done, what went smooth
and why, what took more time than expected and why, and what could
be done better and why

• Use Effective Go [6] as code standard

5.2 Configuration management

Managed through existing solutions in git like commits and pull-requests.

5.3 Risk Analysis

What Impact Probability Rating Mitigation
Data loss High Low Medium Cloud-based storage and

backup
Lack of con-
tribution

High Medium Medium Weekly meetings, talking
with other group members
about tasks.

Disease Medium Medium Medium Eat and drink healthy, fol-
low national health guide-
lines

Hardware
failure

Medium Low Low Treat hardware with care,
and follow the manual of
the product

Loss of moti-
vation

Low Medium Low Work on different tasks,
be curious. Don’t golden
hammer

6

5.4 Technology, Business, Project Group

The programming language Go will be primary used for this project, as the
back-end of the application. Front-end will consist of Bootstrap, which is a
toolkit for development with HTML, CSS and Javascript, which is under MIT-
licence. [7]
The application will be deployed on OpenStack [8] where each group-member
has a licence through NTNU. And the application will be containerized with
Docker (licences Apache 2.0). [9]

The application for this project will be under ”GNU General Public License
v3.0” licence. [10]

6 Plan for implementation

6.1 Milestones

As seen in the Gantt-schema the first milestone are after the first 4 week pe-
riod, where the first feature of the system will be done; a working beta of the
front-end and peer-reviews.
The next milestones will be decided by the product owner as the first 4 week
period is over.

The schema for the groups future plan can be found on the next page.

7

G
A

N
TT

 C
H

A
RT

 -
BA

CH
EL

O
R

53
PR

O
JE

CT
 T

IT
LE

Ba
ch

el
or

 5
3

PR
O

DU
CT

 O
W

N
ER

Ch
ris

to
ph

er
 F

ra
nt

z
- N

TN
U,

 G
jø

vi
k

Ho
lid

ay

PR
O

JE
CT

 L
EA

DE
R

Jo
ha

n
Aa

ne
se

n
ST

A
RT

 D
A

TE
2/

1/
19

D
ea

dl
in

e

EN
D

DA
TE

5/
16

/1
9

Pa
ra

ch
ut

e
ju

m
pi

ng
 fo

r J
oh

an

W
BS

 N
UM

BE
R

TA
SK

 T
IT

LE
ST

A
RT

 D
A

TE
DU

E
DA

TE
DU

RA
TI

O
N

IN

 D
A

YS

Ph
as

e
1

Ph
as

e
2

Ph
as

e
3

Ph
as

e
4

Fi
na

l P
ha

se
 5

W
EE

K
1

(6
)

W
EE

K
2

(7
)

W
EE

K
3

(8
)

W
EE

K
4

(9
)

W
EE

K
5

(1
0)

W
EE

K
6

(1
1)

W
EE

K
7

(1
2)

W
EE

K
8

(1
3)

W
EE

K
9

(1
4)

W
EE

K
10

 (1
5)

W
EE

K
11

 (1
6)

W
EE

K
12

 (1
7)

W
EE

K
13

 (1
8)

W
EE

K
14

 (1
9)

W
EE

K
15

 (2
0)

M
T

W
R

F
M

T
W

R
F

M
T

W
R

F
M

T
W

R
F

M
T

W
R

F
M

T
W

R
F

M
T

W
R

F
M

T
W

R
F

M
T

W
R

F
M

T
W

R
F

M
T

W
R

F
M

T
W

R
F

M
T

W
R

F
M

T
W

R
F

M
T

W
R

F

1
Fr

on
te

nd
 a

nd
 P

ee
r-

re
vi

ew
 B

ET
A

 w
or

ki
ng

02
/0

4/
20

19
03

/0
1/

20
19

19

1.
1.

1
Pl

an
ni

ng
 D

ay
1

EA
ST

ER

1.
1.

2
Fr

on
te

nd
/w

eb
se

rv
er

/r
ou

tin
g/

lo
gi

n
sp

rin
t

5
1

1.
1.

3
Bu

g-
fix

 &
 R

ep
or

t W
rit

in
g

1

1.
2.

1
Pl

an
ni

ng
 D

ay
1

M
D

1.
2.

2
Fr

on
te

nd
/w

eb
se

rv
er

/r
ou

tin
g/

lo
gi

n
sp

rin
t c

on
tin

ue
?

5
S

A
E

1.
2.

3
Bu

g-
fix

 &
 R

ep
or

t W
rit

in
g

1
K

Y
A

1.
3.

1
Pl

an
ni

ng
 D

ay
1

I
D

1.
3.

2
Pe

er
-re

vi
ew

 s
pr

in
t

4

1.
3.

