
Virtualize A Piece Of Evidence Or
Mount Its Partition With Linux

May 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Horst Dumstorff

2019
H

orst Dum
storff

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f I

nf
or

m
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Virtualize A Piece Of Evidence Or Mount
Its Partition With Linux

MISEB
Submission date: May 2019
Supervisor: Prof. Dr. Katrin Franke, NTNU
Co-supervisor: Police Superintendent Kurt H. Hansen (MSc), PHS

Norwegian University of Science and Technology
Department of Information Security and Communication
Technology

Acknowledgement

I would like to thank my supervisor, Professor Dr. Katrin Fanke and Police Superintendent Kurt
H. Hansen (MSc), for their patience and dedication.

I thank the Datenverarbeitungsgruppe (DVG) of the Polizeiinspektion Cloppenburg for the sup-
port, in particular, Joachim Janßen.

Furthermore, I want to thank Mary Schwarzbach and my family, especially Maik Dumstorff,
for proofreading this document.

I would also like to thank my family for relieving me during this time, so that I could concen-
trate fully on the master thesis.

H.D.

Abstract

In a computer forensic investigation, there is always a divergence between the time required to
visualize data from evidence and the times when investigators need the data to evaluate it.
On the one hand, the processing time that is required for the analysis of existing and deleted
data, and on the other hand, the time that elapses to make potentially existing data visible. Data,
which the investigator needs immediately because it can be crucial for solving the case.
The motivation for this master thesis is to shorten the time it takes to invest until the first sight-
ing of data.
More and more often, offenders try to disguise their illegal activities on data carriers with new
methods and acquired expertise. Therefore, it is important for the investigator to be able to ac-
cess hidden or deleted data. This in turn, depending on the amount of data and complexity, often
entails immense processing time. The first step of the forensic-process is to create a forensic
clone of a disk image and store it in a file. A clone meaning a copy of the evidence data. With
this copy further forensic investigations are then made.
In special cases, such as terrorism or hostage-taking means, it applies in a very short reaction
time, to being able to access data from the evidence without changing the evidence itself (e.g.,
changing timestamps). With the results of the forensic investigation, follow-up measures can
then be recognized and initiated. These follow-up measures are required to take place immedi-
ately. Under certain circumstances, indications of further assassination, accomplices or escape
routes can be obtained from this data. This would prevent the possibility of imminent actions,
thus save lives and/or arrest the perpetrators which in turn prevent further acts. That would not
be possible without an immediate inspection of the data. Now, following the well-tried method,
a lot of time would be lost until the first data could be used from the evidence.
To produce this result, Information Technology (IT) specialists (forensic scientists) are needed
to process this data and make it available to the investigator in an appropriate manner so that the
investigator is able to use the data in the ongoing investigation. This takes a lot of time. Time
and knowledge are the limits of this method, currently.

The aim of this master thesis is to study whether an investigator without the special IT know-
how can work out the required data and everything in the shortest possible time.
Two ways would be conceivable, on the one hand with standard Linux programs to mount par-
titions from the evidence (hard disk or image), on the other hand with standard Linux programs
to virtualize the evidence as ”Virtual Machine”, in a new way. Now the detailed results would
be available in a much shorter time even without an IT specialist. If the investigator is able
to view the data of the evidence, he can review the possible data contents of the applications
(e-mail, chats, internet protocol, own documents and recently used documents, etc.). He does
not need any particular knowledge of the structure of the used file system, the can simply start
the applications and watch the results as if he were operating the physical PC. It may then be
very important to use this data in the ongoing investigation and deduce further follow-up.

List of Appended Papers
In the specialization course, I wrote about the forensic data backup of mobile Apple phones, the
iPhone. This master thesis refers to some passages. These parts have been adapted to this work
or, if possible, updated.

Dumstorff, H., Forensic Data Backup Of Mobile Apple Phones, IMT4215 Specialization Project.

Table of Contents

Acknowledgement i

Abstract ii

Table of Contents v

List of Tables vi

List of Figures vii

Abbreviations viii

1 Introduction 1
1.1 Target Group . 1
1.2 Motivation and Background . 2
1.3 Research Question . 3
1.4 Construction of the Master Thesis . 5

2 Theoretical Foundations 6
2.1 Forensic . 6

2.1.1 ”Live forensics” - ”Post-mortem forensic” 6
2.1.2 Image as backup of the electronic reference 7
2.1.3 Physical or Logical acquisition . 7
2.1.4 Image creation . 8

2.2 Data storage and structure . 10
2.2.1 Data storage . 10
2.2.2 Filesystem . 10
2.2.3 Partition . 11

2.3 BIOS System . 11
2.4 Linux operating system . 13

2.4.1 Linux history and distributions . 13
2.4.2 Dealing with Filesystems . 15
2.4.3 Linux Mint . 16

2.5 Virtualization . 17
2.5.1 Live-View . 19

iv

2.5.2 QEMU . 19
2.5.3 Requirements . 20

3 Methodology 23
3.1 Research Design . 23
3.2 Research Methods . 24

3.2.1 Literature Research . 24
3.2.2 Empirical Study . 25
3.2.3 New Method Design and Validation 25

4 Experiment and Results 26
4.1 Experiment Setup . 26

4.1.1 Hardware . 26
4.1.2 Software . 26
4.1.3 Implemented Proof of Concept . 27

4.2 Experiment Description and Results . 28
4.2.1 My First Empirical Study . 29
4.2.2 My Second Systematic Group Study 31
4.2.3 Configuration tool ”Virtual PC” . 34

5 Discussion, Conclusion and Further Work 46
5.1 Discussion . 46
5.2 Conclusion . 48
5.3 Further Work . 50
5.4 Summary . 50

Bibliography 51

Appendix 57
A The used OS Linux, the commands, additional configurations and Linux Users

and Groups . 57
A.1 Used Linux programs . 57
A.2 Additional configuration for Linux . 60
A.3 Linux Users and Groups . 61
A.4 Filesystem in Userspace (FUSE) . 63

B Virtual flash drive . 63
C Application ”Virtual PC” . 65

List of Tables

4.1 Hardware Configuration Analysis Personal Computer (PC) 26
4.2 Software Configuration Analysis PC . 27
4.3 Configuration Windows 10 PC Image . 32
4.4 Configuration Windows 7 PC Image . 32
4.5 Configuration Linux PC Image . 32
4.6 The LinuxMint 19 system requirement . 39
4.7 The Windows system requirements, part1 . 39
4.8 The Windows system requirements, part2 . 40
4.9 System requirements added together . 40

vi

List of Figures

1.1 Number of network connected devices per person around the world from 2003
to 2020 . 2

2.1 The original BIOS . 12
2.2 The UEFI BIOS . 12
2.3 The 10 most popular distributions in 2016, proportionately 14
2.4 The 10 most popular distributions 2016, development 14

4.1 Virtual PC start dialog . 28
4.2 Virtual PC configuration dialog . 28
4.3 Market share of the leading operating system editions in Germany from January

2009 to May 2018 . 31
4.4 Distribution of AMD and Intel x86 computer processors worldwide, from 2012

to 2018 . 34
4.5 Intel VT Parameter in the original BIOS . 35
4.6 Intel Virtualization Technology in the UEFI-BIOS 35
4.7 Intel VT Parameter in the UEFI-BIOS . 36
4.8 AMD Virtualisierung in the original BIOS . 36
4.9 AMD SVM-Parameter in the original BIOS 37
4.10 AMD SVM Parameter in the UEFI-BIOS . 37

vii

Abbreviations

AFF Advanced Forensic Format

AMD Advanced Micro Devices

API Application Programming Interface

APT Advanced Package Tool

ARM previously Advanced RISC Machine, originally Acorn RISC Machine

BIOS Basic Input Output System

bit Binary Digit

BSI Bundesamt für Sicherheit in der Informationstechnik

CD Compact Disk

CD-ROM Compact Disc Read-Only Memory

CPU Central Processing Unit

CRIS Code Reduced Instruction Set

dd Data Definition

DMG Disk iMaGe, Apple Disk Image

DOS Disk Operating System

DVD Digital Video Disc

E01 Encase image file format

EDK EFI Development Kit

EFI Extensible Firmware Interface

viii

ETFS Embedded Transaction Filesystem

EWF Expert Witness Compression Format

F2FS Flash-Friendly File System

FAT File Allocation Table

FTK Forensic Toolkit

FUSE File system in USErspace

GB Giga Byte

GNU GNU’s Not Unix!

GPT GUID Partition Table

GRAND GRand Unified Bootloader

GUI Graphical User Interfacem

HDD Hard disk drive

IBM International Business Machines Corporation

IDE Integrated Development Environment

ISA Industry Standard Architecture

ISO International Organization for Standardization

IT Information Technology

JFFS Journaling Flash File System

KB Kilo Byte

KDE K Desktop Environment

KSM Kernel Samepage Merging

KVM Kernel-based Virtual Machine

LILO LInux LOader

LTS long-term support

LUKS Linux Unified Key Setup

MB Mega Byte

MD Message-digest

MIPS Microprocessor without Interlocked Pipeline Stages

NAND Not And (electronic logic gate)

NOR Not OR Gate

NTFS New Technology File System

NTNU Norges teknisk-naturvitenskapelige universitet

OS Operating System

OVMF Open Virtual Machine Firmware

PC Personal Computer

PCI Peripheral Component Interconnect

PHS Politihgskolen

QEMU Quick EMUlator

RAM Random-access memory

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

RPM Red Hat Package Manager

SATA Serial Advanced Technology Attachment

SD Secure Digital Memory Card

SHA Secure Hash Algorithm

SPIFFS File System for SPI NOR flash devices

SSD Solid-State-Drive

TB Tera Byte

TDK Tky Denki Kagaku Kgy

TOR The Onion Router

UEFI Unified Extensible Firmware Interface

URPMI User RedHat Package Manager Installation

USB Universal Serial Bus

VGA Video Graphics Array

VHD Virtual Hard Disk

VM Virtual Machine

VMDK Virtual Machine Disk

Wi-Fi Wireless Fidelity

WWW World Wide Web

Xfce XForms Common Environment

XML Extensible Markup Language

Yaffs Yet Another Flash File System

Chapter 1
Introduction

1.1 Target Group
This research is intended to assist law enforcement authorities in the investigation of criminal
offenses. It should give investigators the opportunity to gain a first quick insight into electronic
evidence.

This work contains detailed information about the virtualization process of a PC image. The
secured data from the seized PC, which were performed from their data storages. They come
from computers used for or involved in criminal offenses.

I would like to briefly explain the problem in the following example.

In special cases, such as terrorism or hostage-taking, it shall a very short reaction time to
gain insight into the data from the evidence without changing the evidence itself.
The results of the forensic investigation can then be used to identify, detect and initiate
follow-up actions. These follow-up actions must be carried out immediately. Under cer-
tain circumstances, indications of further attacks, accomplices or escape routes can be
obtained from these data.
This would prevent the possibility of forthcoming actions and perhaps lives could be
saved. This could then perhaps prevent the perpetrators from further actions, which would
not have been possible without verification of the data.

The aim of this research is to virtualize a piece of evidence with Open Source tools. An open
source operating system, as well as an open source virtualization software, shall be used. The
virtualization software should be parameterizable so that changes in the start command can be
made quickly. These start commands must then still be storable so that they can be executed
again at a later time without great effort.
Open source knowledge is a concept with freely available software tools including the corre-
sponding source code. We are given tools with all the information that belongs to these pro-
grams. Open Source Knowledge means that this information, found or programmed by others,
may be used, modified and distributed.

1

1.2 Motivation and Background

1.2 Motivation and Background
Computer Forensics, digital forensics or IT-Forensics began approximately at the end of the
19th century.
Digital forensics is concerned with the screening and analysis of digital traces in IT systems.
The aim is detecting facts and possible perpetrators in case and computer crime and prepare
digital evidence as well as preparing court-proof (Stefan Meier, 2016).
This is the core of forensic computer science. Forensic computer science refers to the ap-
plication of scientific methods in computer science to questions of legal administration. This
includes a wide range of questions in the broad context of digital examinations, for example,
after appropriate examinations in certain cases.
All these questions are summarized under the umbrella term Digital Forensics. Digital foren-
sics, therefore, deals with the search, identification, backup and analysis of digital tracks. (Horst
Dumstorff, November, 2017).

I have been working in computer forensics for over 10 years now. Throughout this time, I have
increasingly found that electronic evidence is the most important piece of data in criminal action
procedures. Electronic evidence can clarify criminal cases most effectively. In 85% of criminal
cases, electronic evidence is relevant to solving cases (Diana Nadeborn, 2018).
In most cases of fraud, counterfeiting or misuse, electronic evidence like pictures, videos or
documents are crucial for solving the crimes. All these different types of data are stored on the
internal memory of electronic device. Most electronic devices have a permanent memory that
forensics can take advantage of. Since data has been stored permanently, in most case it can
also be read out again.
While this research is being written, almost every household in the world has means of commu-
nication, such as a PC, a laptop, tablet, or smartphone, to connect to the Internet or connect to
other users via the Internet. And these numbers are rising daily.

Figure 1.1: Number of network connected devices per person around the world from 2003 to 2020 1

2

1.3 Research Question

In Figure 1.1 you can see that in 2015 there have been 3.47 of network-connected devices per
person around the world. Until 2020 it is expected that there will be 6.58 of network connected
devices per person around the world.
This, in turn, means that more seized devices that have been used for criminal matters have to be
forensically evaluated every day. For each confiscated computer, an image must be created for
each built-in hard disk. In order to illustrate the rapid increase in storage capacity, Chapter 2.2.1
gives a brief overview of the different types of data storage and their storage capacity. (Michael
Hale Ligh, Andrew Case, Jamie Levy and AAron Walters, 2014; Margaret Rouse, 2015).
Every image then has to be prepared forensically by IT-specialists. Depending on the require-
ments, among other things, deleted data will be restored. The fact that after each forensic image
of a hard disk still the preparation of an image is added, which leads to a huge amount of work.
This takes a long time and the investigators are waiting for the evaluation results.And now there
should, by using the results of there, the feasibility to use an ”unskilled person” to do the work.

There are several terms in forensic for an ”unskilled person”. In the article ”Tiered forensic
methodology model for Digital Field Triage by non-digital evidence specialists” in the EL-
SEVIER Journal (Ben Hitchcock, Nhien-An Le-Khac, Mark Scanlon, 2016), there is the term
”Non Digital Forensic Investigators”. This article describes exactly the problem underlying this
research. Due to a limited budget but high level of education, digital forensic analysts are scarce
among police forces around the world. This article describes the training of front-line personnel
in the field triage process without the need for an IT-forensic specialist.
From the concept of frontline members, a new process model is developed. The results of the
implementation of this new model should show how specialists and non-specialists in digital
evidence can better respond to the growing increase in digital evidence (Ben Hitchcock, Nhien-
An Le-Khac, Mark Scanlon, 2016).
From the perspective of this research, any investigator or police officer who is not an IT spe-
cialist but has basic IT skills is an ”unskilled person”.

There are several persons in the forensic investigation and many of them are not IT specialists.
Those, we would like to say, we define for the rest of the research as ”unskilled persons” in IT
forensics.

1.3 Research Question
In a criminal offense, attempts should first be made to secure electronic evidence. If electronic
evidence of a criminal offense is available, it should be searched for case-related data. This data
may still exist in the file system of the evidence or may have been previously deleted.

Definition 1 (Image). To obtain a 100% copy of the evidence, a forensic clone of the original
storage medium is stored in a file. This forensic copy, denote as an image, can be used to per-
form further examinations without changing the original files (Alexander Geschonneck, 2014)

1https://www.statista.com/statistics/678739/forecast-on-connected-
devices-per-person/

3

https://www.statista.com/statistics/678739/forecast-on-connected-devices-per-person/
https://www.statista.com/statistics/678739/forecast-on-connected-devices-per-person/

1.3 Research Question

In some criminal cases, such as kidnapping or terrorism, it is very important to get the evidence
as quickly as possible. There are several ways to make the hard drive data visible. The first and
fastest way is to start the seized computer. But this would change data and make it reduce the
probative value as evidence. Another way of getting access to the data of the digital evidence
is to mount the partitions that were created on the evidence to be read-only on the evaluation
computer. That means to integrate these partitions like drives in the system of the evaluation
computer. For this method the executor needs knowledge about the file system and the directory
structure. To find specific data, such as: E-mails or documents, you need to know where they
are stored in the directory structure. There are special programs needed to make the data visible.
Another method is the virtualization of the evidence. To do this first a virtualization software is
needed. Then a suitable configuration must be put together to start the ”image” of the evidence
within the virtualization software (Michael Kofler and Ralf Spenneberg, 2012).

The basic question that arises from the problem, is that there is a method that solves these
problems. First, I will investigate if such a method exists. If there is no indication that such
a method exists, I have decided to create such a software program myself. This self-created
program should use only, if feasible, open source tools provided or supported by the operating
system for further processing. Due to licensing reasons, no commercial products should be
used. Nevertheless, the whole functionality should be covered.

And now the following questions arises:

Main Research Question 1:
Can a person, unskilled in IT forensics (such as an investigator) virtualize an image from

seized PCs with the required hardware and software and without professional help?

Research Question 2:
Can I find a commercial or noncommercial way or a program that will be able to do the

virtualization with a previously defined test series from PC images?

Research Question 3:
When developing my own virtualization method, are there any special features of the hardware

to consider when virtualizing images?

4

1.4 Construction of the Master Thesis

1.4 Construction of the Master Thesis
• Chapter 1: The introduction discusses the target group of this master thesis. Digital

forensics, motivation and background to this work will be explained. In addition, the
questions that arise in this work are shown.

• Chapter 2: To understand the master thesis, some background information is provided
here. An introduction to the historical evolution of data storage, its rapid evolution, and
the massive expansion in memory size is presented.

It is said that an image is an exact copy of electronic evidence.

The ability to virtualize with an operating system and open source software image. File
system and partitions are discussed. The Basic Input Output System (BIOS) system and
the system requirements of the analysis PC are explained.

• Chapter 3: The methodology of the study design is presented. The structure of the
research is explained and this prepares what implementation of my new method. This
provides the basis from my new software were also source code all there is provided in
the appendix.

• Chapter 4: The results of my systematic group study and mine as well as the results of
this master thesis are presented in text form. The ”virtualization of electronic evidence”
and the storage of case-related data found during the search on the electronic evidence
will be explained.

• Chapter 5: In this chapter, various results are discussed. Are the expectations resulting
from the research questions fulfilled?
The results are compared with the research questions and the resulting conclusions drawn.
Some possible further developments are presented, which could be integrated into this
master thesis.

• Appendix: The used commands of Operating System (OS) Linux, additional configura-
tions and Linux Users and Groups are presented. A script for creating a virtual Universal
Serial Bus (USB) stick and the API documentation for my self-programmed Python pro-
gram is also listed.

5

Chapter 2
Theoretical Foundations

The following chapter presents relevant background theories to shed light on the research topic.
To prepare for this research, I did literature research to gain inside information on the research
topic. The following chapter presents relevant background topics such as Forensic, Data storage
and structure, and BIOS system.
For this, I used the institutional repositories of the universities, such as the search engine Oria
of the NTNU University Library. I also used the resources of the World Wide Web (WWW). In
the following, I have listed some discoveries on this topic. Most relevant sources are referenced
throughout this thesis and are summarized in the bibliography 5.4.

