
P
entesting Exercise M

anagem
ent A

pplication

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

B
ac

he
lo

r’
s

pr
oj

ec
t

Sander Løken Berntsen
Erlend Einmo
Sondre Granerud
Tobias Moe

Pentesting Exercise Management
Application

PEMA

Bachelor’s project in IT-Operations and Information Security
Supervisor: Erik Hjelmås

May 2019

Sander Løken Berntsen
Erlend Einmo
Sondre Granerud
Tobias Moe

Pentesting Exercise Management
Application

PEMA

Bachelor’s project in IT-Operations and Information Security
Supervisor: Erik Hjelmås
May 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Information Security and Communication Technology

Pentesting Exercise Management
Application (PEMA)

Authors
Sander L. Berntsen
Erlend Einmo
Sondre Granerud
Tobias Moe

Bachelor in IT-Operations and Information Security

20 ECTS

Department of Information Security and Communication Technology

Norwegian University of Science and Technology,

20.05.2019

Supervisor Erik Hjelmås

Pentesting Exercise Management Application (PEMA)

Sammendrag av Bacheloroppgaven

Tittel: Pentesting Exercise Management Application (PEMA)

Dato: 20.05.2019

Deltakere: Sander L. Berntsen

Erlend Einmo

Sondre Granerud

Tobias Moe

Veiledere: Erik Hjelmås

Oppdragsgiver: Norwegian Cyber Range, NTNU

Kontaktperson: Basel Katt, basel.katt@ntnu.no, 61135176

Nøkkelord: Norway, English

Antall sider: 83

Antall vedlegg: 9

Tilgjengelighet: Åpen

Sammendrag: Pentesting Exercise Management Application (PEMA) er en
plattform som tillater brukere å planlegge, lage og utføre
labber og oppgaver som omhandler temaer som hacking,
malware-analyse og penetrasjons-testing. For denne bache-
loroppgaven ble vi bedt om å utvikle plattformens grunn-
funksjonalitet, samt tilrettelegge for videre utvikling. PEMA
er bygget ved hjelp av mikrotjenester i docker containere,
disse inkluderer selve nettsiden som er bygget på Word-
Press som kjører på en Apache webserver og databasen som
håndteres av MariaDB.

i

Pentesting Exercise Management Application (PEMA)

Summary of Graduate Project

Title: Pentesting Exercise Management Application (PEMA)

Date: 20.05.2019

Authors: Sander L. Berntsen

Erlend Einmo

Sondre Granerud

Tobias Moe

Supervisor: Erik Hjelmås

Employer: Norwegian Cyber Range, NTNU

Contact Person: Basel Katt, basel.katt@ntnu.no, 61135176

Keywords: Thesis, Latex, Template, IMT

Pages: 83

Attachments: 9

Availability: Open

Abstract: The Pentesting Exercise Management Application (PEMA) is
a platform in which one may coordinate the planning, cre-
ation and execution of labs and tasks on the themes of hack-
ing, malware-analysis and penetration testing. In this bach-
elor thesis, we were tasked with developing the foundation
upon which our employer may continue to expand the func-
tionality of the platform. PEMA is built using docker contain-
ers, these include the site itself using WordPress running on
an Apache web server and the database running MariaDB.

ii

Preface

This bachelor thesis is written at NTNU under the Department of Information Security and
Communication Technology.

We would like to thank:

• Erik Hjelmås for his guidance through the project.
• Danny Lopez and Basel Katt for providing good communication with, and facilitating

the project.
• Eigil Obrestad for helping us understand what Openstack API parameters we needed

in order to make the Openstack integration work
• Øivind Kolloen for helping us choose a fitting framework.

iii

Contents

Preface . iii

Contents . iv

List of Figures . ix

List of Tables . x

Listings . xi

Abbreviations and Other Terminology . xii

1 Introduction . 1

1.1 Norwegian Cyber Range . 1

1.2 Background . 2

1.3 Project Description . 2

1.4 Boundaries . 3

1.5 Project Goals . 3

1.5.1 Learning Objectives . 3

1.5.2 Impact Objectives . 3

1.6 Target Audience . 4

1.6.1 Application Audience . 4

1.6.2 Report Audience . 4

1.7 Academic Background . 5

1.8 Project Organization . 6

1.8.1 Administrative Roles . 6

1.8.2 Functional Roles . 6

1.8.3 Project Rules . 6

1.8.4 Tools . 7

1.9 Software Development Methodology . 8

1.9.1 Schedule . 8

1.10 The Report . 9

1.10.1 Organization . 9

1.10.2 Practical information . 9

2 Requirements . 10

2.1 Functional Requirements . 10

2.1.1 Student functionality . 10

2.1.2 Instructor functionality . 10

2.1.3 Security requirements . 11

2.2 Non-Functional Requirements . 12

2.2.1 Accessibility . 12

iv

Pentesting Exercise Management Application (PEMA)

2.2.2 Availability . 12

2.2.3 Maintainability . 12

2.2.4 Reliability . 12

2.2.5 Scalability . 12

2.2.6 Security . 12

2.2.7 Usability . 12

2.3 Use Case . 13

2.3.1 Use Case-Diagram . 13

2.3.2 Misuse Cases . 16

2.3.3 High-level Use Cases . 16

2.4 Sequence Diagrams . 18

3 Technical Design . 19

3.1 Frameworks . 19

3.1.1 Deciding on server side programming language 19

3.1.2 Deciding on frontend programming language 20

3.2 CMS and LMS . 21

3.2.1 Moodle . 21

3.2.2 WordPress . 21

3.2.3 Conclusion . 23

3.3 Web development . 23

3.3.1 Theme . 23

3.3.2 Page Templates . 24

3.3.3 WPDB Class . 24

3.3.4 Code Practices . 25

3.3.5 Enqueuing Scripts . 25

3.3.6 Plugins . 25

3.3.7 AJAX . 26

3.3.8 Hooks . 27

3.3.9 jQuery . 27

3.3.10 jQuery Plugins . 27

3.4 Database . 28

3.4.1 MySQL . 28

3.4.2 MariaDB . 28

3.4.3 Conclusion . 28

3.5 Webserver . 29

3.5.1 Nginx . 29

3.5.2 Apache . 29

3.5.3 Conclusion . 29

3.6 Choosing an Operating System . 30

3.6.1 Windows . 30

v

Pentesting Exercise Management Application (PEMA)

3.6.2 Linux . 30

3.6.3 Distributions . 30

3.6.4 Conclusion . 30

3.7 Containers or Virtual Machines . 31

3.7.1 Virtual Machines . 31

3.7.2 Containers . 31

3.7.3 Scaling . 32

3.7.4 Conclusion . 32

3.8 PEMA Cooperation . 33

3.8.1 PLED . 33

3.8.2 DSL . 33

4 Development Process . 34

4.1 Development Tools . 34

4.1.1 Coding Environment . 34

4.1.2 Project Management . 34

4.2 Planning for Future Work . 37

5 Implementation . 38

5.1 Setup of test environment . 38

5.1.1 Webserver . 38

5.1.2 Docker . 38

5.2 Installation and configuration . 38

5.2.1 Configuration . 38

5.2.2 The source code . 39

5.2.3 Docker swarm . 39

5.3 Docker implementation . 40

5.4 Web-application . 41

5.4.1 Directory and File Structure . 41

5.4.2 PEMA Roles . 41

5.4.3 PEMA-Lab Hierarchy . 42

5.4.4 The Loop . 44

5.4.5 Page Templates . 44

5.4.6 Custom Admin Pages . 45

5.4.7 Enqueing scripts and styles . 47

5.4.8 Site Navigation . 48

5.4.9 Usage of WPDB class . 48

5.4.10 Custom hooks . 50

5.4.11 jQuery . 50

5.4.12 jQuery Plugin . 51

5.5 Plugins . 52

5.5.1 Openstack Plugin . 52

vi

Pentesting Exercise Management Application (PEMA)

5.5.2 Integration with PLED . 53

6 Security . 55

6.1 Wordpress . 55

6.1.1 Prepare function . 55

6.1.2 Output Encoding . 55

6.1.3 Nonces . 56

6.1.4 Security Plugins . 57

6.1.5 Permissions . 59

6.2 Backend . 62

6.2.1 HTTPS . 62

6.2.2 Docker swarm . 62

7 Deployment . 64

8 Testing and User Feedback . 66

8.1 Purpose . 66

8.2 Testing Scope . 66

8.3 Static Analysis . 66

8.4 Dynamic Testing . 66

8.5 Fuzz Testing . 66

8.6 Code Review . 67

9 Discussion . 68

9.1 Tools . 68

9.1.1 Writing tools . 68

9.1.2 Task Management . 68

9.2 Results . 68

9.2.1 Project Outcome . 68

9.2.2 Unfulfilled Requirements . 68

9.2.3 Alternative Solutions . 69

9.2.4 For Future Implementation . 69

9.2.5 Schedule . 70

9.3 Complications . 70

9.3.1 Static Analysis . 70

9.3.2 Development methodology . 71

9.3.3 HTTPS . 71

9.3.4 Linking to pages in WordPress . 72

9.3.5 jQuery data() . 72

9.3.6 jQuery Plugins . 72

9.3.7 WordPress plugins . 73

9.4 Evaluation . 73

9.4.1 Carrying Out The Project . 73

9.4.2 Group Evaluation . 74

vii

Pentesting Exercise Management Application (PEMA)

10 Conclusion . 76

10.1 Future Work . 76

Bibliography . 78

A Project Agreement . 84

B Group Contract . 88

C Permissions Tables . 91

C.1 Custom Capabilities . 91

C.2 WordPress Standard Capabilities . 91

D Custom WordPress Hooks Table . 92

D.1 Backend actions . 92

D.2 Frontend actions . 93

E OWASP ZAP Report . 94

F Diagrams . 102

F.1 ER-Diagram . 102

F.2 PEMA Database Schema . 105

F.3 Lab Deployment Sequence Diagram . 107

F.4 Task Delivery Sequence Diagram . 111

F.5 Misuse Case: Student - Query Injection . 113

F.6 Misuse Case: Instructor - Query Injection . 114

F.7 Misuse Case: Instructor - Unintentional Misuse . 115

F.8 Misuse Case: Admin - Unintentional Misuse . 116

F.9 Misuse Case: Login . 117

F.10 PEMA Directory and File-Structure . 118

F.11 Gantt scheme - Start . 119

F.12 Gantt scheme - End . 120

G Pre-project . 121

H Meeting Logs . 133

H.1 May meeting logs . 133

H.2 April meeting logs . 138

H.3 March meeting logs . 141

H.4 February meeting logs . 150

H.5 January meeting logs . 160

I Time Tracking Output . 171

viii

List of Figures

1 NCR Stakeholders . 1

2 PEMA Stakeholders . 4

3 Admin use-case diagram. 13

4 Instructor use-case diagram. 14

5 Student use-case diagram. 15

6 Latest WordPress Vulnerabilities. 22

7 Latest WordPress Plugin Vulnerabilites. 22

8 Latest WordPress Plugin Vulnerabilites [1]. 23

9 WordPress Admin-dashboard menus per role . 42

10 PEMA-Object hierarchy. 43

11 WordPress admin-dashboard default sidebar. 46

12 Preview of PEMA-navigation. 48

13 Flatpickr date and time example . 51

14 jQuery-confirm example . 53

15 Example of WordFence sending an email when a user logs in on our test envi-
ronment . 57

16 Example of typing being locked out . 58

17 Visualization of the software relationship. 64

18 View of the master thread in the fuzzing process after 48 days 67

19 Student assistant use-case diagram. 69

20 Appendix: Student query injection misuse case. 113

21 Appendix: Instructor query injection misuse case. 114

22 Appendix: Instructor unintentional misuse case. 115

23 Appendix: Administrator unintentional misuse case. 116

24 Appendix: Login misuse case. 117

25 Appendix: PEMA Directory and File-Structire. 118

26 Appendix: Initial Gantt Schema. 119

27 Appendix: Gantt schema showing actual project timeline. 120

ix

List of Tables

1 Table of Tools . 7

2 Table of custom WordPress permissions/capabilities 91

3 Table of standard WordPress permissions/capabilities used in PEMA 91

4 Appendix: Table of custom WordPress hooks. 92

5 Appendix: Table of custom WordPress hooks. 93

x

Listings

3.1 Vue.js binding objects to HTML elements . 20

3.2 Gathering information about a lab using the $wpdb class. 24

3.3 Enqueueing scripts in WordPress . 25

3.4 Creating objects for jQuery . 26

3.5 Docker scaling command . 32

5.1 Deploying the service into the docker swarm. 38

5.2 Initializing the docker swarm. 39

5.3 "The loop" Searching for and displaying posts. 44

5.4 WordPress page creation example. 44

5.5 Adding menu and sub-menu entry for the admin-dashboard. 45

5.6 Rendering a page after menu-call. 47

5.7 Example of registering all .css files . 47

5.8 Example of enqueing scripts and stylesheets on a specific page 47

5.9 Example of inserting a lab . 49

5.10 Example of using the update function . 49

5.11 Example of creating a custom hook. 50

5.12 Example of using the created custom hook. 50

5.13 JavaScript code example. Using animation to reveal object. 50

5.14 Flatpickr implementation . 52

5.15 Scheduling using WP-Cron . 53

5.16 Example of using the update function . 54

6.1 Exampe of WordPress prepared statement. 55

6.2 Utilizing the wp_localize_script function. 56

6.3 Getting the nonce in jQuery . 56

6.4 Adding a role to WordPress. 59

6.5 Adding a role to WordPress. 59

6.6 Function removing unused default WordPress roles. 60

6.7 Repopulates the default WordPress roles. 60

6.8 Function removing instructors ability to promote to administrator or instructor. 61

9.1 Example of getting data attribute in an select element 72

xi

Abbreviations and Other Terminology

Abbreviations

AJAX Asynchronous JavaScript And XML

API Application Programming Interface

CLI Command-Line Interface

CMS Content Management System

CRUD Create Read Update Delete

CSRF Cross-site Request Forgery

CSS Cascading Style Sheets (Language)

CURL Client URL

GNU GPL GNU’s not Unix General Purpose License

GUI Graphical User Interface

HTML Hypertext Markup Language

JSON JavaScript Object Notation

LAMP Linux, Apache, MySQL/MariaDB, PHP

LMS Learning Management System

MVC Model-View-Controller

MTBF Mean Time Between Failure

NCR Norwegian Cyber Range

OS Operating System

PHP PHP: Hypertext Preprocessor

PoC Proof of Concept

RHEL Red Hat Enterprise Linux

URL Uniform Resource Locator

VM Virtual Machine

WP WordPress

XAMPP XAMPP Apache MariaDB PHP Perl

XML eXtensible Markup Language

xii

Pentesting Exercise Management Application (PEMA)

Terminology

Blue team
Blue team is what one would call a team of security researchers working to
defend systems and improve security.

Cyber Range
Cyber ranges are interactive, simulated representations of an organization’s
local network, system, tools, and applications that are connected to a simu-
lated Internet level environment [2].

Pentest(ing)
A penetration test, colloquially known as a pen test, is an authorized simu-
lated cyberattack on a computer system, performed to evaluate the security
of the system.

Phabricator
Phabricator is a project-sharing platform, in this case hosted by NCR [3].

Proof of Concept
Evidence which demonstrates that a design concept, etc. is feasible [4].

Unix time
Unix time, also known as Unix epoch, is the number of seconds elapsed since
January 1, 1970 UTC/GMT [5].

xiii

1 Introduction

1.1 Norwegian Cyber Range

The Norwegian Cyber Range (NCR) is a training, testing and cyber security
arena under development by a team of researchers at the Institute for In-
formation Security of the Norwegian University of Science and Technology.
Its goal is to address all sectors of society related to Cyber Security. The NCR
strives for better and more realistic environments for education, training, test-
ing and research in the cyber domain. This is to make the blue teams more
qualified in regards to addressing current and future threats. These threats
can be unintended consequences of our technological advances, our connec-
tivity needs and the criminal actions taken by malicious agents in the cyber
field. The NCR as an open arena will help proactively, as well as reactively to
prevent, mitigate and correct many of the issues that our future society will
bring. The stakeholder structure of the NCR can be found in figure 1.

Educators
NTNU

Research
Groups

NTNU SOC

NTNU Norwegian
Cyber Range

Public
Organizations

Students

External
Researchers

Government
Agencies

Private
Organizations

Internal Stakeholders External Stakeholders

Government
Agencies

Figure 1: NCR Stakeholders

1

Pentesting Exercise Management Application (PEMA)

1.2 Background

The NCR sees a clear need for a platform that can create, deploy and man-
age virtual penetration testing scenarios. This need comes from experiences
obtained when trying to conduct the course Incident Response, Ethical Hack-
ing and Forensics(IMT3004) in 2018. During the course it became clear that
there is a need for a central platform that can be used to manage the IT in-
frastructure of the course, provide quick feedback for the students and give
the lecturer an overview over the students’ progress. The NCR wants to have
a bachelor group develop a proof of concept that can address these needs.
The result of this bachelor thesis will lay the foundation for the further devel-
opment of a fully integrated penetration exercise management application.

1.3 Project Description

The Pentesting Exercise Management Application Platform, henceforth called
PEMAP, is an initiative intended to be a modular, scalable and virtualization
agnostic platform that facilitates the deployment of virtual scenarios for cyber
security education for research purposes. This platform consists of a database
with existing vulnerabilities and related software called PLED, a Domain Spe-
cific Language to deploy and manage virtual instances called DSL, and a web
application called PEMA.

The Penetration Exercise Management Application(PEMA) will help edu-
cators set up and manage hacking labs and CTFs and provides students with
tasks and goals that they must complete in order to finish the assigned lab.
The application is to be developed in the context of the course "Ethical Hack-
ing and Penetration Testing" at NTNU and aims to complement the current
infrastructure for managing ethical hacking projects.

An educator can use the application to define Labs and the topology of the
lab. In the lab the educator will also define the goals and tasks the student
must complete as well as steps and corresponding hints for those steps. There
will also be set individual or group difficulty levels in order to match different
levels of competence between the students. Students can use the application
as an assistant tool that explains the lab goal and topology, the tasks that need
to be completed and the steps that need to be performed. Finally, students can
submit solutions and flags for different task. The Educator should be able to
monitor the individual student’s lab progress so that they can better identify
achievement goals students need to accomplish. PEMA should also provide
a set of modules, that can be activated or deactivated by an Educator. These
modules contain various functionalities, enhancing the experience of the labs.
The students will also be able to monitor their own progress in order to give
them a clear overview of the goals they have achieved and the importance of
the remaining uncompleted tasks.

The PEMA application should be easily deployable, handle multiple simul-
taneous users and it should follow best practice when it comes to security
standards.

2

Pentesting Exercise Management Application (PEMA)

1.4 Boundaries

This bachelor thesis is limited to only the web interface that the students and
educators will use and its corresponding IT infrastructure. The thesis does not
include compiling a database of existing vulnerabilities and corresponding
example software. That is the PLED part of the project.

The thesis also does not include the Domain Specific Language that will be
used to deploy the lab environments in the final revision of this project. This
is its own master thesis by Mihkal Dunfjeld.

PEMA will however include a proof of concept for deploying the infras-
tructure through a web portal, and a working concept for querying PLED for
the information it will provide. These features will be implemented as plugins
to showcase how the DSL and PLED will be easily integrated into the PEMA
platform later down the line, when the DSL and PLED are at a stage when
they can be properly implemented.

This means that PEMA will include the web portal for the teaching environ-
ment, e.g., the frontend and backend. The project description specifies that
the web portal should contain a diverse variety of modules which enhance
the functionality of the web portal. However due to the limited time frame it
was decided in accordance with the project leaders that that the group was
not going to devote any attention to the development of the modules that are
not mentioned in the last paragraph.

1.5 Project Goals

1.5.1 Learning Objectives

• Understand the differences in frameworks.
• Coordination between two other theses in a complex application archi-

tecture.
• The use of Kanban in practice.
• Create the starting point for an ongoing project that extends beyond our

timeframe.
• Learn to develop software in a proper environment with actual employ-

ers that have expectations.

1.5.2 Impact Objectives

• Create a webdesign that the employer is satisfied with.
• Create a scaling backend that can be easily deployed.
• Make it easy for other developers to further work on our code base.

3

Pentesting Exercise Management Application (PEMA)

1.6 Target Audience

1.6.1 Application Audience

PEMA is envisioned as a platform that could easily be integrated into existing
cybersecurity curricula of penetration testing and ethical hacking courses in
order to increase the quality of the practical sessions of such courses. Students,
educators and other event-organizers may take interest in this project, as the
goal of the platform is to simplify the execution of said events, an overview of
the project stakeholders can be found in figure 2. By simplifying this process,
we hope that the learning-experience and -payout is improved, by allowing
instructors and students to focus more on what is being taught, and solving
the task at hand.

IMT3004
Lecturer

IMT4116
Lecturer

Educators NTNU PEMA-
Platform

CTF
Participants

Students

External
Researchers

Government
Agencies

Public
Organizations

Private
Organizations

IMT3004
Lecturer

IMT4116
Lecturer

Internal Stakeholders External Stakeholders

Figure 2: PEMA Stakeholders

1.6.2 Report Audience

This bachelor thesis is intended for the NCR in addition to the instructor of
the ethical hacking part of the course IMT3004, and is meant to highlight
the feasibility of the platform as it has been outlined, in addition to whoever
will continue the work which we have begun. The report aims to highlight
the goal of the platform as a whole, including our cooperation with, and the
platforms integration with the domain specific language which will handle the
physical deployment of labs, and the bachelor group PLED who is developing
the technical information-gathering needed to deploy labs.

