
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

B
ac

he
lo

r’
s

pr
oj

ec
t

Bartosz Tracz
Eirik Persson Masteholtet
Anders Isaksen

An AWS IoT-based system for
handling communication and
controlling an AGV

Bachelor’s project in Bachelor of Engineering in Computer
Science
Supervisor: Hao Wang

May 2019

Bartosz Tracz
Eirik Persson Masteholtet
Anders Isaksen

An AWS IoT-based system for handling
communication and controlling an AGV

Bachelor’s project in Bachelor of Engineering in Computer Science
Supervisor: Hao Wang
May 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

An AWS IoT-based system for handling
communication and controlling an AGV

Author(s)
Bartosz Tracz
Eirik Persson Masteholtet
Anders Isaksen

Bachelor of Science in Engineering - Computer Science
20 ECTS

Department of Computer Science
Norwegian University of Science and Technology,

20.05.2019

Supervisor Hao Wang

An AWS IoT-based system for handling communication and controlling an AGV

Sammendrag av Bacheloroppgaven

Tittel: AWS IoT-basert system for håndtering av kommunikasjon og
kontroll av AGV

Dato: 20.05.2019

Deltakere: Bartosz Tracz
Eirik Persson Masteholtet
Anders Isaksen

Veiledere: Hao Wang

Oppdragsgiver: Escio AS, Terje Krogstad

Kontaktperson: Terje Krogstad, terje.krogstad@escio.no

Nøkkelord: Bachelor, API, IoT, AWS, REST, MQTT, Z-Wave, AGV
Antall sider: 59
Antall vedlegg: 6
Tilgjengelighet: Åpen

Sammendrag: Internet of Things (IoT) har de siste årene erfart en kraftig vekst.
Denne veksten har ført til økt popularitet og tilgjengelighet av IoT-
baserte løsninger på markedet. Robotiske teknologier, slik som
Automated guided vehicles (AGV), er den neste bølgen av IoT-
enheter som kan brukes til ulike industrielle formål. I lys av disse
teknologiske fremskrittene, samt den foreslåtte oppgavebeskriv-
elsen utlevert av Escio AS, har vi implementert en prototype
bestående av to deler. Den første delen omhandler utviklingen av
et Representational State Transfer (REST) application program-
ming interface (API) som sender data direkte til Amazon Web
Services (AWS). I den andre delen ble det implementert et API
basert på Z-Wave protokollen som sender data via MQ Teleme-
try Transport (MQTT) protokollen til AWS som tillater kommu-
nikasjon med en AGV-enhet. Konklusjonen er at det er mulig og
gjennomførbart å kontrollere en AGV-enhet basert på sensordata
fra et IoT-nettverk, og at en slik løsning har stort potensial i virke-
lige scenarioer. Escio var veldig fornøyd med sluttproduktet.

i

An AWS IoT-based system for handling communication and controlling an AGV

Summary of Graduate Project

Title: An AWS IoT-based system for handling communication and
controlling an AGV

Date: 20.05.2019

Authors: Bartosz Tracz
Eirik Persson Masteholtet
Anders Isaksen

Supervisor: Hao Wang

Employer: Escio AS, Terje Krogstad

Contact Person: Terje Krogstad, terje.krogstad@escio.no

Keywords: Thesis, Bachelor, API, IoT, AWS, REST, MQTT, Z-Wave, AGV
Pages: 59
Attachments: 6
Availability: Open

Abstract: In the recent years the growth of Internet of things (IoT) devices
has increased exponentially. This growth has led to an increase
in popularity and availability of devices on the market. Follow-
ing the increase in popularity, the general use and development
of IoT based solution has been in high demand. Robotic technolo-
gies such as automated guided vehicle (AGV), are the next wave of
IoT devices that are used for various industrial purposes. Inspired
by the advancements within these technologies and the need for
a new solution requested by Escio AS, we have implemented a
prototype providing a solution consisting of two parts. In the first
part, we implemented a Representational State Transfer (REST)
application programming interface (API) that sends data directly
to the Amazon Web Services (AWS). In the second part, we devel-
oped an API based on the Z-Wave protocol that sends data through
the MQ Telemetry Transport (MQTT) protocol to the AWS which
controls an AGV unit. The conclusion is that it is possible and fea-
sible to control an AGV unit based on sensor data from an IoT
network, and that such a solution has great potential in real life
scenarios. Escio was very pleased with the end product.

ii

Preface

We would like to thank Escio AS for the opportunity to undertake this bachelor project. A special
thanks to Hao Wang for supervising us throughout the development process and thesis phase. We
would also like to thank Terje Krogstad from Escio AS for supervising us during the process and
providing a great project experience.

iii

Contents

Preface . iii

Contents . iv

List of Figures . viii

List of Tables . ix

Listings . x

Abbreviations . xi

1 Introduction . 1

1.1 Motivation . 1

1.2 Project Definition . 2

1.3 Target Audience . 2

1.4 Project Organization . 2

1.4.1 Distribution of responsibilities . 2

1.4.2 Rules and Procedures . 3

1.5 Constraints . 3

1.5.1 Time Constraints . 3

1.5.2 Financial Constraints . 3

1.5.3 Legal constraints . 4

1.5.4 Technical constraints . 4

1.6 Thesis Structure . 4

2 Background . 5

2.1 IoT . 5

2.1.1 MQTT Protocol . 5

2.1.2 Network Topologies . 6

2.2 Cloud Computing . 7

2.3 API . 7

3 Requirements . 8

3.1 Functional Requirements . 8

3.1.1 Use case . 8

3.1.2 High level use case . 10

3.1.3 Detailed use case . 11

3.2 Technical Requirements . 12

3.2.1 Docker Support . 12

iv

An AWS IoT-based system for handling communication and controlling an AGV

3.2.2 AWS Requirements . 12

3.2.3 User interface . 13

3.3 Project Requirements . 13

3.4 Security . 13

3.5 Equipment . 13

3.6 Documentation . 13

3.6.1 Documentation of the Development Process . 13

3.6.2 Code Documentation . 13

4 Choice of Technology . 14

4.1 Programming Language . 14

4.1.1 Candidates . 14

4.1.2 Comparison . 15

4.2 Web API design architecture . 16

4.2.1 REST . 16

4.2.2 GraphQL . 16

4.2.3 Comparison . 16

4.3 Frameworks . 17

4.3.1 Flask . 17

4.3.2 Django . 17

4.3.3 Conclusion . 17

4.4 Web Server . 18

4.4.1 Nginx . 18

4.4.2 Apache . 18

4.4.3 Conclusion . 18

4.5 SDKs and AWS connection helpers . 18

4.6 IoT protocols . 19

4.6.1 Zigbee . 19

4.6.2 Thread . 19

4.6.3 Z-Wave . 20

4.6.4 Comparison . 21

4.7 Choice of IoT Framework . 22

5 Technical Design . 23

5.1 System Overview . 23

5.2 Django application . 23

5.3 MQTT . 24

6 Implementation . 27

6.1 REST API . 27

v

An AWS IoT-based system for handling communication and controlling an AGV

6.1.1 SDKs and third party libraries . 27

6.1.2 Publishing data via REST API . 27

6.1.3 IoT core operations . 29

6.2 Z-Wave . 30

6.2.1 Challenges and Problems . 30

6.2.2 Solutions . 31

6.2.3 Results . 33

6.3 AWS Communication . 33

6.3.1 MQTT Server . 33

6.3.2 AWS Lambda . 35

6.4 System Integration . 38

6.4.1 Sending Sensor Data . 38

6.4.2 Controlling the AGV . 40

7 Development process . 44

7.1 Development Tools . 44

7.1.1 Scrum . 44

7.1.2 Jira Software . 45

7.1.3 Trello . 46

7.1.4 Bitbucket . 46

7.2 Testing . 46

7.2.1 Unit-testing . 46

7.2.2 User testing . 47

7.3 Documentation . 47

7.3.1 Swagger . 47

7.3.2 Sphinx . 47

7.3.3 Bitbucket README . 47

7.4 Product Demo . 48

8 Discussion . 49

8.1 Results . 49

8.1.1 REST API . 49

8.1.2 AWS Communication . 49

8.1.3 Z-Wave API . 49

8.2 Alternate choices . 50

8.3 Project Organization . 50

8.3.1 Group Organization . 50

8.3.2 Evaluation of Jira . 51

8.3.3 Assignment of Project Tasks . 51

vi

An AWS IoT-based system for handling communication and controlling an AGV

9 Conclusion . 52

9.1 Future Work . 52

Bibliography . 53

Appendices . 58

Appendix A Project Description - Original . 59

Appendix B Project Description - Extended . 62

Appendix C Z-Wave API Guide . 66

Appendix D Burndown Charts . 71

Appendix E Project plan . 73

Appendix F Project agreement . 84

vii

List of Figures

1 A representation of the pub/sub pattern where a client publish to two subscribing clients. 5

2 Star and Mesh Topologies [1] . 6

3 Use case diagram for the REST & Z-Wave API . 9

4 ZigBee Wireless Networking Protocol Layers [2, p. 5] . 19

5 6LoWPAN network Architecture [3] . 20

6 Z-Wave Mesh Network [4] . 21

7 Complete system architecture . 24

8 REST API architectural design . 25

9 MQTT sequence diagram . 26

10 Swagger URL helper . 28

11 Django REST graphical interface . 28

12 Received data displayed in the AWS management console 28

13 Adding node configuration to the Z-Wave config file . 31

14 First successful result with IoT devices connecting directly to AWS IoT. 36

15 Publishing an MQTT message with AWS Lambda over HTTP. 37

16 AWS IoT rules corresponding to their action . 39

17 AWS rule query statement . 40

18 MiR100 example mission . 40

19 Move to glasswall command received from AWS lambda 42

20 MiR100 moving to glasswall location . 43

21 Burndown Chart for the first sprint . 71

22 Burndown Chart for the second sprint . 71

23 Burndown Chart for the third sprint . 72

24 Burndown Chart for the fourth sprint . 72

viii

List of Tables

1 Programming languages comparison table . 15

2 GraphQL vs REST comparison . 17

3 Comparison of the IoT protocols . 21

ix

Listings

6.1 Topic URL example . 28

6.2 Thing operations . 29

6.3 Thing type operations . 29

6.4 Policy operations . 29

6.5 Target policy operations . 30

6.6 Certificate operations . 30

6.7 Client object assignment . 38

6.8 Fetch sensor values . 39

6.9 curl command for activating a specific mission for the AGV 40

6.10 Python AGV commands . 41

6.11 on_message() function listening for incomming messages 41

6.12 Checking the message for command keys . 41

6.13 Method for calling the AGV in our MiR API . 42

x

Abbreviations

Abbreviation Phrase
AGV Automated Guided Vehicle
API Application Programming Interface
ARM Advanced RISC Machine
AWS Amazon Web Services
CA Certificate Authority
CLI Command Line Interface
GUI Graphical User Interface
HTML Hyper Text Markup Language
HTTP Hypertext Transfer Protocol
IAM Identity and Access Management
IEEE Institute of Electrical and Electronics Engineers
IoT Internet of Things
IP Internet Protocol
JSON JavaScript Object Notation
MAC Media Access Control
MiR Mobile Industrial Robots
MQTT MQ Telemetry Transport
M2M Machine to Machine
NDA Non-Disclosure Agreement
ORM Object-relational mapping
PDF Portable Document Format
PEP Python Enhancement Proposal
QOS Quality of Service
REST Representational State Transfer
SDK Software Development Kit
SQL Structured Query Language
SSH Secure Shell
TCP Transmission Control Protocol
TLS Transport Layer Security
UI User Interface
URL Uniform Resource Locator
WSGI Web Server Gateway Interface
XML eXtensible Markup Language

xi

1 Introduction

Internet of Things (IoT) is quickly asserting itself as one of the more dominant technologies on the
marked. With an estimated number of devices between 6.4 and 17.6 billion, IoT strives to "connect
the unconnected" using different paradigms and protocols. The technology is used in everything from
home automation to deployment on a metropolitan scale and has received varying amounts of atten-
tion from a wide range of companies.

1.1 Motivation

As demand for various IoT products has increased, more companies want to try their hand at devel-
oping their own IoT-based solutions. Amongst these companies was Escio AS, who took an interest
in this technology, and together with NT6 they have acquired an automated guided vehicle (AGV),
specifically the MiR100. This device is designed to transport materials and logistics internally within
production facilities, hospitals, warehouses, and a host of other industrial locations [5]. Escio and
NT6 are currently looking at new scenarios for this technology, and is at the moment working on an
application for 3D scanning buildings and automatically collecting data by driving a preconfigured
route. Currently, the robot can be controlled via its web-based interface manually, but Escio seeks
to develop a fully automated solution of the control process using Amazon Web Services (AWS) and
real-time sensor data.

After doing some research, we found one related project using similar equipment and related ideas.
The project, done by a group at Aalborg University in 2016, was to bring flexibility and automation to
a part feeder in an Industry 4.0 context. This was an integrated solution with two standalone robots
where the MiR100 was used as an integrated part. In the project they experimented with controlling
the AGV with arrow keys by publishing to a certain topic and increasing the velocity based on key
input. They also experimented with driving the robot to a specific location using a Representational
State Transfer (REST) application programming interface (API) and proved to be successful in both
cases [6]. Their results were promising, however this solution is not customizable and does not satisfy
the specific needs of the company.

In a joint effort with Escio, a prototyped system solution with integrated support for delivering IoT
data to their internal systems was discussed and drafted. The prototype had to be developed in a two-
part process; Part one would be to create a Hypertext Transfer Protocol (HTTP) API using existing
technologies for publishing messages to AWS. Part two would be to implement an API for a specific
IoT protocol for automatic reporting of sensor data. This data would then be handled and used to
control the AGV.

1

An AWS IoT-based system for handling communication and controlling an AGV

1.2 Project Definition

The initial problem was to develop a system for receiving and sending two-dimensional data to AWS
cloud using an Hypertext Transfer Protocol (HTTP) API. The project scope was later extended. The
extended phase is a separate prototype of a system that incorporates the use of IoT sensors and an
AGV. Additionally, it should be able to use these two systems in conjunction with each other.

The goal of this project is to create a prototype of a unified system for IoT sensor data transmission
and controlling an AGV based on this data. It should also be possible to use the web API to simulate
data. AWS and IoT technologies are both central parts of the project, as well as researching and
experimenting with different network protocols and AWS services.

Project Results

• Create a prototype API for sending/receiving user or sensor data for requesting an AGV to
predefined locations.
• Produce a report that provides insight and research about the different technologies.

Project Impact

• Prove that such a system is feasible for use in different settings to increase effectiveness

1.3 Target Audience

The product and the bachelor thesis have their own target audience. The developed product is aimed
at Escio and their employees, where as the thesis is mainly for academic purposes.

Product Audience

Target audience for the finished product are Escio’s employees. The prototype will be primarily used
by the company employees for the purpose of demonstrating the technology behind the prototype.

Thesis Audience

This report will be directed towards readers interested in the topic and/or has a wish to work with
the IoT pipeline. The reader should have some technical knowledge about programming languages.
Knowledge about IoT and cloud services is recommended but not required.

1.4 Project Organization

Every team member had equally shared responsibilities for development and writing of the thesis. In
addition, each member had one or more roles to fulfill throughout the project.

1.4.1 Distribution of responsibilities

Eirik P. Masteholtet was chosen as project leader and had the main responsibility for designing the
system architecture and overall project structure. As project leader, he makes sure that the project
goes according to the plan and meets the requirements. He also has the authority to make major
decisions, keeping the group’s best interests in mind.

2

An AWS IoT-based system for handling communication and controlling an AGV

Bartosz Tracz was chosen to be project manager. As project manager his main responsibilities is things
like keeping track of deadlines, coordination of the workflow between group members and report on
the project progress.

Anders Isaksen was primarily responsible for all communication between the team, product owner
(Terje Krogstad) and supervisor (Hao Wang). He also had responsibilities such as scheduling meetings
and take care of all the permissions needed for the various services.

Hao Wang is an associate professor with a Ph.D in computer science and field of expertise in fields like
IoT, Big Data and High Performance computing. His main functionality was to supervise us throughout
the entire project.

Terje Krogstad is a senior developer at Escio. His main functionality was to provide us with the re-
quired equipment and devices. He also provided guidance in our software development process.