2.1 Forensic
The term forensics or digital forensics was already slanted in Chapter 1.2 Forensic.
In order to create an image of a seized PC, it is very important to work according to forensic
requirements like ”chain of custody”, ”volatility”, ”evidence integrity” just to name a few. Oth-
erwise, the evidence is useless in court.
Therefore, it is important to adhere to the general forensic methodology.

2.1.1 ”Live forensics” - ”Post-mortem forensic”
In general, IT forensics can be classified in two groups, ”live forensics” and ”post-mortem
forensics” with regard to the time of the investigation.
In the case of ”live forensics” or ”online forensics”, the investigation already begins during the
term of the incident. An attempt is made mainly to secure ”volatile data”. Among other things,
this data may include the main memory content. The main memory content contains amongst
other things information about existing network connections and started processes.
The ”post-mortem analysis” or ”offline forensics” helps clarify the incident later. This is basi-
cally done by examining disk images for nonvolatile tracks. Data on mass storage devices can
be lost because as a result of the aging of the medium. Sectors can be destroyed.
The main focus is on the extraction and investigation of deleted, renamed and otherwise hidden
and encrypted files from mass storage.

6

2.1 Forensic

Due to the immense probative value of electronic evidence in a forensic investigation, this sec-
tion is intended to provide an overview of how the evidence-safe preparation of a data carrier
image is described. In literature, this process is often referred to as forensic duplication. Foren-
sic duplication should be rigorously made in a forensic investigation, with a few well-founded
exceptions.
In a criminal case, an electronic proof is provided, such as a personal computer. As part of a
forensic duplication an image of the hard disk of the affected system is created (Bundesamt für
Sicherheit in der Informationstechnik, BSI, 2011).

If the ”live forensics” is used, we definitely need an IT specialist (IT forensic expert). In ”Post-
mortem analysis”, the backup can be created by an investigator, but the analysis of the image
can only be done by an IT specialist later on.
During this research, described here, the post-mortem analysis is applied. After an image has
been created, it is now virtualized.

2.1.2 Image as backup of the electronic reference
A proof is a 100% copy of the data store of the proof. It is a copy of the file system and contains
files, file structures, file system information, etc. The boot sector is part of the information. It is
usually the first sector of bootable media. This sector is the first sector of a bootable medium.
It contains information about the file system and, if available, the operating system that should
be started. It may also contain a program that is required to start an operating system or should
be executed before the start. If the boot sector exists, it is possible to use the image to restore
the system (Robert Love, Stephen Figgins, Ellen Siever, Arnold Robbins, 2009).
These data are very important in this research to enable this virtualization.
The downside of an image compared to a physical system is that when creating the image, the
system is just an image of the actual resources on the disk. It is not the whole physical system.
It lacks information about the contents of the main memory. Thus, all applications or similar
must be restarted when the image is virtualized as a backup on the evaluation computer (the
host) (Falk Gaentzsch and Prof. Norbert Pohlman, 2015).
Although the main memory data are important for post-mortem analysis in forensics, this data
is beyond the scope of this research project.

2.1.3 Physical or Logical acquisition
In law enforcement, the content from data storages has to be copied to be used for analyses or as
evidence instead of the original ones. This has to be done in a proper way with valid methods,
so that these images can be used as evidence in the court of law. To do this, the acquired data
will usually be stored into images. Images are a container where all acquired data is stored.
Such a container can store additional information for the case without altering any stored data.
The most important in the forensic use of images is that the contents of the images must not be
changed. With a single MD5-hash (see Hash 2.1.4) of the image, a fingerprint was set which
can be used to prove that not one bit of the image has been changed after the acquisition was
finished.
A physical acquisition from a data storage is a 100% copy that contains all data that the original

7

2.1 Forensic

data storage had. This includes all files, even deleted files, partition tables and boot records.
These files are also needed to visualize an OS that is stored in an image. From physical images
deleted files can be restored and recovered.
A logical image can be used to acquire a full data storage when deleted files are not needed
or if only selected files should be acquired. Logical images can be mounted to analyze their
contents. Virtualizing from stored OS would not be possible without the missing partition and
boot files.

Physical acquisition

A physical acquisition is a complete backup of the existing hard drive. The copy is a bit by
bit (bitstream) copy of all data and stored in a file or divided in files. The image contains the
identical data set as the original, the copy can also be used instead of the original data storage
(Marjie T. Britz, Ph.D., 2013).
In order to perform this type of acquisition, physical access to the data storage is required.
A physical acquisition is the basis to perform the virtualization of a seized PC.

Logical acquisition

A logical copy is only possible with a tool that can interpret the file system of the drive to be
backed up. The tool recognizes the used file system or an encrypted file system and can make
the data structure visible. Directory structures and their contents are thus made available and
can be copied logically. Not only user-specific files can be copied. Depending on the rights
assigned to the user, all files, including system files, can be copied.

2.1.4 Image creation
For image creation, the market offers a lot of software solutions, from a simple command to a
software package, containing various analysis options.
There are commercial software or even non-commercial software, such as open source prod-
ucts. Some commercial software are Forensic Toolkit (FTK), EnCase or X-Ways Forensics,
just to name a few. Free software would be FTK Imager, The Sleuth Kit or the DD Command,
originally written for UNIX, but now also available for other operating systems.
In explanation, we will go into the dd command. The dd command is a simple, powerful com-
mando that was originally used as a tool to copy in a Unix environment. There are two ways
to use the command in a forensic way. First, the dd command can be used for logical copies.
It can copy a datastructur or single files. The second way is the physical copy that means an
exact duplication of data storage or partitions for the preservation of evidence. Dd manages to
duplicate almost every block device bit by bit and is available for almost every operating system.

The following parameters call the command:

”dd if = <source>of = <destination>”

8

2.1 Forensic

The parameter ”if =” specifies the device to be duplicated. This can be a file, an entire disk, just
a partition or respectively another block device. The parameter ”of =” specifies the destination
where the source data should be duplicated. Here you can specify either a target disk, a target
partition, a file or again another block device. There are also other kinds of drives possible.

For example, if the investigator wants to copy the entire first hard disk bitwise, the command
might look like this:

”dd if=/dev/hda of=/media/xxxxxx forensic images/xxxxxx image-hda.dd”

An uncomplicated none commercial software solution for creating images is FTK Imagers. In
the forensic environment, complex commercial software solutions with a variety of functions,
including image creation, can be EnCase, FTK or X-Ways Forensics, to name a few.

Forensic images are always created with a resulting hash value.
When image and evidence are hashed and the value of both is the same then the content of both
are identical.
Most software solutions generate a hash value from the evidence before creating an image, and
after creating a hash value from the image. If these two values are the same, the contents are
identical as well.

Hash or hash values are used in many areas, such as data encryption, but especially in forensics,
to ensure that files were not changed. In this way it can be proven in court that a particular file
or images are unchanged. Hash values are numbers that derive from the contents of files and
meet certain criteria. Any changes to the file contents will also change the hash value. In the
forensic, a hash is used for identification, verification, and authentication of data files, it is a
form of a checksum.
Because the hash value of a file is unique at a given time, it is considered to be the same as a
fingerprint.

One of the key activities that will be performed during an investigation is the generation of
a cryptographic hash or hash of electronic evidence. A cryptographic hash takes an arbitrary
amount of data as input and returns a fixed-size string as output.
The resulting value is a hash of the data. Common hash algorithms that are applied during a
forensic investigation are MD5, SHA1 and SHA256 hashes.

If the dd command is used, it is possible to hash the evidence first e.g. with the md5sum com-
mand and then the image with the same command.

md5sum /dev/hda
$ 4b779c46d1c2c5cb68bc14ad4c462146 /dev/sda

and
(after ”dd if=/dev/hda of=/media/xxxxxx forensic images/xxxxxx image-hda.dd”)

md5sum xxxxxx image-hda.dd
$ 4b779c46d1c2c5cb68bc14ad4c462146 xxxxxx image-hda.dd

9

2.2 Data storage and structure

Since the values are the same, the contents are the same. (Cory Altheide and Harlan Carvey,
2011)

2.2 Data storage and structure

2.2.1 Data storage
The rapid increase in storage capacity is described here. It should make clear what storage ca-
pacities an IT forensic expert is dealing with. The long processing time in IT forensics results
from these large capacities of data storages and this is one of the reasons for this research work.

In the late 19th century, punch cards were used for the first time as digital storage. The most
famous mission in which the cards were used was the American census in 1890 (Sebastian
Helmer, 2012).
The first hard drive, (5 Mega Byte (MB)), was invented by International Business Machines
Corporation (IBM) (at the request of the US Air Force) and introduced in early 1956. The jour-
ney continued over the 3.5-inch floppy disk (360Kilo Byte (KB) to 1440 KB) over the Compact
Disc Read-Only Memory (CD-ROM) in the early 1980s, the ZIP drive in 1994, to the first USB
stick (64 MB) in 1996. The journey continued in the same way over the Secure Digital Memory
Card (SD) (SanDisk 8 MB) in 2001, the DVD (4.7 Giga Byte (GB)-17.08 GB) appeared as an
alternative on the digital storage market in 2001. Followed by the Blu-ray Disc in 2006 with a
storage capacity up to 200GB (from TDK).
The journey is now in the present, a hard drive, the first Helium-Filled MG07ACA HDD from
Toshiba (Anton Shilov, 2017) with 14 TB was developed in 2017.
The history of the Solid-State-Drive (SSD) dates back to the 1970s, when flash memory was
still in its infancy. In 1985, the first SSD was installed in an IBM PC. In 2001, a 3.5” flash
memory SSD with 14 GB was sold. In the mid-2000s, SSDs were installed in notebooks by
default (Sven Schefer, 2011). And recently on March 20th, 2018, the largest SSD in the world
was presented with 100 Tera Byte (TB) (futurezone, 2018).

This description of digital storage mediums from the beginning to the present day, should show
how rapidly the development precedes. From a tape with storage capacity of 80 bytes to a
hard disk with storage capacity of 100 TB (which equals 109.951.162.777.600 bytes) in just
128 years. This list does not describe all storage media developed in the past, but it gives the
most important elements and illustrates the storage capacities digital forensics deal with today.
While the data storage has changed rapidly, the way of getting hands on legal or illegal data
has changed as well. In the past, data could only be transported via data carriers from one PC
to another. However, the Internet also introduced the intranet, the in-house network. These
networks make it easy to send data from one place to another.

2.2.2 Filesystem
What is a file system? What does a file system manage? What abstractions does a file system
provide for the rest of the operating system?

10

2.3 BIOS System

The main purpose of computers is to create, edit, store and retrieve data. A file system provides
the methods to support these tasks. And all this happens on a permanent storage medium, such
as a hard disk. And therefore the file system is also a very important part of this thesis because
it is needed to perform virtualization of a PC system. File systems manage persistent storage
and form an integral part of all operating systems. There are many different approaches and
methods for managing persistent storage. That’s why there are a lot of file systems that have
different focuses.
For very specific tasks, specially developed file systems are used. For example, for a CD-ROM,
the ”ISO 9660” has been developed, ”FAT12” for floppy disk. For some devices, such as the
flash memory, even several file systems have been developed, depending on the structure of the
data carrier and intended use. There is e.g. ”ETFS”, ”F2FS”, ”Yaffs” for NAND flash; ”JFFS”,
”SPIFFS” for NOR flash memory and so on (Brian Carrier, 2005).

2.2.3 Partition
Computers need to provide access to the information stored on a hard disk internally or exter-
nally. Each hard drive can store millions of bits. How does a computer now ”know” where to
find the required information? To simplify this search, hard disks are divided into individual,
identifiable areas. A disk is a sequence of consecutive sectors for the operating system. The
division of a data carrier in sectors is made during the low-level formatting. These sectors are
thus the smallest logical data storage unit to be addressed by the operating system. In a partition
table partitions are (at least one) registered. A partition is a collection of consecutive sectors in
which a file system resides.

2.3 BIOS System
When you start the computer, the Basic Input Output System (BIOS) performs startup tasks to
discover and start the existing hardware. During this process, partition boot code is loaded and
executed by the designated boot device (eg, a hard disk). This is the first stage of the bootstrap
loader.
The boot-up task is a small program that may load and start a more complex bootloader code
into random access memory. This more complex code, such as GRand Unified Bootloader
(GRAND) or LInux LOader (LILO), are bootloaders that provide a user with multiple boot
capabilities to launch different operating systems or different versions of the same operating
system. But there are other options, such as different operating system load options or stan-
dalone programs (eg, games) that can be run without an operating system.
Whether or not a more complex code is loaded, after the first or second stage of the bootloader,
a kernel is loaded that handles the further communication, commands, and execution.

The original BIOS, see Figure 2.1, was launched in 1981. Since the market introduction, the
BIOS has always been developed further. In 2006, the Unified Extensible Firmware Inter-
face (UEFI) was introduced, which was delivered in 2011 for the first time with a PC. In legacy
computers and in the latest computers, these BIOS systems still exist to this day (Janez Puhan,

11

2.3 BIOS System

2015).

Figure 2.1: The original BIOS 1

The first visible difference is that UEFI has a graphical user interface with mouse support and
Internet access. See Figure 2.2. One of the main reasons for the introduction of UEFI is the 64
bit architecture support. Because most new PCs and operating systems are 64-bit capable and
now fully support 64-bit.

Figure 2.2: The UEFI BIOS 2

Other reasons for the introduction include the administration of larger hard disks and a larger
number of partitions. While the original BIOS only managed 2.2 TB hard disks, the GUID

1https://www.howtogeek.com/56958/htg-explains-how-uefi-will-replace-the-
bios/

2https://www.howtogeek.com/56958/htg-explains-how-uefi-will-replace-the-
bios/

12

https://www.howtogeek.com/56958/htg-explains-how-uefi-will-replace-the-bios/
https://www.howtogeek.com/56958/htg-explains-how-uefi-will-replace-the-bios/
https://www.howtogeek.com/56958/htg-explains-how-uefi-will-replace-the-bios/
https://www.howtogeek.com/56958/htg-explains-how-uefi-will-replace-the-bios/

2.4 Linux operating system

Partition Table (GPT) partitioning scheme allows UEFI to address up to 18 exabytes. The
original BIOS can have one extended partition and unlimited logical partitions per hard disk.
UEFI works according to the GPT standard, and should therefore support at least 128 partitions.

There are even more reasons to think of UEFI, but not all of them can be listed here.
In order to support the operating system of the analysis PC UEFI for QEMU, a UEFI package
has to be installed. For this we take the package Open Virtual Machine Firmware (OVMF),
which is an EDK-II-based project. It enables UEFI support for virtual machines. OVMF in-
cludes sample UEFI firmware for QEMU and KVM (Janez Puhan, 2015).

2.4 Linux operating system
Images of PCs can be virtualized with any common OS. There are OS as well as virtualiza-
tion software, that can be downloaded free of charge from the Internet. But it was decided for
Linux as the OS for the evaluation computer. In this chapter, some background information is
discussed why Linux was selected as the operating system. The history of Linux is presented
and the distribution we used discussed.

2.4.1 Linux history and distributions
A young Finnish computer science student named Linus Benedict Torvalds (born on December
28, 1969 in Helsinki, Finland) developed the LINUX operating system in 1991 as a student of
the University of Helsinki.
Until today there are several Linux distributions on the market.
A Linux distribution is an operating system consisting of a software collection based on the
Linux kernel (by Linus Torvald) and often a package management system (Marcus Fischer,
2010).

During the preparation of the research, 436 active Linux distributions were counted on the web-
site ”https://archiveos.org/linux/”.
This number varies daily, if you follow this website.

Currently, no official information about the number of different Linux distributions can be found
on the market.
The confusing selection and ever increasing number of Linux distributions (”distros”) can be
irritating for Linux novices.
There are a lot of other distributions that are better tailored than others to a specific purpose.
However, the following distributors are the most popular and offer active forums and mailing
lists that users can get help from in case of problems and questions.
Linux Mint and Ubuntu have the reputation of being the easiest for new users who want to be
productive with Linux as quickly as possible. These users do not claim to master the distribu-
tions in all their complexity. At the other end of the spectrum, Arch Linux has more advanced
distributions that require a lot of learning to do their effective work. OpenSUSE, Fedora and
Debian GNU / Linux mark a good middle ground. CentOS is an Enterprise Distributon, suitable

13

https://archiveos.org/linux/

2.4 Linux operating system

for all those who want stability, reliability and long-term support instead of the latest features
and brand new software (elysium, 3. Januar 2017).

The next two statistics show the 10 most popular Linux distributions on the market in 2016.
Staistik Figure 2.3 shows the breakdown of distributions in the market. In the statistic Fig-
ure 2.4 the popularity of the over the last years until 2016 can be seen:

Figure 2.3: The 10 most popular distributions in 2016, proportionately 3

Figure 2.4: The 10 most popular distributions 2016, development 4

For this research I decided to use the Linux Mint distribution, as I will explain later.

3https://games4linux.de/der-grosse-linux-distribution-report-die-10-
beliebtesten-distributionen-2016/

4https://games4linux.de/der-grosse-linux-distribution-report-die-10-
beliebtesten-distributionen-2016/

14

https://games4linux.de/der-grosse-linux-distribution-report-die-10-beliebtesten-distributionen-2016/
https://games4linux.de/der-grosse-linux-distribution-report-die-10-beliebtesten-distributionen-2016/
https://games4linux.de/der-grosse-linux-distribution-report-die-10-beliebtesten-distributionen-2016/
https://games4linux.de/der-grosse-linux-distribution-report-die-10-beliebtesten-distributionen-2016/

2.4 Linux operating system

2.4.2 Dealing with Filesystems
A Linux operating system can integrate and support the most popular file systems from home.
This means that supported file systems always have read access to all data. Apart from excep-
tions, in most cases it is also possible to have write access to the embedded file system. As
a rule, entire partitions are automatically included during the boot process. For this purpose,
the system to be integrated must have a corresponding construction manual. This construction
manual defines which partitions should be hung in which directories. Such a construction man-
ual can be found in the file ”/etc/fstab”. This file may contain additional information about
the partitions or drives that should not be automatically mounted, such as removable disks or
CD-ROM drives. (F. Kalhammer, 2001).
Under Linux there is a way to query all types of file systems, which are basically supported by
the kernel of the Linux system. If the necessary software packages are installed, you can call
the menu item ”File systems” with the command ”make menuconfig”. Then all the supported
file systems and their properties will be displayed.
Various file systems are automatically supported by Mint, just to name a few: The Extends 4,
File system in USErspace (FUSE), Reiserfs, JFS, XFS, GFS and so on.
There are also submenus such as ”CD-ROM/DVD Filesystems”, ”DOS/FAT/NT Filesystems”
or ”Pseudo Filesystems” in which the support of their file system is described in detail.

Not always can a file system be fully integrated into a Linux system. There may be limitations,
e.g. at the NTFS of Mirosoft. By default, an NTFS file system can be included in reading. The
NTFS writing is not really possible! The limitations of writing are extremely high.
Therefore, the file system ”NTFS-3g” 5 was developed by Tuxera Inc., Finland 6. This file sys-
tem is based on the FUSE. If the software package ”NTFS-3g” is installed, there should be no
more restrictions (Tuxera, 2017).