4

Pentesting Exercise Management Application (PEMA)

1.7 Academic Background

Sondre, Tobias, Sander and Erlend are all third year students of the study
program "Bachelor of IT operations and information security". Throughout
our almost 3 years, we have had subjects such as programming, network-
ing, databases, datamodelling and infrastructure as code. Erlend, Sander and
Tobias have in addition had Software Security, while Sondre had Cloud Tech-
nologies at that same time. In addition, Sander has some background from
participating in bug-bounty programs.

This bachelor thesis will revolve heavily around subjects which we have
had training on, such as programming, infrastructure design and operations,
and information security, however it will also be challenging, as web devel-
opment is an area in which we have lacking experience. In addition, the chal-
lenge of performing the technical design of an entire platform such as this,
following the specifications given to us, is a challenge which we have not yet
been presented with.

5

Pentesting Exercise Management Application (PEMA)

1.8 Project Organization

1.8.1 Administrative Roles

Group leader

Tobias Moe
Tobias Moe will act as the project leader, whose responsibility it is to follow
up on meeting hours, appointments, ensuring tasks are split evenly between
the group members and be the contact person to the project owner.

Secretary (Logging)

Erlend Einmo
Responsible for writing a log of the meetings held with third parties. In the
case that he is unable to fulfill his task, he is responsible for handing the task
over to another group member on a per-meeting basis.

Supervisor

Erik Hjelmås
Erik is an Associate Professor at NTNU, he is our supervisor through this
project, giving us guidance and helping with some decisions along the way.

Employers

Danny Lopez
Danny is a research assistant and he will be our main contact person if we
have any questions regarding the project.

Basel Katt
Basel is an associate professor at NTNU in the Department of Information
Security and Communication Technology.

1.8.2 Functional Roles

Programmers

Erlend Einmo & Tobias Moe The Programmers are responsible for devel-
oping the WordPress front- and back-end and all its functionality, as well as
plugins used with WordPress.

Infrastructure Designer

Sondre Granerud The Infrastructure Designer is responsible for designing the
layout and relationship between the virtual machines and docker solutions,
in addition to implementing HTTPS.

Tester

Sander L. Berntsen The Tester is responsible for testing the PEMA application
and its functionalities. He is also responsible for conducting extensive code
reviews to ensure the quality of the PEMA code.

1.8.3 Project Rules

As a part of the project, we have created a group contract with rules which
every group member has to follow. These can be found in appendix B.

6

Pentesting Exercise Management Application (PEMA)

1.8.4 Tools

The group agrees on what tools we are going to use during the project and
thesis. These decisions are based on previous experience, as we have worked
together as a group several times previously. The tools are chosen to keep
our development consistent, and to allow for effortless collaboration, with
the ability to see what the other members of the group are working on at any
time. A list of all the tools used can be seen in table 1.

Table 1: Table of Tools
Name Type Usage

Overleaf Collaborative LATEXwriting Report writing

Toggl Online tool used to track time Time tracking

Trello Used to visualize Kanban boards Tasklist

Google Drive Host documents Storage

Google Docs Used to write notes Noting

Draw.io Used to create diagrams Diagrams

TeamGantt Used to create gantt-schemas Diagrams/Schemas

The Box Used for sharing documents Sharing

TeamSpeak 3 Voice communication platform Communication

Facebook/Messenger Text communication platform Communication

Discord Voice/text communication platform Communication

Wordpress CMS framework for basic functionality Frontend

Docker Software containerization platform Backend

Openstack/SkyHiGh Cloud platform used to host the backend Backend

The choices of tools are further discussed in chapter 4, subsection 4.1.2.

7

Pentesting Exercise Management Application (PEMA)

1.9 Software Development Methodology

Kanban was chosen as the software development strategy for this project.
Kanban is an open and flexible model that fits how the group members prefer
to work on projects as well as it gives a good overview of task that are upcom-
ing, in progress and completed. With Kanban we can easily change our focus
from one thing to another. Kanban has fewer rules and is more lightweight
than other methodologies, this also makes it more challenging as we need to
be able to handle the lack of rules. However the group has well established
and close communications in place to handle problems as they come up. Kan-
ban also gives a good metric on development progress which makes it easier
to make decisions based on priority and how the project is progressing.

The formula for Little’s Law[6] is commonly expressed as L = λW , where
"L" is the average number of customers, "λ" is the average arrival rate and "W"
is the average time in the system. By redefining the terms as follows we can
use Little’s Law to our benefit:

• L becomes Work In Progress (WIP)
• λ becomes Delivery Rate (DR)
• W becomes Lead Time (LT)

This gives us the formula:

W I P = DR ∗ LT
or

DR=W I P/LT
or

LT =W I P/DR.

While using the Trello boards to visualize our workflow, one can use the rede-
fined formula to estimate how long each board will take to complete by using
the following example.

We have a board with 10 WIP cards on it. We know we can complete 2 cards in a day,
which gives us a DR of 2. By using the formula we can estimate that it will take 5 days to
complete the board.

If one were to increase the amount of WIP cards to 20 then the LT would
increase to 10, meaning it would double the time to complete the board. In
order to cope with the increase in WIP cards then we would need to find a
way to change the DR to 4, and this could prove difficult as it can be hard to
"push" more work onto people.

By using this formula to our benefit we can efficiently plan ahead.

1.9.1 Schedule

The original work plan in the form of a gantt-scheme can be found in ap-
pendix F.11. This schema was created using the online-tool TeamGantt, facil-
itating collaborative work on the schema in the planning stages. Through the
duration of the project PEMAs requirements and description has been altered
by our employer. These changes are discussed in chapter 9.2.5.

8

Pentesting Exercise Management Application (PEMA)

1.10 The Report

In this section the organization of the report is discussed, in addition to some
practical information for the reader.

1.10.1 Organization

1. Introduction - General introduction. Descriptions of employer, project
background and description, boundaries, and audience.

2. Requirements - Functional and non-functional requirements, and use
case exploration.

3. Technical Design - Frameworks, and technology-discussion
4. Development process - How the group has worked.
5. Implementation - How the pieces fit together.
6. Security - Application and backend-security.
7. Deployment - How the platform is deployed.
8. Testing and User Feedback - Testing methodology.
9. Discussion - General discussion of the project-progress.

10. Conclusion - Report summary.

1.10.2 Practical information

This report is written using the online tool Overleaf, which is a platform that
allows people to collaborate on writing documents using LATEX. The report
contains many references to other chapters and figures, these are marked in
blue, and once clicked will navigate the reader to said chapter or figure. In cer-
tain areas there are code examples, these are written with code-highlighting
enabled for whatever language said code is written in.

9

2 Requirements

2.1 Functional Requirements

In this chapter the functional requirements of the PEMA application are de-
scribed. The functional requirements have been divided into the following
three categories: Student Functionality, Instructor Functionality and Security
Requirements.

2.1.1 Student functionality

• View only the topics a student is enrolled in
• See amount of points the student currently has

◦ See changes in points (e.g., the reason why points are increasing/de-
creasing)

• Hints

◦ See cost of hints
◦ Pay for hint (i.e., use hint)

• Lab

◦ See lab metadata (e.g., title, description, start date, etc..)
◦ See the tasks that are in the lab
◦ Reboot machines associated to the lab

• Tasks/Challenges

◦ See time remaining
◦ See which tasks have been successfully submitted
◦ See metadata about task (e.g., name, description, topic, etc..)
◦ Submit an answer to tasks (Based on the specified method in the

task)
◦ View which tasks the student has to perform and the related topic

• User Profile

◦ Every student should have a user profile
◦ Should be able to edit user settings
◦ Should be able to hide most information from other students (e.g.,

full name)

• Should not be able to view sensitive information about instructor or ad-
min

2.1.2 Instructor functionality

• Should be able to add both NTNU and external participants
• Labs

◦ Should be able to View/Edit/Duplicate/Create/Remove labs

10

Pentesting Exercise Management Application (PEMA)

◦ Enable or Disable a created lab
◦ Each lab can consist of multiple tasks
◦ Specify groups that will take part in the lab
◦ Specify start/end date on lab
◦ Specify title/description of lab
◦ Specify total amount of points to earn on lab completion
◦ Manage groups for lab after lab creation

• Topics

◦ Should be able to View/Edit/Create/Remove topics

• Answer methods

◦ Should be able to Create/Remove answer methods

• Groups

◦ Create groups
◦ Add users to already existing groups

• Tasks

◦ Should be able to View/Edit/Duplicate/Create/Remove tasks
◦ Specify text to display for students after task completion
◦ Specify how many points to earn on task
◦ Specify a number of hints for the task
◦ Specify cost of a hint

2.1.3 Security requirements

• All sensitive data being communicated between browser and webserver
shall be protected against disclosure (HTTPS)
• PEMA shall prevent unauthorized access to remote users
• Authentication credentials should be protected against unauthorized ac-

cess
• Instructors should not be able to modify passwords for students
• PEMA should verify the identity of the user before allowing him/her to

update his/her user info
• PEMA should protect itself against malicious input in any of its input

fields which are accessible to students and instructors
• PEMA should protect itself against erroneous input in any of its input

fields which are accessible to instructors by validating entered data
• All authentication attempts should be logged
• Unauthorized access to the answers by the students shall be prevented
• Only instructors shall be able to edit, create, remove

◦ Labs
◦ Tasks
◦ Groups
◦ Users

11

Pentesting Exercise Management Application (PEMA)

2.2 Non-Functional Requirements

2.2.1 Accessibility

The PEMA application shall not intentionally hinder any person with vision
or color impairment from using its features.

2.2.2 Availability

The system shall be available to the users for approximately 98% of a 24-hour
cycle when it is deployed. This means that the applications should have a 98%
availability when there is a lab running or when an educator is preparing a
lab. When the lab is not deployed or when the instructor does not need to
prepare the labs, or when the instructor does not run a CTF, PEMA can be
down. Maintenance and updating of the application shall happen swiftly and
with no more than 30 minutes of service interruption per 24-hour cycle. The
application must lay the grounds for Continuous Delivery of its services.

2.2.3 Maintainability

The application shall follow established coding practices for the chosen tools
and frameworks in order to make takeover and subsequent maintenance pos-
sible with minimal effort. Further expansion of the application must be possi-
ble, and the framework chosen has to allow this without in depth knowledge
of the code developed during this project timeframe.

2.2.4 Reliability

The PEMA application should have a Mean Time Between Failure(MTBF) of
approx 168 hours. This means that there should be at least a week between
system failures.

2.2.5 Scalability

The infrastructure of the application should scale to fit the expected number
of users of the system. The first iteration should handle 55 users.

2.2.6 Security

PEMA handles information about its users, and in the case of students or
participants, their progress on a given task. The security on the platform is
handled on many different levels, each of which serving its own purpose. In
the code, the database is secured through handling all user input, decreas-
ing the likelihood of for example successful SQL-injection. We will further be
discussing our security-implementations in its own chapter.

2.2.7 Usability

PEMA should be usable by the project owners without much need for con-
sulting the documentation. Since this is a proof of concept there is not much
need for high usability.

12

Pentesting Exercise Management Application (PEMA)

2.3 Use Case

2.3.1 Use Case-Diagram

In this section, we will go through the use cases for PEMA. This showcases
how we expect the different user roles will interact with the PEMA system.

Administrator use case diagram

Administrator

<<extend>>

Login

<<include>>

Verify passwordDisplay login
error

Manage
Instructors

(CRUD)

Manage
WordPress

PEMA

Figure 3: Admin use-case diagram.

Figure 3 shows a use case diagram for the administrator role. For the ad-
ministrators, typical administrator actions are expected, like being able to cor-
rect mistakes, general system maintenance and adjusting, and add instructors.
The administrator also has the possibility to do everything the instructors can
do, like creating and managing labs and tasks etc.

13

Pentesting Exercise Management Application (PEMA)

Instructor use case diagram

Instructor

<<include>>

Login

<<extend>>

Display login
error

Verify
credentials

<<include>>

Manage users
(CRUD)

<<include>>
Manage

labs/scenarios
(CRUD)

Manage profile
(RU)

Manage topics
(CRUD)

<<include>>
Manage tasks

(CRUD)

Manage groups
(CRUD)

View stats

<<extend>>

Manage
modules
(CRUD)

<<extend>> Edit nicknames
for students

<<extend>>

Lab template
(CR)

PEMA

Figure 4: Instructor use-case diagram.

Figure 4 shows a use case diagram for the instructor role. The instruc-
tors should be able to manage everything required to make labs available to
students with all the required functionality. This, as well as some limited user-
management to add and manage student users are the actions expected from
instructors. The user can also do what students can do.

14

Pentesting Exercise Management Application (PEMA)

Student use case diagram

Student

<<include>>

<<include>>

Tasks (R)

Topic (R)

<<extend>>

Submit answer
to task

Points (R)

<<extend>>

Hints (R)

<<extend>>
Use hint

<<extend>> Lab progress
(R)Lab (R)

Time remaning
(R)

<<include>>

Login

Profile (RU)

<<extend>>

Display login
error Verify password

<<extend>> Change
Nickname

PEMA

Figure 5: Student use-case diagram.

Figure 5 shows the use case diagram for the student role. Student actions
include accessing the student-area of the platform, viewing labs and all their
contents, as well as being able to submit answers to the tasks of the labs.

15

Pentesting Exercise Management Application (PEMA)

2.3.2 Misuse Cases

There are misuse cases created for the PEMA platform as well. The misuse
cases show potential misuse of the platform, and some mitigations put in
place to help combat these. These can be found in appendix F, figures 20 to
24.

2.3.3 High-level Use Cases

Use case: Users should be able to login
Actor: Instructor, Admin, and Student
Goal: Authenticate users before accessing the web page
Description: Every user should be authenticated before accessing any web
page. This means that they should not be able to view the web page while
they’re not authenticated.

Use case: CRUD Lab
Actors: Instructor, Admin
Goal: Should be able to CRUD a Lab
Description: Every Lab should be created, updated and deleted. They should
also be able to have an overview of all the labs currently deployed.

Use case: CRUD Task
Actors: Instructor, Admin
Goal: Should be able to CRUD a Task
Description: Every Task should be created, updated and deleted. They should
also be able to have an overview of all the tasks currently deployed.

Use case: CRUD Topic
Actors: Instructor, Admin
Goal: Should be able to CRUD a Topic
Description: Every Topic should be created, updated, and deleted. They should
also be able to have an overview of all topics.

Use case: CRUD Groups
Actors: Instructor, Admin
Goal: Should be able to CRUD a group
Description: Every group should be created, updated, and deleted.

Use case: Create Hints
Actors: Instructor, Admin
Goal: Should be able to CRUD hints for a specific task
Description: Every task could have multiple hints as specified by the actor.
Every hint should have a cost value, and a student should be deducted in
points when using a hint.

16

Pentesting Exercise Management Application (PEMA)

Use case: CRUD Profile
Actors: Instructor, Admin, and Student
Goal: Should be able to CRUD their own profile
Description: Every user should have a user profile where they can update
specific information about themselves.

Use case: CRUD Users
Actors: Instructor, Admin
Goal: Should be able to CRUD all the users on the website
Description: A student can be removed from the site at any point by the
actors. The actors should also be able to update specific information from a
student. Some limitations is that an Instructor cannot remove another instruc-
tor or an admin from the website.

Use case: CRUD Answer Methods
Actors: Instructor, Admin
Goal: Should be able to CRUD an answer method
Description: An answer method is used on task template creation, meaning
the actor should be able to create, updated and delete an answer method,
while at the same time view all the different answer methods.

Use case: CRUD Task Template
Actors: Instructor, Admin
Goal: Should be able to CRUD a task template
Description: The actors should be able to create, update, and delete every
task template. There should also be an overview of every task template.

Use case: HTTPS
Actors: System
Goal: Secure the connection between the server and the browser
Description: PEMA should use HTTPS for all communication so that the web-
server and browser is protected against disclosure.

Use case: Authentication credentials
Actors: System
Goal: Authentication credentials should be protected against disclosure
Description: Passwords and Usernames should be protected against disclo-
sure so that no unauthorized actor can gain access to the site.

Use case: Submit hash
Actors: Student
Goal: Should be able to submit a hash
Description: Every group should be able to submit a hash for a task that re-
quires a hash as the answer type.

17

Pentesting Exercise Management Application (PEMA)

2.4 Sequence Diagrams

The sequence diagram for Lab Deployment is depicted in appendix F.3. This
diagram shows the steps an instructor would have take in order to fully create
and deploy a lab.

A sequence diagram for task delivery can be found in appendix F.4. This
diagram shows the process of a user answering or trying to answer a task. It
shows how a hash is checked for validity, then checked towards the students
group. Lastly, the hash can also be checked against other groups.

18

3 Technical Design

3.1 Frameworks

There are a lot of options to choose from as the project description does
not specify any framework to develop from. This "list" of options needs to
be narrowed down in order to find the framework that fits us. Model-View-
Controller is a widely known architectural pattern, which is simple to use and
easy to understand. This is a good option for PEMA as all group members are
somewhat familiar with it.

One of, if not the most, important part is choosing a programming lan-
guage to write in. There exist a lot of different programming languages for
backend, and there are always new languages that appear with new features,
libraries and frameworks. For the backend there are only two options that are
interesting to us, PHP and Python. This is because Python is one of the easiest
languages to learn [7], and PHP is a language all members are experienced
with. For the frontend we decided to look into HTML and JavaScript due to
their wide use and our familiarity with the programming languages

The next sections will discuss more in detail about the different options
regarding backend and frontend.

3.1.1 Deciding on server side programming language

PHP

The biggest benefit to PHP is that it is widely used and all group members
have some experience coding in it, this is also beneficial for any future devel-
opment. It has a large community and there are a lot of existing solutions out
there, although, one must be careful because a lot of the solutions could be
outdated. It was a good idea to keep in mind that this project will most likely
be passed down to others at a later stage, with this in consideration PHP is a
good choice as it is a widely known language.

Python

Python has gained popularity in recent years, making it a increasingly viable
option. One of python’s biggest strengths is its ease to read and ease to pick
up and learn. In 2014, python became the number one introductory teaching
language at universities in the U.S [8]. There are also a lot of different libraries
which one can easily install, and python comes with a good community to
offer help if you should stumble upon any trouble. The biggest framework for
web development with Python is Django. Django uses the core concepts of
the MVC pattern, and it is fast and simple to use [9]. It also has one of the
best out-of-the-box security features, including:

• Clickjacking

19

Pentesting Exercise Management Application (PEMA)

• Cross-site scripting
• SQL injection

Conclusion

The conclusion is that PHP was a better option for the reason that our experi-
ence with PHP is greater than with Python. PHP also has a good community,
which makes it easy to find solutions to various problems.

3.1.2 Deciding on frontend programming language

Vue.js is a JavaScript framework with various tools for building easy and good
looking user interfaces. It is very small, the size of it is about 18-21KB [10].
It is relatively easy to understand and it can easily be added to a variety of
different backends such as Django, Laravel, Wordpress, etc.. [11]. One simple
"hello world" example of how vue.js works:

1 <div id="app">
2 <h1>{{ message }}</h1>
3 </div>
4
5 <script >
6 var myObject = new Vue({
7 el: ’#app ’,
8 data: {message: ’Hello Vue!’}
9 })

10 </script >
Listing 3.1: Vue.js binding objects to HTML elements

The example shown in listing 3.1 shows how vue.js binds objects to HTML
elements.

Conclusion

The other option is using regular HTML and JavaScript, which is a better
option for us since learning a new framework could take a lot of time. There
is also a larger community around regular HTML and JavaScript, meaning it
would be easier to find solutions to already solved problems.

20

Pentesting Exercise Management Application (PEMA)

3.2 CMS and LMS

Content Management Systems and Learning Management Systems are good
alternate approaches to developing a web-application as one does not have
to start from scratch. The difference between LMS and CMS is that a CMS is
a more passive application, which can be used as a standard website, while
an LMS is more active approach, where users can be more interactive with
the system. The biggest drawback of using a CMS or LMS is that one must
learn how to use it which, depending on the CMS or LMS, could take a lot
of time. The next subsections discusses the benefits and drawbacks of using
Wordpress (CMS) or Moodle (LMS).

3.2.1 Moodle

Moodle is a free open-source Learning Management System, which is written
in PHP. It is designed to provide administrators, educators and learners with
a single secure, integrated and robust system to create personalized learning
environments [12]. Moodle has, at the moment of writing this, over 100 000
registered sites, and over 150 million users [13]. It is also very well docu-
mented, and it has an active community where one can get help almost im-
mediately. One of the drawbacks of Moodle, is that it seems like it is too big
and too complicated for the functional requirements. PEMA does not need an
entire learning platform where one could have multiple courses. PEMA needs
something simple for between 50-100 students, where most of the interactive
part will be submitting tasks and restarting virtual machines.

3.2.2 WordPress

WordPress is a widely known and free open-source Content Management Sys-
tem written in PHP. It is designed as an easy "click-and-drag" platform, where
non-programmers could just click and drag the content they want to make
the website look the way they want. WordPress is usually divided into three
parts where all of them serve different purposes, Core, Themes and Plugins.
The Core is WordPress itself; it comes with a ton of predefined functions and
classes which are easy to use. Themes are the general layout of a page, if the
Core is the cogs and wheels of the page, then the Theme is a layout of your
page where you can interact with the "cogs and gears". There are plenty of
both free and paid Themes on WordPress [14]. Plugins improves your website
by enhancing the usability of your Theme. The best thing about WordPress,
in regard to the functional requirements, is that it’s really simple to remove
and add plugins, i.e., easy to create a modular website where an instructor
can remove/edit/add modules. There are also a lot of existing plugins which
could prove useful to the website, especially in regards to security [15].