3
Bu

g-
fix

 &
 R

ep
or

t W
rit

in
g

1
D

L
1.

4.
1

Pl
an

ni
ng

 D
ay

1
A

I
1.

4.
2

Pe
er

-re
vi

ew
 fu

nc
tio

na
lit

y
an

d
w

or
ki

ng
 s

pr
in

t
5

Y
N

1.
4.

3
Bu

g-
fix

 &
 R

ep
or

t W
rit

in
g

1
E

2
Pe

er
-r

ev
ie

w
 c

on
t,

e-
m

ai
l a

nd
 s

ta
rt

 a
ut

o
sp

rin
t

03
/0

4/
20

19
03

/2
9/

20
19

20
(1

3)

2.
1.

1
Pl

an
ni

ng
 D

ay
1

2.
1.

2
Cl

as
s

an
d

as
si

gn
m

en
ts

 fu
nc

tio
ns

 s
pr

in
t

5

2.
1.

3
Bu

g-
fix

 &
 R

ep
or

t W
rit

in
g

1

2.
2.

1
Pl

an
ni

ng
 D

ay
1

2.
2.

2
Pr

ev
 s

pr
in

t c
on

t,
e-

m
ai

l s
pr

in
t

5

2.
2.

3
Bu

g-
fix

 &
 R

ep
or

t W
rit

in
g

1

2.
3.

1
Pl

an
ni

ng
 D

ay
1

2.
3.

2
Au

to
 v

al
id

at
io

n
st

ar
t S

pr
in

t
5

2.
3.

3
Bu

g-
fix

 &
 R

ep
or

t W
rit

in
g

1

2.
4.

1
Pl

an
ni

ng
 D

ay
1

2.
4.

2
Ba

si
c

au
to

 v
al

id
at

io
n

fu
nc

tio
na

lit
y

w
or

ks
 -S

pr
in

t
5

2.
4.

3
Bu

g-
fix

 &
 R

ep
or

t W
rit

in
g

1

3
A

ut
o

an
d

se
rv

er
 s

pr
in

t
04

/0
1/

20
19

04
/2

6/
20

19
15

3.
1.

1
Pl

an
ni

ng
 D

ay
1

3.
1.

2
Au

to
 S

pr
in

t
5

3.
1.

3
Bu

g-
fix

 &
 R

ep
or

t W
rit

in
g

1

3.
2.

1
Pl

an
ni

ng
 D

ay
1

3.
2.

2
Fi

ni
sh

 fu
nc

tio
na

lit
y

Sp
rin

t
5

3.
2.

3
Bu

g-
fix

 &
 R

ep
or

t W
rit

in
g

1

3.
3.

1
Pl

an
ni

ng
 D

ay
1

3.
3.

2
Fi

ni
sh

 fu
nc

tio
na

lit
y

Sp
rin

t
5

3.
3.

3
Bu

g-
fix

 &
 R

ep
or

t W
rit

in
g

1

4
Co

de
 W

ra
p-

up
04

/2
9/

20
19

05
/0

3/
20

19
4

4.
1.

1
Pl

an
ni

ng
 D

ay
1

4.
1.

2
W

ra
p

up
 a

nd
 p

ol
is

h
co

de
4

4.
1.

3
Bu

g-
fix

 &
 R

ep
or

t W
rit

in
g

1

5
Re

po
rt

 W
rit

in
g

05
/0

6/
20

19
05

/1
6/

20
19

9

5.
1.

1
Pl

an
ni

ng
 d

ay
 fo

r r
ep

or
t w

rit
in

g
1

5.
1.

2
W

rit
e

th
e

re
po

rt
5

5.
1.

3
Do

ub
le

 c
he

ck
 re

po
rt

1

5.
2.

1
Pl

an
ni

ng
 d

ay
 fo

r r
ep

or
t w

rit
in

g
1

5.
2.

2
W

rit
e

th
e

re
po

rt
4

5.
2.

3
Do

ub
le

 c
he

ck
 re

po
rt

1

6
Re

po
rt

 W
rit

in
g

- D
oc

um
en

ta
tio

n
02

/0
4/

20
19

05
/1

6/
20

19
67

6.
1.