There are various filesystems that can be installed like a program. There are also pseudo file
systems, such as sysfs, usbfs or devpts. All these file systems contain only purely virtual files
with information or devices mapped to a file.
Some file system that are based on the principle of FUSE can be integrated into a Linux operat-
ing system, for example:

• fuseiso⇒ for integrating ISO files (Ubuntu Documentation, 2009),

• sshfs ⇒ to connect a remote file system via ssh (secure shell, a cryptographic network
protocol for operating network services over an unsecured network). Here it does not
matter which remote file system the foreign computer uses, because the administration of
the remote file system takes place at the remote computer (Jack Wallen, 2017).

• ...

The variety of different file systems and the simplicity of installing new and different file sys-
tems is one of the reasons why I have chosen Linux as the operating system for the evaluation
PC. Another reason is the FUSE file system, which is the basis of many virtualization programs.

5https://wiki.ubuntuusers.de/Windows-Partitionen_einbinden/NTFS-3G/
6https://www.tuxera.com/

15

https://wiki.ubuntuusers.de/Windows-Partitionen_einbinden/NTFS-3G/
https://www.tuxera.com/

2.4 Linux operating system

2.4.3 Linux Mint
All Linux distribution based on the Linux kernel of Linus Torvalds. Linux Mint is based on the
Ubuntu distribution. Linux Mint was developed by the Frenchman Clement Lefebvre. In 2006
he published his first version.
But Linux Mint is not just an Ubuntu system with a number of new programs and updated desk-
top themes. The developers have emphasized that through a variety of graphical ”mint tools”
the usability is improved (DistroWatch, 2018; Linux Mint, 2017).

This includes

• The Mint Desktop, an utility to configure the desktop environment.

• The MintMenu, a new and elegant menu structure for easier navigation.

• The MintInstall, an easy to use software administration.

• The MintUpdate, a software updater.

To list only the most important among the various tools and hundreds of additional improve-
ments.
It has the ability to install it directly from the live session on the hard drive. In computer science,
the term live system or direct start system refers to an operating system that can be started in
a live session without installation. By default, the contents of the mass storage devices in the
system (such as hard disks or SSDs) are not affected or altered. Mint developed his own design
to stay true to the line of easy usability (Sphinx, 2017).

Advantages:

The tools are developed in-house and the amount of user-friendly adjustments can be described
as excellent. The inclusion of multimedia codecs and the ability to accept suggestions from
their user community is rewarded by the users (DistroWatch, 2018; Linux Mint, 2017).

Disadvantages:

The alternative ”Community” editions do not always contain the latest features. The project
does not publish safety instructions (DistroWatch, 2018; Linux Mint, 2017).

Software Package Management:

APT with mintInstall using DEB packages (compatible with the Ubuntu repositories) (Dis-
troWatch, 2018; Linux Mint, 2017).

16

2.5 Virtualization

Available editions:

One main edition (with MATE and Cinnamon), ”minor” editions (with KDE and Xfce), Linux
Mint ”Debian” edition (rolling-release with MATE or Xfce) (DistroWatch, 2018; Linux Mint,
2017).

Conclusion:

Because Mint is easy to install, very easy to use and equipped with various programs that are
needed for this research, Linux Mint has been chosen as OS for the analysis PC of this thesis.

2.5 Virtualization
Virtualization is used today in many fields. The use increases daily, because among other things
operating costs are saved and administrators can do their work from the home office (Marcus
Fischer, 2010). As described in Chapter 1.1, a piece of evidence should be virtualized as quickly
as possible. During my research I couldn’t find a product that automatically starts the virtual-
ization of an image after a simple creation of a configuration file. There are a lot of programs
around the topic of virtualization. But finding the right one for this thesis was the challenge
(David Wolski, 2015, 2016).
Virtualization has a number of common applications, all designed to make their technology an
abstraction of physical resources. In computer science, virtualization refers to the simulation
of a hardware or software object. Virtualization can create virtual devices or services such as
emulated hardware, operating systems or data storage. This allows computer resources, such as
running one operating system inside another, to be provided (Matthew Portnoy, 2012).
If the expression virtualization is used, the terms emulation and simulation are often used in
conjunction. These terms may be similar but not the same. Falsely, the terms are often used
interchangeably. The concepts of virtualization, emulation and simulation, however, are very
different technical approaches, each with different goals and areas of application (David Wol-
ski, 2014).

For the remainder of this thesis I defined virtualization, emulation and simulation as follows:

Definition 2 (Virtualization). Virtual machines that are provided by a virtualization environ-
ment should simulate or emulate as little as possible. They should pass hardware access directly
to the actual system components such as processor, graphics card or hard disk. These hardware
accesses are then only managed by the virtualization environment. In order to ensure the stable
operation of a virtual machine, system components such as graphics cards or certain chipsets
are also emulated (David Wolski, 2014).

Definition 3 (Emulation). An emulation imitates the appearance of a system so that programs
that want to access the system can find compatible software and hardware interfaces. The aim of
emulation is to simulate only the defined, visible behavior. Internally, however, the behavior in
the system is quite different. Today, emulators are often used as an example in the programming

17

2.5 Virtualization

of hardware. The emulator simulates the behavior of the hardware on the newly programmed
software (David Wolski, 2014).

Definition 4 (Simulation). In a simulation, an external complete system with its hardware and
software is simulated. This means that a simulation of such a system usually recreates a closed
environment. No direct hardware access is possible from this simulation. All system components
were simulated using the software. In contrast to emulation, a simulation not only simulates ex-
ternalities, but also the detailed internal logic (David Wolski, 2014).
Simulations are used, among other things, to simulate a processor platform on another system
and to develop operating systems or individual applications. As an example today older com-
puter systems are emulated to develop new software for the old system or to change and adapt
older software.

In order to have virtualization, we often rely on commercial tools. At the beginning of my
research I found the program Live-View (Chapter 2.5.1), which can automatically build con-
figuration files for VM goods from an image. Live-View is free of charge, but VM-Ware is
a commercial software and did not correspond to my idea of building a solution with non-
commercial software.

For the virtualization of seized PCs, I was looking for a parameterizable program. This was
necessary in order to be able to go into the different hardware technical contents of the cre-
ated image. Because the image comes from different computers, the hardware configuration
is always different. And only through a parametrisable virtualization program can you adjust
this. During my research I came across the program Quick EMUlator (QEMU) again and again.
QEMU is a generic and open source machine emulator and virtualizer, which I will discuss in
more detail in the next chapter.

Even VirtualBox, a free virtualization program from Oracle, uses some virtual QEMU hard-
ware devices and has an integrated dynamic recompiler based on QEMU. VirtualBox also
offers the possibility to be administrated and configured from the command line. For this, the
command-line interface ”VBoxManage” is provided. VBoxManage supports all the features
that the graphical user interface gives you access to. But this program offers a lot more. It
provides properties that the graphical interface does not offer, such as Control advanced and
experimental configuration settings for a Virtual Machine (VM). But first a configuration file
in Extensible Markup Language (XML) format must be created, with which then VirtualBox
can be started. From my point of view, QEMU is a bit easier to control, because I just call
a parameterized command. No configuration file is required at this time. If an error occurs
when starting a VM with a parameterized command, a parameter in the command can simply
be changed. The command can be restarted without first changing a configuration file. In my
opinion, this seems to be the easiest way.

QEMU supports virtualization when e.g. the Kernel-based Virtual Machine (KVM) kernel mod-
ule is used. KVM is a virtualization solution for the Linux kernel. KVM is a part of the Linux
kernel since version 2.6.20 (Feb. 2007). Thus, the circle closes why I have selected Linux as the
operating system. Linux with KVM and QEMU create the solid and free (open source) basis
for a stable virtualization of computer systems. Because this variant can also be parameterized,

18

2.5 Virtualization

all that is needed now is a configuration tool to compile the image-specific configurations and
start QEMU.

2.5.1 Live-View
Under Windows e.g. the variant ”Live View” 7 can be used. Live View is a graphical forensics
tool that creates the configuration files for a VMware virtual machine from a raw dd image. This
VMware virtual machine is booted in a secure environment and can then be analyzed. Changes
are written to a separate file, leaving the image unchanged. To start the virtual machine, the
program VMware Workstation 8 is required. In contrast to other virtualization systems, where a
configuration file has to be created by hand before the virtualization system can be started with
the configuration file, Live-View is free to create configuration files. This is done by searching
the image for specific factors (Harlan Carvey, 2009). It can boot full disk raw images, bootable
partition raw images, physical disks (attached via a USB or Firewire bridge), and specialized
and closed image formats (using 3rd party image mounting software).
The version ”Live View 0.7b” contains the following operating systems:

- Windows 2008, Vista, 2003, XP, 2000, NT, Me, 98

- Linux (limited support)

With the ”LiveView 0.8 RC1” version, Windows 10 systems can also be used with live forensics.

The following programs are example software of a commercial or non-commercial nature,
which are not included in the operating system:

- Bochs 9(Runs on Windows, Linux, and Xbox, is free and open source)

- Parallels 10(Runs on Mac platform, Windows and Linux)

- Microsoft Virtual PC 11(Runs on Windows, DOS and OS/2)

- Virtual Iron 12(Run on Windows and Linux)

- Win4Lin 13(Runs on Linux)

2.5.2 QEMU
QEMU is short for Quick EMUlator. QEMU is a free, and an open-source software (GNU
General Public License, version 2.) for virtualizing (using KVM) and emulating hardware (Jo-
hannes Plötner and Steffen Wendzel, 2012). QEMU is made in Japan. It is a hosted hypervisor

7http://liveview.sourceforge.net/
8https://www.vmware.com/products/workstation-pro.html?build=1744117
9http://bochs.sourceforge.net/

10www.parallels.com
11www.microsoft.com/windows/products/winfamily/virtualpc/default.mspx
12www.virtualiron.com/
13http://win4lin.net/content/

19

http://liveview.sourceforge.net/
https://www.vmware.com/products/workstation-pro.html?build=1744117
http://bochs.sourceforge.net/
www.parallels.com
www.microsoft.com/windows/products/winfamily/virtualpc/default.mspx
www.virtualiron.com/
http://win4lin.net/content/

2.5 Virtualization

that creates a virtual computer hardware platform, which describes what it does.
It emulates CPUs, translating one instruction set into another using binary machine code. Virtu-
alization with KVM only works if the hardware supports virtualization (for example: Intel-VT
or AMD-V), otherwise the system will not be emulated. This method is well known as dynamic
binary translation.
QEMU emulates systems with the following processor architectures: x86, x64, PowerPC (32-
and 64-bit), ARM (32- and 64-bit), Alpha, CRIS, LatticeMico32, m68k and Coldfire, MicroB-
laze, MIPS, Moxie, SH -4, S / 390, Sparc32 / 64, TriCore, OpenRISC, Unicore and Xtensa. The
QEMU virtual machines emulate all devices needed to run a VM Guest. It supports, for exam-
ple, several types of network cards, block devices (hard and removable drives), USB devices,
character devices (serial and parallel ports), or multimedia devices (graphic and sound cards).

Among other things, QEMU supports overlay images (delta images). This overlay image
is based on an existing image file. This overlay image saves all changes to the original
image file. The original image will not be changed (Thomas Ritzau and Robert Warnke, 23.
Mär. 2010).

The following image formats are supported from QEMU: raw (dd), qcow2, bochs, cloop, cow,
dmg, nbd, parallels, qcow, qed, vdi, vhdx, vmdk and vvfat (QEMU, 2018).
QEMU also offers a number of device models in addition to the emulation of CPUs.
These make it possible to run operating systems on the emulated hardware without modify-
ing the operating systems. QEMU is capable of emulating hardware and running different
hardware-specific operating systems on this emulated hardware (Thomas Ritzau and Robert
Warnke, 23. Mär. 2010).
In addition, open source programs have the advantage that they are constantly being devel-
oped by many developers. Thererfore errors are quickly recognized and remedied. In addition,
QEMU is KVM’s predestined virtualization solution from RED HAT 14(developed by Qum-
ranet, Qumranet was purchased by Red Hat in September 2008). These develop e.g. the Virtio
drivers which continue to ensure even more compatibility.

2.5.3 Requirements
During my research, I found various managing tools that can manage virtual machines. But I
could not find a tool to compile configurations. That is the reason why I decided to program
this configuration tool myself.

Following, I show what dependencies and requirements the research for such a virtualization
and the self-programmed configuration tool ”Virtual PC” have resulted in. Various programs
must be installed. Following, I show which programs. I show which configuration files need
to be adapted. The user groups that must be created are displayed. And you have to add the
logged in user to these groups.
Now the installed system is searched for the required programs.

14https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/
6/html/virtualization_getting_started_guide/chap-virtualization_getting_
started-products

20

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_getting_started_guide/chap-virtualization_getting_started-products
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_getting_started_guide/chap-virtualization_getting_started-products
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_getting_started_guide/chap-virtualization_getting_started-products

2.5 Virtualization

The ”dpkg -l” command displays almost all installed programs. If this command is changed to,
”dpkg -l | grep pmount” then within the listed programs the program ”pmount” is searched for.

If the program is installed the output looks like this:
$ dpkg -l | grep pmount

ii pmount 0.9.23-3build1 amd64 mount removable devices as normal user

If the program is not installed, it returns only the Promt:
$ dpkg -l | grep pumount
$

It is also possible to string the commands together as follows:
”dpkg -l | grep ’pmount | xmount | parted’”

With this command we have now queried which programs have been installed with this distri-
bution and which programs may be missing. All missing programs needed for this work can
now be installed.
The following programs / packages should be installed:

• pmount

• xmount

• fusermount

• parted

• qemu

• ovmf

Standard commands like:

• cp

• rm

• mkdir

• grep

• mktemp

• lsblk

• blkid

• losetup

21

2.5 Virtualization

should have been installed with the Mint distribution.

Now some configuration changes have to be made with administrator rights.
If files are not available, they can be created as user root.

The ”/etc/pmount.allow” is adjusted by adding the following entries:

/dev/loop[0-9]
/dev/sd[b-z]
/dev/sd[b-z] [0-9]

The ”/etc/pmount.conf” is adjusted by adding the following entries:

loop allow = yes
loop devices = /dev/loop0, /dev/loop1, /dev/loop2

The ”/etc/fuse.conf” will be adjusted by adding the following entries:

user allow other

Finally, group affiliations of the user have to be adjusted. The executing user should belong to
the following groups:

• disk

• fuse

• kvm

If one or more groups are not available, they can be created with the command

”groupadd <group>”

22

Chapter 3
Methodology

In the previous chapters, there was an introduction to the topic and the problem that is to be
solved with this thesis and the research questions. The different research questions involve
the answer to individual methods. In order to answer the research questions, this chapter ex-
plains the research methodology. This chapter explains the choice of research approach, the
research design. This is followed by a discussion on the possibility of achieving usable results.
It concludes with a brief discussion of the problems and limitations arising from the research
methodology. Furthermore, the problems that have arisen during the research are pointed out.

3.1 Research Design
This thesis will use quantitative and qualitative research strategies. To answer the research
questions I have done a literature research with keywords in the previous chapter. I searched
first for a way how images that include an OS can be started in a virtual environment. The
used virtualization system should be able to virtualize different types of images with different
contents. These are e.g. Images created from seized PCs with different operating systems. Such
as Windows, Apple, Linux or other Unix operating systems. It should also work with different
computer architectures, such as Intel or AMD. If possible the images should be started auto-
matically or with a minimum as possible1 of needed action from the investigator. For this a
program or configuration tool is needed to include the hardware driver from the analyses ma-
chine e.g. for the graphic card. The required data for the configuration of the virtualization must
be noticed already during the seizure.

To find a virtualization system that works in this way I started the first part of my empirical
study work. Experimental research tries to find out how a certain procedure influences the re-
sult. I tested different virtualization tools to find a system that could work in the wanted way.
I programmed a configuration tool myself because I did not find one that could do this work.
The work was done with try and error until it worked in the wanted way. I think that the first
part was the qualitative research strategy because I had no measurable results like values or
numbers. Otherwise, it can also attend to a quantitative research strategy under the line that
working or not working can be seen as two values like 0 and 1. The experimental part of this
work will be described in Chapter 4.2.1.

23

3.2 Research Methods

But can an unskilled investigator really work with the created environment? This can not be
answered in a theoretical way but in an experimental part. To prove this, I tested the same envi-
ronment that I used for the experimental work that I have done myself. I have tested this with 10
unskilled investigators described in Chapter 4.2.2. This part uses a quantitative research where
the results can be shown in percent or simply by counting. How many investigators have been
able to work with the experimental environment.

3.2 Research Methods

3.2.1 Literature Research
To be able to answer the research questions, I started the literature research. I have used the
following search engine for literature search: the NTNU discovery tool/search engine Oria, the
Specialist Search Engines of the University College Dublin and Google Scholar. To search for
literature using these search engines, I searched with the following keywords: virtualization,
forensic virtualization, images, mount, mount partitions, ”unskilled person” and ”unskilled per-
son” in IT forensics. In order to extend my literature research, I searched for additional terms
such as command-line virtualization, window virtualization, Linux virtualization, Virtualbox,
QEMU. And I found interesting information that would help me find a solution to the prob-
lem. One result of the search was QEMU, an open source software for virtualization that can
be started from the command line. Further, the search revealed that the missing gap could be
closed with a self-developed program written in the Python programming language. At this
point, I focused my literature research to fix problems that occurred during programming and
tested my script with a Laptop that had a Linux OS.

During the literature research, I searched for something that can virtualize an operating system.
Something that visualizes an image of a seized PC so easily that perhaps ”unskilled persons”
can work with it. It should be a simply usable combination of soft- and hardware. That means
that the used images only had to be connected to an analysis computer and as many as possible
were detected automatically.
At this point I have not found any commercial or non-commercial hard or software that was
able to do this. The idea was born to use open source tools and a laptop with Linux OS and a
self-written program for the practical implementation. The literature research was expended to
find solutions for parts or the whole task. The information found in the literature research was
used and tested step by step. During these steps, I also tested methods that were unsuccessful
and had to be discarded at the end.
Focusing on the successful methods found in literature research I was able to virtualize some
images with a laptop that uses Linux as its operating system. As intended, only open source
tools were used. To realize an environment that could be used by an unskilled person, I started
to program my own tool. It took a long time until the program worked in the way I expected. To
get the answer if unskilled persons were able to work with my tested environment, that’s should
be tested with probands.

24

3.2 Research Methods

3.2.2 Empirical Study
Experiments are used in science as an aid to try them out under real conditions. (Moy, T., and
Tyrkus, M. J. (Eds.), 2016).

I started my empirical study with a Windows 10 operating system. To mount images windows
programs have been used. Further experiments were done with Linux derivatives. Linux oper-
ating systems offer several methods to mount partitions from images. For this, it is needed to
define the partitions from first to the last sector. For the first part of my empirical studys, Vir-
tualBox and QEMU were found. Both can be started from the command line. For the second
part, saving the commands, I had to create my own application.

Among other things, I choose Python as the programming language because it was part of the
study. The most important reason is that Python is a standard in the Python forensic community
(Preston Miller and Chapin Bryce, 2016). The first problem was to create a useful GUI that
could also be operated from unskilled persons. I had not found any libraries that could portray
the frontend that I wanted. Looking for tools that can fix this problem for Python I did not find
a solution, I had to develop some GUI elements myself. During programming, it turned out that
the required system commands did not exist or had not worked properly.