21

Pentesting Exercise Management Application (PEMA)

Figure 6: Latest WordPress Vulnerabilities.

Figure 7: Latest WordPress Plugin Vulnerabilites.

There are about 13900+ WordPress vulnerabilities in the WPScan Vulner-
ability Database [16]. The WPScan Vulnerability Database is a database that
contains vulnerabilities for WordPress, both patched and unpatched vulnera-
bilities.

The latest WordPress vulnerabilities at the time of writing affecting the core
can be seen in figure 6. There are only two incidents so far in 2019 that affects
the core. Meanwhile, figure 7 shows there were seven plugin vulnerability
incidents in the last month.

Almost all the recent WordPress vulnerabilities affects specific plugins or
themes, it is very rare that vulnerabilities are for the core itself.

In 2016 a blog post on WordFence, a highly regarded security plugin for
WordPress, talked about how WordPress sites were compromised [1].

Figure 8 shows that over 50% of sites were compromised because of a
plugin they used.

One of the drawbacks with WordPress is that the Core is regularly updated,
which means in order to prevent any vulnerabilities from appearing the plu-
gins and themes would have to be regularly maintained.

22

Pentesting Exercise Management Application (PEMA)

Figure 8: Latest WordPress Plugin Vulnerabilites [1].

3.2.3 Conclusion

Both WordPress and Moodle are similar, they both have a large community
and good documentation. They both also have several plugins which could
help satisfy the functional requirements. However, WordPress was a better
option as Moodle would become too large and complex for the functional
requirements. PEMA does not need a full blown site with tons of different
courses, it only needs a simple site where an instructor can create labs for
students. WordPress is just as good as Moodle, and most security vulnerabil-
ities can be avoided by carefully choosing what plugins to use.

3.3 Web development

This section does a deep dive into most of the functionalities that WordPress
offers.

3.3.1 Theme

WordPress Themes are what makes your WordPress site yours. The theme is
the content and look of the site. These are either found pre-made as complete
sites with loads of functionality, or templates that can be further built upon.

A pre-made WordPress theme would be a quick way to have a potential
baseline. There are some difficulties with this approach. First, finding a theme
that suits the functional requirements. There are some LMS themes that could
work, as the PEMA front-end will not be much different from a standard LMS.
For example the Education LMS theme [17], which is a clean LMS targeted
at learning institutions, could be an alternative.

Using a pre-made theme is not just plug-and-play for this implementation.
PEMA needs several features that are missing from most LMS themes, mean-

23

Pentesting Exercise Management Application (PEMA)

ing that there is a need to learn how the theme is built to implement features
to meet the functional requirements. Furthermore, there are some support
and security concerns with a theme developed by someone else. The devel-
oper of the theme can stop supporting it, potentially leaving it unsupported
or vulnerable.

On the other hand, there is only the need to code plugins for the theme,
which potentially can save time. Only developing plugins gives a very natural
segmented development process.

Conclusion

For PEMA it fitted best to develop a theme from scratch. Not having control
over the theme, and the potential for easier expansion and maintenance on
the platform were prioritized, even if it takes longer.

3.3.2 Page Templates

A page template is a specific type of file that can be used on specific or mul-
tiple pages. They are primarily used to change the look and feel of a page or
multiple pages. They could be created to target a specific page or multiple
pages based on the name of the page template. If there is a need to create
a page template for a page that will contain information about the devel-
opers of PEMA, the page template can be called page-developers.php. If
there is a need to have a page template that would be used multiple times,
we would just call it page.php. The reason page-developers.php would
only be used in specific instances is because of how WordPress uses what is
called a Template Hierarchy.

Simply put, WordPress searches down through the template hierarchy until
it finds a matching template file. WordPress uses multiple different template
hierarchies, there are 6 different page types, Archive Page, Singular Page, Site
Front Page, Blog Posts Index Page, Error 404 Page, and Search Result Page
[18].

3.3.3 WPDB Class

In the core of WordPress a class called wpdb is defined, which contains a
set of functions that are used to interact with the database [19]. It’s primary
usage is to provide and interface with the WordPress database, however, it
can also be used to communicate with any other appropriate database. The
source code of the class is based on the ezSQL [20] class which is written and
maintained by Justin Vincent. The limitations of the wpdb class is that it can
only interact with one database at a time. When interacting with the wpdb
class the global object variable called $wpdb is used. For it to be used, there is
a need to declare the object as a global variable, an example of this is depicted
below, in listing 3.2.

1 global $wpdb;
2 $results = $wpdb ->get_row (" SELECT * FROM

pema_lab WHERE labID = 1");
Listing 3.2: Gathering information about a lab using the $wpdb class.

24

Pentesting Exercise Management Application (PEMA)

The example shown in listing 3.2 gathers all information about a lab with
the labID of "1".

3.3.4 Code Practices

In order to create good readable code, PEMA follows the WordPress Coding
Standards [21]. WordPress coding standards are divided into four different
parts, PHP Coding Standards, HTML Coding Standards, CSS Coding Stan-
dards, and JavaScript Coding Standards. The coding standards are a set of
guidelines that recommends practices, methods and programming style for
developers of WordPress.

3.3.5 Enqueuing Scripts

Enqueuing scripts is a way to insert a meta link to your script. WordPress
specifies that one should never hardcode such links in the headers [22].
Enqueuing scripts are enqueued with the wp_enqueue_script() function.
The function takes at least one parameter, the name of the script, which is
a unique name that a developer set [23]. However, before using this func-
tion one usually use the wp_register_script(), which takes at least two
paramters, a unique name of the script and the path to the script [24].
wp_register_script() is a safe way of registering scripts before enqueu-
ing them with wp_enqueue_script(). Both functions have a third optional
parameter, which is used to set any dependencies for the function.

1 wp_enqueue_script(’ajax -script ’,
2 plugins_url(’/js/myjquery.js’, __FILE__),
3 array(’jquery ’)
4);

Listing 3.3: Enqueueing scripts in WordPress

The listing above, 3.3, shows an example of how a script is enqueued in
WordPress, firstly a unique name for the script is specified. Then the URL of
where to find the script is specified and lastly the array of dependencies for
the script are specified. The plugins_url() function just gets the directory
of the plugin you are in, for getting the theme directory you would either use
template_directory() or stylesheet_directory().

3.3.6 Plugins

WordPress Plugins are pieces of software that allow you to easily modify, cus-
tomize and add new functionality to a WP site. They are a way to extend the
features and functions available in a WP theme, by simply adding the plug-
ins that are needed. Using plugins instead of implementing everything into
a theme or even the WP core having more features is to avoid bloat, to keep
WP lightweight, and without many features you do not need for your theme.
WP has an official plugin repository with over 55,000 plugins! [25] There is a
saying in the WordPress community, "There’s a plugin for that" [26], implying
that if there is a feature you want or need, there is a good chance there is
a plugin already made for it. Having all these pre-made plugins allow users

25

Pentesting Exercise Management Application (PEMA)

with limited knowledge of web-development to implement the functionality
they need for their site without knowing a single line of code.

Adding plugins is the best practice when it comes to implementing future
modules into PEMA. This way the required modularity is easily managed, as
the different modules can be enabled and disabled as needed.

This is mostly based on the same decisions as with not using a pre-made
theme. The lack of control over the development of the plugin and how secure
the plugin is overall.

There is a possibility to use third-party plugins for PEMA later down the
line, but the plugin will need to be reviewed first. For example, there are a
plethora of forum plugins, several of which are used by thousands and even
millions of users [27].

An example of a plugin that is created for PEMA is the PLED API integra-
tion. This is made as a separate plugin, where when enabled the option to
add a vulnerable application to a task template appears on the "Create Task
Template" page, with the query from the PLED database ready to be filtered.

Plugins are integrated into WP sites through the WordPress Plugin API,
using hooks. There are two different types of hooks, Actions and Filters.

The PLED-API plugin is integrated using a custom hook of the action type,
which calls the plugin code.

3.3.7 AJAX

AJAX is used to request specific information from the server and display it
to the end-user without refreshing the page, greatly improving the user ex-
perience. The traditional data exchange format used is XML, however many
people prefer JSON because it has an easier structure to interface with. Word-
Press uses AJAX a little differently than normal, the sequence of events usually
goes as follows, firstly a page event initiates a JavaScript or jQuery function.
The function gathers some data from the page and then sends it via http to
the server. Afterwards, the server receives the request and does something
with the data. Lastly, the jQuery or JavaScript function that sent the initial
Ajax request receives the server response.

All Ajax requests sent through jQuery functions needs to be sent to the "wp-
admin/admin-ajax.php" file. Since the URL to the file needs to come from PHP,
as jQuery cannot determine the value on its own and it is not a good practice
to hardcode the URL in jQuery, PEMA would need a way for jQuery to always
grab the URL from PHP. This can be done with the wp_localize_script()
function which, with the right parameters, creates global objects that the
jQuery scripts can use.

1 wp_localize_script(’ajax -script ’, ’my_ajax_obj ’
, array(

2 ’ajax_url ’ => admin_url(’admin -ajax.php’),
3));

Listing 3.4: Creating objects for jQuery

26

Pentesting Exercise Management Application (PEMA)

In the example above, listing 3.4, an object called "ajax_url" is created
which gets the URL to the "wp-admin/admin-ajax.php" file. The object can
then be used in jQuery by calling it like this: my_ajax_obj.ajax_url. One
can also create nonces, a number used once, with the localize script function.
This is further discussed in chapter 6 subsection 6.1.3.

A data tag that Ajax needs is the action argument, which is used with an
action hook to tell WordPress what function to use on the server side. There
are two different action hooks that Ajax uses with WordPress,
add_action(’wp_ajax_my_function’,’my_ajax_handler’)
which allows logged in users to utilize the Ajax exchange and
add_action(’wp_ajax_nopriv_my_function’,’my_ajax_handler’)
which allows users who are not logged in to utilize the Ajax exchange.

3.3.8 Hooks

Hooks are functions that allows your plugins or themes to ’hook into’ the
WordPress core at specific times. There are two different hooks, actions and
filters. Filter hooks are used to modify output when it is sent to the front-
or backend. They can be added with the add_filter() function [28]. Ac-
tion hooks are used at more specific times, such as when a post or page is
created or when a theme is activated. The action hooks are called with the
add_action() function. It is also important to note that one can also create
custom hooks by calling either do_action() or do_filter() depending
on what hook you want. Creating custom hooks are important for the PEMA
web-application as it allows plugins to ’hook into’ our theme.

3.3.9 jQuery

jQuery is a lightweight open-source JavaScript library. It contains many fea-
tures with cross-browser capability, making things like document traversal,
event handling and animations simple and easy to implement. jQuery is a
natural choice for any WordPress developer, as it is included with WP, as well
as being one of the most commonly used libraries [29]. Using a library with
many other users means there is an abundance of support from a large online
community.

The main jQuery use in PEMA is as part of database communication. For
every page where an entry is created, updated or removed from the database,
jQuery gathers input from the page, checks that all requirements are met, and
sends it to Ajax.

3.3.10 jQuery Plugins

According to jQuery’s own website, a plugin is a collection of elements. Much
like the jQuery core methods can be considered a plugin. [30] In other words,
it is much like WordPress plugins. They add functions that extend the func-
tionality of the site.

PEMA uses jQuery in a few different ways. Most of the jQuery plugins used
in PEMA are for convenience and well-made solutions. jQuery plugins offer a
quick way to solve a problem in an elegant manner, that would take days to

27

Pentesting Exercise Management Application (PEMA)

create manually.
Just like with any other third-party plugins, there are some concerns. Be-

fore using plugins in PEMA, they needed to be reviewed, much like the Word-
Press plugins.

3.4 Database

The choice of database is restricted mainly by the choice of content manage-
ment system. WordPress natively only supports MySQL and MariaDB, how-
ever it is possible to use plugins to alter this behavior, and in turn support for
example PostgreSQL or even other kinds of databases such as MongoDB. One
of the requirements going into this project was to make the system as simple
as possible by actively using standard systems and procedures. This will in
turn make the web portal easy to pick up for those who will further develop
and maintain it. With this in mind, our two real choices are then MySQL and
MariaDB. This section discusses the reasoning when making this choice.

3.4.1 MySQL

MySQL is an implementation of a relational database and was until it was pur-
chased by oracle a project licensed under the GNU GPL. After its integration
into the oracle ecosystem, MySQL was split into two branches, the contin-
ued open source MySQL, and an enterprise version. The enterprise version
includes extra utilities and support; however this is not relevant to the web
portal, and as such does not support such a purchase. MySQL in general is a
database with great performance, and which scales well. The support system
around the open source version consists solely of forum posts, documentation
and general user to user support.

3.4.2 MariaDB

MariaDB is an open source fork of the open source MySQL and is founded and
maintained by much of MySQL’s original team from before it was bought by
oracle. Seeing as MariaDB is a fork of MySQL, it is also fully compatible with
the database- and configuration-files made by a MySQL database and vice
versa. As an example, this makes migration between the two in our infras-
tructure as simple as changing the package name from "mysql" to "mariadb".
In addition to being fully compatible with MySQL, MariaDB provides bet-
ter performance, and has built-in support for Galera, a clustering technology
which would further increase performance.

3.4.3 Conclusion

When making the choice between MariaDB and MySQL, the decision was
mainly based on our considerations about licensing and performance, seeing
as these two technologies stem from the same root. The open nature, the
better performance in addition to the potential for clustering was what made
us choose MariaDB.

28

Pentesting Exercise Management Application (PEMA)

3.5 Webserver

When one chooses to develop a website using WordPress as the content man-
agement system, one would also need a webserver which can serve the site.
In their documentation [31], WordPress recommends using either nginx or
Apache, as in their view, these are the most feature rich and robust, however
they also note any web server which supports PHP and MySQL will work.

3.5.1 Nginx

Nginx is a webserver, reverse proxy, load balancer, mail proxy and cache all-
in-one. It is a lightweight webserver which works by spawning worker pro-
cesses to handle incoming requests and has master processes which orches-
trates this functionality. This master/worker functionality also implements
a simple way of handling the updating of nginx itself, where nginx spawns
a new master-process with the new functionality enabled, and then kills the
old master when its workers are done. This functionality provides a site which
can theoretically have an uptime of 100%. Nginx, like MySQL, provides both
an open source web server, and a licensing agreement called nginx plus. In
our project, nginx plus is not considered, as the extra functionality is deemed
unneeded, and usage of open source software has been a wish set forth by
our employers.

3.5.2 Apache

Apache is the most widely used web server, however recently it has been
passed in one category, namely the market share of all sites [32]. It is an open
source project with no paid options, making Apache totally open source, as
opposed to nginx. The nature of Apache being open source also means there
is no income related to the server, and the developers are dependent on dona-
tions from its users. As such, the official support is limited to documentation
[33], and informally through forums, chat, and other means of user-to-user
support. Restarting apache in the event of an update is a slow process, as the
whole server needs to be restarted and rebuild its in-memory configuration,
taking some time. Apache’s recommended method of doing this is to do a
graceful restart, which tells all masters to stop recieving new requests, and
terminate when done. In the meantime, the engine recompiles itself, starting
new master processes which will resume operation. If the configuration fails
for any reason, the new process will not start, and will lead to the website
going down, as there are no workers to handle requests.

3.5.3 Conclusion

When taking these points into account, nginx seems like a good choice, espe-
cially considering its high performance in high-throughput scenarios, which
is one of the wishes for this platform to become. However, using a properly
open-source project like apache would be a boon, seeing as open source is
a wish from our employer. All these considerations are however thrown out
the window when we look at what docker images are available for the tech-
nologies we have discussed in this chapter. WordPress provides their own im-

29

Pentesting Exercise Management Application (PEMA)

ages with ready-to-go WordPress installations, and these are solely built on
Apache. It would not be impossible to install WordPress into an nginx-image,
in fact, there are already community-made images which does this for us. The
decision to use the official WordPress-Apache image was finally made because
we deem the decreased complexity and increased reliability through officially
supported images more important than using nginx.

3.6 Choosing an Operating System

As we will discuss in the next section, our choice landed on using containers
for this service. This decision somewhat affects our decision on what operating
system we would like to use for our deployment of the system, however it does
not entirely dictate our choices here.

3.6.1 Windows

Windows is by far the most prominent OS on consumer desktops and laptops,
consuming somewhere in the neighborhood of 70-87% of the market [34]
[35]. On the web-server side, according to W3Techs, windows accounts for
about 30% [36]. Windows is a competent operating system, and is used by
everything from home-laptops to even some super-computers.

3.6.2 Linux

Linux is by far the most widespread operating system being run on websites,
holding a market share of 69.5% [37]. Because of this, the Linux implementa-
tion of differing software is what has received the most support in documen-
tation and support-forums. In addition, the traditional LAMP-stack (Linux,
Apache, MySQL/MariaDB and PHP) is the preferred way of developing a web-
site in many cases.

3.6.3 Distributions

If and when one chooses to use Linux, the second decision one would need
to make is what distribution, or variant, one would use. Red Hat Enterprise
Linux (RHEL), CentOS and Ubuntu/Debian are 3 major distributions used
as web-platforms. RHEL is a licensed distribution, and as such, we will not
be using it. CentOS is built upon RHELs binaries; however, CentOS is a free
distribution. Debian is a distribution which focuses heavily on the usage of
free software and stable releases. Ubuntu is built upon Debian, and its aim is
being as beginner friendly as possible. To achieve this, Ubuntu is built upon
some proprietary software.

3.6.4 Conclusion

The infrastructure for PEMA is partially dependent on the operating system
on which it runs, as it is ran as microservices deployed as docker-containers.
These microservices can be deployed on any operating system which supports
docker. However, as a web server is traditionally built as a LAMP-stack, the
platform is designed and tested on Linux. One example of a dependency upon
Linux is the implementation of volumes in the containers. The final deploy-

30

Pentesting Exercise Management Application (PEMA)

ment of the platform will be on NTNU’s private cloud SkyHIGh, an Openstack-
based cloud platform, using Ubuntu virtual machines.

3.7 Containers or Virtual Machines

When making a choice on the overarching infrastructure around our plat-
form, the choice was between docker-containers and virtual machines. Both
platforms offer distinct advantages, and these are what will be discussed here.

3.7.1 Virtual Machines

Deploying the infrastructure on "raw" virtual machines would offer the advan-
tages that the infrastructure should be easily understood by just about anyone
who would want to pick up this project. Deployment on virtual machines is an
easy process that consists of simply installing the required services and start-
ing them. This could also be somewhat automated through technologies like
Heat-templates, wherein one would make a yaml-file which describes the ma-
chines and what software should be installed. When choosing to use a virtual
machine, one important drawback is that the choice of operating system be-
comes much more important. A service deployed on an Ubuntu 16.04-image
might be configured entirely differently than if it were deployed on a windows
10 server or even Ubuntu 18.04, and it is most certainly installed differently,
this is not the case in a container, as the container abstracts this away.

3.7.2 Containers

When using containers, a distinct point to make is that virtual machines or
"raw steel"-machines (actual hardware configured to act as the server) are still
required. Containers are simply a way to install services in a partially separate
environment, wherein the container has access to the core of the OS, but the
software that is separate, but needed by the service is installed locally in the
containers. This has the advantage that whenever a service needs to change,
or be removed in its entirety, that container can be stopped and deleted, and
all traces of that service ever existing will go with it, and in the event of a
change, simply re-started. The disadvantage is that this form of deployment
is not private to those who have access to the underlying virtual machine.
To overcome this, containers should not be used as a replacement for virtual
machines, but rather as a complimenting feature. Containers also have the
advantage that whenever a reboot is required by the service, or whenever the
service needs to scale up, a container is much quicker to start, as compared to
a virtual machine. When developing the containers, and the services within
them, the underlying operating system can be mostly ignored, however some
complications do exist. Linux- and Windows-containers function somewhat
differently, and, in the case of docker and more specifically docker-compose,
will need differing composer-files. This behavior mostly comes from the fact
that windows and Linux treat storage-drives entirely differently, as Windows
views the drives as entirely separate entities with different drive letters, and
Linux simply mounts the drives on given paths relative to the root directory.

31

Pentesting Exercise Management Application (PEMA)

3.7.3 Scaling

Another important aspect to any infrastructure is its scalability. Considering
the slow boot-time of virtual machines, scaling a service based on the live
demand is challenging, and would need careful planning ahead of time, and
some careful crafting of OS-images which have the needed services ready to
go. In contrast, scaling a service deployed as micro-services in a docker-swarm
is as simple as altering the amount of replicas in that swarm by issuing a
command such as:

1 docker service scale Pema_site =10
Listing 3.5: Docker scaling command

3.7.4 Conclusion

Designing the infrastructure for a relatively simple service is still a compli-
cated issue. Choosing technologies, whether that is what web server should
be used, or what operating system should be used is a decision which has
the potential to severely affect the end-result. With this and the points made
in their respective sections, our choice landed on using docker containers.
Docker containers add complexity in that the technology needs to be learned
before it can be properly utilized, and this cost comes with what might look
like limited benefit if not properly understood. The benefit in choosing docker
comes from the increased flexibility for whoever might want to use the plat-
form, and the ease of updating the platform as a result of the relationship
between services and files. Our employer gave us this task with the wish that
the platform should be easily applied by whatever third-party would want to
deploy a platform such as PEMA, and docker affords this ease of deployment.
To deploy the web-platform of PEMA, one would only need a docker swarm to
be configured, and to run our script called stack_deploy.sh, and this ease
of deployment is the main point to us choosing docker. In addition, the sim-
ple scaling of the service through the docker service scale- command,
makes the service relatively simple to scale to fit everything from a small
class-environment, up to, in theory, a large-scale CTF challenge hosted on an
international level. Even though the choice fell on a container-solution, there
is a need to make a choice on what solution fits best. This choice was relatively
simple, as the technology taught most heavily during this bachelor degree is
docker, and we see no definitive benefit to choosing a different solution which
would warrant learning another technology such as kubernetes.