1
Do

cu
m

en
ta

tio
n

67
0

References

[1] Atlassian - What is kanban?
https://www.atlassian.com/agile/kanban/boards

[2] Atlassian - What is Scrum?
https://www.atlassian.com/agile/scrum

[3] Trello - Tour
https://trello.com/tour

[4] Atlassian - What is a Kanban Board?
https://www.atlassian.com/agile/kanban/boards

[5] Discord - About
https://discordapp.com/company

[6] Effective Go
https://golang.org/doc/effective_go.html

[7] Bootstrap - Licence
https://getbootstrap.com/docs/4.1/about/license/

[8] OpenStack Documentation
https://www.ntnu.no/wiki/display/skyhigh/Openstack+

documentation

[9] Docker License
https://github.com/moby/moby/blob/master/LICENSE

[10] GNU General Public License v3.0
https://www.gnu.org/licenses/gpl-3.0.en.html

9

D Meeting Logs

The group had some technical difficulties that resulted in loss of data, this is why some logs
are missing.

D.1 Record of meetings

D.1.1 17.01.19 - Thursday

• We have the possibility to switch the report language to Norwegian anytime (but we
won’t)
• Make a good plan, so it’s easier to know the progression!
• Weekly meetings with Project Owner at 12:15 and Supervisor 13:15 on Mondays.
• Find model (we chose Kanban), and assign roles.
• Make Gantt scheme.
• Report and comment while working on project.

◦ How/why did you solve the task like that?

• First week in June is presentation time!

D.1.2 28.01.19 - Monday

• We presented the Gantt scheme to Supervisor, we needed to make it better.
• Very important: Comment and write log while programming.
• Make a prototype for peer review and get good feedback, preferably have it done before

march.
• Milestones: can be seen on the Gantt scheme, also talk to Supervisor after each mile-

stone.
• Maybe make the project test driven?
• Maybe export Trello comments?
• Write why we chose Kanban in plan report.
• What license do we use? (GNU General Public License v3.0)
• Add possibility to add a second email
• Add possibility to have stats (% of reviews done and grades) and make it possible to

export (json?).
• Have a check-box for permission to share users email.
• Detailed view for courses
• Save version build - ex for mobile development
• Log for delivery
• Log everything
• User can request to be removed.

D.1.3 11.02.19 - Monday

• Make it possible to upload course information for later use, have it in front-end.
• Add weight to assignments, but not max at 100, just fix it when all the weight is written

and then calculate percentage and show to admin.

◦ Also add option to show the percentage

66

https://www.ntnu.no/ansatte/christopher.frantz
https://www.ntnu.no/ansatte/ivar.farup
https://en.wikipedia.org/wiki/Kanban_(development)
https://www.ntnu.no/ansatte/ivar.farup
https://www.ntnu.no/ansatte/ivar.farup
https://github.com/JohanAanesen/CSAMS/blob/master/LICENSE

Management System for CS Assignments

• Make project open for adding other tools than Go tools.
• Change ’Priority’ to ’Order’ in assignment creation
• Let users write an description explaining why he/she rated X.

◦ also add comment section for each assignment for the students to ask question to
admin or other students.

• Have an FAQ for admins
• Look up Go modules.
• We got good feedback that we had worked faster than expected.

D.1.4 18.02.19 - Monday

• Assignment review

◦ Mandatory and voluntary questions
◦ Talked about #12 - Create Assignment form/page for 25min

• Add deadline to assignments and gray out former assignments
• We informed Project Owner that it’s skiday on thursday
• Document all smaller things that’s vital for others later, ex. timezone in the sql file.

D.1.5 04.03.19 - Monday

Project Owner

• Check URL in back-end
• Sanitize input
• If a user has answered submission form, don’t let admin change the form
• Tell why stuff be like it be to the end-user
• Get hash from course and display to admin in front-end
• Give admin login/register link for joining course
• Add convert to MD plugin
• Set time uploaded on submissions admin
• Get the total number of submissions admin
• Maybe track view for submissions admin, to see whats new
• Remove joined course bug
• Fix submit new course button
• Add order by course.semester back again
• Make real name uneditable, maybe add user name instead
• Forgot password functionality?

Supervisor

• Tabs on course should be more visible
• Maybe don’t let admin submit assignment submission
• Add equation possibility in MD? (mathjax)

D.1.6 11.03.19 - Monday

• Deploy with different settings
• Demo of project
• Fix timezone
• Clearly state the timezone on the system
• Submission forms

67

https://trello.com/c/QpvcbVb6
https://www.ntnu.no/ansatte/christopher.frantz
https://www.mathjax.org/

Management System for CS Assignments

• Remove name from reviewing
• Convert weight to percent
• Change update button on assignment from ’update’ to ’re-upload’
• Change students password (admin feature)

D.1.7 21.03.19 - Thursday

• Test Protocols - QA

◦ Use cases

• Fix JavaScript time bug
• Use Github’s issue tracker as backlog
• Implement function to override scheduler, maybe delay time too
• Keep manage students site