1.4.2 Rules and Procedures

The team has established some rules that needs to be followed. As a rule we decided to meet up
at least twice a week and have a minimum of 30 work hours. Daily stand-ups will be held either
in person or over the Discord communication service in order to keep each other up to date on the
current state of the project.

If a team member does not show up to meetings that is organized outside of the daily standups
without notifying the team in advance, he will face a penalty. The member will be required to work
up the total hours lost in his spare time.

1.5 Constraints

The project consisted of some resources that had limitations on the scope. Criteria such as time,
technology and legal constraints will set the framework of the project.

1.5.1 Time Constraints

We had two major deadlines for the project. The first was the feature freeze on the 11th. of April. After
this date, no additional features were to be implemented, but the team could set aside some time for
bug-fixing and code improvement. The second deadline was the thesis submission date, which was
due to 20th. of May.

1.5.2 Financial Constraints

As research was a big part of this project, there were no strict financial constraints. We had an ongoing
dialog with the company regarding hardware and equipment that were needed in our system. Server
cost and computing power is financed by Escio.

3

An AWS IoT-based system for handling communication and controlling an AGV

1.5.3 Legal constraints

As the project scope got extended, a non-disclosure agreement (NDA) had to be signed to safeguard
the company’s interests. Due to the NDA, some of the more descriptive parts of the project has been
left out or rewritten in such a way that protects the company’s intellectual property.

1.5.4 Technical constraints

The Raspberry Pi is used as our software development platform. As a consequence, this solution have
some hardware limitations such as memory and computing power.

1.6 Thesis Structure

Chapter 2: Background
This chapter provides the reader with the theory and background recommended for this
thesis.

Chapter 3: Requirements

Presents a general overview of the client’s requirements for functionality and quality.

Chapter 4: Choice of Technology
Provides information behind every choice that was made during the project. Covers differ-
ent aspects like choice of programming language, IoT protocol an various frameworks.

Chapter 5: Technical Design
This chapter provides a high-level overview over the system architecture and a detailed
overview over the sub-systems.

Chapter 6: Implementation
Describes the implementation process of the REST API as well as prototype of the sen-
sor controlled AGV. This chapter provides information about the challenges that occurred,
solutions to these problems as well as the achieved results.

Chapter 7: Development Process
Covers the development process and describes various development tools, testing, docu-
mentation and methodologies used during the project period.

Chapter 8: Discussion
This chapter describes the final results of the project. Topics like alternative choices, critique
of the thesis and thoughts around project organization are also discussed.

Chapter 9: Conclusion
Chapter 9 concludes this thesis. It provides our contributions and describes whether we
have achieved the goals for this thesis. This chapter also presents our thoughts on future
work.

4

2 Background

To get the most out of this thesis, some knowledge of the following content is required. This chapter
is intended to give the reader some theory about the topics covered in the subsequent sections.

2.1 IoT

IoT is a network of devices such as vehicles and home appliances that contain electronics, software,
actuators, and connectivity which allows these things to connect, interact and exchange data[7]. "The
basic premise and goal of IoT is to ’connect the unconnected’"[8]. In practice, this means connecting
devices and objects that previously could not communicate with each other.

There are many ways to make IoT devices collaborate. This is done using different protocols that can
communicate with each other over various network topologies. In this section we will describe most
common IoT protocols and network connection methods.

2.1.1 MQTT Protocol

MQTT is a publish-subscribe messaging transport protocol. It is open and lightweight protocol, de-
signed for easy implementation. These characteristics makes it ideal in many situations including
constrained environments. It is commonly used for communication in Machine to Machine (M2M)
and IoT contexts where a small code footprint is required and/or network bandwidth is at a premium
[9][10][11].

Figure 1: A representation of the pub/sub pattern where a client publish to two subscribing clients.

MQTT is based on the publish-subscribe (pub/sub) pattern where the senders of the message, called

5

An AWS IoT-based system for handling communication and controlling an AGV

publishers, sends messages to receivers, called subscribers as seen in Figure 1. The client that pub-
lishes a message is decoupled from other publishing clients or clients that receive the message [10].
The content of the message does not contain information about who the message is intended for
and therefore do not know about the existence of the other clients. In order to publish or subscribe,
the clients needs to establish a connection with an MQTT server, also known as an MQTT broker in
the earlier versions. This protocol use a topic-based filtering system for messages. A server filters the
incoming messages and distributes them to the clients that subscribe to topics that pertain to them,
and therefore receive messages that are published about those topics [10][11].

2.1.2 Network Topologies

There are a number of different types of network topologies, including point-to-point, star, mesh,
tree and more. A topology refers to the virtual layout of the interconnected devices on a computer
network [12]. In this section we will be focusing on star and mesh topology, and describing differences
between them. Figure 2 visualizes different connection patterns for these topologies.

Figure 2: Star and Mesh Topologies [1]

Star topology is one of the most common network setups. In this configuration, every node connects
to a central network device called hub or switch. The central network device acts as a server and the
peripheral devices act as clients. All of the nodes on the network must be connected to one central
device which handles all the traffic in the network. The network is robust in the sense that if one
connection between a node and the hub fails, the other connections remain intact. However the
primary disadvantage of the star topology is that the hub represents a single point of failure which
means that if the central hub fails the entire network goes down [12][13].

A mesh network is a local network topology in which the infrastructure nodes connect directly, dy-
namically and non-hierarchically to as many other nodes as possible. The nodes cooperate with one
another to efficiently route data from/to clients. Each node in the system acts as both a data source
and a repeater. Information from a single node travels from node to node until the transmission
reaches the destination. If the message can be sent directly between node A and B it is done so. A

6

An AWS IoT-based system for handling communication and controlling an AGV

message from node A to node C can be successfully delivered even if the two nodes are not within
range, providing that a third node B can communicate with nodes A and C. If the preferred route is
unavailable, the message originator will attempt other routes until a path is found to the C node. As
a result, a mesh network can span much farther than the range of a single unit [12][14][15].

2.2 Cloud Computing

By definition, cloud computing is the practice of using a network of remote servers hosted on the
Internet to store, manage, and process data, rather than a local server or a personal computer. It is
a computing paradigm where a large pool of systems are connected in private or public networks.
It provides dynamically scalable infrastructure for applications, infrastructure and storage services.
[16][17]. This allows services to be rapidly provisioned and released with minimal management
effort from the user side or service provider interaction [18].

There are multiple cloud providers that offers services depending on the client needs, for example
AWS, Azure and Google. "A cloud services platform such as AWS owns and maintains the network-
connected hardware required for these application services, while you provision and use what you need
via a web application"[19].

2.3 API

Application Programming Interfaces (APIs), including libraries, frameworks, toolkits, and software
development kits (SDKs), are used by virtually all code [20]. APIs enable the reuse of libraries and
frameworks in software development [21] by providing a programmable interface to a service making
it possible to use in conjugation with other services and programs.

Interaction and communication with cloud services is handled by cloud API’s. Applications can inte-
grate these API’s to be able to move workload and logic into the cloud. Most cloud service providers
has developed their own API’s that users can utilize, and each has their own benefits and challenges.
However, many of them provides interoperability, so that the user can use multiple API’s without the
fear of compatibility issues [22].

7

3 Requirements

In order to gain a better understanding of what is desired of the end product, a general overview of
the client’s requirements for functionality and quality was needed.

3.1 Functional Requirements

Although the assignment was very open-ended with the supervisor encouraging researching and
choosing the technologies most suited for the job, Escio had some predefined requirements:

• The developed API had to be HTTP based and build upon already existing industry standards
such as REST or GraphQL.
• The API have to be able to handle real-time data transmission.
• All validation and data routing forwarded to AWS will be handled by AWS IoT rules

3.1.1 Use case

The use case diagram shows the involved parties that will use the system and their associated actions.

Actors

The actors in the use case as seen in Figure 3 is described as follows:

• User: The person using the application and has access to most of its functionality.
• AWS: Sends back data to system
• API: Creates and configures the required files needed for the API to function properly.

8

An AWS IoT-based system for handling communication and controlling an AGV

User

Things

Manage keys

Manage
certificates

Manage Thing
types

Manage
policies

Manage
target policies

Manage
security

Subscribe

Publish

Configure
node

Print
configurations

Get data from
every node

Get data from
single node

<<API>>

<<AWS>>

Generate
config file

Senor data

IoT rules and
Lambda

Policies

Manage Things

Call AGV

Node operations

Includes

Legend:

Action

Directional
action

<<extends>>

Figure 3: Use case diagram for the REST & Z-Wave API

9

An AWS IoT-based system for handling communication and controlling an AGV

3.1.2 High level use case

Use case Policies
Actors User
Purpose Manage policies and target policies

Description
The user should be able to perform create, read, and delete
operations as well as attach and detach policies on things. Policies
allows the user to administer access to the AWS IoT data plane.

Use case Manage security
Actors User
Purpose Manage keys and certificates for AWS communication

Description

Keys and certificates is a central part of the AWS pipeline. These
allows the user to establish a (secure) TLS connection with the IoT
core services. Keys are personal and each user has their own
set of keys, the certificates can be found on the official AWS
page and the user has to pick the right certificate for the job.
An X.509 certificate is required for the TLS connection.

Use case Things
Actors User
Purpose Manage things and thing types

Description
The user is able to perform create, read, update, delete operations
on things and thing types

Use case Node operations
Actors User

Purpose
Handle operations and communication with the different nodes
on the Z-Wave network.

Description

There are 4 different operations related to this use case:

Configure node - see detailed use case in Section 3.1.3

Print configurations - prints the configurations of the node
that the user is allowed to edit. The print contains the manufacturer
name, config parameter id and current value.

Get data from every node - Prompts all the connected nodes to
report their name, temperature, UV, luminance and relative humidity.

Get data from single node - Prompts a single nodes to report its
name, temperature, UV, luminance and relative humidity

10

An AWS IoT-based system for handling communication and controlling an AGV

Use case Sensor data
Actors User
Purpose Publish and receive sensor data from AWS Cloud

Description
Allow the user to:
1. publish sensor (or mock) data to AWS
2. Subscribe to incoming messages from AWS based on topics.

Use case Call AGV
Actors User
Purpose Control the AGV

Description
The AGV can be controlled by received messages from either the
user or from AWS.

Use case IoT rules and Lambda
Actors AWS
Purpose Handles the received data based on created Rules

Description
AWS rules is a way to query data received on the server. These rules
are created by a user, but handled by AWS. Lambda is configured to
manage the data and control the logic.

Use case Generate config file
Actors API
Purpose Generates a config file based on nodes in the network

Description
The first time the Z-Wave network is started, a config file is
automatically generated. This config file contains a list of nodes
and their configuration parameters.

3.1.3 Detailed use case

We opted for a more detailed description of the event flow regarding the configuration of a network
node as this is a rather comprehensive and complex operation.

11

An AWS IoT-based system for handling communication and controlling an AGV

Use case Configure node
Actors User
Purpose Edit the node settings such as report times and alarm thresholds
Preconditions Node is paired to the network

Postconditions
The updated values can be viewed by prompting
the node for its configurations

Main flow

1. The user runs the zwave.py script.
2. The script looks for existing configuration file. If it does not
exist, it will be created with default values based on the sensor types.
3. The user creates a network object
4. Using the network object, the user will start the network
5. The network will prompt all connected nodes for
status and returns network state 7 or 10. With a network
level 7 or above, the user can perform node and network
operations.
6. The user will make use of the configure_node method to
update the node with desired values. The user will be referred to
the node manual to examine valid configuration values.
7. The user will get a configuration completed message if the
update was successful.

Alternative path

1. The script is unable to detect configuration file: The script stops
and informs the user to provide a valid configuration path.
2. Network does not start: If the network is unable to start (caused
by disconnected/faulty nodes) the script will exit with an error
message.
3. Network never reaches level 10: This is caused by the network
not being able to wake up sleeping nodes. All operations will
function at level 7, but sleeping nodes will not be affected.

3.2 Technical Requirements

Being a prototype, the main concern is to see if this project is achievable. Therefore the team had the
responsibility to chose the programming language, protocols, operating system and other technical
aspects based on research and experience. On the other hand we were required to use the AWS cloud
platform as this is the cloud platform they use.

3.2.1 Docker Support

Terje and the group agreed that the application should be able to run as a docker service. Due to the
ease of use and portability of docker services meant that the application easily could be transferred
and installed on different systems as needed.

3.2.2 AWS Requirements

As Escio uses AWS on a daily basis, one of the requirements were to use AWS services throughout the
project. AWS has all the tools needed for IoT operations with their AWS IoT Core, as well as support
for cloud computation and logic handling with AWS Lambda and IoT rules. There was a desire to
have of the logic handling out to the cloud for purpose of scalability.

12

An AWS IoT-based system for handling communication and controlling an AGV

3.2.3 User interface

There were no specific UI requirements for the application. The team decided that the REST API
should have a web-interface for usability.

3.3 Project Requirements

Escio required an agile software development process to be used during the project implementation.
There was also a requirement to use Jira as this is what they used on a daily basis.

3.4 Security

As the application would only be a prototype and intended to run on a local network, there were no
set requirements for security. However, if time allows it, the REST API should implement the Oauth2
authentication framework.

3.5 Equipment

Escio had an AGV of type MIR100 and the project was set to be centered around this unit. The AGV
has an incorporated, proprietary REST API, meaning that calls to the AGV should happen with the
use of this API.

3.6 Documentation

The documentation process will happen at two stages. Stage one is concerned with the development
process and the other with regards to the coding implementation.

3.6.1 Documentation of the Development Process

All choices made during the development process should be documented. Additional requirements
and functionality that appears during the course of the project should be handled by appropriate
project planning tools.

3.6.2 Code Documentation

Code should be written and documented using the specific language requirements for code style.
The project repository markdown file should give the user a good overview of the application and
guidance on how to install and use the code. Documentation should be generated from source code
with the appropriate tool within the chosen programming language.

13

4 Choice of Technology

A significant part of the project was associated with research. Choosing the right tools in order to
accomplish the various challenges is a central part of prototyping. In this chapter we will describe
various programming languages, development tools and frameworks we considered to use in our
project. In addition, we will present each alternative and discuss its strengths and weaknesses and
the motivation behind our choices.

4.1 Programming Language

The implementation process consisted of two parts. Both parts had their own unique requirements
and approaches in regards to choice of language. The first part concerns the development of the web
API, and the second part covers the implementation of a system for handling real time sensor data
and control of an AGV unit. Overall the criteria for the programming language are as follows:

• Web framework support
• Works on Raspberry Pi
• Compatibility with IoT protocols
• AWS SDK support
• MQTT support

4.1.1 Candidates

Go is an open source project developed by a team at Google and many contributors from the open
source community. We considered Go mostly because it is fast, has great support for multithreading
and easy-to-read syntax. Go is a compiled language which means that it runs directly on underlying
hardware. Go was built with multithreading in mind. It has goroutines instead of threads, which
provides flexible memory management and avoids having to resort to mutex locking when sharing
data structures. Go also has a strong standard library for web development [23][24]. Go is a young
language compared to the other options and is still developing.

Node.js is an open-source, cross-platform JavaScript run-time environment that executes JavaScript
code outside of a browser. Node.js was mostly considered because of its great support for REST
application development, and is well equipped to handle a large number of requests through streams.
It is easily installed on for example a Raspberry Pi and has great support for sockets and MQTT
operations[25].

Python is a high-level, interpreted and general-purpose dynamic programming language that focuses
on code readability. We considered Python mostly for its ease of use, readability and great support
with the web frameworks. The syntax in Python helps the programmers to do coding in fewer steps as

14

An AWS IoT-based system for handling communication and controlling an AGV

compared to other languages [26]. Python has a huge collection of various web frameworks, ranging
from micro-frameworks, through asynchronous frameworks and ending with full-stack frameworks
[27].

C/C++ both works great for applications running on devices where computing power usually is
rather limited, such as a Raspberry Pi [28]. C works well because of its low-level access to the com-
puter memory and does not require a lot of processing power. C++ is directly derived from the C
language, which means it shares a lot of properties with C while also adding improvements and sup-
port for object oriented programming. Both C and C++ has low support for web frameworks, making
development of a web API very challenging.

Java is one of the most widely used programming languages and a prominent choice for IoT engineers.
It has been the backbone for many emerging IoT technologies [29]. One of the primary reasons for
choosing Java would be its flexibility and versatility. It intends to let an application to be "written
once, run everywhere". In later years it has been ported to the ARM Cortex family, which dramatically
lowers the requirement for hardware needed to effectively run the Java VM [30]. Depending on the
need of portability, Java might be a good choice.