32

Pentesting Exercise Management Application (PEMA)

3.8 PEMA Cooperation

The PEMA project is not just the front-end. It is a broader project being worked
on by two bachelor groups, as well as one master student.

The groups are PEMA, which is ours. Then there is PLED, developing a
database. And Mikhal Dunfjeld, the master student developing a Domain-
specific Language.

3.8.1 PLED

PLED is the Pentesting Lab Environment Database, developed by another
bachelor group. The database will gather and store data about vulnerable
applications, and where to download these. PLED is also developing an API
which we will query. The development of querying PLED is further discussed
in chapter 5 subsection 5.5.2

3.8.2 DSL

The DSL is a domain specific language being developed by the master student
Mikhal Dunfjeld. It is a language designed to take a YAML-file as an input and
will define vulnerable architectures based on said input. Its relationship with
PEMA is defined by PEMA being able to utilize the DSL to deploy its labs, and
keep records of what the DSL makes, and hand that over to the instructors
and students. The benefit of this cooperation is that the instructor will have
their task simplified by simply defining the architecture of a given lab once,
and having PEMA handling the technical deployment of said lab.

33

4 Development Process

4.1 Development Tools

In this section, we will go through the tools we have used during our project.

4.1.1 Coding Environment

WordPress

The coding environment for the frontend has been kept quite similar between
us. We have been using XAMPP to run an Apache and a MySQL server locally.
Using the Apache server to host WordPress, and MySQL to host a PhpMyAd-
min database used for the native WordPress database as well as for our theme.
When developing the WordPress theme, this environment has been useful, as
we can see our code in action right away.

The actual coding has been happening in different editors though. We have
been using Notepad++, Sublime Text 3 and Atom. Notepad++ got swapped
out early in the project, as it has minimal tab-completion, and requires some
tedious setup for ease of use, and consistent formatting with the other text
editors. Atom and Sublime on the other hand, natively support PHP, HTML,
CSS and JavaScript natively, with tab-completion, correct colour-coding and
many other useful assisting tools.

This code is then pushed to a central Git repository, hosted on NCRs Phabri-
cator platform. All groups working on the broader PEMA-platform have their
own repository on Phabricator platform.

4.1.2 Project Management

File sharing

For file sharing within the group, we decided on using Google Drive. This
platform is something all members of PEMA are familiar with, as we have
been using it for most projects through our study at NTNU.

Google Drive also offers several other useful programs and features. Google
Docs has been especially useful for us. All our notes and meeting-logs are
written in Docs, as it has excellent collaboration capability, and a quick and
easy-to-use interface that we are particularly familiar with. Draw.IO is another
one, we have used this tool to make all our diagrams, with Drive integration.
This allows us to easily collaborate while creating all sorts of diagrams.

To share documents with our employer and other groups we are collabo-
rating with, we have mainly been using Box, an online file-sharing tool, which
was set up by our employer as a way to share files outside of code being shared
through Phabricator.

34

Pentesting Exercise Management Application (PEMA)

Report

For our report, we are writing in LATEX, using the collaboration-tool Overleaf.
This tool is familiar to the group, as our group has used it multiple times to
write reports for other projects over the last few years. It provides a nice and
user-friendly interface, with live collaboration, making the sharing of ideas
and ideas for changes simple.

Group-communication

During our project we use several different types of communication for dif-
ferent uses. The communication within the group is good and flows easily, as
we have become good friends through our study at NTNU, as well as hav-
ing worked together on multiple projects earlier. Having such good relations
between us make us good collaborators, as we are able to talk freely and hon-
estly to each other. This can be particularly beneficial in a professional setting,
because we are not afraid to tell other members that we for example are not
satisfied with their work.

For communication outside of meetings we use several different platforms,
each with their own uses. To communicate casually, ask for quick thoughts on
ideas as well as off-topic conversations, we use Facebook’s Messenger. Mes-
senger is a messaging application owned by Facebook, where we mostly use
the text functionality, but also has voice and video capabilities. We have a
group chat on the platform we have used for over two and a half year, mostly
for off-topic conversations, but also as the quickest way to either get another
group members input on a topic, or to plan for when we will schedule the
next meeting etc.

While programming, we like having the possibility of talking together, and
to have the ability to quickly ask each other for input on a problem for ex-
ample. We could naturally go to campus and sit together programming there
with our laptops, but we find that to be highly ineffective compared to work-
ing from home at our workstations. To facilitate working from home and com-
municating efficiently, we have used two different platforms. Most of the time,
we talk together using the VoIP client TeamSpeak 3, using our own server. This
has been our go-to platform for VoIP communication for years, making it the
natural choice for this use.

The only problem with using TeamSpeak is that it is missing one quite
useful feature, screen-sharing. When you are stuck with a problem, rather
than trying to explain your code to another group member, it is much easier
to show them! To allow us to use screen-sharing, we used Discord. Discord is
also a VoIP client, but with many other features as well. Discord is disliked by
several members of the group, which is the reason we have not used it for all
our VoIP communication, even though it would be possible.

Other communication

Other group members are not the only people we need to communicate with.
We naturally need to communicate with our employer, our advisor, and the
other groups we are collaborating with.

35

Pentesting Exercise Management Application (PEMA)

Most of our communication with our employer and advisor has been hap-
pening through e-mail and during meetings.

But for quicker communication with our employer and the other groups,
our employer set up a Discord text-server for all groups working on the broader
PEMA-project. This is used for quick chatting, questions, and meeting-planning.

Communication security

Regarding communication security, the employer did not have any requests or
demands. But information regarding the project has not been thrown about
without regard. There are safeguards for all platforms where information
about PEMA has been shared.

Voice communication has been through a private server, with voice data be-
ing encrypted. The VoIP service primarily used, TeamSpeak 3, uses "AES-based
encryption" for its voice encryption [38]. What variation of the Advanced En-
cryption Standard [39] is used is unclear, as TeamSpeak are quite secretive
about this.

All code has been stored in a Git repository through NCRs Phabricator plat-
form. Using Phabricator hosted by NCR, means that NCR has control over the
contents stored there [3].

And all notes have been stored in a private Google Drive, where only group
members have had access. Google claims all data stored in Google Docs form
is encrypted both in transit and at rest [40].

Finally, the report has been written using Overleaf, endorsed by the uni-
versity, as the accounts used on the platform are paid for by NTNU. Overleaf
also has encryption for communication [41], and use Amazon S3 for storage,
where some encryption is default [42]. What encryption is actually used for
the Amazon storage is unclear.

Task distribution

Our task distribution has been through Kanban boards using the web tool
Trello. Here we have distributed the tasks into multiple boards with different
sections of the project, and further made tasks with checklists. Trello is yet
another tool we are familiar with, through earlier projects. It provides a sim-
ple interface with all the information you need about the task, what is being
worked on, and by who.

This has been a useful way to keep track of what needs to be done, what
someone is currently working on, and what needs to be tested.

36

Pentesting Exercise Management Application (PEMA)

Time tracking

To track the time we have spent on the project, we decided to use Toggl.
Toggl is an application designed for enterprise time-tracking, with way more
features than we will ever need. We have created a project in Toggl, that all
members of the group are part of. This project allows us to see when other
members are working, what they are working on in the form of categories,
and how much they have worked. Having this information visible to the group
is a good motivator, as well as allowing other members to for example remind
someone that they are falling behind, or congratulate someone on their good
efforts. The output from the time tracking can be found in appendix I.

4.2 Planning for Future Work

From early on in the project, the employers have stated that this is a project
that will be developed further after our work is done. This bachelors project
is meant as a proof of concept, to figure out whether creating the platform is
feasible [4].

With this in mind, the project has been created in a manner such that
the person or persons taking over the project will not struggle learning how
the platform is built. The platform strives to have good documentation and
to have code that is commented well. A person with a similar or greater
knowledge about relevant technologies than the bachelor group developing
it should not struggle to get to know the platform.

The project has had a focus on core-functionality, rather than implementing
every feature the employer could want, as that would not be possible within
the given time-frame. Rather, facilitating simple implementation of new fea-
tures on top of that core has been a focus. For example, the fact that PEMA
is built on WordPress, and its capabilities to allow future developers to create
modules in the form of WordPress plugins.

37

5 Implementation

5.1 Setup of test environment

5.1.1 Webserver

Development of the web application was done using XAMPP, which is a free
open source web server solution developed by Apache Friends [43]. It comes
with both PHP and MariaDB, with MySQL, which suits the groups needs when
it comes to choice of programming language. XAMPP was chosen because all
group members are familiar with it. For setting up the testing environment, a
guide was followed which sets up both XAMPP and WordPress locally [44].

5.1.2 Docker

The docker deployment was mainly tested on a desktop computer running
Manjaro-linux. This choice was made because the docker environment would
be designed and developed both on and for a Linux machine to run. We con-
cluded that it would be no different to develop and test on local machines
than if we would actively test on a virtual machine hosted on the NTNU cloud
service skyhigh. Testing the docker deployment was mainly done on the local
machines where we verified that the local deployment is functional before de-
ploying and fine-tuning in the production environment hosted on our virtual
machine on skyhigh.

5.2 Installation and configuration

To install the PEMA web-platfrom, one needs two things: a configured docker
swarm, and access to the git-repo which hosts all the php, javascript, bash
scripts and other files. When these requirements are fulfilled, the platform can
be launched by changing directory to the root of the repository, and running
the command ./scripts/stack_deploy.sh. This script does two thing:
sources the file .env which should be duplicated from the file default.env,
and populated with relevant information for the deployment, and it runs the
command as seen in listing 5.1

1 docker stack deploy \
2 --compose -file docker -compose.yml Pema

Listing 5.1: Deploying the service into the docker swarm.

5.2.1 Configuration

To configure a certain instance of the web-platform, one only needs to first
copy the file default.env into another file called .env, this file is not in-
cluded in the git repository, and as such, is safe to keep for example the pass-
word for the database. In this file, change the values to whatever fits your

38

Pentesting Exercise Management Application (PEMA)

needs, and the configuration is done no the backend. After deploying the
stack with the script specified in the last section, open a web-browser and
navigate to the website. Here, follow the instructions on screen, and create
the administrator-user. Next, navigate to the admin-panel if you are not al-
ready there, by entering https://YOURDOMAIN/wp-admin, then click "Ap-
pearance -> Themes", and activate the theme "Pema-Webapplication". At this
point, the website is ready to be used as intended.

5.2.2 The source code

The source code of the Pema-platform can be found on NCRs own repositories
during the development of the platform. To gain access to this repository,
one would need an invitation from the norwegian cyber range. However, our
employer has expressed a whish that this platform should be open source,
and available to anyone who wishes to host such a platform themselves, and
as such needs to be moved off this private repository and onto a public one,
like GitHub.

5.2.3 Docker swarm

To deploy the website, one does not necessarily need to use docker swarm,
however our solution contains ready-made scripts and files which together
makes it simple to deploy on such a swarm. The simplest possible way of
deploying would be on a docker swarm with only one node, the manager-
node. To do this, install docker on your preferred linux-machine (for example
Ubuntu) [45]. Next, run the command as seen in listing 5.2

1 docker swarm init \
2 --advertise -addr <MANAGER IP>

Listing 5.2: Initializing the docker swarm.

When doing this, take note of the output, as this will tell you what command
needs to be ran to enter that swarm using other virtual machines. When this
is done, simply run the script stack_deploy.sh which can be found in the
scripts folder. Alternatively, or on demand, one can add more nodes to
the swarm using the command which was output by the initialization. For
instructions on how to properly install and deploy docker swarm, we highly
recommend seeing the documentation provided directly by Docker [46], as
there are some variations and considerations to take into account depending
upon the environment.

39

Pentesting Exercise Management Application (PEMA)

5.3 Docker implementation

Our docker environment is a docker swarm. Docker swarm is a feature of
docker which allows for replication and load-balancing of microservices. To
achieve an infrastructure which would handle varying amounts of traffic, we
made the choice to design the infrastructure such that the website is easily
scaled up or down. In addition to the simple and proper scaling of the web-
site, we chose to also place our database inside the swarm. The database is
at this point not able to scale, however our choice of MariaDB should enable
those who would like to use this platform to integrate a Galera cluster, which
is a clustering-technology for databases. The benefit of placing our database
comes from it then not being available from outside the swarm. This deci-
sion was made, as the database only ever needs to be accessed by the web-
site which also runs in the swarm, and it somewhat increases the security of
the platform, as all potential attacks would now have to go through either
the website, or directly through access to the virtual machines included as a
swarm-node, and can not come as a result of poor password-protection on
the database itself.

40

Pentesting Exercise Management Application (PEMA)

5.4 Web-application

5.4.1 Directory and File Structure

A WordPress theme only needs four files, index.php, style.css
header.php, and footer.php, however a theme is usually made up of mul-
tiple files [47]. There is no structure syntax that WordPress offers, other than
that files mentioned above should reside in the root directory of the theme.
PEMA uses 6 directories, where each serves an individual purpose. Alongside
the directories, it also uses a number of different files including 404.php,
sidebar-top.php, sidebar-home.php. A full list of directories and files
can be found in Appendix F.10. The folders admin-view, css-admin, and
js-admin exist to divide the menu and sub-menu pages to their own respec-
tive directories for easier editing and referencing. Their names represent what
the menu or submenu does and they are easily distinguishable from one an-
other. These files are also only loaded on their respective menu or submenu
page. The folders js and css are used to define the default values or func-
tions that all css and js files can access. Both pema_admin_style.css and
pema_admin_script.js are files loaded on the admin dashboard, while
the script.js file is loaded on the student view. The style.css file is re-
quired to be in the root of the directory, which is why it is not in the css
folder. The inc folder is an extension to the function.php file, where the
files have a specific purpose. pema-on-startup.php is used to maintain
code that is supposed to be run when the PEMA theme is activated, while
the pema-on-switch.php file is used to maintain code when PEMA is de-
activated. The file pema-ajax.php is used to maintain all code that is sent
through AJAX, this is the main bulk and code of PEMA.

5.4.2 PEMA Roles

The PEMA theme has two main roles, instructor and student. To separate
these roles, the instructors will use a modified admin-dashboard, where the
users abilities are restricted compared to an administrator. The students only
use the theme view, the website part of the site, where they can see their labs,
tasks, etc.

The separation is easily implemented through WP’s permission system. It
allows for deciding whether a user-class can see the admin-dashboard at all,
and further what parts and features on the dashboard are available. This fea-
ture is used to keep students off the admin-dashboard entirely, just allowing
them to see the relevant labs and courses they are enrolled in. The instruc-
tors are able to see only what they need, task, lab and topic management,
limited user management and announcements. The administrators can see
everything an instructor can see, as well as the admin tools. These include
features like full user management and WP management, including plugins,
settings and themes. How the admin-dashboard menu looks for each of the
user-roles can be seen in figure 9.

WordPress roles and permissions are further discussed in chapter 6, regard-
ing security.

41

Pentesting Exercise Management Application (PEMA)

Figure 9: WordPress Admin-dashboard menus per role

5.4.3 PEMA-Lab Hierarchy

The PEMA lab and task system consists of PEMA-Objects. The main objects are
labs, tasks and topics. The hierarchy showing how the different parts interact
is shown in figure 10.

Starting from the "smallest" object, there are topics. Topics are simply the
different categories a task can reflect. Some examples of these are XSS (Cross
Site Scripting), SQL Injection or scanning.

Next there are tasks. These are the objectives of the labs. As previously
mentioned, these have only one topic, and has an objective related to this.
Each task has a title, and a description describing the objective with that task.
Tasks can also be time-limited, as well as requiring an answer.

The "biggest" object is the lab. The lab has its own information in the form
of a title and description. A lab is essentially a collection of tasks, with a
broader objective, or mission. An example can be "You are given access to
a network, your objective is to acquire a file containing information about
the companies employees, located on one of the machines..." A lab also has
information about when it will start and end, as well as what user groups are

42

Pentesting Exercise Management Application (PEMA)

Lab

Task
Topic

Task

Task

. . .

Topic

Topic

Figure 10: PEMA-Object hierarchy.

taking part in it.
For a more complete, but still simplified example:

• Hacking Lab: Acquire Information.

◦ You are given access to a corporate network. Your objective is to gain
access to as many machines as possible, and to acquire information
about the employees. This is stored as a file on one of the machines.

• Tasks:

◦ Scanning: Scan the network to gather information about the ma-
chines.
◦ Exploitation: Gain access to as many machines as possible.
◦ Search: Find the file with information about the employees.

· Answer type, String: How much does Adrian from accounting
make per year? [Answer input]

The example is a single lab with three tasks. Each task has a single topic,
written in italics, and the final task has an answer in the form of a string.

43

Pentesting Exercise Management Application (PEMA)

5.4.4 The Loop

One of the powers of using WordPress is utilizing what is called "The Loop".
The Loop is a set of different PHP functions used by WordPress to display
posts, and process each post to be displayed on the current page. According to
the WordPress Codex, The Loop should be placed in the Theme’s "index.php"
file to display post information [48]. As said, The Loop is meant to be used to
display posts, however, the functional requirements didn’t specify any uses of
posts. This is why an idea of creating a "news" section was added, where an
instructor can post updates and news regarding the PEMA platform.

1 <h1>Newsfeed</h1>
2 <?php
3 i f (have_posts ()) : while (have_posts ()) : the_pos t () ; ?>
4 <!-- Checks if there are any posts, then goes through the posts and

displays it-->
5

6 <div class="pema-news-title">
7 <h2><?php t h e _ t i t l e () ; ?></h2>
8 <!-- Gets the title of the post -->
9 </div>

10 <div class="pema-news-content">
11 <?php the_content () ;
12 ?></div><?php
13 endwhile ;
14 end i f ; ?>

Listing 5.3: "The loop" Searching for and displaying posts.

Listing 5.3 above shows how "The Loop" is used in PEMA, it first checks if
there are any posts, and if there are it loops through all of them and displays
their content. The code snippet uses only WordPress functions from the core.

5.4.5 Page Templates

PEMA uses a number of different page templates. PEMA utilizes a customized
Error 404 page when a user tries to access a page it cannot find, e.g., user
tries to enter something that isn’t valid. When an instructor creates a lab, a
unique page is also created for that lab. However, in order to create the link
between the page and the lab it was required to create metadata about the
lab which would connect the page and lab. This metadata is created when a
page is created.

1 $newPage = array(
2 ’post_title’ => $ t i t l e , // Title of page
3 ’post_content’ => $desc r ip t ion , // Content of page
4 ’post_status’ => ’publish’ , // Status is set to publish
5 ’post_type’ => ’page’ , // Type is page
6 ’post_author’ => $id , // Author of lab page
7 ’meta_input’ => array(// Insert metadata
8 ’labID’ => $ lab_ge t_ in se r t ed_ id , // Set labID as metadata for page
9)

10) ;
11
12 wp_inser t_pos t ($newPage) ; // Insert the page

Listing 5.4: WordPress page creation example.

44

Pentesting Exercise Management Application (PEMA)

The block of code above, in listing 5.4, shows how a page is inserted. First
an array of options is created. This array retrieves info which is sent from
jQuery with AJAX. Then the page is inserted using the function wp_insert_post().

The function get_page_link() is used to get the link to the page, the
only required parameter is the page id. PEMA utilizes the page template
"page.php" for displaying information about a specific lab. When a user tries
to access a page called "Lab-1", WordPress will look for a page called "Lab-1".
It will not find a page called "page-Lab-1" and instead load the page.php
template, WordPress will also remember the post queried and that can be uti-
lized with the $post class [49]. This means that every lab will be displayed
with the "page.php" template.

The process for displaying tasks are very similar. When a task is created for
a lab, then a page for the task is simultaneously created. The parent page for
the task page is set to be the lab page, this way every task will fall under a
lab. The page also gets a custom page template set which is called "template-
task.php", this means that every time a user navigates to a task, WordPress
will use this as a template page for displaying information.

5.4.6 Custom Admin Pages

For PEMA, having the ability to add custom pages to the admin-dashboard
facilitated a natural separation of instructors and students. Having the in-
structors use custom pages on the WP admin-dashboard, rather than creating
a whole separate area on the main page from scratch fits the project well.
Controlling access is also made simple by this, which is touched on already,
and will be further discussed in chapter 6.

Admin-dashboard pages are, quite intuitively, all the different pages found
on the WordPress admin-dashboard. These pages are accessed through menu
and sub-menu entries on a sidebar.

In figure 11, the default WordPress admin-dashboard sidebar can be seen.
The figure shows the Theme page, which is a sub-menu entry under the Ap-
pearance menu entry.

Everything that is needed to create a custom page that is accessible through
the WordPress dashboard is a file with source-code, and to create a menu-
entry that links to that code.