◦ Persistence design

D.1.8 01.04.19 - Monday

Project owner

• Add buttons on submissions table (admin)
• Edit review
• Show reviews done by user
• Don’t implement auto-validation after all
• BUG: If user not in review table after deadline, it could go wrong on the assignment

card.
• Confirm submission is delivered
• Only use one ’!’ after messages, instead of multiple
• Implement functionality to add screenshot in review/submission
• Let admin change users name (We didn’t implement this)
• Separate first and last name (Not this either)
• Maybe implement student number (nah)
• Create a no reply email
• Admin view, but user can’t to admin stuff. Ex for TA
• Separate deadline. Add around 5 min or something to deadline that is displayed
• Create new in assignment?
• Add tags for submission/review
• Marks for giving review and receive review

Supervisor

• Ask user before using data

◦ GDPR - General Data Protection Regulation

D.1.9 04.04.19 - Thursday

• Form Builder: multi check box
• Reviews: able to edit until deadline
• Feedback: Next Tuesday
• Group Assignment: Deploy after Easter - Deadline, May 2nd

◦ Add link to forms on «View Assignment»
◦ Add review deadline to «View Assignment»

68

https://eugdpr.org/

Management System for CS Assignments

• Logs: Select logs by time - AFTER GIVEN TIME
• Remove course-list for students, without consent (Course-setting)

D.1.10 11.04.19 - Wednesday

Supervisor

Maybe look into:

• ITICSE - Innovation and Technology in Computer Science Education
• SIGCSE - Special Interest Group on Computer Science Education

Project owner

• Implement functionality to email all students in course
• Split first and last name
• BUG: if there is zero peer review on assignment cards
• Fix update form to none
• Log everything. Filter by system, course, all, admin.
• Add functionality to have group

◦ Create
◦ Equal rights
◦ Teacher can kick users

D.1.11 29.04.19 - Monday

• Group: user_id for the whole group
• Document Adminer (import/export)
• Document how to install the system
• Fix configuration file. No public information (Mock-up .env file)
• «Download Statstistics» button, generate .csv-file
• Ask Supervisor about how GitHub-Issues should be implemented in the thesis
• Development Process - Trello - Move to: Introduction - Work process

69

https://iticse.acm.org/
https://sigcse.org/sigcse/
https://www.ntnu.no/ansatte/ivar.farup

E Daily Logs

E.1 Johan Logs

70

func	init()	{
				if	err	:=	os.Chdir("../");	err	!=	nil	{	//go	out	of	/handlers	folder
								panic(err)
				}
	}

bcdedit	/set	hypervisorlaunchtype	auto

Management System for CS Assignments

E.2 Brede Logs

78

user.html

sql.Nullstring

onclick onsubmit

�

github.com/rs/xid

model/assignment.go GetAllToUserSorted()

BredeVM

see	assignment

*	Fixed	join	class	bug
*	Fixed	submission/review	bug
*	Updated	faq	to	be	more	professional
*	Fixed	it	so	it's	only	one	join	course	link	now
*	When	a	user	updates	an	assignment,	the	submitted	time	is	updated	too
*	Also	added	TODO	:	time	on	places	that	used	time,	for	later	refactoring

Hardcode	in	norwegian	timezone-	alpha Display	PRETTYTIME	in	Norwegian	format

toISOString()

getTimeNorwegian() "Europe/Oslo"

dont'show-review-name

stay-on-same-page-after-managed-student

Submitted Not	submitted

EmailExists

CREATE	TABLE	`validation`
(
				`id`								int(11)					NOT	NULL	AUTO_INCREMENT,
				`hash`						varchar(64)	NOT	NULL,
				`user_id`			int(11)					NULL,
				`valid`					tinyint(1)		NOT	NULL	DEFAULT	'1',
				`timestamp`	datetime				NOT	NULL,
				PRIMARY	KEY	(`id`),
				FOREIGN	KEY	(`user_id`)	REFERENCES	users	(`id`)
);

goFixShit.ps1

NTNU-Bachelor-Management-System-For-CS-Assignments CSAMS Computer	Science	Assignment

Management	System

confirm	email

confirm	email

validation

pending_user validation

hash validation

pending_user validationID validation id

user_pending user

users_pending

csams.noreply@gmail.com

db.GetDB().Begin() repo.db.Begin()

log.go logs.go

review_id logs

admin	control	student

group_id logs

AdminAddUserToGroup
AdminRemoveUserFromGroup
AdminEditGroupName
AdminDeleteGroup
AdminCreateGroup