4.1.2 Comparison

Table 1: Programming languages comparison table
Constraints Go Node.js Java C/C++ Python

Web framework
support Native Great Great Low Great

Raspberry Pi
support Good Good Good Native Native

MQTT client
support Low Good Great Good Good

IoT protocols
support Yes Yes Yes Yes Yes

Previous experience Low None Good Good Great

Since we were developing a prototype and had a tight time schedule, choosing a language that would
require a lot of time and effort to learn would not be a smart move. Every member had different
experience with the mentioned languages, but Python, Java and C++ were the ones we all knew
the best. Looking at Python’s extensive library support and easy-to-use web frameworks, getting a
prototype up and running would be much simpler than with e.g. C++ or Java.

At the end, Python was chosen based on several conditions. We were supposed to develop a prototype,
which meant that focus on language performance and multithreading was low. Python has been out
for decades and has great documentation, a huge code base and large community. Finally, the biggest
reason behind our choice can be illustrated by Table 1. Python has the overall highest supported
criteria and is the language that our team has the most experience with.

15

An AWS IoT-based system for handling communication and controlling an AGV

4.2 Web API design architecture

We were free to pick an API architecture of our choice. However, Escio suggested REST and Graph
QL. Therefore, we took closer look on these two architectures.

4.2.1 REST

First introduced in 2000 by Roy Fielding, REST is an architectural paradigm providing a standard be-
tween computer systems on the web, making it easier for systems to communicate with each other. It
is most commonly used to design APIs for web services [31]. REST is designed with a set of constraints
[32]:

• Client-Server - In REST, the client and server are separate entities. This means that imple-
mentation and changes can independently be done on one part without interfering with the
other.
• Stateless - Means that the server does not store any state about the client session on the server

side. The client should provide all the information needed to handle the request. The server
can service any client at any time.
• Cacheable - Clients can cache responses from the server. Responses has to implicitly, or explic-

itly, define themselves as cacheable. Well managed caching reduces the need for communication
with the server, improving performance.
• Uniform interface - All services have a uniform interface and data is sent in a standardized

form.

4.2.2 GraphQL

GraphQL was developed by Facebook in 2012, but was not made publicly available before 2015.
Unlike REST, GraphQL is a data query and manipulation language for APIs. In GraphQL, all of the
requests is sent to a single endpoint, which means that the developer does not need to plan out the
uniform resource locators (URLs) in advance. Instead of the limitations of a uniform interface that
REST provides, GraphQL can tailor requests (queries) to fetch exactly the data the user needs[33].

4.2.3 Comparison

The biggest difference between these architectural styles is:

1. In REST, accessible data is described as a linear list of endpoints, while in GraphQL it’s a schema
with relationships.

2. GraphQL has no form for web caching. GraphQL does not follow the HTTP specifications for
caching, which REST does.application

Other differences and limitations can be visualized with the help of a Table 2.

Being familiar with REST and having the ability for caching, which was indeed described as an op-
tional requirement for the project, this is what we decided to use.

16

An AWS IoT-based system for handling communication and controlling an AGV

Table 2: GraphQL vs REST comparison
Constraints REST GraphQL

Client-Server YES YES
Stateless YES YES
Cacheable YES NO
Layered System YES Only via HTTP POST
Code on Demand YES NO
Uniform Interface YES Only resource identifiers via node ID

4.3 Frameworks

After deciding on the programming language and architectural style, we had to make a choice be-
tween which framework to use. The two dominant web frameworks for Python is Flask and Django.
Both have great documentation and are widely used. Following is a more in-depth review of these
frameworks.

4.3.1 Flask

Flask is a micro web framework written in Python based on Werkzeug and Jinja 2. It is classified
as a microframework, facilitating requests, routing, dispatching and returning HTTP responses [34].
Flask was mostly of interest because of its slim design and RESTful request dispatching.

Flask has no strict rule-set for project structure and scaling, but does provide recommendations and
best-practices. This, for us, was one of the more negative aspects about the framework. By being
so open ended and lenient on project structure, scaling a larger application could become an issue.
However, this can be countered by using the RESTPlus extension and following the guide for scaling
large projects.

4.3.2 Django

Django is a high-level Python Web framework that encourages rapid development and clean, prag-
matic design. It is seen as one of the most productive frameworks for building the features needed by
most medium to large web applications. Django favors an explicit approach, meaning, that the user
has more a more direct control of the application behaviour. This approach requires more typing, but
debugging and problem fixing becomes much easier [35].

In contrast to Flask, Django provides more functionality for creating a fully fledged application out
of the box. Features like the object-relation mapping (ORM) make it compatible with most major
databases. Furthermore it includes a ready-to-use admin panel for handling common administration
tasks. However Django follows a strict project structure and wants you to stick to its modular philos-
ophy.

4.3.3 Conclusion

Both are great choices and are very popular full-stack web frameworks. As setting up an caching
service for logging data events and OAuth was an optional requirement, Django presented itself as

17

An AWS IoT-based system for handling communication and controlling an AGV

the best choice in our circumstance. With its included features the team did not need to spend time
integrating different modules together.

4.4 Web Server

A Web server is responsible for receiving HTTP requests and forward a response back to the user.
Django offers a lightweight development server. As the name suggest, it should only be used while
developing and never in a production environment. Therefore a production server is needed.

4.4.1 Nginx

Nginx is an increasingly popular web server. It has grown in popularity since its release due to its
light-weight resource utilization and its ability to scale easily on minimal hardware [36]. Nginx is
about 2.5 faster than Apache for serving static content, and for dynamic content the performance
difference is quite slim [37]. The web server also supports some more advanced features such as
reverse proxy, load balancer and an HTTP cache.

4.4.2 Apache

Apache has been the most popular server since 1996 [38]. As a result of this, it is well documented
and provide a substantial amount of integrated support and modules. It is a component of the well
known LAMP (Linux, Apache, MySQL, PHP) stack which is still very popular.

4.4.3 Conclusion

The team members has previous experience with Nginx, and with its light-weight resource utilization
made it the right choice for development on a Raspberry Pi.

4.5 SDKs and AWS connection helpers

Being an AWS oriented project, integration with their services using an SDK would greatly speed
up the development process. AWS has developed an SDK for Python called Boto3, which enables
developers to create, configure, and manage AWS services. This means that Boto3 will handle the
authentication and data passthrough from local server to AWS.

An alternative to the Boto3 SDK would be to use direct calls to AWS services. AWS has a credentials
provider that allows the use of the built-in X.509 certificate as the unique device identity to authen-
ticate AWS requests. This eliminates the requirement to store access keys locally, but the provided
token is only temporary and is somewhat limiting.

Boto3 offers all the functionality needed for a fast and efficient application setup. The application will
be a self-contained system, so access keys can be handled locally on the OS. Access keys can also be
added as a linux environmental variable, which means that different users accessing the same system
can be limited by a system administrator and/or AWS IAM.

18

An AWS IoT-based system for handling communication and controlling an AGV

4.6 IoT protocols

There are currently plenty of various IoT protocols available on the market. Each protocol was de-
signed with a specific use case in mind and provides its own set of features. In this section we will
describe potential candidates as well as our choice for the IoT protocol for this project.

4.6.1 Zigbee

Zigbee is a low-cost, low-power, wireless mesh network (2.1.2) standard targeted at battery-powered
devices in wireless control- and monitoring applications [39]. ZigBee uses the IEEE 802.15.4 specifi-
cation for the lower medium access control (MAC) and physical (PHY) layers as its foundation. The
protocol standard has two PHY layers that operates in two separate frequency ranges: 868/915MHz
and 2.4GHz [40]. Data transmission rates vary from 20kb/s on the 868/915MHz band, to 250kb/s
on the 2.4GHz band. Its low power consumption limits data transmission distances from 10 to 100
meters, depending on power output and environmental characteristics [41].

Figure 4: ZigBee Wireless Networking Protocol Layers [2, p. 5]

ZigBee is a specification of a network layer only. Application layer specifications were added later, but
never made mandatory. This lead to a broad variety of ZigBee implementations coexisting on the mar-
ket. All these versions claim to be ZigBee, but none of them is interoperable with each other. As the
National Testing Service organisation states, one of the top five reasons for failures in ZigBee deploy-
ments is lack of interoperability between units [42]. Apart from the interoperability problem, Zigbee
also faces additional challenges such as interference problems caused by the use of the congested 2.4
GHz frequency band [43].

4.6.2 Thread

Thread is an IPv6-based, low-power mesh networking technology for IoT products, intended to be
secure and future-proof. With the joint effort of over 50 companies, Thread is an attempt at standard-
izing a protocol running on the 6LoWPAN to enable home automation [44]. The 6LoWPAN standard
enable the efficient use of IPv6 over low-power wireless networks on simple embedded devices. The
6LoWPAN group has defined encapsulation and header compression mechanisms that allow IPv6

19

An AWS IoT-based system for handling communication and controlling an AGV

packets to be sent and received over IEEE 802.15.4 based networks [45]. The motive behind creat-
ing an IPv6 based protocol was the limited number of unique addresses that previous iteration of
the protocol (IPv4) supported. IPv6 utilizes 128-bit addresses instead of the 32-bit adresses used in
IPv4. This large adress space ensures availability of unique addresses for all nodes in any practical
growth-rate scenario. Since the protocol is IP based, a wireless node that implements 6LoWPAN can
be accessed and managed similarly to any other IP device [2]. Figure 5 shows the structure of the
6LoWPAN network architecture.

Figure 5: 6LoWPAN network Architecture [3]

4.6.3 Z-Wave

Z-Wave is a wireless communication protocol used primarily for home automation. Z-Wave is designed
to provide reliable, low-latency transmission of small data packets at data rates up to 100kb/s [46].
Contrarily to the broadly known wireless network protocol (Wi-Fi), which sends data directly from
A to B, the Z-Wave protocol uses a source-routed mesh network (see section 2.1.2) architecture to
transmit data. Source routing allows a sender of a packet to partially or completely specify the route
the packet takes through the network. Z-Wave uses the unlicensed industrial, scientific, and medical
band that operates at the frequency between 865MHz and 926MHz, depending on the country regu-
lations [14]. This frequency spectre makes is perfect as a home automation tool for indoor use, as it
avoids interference with the crowded 2.4GHz band such as Wi-Fi and Bluetooth. Figure 6 shows how
the Z-Wave protocol operates with the mesh network.

20

An AWS IoT-based system for handling communication and controlling an AGV

Figure 6: Z-Wave Mesh Network [4]

The Z-Wave protocol was privately owned and kept as a proprietary standard until 2016[47]. This
had both its positive as well as negative sides. On the positive side every device manufactured had to
fulfill certain standards and each newly made device had to be interoperable with existing devices.
On the negative side vendors have been forced join the Z-Wave Alliance to gain access to developer
resources. In addition, the cost of producing a Z-Wave device was higher due to the licensing fees.
Since 2016, it has slowly made its way to the open source market. [47][14]

4.6.4 Comparison

Table 3 shows the comparison of these protocols.

Table 3: Comparison of the IoT protocols

Protocol Network Topology Data Rates Range
Frequency

Band Max Devices Interoperability

Z-Wave Mesh 20kb/s - 100kb/s 40-100m ∼900MHz 232 Fully

ZigBee Star, Tree, Mesh
20kb/s on ∼900MHz
250kb/s on 2.4GHz 10-100m

∼900MHz /
2.4GHz 65000 Partly

Thread
Thread(Mesh)
6LoWPAN(Many)

20kb/s on ∼900MHz
250kb/s on 2.4GHz 10-100m

∼900MHz /
2.4GHz 264 Partly

We presented our findings to Terje and had a discussion regarding each presented alternative. Ev-
ery protocol shares plenty of features, like source-routed mesh network architecture, open-source,
plenty of supported vendors and devices. As the Z-Wave protocol works on the lower spectrum of
the frequency band and all devices are fully interoperable, it presented itself as the most appealing
alternative.

21

An AWS IoT-based system for handling communication and controlling an AGV

4.7 Choice of IoT Framework

There existing a lot of applications to help with the network communication of IoT devices. Many
of these have a broader purpose and supports multiple IoT protocols in the same package. Some
of these are open-source alternatives such as Home Assistant (HASS), openHAB and Domoticz. The
frameworks are usually optimized to run on devices such as a raspberry pi.

Terje had some previous knowledge with HASS as he used this on a weekly basis. HASS provides
a clean and user friendly web-interface where users easily can administer their connected devices.
HASS is a great way to get familiar with IoT technologies as it serves as a way to abstractify the more
complicated layers of IoT such a network protocols and data transfer. The main issue with HASS is
that it tries to be a one-for-all solution for multiple IoT units. Using only one IoT protocol and a
selected set of operations, HASS is definitely excessive for our use.

Escio desired a more single purpose application, so we started looking at various light-weight IoT
frameworks. Knowing what type of protocol and programming language we would be using, we found
several open source frameworks [48][49][50]. We chose the python-openzwave framework which is
a python wrapper for the openzwave C++ library. The python wrapper was not fully implemented
but had just enough functionality to create a fully customizable, lightweight Z-Wave API which is
what the company desired.

22

5 Technical Design

In this chapter we will discuss our system architecture. Since our systems is disjoint we will have a
high-level description of the technical solution, but also a more in-depth look at the two two systems
separably. These solutions was designed with the goal of addressing all requirements described in
Section 3.2.

5.1 System Overview

Most of our system components run separably as their own Docker service as seen in Figure 7. This
way, the system could comfortably be ported to other platforms and operating systems. A Raspberry
Pi was used as the local environment to host the different services.

5.2 Django application

As the REST API consist of an HTTP server and a WSGI server our system will follow the layered
architecture pattern. Nginx represents our presentation tier and is responsible for displaying the user
and serving static content. Requests that demands dynamically content is passed on to the applica-
tion server which is Gunicorn. This represents the application layer and is responsible for detailed
processing. The data will be sent and stored on the AWS platform which serves as our data tier as
illustrated in Figure 8.

This architectural pattern allows for functionality to be organized and separated into layers. The
benefits of this is that each layer can be changed independently and makes the system more portable.
One disadvantage with this is that it may introduce unnecessary code complexity for simple projects
[51].

• Client - A user or application sending requests and receives data to/from the web server either
via the implemented graphical interface using Swagger or using a command line (e.g. curl).
• Nginx - Used as the HTTP web server and handles the static resources.
• Gunicorn - Serves as a Web Server Gateway Interface (WSGI). WSGI forwards the requests

from the web server and invokes the django REST API. It also serves as a middleware to handle
the load balancing.
• Django REST - Process dynamic HTTP requests. Uses the Boto3 SDK for communication with

the AWS IoT core services. Boto3 is also used to handle custom responses from AWS.
• AWS cloud - Stores and handles the IoT core data.

23

An AWS IoT-based system for handling communication and controlling an AGV

Subscriber

IoT topic IoT Rule Lambda function

Local Gateway
(MQTT Server)

MiR100

AWS

Sensor

Sensor

API

IoT gateway

Local environment

AWS IoT

Bridged connection

IoT gateway

Figure 7: Complete system architecture

5.3 MQTT

MQTT follows the pub/sub pattern as described in Section 2.1.1. The communication process for
moving the AGV is illustrated in Figure 9 and should follow the sequence in this specified order:

1. A controller connects to the broker and subscribes to a specific topic with an SUBSCRIBE mes-
sage. The broker will send a subscribe acknowledgement (SUBACK) message back.

2. A sensor will try to connect with the broker as client. If the client fails to connect by providing
a wrong username and password the connection would be refused, closing the network con-
nection. Otherwise the broker will send back an acknowledge connection (CONNACK) Packet.

3. The client will publish its data to a topic and then receive a publish acknowledgement (PUB-
ACK) packet from the broker.

4. The broker will forward the message to the AWS IoT’s broker through the bridged connection
and receive a PUBACK.

24

An AWS IoT-based system for handling communication and controlling an AGV

5. The data will trigger an AWS IoT rule and requesting the AWS Lambda service.
6. AWS Lambda will publish a command to the topic the local controller is subscribed to over

HTTP.
7. AwS IoT will publish this message back to our local broker through the bridged connection and

receive a PUBACK.
8. The broker will publish this message to the controller and receive a PUBACK.
9. The controller will request the AGV to move to a specific location based on the message from

AWS Lambda.