1 add_act ion (’admin_menu’ , ’pema_labs_register’) ;
2 func t ion pema_ labs_reg i s te r () {
3 add_menu_page(// Adding menu entry for Labs
4 ’Lab View’ , // page title
5 ’Manage labs’ , // menu title
6 ’pema_view_lab’ , // capability
7 ’pema_manage_labs’ , // menu slug
8 ’pema_view_lab’ , // callback function
9 ’dashicons-desktop’ // Icon

10) ;
11
12 add_submenu_page (// Adding submenu for lab-creation.
13 ’pema_manage_labs’ , // Parent menu slug.

45

Pentesting Exercise Management Application (PEMA)

14 ’Create lab’ , // Page title
15 ’Create lab’ , // Menu title
16 ’pema_create_lab’ , // Capability
17 ’pema_create_labs’ , // Menu slug
18 ’pema_create_lab’ // Callback function
19) ;
20 [. . .]

Listing 5.5: Adding menu and sub-menu entry for the admin-dashboard.

The function above shows the creation of a menu and a sub-menu entry.
This is done using the standard WordPress functions add_menu_page();
and add_submenu_page(), respectively. These functions take parameters
for page title, the menu title, what capabilities/permissions are required to
access the page, the "menu slug", a callback function and the name of an icon.
The menu slug is the name WP uses for that specific menu, this is used to cre-
ate sub-menu entries, seen as the first parameter in the add_submenu_page()
function in the above example. The callback function is a function that is run
whenever the menu item is accessed. This is used to call a function that dis-
plays the contents of the page.

Below, in listing 5.6, the function called when pressing the menu-entry
added in the previous code example is shown.

Figure 11: WordPress admin-dashboard default sidebar.

46

Pentesting Exercise Management Application (PEMA)

1 func t ion pema_view_lab () {
2 // Get full path
3 $ f i l e = p lug in_d i r_pa th (__FILE__) . "admin-view/manageLab.php" ;
4
5 if (file_exists($ f i l e)) // Check if file was found/exists.
6 require $ f i l e ; // Require/load the file.
7 }

Listing 5.6: Rendering a page after menu-call.

The function gathers the full path to the file with the page code. There is
then a check to see if it was able to get a path, and the file exists. If it exists,
the file is required, and loaded on the page.

5.4.7 Enqueing scripts and styles

As mentioned in previous chapters, enqueing scripts and styles is a way to
insert meta data or stylesheets in the web page. PEMA utilizes quite a few dif-
ferent set of stylesheets, like the "flatpickr" jQuery plugin. In order to register
all stylesheets PEMA uses a foreach loop as depicted in the example below.

1 // Goes through all CSS files in the css-admin directory and registers
them for use

2 // The array is dependencies, i.e., it will only load after
pema_admin_style

3 foreach (glob (ge t_ t emp la t e_d i r e c to ry () . ’/css-admin/*.css’) as $ f i l e)
{

4 // Rename $file to be the file name only
5 $ f i l e = s t r _ r e p l a c e (ge t_ t emp la t e_d i r e c to ry () . ’/css-admin/’ , ’’ , $ f i l e)

;
6 w p _ r e g i s t e r _ s t y l e ($ f i l e , g e t _ t e m p la t e _d i r e c t o r y _u r i () . ’/css-admin/’ .

$ f i l e , array(’pema_admin_style’)) ;
7 }

Listing 5.7: Example of registering all .css files

In listing 5.7, a loop goes through all files that ends with .css in the css-
admin folder and registers them. The glob function simply returns an array
of filenames or directories matching a specified pattern [50]. There is a sim-
ilar foreach loop for registering all JavaScript files. PEMA only loads specific
stylesheets and scripts on specific pages as depicted in the example below.

1 // Create Labs page
2 if (’manage-labs_page_pema_create_labs’ === $hook) {
3 wp_enqueue_script (’create_lab.js’) ;
4 wp_enqueue_style (’create_lab.css’) ;
5 }

Listing 5.8: Example of enqueing scripts and stylesheets on a specific page

The if statement in listing 5.8 first checks if $hook is equal to
manage-labs_page_pema_create_labs. $hook is sent on every page load
and is a combined string which tells WordPress what page it is loading. By
doing this we can ensure that scripts and stylesheets are only loaded on pages
that actually utilize them.

47

Pentesting Exercise Management Application (PEMA)

Figure 12: Preview of PEMA-navigation.

5.4.8 Site Navigation

The navigation around PEMA is done mainly through two navigation bars.
A sidebar to the left, called ’home’, and a module-navigation sidebar to the
right. These can be seen in figure 12.

The sidebar lists labs and tasks, as well as having a link to the admin-
dashboard for instructors and administrators. The module-navigation bar, lo-
cated to the right on the page, lets the user navigate between the different
module-pages. This bar allows plugins to hook into it, to create a link to the
page for that module. In WordPress this bar is called "sidebar ’top’", because
of how WordPress wants objects to be named, as well as its intended location
was originally on the top, just below the header.

5.4.9 Usage of WPDB class

This subsection will highlight PEMA’s usage of the WPDB class, and the func-
tions most commonly used in the implementation. The get_results func-
tion gets multiple rows, it returns an array of all the results found. The default
usage is $wpdb->get_results(’query’, output_type);where the query
is the SQL query you would run.

The return value will be an empty array if the query cannot find any match-
ing rows or if there is an SQL error, otherwise the query returns all the rows
that match the query. Another function which is very similar is the $wpdb->
get_row(’query’, column_offest); query which, instead of getting ev-
ery row that match, gets just one row.

48

Pentesting Exercise Management Application (PEMA)

For inserting to the database, the $wpdb->insert($table, $data,
$format); function is used. You first specify what table to insert into, then
you specify what data you would like to update in an array format(in column
=> value pairs).

1 $wpdb−> i n s e r t (
2 ’pema_lab’ , //Table name
3 array(
4 ’labName’ => $ t i t l e , //Sets labName
5 ’labDescription’ => $desc r ip t ion , //Sets labDescription
6 ’labStart’ => $s ta r tda te , //Sets labStart
7 ’labEnd’ => $enddate //Sets labEnd
8) ,
9 array(

10 ’%s’ , //Int
11 ’%s’ , //Int
12 ’%s’ , //String
13 ’%s’ //String
14)
15) ;

Listing 5.9: Example of inserting a lab

In listing 5.9, a new lab with paramaters is sent by Ajax and inserted. One
important thing to remember with this function, is that you should not SQL
escape the $data as the function does this for you. It will return false if the
function fails.

The update function $wpdb->update($table, $data, $where,
$format = null, $where_format = null) is used to update either one
or several rows in the database. You are required to specify the $table name,
what $data to affect and the $where. The $format and $where_format are op-
tional and are used with the $prepare function which is discussed in chapter
6.

1 $updated = $wpdb−>update (
2 ’pema_task_template’ , // Database table name.
3 array(
4 ’templateName’ => $ t i t l e , // Title.
5 ’templateDescription’ => $desc r ip t ion , // Description.
6 ’topic’ => $topic , // Topic.
7 ’answerType’ => $answerType , // AnswerType.
8) ,
9 array(’templateID’ => $id) , // Update row with correct templateID.

10 array(// Define value-type.
11 ’%s’ , // title, string.
12 ’%s’ , // description, string.
13 ’%d’ // topic, int.
14)
15) ;

Listing 5.10: Example of using the update function

Listing 5.10 above shows code that updates a task template with new data. If
the function is successful it will return the number of rows affected, or else
it will return error, however if the $data that is sent already matches it will
instead not update any rows and return 0.

49

Pentesting Exercise Management Application (PEMA)

The last function we’ve mostly used is the $wpdb->delete($table,
$where, $where_format = null) function, which is used to delete ei-

ther one or several rows. It follows the same structure as $insert and $update
where you are required to specify what table to delete from and where in the
table to delete from, e.g., $wpdb->delete(’pema_lab’, ’labID = 1’).
It will return the number of rows deleted if successful or false if there is an
error.

5.4.10 Custom hooks

As mentioned in previous subsections 3.3.8 creating custom hooks are a way
to allow plugins to hook into the PEMA code. There are a number of different
custom hooks spread around the code. A list of these can be found in appendix
D. An example of usage can be found in listing 5.11.

1 do_action(’pema_after_insert_task ’, $taskID ,
$pageID);

Listing 5.11: Example of creating a custom hook.

The example creates a custom hook with two parameters, the ID of the task
and the ID of the page. If a plugin developer wants to add more code to the
web application they need to call the custom hook as listing 5.12 shows.

1 func t ion plugin_expand ($taskID , $pageID) {
2 // Do something...
3 }
4 // Hooks into the custom hook, and run the function ’plugin expand’
5 // 10 means the priority it gets, and 2 means number of parameters sent
6 add_act ion (’pema_after_insert_task’ , ’plugin_expand’ , 10 , 2) ;

Listing 5.12: Example of using the created custom hook.

The example shows how the custom hooks can be used to inject code into
PEMA by a plugin developer. The plugin developer is responsible for securing
its code.

5.4.11 jQuery

jQuery is used in PEMA for JavaScript. It’s use ranges from displaying HTML
objects to sending information to AJAX for database insertion. As a simple
example, the following block of code (listing 5.13) gets called when a button
in a table is clicked. When the button is clicked, the code gathers information
about what table row the button is in and toggles the visibility of some objects
on the same row.

1 // When option is chosen.
2 $(document).on(’click’, ’.pema -manage -topic -

button -edit’, function (){
3 // Get current row.
4 var currentRow=$(this).closest("tr");
5 // Get first column in current row (task

number)
6 var col1 = currentRow.find("td:eq(0)").text();

50

Pentesting Exercise Management Application (PEMA)

7
8 // Toggles the input field visibility.
9 $(’#pema -manage -topic -name -input -’+col1).

slideToggle ();
10 // Toggles submit button visibility.
11 $(’#pema -manage -topic -button -submit -’+col1).

slideToggle ();
12 });

Listing 5.13: JavaScript code example. Using animation to reveal object.

For some added flair, the jQuery function slideToggle(); is used to reveal
the objects. The function plays a sliding animation to reveal them, rather than
just having them appear suddenly.

5.4.12 jQuery Plugin

PEMA utilizes a few jQuery plugins, they are mostly used as a convenient and
nice-looking way to gather or display data. For example the flatpickr plugin
[51]. Flatpickr is a plugin that gives a clean and intuitive calendar-like inter-
face for picking dates and times, seen in figure 13.

Figure 13: Flatpickr date and time example

In PEMA, this is particularly useful, as there are several places where dates
are selected, like when a lab should start and end, as well as its tasks. The
plugin also takes multiple parameters, allowing for customization of what
information is gathered, and on what format. It even allows the selection of

51

Pentesting Exercise Management Application (PEMA)

a range, like in figure 13, where both Start and End-date is selected in one
window. The plugin has a parameter that can limit the "legal" dates, in other
words, the dates that can actually be selected. Which is useful for making sure
for example a task does not start before or end after the lab it is part of.

The actual jQuery-implementation of the flatpickr example in figure 13 can
be seen in figure 5.14

1 $(’#pema-create-lab-startdate-input’) . f l a t p i c k r ({
2 enableTime : true , // Enable time (e.g., 12:00)
3 dateFormat : "Y-m-d H:i" , // Date format
4 time_24hr : true , // Sets 24-hour times
5 weekNumbers : true ,
6 minDate : "today" , // Minimum date is today
7 l o c a l e : { // For the Locale..
8 firstDayOfWeek : 1 // Set first day of week to monday, like

it should be.
9 } ,

10 // Use plugin to select a range, putting second date in the enddate-
input field.

11 "plugins" : [new rangePlugin ({ input : "#pema-create-lab-enddate-input" })
]

12 }) ;

Listing 5.14: Flatpickr implementation

The function is called for an input-field, and customized using parameters.
The flatpickr plugin even allows for the selection of a range, giving the user
a seamless experience selecting the start- and end-date for the lab.

Another example of a plugin that is not used for input is the jQuery-confirm
plugin [52]. This plugin is used for aesthetic purposes and convenience. The
plugin gives a selection of alerts, with different looks and features.

PEMA uses colour-coded variations of these to notify users of events. jQuery-
confirm also has a feature allowing for timed execution of an option, which
has been useful for notifying users of a successful action, followed by a refresh
a few seconds later to reveal the changes. An example of this can be seen in
figure 14.

5.5 Plugins

5.5.1 Openstack Plugin

The OpenStack plugin is a plugin that utilizes the OpenStack API to create a
Kali machine for every group that is added to a lab on lab creation. The reason
we created this plugin was to have a proof of concept that we could create
virtual machines without the DSL. In short, the plugin hooks into a custom
hook that we created and runs through the plugin code. Mainly what the
plugin does is create a keypair, floating ip and a server for each group that is
added to the lab. At the same time it stores metadata about the server, floating
IP, server id and private key, in the database so that a user can access the
machine. In order to run all the API OpenStack calls, one needs a token, which
is a randomly generated hash of about 250 characters. This token expires
every 4 hours which means the plugin needs to create a new token at least

52

Pentesting Exercise Management Application (PEMA)

Figure 14: jQuery-confirm example

every 4 hours. This cannot be done manually, so the plugin utilizes WP-Cron
[53]. WP-Cron works almost the same as cron on UNIX systems, the biggest
difference is that WP-Cron only checks for scheduled tasks to run on page
load. This does consume some resources, however, since the webapplication
won’t be having too much load it is acceptable to utilize WP-Cron.

1 // If the schedule event doesn’t exist
2 i f (! wp_next_scheduled (’pema_openstack_every_three_hours’)) {
3 // Schedule a function to run every three hours
4 wp_schedule_event (time () , ’three’ , ’pema_openstack_every_three_hours’) ;
5 }

Listing 5.15: Scheduling using WP-Cron

The function above first checks if pema_openstack_every_three_hours
is already scheduled, if not it will create the scheduling event.

The plugin also adds a new page to PEMA, where students have an overview
of each of their Kali machines. From there they are able to hard reboot the
machines.

5.5.2 Integration with PLED

PEMA uses a plugin which queries PLED’s database for information about dif-
ferent types of vulnerable applications. The PLED database has an API which
PEMA queries everytime it needs some type of data. This is done with the
WordPress HTTP API [54]. In order to query their database PEMA needs an

53

Pentesting Exercise Management Application (PEMA)

API key, this has been provided by PLED. WordPress has some helper functions
for using CURL in PHP and PEMA utlizie these.

1 $args = array(
2 ’headers’ => array(
3 ’accept’ => ’application/json’ ,
4 ’X-DreamFactory-API-Key’ => ’key-string’
5) ,
6 ’timeout’ => 60 ,
7 ’sslverify’ => false
8) ;
9 $type = wp_remote_get (’http://10.212.137.92/api/v2/customsearch/type’ ,

$args) ;
10 $types = j son_decode (wp_remote_retr ieve_body ($type)) ;

Listing 5.16: Example of using the update function

The code in listing 5.16 above shows how PEMA queries a GET request to-
wards the PLED database. First the arguments to pass in the CURL command
are created, the only required parts are the headers parts, where the API-Key
and the accept format is set. All API calls, that PEMA utilize, towards the PLED
database return in JSON format. Afterwards, the function wp_remote_get()
is used. This function runs a GET request and returns the raw response, the
results include the headers and content [55]. Then the returned response is
decoded to JSON and the response is minimized to only include the content
with the function wp_remote_retrieve_body() [56]. PEMA does not run
any POST requests to the PLED database, as it is only intended to retrieve
information from it.

The plugin, more specifically, first retrieves the different types of types and
platforms. This allows the instructor to filter by all the different types and
platforms. The instructor can then query the database for vulnerable appli-
cations based on the filtering they entered. As of this moment, the plugin
doesn’t do anything else because the implementation towards the DSL is not
finished. The whole point of the plugin was to pass on the information re-
trieved from PLED to the DSL, and because the DSL was not integrated with
PEMA it doesn’t really do anything other than being a proof of concept.

54

6 Security

6.1 Wordpress

6.1.1 Prepare function

In order to prevent SQL injection WordPress uses a function in the WPDB
class called prepare. This function always takes two parameters, the query
you want to run with sprintf()-like placeholders, and an array of arguments
with the variables to substitute into the query’s placeholder [57].

1 $topic = ’SQL Injection ’;
2 // Get Topic
3 $topics = $wpdb ->get_row($wpdb ->prepare("SELECT

* FROM pema_topic WHERE topicName = %s",
$topic));

4 // If database returned null , means it did not
find any matching rows

5 if ($topics === NULL) {
6 wp_die(’Error’);
7 }

Listing 6.1: Exampe of WordPress prepared statement.

The code in listing 6.1 is used to check if a ’topicName’ exist in the database,
if it doesn’t it will exit with an error message ’Error’. It also shows how the ’pre-
pare’ function uses sprinft()-like placeholders, in the example a ’%s’ is used
because the ’topicName’ is expected to be a string meaning it will not work
if a integer is sent. This works exactly like a prepared statement would. The
valid sprintf()-like placeholders the prepare statement takes are ’%s’ (string),
’%d’ (integer) and ’%f’ (float).

One important note here is that with some functions in the WPDB class,
like ’insert()’, ’delete()’, ’update()’, and ’replace(), there is no need to either
escape the variables or use the ’prepare()’ function. This is because WordPress
escapes and utilizes the ’prepare()’ function by default in the core on these
specific functions.

6.1.2 Output Encoding

WordPress comes with a few helper functions when it comes to securing out-
put from the database. The most noteworthy one is the esc_html() function,
which is used to encode and strip some text for invalid or special characters
like < > & " ’ (less than, greater than, ampersand, double quote, single
quote). There are helper functions for escaping HTML attributes, textarea and
URLs. PEMA utilizes these helper functions in order to create secure output. A
list of all the different helper functions can be found in the WordPress Codex
[58].

55

Pentesting Exercise Management Application (PEMA)

6.1.3 Nonces

WordPress uses whats called a nonce, number used once, to help protect
URLs and forms from certain types of misuse. However, WordPress nonces
are hashes, made up of numbers and letters, and they can be used more than
once, although they have a limited lifetime after which they expire [59]. The
WordPress nonces serve the same purpose even though they aren’t a number
used only once. They do not protect against relay attacks as the nonces aren’t
checked for one-time use, however, they do protect against CSRF. In PEMA
nonces are only used for verifying all Ajax requests. Meaning a nonce needs
to be created on the frontend when a user loads the page, then it needs to
pass the nonce to Ajax and then confirm that the nonce is correct on the server
side.

In chapter 3 the use of a function called wp_localize_script() was
discussed. This function is a way to pass values into JavaScript objects prop-
erties, as PHP cannot directly ’echo’ values into a JavaScript file. PEMA uses
the function to also create a nonce as depicted in listing 6.2.

1 w p _ l o c a l i z e _ s c r i p t (’script’ , ’ajax_params’ , array(
2 // The URL for admin-ajax.php
3 ’ajaxurl’ => admin_url (’admin-ajax.php’) ,
4 // Gets the currently logged in user ID
5 ’loggedinuserID’ => $current_user−>ID ,
6 // Creates a nonce
7 ’ajax_nonce’ => wp_create_nonce (’pema_ajax_nonce’) ,
8)) ;

Listing 6.2: Utilizing the wp_localize_script function.

The example shows that a nonce is created and stored in the object ’ajax_nonce’
and jQuery can send this to the server side by using it as an object with Ajax.

1 $. a jax ({
2 u r l : ajax_params . a j axur l , //Gets the ajax url.
3 type : ’post’ , //Sets post type.
4 data : { //Data values.
5 t i t l e 1 : t i t l e , //Title.
6 content1 : content , //Content.
7 id : ajax_params . loggedinuserID , //Gets the logged in users ID.
8 s e c u r i t y : ajax_params . ajax_nonce , //Gets the nonce
9 ac t ion : ’pema_create_post’ //Calls function pema_createPost.

10 }

Listing 6.3: Getting the nonce in jQuery

In listing 6.3, the code retrieves the created nonce by calling
ajax_params.ajax_nonce and sends it to the server side as the variable ’se-
curity’. This means that PEMA can retrieve the variable and use it with a func-
tion called check_ajax_referer(’pema_ajax_nonce’, ’security’)
which checks if the nonces match [60]. This function will die and give a 401
error if the nonces do not match.

This way PEMA protects itself from CSRF attacks by validating nonces on
all Ajax requests.

56

Pentesting Exercise Management Application (PEMA)

6.1.4 Security Plugins

The plugins in this subsection is not already installed with PEMA, but they
are recommended as they improve the security of WordPress.

Password-hashing

When a user is created in WordPress, the core salts and hashes the password
with 8 passes of MD5 [61]. Since MD5 is fast it means an attacker can try
billions of candidate passwords per second on a single GPU [62]. The reason
WordPress uses MD5 still is because it is supported by all platforms, luckily,
WordPress has made it simple to overwrite their password hashing functions
with a plugin. For this, we chose to use the plugin ’PHP Native password hash’
[63] because it swaps out the native WordPress hashing with the PHP function
password_hash(). This is good because the PHP function uses bcrypt which
is recommended because it uses deliberately slow hash constructions meaning
it will take much longer to brute force. The plugin also salts passwords using
a Cryptographically Secure Pseudo-Random Number Generator, the hashing
is also iterated multiple times to provide good resistance. When the plugin is
activated, it will also go through all the current user passwords and replace
them with bcrypt password hashing instead of the native MD5 hashing in
WordPress. This means that users don’t have to reset their passwords when
the plugin is activated, however, if the plugin is deactivated it will not revert
back to the native password hashing meaning users will have to reset their
passwords.

WordFence

WordFence is a security plugin for WordPress which comes with a list of im-
provements when it comes to security. The only drawback with WordFence is
that some of the protection mechanisms are behind a pay-wall. The price for
a 1 year license of WordFence is $99. Even though there are some features
behind a pay wall, it is still a good plugin. It includes a firewall and a Word-
Press security scanner, a full list of functionalities can be found on their page
[64].