CreateGroup
EditGroupName
DeleteGroup
JoinGroup
LeftGroup
KickedFromGroup

Activity logs

INT64_TO_INT sql.nullint64

this	user affected	user

Management System for CS Assignments

E.3 Svein Logs

88

/admin* /

user_reviews

time.Time datetime-local

Courses

package	research

type	Course	struct	{
				ID	int
				Data	map[string]string
}

//	Current	usage
type	Courses	struct	{
				Items	[]Courses
}

//	Researched	usage
type	Courses	[]Courses

<!--	Current	usage	-->
{{range	.Courses.Items}}
				<div	class="col">...</div>
{{end}}

<!--	Researched	usage	-->
{{range	.Courses}}
				<div	class="col">...</div>
{{end}}

forms fields

forms

fields

forms fields

forms

F Peer Review Discussion

100

Detailed experience: Peer-Review Functionality

Situation:

The overall thought of the system was to have as maintenance free as possible, and thus automating

most of the processes included in it. The auto validation functionality would just check the users code

right after they submit it and give instant feedback, and the peer reviewing functionality would

instantly give all the users an ​n​ number of pre assigned submissions that they would have to do.

Challenges:

Since the project was run on docker, the container doesn’t have a direct access to Linux’s scheduling

functionality. The scheduling was needed because at the deadline of an assignment, everyone were to

be assigned their reviews, thus I coded a scheduling service that would run asynchronous and you

could register a given task with a set json payload to a specific time. This would then send the payload

to the given task at the given time and launch the peer reviewing algorithm.

This worked like a charm, wasn’t cpu heavy or hogging resources, but the problem was that the

algorithm I designed for the system was thought to take every user that has delivered the assignment

in a list, randomize it and make everyone review the ​n​ number of reviews of people behind them in

the list. In a way creating a ‘circle’ of reviewers and reviewees. The problem we discovered with this

scheduling and automated approach was that it needed excessively hard algorithm to include late

submissions in this ‘review circle’.

To include a late submission before people had started reviewing was easy, just delete the last review

circle and run the main algorithm again. But when the users had already performed a large set of

reviews I had to create an algorithm that would find a set of users that had not done any reviews yet,

take them out of the circle, link the circle back up where I took them out, then create a new smaller

circle with the late submission and the users I took out of the main circle.

Removing a user from the course would also prove troublesome because they might have received

reviews on an assignment, removing them would cause some users to either do more than the stated

amount of reviews or some users to receive less reviews.

After two weeks of writing algorithms for every special use case to these problems, the product owner

decided that the automation was not the way to go anymore because of the sheer complexity of the

functionality needed to be written, implemented and tested, for functionality that were technically

never to be used.

The product owner then went away from the idea of automating the process, to instead create an

algorithm that holds a ‘pool’ of submissions, and then just randomly assign a user to the submission

with the least amount of reviews on it. This meant that 4 weeks of developing the automation

algorithms, code and implementation it needed had to be deleted.

The review ‘pooling’ solved all the issues we had above, but it is a shame that all the time spent and

code written had to go to waste. But that is just how it is with so agile development models

sometimes.

Experience:

I learned a lot about multi-service programming and making the systems talk to each other on

different ports, as well as making a flexible and extendable scheduler. I think I got a lot better at

thinking out and writing efficient algorithms and overall finding solutions to problems.

More planning and thinking about the automation process could maybe discover the issues I

experienced after many weeks of work, and could be prevented. But at the time we wanted it to be

automated so it was the way to go.

G Screenshots

103

Management System for CS Assignments

104

Management System for CS Assignments

105

Management System for CS Assignments

106

Management System for CS Assignments

107

Management System for CS Assignments

108

Management System for CS Assignments

109

Management System for CS Assignments

110

Management System for CS Assignments

111

H Trello Board

112

5/15/2019 Bachelor | Trello

https://trello.com/b/dybp7r9K/bachelor 1/7

Bachelor  Bachelor 53 Free Team Visible 3 Invite

Backlog

User roles

FRONTEND DATABASE
BACKEND



IssueLogger

FRONTEND DATABASE
BACKEND

  0/2

Site settings
FRONTEND BACKEND

  0/3

Move FAQ into settings
DATABASE BACKEND



Peer Review page

FRONTEND DATABASE
BACKEND

 0/1

Documentation for form-builder.js
DOCS

Up Next (6)

Delete functionality for assignment,
course and forms

FRONTEND DATABASE
BACKEND

Let users decide if they want emails
about course stuff, they will get one
from system anyway

FRONTEND DATABASE
BACKEND

Message system
FRONTEND BACKEND

5/15/2019 Bachelor | Trello

https://trello.com/b/dybp7r9K/bachelor 2/7

Fix tests
BACKEND BUG

In Progress (3)