Nginx
(web server)

Gunicorn
(WSGI server)

Client

AWS cloud
Request/Response

Reverse proxy Request/
Response

WSGI

Figure 8: REST API architectural design

25

An AWS IoT-based system for handling communication and controlling an AGV

Alt

Broker AWS	IoT AWS
Lambda

Sensor

[authorization OK]

CONNACK

[authorization fail]

SUBSCRIBE

SUBACK

PUBLISH

PUBACK

PUBACK

MiR100

PUBLISH

Subscriber	/
Controller

[trigger rule]

PUBLISH
PUBLISH

PUBLISH

request to move

Error (no access)

PUBACK

PUBACK

Connect

Figure 9: MQTT sequence diagram

26

6 Implementation

In this chapter we will describe the implementation process. It is divided into four parts: The REST
API, Z-Wave API and how it collects the data, the MQTT connection between AWS and our system
and finally how it all is integrated together.

6.1 REST API

The REST API was the first thing that was implemented as it was the first/initial requirement before
the scope was extended. The API is developed with the help of the Django framework and Boto3
SDK and run as a docker service. The main purpose of this API was to receive multidimensional data
from a user and forwarding it to AWS. Secondly we added additional functionality for handling all
the administration surrounding IoT units. The REST actions were built with the help of the AWS IoT
reference guide.

6.1.1 SDKs and third party libraries

For the development of the REST API, we used the AWS SDK for Python called Boto3. This SDK
enabled us to create, configure and manage different AWS services. To get up and running with Boto3,
we had to setup our credentials used to verify the connection to the different services. Although this
could be done manually by creating required folders and copy-pasting the IAM credentials, we decided
to use the AWS Command Line Interface (CLI) to manage this. AWS CLI automated the credentials
process by running a aws configure bash command. The tool was also used for verifying the developed
class methods as it included different IoT core functions.

6.1.2 Publishing data via REST API

The API allows the user to manually publish data to AWS with HTTP POST by either using the publish
class method or via command line. Using the REST interface will allow the user to easily customize
the URL and payload. For example, by navigating to the Swagger interface and looking at the doc-
umentation for publish as seen in Figure 10, we can see that the URL requires a topic and a QoS
(Quality of Service). The message broker uses topics to route messages from publishing clients to
subscribing clients. The QoS provides information about the package and can have a value from 0 -
2:

• QoS level 0 - means a message is delivered zero or more times. A message might be delivered
more than once. No puback is sent.
• QoS level 1 - message is delivered at least once. A puback is sent back to the client when

message is received.
• QoS level 2 - handles message duplication. Message is received exactly once. AWS IoT does

not, as of this date, support this QoS.

27

An AWS IoT-based system for handling communication and controlling an AGV

Figure 10: Swagger URL helper

If the user wants to publish data to topic /sensor/hallway with a qos of 1, the URL would look like in
Listing 6.1.

Listing 6.1: Topic URL example

http :// localhost :8000/ iot/topics /%2 Fsensor %2 Fhallway =1

By visiting this URL, the user will be greeted with the Django REST interface as demonstrated in
Figure 11. This lets the user construct a payload by providing a simple textbox. The user can chose
different media types to send, but we are most interested in the application/JSON media type. By
filling out the textfield with desired JSON formatted data and clicking the POST button, the data will
be sent to AWS IoT’s message broker.

Figure 11: Django REST graphical interface

AWS IoT core has built-in functionality for testing publish/subscribe activity. By visiting the online
AWS management console and subscribing to /sensor/hallway, we can observe that the data was
received successfully (Figure 12).

Figure 12: Received data displayed in the AWS management console

28

An AWS IoT-based system for handling communication and controlling an AGV

6.1.3 IoT core operations

Expanding on the minimum functionality, we decided to implement support for the most used IoT
core operations. This was done in order to provide convenient functionality to the project and add
support for automation as discussed in Section 9.1.

Following the Django REST standard, each endpoint/resource should have its own class/method
inside the view function. This class contains all the desired protocols such as GET, PUT, DELETE
and more. AWS IoT has over 160 core operations that can be implemented, but we decided to only
implement the most useful operations for this project.

Thing - As described by AWS: "a representation of a specific device or logical entity". Usually, for each
IoT device you own, you’d want to create a thing associated with that device. Although not required,
adding these would allow for easier management (Listing 6.2).

Listing 6.2: Thing operations

URI: /iot/things HTTP /1.1
Methods: [GET]

URI: /iot/things/<thing_name > HTTP /1.1
Methods: [GET , PUT , POST , DELETE]
Content -type: application/json

Thing types - allows for storage of description and configuration information that is common to all
things associated with the same thing type. Adding thing types would allow for multiple things to
share the same set of attributes (Listing 6.3).

Listing 6.3: Thing type operations

URI: /iot/thing -types HTTP /1.1
Methods: [GET]

PATH: /iot/thing -types/<thing_type_name > HTTP /1.1
Methods: [GET , PUT , POST , DELETE]
Content -type: application/json

Policies - Policies are used to authorize different devices to perform AWS IoT operations, most notably
subscribing or publishing to MQTT topics. This function allows the user to perform create, read,
update and delete operations on policies (Listing 6.4).

Listing 6.4: Policy operations

URI: /iot/policies
Methods: [GET]

URI: /iot/policies/policy_name
Methods: [GET , PUT , POST , DELETE]
Content -type: application/json

29

An AWS IoT-based system for handling communication and controlling an AGV

Target policies - This method allows the user to list all the things attached to a specific policy, attach
a new one or detach an existing policy (Listing 6.5).

Listing 6.5: Target policy operations

URI: iot/target -policies/<policy_name >
Methods: [GET , PUT , POST , DELETE]
Content -type: application/json

Certificates - IoT communication with AWS is protected using x.509 certificates. In order to allow
the device to speak with the cloud, certificates has to be created and activated (Listing 6.6).

Listing 6.6: Certificate operations

URI: iot/certificates/<certificate_id >
Methods: [PATCH , DELETE]
Content -type: application/json

6.2 Z-Wave

Throughout the Z-Wave implementation phase we were faced with various challenges. Many of these
challenges occurred due to our lack of previous knowledge about the Z-Wave technology, but some
were a direct consequence of the python-openzwave wrapper. In this section we will be describing
what kind of problems and challenges we faced as well as how we handled them. At the end of this
section we will be presenting the results that we managed to accomplish.

6.2.1 Challenges and Problems

One of the major inconveniences of the python-openzwave wrapper was the documentation. Many
of the methods lacked documentation and some methods that were documented was not fully imple-
mented. This led to a lot of trial and error and reverse engineering to figure out how to use some of
the functionality. Sometimes we had to look at the C++ source code to figure out how things were
implemented.

Node configuration also proved to be more challenging than initially expected. Each node will gen-
erate an associated section in the main Z-Wave config file. For this section to be generated, the node
has to be linked to its manufacturer. The configuration process is controlled by an extensible markup
language (XML) file that works as a look-up table between the node id and manufacturer name, see
Figure 13 for a clearer overview. Additionally, we struggled to configure one of the specific nodes as
some necessary functionality was commented out.

30

An AWS IoT-based system for handling communication and controlling an AGV

The problems and challenges can be summarized as follows:

• Bad documentation and occasional lack of implementation
• No guidance in any form as to where to start and how to proceed onward
• Need for manual addition of manufacturer information for specific devices
• The need for reverse engineering of the software in order to understand it

Figure 13: Adding node configuration to the Z-Wave config file

6.2.2 Solutions

We decided that the best way to start would be to do more research about the wrapper as well as
read the documentation carefully. We cloned the Github repository for the wrapper for a more thor-
ough analysis. We encountered a "test" folder in the repository and within the folder a file named
"api_demo.py". We ran the file, hoping it would give us more insight, but all it did was to output
network logs which did not prove to be useful. We examined the Python code inside the file and
together with newly acquired knowledge from reading the documentation, slowly began to get a bet-
ter understanding of the system. We started experimenting with the code while reading the function
descriptions in the documentation and got to the point of successfully starting the Z-Wave network.

Our next objective was to establish a successful connection with the devices and receive data from
the sensors. After a few days and a lot of trial and error we still did not get any sensor values from

31

An AWS IoT-based system for handling communication and controlling an AGV

the devices. This led us to question if the Z-Stick and the sensor devices were functioning correctly. In
order to verify our skepticism we downloaded and installed Home Assistant in an attempt to control
the network. We managed to get the sensor values from all of the connected devices, proving that the
network was indeed working correctly. Swapping from Home Assistant back to our implementation
and re-running the network, we suddenly started to receive data from the sensors. This gave us mo-
tivation to resume our research. We started to explore the ways Home Assistant handles the sensors,
and since it is an open-source software, we analyzed its source code and functionality, like we did
earlier with the Python wrapper. We discovered that HASS produced an XML configuration file that
was used to store meta-data about the sensors and cache values. We included the configuration file
in our code and could confirm that this file were responsible for the correct sensor behavior. At this
stage we had managed to successfully receive the sensor values from the devices, only using our API.
However, for some reason the values were static and did not update.

The next objective was to find out why the devices were not updating their sensor values automat-
ically. After spending much time researching, we eventually found what we were looking for in the
device manual. We discovered that the sensors had a default rate of updating their values set to 1
hour in order to maximize the battery life of the devices. Simultaneously, we discovered that we
could force sensors to update their values by pressing a button on given device. Values were sent
successfully through the network verifying that our implementation functioned correctly.

The next step was to find a way to configure the sensors in order to increase the poll frequency.
We decided to use Home Assistant for this step as the Z-Wave wrapper had no documentation nor
any guidance on how to configure a device. The official Home Assistant web site as well as their
YouTube channel had plenty of information about the setup and configuration process. We managed
to correctly configure the devices and get them to automatically update their sensor values once
every five seconds. After confirming that the devices were configured properly, and were able to send
updated data more frequently, the next step was to implement this functionality as a part of our API.

The process of configuring the devices without the need of Home Assistant, was the longest and most
tedious. As previously stated, the documentation and resources is scarce. The python-openzwave
documentation did contain some various configure functions, but when tested, the configurations
did not take place. Again, we used to Home Assistant to see how it was configuring the devices and
consorted to reverse engineering in an attempt to recreate this process. The reverse engineering as
well as the documentation provided by Home Assistant led us in the right direction. We found that
there are multiple configuration files that we need to take under consideration. We tried changing
some values in the configuration files but did not get the desired results. Fortunately, as we were
searching through the web, we found that someone had posted a similar problem in the python-
openzwave GitHub issue thread [52]. The answer was provided by David Vassallo, who was successful
in figuring out the whole configuration process [53]. Carefully following his response, we were able
to get the desired results of updating the sensor values more frequently. This was a huge milestone
as it allowed us to encapsulate every useful functionality within our API.

32

An AWS IoT-based system for handling communication and controlling an AGV

6.2.3 Results

The result is a fully functioning, self contained API that handles and manages data from IoT devices
on a Z-Wave network. The Z-Wave API class consists of 6 methods:

start_network() - This is the first method that must be executed after initializing a Z-Wave object.
This method is the building block for the whole network and has to be executed in order to run other
methods. It is responsible for initializing the mesh network and the inclusion of all the connected
nodes.

get_every_sensor_data() - This method returns sensor data from every available device on the net-
work. If the device is paired but not turned on when the method is called, the method will return
cached data from last successful poll. The return format is a Python dictionary with the sensor name
and its value for each device. If the user wish to retrieve sensor data from a specific device the user
can call the get_sensor_data() method.

get_sensor_values() - Returns a dictionary with available sensor values and their description for
each device. The values uniquely identifies each attribute for a node.

print_configs() - Prints information about available configurations that can be made for a specific
device. It is recommended that this method is called before configuring a node as it presents the
information about the parameters and their associated values that the user can configure.

configure_node() - This method is mainly responsible for updating the polling intervals or changing
alarm thresholds for a device sensor.

6.3 AWS Communication

There are many things to keep in mind for handling the communication with the AWS cloud. What
kind of protocols to use, brokers and security are some of the key elements to a functional AWS
workflow.

6.3.1 MQTT Server

AWS IoT provides multiple ways to communicate with IoT devices, for instance MQTT and HTTP.
Our IoT devices have network capabilities but are not supported by AWS IoT. Therefore, we needed
to build a gateway that serves and translates the IoT device protocol to the AWS IoT protocol. The
project description mentioned that MQTT was something that micro-controllers and system on chip
could use to communicate with AWS, so our team spent some time researching this technology and
how it could be incorporated into our project.

Challenges and Problems

Our first concern was to be able to create a connection with AWS. The connection needed to be
bidirectional for allowing communication between the AWS platform and our system. In order to

33

An AWS IoT-based system for handling communication and controlling an AGV

establish a connection an authentication process was required by the AWS before successfully con-
necting. This was the main challenge during this implementation part. As a consequence of MQTT
working on top of the TCP/IP protocol it does not use encrypted communication by default. AWS
uses various authentication mechanisms depending on the connection protocol from the user.

During our development, we encountered two different authentication processes. The first one was
with the Transport Layer Security (TLS) protocol and the second was the Signature Version 4 over
HTTP. Both adds security at the transportation level of the message delivery. The TLS protocol depends
on a X.509 certificate as mentioned in Section 3.1.2. A second resource that is needed is the root
certificate authority (CA). CAs issue certificates to specific domains, so when the client presents a
certificate that is issued by a trusted CA, AWS knows it is safe to make the connection [54]. One issue
we ran into in the beginning was that we downloaded the wrong root CA from AWS unknowingly,
causing it to refuse the connection from our client.

The Signature Version 4 authentication on the other hand does not utilize certificates. This process
relies on the users security credentials which consist of two parts, an access key ID and a secret access
key which is also known as the users IAM credentials. In addition, it also requires the root CA like the
first alternative.

The process above provides a direct connection with AWS, however we also considered an alternative
for constrained environments. There might be devices in a industrial environment that cannot be ex-
posed directly to the internet. As a consequence of this, a local server that handles the communication
between AWS and local IoT devices would be needed. With no previous experience we did not know
if this was a possible.

Solutions

When researching programming languages that had the required criteria for implementing this sys-
tem, we found Paho. Paho is an open-source client implementations of MQTT provided by the Eclipse
Foundation. It allows the user to connect to a server by specifying the URL and port. Considering AWS
does not allow for a raw TCP/IP connection we needed to specify that the connection was going to
utilize the TLS protocol. As mentioned above this require an X.509 certificate, a root CA and a private
key. The certificate could be downloaded through the AWS CLI or through our REST API. The public
and private key is issued together with the certificate in both instances, however the private key will
only be issued once and needed to be stored in a secure location. The root CA can be downloaded
from the AWS home page, however the correct version needs to be selected. The last phase before
connecting was specifying the path of the downloaded resources, our AWS endpoint and the port.
The endpoint can be found in the settings panel inside the AWS IoT service site. Finally the port
8883 is specified since it is the standardized port for a secured MQTT connection [55][56]. As spec-
ified earlier, we initially downloaded the wrong root CA version which resulted in an unsuccessful
connection.

With a failed attempt we looked at other options. Short after, we found AWS’s own IoT SDK which is

34

An AWS IoT-based system for handling communication and controlling an AGV

built upon Paho. When comparing the two there is mainly one key difference, specifically its option
to use another communication protocol. In contrast to Paho, the IoT SDK can also access the AWS
IoT platform through MQTT over the WebSocket protocol. This protocol uses the Signature Version
4 authentication and the user needs IAM credentials and a root CA as stated above.

When initializing the client the SDK require the user to specify the location these files. There are two
ways of doing this. The first option would be to hard-code the credentials in a custom configuration
file and specify its path in a method parameter within the SDK. This is not recommended as it will
expose the credentials in plain text making it easier to discover, and increasing the risk of attackers
retrieving sensitive information. The second approach is to export these variables as environment
variables. The SDK will search for these specific environment variables for credentials if no custom
configuration is given: AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY. Unlike the previous
attempt where we had to select our own root CA, the SDK’s GitHub page provided a direct link to the
correct version resulting in a successful connection.

With a successful result we wanted to explore the idea of a constrained environment. The Eclipse
Foundation offer multiple open source projects, including Paho. With some research we came across
one of their other projects called Mosquitto which is an open source message broker.