To use the needed commands I implemented Linux commands in a system call of the script
that Python only had to execute. This had the consequence that the program that I named ”Vir-
tual PC” is only executable on Linux OS. After testing this script successfully with both tools,
QEMU was the only tool that was able to store results to an overlay file. I decided to use QEMU
and the self written-program that should work in the desired way. During programming, images
were used that contained Windows, Linux and Mac operating systems. The used Mac images
could not be virtualized in a simple way that is needed for this solution. Further tests with Mac
images were discarded because it didn’t seem feasible in the time that was available for this
master thesis. After I had tested my program successfully with the described environment, I
was able to go to part 2 of my empirical study.

To know if unskilled persons were able to work with the same environment using my self-
written program a second experimental part was done. 10 unskilled investigators were used as
probands. After being instructed in the use of the self-written configuration tool, they should be
able to connect and virtualize 2 Windows and one Linux image.

3.2.3 New Method Design and Validation
After all a new method to virtualize images in a fast and simple way has arisen. To validate this
method different images containing Windows and Linux OS have been used and tested in the
same environment. First errors and problems e.g. with different computer architectures, such as
Intel or AMD, have been fixed. To validate the results every image has been tested more than
twice. At least 10 unskilled investigators have tested this new method successfully.

25

Chapter 4
Experiment and Results

4.1 Experiment Setup
This section describes the experiment setup with the focus on intelligibility.

4.1.1 Hardware
To run the virtualization, I used a Laptop as an analysis PC.
The Analysis PC is a standalone machine with the following specifications Table 4.1.

Component: Description
Description: Laptop
Vendor: LENOVO
Version: Lenovo G50-70
Width: 64 bits
Size: 2682MHz
Capacity: 3100MHz
Processor: Intel(R) Core(TM) i7-4510U CPU @ 2.00GHz
Disk: 2TB ST2000LM003 HN-M
BIOS: BIOS boot specification is supported
UEFI: UEFI is supported

Table 4.1: Hardware Configuration Analysis PC

4.1.2 Software
One of the goals of this research project is to use free and open source tools to virtualize image
that contain a operating system. The used software and version you can see in (Table 4.2)

26

4.1 Experiment Setup

Type: Name and version
OS Distributor ID: LinuxMint
OS Release: 19
OS Codename: Tara
QEMU emulator: version 2.11.1
Python: 3.6.5
pmount: 0.9.23-3build1
xmount: 0.7.3-1build2
fusermount: version: 2.9.7
parted: 3.2-20

Table 4.2: Software Configuration Analysis PC

4.1.3 Implemented Proof of Concept
One problem in the preparation of the research was to determine how the results could be ver-
ified. Due to the lack of comparable work, I decided to program a configuration tool for the
found virtualization software. A tool in which a configuration can be compiled for each specific
case, which can also be saved. A program that combines all the necessary commands in the
correct order and with a Graphical User Interfacem (GUI). This would give the investigator the
chance to access data from an electronic evidence in very little time. The tool should then also
be able to save the assembled configurations for the evidence and reopen them later for another
proof of evidence. Likewise, it should be possible for the investigator to save found traces on a
storage medium.

The next step was to determine in which programming language the tool should be realized.
During my studies in Norway at PHS and NTNU, I got in touch with some programming lan-
guages/script languages and operating systems. I decided to use the operating system Linux
and the platform-independent scripting language Python. The primary reason for choosing the
programming language is that Python is a standard in the Python forensic community.
After the Python program has been implemented and all previous questions have been answered,
1369 lines of source code have been created.

Now I briefly introduce the GUI of the Python program ”Virtual PC”.
The Figure 4.1 is the starting mask:

27

4.2 Experiment Description and Results

Figure 4.1: Virtual PC start dialog

The Figure 4.2 is the Configuration Dialog:

Figure 4.2: Virtual PC configuration dialog

The complete API Documentation of the program ”Virtual PC”can be found in the Appendix
C.

4.2 Experiment Description and Results
This chapter describes the results of the solution approach, which are the research questions
formulated in Chapter 1.3. First, the methods for creating the experiment are described both
my empirical study and those of my systematic group study. Within these descriptions, the re-
sults of the various experiments are described and associated with the research questions. The

28

4.2 Experiment Description and Results

detailed description for anyone interested in, reviewing or even reproducing my results can be
found in the appendix.
For the sake of completeness, the term experiment, which has already been mentioned several
times before, should be defined in this chapter. An experiment is an investigation and a method
for data collection in which purposefully formulated research questions should be checked for
their validity. It is a very good result of an experiment if the answers to the formulated research
questions can be clearly doubted or confirmed.

4.2.1 My First Empirical Study
The first attempts at virtualization were made with a Windows 10 system. With Windows’ own
program ”Mount-DiskImage” it is possible, to mount an image (virtual hard disk or ISO) as a
partition (Microsoft, N/A), by using the Powershell. With a Windows 10 system, a read-only
mount of a partition is possible with the tool ”diskpart”. As an administrator you can set a
partition to read-only mode with the command ”attributes volume set read-only” after diskpart
has been executed (Admin, Top Password Software, Inc, 2018).
Further attempts have been made with Linux derivatives. With Linux there are several meth-
ods to mount partitions. But to mount partitions from an image, the partitions firstly must be
defined, to find the first and the last sector. For this purpose ”losetup” (Chapter A.1.12) was
used. After a partition has been detected, this partition can be mounted with ”pmount” (Chapter
A.1.8). Each user can mount with ”pmount” partitions, even without administrator rights.
The focus is to give an investigator access to data from a data storage from an evidence as
quickly as possible. During my research, the solution seemed to lie in finding a virtualization
software that could be executed with a parameterizable command. This would increase the
speed of execution, as these commands are easy to change. These commands are also easy to
save and manage.
As described in Chapter 2.5, I came across two programs, VirtualBox and QEMU that fit into
my goal, free or open source. And both can be started from a command line. Although Vir-
tualBox can be completely parameterized and configured from the command line, it can not
be started via a parameterized application start. Therefore VirtualBox is not an option for this
research.
QEMU is the right choice as described in Chapter 2.5.2, because QEMU can work with overlay
files. The changes during the work with the original image are stored separately in an overlay
file. That ensures that the original image was not changed in any way. This ensures that we
work forensically. QEMU is also the right choice in a second point, because QEMU can be
started parameterizably from the command line.
I started my empirical study with my evaluation laptop (Chapter 4.1.1) with installing the op-
erating system Linux Mint 19 (Chapter 4.1.2). And next, all other necessary measures (see
Chapter A), which resulted from the literature research, were carried out. All required applica-
tions (Chapter A.1) that were not automatically installed with the operating system were then
installed. This is followed by the customization of the configuration files (Chapter A.2). Finally,
missing Linux users and groups were created (Chapter A.3).
After the hard- and software for the analysis PC were assembled, I created some images from
test computers with different operating systems. Starting with Windows XP, Windows 7, Win-
dows 10, Linux Mint 19 and Mac El Capitan (10.11) operating systems.
I was not able to virtualize this Mac OS. Fixing the occurred bugs involved, a lot of time was

29

4.2 Experiment Description and Results

these because it required the manipulation of system files of the operating system in the virtual
machine. In my research of these problems, I found out that a suitable way to virtualize an
image from a Mac computer only works with a Mac computer.
All other methods to virtualize the Mac image would not be so feasible that a non-skilled person
would be able to work with it. Another point is that the Mac computer is very rare as working
equipment in the German police. Only some specialists have a Mac computer. All other inves-
tigators have a computer with a windows operation system like I have assembled and used for
the virtualization. This is the reason why I have discarded to virtualize a Mac operating system.
This may be a point for further work.

Encrypted images or images with encrypted partitions have not yet been considered. Further-
more, password-protected data or operating systems have not been considered. During my work
on this research, on some Windows 7 installations the graphic card driver had to be changed in
the configuration of the program ”Virtual PC” to run with the specified Windos 7 installation.
An error with the number 0x0000007b is a special error that has occurred on my Windows7
system. This error may have occurred on Windows 7 and later systems, including Windows
10. If the hard disk controller in Windows is disabled or faulty, this problem appears. Here the
registry must be changed. There are various hints on the internet. For me, the easiest way was to
start the image in the virtual environment with a LiveCD 1 in the CD-ROM drive. The program
”Dr.Web Registry Editor ”can then be started from the CD-ROM. With Dr.Web Registry Editor
values 2 can be changed in the registry, which are responsible for the misconduct (Arne Arnold,
2015).
At the path
”HKEY LOCAL MACHINE\System\CurrentControlSet\Services\Msahci”
set the entry ”Start” to the value 0. For the second path in the registry
”HKEY LOCAL MACHINE\System\CurrentControlSet\Services\IastorV”,
the entry ”Start” must also be set to 0.
This solution applies to a Windows 7 or Vista operating system. For higher Windows versions,
there are other solutions on the Internet. There were also problems with some XP installations
during my tests. Here the SATA driver had to be reset.

While I was working on virtualization, I could see some weaknesses in how it works. A weak
point is the missing saving of parametrised start commands. If an error occurs when starting
a virtualization, the virtualization does not start and must be aborted. Now the start command
has to be revised and rewritten. If a virtualization needs to be restarted from evidence at a
later time, the start command must also be reparameterized and rewritten. This is a point that
emerges from the development and test phase that this start command should be storable and
manageable.
During my research, I could not find a way to manage or save these startup commands. There-
fore, there is no way to easily customize these startup commands until virtualization is bug-free
and executable. That was the deciding factor to design and program such a configuration tool
myself and to create the software configuration tool ”Virtual PC”. The program ”Virtual PC”
can be seen in the Chapter 4.1.3, the working method in the Chapter 4.2.3. This program was
so developed that an unskilled person is able to work with the given environment. The source
code for this created program can be found in the appendix of my research.

1https://free.drweb-av.de/
2http://www.pc-experience.de/wbb2/thread.php?threadid=31929

30

https://free.drweb-av.de/
http://www.pc-experience.de/wbb2/thread.php?threadid=31929

4.2 Experiment Description and Results

4.2.2 My Second Systematic Group Study
The experimental structure of my systematic group study is exactly the same as in my empirical
study (Chapter 4.2.1). In my systematic group study, I selected 10 probands, scientific subjects,
that corresponded to my definition of an ”unskilled person in IT forensics”. The term ”unskilled
person in IT forensics” is explained in Chapter 1.2. In simple words this means that a person
who is not a trained IT-Specialist is an unskilled person.
For the experiment, 10 policemen between 25 and 40 years were used as test subjects. There
were 9 male probands and 1 female proband. Overall, they were trained investigators and had
experience in their discipline. The computer is part of their permanent work tool.

At the beginning of the experiment, each subject had basic IT skills. This means that each sub-
ject can operate his work programs as a user. For this research project, the test persons were
instructed in the use of the configuration tool ”Virtual PC” developed in the thesis research. In
addition, they were introduced to the basic knowledge of IT forensics (Bundesamt für Sicher-
heit in der Informationstechnik, BSI, 2011). For this purpose, the guideline ”IT-Forensik” of
the German Federal Office for Information Security (Bundesamt für Sicherheit in der Informa-
tionstechnik (BSI)) was used.
I have prepared three images for the test. I wanted to use the most common operating systems.
This was done with regard to the order of use of Windows, Mac and Linux, as shown in Fig-
ure 4.3. As explained before, I have discarded, using an image from a Mac operation system
because I was not able to virtualize a Mac operation system in a suitable way. Windows was
clearly the most used operating system. This was the reason why I used two Windows and one
Linux image for the test.

Figure 4.3: Market share of the leading operating system editions in Germany from January 2009 to
May 2018

The following specifications document the three test machines from which the test images have
been created. The two Windows PC are displayed in Table 4.3 and Table 4.4, and the one Linux
Laptop in Table 4.5 respectively. The computers are standalone machines.
In this experiment, I first introduced the probands to the principle of this study. I explained, that
we want to virtualize the delivered image. The probands received an image previously acquired

31

4.2 Experiment Description and Results

Component: Description
Description: Computer
Vendor: self-construction
Width: 64 bits
RAM: 64 GByte
Processor: Intel (R) Xeon (R) CPU E5 v3 @ 2.60 GHz
Disk: Samsung SSD 850 PRO 256GB
BIOS: BIOS boot specification is supported
UEFI: UEFI is supported
OS Distributor ID: Microsoft Windows 10 Professional

Table 4.3: Configuration Windows 10 PC Image

Component: Description
Description: Computer
Vendor: self-construction
Width: 64 bits
RAM: 16 GByte
Processor: Intel (R) Core (TM) i7-3770 CPU @ 3.40 GHz
Disk: STOSHIBA DT01ACA300 SCSI Disk Drive
BIOS: BIOS boot specification is supported
UEFI: UEFI is supported
OS Distributor ID: Microsoft Windows 7 Professional (Service

Pack 1)

Table 4.4: Configuration Windows 7 PC Image

Component: Description
Description: Laptop
Vendor: LENOVO
Version: Lenovo G50-70
Width: 64 bits
RAM: 4 GByte
Processor: Intel(R) Core(TM) i7-4510U CPU @ 2.00GHz
Disk: 2TB ST2000LM003 HN-M
BIOS: BIOS boot specification is supported
UEFI: UEFI is supported
OS Distributor ID: LinuxMint
OS Release: 19
OS Codename: Tara

Table 4.5: Configuration Linux PC Image

with FTK Imager. This image met the forensic requirements and was in the E01 format 3. Now
3http://www.forensicsware.com/blog/e01-file-format.html

32

http://www.forensicsware.com/blog/e01-file-format.html

4.2 Experiment Description and Results

the subjects should virtualize this image on the analysis PC with the tools provided and without
further help.
First, the data carrier with the image of one of the test PCs should be connected to the analysis
PC. In order to ensure smooth virtualization, the image of the test PCs should be copied to the
analysis PC. After the program ”Virtual PC” has been started, metadata and paths can be set.
Under the item ”Configure VM Parameter” one can specify parameters that are decisive for the
virtualization such as ”sata” and ”vga-vm”. With OK, the previously compiled configuration is
saved. In the main GUI a storage medium is selected and with a radio button the search method
is selected. One can choose between virtualization and mount partitions. If the radio button is
set to”Virtualization of evidence”, the virtualization is started with entering OK. If an error oc-
curs during startup, parameters can be changed and restarted until virtualization starts without
error.

After the test persons have created and saved a configuration file with the configuration tool
”Virtual PC”, the virtualization program can be started with the settings that were saved in the
configuration file. Now the operating system that was stored in the used images will be started
in the virtual environment.
After completion of the virtualization, the evidence data found could not be stored on a storage
medium, since this possibility was not considered at the time. Therefore, these data could not
be used for further investigations at that time without further effort. This should be incorporated
into the program ” Virtual PC ” based on this finding.
Eight out of ten probands were able to virtualize all three images. There were small problems
with two probands. They had little difficulties in parameter input because parameters were
wrongly written or wrongly indicated with the Linux image. After a short briefing, the experi-
ment went very well, and the test persons all reached their goal. In this experiment, there were
no problems with the Windows image, only minor problems as described with the Linux image.
Thus, of 30 possible tests, 28 were successfully completed. That is a rate of 93.33%. Two tests
were unsuccessful at first, which is a quota of 6.67%. They did not make it in the first attempt.
In the second attempt after a short support, they were then successful.
From the experiment, the probands suggested saving the possible input parameters in a list. This
is basically possible, but then the list would have to be maintained permanently. Therefore this
idea was again discarded. Another suggestion was not to virtualize any image of evidence, it
would be sufficient to mount partitions. After all, experienced investigators know where certain
data can be found in the file system. This idea proved to be beneficial as partitions are much
faster to mount than to virtualize an image. There are several ways to mount partitions from an
image, without virtualization of an operating system.
Preliminary research revealed that, for the Windows operating system, various tools are avail-
able on the market. For most tools, various settings can be made through a graphical user
interface. I would like to mention only three of them here.

- Mount Image Pro 4

- FTK Imager 5

- OSFMount 6

4http://www.mountimage.com/
5http://marketing.accessdata.com/ftkimager4.2.0
6https://www.osforensics.com/tools/mount-disk-images.html

33

http://www.mountimage.com/
http://marketing.accessdata.com/ftkimager4.2.0
https://www.osforensics.com/tools/mount-disk-images.html

4.2 Experiment Description and Results

For the operating system Linux, the program ”pmount” can be used (Chapter A.1.8). How the
mount was implemented can be seen in the following Chapter 4.2.3.4.
This variant was implemented in the program ”Virtual PC”. With this implemitation the inves-
tigator can choose between virtualization and mounting partitions.
A further improvement wished by the investigators was the ability to store important investiga-
tive data or evidence. This idea turned out to be very good also was implemented by me so that
an additional storage media can be integrated into virtualization and mounting environment.
The data found can then be stored on these additional storage media. They will still exist when
the program ”Virtual PC” has been closed. The storage media only needs to be mounted in the
analysis PC after finishing ”Virtual PC” to process the data further. How this works can be seen
in the following Chapter 4.2.3.5.

The last suggestion was that, if no storage medium is available, a way should also be created
to store found evidence in this case. For this, an ”virtual” memory stick was created, on which
data can be stored, which is still available after the program is finished. After shutting down the
virtual machine this ”virtual” memory stick can be mounted and the data copied to the analysis
PC. This option was also implemented in the program and is now available to the users as an
additional feature. Further information on this storage of the data can be found under the Chap-
ter 4.2.3.6.

4.2.3 Configuration tool ”Virtual PC”
4.2.3.1 Computer processor architecture

Before I explain the program ”Virtual PC” that I have programmed for this thesis, we take a
look at the current system architecture. As can be seen in the statistics Figure 4.4, the most
common and used in the PC field CPU architectures are ”Intel” and ”AMD”. Except for a few
percent, they divide the whole market among themselves.

Figure 4.4: Distribution of AMD and Intel x86 computer processors worldwide, from 2012 to 2018

34

4.2 Experiment Description and Results

Basically, the program has been developed for an Intel architecture. But during my research I
also considered the AMD architecture. After some changes, the program is also executable on
the AMD architecture.
To check if Intel or AMD architecture is present, I used the follwing command on the analysis
PC:

Host ∼ $ grep ”vmx” /proc/cpuinfo

If lines are output with ”vmx”, these are ”Intel VT” processors. As shown in BIOS in Figure 4.5
and in UEFI-BIOS Figure 4.6-4.7.

Figure 4.5: Intel VT Parameter in the original BIOS 7

Figure 4.6: Intel Virtualization Technology in the UEFI-BIOS 8

7https://superuser.com/questions/746440/how-to-enable-vt-x-on-asus-k53sv
8https://us.informatiweb.net/tutorials/it/9-bios/215--enable-iommu-or-vt-

d-in-your-motherboard-bios.html

35

https://superuser.com/questions/746440/how-to-enable-vt-x-on-asus-k53sv
https://us.informatiweb.net/tutorials/it/9-bios/215--enable-iommu-or-vt-d-in-your-motherboard-bios.html
https://us.informatiweb.net/tutorials/it/9-bios/215--enable-iommu-or-vt-d-in-your-motherboard-bios.html

4.2 Experiment Description and Results

Figure 4.7: Intel VT Parameter in the UEFI-BIOS 9

And another way to query the architecture is:

Host ∼ $ grep ”svm” /proc/cpuinfo

If lines with ”svm” are output, these are ”AMD-V” processors. As shown in BIOS in Figure 4.8
and in UEFI-BIOS Figure 4.9-4.10.