Figure 15: Example of WordFence sending an email when a user logs in on our test environment

The example in figure 15 above is taken from an email that WordFence
sends when a user logs in on the website. It includes who logged in, where
they logged in from, and what access rights they have. WordFence can be
access by the "WordFence" admin page on the admin dashboard, from there

57

Pentesting Exercise Management Application (PEMA)

an administrator have full access to all the functionalities for WordFence.

WP Limit Login Attempts

WordPress core does not have anything to limit login attempts, which means
that PEMA would either need to look for existing plugins that does this, or
create one on its own. The decision to use a plugin was made early on, because
it simply would take too much time to develop a plugin specifically for PEMA.
The decision to use the plugin called "Limit Login Attempts Reloaded" was
made because of its GDPR compliance and because it blocks specific set of
IPs after a specific limit on retries have been reached [65]. There are a lot
of customizable options, where you can whitelist a specific set of IPs, change
the number of retries before you are locked out or change how long you are
locked out for. The plugin can be customized from the settings tab on the
WordPress dashboard.

Figure 16: Example of typing being locked out

Figure 16 shows how the plugin locks you out after a set amount of tries to
enter the password. Again, the amounts of attempts you have or the timer you
are locked out for are customizeable. The user will be see how many attempts
they have left before they are locked out. The plugin is GDPR compatible
because it obfuscates the logged IPs.

58

Pentesting Exercise Management Application (PEMA)

WP Force Login

PEMA uses a plugin called "WP Force Login", which forces login for all visi-
tors [66]. The plugin comes with a lot of different action hooks that allows
a developer to change certain behaviors of the plugin. By default usage, the
plugin redirects to the web page they tried to visit. This can be overwritten
by setting a specific URL to always redirect to after logging in with an action
hook. An example of this can be seen in listing 6.4

1 /**
2 * Set the URL to redirect to on login.
3 *
4 * @return string URL to redirect to on login. Must be absolute.
5 */
6 func t ion my_ fo r ce log in_ red i r e c t () {
7 re turn home_url (’/mypage/’) ;
8 }
9 a d d _ f i l t e r (’v_forcelogin_redirect’ , ’my_forcelogin_redirect’) ;

Listing 6.4: Adding a role to WordPress.

This action filter will always redirect logged in user to a specific web page.

6.1.5 Permissions

Roles

WordPress uses a concept of Roles, which puts the users into different user-
groups. These roles have different capabilities, controlling what a user can
and can not do on the site. What capabilities each role has is decided by the
site owner.

The declaration of roles suits PEMA nicely, as each user naturally falls un-
der one of three roles: administrator, instructor or student. Of these, only the
administrator role is included natively with WordPress. The instructor and
student roles, as well as any potential future roles, need to be created manu-
ally. WP provides functions for role-creation, making the process simple.

The function add_role(); is used for creating new roles [67]. It adds a
role name, display name for the role, as well as an array of capabilities. An
example of this can be seen in listing 6.5.

1 add_role (// Adding student role.
2 ’student’ , // Role name.
3 ’Student’ , // Display name.
4 array(// Array of capabilities.
5 ’pema_see_lab’ => true // Allows students to see labs.
6)) ;

Listing 6.5: Adding a role to WordPress.

By default, WP includes six user roles. Super Admin, administrator, editor,
author, contributor and subscriber [68]. These roles are clearly angled to-
wards the most common use of WordPress, a blog. For PEMA, some of these
roles are not needed, and are therefore removed. The removal of roles is done
through a function which is called when the theme is activated.

59

Pentesting Exercise Management Application (PEMA)

1 // Gets array of WordPress roles.
2 global $wp_roles;
3
4 // Create an array of roles to remove.
5 $roles_to_remove = array(
6 ’subscriber ’,
7 ’contributor ’,
8 ’author ’,
9 ’editor ’

10);
11
12 // For every element in array.
13 foreach ($roles_to_remove as $role) {
14 // If role exists.
15 if (isset($wp_roles ->roles[$role])) {
16 // Remove role.
17 $wp_roles ->remove_role($role);
18 }
19 }

Listing 6.6: Function removing unused default WordPress roles.

The function in listing 6.6 gathersgathers the array of WP roles from the
database. Next, an array of the roles that are to be removed is created. And
lastly, a foreach loop goes through the array and removes the roles one by
one. Much like when adding roles, this is easily done through a WP function,
remove_role(); [69].

After removing default roles and adding custom ones, PEMA is left with
the following hierarchy:

• Administrator: Can utilize all features in PEMA, and has full WordPress
management capabilities.
• Instructor: Has limited access to the admin-dashboard. Can manage labs

and all its content, as well as some user management.
• Student: Can view labs, submit answers to tasks and has some limited

VM management.

Naturally, like other functions that make changes to the default Word-
Press behaviour, the function removing has a counterpart that is ran when
the theme is disabled.

1 /* --- RESETS/REPOPULATES DEFAULT ROLES W/ DEFAULT CAPABILITIES --- */
2
3 // Checks if function exists already.
4 if (!function_exists(’populate_roles’)) {
5 // If it does not, gets it from a default wordpress file.
6 require_once (ABSPATH . ’wp-admin/includes/schema.php’) ;
7 }
8 // Runs function, repopulates default roles.
9 popu la te_ ro l e s () ;

Listing 6.7: Repopulates the default WordPress roles.

60

Pentesting Exercise Management Application (PEMA)

This function checks if the default WP function populate_roles(); is
present, if it is not, it gets it from a default WP file. Then runs the function,
resetting the WP roles back to default.

Capabilities

As previously stated, WordPress uses capabilities to decide what a role can
and can not do. Although WP has an abundance of capabilities included in
the core [70], it still allows for the creation of custom capabilities. Because
PEMA adds to the core, for example by adding pages to the admin-dashboard,
custom capabilities to access and use the features of these pages was a natural
choice.

Adding capabilities to WordPress is simple, it is done by simply giving it
to any user role or roles. An example of this is the capability pema_see_lab
added to the Student role in listing 6.5. The capability can then be required
to access a page, or checked before an action is executed.

PEMA uses these custom capabilities in combination with native WP ca-
pabilities. For example an instructor needs access to the admin-dashboard,
so the instructor role is given the read capability. This capability only allows
the instructor to access the "Dashboard" tab in the admin-dashboard, and will
need further capabilities to access other functions and sub-pages.

Another capability given to instructors is the ability to promote other users
to student, which is required to create student accounts, as well as viewing
all users except administrator accounts, and deleting student users. The WP
capability given to the instructor to allow for this functionality gives the user
too much power. The capability is promote_users , which gives full ability
to promote and demote users. Without any other restrictions, the instructor
can set any account, including their own as administrator.

To restrict this, a function that removes the option to promote users to ei-
ther administrator or instructor is used. This is done by calling the function
through a hook when the promotion-list is called. The function then strips
away the administrator and instructor options from the appropriate array be-
fore returning the remaining options.

1 /* --- Removes an Instructors ability to add/promote (to) admin and
instructor accounts --- */

2 func t ion p e m a _ e d i t a b l e _ u s e r s _ f i l t e r ($ ro l e s) {
3 // Gets current user information from database.
4 $current_user = wp_get_current_user () ;
5
6 // Checks if current user is an instructor.
7 if (in_array(’instructor’ , $current_user−>r o l e s)) {
8 // Unsets administrator and instructor from editable_roles array.
9 unset($ ro l e s [’administrator’]) ;

10 unset($ ro l e s [’instructor’]) ;
11 }
12 // Returns array $roles.
13 re turn $ro l e s ;
14 }
15 a d d _ f i l t e r (’editable_roles’ , ’pema_editable_users_filter’) ; // Function

61

Pentesting Exercise Management Application (PEMA)

call via hook.

Listing 6.8: Function removing instructors ability to promote to administrator or instructor.

These types of functions are also used to remove administrator accounts
from the user-list entirely for anyone except other administrators, and to block
instructors from deleting administrator accounts, in the case that they are
clever enough to find a way to do it outside of the GUI. Having the ability to
customize everything, with even higher granularity than just the permissions
themselves is particularly useful.

For a complete list of the permissions used in PEMA, refer to appendix C.

6.2 Backend

Some security measures must be placed on all levels of operation, one of
which is the backend. In the backend, on a general basis, one has the option of
blocking vulnerabilities, or rather opening whatever is needed for the service
to function properly. In addition, some services live in the backend to serve
as another layer of protection, one such service our https reverse-proxy.

6.2.1 HTTPS

One of the functional requirements for PEMA is that whatever information
is being transmitted at any given moment shall be encrypted, to ensure no
bad actor may "sniff" information while in transit. To do this, one must im-
plement some sort of encryption-layer upon transmitting data, and the most
natural method of doing this is https. HTTPS as a protocol enhances the tradi-
tional Hyper Text Transfer Protocol (HTTP), by using TLS (or its predecessor
SSL) to encrypt the data before sending. To enable HTTPS, one can go one of
many routes, and in our case, an nginx reverse-proxy is used (also known as
https termination), where the communication between the nginx-server and
the end user is transmitted using https, while the transmission between the
proxy and the webserver itself is http. This decision was made based on the
fact that the website should be able to scale up or down based on the num-
ber of end-users using the site at any one time. By using a proxy, it’s possible
to point out to the proxy where to send the unencrypted data when send-
ing to the webserver using one simple configuration-file, instead of setting
up HTTPS on all replicas of the website, simplifying initial design and con-
figuration. By decrypting data before it enters the webserver, in theory, the
security-measures taken are made extraneous, however our choice of using
docker swarm enables us to confidently say that the data is still secure.

6.2.2 Docker swarm

Docker swarm is a technology which enables multiple host-machines to share
their processing-capacity to run the micro-services defined in a given docker
stack, in this case the multiple webservers, database and nginx reverse-proxy.
Docker itself sets up a network between all nodes in a swarm, and all traffic
headed to any service on said network needs to originate from that same net-
work [71] unless specified. To enable outside traffic to enter a swarm, a port

62

Pentesting Exercise Management Application (PEMA)

must be opened, this is done by specifying a source and destination port in the
docker_compose-file. All traffic inside the swarm-network is allowed, and as
such, there is no need of specifying as an example what IP-adresses may access
the database-service, as it is impossible to reach by any outside traffic. We also
have no need to specify some other port than the default 3306 on the database
on which queries may be sent as, again, the database can only be reached
by services inside the swarm-network. The service which makes it possible
for an end-user to access the website is the reverse-proxy, as this service has
been configured such that its ports 80 and 443 are exposed to "the outside
world". When an HTTP-request is made on port 80, it is forwarded such that
it becomes an HTTPS-request, forcing the end-user-machine to make a new
request, this time on port 443, which forwards the traffic to port 80 on what-
ever node inside the swarm is ready to handle the request. This ensures that
only requests on port 80 and 443 are allowed, and these will be directed first
to the nginx-proxy, then to the apache webserver running wordpress.

63

7 Deployment

PEMA is developed with simple replication and further development in mind.
As a result of this, PEMA can be deployed with docker using docker swarm.
A visualization of this can be seen in figure 17.

Swarm

Proxy
External

Figure 17: Visualization of the software relationship.

In order to make such a deployment, these steps must be taken:

• On the server(s) where the platform will be deployed, install docker and
docker-compose.
• Initialize a docker swarm, and join whatever extra nodes will take part.
• Clone the repository currently hosted on the NCR internal git-repositories

and move into that directory.
• Build the proxy-image using the build-script found in the "scripts" direc-

tory.
• Generate the environment-variables using the "genenv"-script, and then

populate missing values in the ".env"-file that was made.
• Deploy the stack using the "stack_deploy"-script.

Once these steps are taken, the website will be active and accessible on the
domain and/or IP-address specified in the "WP_DOMAIN"-variable.

Files that are relevant to the functionality of the website itself can be found
in the sub-directories "Pema-Theme" and "plugins" under the "site"-directory.

64

Pentesting Exercise Management Application (PEMA)

These directories are what the website-replications you can see in the illustra-
tion above access and serve, as these directories are passed as docker-volumes
to the instances. To further develop the website, split the git-repository into
a master and dev-branch, and use the dev-branch for testing, and merge into
master when it is ready. Once the master is updated, simply pull the changes
on the docker swarm-master, the machine where the deployment was ini-
tially handled. The changes will immediately take effect, as a result of being
a docker volume mounted on all instances of the website.

65

8 Testing and User Feedback

8.1 Purpose

The purpose of testing is to find weaknesses in the application, determine its
source and then make the application more resilient. The test will ensure the
quality of the application and document what steps were taken in order to
meet and verify the requirements of the employer.

8.2 Testing Scope

The testing scope for the PEMA application is rather extensive. When the
code is written, each individual functionality must be reviewed by at least
one other member of the group before it is considered complete. All the code
will be subject to both static and dynamic analysis near the end of the project
period. A select few core PHP functions will be subject to fuzz testing during
the project period. Finally, some often used, and security critical WordPress
and PEMA functions will be subject to manual code review.

8.3 Static Analysis

The code in the PEMA project has not been subject to static analysis due to
incompatibility between WordPress and mainstream PHP static analysis tools.
The reasons why are discussed in chapter 9.3.1.

8.4 Dynamic Testing

The final deployment PEMA web application is dynamically tested with
OWASP ZAP [72]. The final version has 9 alerts in a total of 67 places. All
the medium and high-risk alerts are none exploitable and most likely false
positives.

This is most evident in the SQL injection alerts in the robots.txt and
sitemap.xml files. Two files that do not have any database query in them and
can therefore not be exposed to any SQL vulnerabilities. This conclusion is
also tested and gave the predicted result.

All remaining true positives are risks that have low impact and are deemed
acceptable so they will not be addressed.

8.5 Fuzz Testing

Fundamentally important PHP functions are tested using American Fuzzy Lop
in persistent mode with fuzzing dictionaries. The tested functions are de-
code_json() and htmlenteties(). Neither of these functions show any kind of
weakness after extensive nonstop testing over almost two months.

66

Pentesting Exercise Management Application (PEMA)

The function decode_json is the most thoroughly tested due to its com-
plexity and extended usage with data from external sources (Mainly PLED).
htmlenteties() is mainly used when there is user input and output based on
user input. It is used continuously throughout the application and any fault
to it could be problematic to the function of PEMA. The results of the fuzzing
can be seen in figure 18.

Figure 18: View of the master thread in the fuzzing process after 48 days

It is important to note that the function decode_json() is directly present in
the WordPress core code. This means that PEMA only references this function
indirectly and is not written anywhere in our source code, but it is in use if
you review the WordPress core.

8.6 Code Review

All parts of our written code have been subject to code review either by one or
multiple peers. Central parts of the code mainly functions regarding database
connectivity and user interactions. The main effect of doing peer code review
is that the quality of the code increased with little effort. The extra code review
had the effect of ensuring the code quality in critical areas.

67

9 Discussion

9.1 Tools

9.1.1 Writing tools

Some group members started writing code using the tool Notepad++. This
tool had been used for earlier projects, but not for a project of this scale.

The two other text-editors used by the group were Sublime Text and Atom.
After trying these options, these were clearly more suited for a large-scale
project like this one. With features like native language support, tab-completion
and Git-integration, as well as a prettier interface, changing over was easy.

The group ended up with two Sublime users and two Atom users.

9.1.2 Task Management

Early in the project there was an interest in using Todoist for task manage-
ment. Todoist is an application used to manage tasks in the form of to-do lists
[73]. It has support for projects, but only one to-do list per project. Although
it does have some other nice features, such as priority-sorting and calendar
integration, we still decided to go with Trello, which is a more familiar plat-
form with the ability to have several boards per project and different stages
for each task, which is vital in a project of this scale.

9.2 Results

9.2.1 Project Outcome

The outcome of the project is that we have created a fully functional web plat-
form, where an instructor can create descriptive labs and tasks for students.
We’ve also created a proof of concept with the implementation of the PLED
database, as well as with the OpenStack plugin in regards to that one actually
can launch instances using the OpenStack API.

9.2.2 Unfulfilled Requirements

There are a lot of modules that we didn’t have time to implement, such as
a forum or scoreboard. However, these were not really feasible from the be-
ginning as we already had a lot to learn and develop. We did not have time
to implement a way to delete, create or update different ’Answer Types’ that
could be used when creating a task. There was not enough time for us, and
we had other more pressing matters that needed to be done. A scoring system
was also not implemented, the reason for this is that it will take a lot of time
to develop a good system for this, however, it can be implemented at a future
date using plugins with custom action hooks. Since a scoring system was not
implemented, there is also no cost of using hints for students.

68

Pentesting Exercise Management Application (PEMA)

9.2.3 Alternative Solutions

We should have used Scrum with sprints instead of Kanban, this is discussed
in subsection 9.3.2.

9.2.4 For Future Implementation

Student Assistant Role

Instructor

<<include>>

Login

<<extend>>

Display login
error

Verify
credentials

<<include>>

Manage users
(CRUD)

<<include>>Manage labs
(CRUD)

Manage profile
(RU)

<<include>>
Manage tasks

(CRUD)

Manage groups
(CRUD)

View stats

<<extend>>
Edit nicknames

for students

<<extend>>

Lab template
(CRUD)

PEMA

Figure 19: Student assistant use-case diagram.

Figure 19 is a use-case diagram made for the potential role of student-
assistant. This role was suggested by our group as a potential new role for
PEMA. The main intention for this role was to allow student assistants to
help manage the forum, as well as similar tasks to assist students. The role
was never added, as the forum module did not get implemented.

We still think this is a good idea to have in mind for the future.

69

Pentesting Exercise Management Application (PEMA)

9.2.5 Schedule

In the pre-project phase, we created a gantt-schema, this can be found in ap-
pendix F.11. This schema outlined how we believed the timeline of the project
would look. However, the schema turned out to be somewhat incorrect.

During front-end development, we decided to focus on a solid "core", that
can be further built on in the future. This meant that the development of the
modules was pushed back, as the prioritization leaned more towards getting
core functionality in place.

We moved away from automatic testing due to incompatability issues dis-
cussed in 9.3.1.

During the docker-development, among the larger time-sinks was getting
the replications of the site to cooperate properly. Upon setting up TLS termi-
nation using a reverse proxy, we learned that the WordPress docker-image
requires some environment variables to be set in order to properly configure
cookies behind HTTPS. This is discussed further in section 9.3.3.

A minor change of the entire project, was that we initially thought the
deadline was the 15th of May, not the 20th. The only change this inflicted on
the project was giving us a little more time, allocated for the final part of the
project.

How the timeline of the project actually turned out can be seen in a new
gantt schema, found in appendix F.12.

9.3 Complications

9.3.1 Static Analysis

Wordpress does not lend itself well to static analysis with traditional tools like
PHPStan. There exist some unofficial WordPress extensions for PHPStan and
a few standalone analyzers, but they do not meet the reliability standards
that we would like to see when we are developing this application. Ideally
we would like to see the developers of PHPStan add support for this, but this
quote[74] from Ondřej Mirtes in 2017 does not give much hope for a quick
resolution:

PHPStan is not yet ready for analysing code that mixes declarations and side effects. It
works well on mature, object-oriented, codebases, and WordPress is not one of those. But
I’m keeping this in mind and have ideas how to improve PHPStan to work on anything.

The alternative to this would then be to look at other static analysis tools.
Psalm [75] looks like the best alternative to PHPStan when it comes to analyz-
ing WordPress. However, as the article mentions Psalm is not without flaws.
It has, amongst other things, a 5% false positive rate. Some of these false pos-
itives come from the way WordPress DB queries work, which is fundamental
to the way we have constructed the application.

The 5% false positive rate also creates problems for your Continuous In-
tegration workflow. With a code base this massive, a 5% false positive rate
means that few of the commits will pass the automated testing.

70

Pentesting Exercise Management Application (PEMA)

This is not a scenario that we predicted in our risk analysis, which can be
found in Chapter 5.2 in appendix G. Continuous Integration is not something
that is necessary for our development so the solution to this problem became
that we decided to up the effort when it came to code review and dynamic
analysis. This has the cost of some of the problems evident in the commit log
could have been avoided and solving these problems took some more time.

9.3.2 Development methodology

Upon starting this project, the chosen methodology of kanban was chosen as
the freedom of working freely on differing parts as fit whenever a dependency
upon differing parts of the website are discovered. During the development
however, our employer highlighted new functionality and definitions of how
PEMA should work. This made following a schedule problematic, as changes
in the amount of work results in a need for more time or needing to rush
existing requirements. Had we chosen to follow the scrum-model, where the
development is done in predefined sprints, allocating time might have proven
beneficial.

9.3.3 HTTPS

When implementing https, there were some complications which took some
time to overcome. Firstly, in order to be valid, one needs a certificate, which
is also valid. To get a certificate, one needs to either get one signed by a
ticket authority, or create one which is self-signed. When setting up TLS in
this infrastructure, we used a self-signed certificate, as the website lives on
the internal NTNU-network, and as such does not have a domain associated
with it, and is also hosted on the 10.0.0.0-subnet, which is only reachable to
internal clients. This means any new connection made to the web-interface is
reported by web-browsers as insecure, as they by default will warn its users
of such certificates.