Through research we found that the Mosquitto broker have a feature called bridging. This provides
the user with a way to connect two or more brokers together with some configuration. We found a blog
post on AWS by Michael Garcia that describes the necessary steps to bridge our local Mosquitto MQTT
broker to AWS IoT [57]. The connection protocol between them is TLS and the required resources
for this is described earlier in this section. The user have the option to specify which topics that are
bridged between the servers.

Results

Our first successful result is illustrated by Figure 14. The devices are directly communicating with
the AWS IoT message broker without any intermediary broker. This solution requires that the device
have the ability to connect to the cloud.

Our second successful result is shown in the system architecture (Figure 7). The result consists of
local IoT devices connected to our local MQTT server that handles the communication between these
devices and AWS IoT. However this implementation was not fully completed and have some issues
that needs to be handled. See Section 8.1.2 for more information about these issues.

6.3.2 AWS Lambda

AWS IoT offers the ability to create rules based on the MQTT topic stream. These IoT rules allow
the user to extract data from an MQTT message and send it to another AWS service. In this project
the AWS system needs to publish a message back to our system when the content of the incoming
message hits a certain threshold. The only service capable of this action is AWS Lambda. Lambda
is a service described as "a serverless compute service that runs your code in response to events and

35

An AWS IoT-based system for handling communication and controlling an AGV

IoT device

IoT device

IoT device

AWS IoT

Figure 14: First successful result with IoT devices connecting directly to AWS IoT.

automatically manages the underlying compute resources for you" by the AWS team [58].

Challenges and Problems

There were uncertainties in the beginning surrounding how the Lambda function should publish an
MQTT message back to our server given no prior experience with this service. One of the initial
questions was how Python packages could be imported given no easy tools right out of the box. As
a result of this there were no apparent solution on how to include an MQTT client library to the
Lambda functions. Continuing on the problem with regards to publishing a new message through the
bridged connection, some permissions were needed to be given the functions.

Solutions

Initially we considered the use of either the Paho client or AWS’s own IoT Device SDK for publishing
an MQTT message. First attempt was downloading the module to a zip folder and upload it to the
function’s deployment package. However, as noted by fengsongAWS, a contributor to the AWS SDK,
these connections is designed to be long lived. As he states in a Github issue, "[...] Lambda function
is serverless and not designed for long lived connection, AWS SDK would be more suitable to be used in
Lambda function" [59]. With this helpful information we found out that Lambda includes the Boto3
SDK as part of the execution environment that can publish a message through the HTTP protocol.

For publishing to the AWS IoT some permissions were needed. This is achieved through a Lambda
execution role giving the functions a "iot":Publish" permission to do an HTTP publish. With inadequate
authorization to set these permission ourselves an email exchange between Escio and us was needed.
As neither of us had experience in this area some trial and error was needed before the permissions
was set correctly.

36

An AWS IoT-based system for handling communication and controlling an AGV

Results

AWS Lambda’s role is to respond back to our system when an AWS IoT rule is triggered. With the
SDK as a part of its execution environment we were able to create a function that could publish an
MQTT message over HTTP as seen in Figure 15. Furthermore it needed the right execution role in
order to be allowed to publish to the AWS IoT message broker. In the end we received the message
in our local broker and can conclude that it was successful.

Figure 15: Publishing an MQTT message with AWS Lambda over HTTP.

37

An AWS IoT-based system for handling communication and controlling an AGV

6.4 System Integration

Using the developed MQTT broker and Z-Wave API we could begin the process of combining all the
parts into a single unified system. The main challenge was to complete the pipeline from receiving
data from the sensors to controlling the MiR100.

6.4.1 Sending Sensor Data

Before being able to control the AGV, the data from the sensors had to be sorted and sent to the AWS
cloud. This was done by iterating over every sensor registered in the Z-Wave network and creating
a list of Client objects. The client objects can then be assigned different configurations and linked to
separate topics.

Listing 6.7: Client object assignment

zw = ZWave.ZWave(config=’../ api_zwave/config ’)
zw.start_network ()

sensors = zw.get_every_sensor_data ()

for sensor_name in sensors.keys ():
client = Client(str(sensor_name))
clients.append(client)

for client in clients:
client.create ()

Description of the code in Listing 6.7:

1. A Z-Wave network object is created and the network is started.
2. Using the created API function get_every_sensor_data(), all the sensors are gathered into a

Python list object.
3. Looping on the key values in the list of sensors, a new client object is created and appended to

the list of clients.
4. The client list is iterated and the client.create() function is called. This function takes care of all

the paho and MQTT configuration that is required.

After all the clients has been created and configured, a loop is initiated to poll the sensors for data
every 5 seconds, see Listing 6.8. The value is set to 5 seconds because this was the shortest supported
polling interval for these specific nodes. If desired, the sleep function can be lowered, but no new
sensor data would be gained as it would only collect the cached values.

38

An AWS IoT-based system for handling communication and controlling an AGV

Listing 6.8: Fetch sensor values

while True:
data = zw.get_every_sensor_data () # as json
for key ,value in data.items ():

if name_contains(str(key), ’6’):
clients [0]. publish(topic = ’sensor/aeotec06 ’,

payload = json.dumps(value))
elif name_contains(str(key), ’8’):

clients [1]. publish(topic = ’sensor/aeotec08 ’,
payload = json.dumps(value))

sleep (5)

The sensors are assigned names based on the manufacturer and node id. This way we could easily
differentiate the nodes based on their id, and use a simple if/else check to publish their values to
their respective topic.

The published data would go through the MQTT broker and reach the AWS cloud. The received data
was then handled by IoT rules, Figure 16.

Figure 16: AWS IoT rules corresponding to their action

For each rule there exists an associated SQL statement which define when a rule action should trigger.
These actions are able to connect with other AWS services. In this case, an action was created to invoke
an AWS Lambda function (Figure 15). This publishes a command that will be parsed by a subscriber
that is configured to call the MiR100. For testing purposes, a statement was created to call the MiR100
when the aeotec06 sensor reported a luminance value above 300, as seen in Figure 17. Modifying
the luminance value proved to be one of the fastest way to test statements as it is easy to control
this parameter. There was also created a similar statement for the aeotec08 sensor, which was set to
trigger when the reported luminance was below 50.

39

An AWS IoT-based system for handling communication and controlling an AGV

Figure 17: AWS rule query statement

6.4.2 Controlling the AGV

After successfully sending and receiving data from the sensors, the last required step was to control the
AGV. The AGV is controlled by so called missions. These missions are what allows the unit to operate
automatically and are represented with their own globally unique identifier (GUID). Missions has
to be predefined by a user either via the API or using the graphical interface. Missions can include
actions such as taxi services (move to a specific location), flashing a light or playing a sound. The
MiR100 can be equipped with extra hardware such as an arm for picking up and placing objects. An
example mission from the MiR100 mission interface reference guide can be seen in Figure 18.

Figure 18: MiR100 example mission

Knowing that the AGV could be controlled by a REST API, we started testing some curl commands to
get it moving. After some trial and error related to passing the correct payload, we were able to get
the AGV moving by queuing a mission using the following command as seen in Listing 6.9.

Listing 6.9: curl command for activating a specific mission for the AGV

curl -H ’Content -Type’: ’application/json’ -X POST \
-d ’{’mission ’:␣’<unique_mission_id >’}’ \
http://<ip_addr >/v1 .0.0/ mission_queue \

In this project Escio had provided some preconfigured taxi missions. These missions are configured
to drive between predefined locations, perfect for testing a prototype.

After receiving messages from the Paho broker and creating a MiR100 command processor, we de-
signed our own MiR API. This adds the functionality of handling the HTTP requests to the MiR100
REST API. This can be integrated with the command processor adding a seperation of logic and al-
lowing for modularity. The command processor functioned as a dictionary to look up the different

40

An AWS IoT-based system for handling communication and controlling an AGV

missions that existed at the given time. As there was only two missions we had access to, we created
commands that corresponds to the messages received from the Lambda function, see Listing 6.10.

Listing 6.10: Python AGV commands

CMD_MOVE_TO_DESK = "MOVE_DESK"
CMD_MOVE_TO_GLASSWALL = "MOVE_WALL"

The command processing class is using Pahos callback function on_message() for handling incoming
messages, shown in Listing 6.11. The received messages is of type MQTTMessage object and has to
be decoded to UTF-8 before converted to JavaScript Object Notation (JSON).

Listing 6.11: on_message() function listening for incomming messages

def on_message(client , userdata , message):
if message.topic == AGVCommandProcessor.commands_topic:

try:
message_dictionary =

json.loads(message.payload.decode ())
...

The if statement in Listing 6.12 checks to see if the message contains any valid commands. In the case
of being a valid command an if statement is used with the MiR API to move the AGV to its requested
location.

Listing 6.12: Checking the message for command keys

...

if COMMAND_KEY in message_dictionary:
command = message_dictionary[COMMAND_KEY]
agv = AGVCommandProcessor.active_instance.agv
is_command_processed = False
if command == CMD_MOVE_TO_DESK:

agv.move_to_location("desk")
is_command_processed = True

elif command == CMD_MOVE_TO_GLASSWALL:
agv.move_to_location("glasswall")
is_command_processed = True

...

The move_to_location() method in Listing 6.13 is what invokes the MiR100 REST API and makes the
unit move. It receives the commands from the AGVCommandProcessor and sends an HTTP request
with the correct mission GUID to MiR100’s system.

41

An AWS IoT-based system for handling communication and controlling an AGV

Listing 6.13: Method for calling the AGV in our MiR API

def move_to_location(self , mission , location=None):
try:

mission_queue = self.mir_url + ’/mission_queue ’
data = {}
if mission == ’desk’:

data = {’mission ’: \
’fdffa984 -4188 -11e9 -8674- f44d306ef756 ’}

if mission == ’glasswall ’:
data = {’mission ’: \

’edd5cc25 -4188 -11e9 -8674- f44d306ef756 ’}
response = requests.post(mission_queue ,

headers=self.header , data=json.dumps(data))
...

In Figure 19, the command MOVE_WALL was received. The mission is then added to MiR100’s inter-
nal queue and its status is updated to pending. The movement of the MiR100 can be seen in Figure
20. The blue square is the MiR100 and the yellow line is the front side of the unit. The blue circles
represents preconfigured locations, and the green line is the current route it is taking. The gray and
black areas are seen as part of the environment and the red lines are seen as dynamic, e.g. people
and chairs.

Figure 19: Move to glasswall command received from AWS lambda

42

An AWS IoT-based system for handling communication and controlling an AGV

Figure 20: MiR100 moving to glasswall location

43

7 Development process

Following is an explanation of how the group worked during the implementation process. The chapter
adresses the Scrum development modell and various tools for simplifying the process, code documen-
tation and testing. We also explain the live product demo that we held in front of Escio employees.

7.1 Development Tools

Due to the requirements set by Escio in Section 3.3, an agile development process was selected.
Working agile allows a flexible development plan, and as requirements and specifications changed,
we were able to quickly react and adjust the priorities.

7.1.1 Scrum

Scrum is an agile methodology where products are built in a series of fixed-length iterations. There
are four pillars that bring structure to this framework:

1. Sprint Planning
2. Daily Scrums
3. Sprints
4. Sprint Retrospective

During the start of the project we were doing sprints with a duration of 3 weeks (15 working days).
This was partially because of the time constraints of the product owner and new technologies that
required a substantially amount of research. This was later changed to a 2 + 1 week sprint duration,
were 2 weeks were set aside for working on the project, and 1 week were set aside for research.

Before the start of each sprint we held sprint planning meetings to outline what needed to be done
during the coming weeks. Tasks that had not been completed during the previous sprint that were
still required took priority. If, during meetings or sprint retrospectives, requirements had changed or
new functionality were requested, we had to weigh these against already existing tasks and possibly
change the priority.

After planning and setting up the sprint backlog we played planning poker. This process proved to be
very useful to us for a couple of reasons: It gave us a way to estimate task complexity, provided a way
to manage time for each task, and let us discover tasks that were too big or ambiguous. We applied
planning poker like this:

1. A user story was selected from the sprint backlog.
2. Each member had "cards" with different score values. These were used to represent the com-

plexity and time requirement to complete the described task. The scores were assigned in a
variant of Fibonacci, where the lowest score was 0, and the highest was 101.

44

An AWS IoT-based system for handling communication and controlling an AGV

3. The selected user story was discussed in detail and each member selected a card to represent
their estimate.

4. If all the members gave the same score, this became the estimate of the user story. If members
had different scores, we discussed the estimates between ourselves. If there was a large span
between the scores, the task was discussed in more detail and alternatively altered.

5. This process was repeated until all the user story in the sprint backlog had been covered.

During each sprint we had daily standups to update each other on what work has been done and
what work remains. This helped us with keeping track of different problems and issues that occurred.
The daily standups were either held physically when working together, or via Discord when working
remotely.

After each sprint we had a sprint meeting with Terje. These meetings were mostly meant to show the
sprint results and talk about the plans for the next sprint. These meetings were also where most of
the new requirements would surface. After the sprint meeting we usually set aside time to work on
the next sprint backlog and materialize tasks into user stories.

7.1.2 Jira Software

Jira Software is an agile project management tool that supports agile methodologies. With this tool
we were able to plan, track, and manage the entirety of our development process.

Jira is managed by creating a new project in the management dashboard. This initiates an empty
project with an associated backlog. The team then starts filling up the backlog with the tasks needed.
The first week Terje helped us formulating tasks into user stories, as this turned out to be more
complicated than initially assessed. User stories are structured using the following formula:

Persona: e.g. As a <someone/role>..
Need: e.g. ...I would like <do something>...
Purpose: e.g. ...so that I can <reach a goal/get some benefit>.

An example of a user story for this project would be, for example: "As a user I would like to gather
data from Z-Wave devices so that it can be published to AWS".

As mentioned earlier, some of the user stories was a challenge to articulate. The stories had to be
easy to understand, descriptive and a way to abstractify the technical aspects. To help with this, Jira
enables you to create Tasks that are more aimed towards the developers, however, mixing tasks and
user stories should be done with care. What we did for some of the stories was breaking it down to
sub-tasks and appending to the story. This way, we could have both user stories and tasks.

For the planning poker process, Jira has a built in tool called Agile Poker. This was, as mentioned,
used before starting a sprint to ensure good planning and to discover potentially challenging tasks.
This also had to be done in order to display the burndown chart correctly at the end of each sprint.

45

An AWS IoT-based system for handling communication and controlling an AGV

Jira Software has support for integration with different version control systems such as Bitbucket.
This meant we were able to commit changes directly to different issues/tasks linked to the current
running sprint backlog. This allowed for easier tracking and cooperation as each member was able
to see what the other members were currently working on and their progress.

7.1.3 Trello

Trello1 is a collaboration tool that organizes projects into boards. And while we used Jira for this,
Trello was used as a support tool to gather all TODOS to help us visualize the sprint scope. These
tasks where later converted into user stories and added to our Jira board. We also used it to keep
track of minor sub-tasks that different functions needed in order to work correctly.

7.1.4 Bitbucket

Bitbucket2 is a Git repository management solution. It gives us the ability to collaborate on our source
code and handles development flow. It provides some commonly used features such as: access and
workflow control, pull requests and Jira integration.

We used Bitbucket throughout the entirety of the development process. New features, bug fixes and
added functionality were handled by creating pull requests. This allowed the other members to review
the code and suggest changes before integrating it with the main branch. Each pull request had to be
approved by at least one other team member.

7.2 Testing

During the development process we wrote some unit-tests for the REST API and performed user
testing for the Z-Wave API. The unit-tests were limited because of the difficulties of testing network
protocols and REST services. We also had a live product demonstration for Escio who was really
happy with the results.

7.2.1 Unit-testing

Writing unit-tests for REST API was rather complicated. We decided to write tests for some of the less
complex operations where it was feasible to generate mock data that would resemble the original
payload. Many of the functions also returns different status codes, which has to be tested. The project
supervisor said that testing is important, but if it was at the expense of the end-product, having a
reduced test coverage is acceptable.

No unit-tests were written for the Z-Wave API as it meant setting up a dummy network which would
not be feasible. Testing the MQTT protocol involves the verification of 4 central concepts:

1. Handling connection failure
2. Successful connection with and without the broker

1https://trello.com
2https://bitbucket.org

46

An AWS IoT-based system for handling communication and controlling an AGV

3. Correct parsing of the MQTTMessage object
4. Exception handling of malformed payloads

One does not usually want to test other services, as they are supposed to be responsible for their
own testing. With this in mind, we decided against testing of the MQTT protocol for this project as it
would require an excessive amount of time to set up a working test environment.