Peer Review (3)

Code Done

Fix delete form from assignment bug
BACKEND BUG

Export submission/review data to
excel

DATABASE BACKEND

 2 2 1 merged

Users can ask for reviews, review-
pooling

FRONTEND DATABASE
BACKEND

 2 2 1 merged

Add group functionality

FRONTEND DATABASE
BACKEND

 1 1

Remove/convert deprecated database
queries in model folder to
service/repository

DATABASE BACKEND

 1 1 1 merged

Let teachers send group email to
course

FRONTEND BACKEND

  2  4/4 2

1 merged

5/15/2019 Bachelor | Trello

https://trello.com/b/dybp7r9K/bachelor 3/7

Log every new entry/update in the db,
and show it to admin

FRONTEND DATABASE
BACKEND

 1   2 2 1 merged

Confirm secondary email with email
validation

FRONTEND DATABASE
BACKEND

 1   2 2 1 merged

Fix register link, join course
BACKEND BUG

 1   2 2 1 merged

Edit review after submitting

FRONTEND DATABASE
BACKEND

Christopher Feedback

FRONTEND DATABASE
BACKEND DESIGN BUG

  2/2

Write a terms of use kind of thing
FRONTEND DOCS

 1  2/2 1 1 merged

#29 - Scheduler Service
DATABASE BACKEND

 7/7

Course Page Dynamically list active
and not active assignments

FRONTEND BACKEND

#26 - Front Page Dynamically list
'active' assignments

FRONTEND BACKEND

 1 1 1 merged

5/15/2019 Bachelor | Trello

https://trello.com/b/dybp7r9K/bachelor 4/7

Alpha Functionality Requirements

FRONTEND DATABASE
BACKEND BACHELOR

  27/27

Dashboard - List Current Courses and
Assignements from this semester/year

FRONTEND BACKEND



Alpha fix functionality Req

FRONTEND DATABASE
BACKEND BUG

  30/33

#30 - BUG - from #23 join class, gets
window.alert all the time after joining
course

FRONTEND BACKEND BUG



Errors

FRONTEND DATABASE
BACKEND

  14/16

#18 - Assignment Delivery page

FRONTEND DATABASE
BACKEND

  2  3  1/1 2

1 merged

#9 - Assignment page
FRONTEND BACKEND

 1  5/5 1

#28 - Peer Service
DATABASE BACKEND

 2  8/9 2 1 merged

5/15/2019 Bachelor | Trello

https://trello.com/b/dybp7r9K/bachelor 5/7

#21 - Admin Page Dynamic
BACKEND

  3  3/3 3

2 merged

#12 - Create Assignment form/page

FRONTEND DATABASE
BACKEND

 2  6/7 2 1 merged

#22 - Admin FAQ Page
FRONTEND BACKEND

  2  12/12 2

1 merged

#10 - Course participant page/list of
users in course

FRONTEND BACKEND

 2  1/1 2 1 merged

#20 - Front Page Dynamic
BACKEND IMPLEMENT LATER

  2  1/1 2

1 merged

#7 - Course page
FRONTEND BACKEND

 2  4/5 2 1 merged

#2 - Initial database tables
DATABASE

 1  8/8 1

5/15/2019 Bachelor | Trello

https://trello.com/b/dybp7r9K/bachelor 6/7

#3 - Go Router / Web server
BACKEND

 2  9/9 2 1 merged

#4 - Home page / Landing page
FRONTEND

 2  8/8 2 1 merged

#5 - Login/Register page

FRONTEND DATABASE
BACKEND

 2  6/6 2 1 merged

#6 - Admin page
FRONTEND BACKEND

 2  3/3 2 1 merged

#8 - User page

FRONTEND DATABASE
BACKEND

  2  13/13 2

1 merged

#11 - Create Course form/page

FRONTEND DATABASE
BACKEND

 2  4/4 2 1 merged

#32 - Admin Show User Submissions

FRONTEND DATABASE
BACKEND

   2  3/3 2

1 merged

5/15/2019 Bachelor | Trello

https://trello.com/b/dybp7r9K/bachelor 7/7

#14 - Database connection class
FRONTEND DATABASE

 2  4/4 2 1 merged

#16 - Logging to database

DATABASE BACKEND
IMPLEMENT LATER

   4  2  5/11 2

1 merged

#17 - Add navbar to every page
FRONTEND

 2 2 1 merged

#23 - Join Class Functionality
BACKEND

  2  4/4 2

1 merged

Docs Done

#25 - Write half a page weekly-report
DOCS

  17 Feb  4/4

#15 - Write half a page report on what
you did this week, what went good,
what went wrong, what can be done
better

DOCS

  10 Feb

#1 - Prosjektplan
BACHELOR DOCS

  1 Feb  1  11/11 1

I Toggl Summary

All time tracking was done through Toggl.