In addition there was an issue with logging in to the webplatform once
HTTPS was implemented. Upon first activating TLS, users were unable to log
in to the platform, and upon further inspection, it seemed like session-cookies
were improperly set when logging in, setting them to expire immediately.
Initial troubleshooting pointed towards this being an issue with how the re-
verse proxy interacted with the replicas of the website, or with the website
configuration itself. After some more troubleshooting, this was debunked, as
our problems were not consistent with what others on various forums and
in github-issues were reporting. Later, we found a github-issue where some-
one had a much more similar issue, including a possible solution, which after
testing turned out to be consistent with us. The issue being that when de-
ploying the wordpress docker-images, there are optional values which can be
set as salts and keys for various authentication purposes. When not supplied,
all replicas of the image will generate their own values, and these are what
ended up being the issue. After first testing with a single replica, this resulting
in a functioning login on the website, and then generating our own values for
these variables, we concluded this was the issue, and promptly implemented

71

Pentesting Exercise Management Application (PEMA)

generation of these values as part of the initial set-up process.

9.3.4 Linking to pages in WordPress

In the very early stages of the project, we tried to divide content across pages.
We were used to just include pages with the require(’page-name.php’)
function, however this was not a good practice with WordPress.

The solution to this was to utilize WordPress Pages [76]. You can either
manually create new pages through the admin dashboard, or you can cre-
ate them with the function wp_insert_post [77]. WordPress uses the same
function for creating pages and posts, this was at first confusing for us as this
function seemed to only create posts at first glance. In order to create a page
with the function above, we would have to define the variable ’post_type’ to
be ’page’ instead of the default ’post’. This was a page would be created in-
stead of a post. However, we would then have to manually create a file called
’page-nameOfPage.php’ and this is not really doable as we can’t predict the
names of the labs or tasks. This is why we chose to use template files for pages.

9.3.5 jQuery data()

The jQuery.data() function was intended to grab information from a range of
different options in a select element. However, the problem is that jQuery.data()
function doesn’t manipulate the DOM, it instead stores the data in memory
and doesn’t update when another option is selected [78].

The solution to this was to first find the option that was selected and then
get the appropriate data attribute. An example of this is depicted below.

1 var data = $(th i s) . f i nd ("option:selected") . data ("data") ;

Listing 9.1: Example of getting data attribute in an select element

9.3.6 jQuery Plugins

Countdown Plugin for Time Left

Something we wanted to use a jQuery plugin for was displaying how much
time was left on tasks and labs. We figured that doing this with a jQuery
plugin would make for a pretty looking solution that actively counts down,
rather than just displaying a static number when the page loads.

After a bit of searching, we found two promising plugins. jQuery.countdown
[79] and FlipClock.js [80]. Both plugins offered different styles of countdown-
timers, as well as varying degrees of customization.

We decided to try implementing FlipClock.js first. Trying to implement the
feature to our TaskView page, we ran into some strange bugs, where the plu-
gin did not want to display on our page. After troubleshooting for a bit, and
discovering very little community support around the plugin, making it diffi-
cult to find a solution, we decided to move on to jQuery.countdown.

jQuery.countdown had less documentation to start with, and much like
FlipClock was not updated for a few years, but we managed to get it to display
it on our page. However, when trying to input a timestamp from our database,
to display time left until that time, the plugin refused to display any timer.

72

Pentesting Exercise Management Application (PEMA)

After trying to translate the default MySQL timestamp format into various
formats that were supposedly supported, even going as far as trying unix-
time, the plugin still would not work.

At this point, we decided to abandon the implementation of a counter, as
it was mostly aesthetic, and we did not want to waste any more time trou-
bleshooting or looking for alternative plugins.

9.3.7 WordPress plugins

Third-party plugins

When deploying the website on the ntnu-cloud, we decided to attempt down-
loading third-party plugins, which failed. At first, the site asked for creden-
tials for an FTP-server, which we have not set up. Changing the behaviour of
WordPress allowed us to access local files, which also failed, due to improper
permissions. When changing permissions for both the containing directory, as
well as the files, the transactions still failed, however scaling the service such
that there is only one replica of the website, and then changing permissions
within that container allows us to download, alter and delete plugins at will.
This solution is, however, not a permanent and good solution, as it takes many
steps in addition to needing to scale down the service to do so.

A possible solution to this would be to investigate what it would take to set
up said FTP-server, and allow this to host all plugins. Another solution is fig-
uring out what ownership and permissions are needed to make a volumized
solution viable. A third option is to not allow for multiple copies of the site as
replicas, however this defeats the purpose of the docker swarm, and would
necessitate a total redesign of the infrastructure. Finally, it would also be pos-
sible to install such that they are included in the repository, as self-made and
otherwise already included plugins seem to be fully functional, however they
are not possible to update. Adding plugins to the repository is a bad solution,
as it is not modular, meaning it is difficult to add and remove plugins, in addi-
tion, it contradicts our points on plugin vulnerability in chapter 3.2.2, seeing
as it is difficult to update said plugins.

9.4 Evaluation

9.4.1 Carrying Out The Project

This project was complex from the start. The coordination between three dif-
ferent theses, one master and two bachelors, proved to create some difficul-
ties. Originally, we were supposed to implement the Domain Specific Lan-
guage in our part of the PEMA platform, but it became evident that it would
not be near ready for implementation in our project timeframe. This made our
part of the project complex and we had to follow our mitigation plan from
the project risk analysis, which can be found in Chapter 5.2 in appendix G.
We would feel a lot better about finishing this project if the DSL was complete
as it serves as an extremely important connection with PLED. It was intended
that PLED was going to provide the DSL with information that PEMA would
pass through and deliver. If we had the opportunity to facilitate this exchange

73

Pentesting Exercise Management Application (PEMA)

it would make the whole application, make a lot more sense.
The final product that we are delivering feels slightly incomplete, but it

is also the intention. This project was meant to be the first iteration of an
ongoing project of the NCR. This is the first time that we are aware of where
this type of coordination between theses is attempted and the noncompletion
of the other theses is something that we expected. We did what we could with
the situation, and we believe that there is nothing more that can be done in
order to facilitate the takeover of the project after we hand in the thesis, from
a coding standpoint.

Even if the coordination between the different theses was sub optimal,
we are grateful for the cooperation that the NCR has showed us. We would
especially thank Danny for his dedication to this project and the guidance he
gave us. There is no doubt to us that he had every intention to make this first
iteration of the platform as good as possible.

9.4.2 Group Evaluation

When dividing work between group members, we chose to apply tasks ac-
cording to the different group members’ strengths and/or wishes. This was
done so that we could each have an area of focus, allowing team members
to more effectively gain a deep understanding of the differing parts of the
project. Allowing each member to do this has proven effective in allowing
us to gain a deep understanding and to the greatest degree possible perfect
each individual part of the project. This system has worked quite well, and
has had the intended effect. However, as we are aware, there is one instance
where this splitting of the group led to a problem taking longer to solve than
what would be the case had we had tighter cooperation across subjects on
this project. When setting up HTTPS, cookies were suddenly no longer set
correctly, making logging in to the platform impossible, as cookies seemingly
were expiring immediately. This turned out to be an issue where replications
of the webserver led to certain hash-values called nonces used for validation
being set differently between webservers, nonces are explained in more de-
tail in section 6.1.3. The problem would have been found earlier had Sondre,
who set up HTTPS, known this fact about WordPress.

As stated, the group members have had different roles based on our initial
division of tasks, however this does not mean we have all been totally focused
on said tasks. Whenever needed and possible, each member have been active
on any given problem, and given all relevant help whenever needed. As an
example, when programming the logic for filtering results from the PLED API,
Tobias had problems implementing the logic properly. Sondre, who worked
mostly on backend and Docker, in addition to Erlend who, like Tobias, was
mostly focused on programming and web-development, helped perfect said
logic.

Distribution of Labour

The distribution of work throughout the different parts of the project have
been handled pretty automatically. We have had different types of works, or

74

Pentesting Exercise Management Application (PEMA)

bigger tasks that needed to be done. The process for deciding who does what
starts by asking if anyone has any preferences, if that does not result in a good
distribution, the remaining tasks are distributed by the group leader.

For the largest part of the project duration, the roles were split in two
main groups. Two WordPress / frontend developers, and two working with
the backend and testing. The two sub-groups have then managed labour dis-
tribution among eachother.

We have had continuous development, using Trello to pick new tasks when-
ever the previous one is completed. Decisions about what tasks to prioritize
have been discussed at the weekly meetings. In these meetings new tasks
have continuously been added and removed, as well as the supervisor and
employer giving their opinions on where our focus should be.

An example of the group following a suggestion from the supervisor, is the
entire group having more focus on writing the report, as well as having one
person shift their focus from backend to primarily report.

75

10 Conclusion

The NCR with Danny Lopez and Basel Katt tasked us to create a modular,
scalable and virtualization agnostic platform that could facilitate the deploy-
ment of virtual scenarios for cyber security education and research purposes.
The PEMA application that we have created fulfills these requirements to the
best of our abilities with the amount of time we had for this project. The
framework that we have chosen makes the planned expansion on this pro-
gram possible and any requirements that we could not fulfill can be added
later and expanded upon. This modularity makes the PEMA platform able to
be picked up by other developers, as intended by the NCR.

The most important addition to the project that we contributed was design-
ing how the application was to be deployed. By designing the platform as a
stack of instances in a docker swarm, we simplify the deployment by reducing
the amount of installed software needed to deploy the website. In addition,
this design-choice lends itself well to use a reverse proxy for the implemen-
tation of HTTPS, as traffic between the proxy and webservers are protected
by being behind a network only reachable by nodes inside the swarm. This
choice also allows further development to easily be deployed once ready for
the production environment, as the webservers simply read directly from the
git-repository which hosts the necessary files. In short, the choice of docker
massively simplifies our development of an easily usable self-hosted platform
for any third party.

Our task in starting this project has been to develop a platform which will
allow instructors and others to organize the execution of pen-testing scenar-
ios. From the onset, our task has been to begin development knowing the
platform will be continually updated after this bachelor-project is over. In
addition to developing the task, one requirement has been to create the plat-
form such that it is easily utilized by those who might have an interest in using
and/or working on the platform. To do this, we have developed scripts and
procedures to allow interested parties to easily download, work on and use
the platform using Docker.

10.1 Future Work

Going forward, there are some features of the platform specified in the total
platform specification which are not implemented, which should be. PEMA
should implement the DSL that is being made to easily deploy vulnerable in-
frastructures. Applying the DSL and the PLED API once ready are tasks which
would change PEMA from a platform in which students may get their Kali-
machine IP and submit answers to tasks, to being a fully fledged platform
which automatically deploy all relevant machines. In addition, the specifica-
tion outlines PEMA as a platform for both penetration testing-labs and CTF

76

Pentesting Exercise Management Application (PEMA)

events, in addition malware analysis-labs have been mentioned by our em-
ployer. The current iteration of PEMA implements the penetration testing-
labs, and support for CTF events and malware analysis have been outlined,
yet would need some work to be fully functioning.

As for the graphical design, the platform has not been designed with this as
a point of interest. There have been considerations for future implementations
of new design, where someone who is skilled within design, and has CSS
knowledge should not have a hard time making the site look good. This can
be done with creating a Child-Theme of the PEMA theme [81]. What this
essentially will do is change some aspects of the page, like the CSS, while still
maintaining the functionality of the theme. Our focus has been on designing
and implementing the functionality of the site, and from a design point simply
making it usable.

77

Bibliography

[1] Wordfence. How attackers gain access to wordpress
sites. https://www.wordfence.com/blog/2016/03/
attackers-gain-access-wordpress-sites/. (Visited Febru-
ary 2019).

[2] National Institute of Standards and Technology. Cyber ranges.
https://www.nist.gov/sites/default/files/documents/
2018/02/13/cyber_ranges.pdf. (Visited May 2019).

[3] Phabricator. Introduction. https://secure.phabricator.com/
book/phabricator/article/introduction/. (Visited May 2019).

[4] Oxford University. Oxford english dictionary, proof of concept.
https://en.oxforddictionaries.com/definition/proof_
of_concept. (Visited May 2019).

[5] Misja.com. Epoch & unix timestamp conversion tools, what is epoch
time? https://www.epochconverter.com/. (Visited May 2019).

[6] Wikipedia. Little’s law. https://en.wikipedia.org/wiki/
Little’s_law. (Visited Janurary 2019).

[7] Moe Long. 6 easiest programming languages to learn
for beginners. https://www.makeuseof.com/tag/
easiest-programming-languages-beginners/. (Visited May
2019).

[8] Techspot. Python tops java as most popular introductory teaching lan-
guage among us universities. https://www.techspot.com/news/
57345-python-tops-java-as-most-popular-introductory-teaching-language-among-us-universities.
html. (Visited February 2019).

[9] Djangostars. Why we use django framework & what is
django used for. https://djangostars.com/blog/
why-we-use-django-framework/. (Visitied February 2019).

[10] Hackernoon Proximity Costa Rica. What is vue.js and
what are its advantages. https://hackernoon.com/
what-is-vue-js-and-what-are-its-advantages-4071b7c7993d.
(Visited February 2019).

[11] Vuejsdevelopers Anthony Gore. 7 vue.js backends com-
pared. https://vuejsdevelopers.com/2018/05/07/
vue-js-backends-express-laravel-firebase-wordpress-django-rails/.
(Visited February 2019).

78

https://www.wordfence.com/blog/2016/03/attackers-gain-access-wordpress-sites/
https://www.wordfence.com/blog/2016/03/attackers-gain-access-wordpress-sites/
https://www.nist.gov/sites/default/files/documents/2018/02/13/cyber_ranges.pdf
https://www.nist.gov/sites/default/files/documents/2018/02/13/cyber_ranges.pdf
https://secure.phabricator.com/book/phabricator/article/introduction/
https://secure.phabricator.com/book/phabricator/article/introduction/
https://en.oxforddictionaries.com/definition/proof_of_concept
https://en.oxforddictionaries.com/definition/proof_of_concept
https://www.epochconverter.com/
https://en.wikipedia.org/wiki/Little's_law
https://en.wikipedia.org/wiki/Little's_law
https://www.makeuseof.com/tag/easiest-programming-languages-beginners/
https://www.makeuseof.com/tag/easiest-programming-languages-beginners/
https://www.techspot.com/news/57345-python-tops-java-as-most-popular-introductory-teaching-language-among-us-universities.html
https://www.techspot.com/news/57345-python-tops-java-as-most-popular-introductory-teaching-language-among-us-universities.html
https://www.techspot.com/news/57345-python-tops-java-as-most-popular-introductory-teaching-language-among-us-universities.html
https://djangostars.com/blog/why-we-use-django-framework/
https://djangostars.com/blog/why-we-use-django-framework/
https://hackernoon.com/what-is-vue-js-and-what-are-its-advantages-4071b7c7993d
https://hackernoon.com/what-is-vue-js-and-what-are-its-advantages-4071b7c7993d
https://vuejsdevelopers.com/2018/05/07/vue-js-backends-express-laravel-firebase-wordpress-django-rails/
https://vuejsdevelopers.com/2018/05/07/vue-js-backends-express-laravel-firebase-wordpress-django-rails/

Pentesting Exercise Management Application (PEMA)

[12] Moodle. About moodle. https://docs.moodle.org/36/en/
About_Moodle. (Visited February 2019).

[13] Moodle. Moodle statistics. https://moodle.net/stats/?lang=nn.
(Visited February 2019).

[14] Wordpress. Theme directory. https://wordpress.org/themes/
browse/new/. (Visited February 2019).

[15] Wordpress. Plugins. https://wordpress.org/plugins/. (Visited
February 2019).

[16] WPScan. Wpscan vulnerability database. https://wpvulndb.com/.
(Visited February 2019).

[17] FilaThemes. Education lms. https://wordpress.org/themes/
education-lms/. (Visited April 2019).

[18] WordPress. Template hierarchy. https://wphierarchy.com/. (Vis-
ited March 2019).

[19] Wordpress. Class reference/wpdb. https://codex.wordpress.
org/Class_Reference/wpdb. (Visited February 2019).

[20] Justin Vincent. ezsql. http://justinvincent.com/ezsql. (Visited
April 2019).

[21] WordPress. Wordpress coding standards. https://codex.
wordpress.org/WordPress_Coding_Standards. (Visited March
2019).

[22] WordPress. Server side php and enqueuing. https://developer.
wordpress.org/plugins/javascript/enqueuing/. (Visited
February 2019).

[23] WordPress. Code reference wp_enqueue_script. https:
//developer.wordpress.org/reference/functions/wp_
enqueue_script/. (Visited April 2019).

[24] WordPress. Code reference wp_register_script. https://developer.
wordpress.org/reference/functions/wp_register_script/.
(Visited February 2019).

[25] WordPress. Plugin repository. https://wordpress.org/plugins/.
(Visited April 2019).

[26] WPBeginner. What is: Plugins. https://www.wpbeginner.com/
glossary/plugin/. (Visited April 2019).

[27] WordPress. Wp forum plugin results. https://wordpress.org/
plugins/search/forum/. (Visited April 2019).

[28] WordPress. Plugin api. https://codex.wordpress.org/Plugin_
API. (Visited March 2019).

79

https://docs.moodle.org/36/en/About_Moodle
https://docs.moodle.org/36/en/About_Moodle
https://moodle.net/stats/?lang=nn
https://wordpress.org/themes/browse/new/
https://wordpress.org/themes/browse/new/
https://wordpress.org/plugins/
https://wpvulndb.com/
https://wordpress.org/themes/education-lms/
https://wordpress.org/themes/education-lms/
https://wphierarchy.com/
https://codex.wordpress.org/Class_Reference/wpdb
https://codex.wordpress.org/Class_Reference/wpdb
http://justinvincent.com/ezsql
https://codex.wordpress.org/WordPress_Coding_Standards
https://codex.wordpress.org/WordPress_Coding_Standards
https://developer.wordpress.org/plugins/javascript/enqueuing/
https://developer.wordpress.org/plugins/javascript/enqueuing/
https://developer.wordpress.org/reference/functions/wp_enqueue_script/
https://developer.wordpress.org/reference/functions/wp_enqueue_script/
https://developer.wordpress.org/reference/functions/wp_enqueue_script/
https://developer.wordpress.org/reference/functions/wp_register_script/
https://developer.wordpress.org/reference/functions/wp_register_script/
https://wordpress.org/plugins/
https://www.wpbeginner.com/glossary/plugin/
https://www.wpbeginner.com/glossary/plugin/
https://wordpress.org/plugins/search/forum/
https://wordpress.org/plugins/search/forum/
https://codex.wordpress.org/Plugin_API
https://codex.wordpress.org/Plugin_API

Pentesting Exercise Management Application (PEMA)

[29] WordPress. Javascript. https://developer.wordpress.org/
plugins/javascript/. (Visited April 2019).

[30] jQuery. Plugins. https://learn.jquery.com/plugins/. (Visisted
April 2019).

[31] WordPress. Wordpress requirements. https://wordpress.org/
about/requirements/. (Visited March 2019).

[32] netcraft. November 2018 web server survey. https:
//news.netcraft.com/archives/2018/11/26/
november-2018-web-server-survey.html. (Visited March
2019).

[33] Apache. Apache http server version 2.4 documentation. http://
httpd.apache.org/docs/current/. (Visited March 2019).

[34] NET MARKETSHARE. Operating system market share. https:
//netmarketshare.com/operating-system-market-share.
aspx?options=%7B%22filter%22%3A%7B%22%24and%22%
3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%
22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%
22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%
2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%
22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%
22%2C%22dateInterval%22%3A%22Monthly%22%2C%
22dateStart%22%3A%222018-02%22%2C%22dateEnd%22%
3A%222019-02%22%2C%22hiddenSeries%22%3A%7B%7D%2C%
22segments%22%3A%22-1000%22%7D. (Visited March 2019).

[35] Statista. Global market share held by operating systems for desktop pcs,
from january 2013 to january 2019. https://www.statista.com/
statistics/218089/global-market-share-of-windows-7/.
(Visited March 2019).

[36] W3Techs. Usage statistics and market share of windows for websites.
https://w3techs.com/technologies/details/os-windows/
all/all. (Visited March 2019).

[37] W3Techs. Usage of operating systems for websites. https://w3techs.
com/technologies/overview/operating_system/all. (Visited
March 2019).

[38] TeamSpeak. Features. https://www.teamspeak.com/en/
features/overview/. (Visited May 2019).

[39] Margaret Rouse. Advanced encryption standard (aes).
https://searchsecurity.techtarget.com/definition/
Advanced-Encryption-Standard. (Visited May 2019).

[40] Google. Security. https://support.google.com/googlecloud/
answer/6056693?hl=en. (Visited January, May 2019).