7.2.2 User testing

At the end of our last sprint we wiped clean the Raspberry Pi and unpaired all the Z-Wave devices.
This was done in order to examine if the Bitbucket documentation (Section 7.3.3) was instructional
enough for a user without prior IoT knowledge to understand and follow. The user testing provided
us with some meaningful feedback. Some of the feedback we got was that the documentation was
hard to follow at times and had an occasional lack of detailed description. Based on the feedback we
have gotten, we have described suggested paragraphs with greater details.

7.3 Documentation

Documentation was very important both for us and the company. Having good documentation makes
it easier for the end-user to get things up and running as intended. Every independent module was
thoroughly documented using documentation tools such as Swagger and Sphinx.

7.3.1 Swagger

Swagger has a build in tool for providing user friendly documentation. Following the PEP-8 comment-
ing standard, all documented code is parsed and rendered beautifully on the web page. This way, it
makes the web page simpler to use for those who are not familiar with REST architecture.

7.3.2 Sphinx

Sphinx is a tool that makes it easy to create intelligent and beautiful documentation, written by Georg
Brandl and licensed under the BSD license. It was originally created for the Python language so the
support is outstanding and provides a ton of features such as HTML, PDF and LATEXgeneration using
makefiles. It has built-in support for code highlighting, cross referencing and more.

Sphinx was easily installed using a package manager, and provides a script that guides the user
through the configuration process. The script creates an index.rst file which serves as the main con-
figuration file that the user has to update to add documentation for different modules such as the
Z-Wave API.

7.3.3 Bitbucket README

As a part of the documentation, we have made an in-depth guide on how to use our Z-Wave API. This
guide provides a detailed description on how to configure the network and receive data from the
sensors. Additionally we have provided screenshots of the expected outcome of executed commands.
We have also described common mistakes and pitfalls that a user may encounter and how to avoid
them. The README can be found in Appendix C.

47

An AWS IoT-based system for handling communication and controlling an AGV

7.4 Product Demo

After the completion of the last sprint, Terje invited us to present our prototype in front of the com-
pany. The demonstration consisted of the whole pipeline from getting the sensor data, to moving the
AGV. The presentation proved to be very successful and Escio was happy with the end product.

48

8 Discussion

This chapter provides a summary of our results and reflect on various project aspects such as approach,
management, project progress and teamwork.

8.1 Results

At the end of the project, we had developed three API’s and produced desired results for the company.
We were able to deliver both a REST API and an application for handling real-time sensor data to
control the MIR100. Escio was very satisfied with our results.

8.1.1 REST API

We were able to complete the initial requirements for the REST API as well as providing additional
functionality for future expansion. The user is able to use the API for sending messages and performing
IoT core operations as shown in Section 6.1.

There were plans for adding support for Oath2 framework. This would enable us to limit the user
access but had do be dropped due to time constraints. We also had some issues with support for
additional parameters in the URLs, so an unconventional solution using the equals sign was provided.
Additionally the Swagger UI is not configured to connect to the port used by Nginx, failing to reach
the Django application.

8.1.2 AWS Communication

Communication between the AWS services and our system over the MQTT protocol using the Mosquitto
broker was successful. The AWS Lambda triggers on preconfigured thresholds and notify our system
to move the AGV. We created two solutions as shown in Figure 7 and Figure 14.

Although the Mosquitto broker proved to be successful, some security measures has to be taken as
we did not have the time to implement this. The connection between the AWS IoT platform and our
server is secured over TLS while the local connection is not. The server has security at the application
level by requiring a username and password for accepting the request to connect. However, it is
using a raw TCP/IP connection without security at the transportation level, and as a consequence the
password and username is sent in plain text [60][61]. Mosquitto can be configured to only accept
incoming request over TLS, however as mentioned we did not have time to implement this.

8.1.3 Z-Wave API

Overcoming a great deal of problems and challenges we managed to successfully implement the Z-
Wave API. The API combines IoT technology and cloud computing for control and communication
of an AGV unit. The challenges we faces and how we overcome them can be read further upon in

49

An AWS IoT-based system for handling communication and controlling an AGV

Section 6.2.

During the implementation phase we discovered that the procedure of configuring a device differs
for wired and battery devices. We discovered that in order to configure a battery device it needed to
be in an "awake" state throughout the configuration process. This however does not work for battery
devices. As the battery devices have stricter requirements for battery preservation, they spend most
of the time in the "sleeping" state. We discovered that their wake up interval is too short to be able to
complete the configuration process.

8.2 Alternate choices

As described in Section 4.3 we chose Django as our web framework in favor of its clean and structured
design. What we did not know back then was that Django’s structure design comes with a cost of
overhead. There needs to be done some preparation steps before the project can be used. Even after
the setup step is finished there is this constant swap between different files and folders during the
development. That comes in a natural way with a bigger project but, in our case it was more overhead
than the actual work. So use of Flask might have been better choice in our case, based on the size of
the project.

In retrospect, our choice of IoT protocol could have been different. We could have chosen any of the
two other IoT protocols we mentioned in Section 4.6, mainly because of how bad the documentation
for python-Openzwave is. Thread and ZigBee have great documentation[62][63] and the implemen-
tation process could have been much smoother.

8.3 Project Organization

The team had set up some responsibilities as described in Section 1.4.1. Here we will reflect on the
overall project management, team dynamic and task distribution.

8.3.1 Group Organization

Workload varied a lot from week to week, and some weeks had more hours than others. We set up a
secure shell (SSH) connection on the Raspberry Pi to be able to work from home. We created a small
test setup using an Arduino and an led so that the luminance sensor could report dynamic data which
could be accessed remotely. Team communication when working remotely was handled mostly via
Discord using messages and voice chat. This way of working turned out fine as we all had worked
on group projects before and knew each other very well. We also had previous experience with agile
software approaches, so task designation was no issue.

Later on in the project when we started to work with the MiR100, we were invited to stay at Escio’s
location. They provided on-site seating with all the needed connections. They could also provide a
monitor and peripherals for the Raspberry Pi. We were free to use this offer as often as we liked.

We had meetings on Thursdays every third week with Terje. Since Terje was on paternity leave during

50

An AWS IoT-based system for handling communication and controlling an AGV

the project, so additional meetings had to be planned in advance. Communication was managed
mostly through mail, but also sometimes through mobile and text messages. Meetings with Hao were
held when we felt the need. These meetings were planned via mail and held on the school or via
Skype.

For the project we also required access to different AWS services. The access is handled via AWS
IAM and had to be done by an official employee at Escio. As mentioned in Section 1.4.1, Anders
were assigned the task to communicate what we needed with this person. This was difficult at times
because we had to research what type of access we needed in advance and construct a mail containing
all the access types we needed. Many of the services are closely linked together, and using one service
might require access to another service. An example of this was when we requested access to all the
IoT core services, but was not able to display the data flow because we did not have sufficient access
to the Amazon Cloud Watch service.

Hao is not a native speaker of Norwegian so the decision to write the report in English was made by
the group. This way, Hao could help us with some of the spelling corrections and sentence phrasing.
Naturally, all the meetings was also held in English.

Overleaf was utilized to write the report as this provides real-time collaboration, chat services and a
history functionality. The report is written in LATEX as this is what the group members are most familiar
with.

The last sprint review was set to be the 11th of April, but as we were asked to have a product pre-
sentation the 27th of April, we decided to set a hard deadline for finalizing the product before this
date. This gave us just under one month to write the report.

8.3.2 Evaluation of Jira

As described in Section 7.1.2, Jira uses tasks and user stories. The problem we had with Jira was that
it was difficult at times to split user stories into smaller chunks. It was possible to assign multiple
tasks to a specific user story but those tasks could not be assigned any planning poker points. This
led to big jumps on the burnout chart as only the finalizing of a user story updated the burnout chart.
The effect of user storied on burnout charts can be seen in Appendix D

8.3.3 Assignment of Project Tasks

Working with Jira means that group members selects the tasks they want to work with the most,
prioritizing blocking features. When developing the REST API, each member chose what they wanted
to implement. When the scope got extended we had to decide on who should do what in order to
make sure the project would be completed. The major assignation happened when working with
MQTT and Z-Wave. Two of the group members where assigned to implement the Z-Wave API, while
the other member was tasked to implement the communication between our system and AWS IoT.

51

9 Conclusion

Including the use of IoT technology in robotics has the benefit of automating processes that are cur-
rently being done manually. We have shown through our developed prototype that the combination
of these two technologies is possible and provides a feasible solution that can help reduce manual
labour.

The goal of this project, described in Section 1.2, was to create a prototype of a unified system for IoT
sensor data transmission and controlling an AGV based on this data. By utilizing currently available
IoT and robotic technologies, we have implemented a system that allows for requesting an AGV to
predefined locations. Our solution makes use of the Z-Wave IoT protocol for sensor reporting and
publishes these values over the MQTT protocol to AWS. This data separated into topics and handled
by IoT rules which triggers an AWS Lambda function to control the AGV. The conclusion is that it is
achievable to control an AGV unit based on sensor data from an IoT network. The company is very
satisfied with our research of the topics, implementation process and produced results.

9.1 Future Work

To further improve on the prototype, several additions can be made. One of additions would be to
automatize the process of detection and pairing of new devices. The Raspberry Pi along with the
Z-Stick could be mounted on top of the AGV. The AGV would further be programmed to drive and
scan the environment around it. The Z-Stick would automatically pair with the devices it detects and
add them to the MiR’s location map. This feature would be useful in areas like big warehouses where
dozens of sensors are already installed and they all needs to be paired.

Another improvement that could be done would be to ensure security regarding all parts of the
project. The Z-Wave protocol we were using in the development process has the support for encryp-
tion, but it was not our focus for the prototype phase. Enabling and actively utilizing the supported
encryption on the Z-Wave network, as well as establishing a secure connection with other elements
in the pipeline, would be a great way to provide security.

As of now, all interaction with the Z-Wave API is made via the command line interface. A graphical
user interface would be a way to increase the overall user experience and ease of use. Additionally,
it would serve as a way to provide a cleaner overview for various connected devices, statistics and
analysis, as well as live monitoring.

52

Bibliography

[1] Lara De Schutter. 9 things you need to know about mesh networks. https://hackernoon.
com/9-things-you-need-to-know-about-mesh-networks-f61a77e5751a, 2018.
[Online; last accessed 18-May-2019].

[2] Shahin Farahani. ZigBee Wireless Networks and Transceivers. Newnes, 2008.

[3] H. A. A. Al-Kashoash and Andrew H. Kemp. Comparison of 6lowpan and lpwan for the internet
of things. Australian Journal of Electrical and Electronics Engineering, 13(4):268–274, 2016.

[4] Asad Munir. Z-wave technology. https://spectrum.co.ae/blogs/technology/
z-wave-technology, 2017. [Online; last accessed 18-May-2019].

[5] MiR. MiR robot REST API. https://www.mobile-industrial-robots.com/media/
1411/mir-rest-api-reference-guide-100.pdf, 2018. [Online; last accessed 18-May-
2019].

[6] Biranavan Pulendralingam, David Cerny, Emil Blixt Hansen, Rasmus Andersen, and Stef-
fen Madsen. Autonomous industrial mobile manipulator in smart production. https://
blixtdevelopment.com/pdf/Robotics_P5.pdf, January 2017. [Online; last accessed
18-May-2019].

[7] Wikipedia contributors. Internet of things — Wikipedia, the free encyclopedia. https://
en.wikipedia.org/w/index.php?title=Internet_of_things&oldid=894621947,
2019. [Online; last accessed 18-May-2019].

[8] Rob Barton, David Hanes, and Gonzalo Salgueiro. IoT Fundamentals: Networking Technologies,
Protocols, and Use Cases for the Internet of Things. Cisco Press, 2017.

[9] ISO/IEC stage 20922:201. Information technology – message queuing telemetry transport
(mqtt) v3.1.1. https://www.iso.org/standard/69466.html, 2016. [Online; last ac-
cessed 18-May-2019].

[10] Gastón C. Hillar. MQTT Essentials - A Lightweight IoT Protocol. Packt Publishing, 2017.

[11] Bryan Boyd, Joel Gauci, Vasfi Gucer, Rahul Gupta, Vladimir Kislicins, Michael P Robertson, and
Nguyen Van Duy. Building Real-time Mobile Solutions with MQTT and IBM MessageSight. IBM
Redbooks, 2014.

[12] BISCI. Network Design Basics for Cabling Professionals. McGraw-Hill Professional, 2002.

53

https://hackernoon.com/9-things-you-need-to-know-about-mesh-networks-f61a77e5751a
https://hackernoon.com/9-things-you-need-to-know-about-mesh-networks-f61a77e5751a
https://spectrum.co.ae/blogs/technology/z-wave-technology
https://spectrum.co.ae/blogs/technology/z-wave-technology
https://www.mobile-industrial-robots.com/media/1411/mir-rest-api-reference-guide-100.pdf
https://www.mobile-industrial-robots.com/media/1411/mir-rest-api-reference-guide-100.pdf
https://blixtdevelopment.com/pdf/Robotics_P5.pdf
https://blixtdevelopment.com/pdf/Robotics_P5.pdf
https://en.wikipedia.org/w/index.php?title=Internet_of_things&oldid=894621947
https://en.wikipedia.org/w/index.php?title=Internet_of_things&oldid=894621947
https://www.iso.org/standard/69466.html

An AWS IoT-based system for handling communication and controlling an AGV

[13] Wikipedia contributors. Network topology — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=Network_topology&oldid=896144777, 2019.
[Online; last accessed 18-May-2019].

[14] Wikipedia contributors. Z-wave — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=Z-Wave&oldid=886885917, 2019. [Online; last
accessed 18-May-2019].

[15] Wikipedia contributors. Mesh networking — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Mesh_networking&oldid=887391196,
2019. [Online; last accessed 18-May-2019].

[16] Torry Harris. Cloud computing–an overview. https://www.thbs.com/downloads/
Cloud-Computing-Overview.pdf, December 2013. [Online; last accessed 18-May-2019].

[17] Cloud Computing Guidelines. Ministry of Transport and Communications, September 2017.

[18] Ministry of Local Government and Modernisation. Cloud Computing Strat-
egy for Norway. https://www.regjeringen.no/contentassets/
4e30afec51734d458596e723c0bdea0e/cloud_computing_strategy.pdf, 2016.
[Online; last accessed 19-May-2019].

[19] What is cloud computing? https://aws.amazon.com/what-is-cloud-computing/,
May 2019. [Online; last accessed 18-May-2019].

[20] Brad A. Myers and Jeffrey Stylos. Improving api usability. School of Computer Science, Carnegie
Mellon University, 2015.

[21] Walid Maalej and Martin P Robillard. Patterns of knowledge in api reference documentation.
IEEE Transactions on Software Engineering, 39(9):1264–1282, 2013.

[22] Bill Kleyman. Understanding cloud apis, and why they matter.
https://www.datacenterknowledge.com/archives/2012/10/16/
understanding-cloud-integration-a-look-at-apis, October 2012. [Online;
last accessed 18-May-2019].

[23] Wikipedia contributors. Go (programming language) — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Go_(programming_
language)&oldid=895187560, 2019. [Online; last accessed 18-May-2019].

[24] Google and contributors. The go programming language. https://golang.org/doc/faq#
goroutines, 2019. [Online; last accessed 18-May-2019].

[25] Vlad Guinard, Dominique; Trifa. Building the Web of Things: With examples in Node.js and Rasp-
berry Pi. Manning Publications Co., 2016.

[26] Charles R. Severance. Python for Everybody: Exploring Data Using Python 3. Independent, 2016.