Figure 4.8: AMD Virtualisierung in the original BIOS 10

9https://us.informatiweb.net/tutorials/it/9-bios/215--enable-iommu-or-vt-
d-in-your-motherboard-bios.html

10https://askubuntu.com/questions/256792/how-do-i-enable-hardware-
virtualization-technology-vt-x-for-use-in-virtualbox

36

https://us.informatiweb.net/tutorials/it/9-bios/215--enable-iommu-or-vt-d-in-your-motherboard-bios.html
https://us.informatiweb.net/tutorials/it/9-bios/215--enable-iommu-or-vt-d-in-your-motherboard-bios.html
https://askubuntu.com/questions/256792/how-do-i-enable-hardware-virtualization-technology-vt-x-for-use-in-virtualbox
https://askubuntu.com/questions/256792/how-do-i-enable-hardware-virtualization-technology-vt-x-for-use-in-virtualbox

4.2 Experiment Description and Results

Figure 4.9: AMD SVM-Parameter in the original BIOS 11

Figure 4.10: AMD SVM Parameter in the UEFI-BIOS 12

If there is no output, hardware virtualization is not supported, QEMU can only be installed
without KVM acceleration.
Since virtualization with QEMU works best on a 64-bit system, a 64-bit Linux should also be
installed. Before installation, the system can be queried via a Mint Live CD (Linux Mint oper-
ating system without installation).

Host ∼ $ grep ”lm” /proc/cpuinfo

If lines with ”lm” are output on the command, a 64-bit Linux can be installed, because the CPU
is able to work with 64-bit architecture.

Now there is also the possibility to optimize the system with more RAM. Thus, the virtual
machines can be provided with more memory. Optionally, then activate the parameter ”Kernel

11https://www.itworld.com/article/2981515/virtualization/virtualbox-
diagnose-and-fix-vt-xamd-v-hardware-acceleration-errors.html

12https://unix.stackexchange.com/questions/283212/how-to-enable-iommu-on-
gigabyte-ga-970-gaming-sli-cf

37

https://www.itworld.com/article/2981515/virtualization/virtualbox-diagnose-and-fix-vt-xamd-v-hardware-acceleration-errors.html
https://www.itworld.com/article/2981515/virtualization/virtualbox-diagnose-and-fix-vt-xamd-v-hardware-acceleration-errors.html
https://unix.stackexchange.com/questions/283212/how-to-enable-iommu-on-gigabyte-ga-970-gaming-sli-cf
https://unix.stackexchange.com/questions/283212/how-to-enable-iommu-on-gigabyte-ga-970-gaming-sli-cf

4.2 Experiment Description and Results

Samepage Merging (KSM)”, to greatly reduce the overall memory consumption under certain
circumstances. To find out if the kernel supports KSM, enter the following command.

Host ∼ $ grep KSM/boot/config-name -r‘
CONFIG KSM = y

If the parameter ”CONFIG KSM” is output with ”y”, the KSM support is guaranteed. Whether
the KSM support is also activated is queried as follows.

Host ∼ $ cat /sys/kernel/mm/ksm/run
1

If the number ”1” is output, the KSM support is activated. If a ”0” is output, KSM support is not
activated. The parameter can be adjusted in the file ”/etc/default/qemu-kvm” (Thomas Ritzau
and Robert Warnke, 23. Mär. 2010).

4.2.3.2 System requirements

For running the program ”virtual pc.py”, the analysis PC can be based on an Intel architecture
and an AMD architecture, as described in Chapter 4.2.3.1.
For virtualization, the processor must also include the functions (- Intel->VT-x, - AMD->AMD-
V). These additional functions are needed to pass commands to the CPU from the (guest) oper-
ating system directly to the CPU, which increases the speed extremely, because the commands
do not need to be converted or edited.
In the BIOS/UEFI of the analysis PC, if the virtualization specified parameters for an Intel
architecture are selectable, they must be activated.

• Intel Virtualization Technology

• VT-d Capability

• VT-d

to enable virtualization.
For an AMD architecture, the following settings have to be made, if they are selectable.

• Virtualistion

• SVM

The system requirements for a virtualization PC are similar to the LinuxMint system require-
ments, and for optimal performance, the operations system to be virtualized still needs to be
considered.

38

4.2 Experiment Description and Results

The system requirements for LinuxMint 19 are shown in Table 4.6 (Clem, 2018):

• Processor: 32-bit PAE-capable x86 processor or 64-bit x86 pro-
cessor (Linux Mint 64-bit requires a 64-bit processor)
Linux Mint 32-bit works on both 32-bit PAE-capable
processors and 64-bit processors processors)

• RAM: 1 GB of RAM (2 GB recommended for convenient
use)

• HDD size: 15 GB of storage space (20 GB recommended)
• Grafical card: Graphics card with a resolution of 1024 768 pixels

(At lower resolutions: You can move windows with
Alt + pressed left mouse button)

• Drive: DVD-ROM drive or USB port

Table 4.6: The LinuxMint 19 system requirement

If this system is a Windows system, the system requirements are shown in Table 4.7 (Dirk
Makowski, 2018).

System requirements: Description
Windows XP: PC with 300 MHz microprocessor (Intel Pentium / Celeron

product family, AMD K6 / Athlon / Duron product family),
128 MiByte RAM, 1.5 GiByte free memory, Super VGA
monitor (800x600), CD-ROM or DVD -ROM drive, key-
board and mouse

Windows Vista: 1 GHz processor, 32-bit (x86) or 64-bit (x64), 1 GiByte sys-
tem memory, 40 GB hard disk with at least 15 GiByte of
available space, DirectX 9 graphics (WDDM driver, 128
MiByte graphics memory, pixel memory). Shader 2.0,
hardware-based, 32 bits per pixel), DVD-ROM drive, au-
dio output

Windows 7: 1 GHz or faster processor, 32-bit (x86) or 64-bit (x64), 1
GiByte RAM (32-bit) / 2 GiByte RAM (64-bit), 16 GiByte
(32-bit) / 20 GiByte (64-bit) free space, DirectX 9 graphics
processor with driver for WDDM 1.0

Windows 8: 1 GHz processor or faster, 1 GiByte RAM (32-bit) or
2 GiByte (64-bit), 16 GiByte (32-bit) or 20 GiByte (64-
bit) free hard disk space, DirectX 9 graphics card or with
WDDM driver

Table 4.7: The Windows system requirements, part1

39

4.2 Experiment Description and Results

System requirements: Description
Windows 10: 1 GHz or 1GHz processor for 32-bit or 2 GB for 64-bit,

16GB for 32-bit operating system or 20 GB for 64-bit oper-
ating system, DirectX 9 or higher with WDDM 1.0 driver,
800 x 600

Table 4.8: The Windows system requirements, part2

The system requirements of the analysis PC and the system to be virtualized must be added
together for a smooth running virtualization.
In Table 4.9 is an example, as host system a Linux Mint 19 (64-bit) operation system and as
guest system a Windows 10 (64-bit) operation system.

Linux Mint
19 - Host

Windows
10 (64-bit)
guest

For the
VM

Statement

CPU 32-bit PAE
x86 / 64-bit
x86

1 GHz > 1 Ghz 64
bit

Since Windows 10 1 Ghz is needed
and 64bit, at least one CPU with
1Ghz and 64 bit is needed.

RAM 2 GB 2 GB 4 GB The host needs 2 GB of RAM and
the guest also needs 2 GB of RAM.
Since each system requires a certain
amount of memory, 4 GB (2 + 2
GB) is needed

Graphic
card

1024x768 800x600 1024x768 The resolution of the host is only
important here, because the guest
can emulate a resolution that is
larger than that of the host.

Harddrive 20 GB 20 GB > 40 GB Here it is like the RAM. Each sys-
tem needs hard disk space so this
must be added.

Table 4.9: System requirements added together

If the operating system for the analysis PC is Linux Mint 19, the following software package
has already been installed:

• losetup

• parted

• fusermount

• Python 3 with TKinter (as GUI Framework for Python)

40

4.2 Experiment Description and Results

• NTFS-3G.

The following software packages still have to be installed:

• xmount

• pmount

• QEMU

• OVMF (UEFI).

Now the group customizations and configuration changes:

• Create user group FUSE.

• Include the current USER in the groups ”disk”, ”fuse”, and ”kvm”.

• Change the configuration files ”pmount.allow”, ”pmount.config” and ”fuse.config”.

Finally, copy the software package ”Virtual PC” to the Analysis PC.
At this point, the Analysis PC should be fully installed and configured.

4.2.3.3 The way to virtualization

In this section, I describe the path from an image to its virtualization.
The police in Germany mainly produce an image file in E01 format (Encase Image File Format).
That was the reason why we assumed an E01 format. So before QEMU can now be used, the
evidence image still needs to be converted. For this purpose ”xmount” (explained in Chapter
A.1.10) is used. Xmount converts the E01 image into a RAM/dd format and creates an overlay
file <imagename>.ovl.
As previously described, xmount allows to use multiple types of input and output hard drives.
Xmount creates a virtual file system using FUSE (Chapter A.4).

File System in Userspace (FUSE) is a simple interface for userspace programs to export
a virtual file system to the Linux kernel. FUSE provides a secure way to allow non-
privileged users to build and deploy their own file system implementations.

After the image is converted, it needs some data for configuration, such as processor count and
RAM size.
With the next command the number of processing engines will be displayed:

”grep -i processor /proc/cpuinfo | tail -n 1 | awk ’{print $3}”’,

and the RAM size: ”grep -i MemTotal /proc/meminfo | awk ’{printf ”%.0f”, $2 * 0.6 / 1024}”.
Here, the current RAM memory in KB is determined and converted to MB and multiplied by
the factor 0.6. The 0.6 factor states that 60% of the main memory is reserved for the virtual

41

4.2 Experiment Description and Results

machine.

In the ”Virtual PC” program it is also possible to specify some parameters for the virtualization.
Possible parameters would be ”boot”, ”cpu”, ”machine”, ”k” (language), ”bios”, ”no-quit”,
”vga” and transferred ”usb devices”. If more parameters are needed now or in the future, then
the program would have to be adapted accordingly. With the parameters, specific settings can
be done, among others, from the operating system of the image.

Now QEMU can be started. If QEMU does not start correctly, the configuration file can be
customized with the ”Virtual PC” program interface. The adaptation consists in changing the
specified parameters for the system to be virtualized, such as the graphics card used in the seized
PC. After this QEMU will be restarted. This process can be repeated until there is no more error
and the configuration file has been adapted to the evidence. QEMU can now be started with the
specified operating system of the image.
After launching QEMU, the investigators can work and search with the evidence as if they were
sitting right in front of the seized computer. If all the necessary data is spotted during the search,
the virtual machine can be stopped again. If QEMU and the work with the virtual machine are
finished, the temporary directory that was created before must be cleaned up. To do this, the dd
file in the ”/tmp” directory must now be cleared.
We have created and mounted the dd file with xmount. Xmount creates a virtual file system
with FUSE. To unmount the file I used the command ”fusermount -u”.
Fusermount (Chapter A.1.11) is the program for mounting and unmounting FUSE file systems
(Daniel Baumann and Miklos Szeredi, 2018).
Once finished, the temporal files are cleaned automatically. The environment can be used again
in the same state before the virtualization was started. This ensures that it can not be forgotten
and came to an inadvertent mix of data.

4.2.3.4 Mounting the evidence filesystem

In this chapters the forensic integration of partitions form an evidence image into the analysis
PC is explained. It was first determined which Linux commands could be used for a read-only
partition deployment. I have then decided to use the ”pmount” command (Chapter A.1.8). As
opposed to the standard command ”mount”, pmount allows normal users to mount removable
media without root privileges and without having a matching entry in ”/etc/fstab”.

To mount a partition now, the starting point and the size of the partition must first be determined.
This work should be done by the command ”parted” (Chapter A.1.13). Parted belongs to the
standard Mint installation.

Before parted can run, an E01 image has to be converted.
Parted needs a pure block device (disk) image as device. But by default, E01 files are com-
pressed at the block level.

The EnCase image format (E01), based on the Expert Witness Compression Format
(EWF), contains a separate hash for each segment. It includes the hash file and
certain information about the image. The information entered by the examiner is

42

4.2 Experiment Description and Results

stored in the image file itself. An E01 file is more than just the image, it also
contains metadata about the image file.
Therefore, the E01 format of EnCase is not usable for ”parted” (Paul Cobbaut,
02.05.2015).

To convert, I use the program ”xmount” (Chapter A.1.10), which does not belong to the stan-
dard mint installation and has to be installed additionally.
With xmount, you can convert between multiple input and output hard disk image types.

Xmount creates a virtual file system using FUSE (Chapter A.4). This virtual file
system represents the input image. The virtual representation can be in Raw dd,
DMG, VHD, VirtualBox’s virtual disk file format, or in VmWare’s VMDK file for-
mat. Input images can be RAW-DD, Expert Witness Compression Format (EWF),
or Advanced Forensic Format (AFF) files. In addition, xmount also supports virtual
write access to the output files. These output files are redirected to a cache file.
Thus, acquired hard disk images can be booted with QEMU, KVM, VirtualBox,
VmWare or similar (Cory Altheide and Harlan Carvey, 2011).

After ”xmount” has converted the E01 Fromat of the evidence images to a raw / dd format,
”parted” (Chapter A.1.13) can determine boot sectors and the size of partitions. With these
facts, ”losetup” (Chapter A.1.12) can now set up a loop device.

Losetup is used to link loop devices (a pseudo-device that makes a file accessible
as a block device) with regular files or block devices. Losetup can disconnect loop
devices and query the status of a loop device. If only the loopdev argument is
specified, the status of the corresponding loop device is displayed (die.net, 2018b).

Now ”pmount” (Chapter A.1.8) can mount the found and created loops.
All of the evidence, mounted partitions are now made available in the file manager of the anal-
ysis PC and can be examined by the investigator.

4.2.3.5 Mounting Storage Media

Here is a brief description of how to mount storage media in ”Virtual PC”. First, it has to be
found out which storage media are to be offered in ”Virtual PC” for storage. To do this, use the
command ”lsblk” (ChapterA.1.4) to query all drives that exist in the system. The response can
include both mounted and unmounted drives. Here you can also filter for a mount point. All
drives with mount point are already mounted in the system. To make sure no mounted drives
are displayed, you can disable the auto mounting from the system 13. If now a portable storage
device is plugged in as an USB disk, it will not be detected automatically. It has to be mounted
manually if you want to see the drive in the system. Either with the command ”pmount” or
via nemo, the Cinnamon File Manager 13. The ”blkid” (ChapterA.1.5) command now gives us
additional information about the drives, such as the label and type.
Now we have the addition that ”Virtual PC” wants, it will only show storage media that are

13https://www.systutorials.com/241394/how-to-disable-auto-mounting-on-
linux-mint-cinnamon/

43

https://www.systutorials.com/241394/how-to-disable-auto-mounting-on-linux-mint-cinnamon/
https://www.systutorials.com/241394/how-to-disable-auto-mounting-on-linux-mint-cinnamon/

4.2 Experiment Description and Results

not mounted. All these storage media are displayed in a list and via a radio button, the corre-
sponding drive can now be selected for data backup. This drive will be attached to the startup
command of QEMU and integrated into the virtual machine. When shutting down the virtual
machine, the storage medium is unmounted again and can then be mounted in the Analyzer PC
to further process the data.

4.2.3.6 Saving Search Results

When we virtualize the evidence, any data store can be included that can then be used within the
virtual machine to store found evidence data. If the evidence HDD is included as partition(s) in
the file system of the analysis PC, the evidence data found by the investigator can be backed up
on the embedded data store.
From several investigators came the proposal to add a virtual memory. Extraordinary situations
arise out of the blue and in such a situation an external data storage device (e.g. a USB flash
drive) is not always available.
Thats why a virtual memory stick has been built that can be used at any time. Evidence data
found by the investigator can be stored on the virtual data store at any time. When the virtu-
alization is finished, the virtual USB flash drive can be integrated into the file system of the
analysis PC.
Now the found evidence data can be further processed on the analysis PC and follow-up actions
can be carried out immediately.

The virtual memory stick can be created with the Bashscript ”Virtual flash drive.sh”, which is
listed in the appendix in Chapter B.

Here is the most important part from the script:

IMG=”virtual USB.img”
LABEL=”Virtual USB”
dd if=/dev/zero of=${IMG} bs=1 count=0 seek=64G
parted --script --machine ${IMG} mklabel msdos mkpart primary ntfs 0% 100%
LOOP=$(losetup --partscan --show --find ${IMG})
mkfs.ntfs -f -Q -L ${LABEL} ${LOOP} -p1
losetup -d ${LOOP}

An image file ”virtual USB.img” is created with a virtual size of 64GB. Data up to 64GB can
be stored in the file. With the command ”du -sh --apparent-size virtual USB.img”, the virtual
size can be queried. To query the physical size, use the ”u -sh virtual USB.img” command.
The result is ”67M virtual USB.img”. The file ”virtual USB.img” has a current physical size
of 67 MB. The more data stored in the file, the larger the physical size becomes.

4.2.3.7 Summary

For the experimental work, a laptop with Linux Mint 19 OS was used and configured in a way
that is needed for the virtualization. Starting with mounting tools experiments came to the re-

44

4.2 Experiment Description and Results

sult to use QEMU and a Python program for the configuration. Some BIOS-settings had to be
set. With a self-written program, named ”Virtual PC” I was able to virtualize successful Win-
dows and Linux images. Apple Mac images were also tested, but I found no way for a needed
simply virtualization. That was the reason, why I have discarded to virtualize Mac images. To
be sure that ”unskilled persons” were able to work with my self-written program ”Virtual PC”
and the used environment, the next experiment was started. Ten ”unskilled persons” were short
instructed to settings and work with the program. Additional wishes like adding a virtual data
storage to save results were added to my program.

45

Chapter 5
Discussion, Conclusion and Further Work

5.1 Discussion
In this Chapter the research questions posed in Chapter 1.3 will be answered. The questions are
discussed in the same order as they are named.

Main Research Question 1:
Can a person, unskilled in IT forensics (such as an investigator)
virtualize an image from seized PCs with the required hardware

and software and without professional help?

The use of virtualization in forensics is nothing new. But while working, in a extended stressful
period, I came up with the idea that the virtualization by unskilled staff can be done. In this
period, we had far too few staff so that a lot of evidence could not be processed in the available
time.

During my Literature Research, I learned then that others have worked on this topic of using
unskilled persons for forensic work, such as Ben Hitchcock, Nhien-An Le-Khac, Mark Scanlon
(2016) 1.

After researching various ways of virtualization, the virtualization method used has been im-
plemented with QEMU. Previously, I have doubted that a forensically unskilled person can
perform this work. However, my systematic group study has shown that forensically unskilled
investigators are able using my new software, after a brief introduction, to virtualize an image
in a forensic way.

With a rate of 93.33% successfully visualized images, the research question 1 can be answered
with a definite positive answer that is yes. In the case of the 6.67% that were unsuccessful in the
first attempt, with some slight changes and done help have been also successfully visualized.