120

https://toggl.com/

Summary Report
January 01, 2019 – December 31, 2019

TOTAL HOURS: 1337:11:54

416.7 h

333.3 h

250.0 h

166.7 h

83.3 h

0.0 h

59:57

391:19
406:13

279:44

199:57

Jan

2019

Feb

2019

Mar

2019

Apr

2019

May

2019

Jun

2019

Jul

2019

Aug

2019

Sep

2019

Oct

2019

Nov

2019

Dec

2019

USER DURATION

Johan Aanesen 465:12:20

Brede Fritjof Klausen 453:08:40

Svein Are Danielsen 418:50:54

TIME ENTRY DURATION

Without description 348:19:05

Report writing 72:18:20

rapport 70:53:18

Bachelor Rapport Skriving 60:48:43

#Alpha functionality 59:45:29

12 - create assignment form/page 47:30:50

#28 Peer Review Service 34:12:55

Review Pooling 31:39:05

Logging 28:45:44

#29-scheduler-service 23:56:32

9 - assignment page 20:34:43

alpha-brede 20:15:38

#7 coursepage 19:14:28

Alpha-Brede 18:06:17

deleting scheduler n stuff 14:31:15

#alpha-brede 13:44:30

Page 1/9Bachelor Assignment 53

Other time entries 452:35:02

USER - TIME ENTRY DURATION

Brede Fritjof Klausen 453:08:40

#16 - Fix logging issue & start on #23 7:00:12

#18 - Assignment Delivery Page, rec 1 3:07:55

#18 - Assignment Delivery Page, rec 2 0:56:41

#18 - Assignment Delivery Page, rec 3 6:12:07

#18 - Assignment Delivery Page, rec 4 8:51:17

#18 - Assignment Delivery Page, rec 5 5:11:23

#18 and other stuff 2:28:55

#20 - Front Page Dynamic 8:01:37

#21 - Admin Page Dynamic 6:28:07

#21 - Admin Page Dynamic Part 2 1:07:52

#21 and meetings 7:15:42

#22 - Admin FAQ Page 7:09:57

#23 - Ivite link 4:20:07

#23 - test and refactor 1:45:42

#32 - Admin Show User Submissions 9:44:14

Page 2/9Bachelor Assignment 53

#alpha-brede 13:44:30

22 - bøg 7:21:28

Added ps1 script 0:10:00

alpha 1:43:07

alpha again 6:09:29

alpha fix 1:16:34

Alpha Fixes 4:59:30

alpha-brede 20:15:38

Alpha-Brede 18:06:17

beta-brede 7:13:12

beta-brede - emailservice 11:38:54

beta-brede - emailservice - confirm email 3:28:51

beta-brede - emailservice - email validation 9:52:18

beta-brede - emailservice - pullrequest 8:00:25

Beta-brede boii 7:16:02

Boring class, starting on #16 1:11:31

Checking out stuff - inkl. UML 0:17:48

Page 3/9

USER - TIME ENTRY DURATION

Bachelor Assignment 53

configuring database 0:22:48

email research 1:06:09

emailservice 4:20:00

emailservice + logging 4:34:57

First week, Fifth day 5:05:05

First week, first day 0:18:12

First week, First day, part 2 3:38:59

First week, Fourth day 4:02:55

First week, Fourth day part 2 1:48:13

First week, Second day 7:03:44

First week, Third day 8:03:11

fixing logs 7:00:58

Gantt - meeting 0:28:18

going to school and continuing on #23 7:11:23

join course through register link 4:47:04

Logging 28:45:44

meeting 4:55:31

Page 4/9

USER - TIME ENTRY DURATION

Bachelor Assignment 53

Meetings and working on plan 3:33:00

Meetings and working on plan part 2 1:00:10

Moody Mondays 4:21:55

Openstack vm 3:20:37

Overtime 0:40:22

Planning day 0:56:10

Prosjektplan - Gantt 2:49:17

Refactoring, fixing of bugs and report writing 3:05:41

Report writing 72:18:20

Research and merging #8 0:24:46

Setting up enviroment and stuff 2:13:48

Without description 62:24:01

Johan Aanesen 465:12:20

#10 Participant List 12:07:08

#11 Create Course Page 8:59:35

#11 Create Course Page - Testing 4:19:41

#28 Dockerizing The Project 9:35:11

Page 5/9

USER - TIME ENTRY DURATION

Bachelor Assignment 53

#28 Peer Review Service 34:12:55

#29-scheduler-service 23:56:32

#29-scheduler-service && #Alpha functionality 8:20:36

#5 Register/login and setting up environment on laptop 5:40:17

#7 coursepage 19:14:28

#7 or #8, courspage/userpage 3:29:57

#Alpha functionality 59:45:29

#Alpha functionality && Meeting 2:44:58

#research 1:48:49