54

https://en.wikipedia.org/w/index.php?title=Network_topology&oldid=896144777
https://en.wikipedia.org/w/index.php?title=Network_topology&oldid=896144777
https://en.wikipedia.org/w/index.php?title=Z-Wave&oldid=886885917
https://en.wikipedia.org/w/index.php?title=Z-Wave&oldid=886885917
https://en.wikipedia.org/w/index.php?title=Mesh_networking&oldid=887391196
https://en.wikipedia.org/w/index.php?title=Mesh_networking&oldid=887391196
https://www.thbs.com/downloads/Cloud-Computing-Overview.pdf
https://www.thbs.com/downloads/Cloud-Computing-Overview.pdf
https://www.regjeringen.no/contentassets/4e30afec51734d458596e723c0bdea0e/cloud_computing_strategy.pdf
https://www.regjeringen.no/contentassets/4e30afec51734d458596e723c0bdea0e/cloud_computing_strategy.pdf
https://aws.amazon.com/what-is-cloud-computing/
https://www.datacenterknowledge.com/archives/2012/10/16/understanding-cloud-integration-a-look-at-apis
https://www.datacenterknowledge.com/archives/2012/10/16/understanding-cloud-integration-a-look-at-apis
https://en.wikipedia.org/w/index.php?title=Go_(programming_language)&oldid=895187560
https://en.wikipedia.org/w/index.php?title=Go_(programming_language)&oldid=895187560
https://golang.org/doc/faq#goroutines
https://golang.org/doc/faq#goroutines

An AWS IoT-based system for handling communication and controlling an AGV

[27] Python Software Foundation. Web frameworks for python. https://wiki.python.org/
moin/WebFrameworks, 2019. [Online; last accessed 18-May-2019].

[28] Mirjana Maksimović, Vladimir Vujović, Nikola Davidović, Vladimir Milošević, and Branko Per-
išić. Raspberry pi as internet of things hardware: performances and constraints. design issues,
3(8), 2014.

[29] Raj Ven. Why java is the perfect choice for iot. https://oneteam.us/
why-java-is-the-perfect-choice-for-iot/, 2018. [Online; last accessed 18-
May-2019].

[30] Aleksei Voitylov. The status of java on arm. BellSoft, January 2019.

[31] Mark Masse. REST API Design Rulebook. O’Reilly Media, 2011.

[32] Roy T. Fielding. Architectural Styles and the Design of Network-based Software Architectures. PhD
thesis, University of California, 2000.

[33] Sebastian Eschweiler. Rest vs. graphql. https://medium.com/
codingthesmartway-com-blog/rest-vs-graphql-418eac2e3083, 2018. [Online;
last accessed 18-May-2019].

[34] David Lord. Flask. https://github.com/pallets/flask, 2018. [Online; last accessed
18-May-2019].

[35] Daniel Rubio. Rest services with django. In Beginning Django, pages 549–566. Springer, 2017.

[36] Justin Ellingwood. Apache vs nginx: Practical considerations. https://www.digitalocean.
com/community/tutorials/apache-vs-nginx-practical-considerations, Jan-
uary 2015. [Online; last accessed 18-May-2019].

[37] Alexandra Leslie. Nginx vs. apache (pro/con review, uses, & hosting for each). https://www.
hostingadvice.com/how-to/nginx-vs-apache/, January 2018. [Online; last accessed
18-May-2019].

[38] Robin Muilwijk. Top 5 open source web servers. https://opensource.com/business/
16/8/top-5-open-source-web-servers, 2016. [Online; last accessed 18-May-2019].

[39] Wikipedia contributors. Zigbee — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=Zigbee&oldid=891079669, 2019. [Online; last
accessed 18-May-2019].

[40] ZigBee Alliance. Zigbee specification. Zigbee document 053474r20, ZigBee Standards Or-
ganization, September 2012. https://www.zigbee.org/wp-content/uploads/2014/11/docs-05-
3474-20-0csg-zigbee-specification.pdf.

[41] ZigBee Alliance. Zigbee specification faq. https://web.archive.org/web/
20130627172453/http://www.zigbee.org/Specifications/ZigBee/FAQ.aspx,
2013. [Online; last accessed 18-May-2019].

55

https://wiki.python.org/moin/WebFrameworks
https://wiki.python.org/moin/WebFrameworks
https://oneteam.us/why-java-is-the-perfect-choice-for-iot/
https://oneteam.us/why-java-is-the-perfect-choice-for-iot/
https://medium.com/codingthesmartway-com-blog/rest-vs-graphql-418eac2e3083
https://medium.com/codingthesmartway-com-blog/rest-vs-graphql-418eac2e3083
https://github.com/pallets/flask
https://www.digitalocean.com/community/tutorials/apache-vs-nginx-practical-considerations
https://www.digitalocean.com/community/tutorials/apache-vs-nginx-practical-considerations
https://www.hostingadvice.com/how-to/nginx-vs-apache/
https://www.hostingadvice.com/how-to/nginx-vs-apache/
https://opensource.com/business/16/8/top-5-open-source-web-servers
https://opensource.com/business/16/8/top-5-open-source-web-servers
https://en.wikipedia.org/w/index.php?title=Zigbee&oldid=891079669
https://en.wikipedia.org/w/index.php?title=Zigbee&oldid=891079669
https://web.archive.org/web/20130627172453/http://www.zigbee.org/Specifications/ZigBee/FAQ.aspx
https://web.archive.org/web/20130627172453/http://www.zigbee.org/Specifications/ZigBee/FAQ.aspx

An AWS IoT-based system for handling communication and controlling an AGV

[42] NTS. Top 5 reasons for failures in zigbee deployments. https://www.nts.com/resources/
Top%205%20Reasons%20for%20Failures%20in%20ZigBee%20Deployments.pdf,
2012. [Online; last accessed 18-May-2019].

[43] Gaotao Shi and Keqiu Li. Signal Interference in WiFi and ZigBee Networks. Springer International
Publishing, 2017.

[44] Wikipedia contributors. Thread (network protocol) — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Thread_(network_protocol)
&oldid=894786733, 2019. [Online; last accessed 18-May-2019].

[45] Wikipedia contributors. 6lowpan — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=6LoWPAN&oldid=895359412, 2019. [Online; last
accessed 18-May-2019].

[46] Z-Wave Alliance. About z-wave technology. https://z-wavealliance.org/about_
z-wave_technology, 2019. [Online; last accessed 18-May-2019].

[47] Eric Brown. Z-wave opens up with new public sdk and developer site. http://linuxgizmos.
com/z-wave-opens-up-with-new-public-sdk-and-developer-site, 2018. [On-
line; last accessed 18-May-2019].

[48] python openzwave. Python wrapper for openzwave. https://github.com/OpenZWave/
python-openzwave, 2019. [Online; last accessed 18-May-2019].

[49] nthyagarajan. Python sample for z-ware web api. https://github.com/Z-WavePublic/
PyZWare, 2018. [Online; last accessed 18-May-2019].

[50] king dopey. Pytomation is an extensible device communication and automation system written
in python. https://github.com/king-dopey/pytomation, 2018. [Online; last accessed
18-May-2019].

[51] Ian Sommerville. Software Engineering. Pearson Education, 2016.

[52] Yves Chevallier. How to read/write configuration on a z-wave device? https://github.com/
OpenZWave/python-openzwave/issues/121, 2018. [Online; last accessed 18-May-2019].

[53] David Vassallo. Z-wave : Lessons learned – python openzwave. http://blog.
davidvassallo.me/2018/12/06/z-wave-lessons-learned-python-openzwave,
2018. [Online; last accessed 18-May-2019].

[54] Jonathan Kozolchyk. How to prepare for aws’s move to its own
certificate authority. https://aws.amazon.com/blogs/security/
how-to-prepare-for-aws-move-to-its-own-certificate-authority/, March
2018. [Online; last accessed 18-May-2019].

[55] Mqtt frequently asked questions. https://mqtt.org/faq, May 2019. [Online; last accessed
18-May-2019].

56

https://www.nts.com/resources/Top%205%20Reasons%20for%20Failures%20in%20ZigBee%20Deployments.pdf
https://www.nts.com/resources/Top%205%20Reasons%20for%20Failures%20in%20ZigBee%20Deployments.pdf
https://en.wikipedia.org/w/index.php?title=Thread_(network_protocol)&oldid=894786733
https://en.wikipedia.org/w/index.php?title=Thread_(network_protocol)&oldid=894786733
https://en.wikipedia.org/w/index.php?title=6LoWPAN&oldid=895359412
https://en.wikipedia.org/w/index.php?title=6LoWPAN&oldid=895359412
https://z-wavealliance.org/about_z-wave_technology
https://z-wavealliance.org/about_z-wave_technology
http://linuxgizmos.com/z-wave-opens-up-with-new-public-sdk-and-developer-site
http://linuxgizmos.com/z-wave-opens-up-with-new-public-sdk-and-developer-site
https://github.com/OpenZWave/python-openzwave
https://github.com/OpenZWave/python-openzwave
https://github.com/Z-WavePublic/PyZWare
https://github.com/Z-WavePublic/PyZWare
https://github.com/king-dopey/pytomation
https://github.com/OpenZWave/python-openzwave/issues/121
https://github.com/OpenZWave/python-openzwave/issues/121
http://blog.davidvassallo.me/2018/12/06/z-wave-lessons-learned-python-openzwave
http://blog.davidvassallo.me/2018/12/06/z-wave-lessons-learned-python-openzwave
https://aws.amazon.com/blogs/security/how-to-prepare-for-aws-move-to-its-own-certificate-authority/
https://aws.amazon.com/blogs/security/how-to-prepare-for-aws-move-to-its-own-certificate-authority/
https://mqtt.org/faq

An AWS IoT-based system for handling communication and controlling an AGV

[56] Service name and transport protocol port number registry. https://www.iana.org/
assignments/service-names-port-numbers/service-names-port-numbers.
xhtml?search=8883, May 2019. [Online; last accessed 18-May-2019].

[57] Michael Garcia. How to bridge mosquitto mqtt broker to aws iot. https://aws.amazon.com/
blogs/iot/how-to-bridge-mosquitto-mqtt-broker-to-aws-iot/, August 2016.
[Online; last accessed 18-May-2019].

[58] Aws lambda features. https://aws.amazon.com/lambda/features/, 2019. [Online; last
accessed 18-May-2019].

[59] Lambda function to connect to aws iot and publish mqtt messages. https://github.com/
aws/aws-iot-device-sdk-js/issues/97, November 2016. [Online; last accessed 18-
May-2019].

[60] The HiveMQ Team. Mqtt essentials part 3: Client, broker
and connection establishment. https://www.hivemq.com/blog/
mqtt-essentials-part-3-client-broker-connection-establishment/, Jan-
uary 2015. [Online; last accessed 19-May-2019].

[61] The HiveMQ Team. Introducing the mqtt security fundamentals. https://www.hivemq.com/
blog/introducing-the-mqtt-security-fundamentals/, April 2015. [Online; last ac-
cessed 19-May-2019].

[62] Nest Labs. Get started. https://openthread.io/guides, 2019. [Online; last accessed
18-May-2019].

[63] Digi International Inc. Get started with xbee python library. https://xbplib.
readthedocs.io/en/latest/getting_started_with_xbee_python_library.
html, 2018. [Online; last accessed 18-May-2019].

57

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?search=8883
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?search=8883
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?search=8883
https://aws.amazon.com/blogs/iot/how-to-bridge-mosquitto-mqtt-broker-to-aws-iot/
https://aws.amazon.com/blogs/iot/how-to-bridge-mosquitto-mqtt-broker-to-aws-iot/
https://aws.amazon.com/lambda/features/
https://github.com/aws/aws-iot-device-sdk-js/issues/97
https://github.com/aws/aws-iot-device-sdk-js/issues/97
https://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment/
https://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment/
https://www.hivemq.com/blog/introducing-the-mqtt-security-fundamentals/
https://www.hivemq.com/blog/introducing-the-mqtt-security-fundamentals/
https://openthread.io/guides
https://xbplib.readthedocs.io/en/latest/getting_started_with_xbee_python_library.html
https://xbplib.readthedocs.io/en/latest/getting_started_with_xbee_python_library.html
https://xbplib.readthedocs.io/en/latest/getting_started_with_xbee_python_library.html

Appendices

58

A Project Description - Original

59

API for IoT-data

 Web-basert API for streaming av
data til AWS IoT

Bachelorprosjekt API for IoT-data Side 1 av 2

1 Oppdragsgiver og kontaktinformasjon

Oppdragsgiver

Escio AS
Nedre Torvgate 6 (NT6)
2816 Gjøvik

post@escio.no
Tlf: 47 47 25 80

Kontaktperson

Terje Krogstad, prosjektleder
terje@escio.no
Tlf: 959 72 382

2 Beskrivelse

Når man skal prototype IoT-applikasjoner som skal sende sensordata
til skytjenester som AWS (Amazon Web Services) bruker man ofte
mikrokontrollere eller SoC (System On Chip) som kommuniserer
med AWS via AWS IoT over MQTT.

I dette prosjektet ønsker vi å generalisere et API som i sanntid kan ta
imot data og strømme dette videre til AWS via AWS IoT. APIet skal
være HTTP-basert og basere seg på industristandarder
(REST/Swagger eller GraphQL) slik at det enkelt kan integreres mot
systemer og tjenester som har behov for å sende data inn. Det kan
være behov for å sette opp tjenester for å mellomlagre dataene som
strømmes gjennom APIet, men dette kan vi sammen med
prosjektgruppa se om er mulig å gjennomføre innenfor
prosjektperioden.

All validering og ruting av data videre til lagringstjenester i AWS skal
håndteres med regler i AWS IoT, noe som gjør at det ikke er behov
for å ta høyde for dette i prosjektet.

3 Oppgaver / Mål

● Research i forhold til tekniske løsninger
● Utvikle en prototype på et API som tar imot data (I første omgang to

dimensjonale data som f.eks. tid og verdi) og streamer dette videre
til AWS IoT

● Valgfritt: Sette opp en caching-tjeneste som applikasjonen med
APIet kan logge hendelser og strømmedata mot

post@escio.no | 47 47 25 80 | org.nr 982 136 229 MVA

B Project Description - Extended

62

 Sensorstyrt bestilling av
mobilitetsenhet

 AWS IoT-basert system for bestilling
av AGV til spesifikke lokasjoner

Bachelorprosjekt API for IoT-data Side 1 av 3

1 Oppdragsgiver og kontaktinformasjon

Oppdragsgiver

Escio AS
Nedre Torvgate 6 (NT6)
2816 Gjøvik

post@escio.no
Tlf: 47 47 25 80

Kontaktperson

Terje Krogstad, prosjektleder
terje@escio.no
Tlf: 959 72 382

2 Beskrivelse

Oppgaven er i all hovedsak todelt.

Fase 1:

Når man skal prototype IoT-applikasjoner som skal sende sensordata
til skytjenester som AWS (Amazon Web Services) bruker man ofte
mikrokontrollere eller SoC (System On Chip) som kommuniserer
med AWS via AWS IoT over MQTT.

Vi ønsker å generalisere et API som i sanntid kan ta imot data og
strømme dette videre til AWS via AWS IoT. APIet skal være
HTTP-basert og basere seg på industristandarder (REST/Swagger
eller GraphQL) slik at det enkelt kan integreres mot systemer og
tjenester som har behov for å sende data inn. Det kan være behov for
å sette opp tjenester for å mellomlagre dataene som strømmes
gjennom APIet, men dette kan vi sammen med prosjektgruppa se
om er mulig å gjennomføre innenfor prosjektperioden.

All validering og ruting av data videre til lagringstjenester i AWS skal
håndteres med regler i AWS IoT, noe som gjør at det ikke er behov
for å ta høyde for dette i prosjektet.

Fase 2:

Prototype et helhetlig system som muliggjør bestilling av AGV
(Automated Guided Vehicle) mobilitetsenhet til spesifikke lokasjoner
når data fra statiske sensorer passerer gitte prekonfigurerte terskler.

post@escio.no | 47 47 25 80 | org.nr 982 136 229 MVA

Bachelorprosjekt API for IoT-data Side 2 av 3

Dette innebærer å sette opp en arkitektur med sensorer i
mesh-struktur som leverer data til AWS IoT. Det skal være mulig å
konfigurere regler for å bestille en AGV til å kjøre til prekonfigurerte
lokasjoner hvis data fra en gitt sensor passerer prekonfigurerte
terskler. Det skal også være mulig å benytte test-APIet fra fase 1 for å
simulere sensordata på lik linje med reelle sensordata.

Studentene vil få tilgang til AGVen MiR100 for å prototype løsningen.

3 Oppgaver / Mål

● Research i forhold til tekniske løsninger
● Utvikle en prototype på et API som tar imot data (I første omgang to

dimensjonale data som f.eks. tid og verdi) og streamer dette videre
til AWS IoT

● Valgfritt: Sette opp en caching-tjeneste som applikasjonen med
APIet kan logge hendelser og strømmedata mot

● Utvikle en prototype på et system for bestilling av MiR100 til gitte
lokasjoner basert på regler og terskelverdier for sensordata

post@escio.no | 47 47 25 80 | org.nr 982 136 229 MVA

C Z-Wave API Guide

66

Welcome
In this section we will guide you through the use of our Z-Wave API.