1https://www.sciencedirect.com/science/article/pii/S1742287616300044

46

https://www.sciencedirect.com/science/article/pii/S1742287616300044

5.1 Discussion

The result of the second attempt shows a quota of 100%.
The result is, as described, more than acceptable and fully meets my expectations. From years
of experience with the handling of evidence and working with investigators, I have written this
script in a way that I have expected such a result. Thus, the result of this research offers the
prosecution authorities additional opportunities for the future. Unskilled persons can not only
work in this area. Further work can develop these potential fields of application.

Research Question 2:
Can I find a commercial or noncommercial way or a program that
will be able to do the virtualization with a previously defined test

series from PC images?

Virtualization is typically an approach to pooling and sharing technology resources to simplify
management and increase asset utilization so that IT resources can better meet business needs.
In this research images of seized PCs should be virtualized, with different methods and ap-
proaches.

According to my research, both commercial and non-commercial software is virtualized to im-
ages. But none of the researched programs fulfills all self-imposed goals as described in Chapter
1.1. The program that fulfills the most criteria is QEMU. This makes QEMU the best option for
this research under Linux. As described in Chapter 2.5.2, QEMU was developed to virtualize
and emulate hardware (in collaboration with KVM).
The reason that QEMU can be controlled from the command line and therefore, it is predestined
for this thesis.
Thereby, when starting the virtual machine different hardware such as e.g. Graphics cards, PCI
and ISA systems, CPUs, sound cards and other interfaces (USB, RS232, etc.), BIOS systems
(BIOS, UEFI, etc.) can be set with parameters, that worked also relatively fast to find and set
the correct configuration for an image.

From statistically most used operating, the following systems have been incorporated and tested
in the experimentel part of my research:

- Windows 10/8/7/Vista/XP

- Linux (all Linux installations that do not use a self-built kernel)

Because the created start commands could not be saved with QEMU, I decided during this re-
search to program my own configuration tool, which should be able to perform this task. I have
created for this part a configration tool and named it ”Virtual PC”. With this tool the assembled
configurations for an image can be tried out quickly and then saved. After finishing the config-
uration with ”Virtual PC”, the virtualization can be started from ”Virtual PC”.

At this point, the second research question must be denied. But by using the self-programmed
application ”Virtual PC”, I was able to do this and also to answer the second question with yes.

47

5.2 Conclusion

Research Question 3:
When developing my own virtualization method, are there any
special features of the hardware to consider when virtualizing

images?

This question about special functions or special hardware refers both to the analys PC and to
the computers that have been seized and thus to the image created by it.

For virtualization to be carried out on an analysis PC, virtualization-specific parameters must
be set in the BIOS/UEFI as described in Chapter 4.2.3.1. Further features or hardware we do
not put to the analysis PC.

Image can also make demands on virtualization. If an image has been created by a confiscated
PC that has been operating with a UEFI-BIOS, a UEFI program, the OVMF package, must be
installed on the analysis PC in order to virtualize the image (Chapter 4.2.3.2). On some confis-
cated PCs, e.g. a USB dongle must be used (often used to confirm the software licenses). But
this can easily be specified as USB transfer parameters in QEMU (Chapter 4.2.3.3).

Some functions haven’t been realized, such as secure boot. Secure Boot is part of the UEFI
specification, which is intended to guarantee the authenticity or integrity of important software
parts of the firmware2.
Not all possible hardware has been considered here, such as Apple Computer with the Mac OS.
These are points that we want to address in the Chapter 5.3.

5.2 Conclusion
In this chapter we will try to answer the research questions mentioned in Chapter 1.3 and dis-
cuss whether we have reached the goal of this research project.
The answers are based on the experimental work, both my empirical study and that of my sys-
tematic group study. Further, the answers described in Chapter 4.2 are based on the discussion
of the results in Chapter 5.1.
There is one main research question and two further research questions, as described in Chapter
1.3.

2https://www.thomas-krenn.com/en/wiki/UEFI_Secure_Boot

48

https://www.thomas-krenn.com/en/wiki/UEFI_Secure_Boot

5.2 Conclusion

Main Research Question 1:
Can a person, unskilled in IT forensics (such as an investigator)
virtualize an image from seized PCs with the required hardware

and software and without professional help?

Nowadays almost all law enforcement agencies in different countries have the same problems.
Forensic IT specialists are completely utilized. There are too many cases with a lot of evidence
objects for far too few forensic IT specialists. One way to fix this problem led to the idea of
employing unskilled personnel for previously defined work. This personnel can be deployed as
quickly as possible even in extreme situations or specific threat situations, such as Terrorism or
hostage taking. In these cases, it is possible for a normal investigator, defined as digital forensic
”unskilled person”, to use this method and the resulting ”Virtual PC” (Chapter 4.2.3) configura-
tion tool to quickly and securely access the data of the compromised PC and provide the initial
results. This thesis has shown that unskilled staff was able to do this working with the provided
environment (in the part ”Main Research Question 1” in Chapter 5.1).

My systematic group study (Chapter 4.2.2) has shown that an extension of the experiment
should be possible. The investigators have demanded that not only a virtualization should be
possible, but also the pure forensic mount of partitions should be provided quickly and easily.
In some situations, experienced investigators get their needed results faster using this method.

Research Question 2:
Can I find a commercial or noncommercial way or a program that
will be able to do the virtualization with a previously defined test

series from PC images?

In this research question, it’s about finding a virtualization software that meets all the require-
ments from the Chapter 1.1, whether it’s commercial or not. The optimal would be a non-
commercial software, then we would reach all our internal goals. Unfortunately, there was no
tool that met all these requirements. The second choice fell on QEMU. Since not all require-
ments could be met here, I used my self-programmed configuration tool ”Virtual PC” (Chapter
2.5.2) to correct this.
Further description and discussion can be found in in the part ”Research Question 2” in Chapter
5.1.

49

Research Question 3:
When developing my own virtualization method, are there any
special features of the hardware to consider when virtualizing

images?

As discussed in part ”research question 3” in Chapter 5.1, there is something special about
the development of my own virtualization methodology that hardware must be aware of when
virtualizing images. Solutions have been found for various functions or hardware. But there
was also hardware for which no solutions were found during this research, such as Apple’s Mac
OS.

5.3 Further Work
Within this research, not all possible topics could be considered. During the preparation, a
Windows-based system was also considered. At least a Linux based system was preferred, but
there are ways of implementing this program on a Windows system.
Encryptions files offers further work.
During my work, I only used images that were not encrypted. Thus, here is potential to expand
the work so that Virtual PC (Chapter 4.2.3) can work with encrypted images or images with
encrypted partitions. Furthermore, password-protected data or operating systems have not been
considered. This is also a point that could be incorporated into the program.
Another improvement is the programming of additional file systems that have not yet been con-
sidered. Like Apple’s Mac OS, for example, which is still ahead of Linux in the popularity
scale (Figure 4.3). This would certainly improve the capabilities of the program ”Virtual PC”
and increase the performance and flexibility of the unskilled person (Chapter 1.2) even further.

5.4 Summary
With the used environment and the self-written program ”Virtual PC” images from Windows
and Linux OS were successfully mounted and virtualized. Even an unskilled person that were
police investigators has been able to work with the program and environment. Additional func-
tions have been programmed, like virtual storage. This was a wich voiced during the experiment
with the unskilled investigator.
The program ”Virtual PC” can be customized and supplemented with additional functions that
open a variety number of possibilities for future work.

50

Bibliography

Preston Miller and Chapin Bryce, 2016. Learning Python for Forensics, english edition Edition.
Packt Publishing, ISBN: 1783285230.

Admin, Top Password Software, Inc, 2018. How to set a disk or volume read-only in windows
10/8/7. Webpage, last checked: 16.12.2018.
URL https://www.top-password.com/blog/set-a-disk-or-volume-
read-only-in-windows/

Alexander Geschonneck, 2014. Computer Forensik, 6th Edition. dpunkt.verlag, ISBN: PDF
978-3-86491-489-8.

Alieda Blandford, 2016. Google, public libraries, and the deep web. Webpage, last checked:
24.07.2018.
URL https://ojs.library.dal.ca/djim/article/view/
2015vol11Blandford

Anton Shilov, 2017. Toshiba announces 14 tb pmr mg07aca hdd: 9 platters, helium-filled, 260
mb/s. Webpage, last checked: 05.08.2018.
URL https://www.anandtech.com/show/12134/toshiba-announces-
14-tb-pmr-mg07aca-hdd-9-platters-heliumfilled-260-mbs

Arne Arnold, 2015. Per notfall-cd einfach die windows-registry bearbeiten. Webpage, last
checked: 11.10.2018.
URL https://www.pcwelt.de/tipps/Per-Notfall-CD-einfach-die-
Windows-Registry-bearbeiten-Registry-9688907.html

Arnold Robbins, October 2005. Unix in a Nutshell, 4th Edition, fourth edition Edition. O’Reilly
Media, Inc., ISBN: 0596100299.

Ben Hitchcock, Nhien-An Le-Khac, Mark Scanlon, 2016. Digital investigation. Elsevier Journal
10, 75–85.

Brian Carrier, 2005. File System Forensic Analysis, edition 01 Edition. Addison Wesley Pro-
fessional, ISBN: 978-0321268174.

Bundesamt für Sicherheit in der Informationstechnik, BSI, 2011. Leitfaden it-forensik. PDF,
last checked: 13.01.2019.
URL https://www.bsi.bund.de/SharedDocs/Downloads/DE/

51

https://www.top-password.com/blog/set-a-disk-or-volume-read-only-in-windows/
https://www.top-password.com/blog/set-a-disk-or-volume-read-only-in-windows/
https://ojs.library.dal.ca/djim/article/view/2015vol11Blandford
https://ojs.library.dal.ca/djim/article/view/2015vol11Blandford
https://www.anandtech.com/show/12134/toshiba-announces-14-tb-pmr-mg07aca-hdd-9-platters-heliumfilled-260-mbs
https://www.anandtech.com/show/12134/toshiba-announces-14-tb-pmr-mg07aca-hdd-9-platters-heliumfilled-260-mbs
https://www.pcwelt.de/tipps/Per-Notfall-CD-einfach-die-Windows-Registry-bearbeiten-Registry-9688907.html
https://www.pcwelt.de/tipps/Per-Notfall-CD-einfach-die-Windows-Registry-bearbeiten-Registry-9688907.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-Sicherheit/Themen/Leitfaden_IT-Forensik.pdf;jsessionid=43B7AC366A216DE24A519AA8FD76A0F1.1_cid341?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-Sicherheit/Themen/Leitfaden_IT-Forensik.pdf;jsessionid=43B7AC366A216DE24A519AA8FD76A0F1.1_cid341?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-Sicherheit/Themen/Leitfaden_IT-Forensik.pdf;jsessionid=43B7AC366A216DE24A519AA8FD76A0F1.1_cid341?__blob=publicationFile&v=2

BSI/Cyber-Sicherheit/Themen/Leitfaden_IT-Forensik.pdf;
jsessionid=43B7AC366A216DE24A519AA8FD76A0F1.1_cid341?__blob=
publicationFile&v=2

Clem, 2018. The linux mint blog. Webpage, last checked: 05.02.2019.
URL https://blog.linuxmint.com/?p=3599

Cory Altheide and Harlan Carvey, 2011. Digital Forensics with Open Source Tools, n/a Edition.
Syngress, Elsevier.

Dan Nanni, N/A. How to check cpu info on linux. Webpage, last checked: 15.04.2019.
URL https://jin-yang.github.io/reference/linux/monitor/check-
cpu-info-linux.pdf

Daniel Baumann and Miklos Szeredi, 2018. Ubuntu manpage repository. Webpage, last
checked: 15.02.2019.
URL http://manpages.ubuntu.com/manpages/trusty/man1/
fusermount.1.html

David Wolski, 2014. Virtualisierung: So arbeitet die technik unter der haube. Webpage, last
checked: 16.08.2018.
URL https://www.pcwelt.de/ratgeber/Virtualisierung__So_
arbeitet_die_Technik_unter_der_Haube-Der_PC_im_PC-8903176.
html

David Wolski, 2015. Die besten virtualisierer für linux im überblick. PDF, last checked:
16.08.2018.
URL https://www.pcwelt.de/ratgeber/Die-besten-Virtualisierer-
fuer-Linux-im-Ueberblick-Linux-Virtualisierer-9580443.html

David Wolski, 2016. Fünf beliebte virtualisierer für linux im vergleich. Webpage, last checked:
15.08.2018.
URL https://www.computerwoche.de/a/fuenf-beliebte-
virtualisierer-fuer-linux-im-vergleich,3218056,2

debian, 2011. Pmount.conf(5). Webpage, last checked: 16.12.2018.
URL https://manpages.debian.org/experimental/pmount/pmount.
conf.5.en.html

Diana Nadeborn, 2018. It-strafrecht, digitale beweismittel. Webpage, last checked: 05.07.2018.
URL http://it-strafrecht.org/zugriff-auf-elektronische-
beweismittel/

die.net, 2018a. grep(1) - linux man page. Webpage, last checked: 12.12.2018.
URL https://linux.die.net/man/1/grep

die.net, 2018b. losetup(8) - linux man page. Webpage, last checked: 11.12.2018.
URL https://linux.die.net/man/8/losetup

die.net, 2018c. pmount(1) - linux man page. Webpage, last checked: 13.12.2018.
URL https://linux.die.net/man/1/pmount

52

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-Sicherheit/Themen/Leitfaden_IT-Forensik.pdf;jsessionid=43B7AC366A216DE24A519AA8FD76A0F1.1_cid341?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-Sicherheit/Themen/Leitfaden_IT-Forensik.pdf;jsessionid=43B7AC366A216DE24A519AA8FD76A0F1.1_cid341?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-Sicherheit/Themen/Leitfaden_IT-Forensik.pdf;jsessionid=43B7AC366A216DE24A519AA8FD76A0F1.1_cid341?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-Sicherheit/Themen/Leitfaden_IT-Forensik.pdf;jsessionid=43B7AC366A216DE24A519AA8FD76A0F1.1_cid341?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-Sicherheit/Themen/Leitfaden_IT-Forensik.pdf;jsessionid=43B7AC366A216DE24A519AA8FD76A0F1.1_cid341?__blob=publicationFile&v=2
https://blog.linuxmint.com/?p=3599
https://jin-yang.github.io/reference/linux/monitor/check-cpu-info-linux.pdf
https://jin-yang.github.io/reference/linux/monitor/check-cpu-info-linux.pdf
http://manpages.ubuntu.com/manpages/trusty/man1/fusermount.1.html
http://manpages.ubuntu.com/manpages/trusty/man1/fusermount.1.html
https://www.pcwelt.de/ratgeber/Virtualisierung__So_arbeitet_die_Technik_unter_der_Haube-Der_PC_im_PC-8903176.html
https://www.pcwelt.de/ratgeber/Virtualisierung__So_arbeitet_die_Technik_unter_der_Haube-Der_PC_im_PC-8903176.html
https://www.pcwelt.de/ratgeber/Virtualisierung__So_arbeitet_die_Technik_unter_der_Haube-Der_PC_im_PC-8903176.html
https://www.pcwelt.de/ratgeber/Die-besten-Virtualisierer-fuer-Linux-im-Ueberblick-Linux-Virtualisierer-9580443.html
https://www.pcwelt.de/ratgeber/Die-besten-Virtualisierer-fuer-Linux-im-Ueberblick-Linux-Virtualisierer-9580443.html
https://www.computerwoche.de/a/fuenf-beliebte-virtualisierer-fuer-linux-im-vergleich,3218056,2
https://www.computerwoche.de/a/fuenf-beliebte-virtualisierer-fuer-linux-im-vergleich,3218056,2
https://manpages.debian.org/experimental/pmount/pmount.conf.5.en.html
https://manpages.debian.org/experimental/pmount/pmount.conf.5.en.html
http://it-strafrecht.org/zugriff-auf-elektronische-beweismittel/
http://it-strafrecht.org/zugriff-auf-elektronische-beweismittel/
https://linux.die.net/man/1/grep
https://linux.die.net/man/8/losetup
https://linux.die.net/man/1/pmount

Dirk Makowski, 2018. Winhistory.de. Webpage, last checked: 05.08.2018.
URL https://www.winhistory.de/index.php

DistroWatch, 2018. Top ten - distributionen. Webpage, last checked: 11.08.2018.
URL https://distrowatch.com/dwres.php?resource=major

Dr. Sabine Vogt, 2017. Das darknet rauschgift, waffen, falschgeld, ausweise das digitale
kaufhaus der kriminellen? Webpage, last checked: 08.07.2018.
URL https://www.kriminalpolizei.de/ausgaben/2017/juni/
detailansicht-juni/artikel/das-darknet.html

Dr. Vincenzo Ciancaglini, Dr. Marco Balduzzi, Robert McArdle, and Martin Rösler, 2015.
Below the surface: Exploring the deep web. Wevpage, last checked: 17.08.2018.
URL https://documents.trendmicro.com/assets/wp/wp_below_the_
surface.pdf

elysium, 3. Januar 2017. Der groe linux distribution-report: Die 10 beliebtesten distributionen
2016. Webpage, last checked: 25.07.2018.
URL https://games4linux.de/der-grosse-linux-distribution-
report-die-10-beliebtesten-distributionen-2016/

F. Kalhammer, 2001. Das mounten von dateisystemen. Webpage, last checked: 01.08.2018.
URL http://www.linux-praxis.de/linux1/filesystem4.html

Falk Gaentzsch and Prof. Norbert Pohlman, 2015. Virtualisierung. Webpage, last checked:
15.07.2018.
URL https://norbert-pohlmann.com/app/uploads/2015/12/
Virtualisierung-Prof-Norbert-Pohlmann.pdf

futurezone, 2018. Grösste ssd der welt vorgestellt. Webpage, last checked: 22.07.2018.
URL https://futurezone.at/produkte/100-terabyte-groesste-ssd-
der-welt-vorgestellt/400008000

Gavin Thomas Garrad and Stepan Maluchev, 15.05.2015. Ourbox, bachelor thesis. Webpage,
last checked: 11.10.2018.
URL https://brage.bibsys.no/xmlui/handle/11250/294994

Graham Williams, 1995-2018. Gnu/linux desktop survival guide. Webpage, last checked:
13.10.2018.
URL https://www.togaware.com/linux/survivor/Standard_Groups.
html

Harlan Carvey, 2009. Windows Forensic Analysis DVD Toolkit 2E, 1st Edition. Syngress, El-
sevier, ISBN: 978-1-59749-422-9.

Heinrich Schwietering, 2018. Ubuntuusers, grundlagen. Webpage, last checked: 10.08.2018.
URL https://wiki.ubuntuusers.de/Partitionierung/Grundlagen/

Horst Dumstorff, November, 2017. Project thesis, forensic data backup of mobile apple phones.
NTNU.