#restructur 7:04:00

#Webservice scheduler frontend 4:23:36

:D updating project on main pc 0:51:52

Bachelor Rapport Skriving 60:48:43

Database Connection Class 9:10:34

Day 2 :) #14 and #5 Session management and login / register 6:12:31

deleting scheduler n stuff 14:31:15

Fikse fiks 0:32:20

Page 6/9

USER - TIME ENTRY DURATION

Bachelor Assignment 53

Filling trello with tasks and initial database creation 7:33:00

Functionality mapping 1:52:00

Meeting and Review Pooling 2:52:19

Meetings 7:46:33

Programming and wrapping up project plan 3:01:20

Programming start 8:48:00

Project meeting 3:50:03

Project planning 6:14:56

pull request n stuff 0:25:39

refactoring day! 2:17:31

Review Pooling 31:39:05

Review Pooling wrap up 5:14:25

Review Pooling wrap up / pull request 7:32:00

Review switch on/off 12:28:22

System Architecture 4:30:10

Updating Notes And Set up project on OpenStack 0:12:23

Updating weekly and daily notes 2:14:00

Page 7/9

USER - TIME ENTRY DURATION

Bachelor Assignment 53

Updating Weekly notes n challenges 0:26:29

Weekly Meeting 3:08:00

Weekly report and #8 pull request 0:42:24

Working on project plan 3:45:00

Without description 50:48:14

Svein Are Danielsen 418:50:54

#4 - Home page / Landing page 10:11:46

#6 - Admin page 6:04:24

12 - create assignment form/page 47:30:50

17 - navbar 3:00:00

9 - assignment page 20:34:43

Go research 4:28:40

Monday planning 7:02:05

Project restructur 6:00:21

Prosjektplan 5:37:57

Prosjektplan, EDITED 2:00:00

rapport 70:53:18

Page 8/9

USER - TIME ENTRY DURATION

Bachelor Assignment 53

Report 0:20:00

Without description 235:06:50

Created with toggl.com Page 9/9

USER - TIME ENTRY DURATION

Bachelor Assignment 53

	Preface
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Glossary
	Introduction
	Task Description
	Goals
	Result
	Effect
	Learning

	Project restrictions
	Technological

	User base
	Development framework
	Project Organization
	Project members
	Responsibilities and roles
	Why we chose this assignment

	Report layout

	Development Process
	Choice of method
	Argumentation
	Conclusion

	Execution of the method
	Tool usage
	Selected tools

	Requirements
	Use cases
	Use case-diagram
	Use case descriptions

	Requirements
	Functional requirements
	Non-functional requirements

	Technical Design
	System overview
	Architecture
	Service Oriented Architecture
	Model-View-Controller

	UI Design
	Graphic Design
	Interaction Design

	Database design
	Project/File structure

	Implementation
	Web server
	Routing
	HTTP Handlers / Controllers
	Parsing the request body
	Parsing form data
	View
	Templating
	Form Builder

	Database
	Mail service
	User Authentication
	Login Sequence
	Register Sequence
	Codebase

	Deployment
	OpenStack
	Docker
	Docker Compose
	Web Service
	Mail Service
	Database

	Makefile

	Testing and User Feedback
	Testing
	Unit Testing
	User Testing

	Quality Assurance
	User Feedback

	Discussion
	Results
	Choice of technical solutions
	Peer Review
	Logging
	Repository And Service
	Form Builder

	Conclusion
	Evaluation of the Group's Work
	Final Words
	Future Work
	Auto-Validation Functionality
	API Based Micro Service Architecture
	Front-end
	Notification and Messaging Service
	Time-zone Error
	Feedback From Project-Owner And Students

	Bibliography
	Project Repository
	Project Agreement
	Project plan
	Meeting Logs
	Record of meetings
	17.01.19 - Thursday
	28.01.19 - Monday
	11.02.19 - Monday
	18.02.19 - Monday
	04.03.19 - Monday
	11.03.19 - Monday
	21.03.19 - Thursday
	01.04.19 - Monday
	04.04.19 - Thursday
	11.04.19 - Wednesday
	29.04.19 - Monday

	Daily Logs
	Johan Logs
	Brede Logs
	Svein Logs

	Peer Review Discussion
	Screenshots
	Trello Board
	Toggl Summary