We have tested the Z-Wave API with the following setup:

Raspberry Pi 2 & 3B
Raspbian Stretch Lite+
Python 3.5.3
Aeotec Z-Stick Gen 5
Aeotec MultiSensor 6
Fibaro Motion Sensor

Our API is build upon the Python-openzwave wrapper for openzwave.

Pre-Setup
Before you can start using our Z-Wave API you need to do some preparation first. The first thing you need to
do is to pair the Z-Wave devices with you Z-Stick. You can find the information on how to pair devices in you
Z-Stick manual as well as you Z-Wave device manual. Example documentation(1)(2)(3)

Setup
After your Z-Wave devices are all paired with the Z-stick we can continue with further setup.

1. Power on your Z-Wave devices.
2. Connect your Z-Stick to the Raspberry Pi.
3. Check that the Z-Stick is detected by the Raspberry Pi. You can use the following command ls /dev/

The command should return bunch of different devices. In our case the Z-Stick device was displayed as
ttyACM0. If you are having troubles with finding what your Z-Stick device is, simply disconnect the Z-Stick
device from the Raspberry Pi, use the ls /dev/ command then connect the Z-Stick on your Raspberry Pi and
use the command again, that way you can see names of new devices popping up.

Z-Wave API
After the initial setup, we can finally make use of the API. Before you can use it, you just need to enter the
api_zwave directory.

We recommend to start a python3 interpreter for the configuration process, it will be easier to follow along
with the guide. The first thing you need to do is to import the zwave.py file and create an object of our Z-
Wave class. Make sure you send your Z-Stick device path as a parameter like this:

from zwave import ZWave
zw = ZWave("/dev/ttyACM0")

The next step is to initialize the network. You can do it by calling the start_network() method.

Now that the network is started we can do all of different stuff with it. The first this you probably want to do
is to get the data from sensors. Before you do that tho you might want to change the interval on how often
your device should report the values. The default polling interval is set to somewhere around 1 hour, depends
on the manufacturer of your Z-Wave device. Check your Z-Wave device manual for more information.

Firstly lets find out if the network is aware of all the connected devices. To do so call the
get_every_sensor_data() method. This should return some information about your connected devices.
Simply print the response, the output should look like this:

You can see that the response returned some simple sensor values for each device. One that we are
interested in right now is node_id.

Now we need to get the information about the device configuration in order to know which settings we can
change on the device. Call the print_configs() method with the node_id for the device you wish to change, as
a parameter.

In our example it was node 6 we wanted to change the configuration for. This resulted in the following
output:

You will get different configuration info for different devices. In this example we used Aeotec MultiSensor 6.

Let's say that we want to change the polling interval for the luminance. We can quickly discover that there is
no "Luminance interval" among the listed values. Neither is there any "Temperature interval" or "Humidity
interval". And this is where it gets interesting. If we look in the manual for the Aeotec Multisensor 6 we can
see that there is no information about polling interval to the specific sensor type. On closer inspection we can
see that there are some information about the "Report Table" and some "Groups". Those consists of different

integer values. In order to decode the values meaning we had to dive deep into the config files in the Config
folder. In the Aeotec MultiSensor 6 config file we have found the meaning behind the integer values. It turns
out that the values represents different sensor types. By default the value of Group 1 is set to 241 which
means that it affects all of the sensor types. If you look closely on the result of print_configs() method, you
can see that there are [Group 1 Interval], [Group 2 Interval] etc. what it means, is that if we want to change
polling interval for the luminance we need to change the Group 1 polling interval and by doing this we will be
changing the polling interval for all of the other sensors associated with.

The Fibaro Motion Sensor is way easier to configure. You can access luminance, temperature etc. directly
without all the overhead associated with Aeotec sensor. It comes with another drawback tho. You can read
more in the "Common Exception" section.

Now that we know all of this we can start to set some new polling intervals. We can do it by calling the
configure_node() method which takes node_id and id as a parameter. In our case the method call will look
like this configure_node(6, 72057594148816627, 10).

The method should return something like this:

We need to stop the network in order to apply and save the new configuration.

After we turn the network on again we can double check if the config was successful by running
print_configs() method.

We can see that the Group1 polling interval changed from 3600 to 10. Now that our polling interval is
configured how we want it, we can start to get values from the devices. We can do it by calling the
get_sensor_data(6) on the node we want to get values from or from every node available by calling the
get_every_sensor_data() method.

After you are done, simply close the network by calling network_stop() method.

Common exceptions
Here are some exceptions that often happend to us.

1

If you are planning on connecting some specific devices on your Raspberry Pi in addition to Z-Stick, like
arduino or wifi-adapter, be aware. The arduino in our case took the default /dev/ttyACM0 spot of the Z-
Stick, so when we wanted to start the network we always got the "Error establishing the network...". We advise
you to check the Z-Stick device path after every new device you connect to your Raspberry Pi (except for the
Z-Wave devices, they don't have any device path).

2

Don't take your Z-Stick device path for granted. If you have more devices connected to the Raspberry Pi like
in the section above and you happen to reboot your Raspberry Pi, your Z-Stick device path might change.
Check your Z-Stick device path after each reboot.

3

Battery devices are sleeping by default in order to save energy. In order to configure a device it needs to be
awake. If you have a battery device you need to look up in you device manual on how to wake up your
device. Your device should be awake at least 30 seconds in order to apply all configured changes.

D Burndown Charts

Figure 21: Burndown Chart for the first sprint

Figure 22: Burndown Chart for the second sprint

71

An AWS IoT-based system for handling communication and controlling an AGV

Figure 23: Burndown Chart for the third sprint

Figure 24: Burndown Chart for the fourth sprint

72

E Project plan

73

Project plan

Bartosz Tracz, Eirik Persson Masteholtet, Anders Isaksen

January 2019

Contents

1 Project Goals and Constraints 2
1.1 Background . 2
1.2 Project Goals . 2

1.2.1 Prototype for the IoT-AWS Connection 3
1.2.2 Real-time Monitoring and Data Analysis 3

1.3 Project Constraints . 3
1.3.1 Development . 3
1.3.2 Time . 4

2 Scope 4
2.1 Project Description . 4

2.1.1 System mockup . 5

3 System development model 6
3.1 Choice of model . 6
3.2 Model description . 6

4 Project Organizing and Quality Assurance 6
4.1 Distribution of responsibilities 6
4.2 Rules and Procedures . 6
4.3 Documentation, Standards & Source Code 7
4.4 Testing . 7
4.5 Risk analysis . 7
4.6 Plan for the management of the main risks 8

1

5 Implementation Plan 9
5.1 Gantt Chart . 9
5.2 Milestones and Decisions . 9

References 9

1 Project Goals and Constraints

1.1 Background

In computer programming, an application programming interface (API) is a
set of subroutine definitions, communication protocols, and tools for building
software. In general terms, it is a set of clearly defined methods of communi-
cation among various components. A good API makes it easier to develop a
computer program by providing all the building blocks, which are then put
together by the programmer[1].

The Internet of Things (IoT) is the network of devices such as vehicles, and
home appliances that contain electronics, software, actuators, and connec-
tivity which allows these things to connect, interact and exchange data[2].

Amazon Web Services (AWS) is a comprehensive, evolving cloud computing
platform. The idea behind cloud computing is simple: The user can sim-
ply use storage, computing power, or specially crafted development environ-
ments, without having to worry how these work internally. Cloud computing
is usually Internet-based computing[3].

In this project we will mainly be using AWS’ IoT Core service to develop the
API.

1.2 Project Goals

The goal for this project is to develop a prototype for a functional REST
API connected to AWS IoT Core service. The company wants the ability
to connect and communicate with AWS using the existing HTTP-protocols.
The API will provide two different services leading to two different main
goals:

2

1.2.1 Prototype for the IoT-AWS Connection

• Allow users to perform CRUD actions on different part of the IoT
framework

• Use a simple interface to connect and perform data operations

• Increase and decrease different users access rights

• Easily port the API to different systems using a container service such
as Docker

1.2.2 Real-time Monitoring and Data Analysis

• Display the current dataflow

• Show data statistics

• Analyze the data sent over to AWS

After finishing the prototype the focus will be shifted towards data caching
and expanding the APIs functionality. If time allows it we will begin research-
ing the possibilities of edge computing to expand on the real-time aspects of
the task.

1.3 Project Constraints

1.3.1 Development

For the prototyping of the application we have a lot of options. The languages
we considered the most were Python and Go. Python mostly for ease of use,
readability and good support with the Flask framework. All the members
also have a lot of previous experience with Python, which makes it easy to
get started on an application fast. Go is considered mostly because it is fast
(runs straight on the hardware), has great support for multithreading and
easy-to-read syntax. Python offers many tools to develop REST APIs, while
Go has a strong standard library for web development.

We also considered C/C++, Java and NodeJS. C and C++ are omitted
because Go is built on C and therefore inherits C’s speed and efficiency.

3

Furthermore, C’s syntax is more complex than Go and a lot less readable.
Java is still being discussed as a potential language, but will most likely not
be used in the prototyping phase. NodeJS was considered as it is based on
Chrome’s V8 which is fast and powerful, however, we would like to steer
away from using JavaScript in this application due to its bad rep.

1.3.2 Time

Our last sprint meeting will be May 2nd where we will discuss the end prod-
uct. Therefore we need to be finished with our prototype prior to this date.
Secondly there is a deadline on the thesis on May 20th where the full project
report needs to be delivered.

2 Scope

2.1 Project Description

The purpose of this project is to generalize an API which can receive data
in real-time and further forward it to the AWS through AWS IoT. The API
should rely on the HTTP-protocols and be based on industrial standards
such as REST/Swagger or GraphQL.

Validation and routing of all data to the AWS must be handled with respect
to the AWS IoT policies, which means that there is no need to take it under
consideration in this project.

4

2.1.1 System mockup

Resources

MQTT

IoT Devices with
HTTP control

Connect users

Resouce mockup

{
"SKU/manufacturerID":,
"description":,
"name":,
"extendedData": {

Our payload
}

}

cached
volume

Our API

If more than e.g. 100
request per second

Figure 1: Temporary modelling of our system

5

3 System development model

3.1 Choice of model

For our software development framework we will be using Scrum. Since we
are developing a prototype, new requirements are continuously being added.
In conjunction with this and being a small team consisting of 3 people, an
agile and iterative software development framework is to be preferred.

3.2 Model description

In agreement with Escio we are using 3 week sprints where Terje (from Escio)
is Scrum master. At the end of the sprint we will have a meeting with Escio
and have a sprint review where we will discuss the challenges and positives
in the finished sprint. Internally we will have Scrum meetings every time we
are meeting to keep each other updated on our progress, what we will be
working on that day and any impediments we are facing. The backlog will
be continuously updated as new requirements will be discovered.

4 Project Organizing and Quality Assurance

4.1 Distribution of responsibilities

Eirik is the project leader. Bartosz is responsible for booking rooms when
necessary. Anders task is to communicate with the person responsible for
fixing all the permissions we need to the AWS.

4.2 Rules and Procedures

As a rule we have chosen to meet up at least twice a week, as well as have a
minimum of 30 work hours per week each. We will have SCRUM meetings
when we meet up in order to keep each other updated on the progress that
each of us have made.

If a group member decides not to show up to the meeting without notifying
the other group members, the penalty is to work up the number of hours
that the group meeting lasted. This will be confirmed at the next SCRUM
meeting when we will be updating each other.

6

4.3 Documentation, Standards & Source Code

All choices made during meetings with both the company and the project
supervisor regarding the development of the product should be documented
and justified.

All written code should follow the chosen language code convention and code
that is not self-explanatory should be commented so that it is easier to under-
stand for the other coders. All functions and classes should be documented
using either self written documentation tools or by the help of third party
tools such as Sphinx. In addition to the documentation there should also
be created a wiki so that end-users with little-to-no knowledge about the
technology will be able to read and understand how to use the application.

Source code should always be uploaded to Bitbucket. Each coder should
have their own branch to work on.

4.4 Testing

The developed prototype should be thoroughly tested with both valid and
invalid dummy data. As a prototype it is not as important to have a fully
fledged product, but the testing should be done so that we can ensure a
smooth transition for further development of the software.

4.5 Risk analysis

Table 1: Risk matrix

Low Moderate Major
Not likely
Likely

Most likely

7

Table 2: Risk matrix
Risk description Probability Impact
Missing access rights Not likely Low
Significantly many bugs Likely Low
No access to AWS Not likely Major
Miscalculated the scope of the
project

Likely Major

Missing the project timeframe Most likely Major

4.6 Plan for the management of the main risks

• The company that we are working for should supply AWS account to
our use. There can be delays in the delivery process which can further
delay our working process and thus delaying the overall project.

8

5 Implementation Plan

5.1 Gantt Chart

16 17 18 21 22 23 24 25 28 29 30 31 1 4 5 6 7 8
Jan '19 Feb '19

API for IoT-data
 Sprint 1
 Sprint planning
 Set up developer environment
 Access to IoT Core
 Set up staging environment
 Implement HTTP-protocols
 Testing
 Fixing
 Sprint review

Powered by TCPDF (www.tcpdf.org)

Figure 2: Gant schema for sprint 1

5.2 Milestones and Decisions

We have Scrum sprints that are 3 weeks long. Our milestones will be to be
finish with the sprint backlog for each Scrum sprint.

9

References

[1] Wikipedia contributors. Application programming interface —
Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/

index.php?title=Application_programming_interface&oldid=

879665721, 2019. [Online; accessed 25-January-2019].

[2] Wikipedia contributors. Internet of things — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Internet_
of_things&oldid=880097543, 2019. [Online; accessed 25-January-2019].

[3] Wikipedia contributors. https://simple.wikipedia.org/w/index.

php?title=Cloud_computing&oldid=6397437, 2019. [Online; accessed
25-January-2019].

10

F Project agreement

84

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

B
ac

he
lo

r’
s

pr
oj

ec
t

Bartosz Tracz
Eirik Persson Masteholtet
Anders Isaksen

An AWS IoT-based system for
handling communication and
controlling an AGV

Bachelor’s project in Bachelor of Engineering in Computer
Science
Supervisor: Hao Wang

May 2019

	Preface
	Contents
	List of Figures
	List of Tables
	Listings
	Abbreviations
	Introduction
	Motivation
	Project Definition
	Target Audience
	Project Organization
	Distribution of responsibilities
	Rules and Procedures

	Constraints
	Time Constraints
	Financial Constraints
	Legal constraints
	Technical constraints

	Thesis Structure

	Background
	IoT
	MQTT Protocol
	Network Topologies

	Cloud Computing
	API

	Requirements
	Functional Requirements
	Use case
	High level use case
	Detailed use case

	Technical Requirements
	Docker Support
	AWS Requirements
	User interface

	Project Requirements
	Security
	Equipment
	Documentation
	Documentation of the Development Process
	Code Documentation

	Choice of Technology
	Programming Language
	Candidates
	Comparison

	Web API design architecture
	REST
	GraphQL
	Comparison

	Frameworks
	Flask
	Django
	Conclusion

	Web Server
	Nginx
	Apache
	Conclusion

	SDKs and AWS connection helpers
	IoT protocols
	Zigbee
	Thread
	Z-Wave
	Comparison

	Choice of IoT Framework

	Technical Design
	System Overview
	Django application
	MQTT

	Implementation
	REST API
	SDKs and third party libraries
	Publishing data via REST API
	IoT core operations

	Z-Wave
	Challenges and Problems
	Solutions
	Results

	AWS Communication
	MQTT Server
	AWS Lambda

	System Integration
	Sending Sensor Data
	Controlling the AGV

	Development process
	Development Tools
	Scrum
	Jira Software
	Trello
	Bitbucket

	Testing
	Unit-testing
	User testing

	Documentation
	Swagger
	Sphinx
	Bitbucket README

	Product Demo

	Discussion
	Results
	REST API
	AWS Communication
	Z-Wave API

	Alternate choices
	Project Organization
	Group Organization
	Evaluation of Jira
	Assignment of Project Tasks

	Conclusion
	Future Work

	Bibliography
	Appendices
	Appendix Project Description - Original
	Appendix Project Description - Extended
	Appendix Z-Wave API Guide
	Appendix Burndown Charts
	Appendix Project plan
	Appendix Project agreement