53

https://www.winhistory.de/index.php
https://distrowatch.com/dwres.php?resource=major
https://www.kriminalpolizei.de/ausgaben/2017/juni/detailansicht-juni/artikel/das-darknet.html
https://www.kriminalpolizei.de/ausgaben/2017/juni/detailansicht-juni/artikel/das-darknet.html
https://documents.trendmicro.com/assets/wp/wp_below_the_surface.pdf
https://documents.trendmicro.com/assets/wp/wp_below_the_surface.pdf
https://games4linux.de/der-grosse-linux-distribution-report-die-10-beliebtesten-distributionen-2016/
https://games4linux.de/der-grosse-linux-distribution-report-die-10-beliebtesten-distributionen-2016/
http://www.linux-praxis.de/linux1/filesystem4.html
https://norbert-pohlmann.com/app/uploads/2015/12/Virtualisierung-Prof-Norbert-Pohlmann.pdf
https://norbert-pohlmann.com/app/uploads/2015/12/Virtualisierung-Prof-Norbert-Pohlmann.pdf
https://futurezone.at/produkte/100-terabyte-groesste-ssd-der-welt-vorgestellt/400008000
https://futurezone.at/produkte/100-terabyte-groesste-ssd-der-welt-vorgestellt/400008000
https://brage.bibsys.no/xmlui/handle/11250/294994
https://www.togaware.com/linux/survivor/Standard_Groups.html
https://www.togaware.com/linux/survivor/Standard_Groups.html
https://wiki.ubuntuusers.de/Partitionierung/Grundlagen/

Jack Wallen, 2017. How to work with remote filesystems using sshfs. Webpage, last checked:
24.08.2018.
URL https://www.techrepublic.com/article/how-to-work-with-
remote-filesystems-using-sshfs/

Janez Puhan, 2015. Operating Systems, Embedded Systems, and Real-Time Systems, 1st Edi-
tion. FE Publishing, ISBN: 78-961-243-275-1.

Johannes Plötner and Steffen Wendzel, 2012. Linux, Das umfassende Handbuch, 5th Edition.
Rheinwerk Computing, ISBN: 978-3-8362-1822-1.

Karim Yaghmour and Jon Masters and Gilad Ben-Yossef and Philippe Gerum, 2008. Building
Embedded Linux Systems, second edition Edition. OReilly Media, Inc, ISBN: 978-0-596-
52968-0.

Linux Mint, 2017. Official user guide. PDF, last checked: 04.10.2018.
URL https://linuxmint.com/documentation/user-guide/Cinnamon/
english_18.0.pdf

Marcus Fischer, 2010. Ubuntu GNU/Linux, 7th Edition. Rheinwerk Computing, ISBN: 978-3-
8362-1945-7.

Margaret Rouse, 2015. Computerkriminalitt (cybercrime). Webpage, last checked: 10.10.2018.
URL https://www.searchsecurity.de/definition/
Computerkriminalitaet-Cybercrime

Marjie T. Britz, Ph.D., 2013. Computer Forensics and Cyber Crime, third edition Edition. Pear-
son Education, Inc., ISBN: 978-0-13-267771-4.

Mark L. Mitchell and Alex Samuel and Jeffrey Oldham, 29 Jun 2001. Advanced Linux Pro-
gramming, 1st Edition. CodeSourcery, LLC, ISBN: 0735710430.

Martin Pitt, 2018. Linux man page. Webpage, last checked: 24.07.2018.
URL https://linux.de.net/man/1/pumount

Martin Pitt and Vincent Fourmond, 2018. Linux man page. Webpage, last checked: 24.07.2018.
URL https://linux.de.net/man/1/pmount

Matthew E. Hoskins, 2006. Sshfs: Super easy file access over ssh. Webpage, last checked:
10.09.2018.
URL https://www.linuxjournal.com/article/8904

Matthew Portnoy, 2012. VIRTUALIZATION ESSENTIALS, 1st Edition. John Wiley and Sons,
Inc., ISBN: 978-1-118-17671-9.

Michael Hale Ligh, Andrew Case, Jamie Levy and AAron Walters, 2014. The Art of Memory
Forensics, 1st Edition. John Wiley and Sons, Inc., ISBN: 978-1-118-82509-9.

Michael Kerrisk, 2018. Linux man pages online. Webpage, last checked: 15.10.2018.
URL http://man7.org/linux/man-pages/index.html

54

https://www.techrepublic.com/article/how-to-work-with-remote-filesystems-using-sshfs/
https://www.techrepublic.com/article/how-to-work-with-remote-filesystems-using-sshfs/
https://linuxmint.com/documentation/user-guide/Cinnamon/english_18.0.pdf
https://linuxmint.com/documentation/user-guide/Cinnamon/english_18.0.pdf
https://www.searchsecurity.de/definition/Computerkriminalitaet-Cybercrime
https://www.searchsecurity.de/definition/Computerkriminalitaet-Cybercrime
 https://linux.de.net/man/1/pumount
 https://linux.de.net/man/1/pmount
https://www.linuxjournal.com/article/8904
http://man7.org/linux/man-pages/index.html

Michael Kofler and Ralf Spenneberg, 2012. KVM für die Server- Virtualisierung, 2014th Edi-
tion. ebooks.kofler, ISBN: 978-3-902643-22-3.

Microsoft, N/A. Mount-diskimage. Webpage, last checked: 18.08.2018.
URL https://docs.microsoft.com/en-us/powershell/module/
storage/mount-diskimage?view=win10-ps

Miklos Szeredi, 2018. Ubuntu, trusty (8) mount.fuse.8.gz. Webpage, last checked: 19.08.2018.
URL http://manpages.ubuntu.com/manpages/trusty/man8/mount.
fuse.8.html

Moritz Wanke, 2016. Die grösste sd-karte der welt: Sandisk stellt 1-tbyte-karte vor. Webpage,
last checked: 10.07.2018.
URL https://www.chip.de/news/Die-groesste-SD-Karte-der-Welt-
SanDisk-stellt-1-TByte-Karte-vor_100397250.html

Moy, T., and Tyrkus, M. J. (Eds.), 2016. American law yearbook. Farmington Hills, ISBN:
1784722.

Paul Cobbaut, 02.05.2015. Linux system administration. Webpage, last checked: 10.10.2018.
URL linux-training.be/linuxsys.pdf

PowerQuest Corporation, 2002. Zum verständnis von festplatten. PDF, last checked:
01.07.2018.
URL http://digilib.happy-security.de/files/Grundwissen_-
_Festplatten.pdf

QEMU, 2018. Qemu the fast! processor emulator. Webpage, last checked: 21.12.2018.
URL https://www.qemu.org/

Robert Love, Stephen Figgins, Ellen Siever, Arnold Robbins, 2009. Linux in a Nutshell, 6th
Edition. O’Reilly Media, Inc.

Robert Schanze, 2018. Top 10 linux-distributionen 2018 im vergleich. Webpage, last checked:
09.09.2018.
URL https://www.giga.de/extra/linux/gallery/top-10-linux-
distributionen-2018-im-vergleich-s/

Sebastian Helmer, 2012. Geschichte der datenträger. Webpage, last checked: 23.07.2018.
URL https://www.fmi.uni-jena.de/fmimedia/Fakultaet/Institute+
und+Abteilungen/Abteilung+f%C3%BCr+Didaktik/GDI/20112012/
homepage/Geschichte+der+Datentr%E2%80%9Eger.pdf

SilkeCCM, 2018. Geschichte der festplatte. Webpage, last checked: 04.07.2018.

Sphinx, 2017. Linux mint installation guide. Webpage, last checked: 13.08.2018.
URL https://linuxmint-installation-guide.readthedocs.io/en/
latest/index.html

Stefan Meier, 2016. Digitale forensik in unternehmen. Webpage, last checked: 03.07.2018.
URL https://epub.uni-regensburg.de/35027/1/Dissertation_
Veroeffentlichung_Stefan_Meier_A5_digital.pdf

55

https://docs.microsoft.com/en-us/powershell/module/storage/mount-diskimage?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/storage/mount-diskimage?view=win10-ps
http://manpages.ubuntu.com/manpages/trusty/man8/mount.fuse.8.html
http://manpages.ubuntu.com/manpages/trusty/man8/mount.fuse.8.html
https://www.chip.de/news/Die-groesste-SD-Karte-der-Welt-SanDisk-stellt-1-TByte-Karte-vor_100397250.html
https://www.chip.de/news/Die-groesste-SD-Karte-der-Welt-SanDisk-stellt-1-TByte-Karte-vor_100397250.html
linux-training.be/linuxsys.pdf
http://digilib.happy-security.de/files/Grundwissen_-_Festplatten.pdf
http://digilib.happy-security.de/files/Grundwissen_-_Festplatten.pdf
https://www.qemu.org/
https://www.giga.de/extra/linux/gallery/top-10-linux-distributionen-2018-im-vergleich-s/
https://www.giga.de/extra/linux/gallery/top-10-linux-distributionen-2018-im-vergleich-s/
https://www.fmi.uni-jena.de/fmimedia/Fakultaet/Institute+und+Abteilungen/Abteilung+f%C3%BCr+Didaktik/GDI/20112012/homepage/Geschichte+der+Datentr%E2%80%9Eger.pdf
https://www.fmi.uni-jena.de/fmimedia/Fakultaet/Institute+und+Abteilungen/Abteilung+f%C3%BCr+Didaktik/GDI/20112012/homepage/Geschichte+der+Datentr%E2%80%9Eger.pdf
https://www.fmi.uni-jena.de/fmimedia/Fakultaet/Institute+und+Abteilungen/Abteilung+f%C3%BCr+Didaktik/GDI/20112012/homepage/Geschichte+der+Datentr%E2%80%9Eger.pdf
https://linuxmint-installation-guide.readthedocs.io/en/latest/index.html
https://linuxmint-installation-guide.readthedocs.io/en/latest/index.html
https://epub.uni-regensburg.de/35027/1/Dissertation_Veroeffentlichung_Stefan_Meier_A5_digital.pdf
https://epub.uni-regensburg.de/35027/1/Dissertation_Veroeffentlichung_Stefan_Meier_A5_digital.pdf

Stefan Weil, 2018. Qemu version 3.0.0 user documentation. Webpage, last checked:
06.01.2019.
URL https://qemu.weilnetz.de/doc/qemu-doc.html

Stephen G. Kochan and Patrick H. Wood, 1987. UNIX TEXT PROCESSING, second printing
- 1988 Edition. OReilly and Associates, Inc., ISBN: 0-672-46291-5.

SUSE, 2018. Accessing file systems with fuse. Webpage, last checked: 08.07.2018.
URL https://doc.opensuse.org/documentation/leap/startup/html/
book.opensuse.startup/cha.fuse.html

Sven Schefer, 2011. Ssd - solid state drive. PDF, last checked: 11.07.2018.
URL https://wr.informatik.uni-hamburg.de/_media/teaching/
wintersemester_2010_2011/sds-1011-schefer-ssds-ausarbeitung.
pdf

Thomas Ritzau and Robert Warnke, 23. Mär. 2010. QEMU-KVM and libvirt, n/a Edition. qemu-
buch.de, ISBN: 978-3-8370-0876-0.

Thuy Anh Nguyen, 2015. Die festplatte. Webpage, last checked: 04.07.2018.
URL https://medienwissenschaft.uni-bayreuth.de/dimensionen/
entwuerfe/geschichte/festplatte/geschichte.html

Tuxera, 2017. ntfs-3g third generation read/write ntfs driver. Webpage, last checked:
03.08.2018.
URL http://man7.org/linux/man-pages/man1/gpasswd.1.html

Ubuntu Documentation, 2009. Fuseiso. Webpage, last checked: 1.07.2018.
URL https://help.ubuntu.com/community/FuseIso

WikiSysop, 2017. Kernel virtual machine. Webpage, last checked: 20.12.2018.
URL https://www.linux-kvm.org/page/Main_Page

56

https://qemu.weilnetz.de/doc/qemu-doc.html
https://doc.opensuse.org/documentation/leap/startup/html/book.opensuse.startup/cha.fuse.html
https://doc.opensuse.org/documentation/leap/startup/html/book.opensuse.startup/cha.fuse.html
https://wr.informatik.uni-hamburg.de/_media/teaching/wintersemester_2010_2011/sds-1011-schefer-ssds-ausarbeitung.pdf
https://wr.informatik.uni-hamburg.de/_media/teaching/wintersemester_2010_2011/sds-1011-schefer-ssds-ausarbeitung.pdf
https://wr.informatik.uni-hamburg.de/_media/teaching/wintersemester_2010_2011/sds-1011-schefer-ssds-ausarbeitung.pdf
https://medienwissenschaft.uni-bayreuth.de/dimensionen/entwuerfe/geschichte/festplatte/geschichte.html
https://medienwissenschaft.uni-bayreuth.de/dimensionen/entwuerfe/geschichte/festplatte/geschichte.html
http://man7.org/linux/man-pages/man1/gpasswd.1.html
https://help.ubuntu.com/community/FuseIso
https://www.linux-kvm.org/page/Main_Page

Appendix

A The used OS Linux, the commands, additional configura-
tions and Linux Users and Groups

A.1 Used Linux programs
Here is a list of all the programs that are explicitly needed for this research.
If these programs have not been installed during a standard installation of a Linux distribution,
each program can be subsequently installed.

A.1.1 mkdir

Mkdir is the command to create a directory with an absolute or relative pathname
(Arnold Robbins, October 2005).
(GNU coreutils 8.21 package)

A.1.2 cp

The cp command makes a copy of a file or copies multiple files into a directory
(Arnold Robbins, October 2005).
(GNU coreutils 8.21 package)

A.1.3 rm

The rm command removes files and directories. There is no way to reverse this
process (Arnold Robbins, October 2005).
(GNU coreutils 8.21 package)

A.1.4 lsblk

lsblk lists information about all available or the specified block devices. The com-
mand prints all block devices (except RAM disks) in a tree-like format by default.
(Michael Kerrisk, 2018).
(util-linux package)

57

A.1.5 blkid

The blkid program is the command-line interface. It can determine the type of
content (e.g. filesystem or swap) that a block device holds, and also the attributes
(tokens, NAME=value pairs) from the content metadata (e.g. LABEL or UUID
fields). (Michael Kerrisk, 2018).
(util-linux package)

A.1.6 grep

Grep is a search command. Grep can search for PATTERN in each FILE. A FILE
of - stands for standard input. If no FILE is given, recursive searches examine the
working directory, and nonrecursive searches read standard input. By default, grep
prints the matching lines (die.net, 2018a).

If we use the program in this way with the following parameters, grep MemTotal
/proc/meminfo, the Outputs gives the total memory available to system after re-
served (Mark L. Mitchell and Alex Samuel and Jeffrey Oldham, 29 Jun 2001).

If we use the program in this way with the following parameters, grep -i proces-
sor /proc/cpuinfo, the program cpuinfo outputs only the number of processors (Dan
Nanni, N/A).
(GNU grep 2.16 package)

A.1.7 mktemp

Mktemp can create a temp file oder a directory. By default, mktemp create a file in
the /tmp directory and return its name on standard output.

If mktemp can successfully generate a unique filename, the file (or directory) is
created with file permissions such that it is only readable and writable by its owner
(unless the -u flag is given) and the filename is printed to standard output.
The mktemp utility takes the given filename template, if indicated, and overwrites
a portion of it to create a unique filename. The template may be any filename with
some number of Xs appended to it, for example /tmp/tfile.XXXXXXXXXX. If no tem-
plate is specified a default of tmp.XXXXXXXXXX is used.

If the parameter ”--suffix=”zzz”” is used the file ends with this characters, if ”-d
-suffix = ”zzz”” if used the directory ends with this characters (Arnold Robbins,
October 2005).
(GNU coreutils 8.21 package)

58

A.1.8 pmount

Pmount (”policy mount”) is a wrapper around the standard mount program that
allows normal users to mount removable media without a matching /etc/fstab entry.
It also supports encrypted devices that use dm-crypt and have LUKS metadata. It
will automatically recognize encrypted drives. If a LUKS-enabled cryptsetup is
installed, pmount will use it to decrypt the device first. Before decrypting the pass-
word is automatically queried to then mount the associated unencrypted device.

If you start pmount without arguments, a list of mounted removable disks is printed
(Martin Pitt and Vincent Fourmond, 2018).

A.1.9 pumount

Pumount (”policy umount”) is a wrapper around the standard umount program that
allows normal users to umount removable devices without a matching /etc/fstab en-
try.
It also supports encrypted devices that use dm-crypt and have LUKS metadata. It
will automatically recognize encrypted drives. If a LUKS-capable cryptsetup is in-
stalled, pumount will umount the mapped device instead and call cryptsetup to close
the decrypted device afterwards.

Pumount expects only one argument, the device that should be unmounted. This
will umount device from a directory below /media if policy is met (Martin Pitt and
Vincent Fourmond, 2018).
(pmount package)

A.1.10 xmount

In computer forensics, most images are stored in popular formats such as ”Data
Definition” (dd), ”Advanced Forensic Format” (AFF), ”Expert Witness Format”
(EWF) and ”The Encase image” (E01).

To convert these formats, the Linux tool xmount is used.
Xmount allows you to convert on-the-fly between multiple input and output hard-
disk image types.

This tool creates virtual images in mount points. Xmount can import images into
the common formats ”Data Definition” (raw format) (dd), ”Advanced Forensic For-
mat” (AFF), ”Expert Witness Format” (EWF) and ”The Encase image” (E01) and
can be converted into formats converts, which can then be used by QEMU or other
virtualization solutions. xmount uses the ”file system in user space” (FUSE).
Xmount also supports virtual write access to the output files that is redirected to a
cache file. This makes it possible to boot acquired harddisk images using QEMU,
KVM, VirtualBox, VmWare or alike (Cory Altheide and Harlan Carvey, 2011).

59

(xmount package)

A.1.11 fusermount

Fusermount is a command of the simple interface File system in USErspace (FUSE).
FUSE is for userspace programs to export a virtual filesystem to the Linux kernel.

As normal user you can’t mount anything that the administrator hasn’t somehow
given you permission to mount. There are many ways to escalate privileges through
mounting.
For this reason, only root can call the system call ”mount”.

So fusermount aims to provide a secure method for non privileged users to create
and mount their own filesystem implementations (SUSE, 2018).
(fuse package)

A.1.12 losetup

If you want to mount an image file as a normal device, attach a loop device to a
regular file or block device. To do that use losetup.
After creating a loop device, mount this device to your file system (die.net, 2018b).
(util-linux package)

A.1.13 parted

Parted is a command line tool that allows you to easily manage hard disk partitions.
You can add, delete, shrink and extend disk partitions along with the file systems
located on them.
In this case you can find out a start sector and the size of a partition within an image
(Paul Cobbaut, 02.05.2015).
(parted package)

A.2 Additional configuration for Linux

A.2.1 /etc/pmount.allow

For a smooth operation a configuration settings must still be made. To be able to run
the pmount command smoothly, the file ”/etc/pmount.allow” and the file ”/etc/p-
mount.conf” have to be adapted.

60

In the ”/etc/pmount.allow” all devices must be entered, which a user may mount
with pmount.

e.g .:
/dev/loop[0-9]
/dev/sd[b-z]
/dev/sd[b-z][0-9]

(die.net, 2018c).

A.2.2 /etc/pmount.conf

From a strict point of view, pmount supports various operations that can be consid-
ered unsafe, but on a PC in general are relatively safe or at least acceptable.
All these operations are not allowed by default.
In the ”/etc/pmount.conf” file all these operations have to be explicitly allowed to
the user.

If loop allow is true, then users can mount personal files using loopback devices.
If you want to allow users to mount loopback devices, you should also specify here
a comma-separated list of whitelisted loop devices that the users can use.

e.g .:
loop allow = yes
loop devices = /dev/loop0, /dev/loop1, /dev/loop2

(debian, 2011).

A.2.3 /etc/fuse.conf

FUSE has a number of global options that can be used with all modules. The most
important ones are ”-o allow other” and ”-o allow root”. This allows access to the
mounted file system for other users.

However, for these options to be used, the configuration file ”/etc/fuse.conf” must
be created:

user allow other

(Miklos Szeredi, 2018; Daniel Baumann and Miklos Szeredi, 2018; SUSE, 2018).

A.3 Linux Users and Groups
Users and Groups are, to control access to the system’s files, directories, and peripherals.

61

In addition for this research, users and group affiliation must also be considered.
Linux is a multi-user system in which the users have a group affiliation.
Each user belongs to at least one group, but may also belong to several groups.

The command ”gpasswd -a <user><group>” allows users to be included in specific groups.
This command can only be executed with administrator rights (Michael Kerrisk, 2018).

For this research you have to be in the following groups to ensure a complete function:

A.3.1 Group disk

The disk device nodes are group accessible to disk so that programs that need access
to them will set their group ID to be disk. This group has ”write access” to all the
raw disk devices (/dev/hd* and /dev/sd*), so assigning users to group disk is both
dangerous and a security risk (Graham Williams, 1995-2018).

A.3.2 Group fuse

FUSE is a Linux kernel module that makes it possible to move file system drivers
from kernel mode to user mode. It also allows non-privileged users to ”mount” their
own file systems.
The fuse group lets you limit which users are allowed to use FUSE-based filesys-
tems. This is important because FUSE installs setuid programs, which always carry
security implications. On a highly secured system, access to such programs should
be evaluated and controlled (Matthew E. Hoskins, 2006).

A.3.3 Group kvm

The Kernel Virtual Machine (KVM) is a virtualization technology. KVM is an ex-
tension of the Linux kernel, enabling hardware-accelerated virtualization of guest
operating systems.
KVM is a relatively small kernel module that only works in combination with the
emulation software QEMU.
KVM requires a CPU with hardware virtualization capabilities and turns the QEMU
emulator into a hardware virtualization system.
So the user who rmkdiruns QEMU must be in the KVM group so that QEMU can
perform its performance and function (Michael Kofler and Ralf Spenneberg, 2012).

A.3.4 Missing user group

If a group is not present/created, the administrator can create this group, such as:
for example, the group ”fuse” that does not always exist (Marcus Fischer, 2010).

groupadd <group>

62

A.4 Filesystem in Userspace (FUSE)
The abbreviation FUSE stands for Filesystem in userspace. It is a kernel module. It provides
a virtual file system for unprivileged users. A FUSE file system should not be confused with a
VFS (Virtual File System). VFS systems contain all file systems contrary to FUSE. FUSE file
system is not involved in data storage.

A FUSE file system represents a level of abstraction. A program that uses FUSE can access a
FUSE file system with the normal syscalls (such as read (), write (), close (), or open ()), just
like any other. In the background, however, these accesses are redirected. Other, separate ac-
tions will be carried out, of which the user and the accessing program will not notice (Johannes
Plötner and Steffen Wendzel, 2012).

B Virtual flash drive

! / b i n / bash
#
###
#
s c r i p t t o make a v i r t u a l f l a s h d r i v e
#
Th i s s c r i p t shoud be run as r o o t
#
from H o r s t Dums to r f f
#
#
t o check t h e r e a l s i z e o f t h e image :
$ du −sh ${IMG}
#
t o check t h e v i r t u a l s i z e o f t h e image :
$ du −sh −−a p p a r e n t−s i z e ${IMG}
#
t o copy t h e image f i l e i n r e a l s i z e
$ cp −av −−s p a r s e = a lways image . img aim image . img
#
###

i n p u t image
IMG=” v i r t u a l U S B . img ”

echo −e ”\n −> img name : ” $IMG” c r e a t e d ”

l a b e l o f t h e USB f l a s h d r i v e

63

i f [$1 != ’ ’] ; t h e n
LABEL=$1

e l s e
LABEL=” Vi r tua l USB ” # i f n o t named

f i

echo −e ”\n −> l a b e l : ” $LABEL” c r e a t e d \n ”

c r e a t e image f i l e
(h t t p s : / / www. l i n u x n i x . com / what−you−shou ld−know−
about−l i n u x−dd−command /)
dd i f = / dev / z e r o o f =${IMG} bs =1 c o u n t =0 seek =64G
echo −e ”\n −> img f i l e c r e a t e d ”

m a n i p u l a t i n g p a r t i t i o n t a b l e s
(h t t p s : / / www. gnu . o rg / s o f t w a r e / p a r t e d / manual / p a r t e d . h tml)
p a r t e d −− s c r i p t −−machine ${IMG} mklabe l msdos mkpar t
p r i m a r y n t f s 0% 100%
echo −e ”\n −> p a r t e d done ”

c r e a t e loop d e v i c e
(h t t p s : / / www. s y s t u t o r i a l s . com / docs / l i n u x / man/8− l o s e t u p /)
LOOP=$ (l o s e t u p −−p a r t s c a n −−show −−f i n d ${IMG})
echo −e ”\n −> LOOP v a r c r e a t e d ”

c r e a t e an NTFS f i l e sys tem
(h t t p s : / / l i n u x . d i e . n e t / man / 8 / mkfs . n t f s)
mkfs . n t f s −f −Q −L ${LABEL} ${LOOP} −p1
echo −e ”\n −> NTFS f i l e sys tem c r e a t e d ”

d e l e t e loop d e v i c e
(h t t p s : / / www. s y s t u t o r i a l s . com / docs / l i n u x / man/8− l o s e t u p /)
l o s e t u p −d ${LOOP}
echo −e ”\n −> l oop d e v i c e d e l e t e d ”

64

Virtual PC documentation

API Documentation

May 17, 2019

Contents

Contents 1

1 Module virtual_pc 2
1.1 Functions . 2
1.2 Variables . 2
1.3 Class New_Toplevel . 2

1.3.1 Methods . 2
1.4 Class chooseDeviceDialog . 3

1.4.1 Methods . 3

2 Module virtual_pc_config 5
2.1 Class ConfigDialog . 5

2.1.1 Methods . 5
2.1.2 Class Variables . 5

3 Module virtual_pc_config_dialog_support 6
3.1 Functions . 6
3.2 Variables . 6

4 Module virtual_pc_support 7
4.1 Functions . 7

5 Module virtual_pc_xml 9
5.1 Variables . 9
5.2 Class VitualPC_Config_XML . 9

5.2.1 Methods . 9
5.3 Class VitualPC_XML . 10

5.3.1 Methods . 10

1

C Application ”Virtual PC”

65

Class New_Toplevel Module virtual_pc

1 Module virtual_pc

1.1 Functions

vp_start_gui()
Starting point when module is the main routine.

create_New_Toplevel(root, *args, **kwargs)
Starting point when module is imported by another program.

destroy_New_Toplevel()

1.2 Variables
Name Description

py3 Value: True
w Value: None

1.3 Class New_Toplevel

1.3.1 Methods

__init__(self, top=None)

get_VIRTUAL_METHOD(self)

get_FILE_NAME(self)

get_FILE_DIR(self)

set_TEMP_DIR(self, tempdir)

get_TEMP_DIR(self)

get_USB_IMAGE(self)

get_virtual_USB(self)

get_virtual_USB_drive(self)

set_choosen_drive(self, listelement)

2

66

Class chooseDeviceDialog Module virtual_pc

get_choosen_drive(self)

set_selected_ListElement(self)

call_cmd(self, cmd)

call_cmd_format1(self, cmd, strg=None, replace=None)

call_cmd_format2(self, cmd, strg=None, replace=None)

get_unmounted_drives(self)

set_vitualPCConfigXML(self, vitualPCConfigXML)

get_vitualPCConfigXML(self)

1.4 Class chooseDeviceDialog

tkinter.simpledialog.Dialog

virtual_pc.chooseDeviceDialog

1.4.1 Methods

__init__(self, parent, Liste, Toplevel)

buttonbox(self)

body(self, master)

populate(self)

ok(self, event=None)

apply(self)

get_selected_RB(self)

onFrameConfigure(self, event)
Reset the scroll region to encompass the inner frame

3

67

Class chooseDeviceDialog Module virtual_pc

set_Liste(self, Liste)

get_Liste(self)

4

68

Class ConfigDialog Module virtual_pc_config

2 Module virtual_pc_config

2.1 Class ConfigDialog

tkinter.simpledialog.Dialog

virtual_pc_config.ConfigDialog

2.1.1 Methods

buttonbox(self)

__init__(self, master, gui, state, file=None)

body(self, master)
This class configures and populates the toplevel window. top is the toplevel containing
window.

apply(self)

cancel(self)

ok(self)

writetoxml(self)

readfromxml(self, filename)

c_load_file_evidence(self)

c_load_file_medium(self)

2.1.2 Class Variables

Name Description
NEW Value: "new"
OPEN Value: "open"
SAVE Value: "save"
SAVEAS Value: "saveas"

5

69

Variables Module virtual_pc_config_dialog_support

3 Module virtual_pc_config_dialog_support

3.1 Functions

c_load_file_medium()

3.2 Variables
Name Description

py3 Value: False
__package__ Value: None

6

70

Module virtual_pc_support

4 Module virtual_pc_support

4.1 Functions

set_Tk_var()

get_RB_Method()

append_Storagelist(liste, Liste)

get_Storagelist()

B_Choose_Storagedrive()

set_Evidence_File_in_List()

set_Mediume_File_in_List()

set_List_Element_VM_Medium()

get_Evidencelist()

get_Storagemediumlist()

B_Choose_Evidencelist()

RB_Select_Virtual()

RB_Select_mount()

event_Info()

call_cmd(cmd, a=None, b=None)

mount_storage_device(dd_path=None)

umount_storage_device()

xmount_evidence_image(xcache, xvol, ximage, temp_dir)

unmount_evidence_image()

7

71

Functions Module virtual_pc_support

mount_evidence_device()

start_qemu(parameter, sb_usb, addpara=None)

set_mount_button_ENABLED()

set_mount_button_DISABLED()

mount_virtual_usb()

is_virtual_usb()

unmount_virtual_usb()

virtualize_image(usb_drive)

event_OK()

event_new()

event_open()

event_quit()

event_save()

event_save_as()

init(top, gui, *args, **kwargs)

destroy_window()

8

72

Class VitualPC_Config_XML Module virtual_pc_xml

5 Module virtual_pc_xml

5.1 Variables
Name Description

__package__ Value: None

5.2 Class VitualPC_Config_XML

5.2.1 Methods

__init__(self)

setProject_evidence(self, project_evidence)

setProjectname(self, projectname)

setProjectart(self, projectart)

setProjectdir(self, projectdir)

setEvidencefile(self, evidencefile)

setVm(self, vm)

setVm_parameter(self, vm_parameter)

setVm_add_parameter(self, vm_add_parameter)

setMedium(self, medium)

setMedium_name(self, medium_name)

setMedium_art(self, medium_art)

setMedium_dir(self, medium_dir)

setMedium_file(self, medium_file)

getProject_evidence(self)

9

73

Class VitualPC_XML Module virtual_pc_xml

getProjectname(self)

getProjectart(self)

getProjectdir(self)

getEvidencefile(self)

getVm(self)

getVm_parameter(self)

getVm_add_parameter(self)

getMedium(self)

getMedium_name(self)

getMedium_art(self)

getMedium_dir(self)

getMedium_file(self)

__str__(self)

5.3 Class VitualPC_XML

5.3.1 Methods

writeXML(configfile, filename)

readXML(filename)

10

74

Index
virtual_pc (module), 2–4

virtual_pc.chooseDeviceDialog (class), 3–4
virtual_pc.chooseDeviceDialog.__init__ (method),

3
virtual_pc.chooseDeviceDialog.apply (method),

3
virtual_pc.chooseDeviceDialog.body (method),

3
virtual_pc.chooseDeviceDialog.buttonbox (method),

3
virtual_pc.chooseDeviceDialog.get_Liste (method),

4
virtual_pc.chooseDeviceDialog.get_selected_RB

(method), 3
virtual_pc.chooseDeviceDialog.ok (method), 3
virtual_pc.chooseDeviceDialog.onFrameConfigure

(method), 3
virtual_pc.chooseDeviceDialog.populate (method),

3
virtual_pc.chooseDeviceDialog.set_Liste (method),

3
virtual_pc.create_New_Toplevel (function), 2
virtual_pc.destroy_New_Toplevel (function), 2
virtual_pc.New_Toplevel (class), 2–3

virtual_pc.New_Toplevel.__init__ (method),
2

virtual_pc.New_Toplevel.call_cmd (method),
3

virtual_pc.New_Toplevel.call_cmd_format1 (method),
3

virtual_pc.New_Toplevel.call_cmd_format2 (method),
3

virtual_pc.New_Toplevel.get_choosen_drive (method),
2

virtual_pc.New_Toplevel.get_FILE_DIR (method),
2

virtual_pc.New_Toplevel.get_FILE_NAME (method),
2

virtual_pc.New_Toplevel.get_TEMP_DIR (method),
2

virtual_pc.New_Toplevel.get_unmounted_drives
(method), 3

virtual_pc.New_Toplevel.get_USB_IMAGE (method),
2

virtual_pc.New_Toplevel.get_VIRTUAL_METHOD
(method), 2

virtual_pc.New_Toplevel.get_virtual_USB (method),
2

virtual_pc.New_Toplevel.get_virtual_USB_drive
(method), 2

virtual_pc.New_Toplevel.get_vitualPCConfigXML
(method), 3

virtual_pc.New_Toplevel.set_choosen_drive (method),
2

virtual_pc.New_Toplevel.set_selected_ListElement
(method), 3

virtual_pc.New_Toplevel.set_TEMP_DIR (method),
2

virtual_pc.New_Toplevel.set_vitualPCConfigXML
(method), 3

virtual_pc.vp_start_gui (function), 2
virtual_pc_config (module), 5

virtual_pc_config.ConfigDialog (class), 5
virtual_pc_config.ConfigDialog.__init__ (method),

5
virtual_pc_config.ConfigDialog.apply (method),

5
virtual_pc_config.ConfigDialog.body (method),

5
virtual_pc_config.ConfigDialog.buttonbox (method),

5
virtual_pc_config.ConfigDialog.c_load_file_evidence

(method), 5
virtual_pc_config.ConfigDialog.c_load_file_medium

(method), 5
virtual_pc_config.ConfigDialog.cancel (method),

5
virtual_pc_config.ConfigDialog.ok (method), 5
virtual_pc_config.ConfigDialog.readfromxml (method),

5
virtual_pc_config.ConfigDialog.writetoxml (method),

5
virtual_pc_config_dialog_support (module), 6

virtual_pc_config_dialog_support.c_load_file_medium
(function), 6

virtual_pc_support (module), 7–8
virtual_pc_support.append_Storagelist (function),

7
virtual_pc_support.B_Choose_Evidencelist (func-

tion), 7
virtual_pc_support.B_Choose_Storagedrive (func-

tion), 7
virtual_pc_support.call_cmd (function), 7
virtual_pc_support.destroy_window (function),

8
virtual_pc_support.event_Info (function), 7
virtual_pc_support.event_new (function), 8
virtual_pc_support.event_OK (function), 8
virtual_pc_support.event_open (function), 8
virtual_pc_support.event_quit (function), 8

11

75

INDEX INDEX

virtual_pc_support.event_save (function), 8
virtual_pc_support.event_save_as (function), 8
virtual_pc_support.get_Evidencelist (function),

7
virtual_pc_support.get_RB_Method (function),

7
virtual_pc_support.get_Storagelist (function),

7
virtual_pc_support.get_Storagemediumlist (func-

tion), 7
virtual_pc_support.init (function), 8
virtual_pc_support.is_virtual_usb (function), 8
virtual_pc_support.mount_evidence_device (func-

tion), 7
virtual_pc_support.mount_storage_device (func-

tion), 7
virtual_pc_support.mount_virtual_usb (func-

tion), 8
virtual_pc_support.RB_Select_mount (function),

7
virtual_pc_support.RB_Select_Virtual (function),

7
virtual_pc_support.set_Evidence_File_in_List

(function), 7
virtual_pc_support.set_List_Element_VM_Medium

(function), 7
virtual_pc_support.set_Mediume_File_in_List

(function), 7
virtual_pc_support.set_mount_button_DISABLED

(function), 8
virtual_pc_support.set_mount_button_ENABLED

(function), 8
virtual_pc_support.set_Tk_var (function), 7
virtual_pc_support.start_qemu (function), 8
virtual_pc_support.umount_storage_device (func-

tion), 7
virtual_pc_support.unmount_evidence_image (func-

tion), 7
virtual_pc_support.unmount_virtual_usb (func-

tion), 8
virtual_pc_support.virtualize_image (function),

8
virtual_pc_support.xmount_evidence_image (func-

tion), 7
virtual_pc_xml (module), 9–10

virtual_pc_xml.VitualPC_Config_XML (class),
9–10

virtual_pc_xml.VitualPC_Config_XML.__init__
(method), 9

virtual_pc_xml.VitualPC_Config_XML.__str__
(method), 10

virtual_pc_xml.VitualPC_Config_XML.getEvidencefile
(method), 10

virtual_pc_xml.VitualPC_Config_XML.getMedium
(method), 10

virtual_pc_xml.VitualPC_Config_XML.getMedium_art
(method), 10

virtual_pc_xml.VitualPC_Config_XML.getMedium_dir
(method), 10

virtual_pc_xml.VitualPC_Config_XML.getMedium_file
(method), 10

virtual_pc_xml.VitualPC_Config_XML.getMedium_name
(method), 10

virtual_pc_xml.VitualPC_Config_XML.getProject_evidence
(method), 9

virtual_pc_xml.VitualPC_Config_XML.getProjectart
(method), 10

virtual_pc_xml.VitualPC_Config_XML.getProjectdir
(method), 10

virtual_pc_xml.VitualPC_Config_XML.getProjectname
(method), 9

virtual_pc_xml.VitualPC_Config_XML.getVm
(method), 10

virtual_pc_xml.VitualPC_Config_XML.getVm_add_parameter
(method), 10

virtual_pc_xml.VitualPC_Config_XML.getVm_parameter
(method), 10

virtual_pc_xml.VitualPC_Config_XML.setEvidencefile
(method), 9

virtual_pc_xml.VitualPC_Config_XML.setMedium
(method), 9

virtual_pc_xml.VitualPC_Config_XML.setMedium_art
(method), 9

virtual_pc_xml.VitualPC_Config_XML.setMedium_dir
(method), 9

virtual_pc_xml.VitualPC_Config_XML.setMedium_file
(method), 9

virtual_pc_xml.VitualPC_Config_XML.setMedium_name
(method), 9

virtual_pc_xml.VitualPC_Config_XML.setProject_evidence
(method), 9

virtual_pc_xml.VitualPC_Config_XML.setProjectart
(method), 9

virtual_pc_xml.VitualPC_Config_XML.setProjectdir
(method), 9

virtual_pc_xml.VitualPC_Config_XML.setProjectname
(method), 9

virtual_pc_xml.VitualPC_Config_XML.setVm
(method), 9

virtual_pc_xml.VitualPC_Config_XML.setVm_add_parameter
(method), 9

virtual_pc_xml.VitualPC_Config_XML.setVm_parameter

12

76

INDEX INDEX

(method), 9
virtual_pc_xml.VitualPC_XML (class), 10

virtual_pc_xml.VitualPC_XML.readXML (method),
10

virtual_pc_xml.VitualPC_XML.writeXML (method),
10

13

77