80

https://developer.wordpress.org/plugins/javascript/
https://developer.wordpress.org/plugins/javascript/
https://learn.jquery.com/plugins/
https://wordpress.org/about/requirements/
https://wordpress.org/about/requirements/
https://news.netcraft.com/archives/2018/11/26/november-2018-web-server-survey.html
https://news.netcraft.com/archives/2018/11/26/november-2018-web-server-survey.html
https://news.netcraft.com/archives/2018/11/26/november-2018-web-server-survey.html
http://httpd.apache.org/docs/current/
http://httpd.apache.org/docs/current/
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-02%22%2C%22dateEnd%22%3A%222019-02%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-02%22%2C%22dateEnd%22%3A%222019-02%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-02%22%2C%22dateEnd%22%3A%222019-02%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-02%22%2C%22dateEnd%22%3A%222019-02%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-02%22%2C%22dateEnd%22%3A%222019-02%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-02%22%2C%22dateEnd%22%3A%222019-02%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-02%22%2C%22dateEnd%22%3A%222019-02%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-02%22%2C%22dateEnd%22%3A%222019-02%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-02%22%2C%22dateEnd%22%3A%222019-02%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-02%22%2C%22dateEnd%22%3A%222019-02%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-02%22%2C%22dateEnd%22%3A%222019-02%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-02%22%2C%22dateEnd%22%3A%222019-02%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.statista.com/statistics/218089/global-market-share-of-windows-7/
https://www.statista.com/statistics/218089/global-market-share-of-windows-7/
https://w3techs.com/technologies/details/os-windows/all/all
https://w3techs.com/technologies/details/os-windows/all/all
https://w3techs.com/technologies/overview/operating_system/all
https://w3techs.com/technologies/overview/operating_system/all
https://www.teamspeak.com/en/features/overview/
https://www.teamspeak.com/en/features/overview/
https://searchsecurity.techtarget.com/definition/Advanced-Encryption-Standard
https://searchsecurity.techtarget.com/definition/Advanced-Encryption-Standard
https://support.google.com/googlecloud/answer/6056693?hl=en
https://support.google.com/googlecloud/answer/6056693?hl=en

Pentesting Exercise Management Application (PEMA)

[41] Overleaf. Is my information secure on overleaf? https:
//www.overleaf.com/learn/how-to/Is_my_information_
secure_on_Overleaf%3F. (Visited January, May 2019).

[42] Amazon. Amazon s3 default encryption for s3 buckets.
https://docs.aws.amazon.com/AmazonS3/latest/dev/
bucket-encryption.html. (Visited May 2019).

[43] Apache Friends. Xampp apache + mariadb + php + perl. https://
www.apachefriends.org/index.html. (Visited Janurary 2019).

[44] Colin Newcomer. How to install xampp and wordpress lo-
cally on windows pc. https://themeisle.com/blog/
install-xampp-and-wordpress-locally/. (Visited January
2019).

[45] Docker. Get docker ce for ubuntu. https://docs.docker.com/
install/linux/docker-ce/ubuntu/. (Visited April 2019).

[46] Docker. Add nodes to the swarm. https://docs.docker.
com/engine/swarm/swarm-tutorial/add-nodes/. (Visited April
2019).

[47] WordPress. Organizing theme files. https://developer.
wordpress.org/themes/basics/organizing-theme-files/.
(Visited March 2019).

[48] WordPress. The loop. https://codex.wordpress.org/The_Loop.
(Visited March 2019).

[49] WordPress. Class reference/wp post. https://codex.wordpress.
org/Class_Reference/WP_Post. (Visited April 2019).

[50] w3schools. Php glob() function. https://www.php.net/manual/
en/function.glob.php. (Visited May 2019).

[51] @flatpickr. flatpickr v4. https://flatpickr.js.org/. (Visited
March/April 2019).

[52] GitHub user: craftpip. jquery-confirm. https://craftpip.github.
io/jquery-confirm/.

[53] WordPress. Cron. https://developer.wordpress.org/plugins/
cron/. (Visited April 2019).

[54] WordPress. Http api. https://codex.wordpress.org/HTTP_API.
(Visited March 2019).

[55] WordPress. Function reference/wp remote get. https://codex.
wordpress.org/Function_Reference/wp_remote_get. (Visited
March 2019).

81

https://www.overleaf.com/learn/how-to/Is_my_information_secure_on_Overleaf%3F
https://www.overleaf.com/learn/how-to/Is_my_information_secure_on_Overleaf%3F
https://www.overleaf.com/learn/how-to/Is_my_information_secure_on_Overleaf%3F
https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-encryption.html
https://www.apachefriends.org/index.html
https://www.apachefriends.org/index.html
https://themeisle.com/blog/install-xampp-and-wordpress-locally/
https://themeisle.com/blog/install-xampp-and-wordpress-locally/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/swarm/swarm-tutorial/add-nodes/
https://docs.docker.com/engine/swarm/swarm-tutorial/add-nodes/
https://developer.wordpress.org/themes/basics/organizing-theme-files/
https://developer.wordpress.org/themes/basics/organizing-theme-files/
https://codex.wordpress.org/The_Loop
https://codex.wordpress.org/Class_Reference/WP_Post
https://codex.wordpress.org/Class_Reference/WP_Post
https://www.php.net/manual/en/function.glob.php
https://www.php.net/manual/en/function.glob.php
https://flatpickr.js.org/
https://craftpip.github.io/jquery-confirm/
https://craftpip.github.io/jquery-confirm/
https://developer.wordpress.org/plugins/cron/
https://developer.wordpress.org/plugins/cron/
https://codex.wordpress.org/HTTP_API
https://codex.wordpress.org/Function_Reference/wp_remote_get
https://codex.wordpress.org/Function_Reference/wp_remote_get

Pentesting Exercise Management Application (PEMA)

[56] WordPress. Function reference/wp remote retrieve body.
https://codex.wordpress.org/Function_Reference/wp_
remote_retrieve_body. (Visited March 2019).

[57] WordPress. Code reference, wpdb::prepare. https://developer.
wordpress.org/reference/classes/wpdb/prepare/. (Visited
March 2019).

[58] WordPress. Output sanitization. https://codex.wordpress.org/
Data_Validation#Output_Sanitation. (Visisted March 2019).

[59] WordPress. Wordpress nonces. https://codex.wordpress.org/
WordPress_Nonces. (Visited March 2019).

[60] WordPress. Function reference/check ajax referer. https://codex.
wordpress.org/Function_Reference/check_ajax_referer.
(Visited March 2019).

[61] WordPress. Function reference/wp hash password. https://codex.
wordpress.org/Function_Reference/wp_hash_password. (Vis-
ited May 2019).

[62] CodesInChaos. Is md5 considered insecure? https:
//security.stackexchange.com/questions/19906/
is-md5-considered-insecure. (Visited May 2019).

[63] Ayesh Karunaratne. Php native password hash. https://wordpress.
org/plugins/password-hash/. (Visited May 2019).

[64] Wordfence. Wordfence security – firewall & malware scan. https://
nb.wordpress.org/plugins/wordfence/. (Visited March 2019).

[65] 2by2host. Limit login attempts reloaded. https://wordpress.org/
plugins/limit-login-attempts-reloaded/. (Visited March
2019).

[66] Kevin Vess. Force login. https://wordpress.org/plugins/
wp-force-login/. (Visited February 2019).

[67] WordPress. Code reference, add role. https://developer.
wordpress.org/reference/functions/add_role/. (Visited April
2019).

[68] WordPress. Roles and capabilities. https://codex.wordpress.org/
Roles_and_Capabilities. (Visited March 2019).

[69] WordPress. Function reference/remove role. https://codex.
wordpress.org/Function_Reference/remove_role. (Visited
March 2019).

[70] WordPress. Roles and capabilities, capabilities. https://codex.
wordpress.org/Roles_and_Capabilities#Capabilities. (Vis-
ited February 2019).

82

https://codex.wordpress.org/Function_Reference/wp_remote_retrieve_body
https://codex.wordpress.org/Function_Reference/wp_remote_retrieve_body
https://developer.wordpress.org/reference/classes/wpdb/prepare/
https://developer.wordpress.org/reference/classes/wpdb/prepare/
https://codex.wordpress.org/Data_Validation#Output_Sanitation
https://codex.wordpress.org/Data_Validation#Output_Sanitation
https://codex.wordpress.org/WordPress_Nonces
https://codex.wordpress.org/WordPress_Nonces
https://codex.wordpress.org/Function_Reference/check_ajax_referer
https://codex.wordpress.org/Function_Reference/check_ajax_referer
https://codex.wordpress.org/Function_Reference/wp_hash_password
https://codex.wordpress.org/Function_Reference/wp_hash_password
https://security.stackexchange.com/questions/19906/is-md5-considered-insecure
https://security.stackexchange.com/questions/19906/is-md5-considered-insecure
https://security.stackexchange.com/questions/19906/is-md5-considered-insecure
https://wordpress.org/plugins/password-hash/
https://wordpress.org/plugins/password-hash/
https://nb.wordpress.org/plugins/wordfence/
https://nb.wordpress.org/plugins/wordfence/
https://wordpress.org/plugins/limit-login-attempts-reloaded/
https://wordpress.org/plugins/limit-login-attempts-reloaded/
https://wordpress.org/plugins/wp-force-login/
https://wordpress.org/plugins/wp-force-login/
https://developer.wordpress.org/reference/functions/add_role/
https://developer.wordpress.org/reference/functions/add_role/
https://codex.wordpress.org/Roles_and_Capabilities
https://codex.wordpress.org/Roles_and_Capabilities
https://codex.wordpress.org/Function_Reference/remove_role
https://codex.wordpress.org/Function_Reference/remove_role
https://codex.wordpress.org/Roles_and_Capabilities#Capabilities
https://codex.wordpress.org/Roles_and_Capabilities#Capabilities

Pentesting Exercise Management Application (PEMA)

[71] Docker. Manage swarm service networks, create an overlay
network. https://docs.docker.com/v17.09/engine/swarm/
networking/#create-an-overlay-network.

[72] OWASP. Zed attack proxy. https://www.owasp.org/index.php/
OWASP_Zed_Attack_Proxy_Project. (Visited May 2019).

[73] Todoist. Todoist. https://todoist.com/. (Visited January, May
2019).

[74] Ondřej Mirtes. Wordpress support #35. https://github.com/
phpstan/phpstan/issues/35. (Visited April 2019).

[75] Matt Brown. Improving wordpress with static
analysis. https://medium.com/@muglug/
improving-wordpress-with-static-analysis-505cc5ba495d.
(Visited April 2019).

[76] WordPress. Pages. https://codex.wordpress.org/Pages. (Visited
February 2019).

[77] WordPress. Code reference/wp insert post. https://developer.
wordpress.org/reference/functions/wp_insert_post/. (Vis-
ited February 2019).

[78] jQuery. jquer.data(). https://api.jquery.com/jQuery.data/.
(Visited March 2019).

[79] @hilios. jquery.countdown, the final countdown. http://hilios.
github.io/jQuery.countdown/. (Visited March, May 2019) CSS
Broken for https at time of writing.

[80] Objective HTML Justin Kimbrell. Flipclock.js. http://flipclockjs.
com/. (Visited March, May 2019).

[81] WordPress. Child themes. https://developer.wordpress.org/
themes/advanced-topics/child-themes/. (Visited March 2019).

83

https://docs.docker.com/v17.09/engine/swarm/networking/#create-an-overlay-network
https://docs.docker.com/v17.09/engine/swarm/networking/#create-an-overlay-network
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://todoist.com/
https://github.com/phpstan/phpstan/issues/35
https://github.com/phpstan/phpstan/issues/35
https://medium.com/@muglug/improving-wordpress-with-static-analysis-505cc5ba495d
https://medium.com/@muglug/improving-wordpress-with-static-analysis-505cc5ba495d
https://codex.wordpress.org/Pages
https://developer.wordpress.org/reference/functions/wp_insert_post/
https://developer.wordpress.org/reference/functions/wp_insert_post/
https://api.jquery.com/jQuery.data/
http://hilios.github.io/jQuery.countdown/
http://hilios.github.io/jQuery.countdown/
http://flipclockjs.com/
http://flipclockjs.com/
https://developer.wordpress.org/themes/advanced-topics/child-themes/
https://developer.wordpress.org/themes/advanced-topics/child-themes/

A Project Agreement

84

B Group Contract

88

C Permissions Tables

C.1 Custom Capabilities

Table 2: Table of custom WordPress permissions/capabilities

Permissions Admin Instructor Student Comment

pema_create_post x x Can submit posts.*

pema_manage_tasks_lab x x Can edit tasks for lab.*

pema_create_lab x x Can create labs.*

pema_edit_lab x x Can edit labs.*

pema_view_lab x x Can view labs.*

pema_manage_task x x Can manage tasks.*

pema_create_task x x Can create tasks.*

pema_create_group x x Can create user-groups.*

pema_manage_group x x Can manage user-groups.

pema_edit_group x x Can edit user-groups.*

pema_manage_topic x x Can manage and create topics.*

pema_submitted_task x x Can see who has submitted tasks.*

pema_see_lab x Can see labs user is enrolled in.

* These permissions also allow for the viewing of the relevant page in the
admin-dashboard.

C.2 WordPress Standard Capabilities

Table 3: Table of standard WordPress permissions/capabilities used in PEMA

Permissions Admin Instructor Student Comment

read x x Can access admin-dashboard.*

list_users x x Can list/view users.*

create_users x x Can create users.*

promote_users x x Can promote users.*

delete_users x x Can delete users.*

remove_users x x Can remove users.*

* These permissions are limited for instructors.

91

D Custom WordPress Hooks Table

D.1 Backend actions

Table 4 listslists all the custom hooks that have been created for the backend
of the web application, e.g., when a lab is inserted, a custom hook is created
in order to allow plugins to inject code into the specific place.

Table 4: Appendix: Table of custom WordPress hooks.

Name Parameters Description

pema_after_check_hash user input, ID of task and the
logged in user ID

After hash is checked

pema_after_deploy_lab ID of the inserted lab, groups
in lab, ID of lab author

After a lab is deployed

pema_after_create_group ID of the inserted group, users
in the group

After a group is created

pema_after_group_delete ID of the group to be deleted Before deleting a group

pema_before_lab_delete ID of the lab to be deleted Before deleting a lab

pema_after_insert_post ID of the inserted post After a post is inserted

pema_after_insert_task_template ID of the inserted template After a task template is
inserted

pema_after_insert_task ID of the inserted task and
page

After a task is created

pema_before_task_delete ID of the task to delete Before a task is deleted

pema_after_update_task_template ID of the template to update After a task template is
updated

pema_before_template_delete ID of the template to delete Before a task template is
deleted

pema_before_topic_delete ID of the topic to delete Before a topic is delted

pema_after_topic_update ID of the topic to update After a topic is updated

pema_after_insert_topic ID of the newly inserted topic After a topic is inserteed

pema_after_lab_update ID of the lab that is updated After a lab is updated

pema_after_group_update ID of the group that is updated After a group is updated

92

Pentesting Exercise Management Application (PEMA)

D.2 Frontend actions

Table 5 lists all the custom hooks that are created for display on the frontend
of the web application. They include all pages, menues or submenu pages,
which allows a plugin to inject code into the specific place. These custom
hooks allows a plugin developer to add HTML code to a page.

Table 5: Appendix: Table of custom WordPress hooks.

Name Parameters Description

pema_after_show_hint taskID, userID (Does append) After a hint is shown

pema_adding_vms_to_groups groupID, labID Used by Openstack plu-
gin

pema_before_submit_create_group Before a group is sub-
mitted.

pema_before_submit_create_lab Before a lab is submit-
ted.

pema_before_submit_create_post Before a post is submit-
ted.

pema_before_submit_create_task Before a task template is
submitted

pema_before_submit_edit_group groupID Before a group is edited.

pema_before_submit_edit_lab labID Before a lab is edited

pema_before_submit_edit_task templateID Before a task template is
edited.

pema_display_lab_view postID In page.php

pema_display_task_view postID In template-task-php

pema_display_author_view userID of current user, au-
thorID

In author.php

pema_display_in_header userID of current user, In header.php

pema_display_home_page In index.php

93

E OWASP ZAP Report

94

GET

query

query'	OR	'1'='1'	--

GET

query

query	AND	1=1	--

GET

HTTP/1.1	500	Internal	Server	Error

POST

X-Frame-Options

POST

X-Frame-Options

GET

X-Frame-Options

GET

X-Frame-Options

GET

X-Frame-Options

GET

X-Frame-Options

GET

query

ZAP%n%s

GET

Cache-Control

POST

Cache-Control

no-cache,	must-revalidate,	max-age=0

GET

Cache-Control

GET

Cache-Control

no-cache,	must-revalidate,	max-age=0

GET

Cache-Control

POST

Cache-Control

no-cache,	must-revalidate,	max-age=0

GET

Cache-Control

GET

Cache-Control

no-cache,	must-revalidate,	max-age=0

GET

Cache-Control

GET

Cache-Control

GET

Cache-Control

GET

Cache-Control

no-cache,	must-revalidate,	max-age=0

GET

Cache-Control

GET

Cache-Control

no-cache,	must-revalidate,	max-age=0

GET

Cache-Control

GET

Cache-Control

GET

Cache-Control

GET

Cache-Control

GET

Cache-Control

GET

Cache-Control

GET

wordpress_logged_in_62aede73102693e550411e8af31f773c

Set-Cookie:	wordpress_logged_in_62aede73102693e550411e8af31f773c

GET

wordpress_test_cookie

Set-Cookie:	wordpress_test_cookie

GET

wordpress_62aede73102693e550411e8af31f773c

Set-Cookie:	wordpress_62aede73102693e550411e8af31f773c

POST

wordpress_test_cookie

Set-Cookie:	wordpress_test_cookie

GET

wordpress_sec_62aede73102693e550411e8af31f773c

Set-Cookie:	wordpress_sec_62aede73102693e550411e8af31f773c

GET

wp-settings-time-0

Set-Cookie:	wp-settings-time-0

GET

wordpressuser_62aede73102693e550411e8af31f773c

Set-Cookie:	wordpressuser_62aede73102693e550411e8af31f773c

GET

wordpress_test_cookie

Set-Cookie:	wordpress_test_cookie

POST

wordpress_test_cookie

Set-Cookie:	wordpress_test_cookie

GET

wordpress_test_cookie

Set-Cookie:	wordpress_test_cookie

GET

wordpresspass_62aede73102693e550411e8af31f773c

Set-Cookie:	wordpresspass_62aede73102693e550411e8af31f773c

GET

wordpress_test_cookie

Set-Cookie:	wordpress_test_cookie

GET

wp-postpass_62aede73102693e550411e8af31f773c

Set-Cookie:	wp-postpass_62aede73102693e550411e8af31f773c

GET

wp-settings-0

Set-Cookie:	wp-settings-0

GET

wp-settings-time-0

Set-Cookie:	wp-settings-time-0

GET

wordpress_62aede73102693e550411e8af31f773c

Set-Cookie:	wordpress_62aede73102693e550411e8af31f773c

GET

wordpressuser_62aede73102693e550411e8af31f773c

Set-Cookie:	wordpressuser_62aede73102693e550411e8af31f773c

GET

wordpresspass_62aede73102693e550411e8af31f773c

Set-Cookie:	wordpresspass_62aede73102693e550411e8af31f773c

GET

wordpress_sec_62aede73102693e550411e8af31f773c

Set-Cookie:	wordpress_sec_62aede73102693e550411e8af31f773c

GET

wordpress_logged_in_62aede73102693e550411e8af31f773c

Set-Cookie:	wordpress_logged_in_62aede73102693e550411e8af31f773c

GET

wp-settings-0

Set-Cookie:	wp-settings-0

GET

wp-postpass_62aede73102693e550411e8af31f773c

Set-Cookie:	wp-postpass_62aede73102693e550411e8af31f773c

GET

X-XSS-Protection

GET

X-XSS-Protection

GET

X-XSS-Protection

GET

X-XSS-Protection

GET

X-XSS-Protection

GET

X-XSS-Protection

GET

X-XSS-Protection

GET

X-XSS-Protection

GET

X-XSS-Protection

GET

X-XSS-Protection

GET

X-XSS-Protection

GET

user_pass

<input	type="password"	name="pwd"	id="user_pass"	class="input"	value=""	size="20"	/>

GET

user_pass

<input	type="password"	name="pwd"	id="user_pass"	class="input"	value=""	size="20"	/>

POST

user_pass

<input	type="password"	name="pwd"	id="user_pass"	aria-describedby="login_error"	class="input"	value=""	size="20"	/>

GET

user_pass

<input	type="password"	name="pwd"	id="user_pass"	class="input"	value=""	size="20"	/>

F Diagrams

F.1 ER-Diagram

102

User

Chen notation style

UserHasGroupHas
1

groupIDuserID

Has

Group

N

 N

groupName groupDescription

groupID

Has

labID

courseID

groupID

Lab

Contains

labIDvmID

VM

hintID

Hint_helper_task Has Task

taskHash

topicIDlabID

1

 N 1

N

1

N

Contains

taskID

1

1

N

groupScore

courseID

vmIPvmCreated

taskID

task
Description

taskStart

taskName

VM_group

1

1

vmID groupID

labID

Group_has_lab

groupID labID

Points to

N 1

Partakes
in

Has

1

answerID

taskCreated

taskEnd

Points to

Task_Complete

groupIDtaskID

submitted

Has

Has

Points to

Answer_Type

Topic Task_Template

Has

Has

answerID

typeName

templateID templateName

topicID

template
Description

answerType

templateCreatedtopicName

topicID

1

N

1

1

1

N

1 1

1

1
11

1proficiencyID

Hint

hintID

hintDescription

Proficiency

proficiencyName

proficiencyID

Has

Has

Has

Has

1

1

N

1

N

1

1

1

1

LabTemplate

templateNametemplateID

templateDeadlinetemplateCreated

template
Description

Openstack_
Token

tokenTokentokenID

tokenCreated

templateID

Hint_Helper_template

hintID

Has
N

Pentesting Exercise Management Application (PEMA)

F.2 PEMA Database Schema

105

Wordpress user

Lab

labID INT
labName VARCHAR(60)
labDescription TEXT
labStart TIMESTAMP
labEnd TIMESTAMP
labCreated TIMESTAMP

Group

groupID INT
proficiencyID
groupName VARCHAR(60)
groupDescription TEXT

User Has Group

userID INT
groupID INT

VM

vmID INT
vmCreated TIMESTAMP
vmServerID VARCHAR(100)
vmIP VARCHAR(15)
vmKey TEXT

Lab_Template

templateID
templateName VARCHAR(60)
templateDescription TEXT
templateCreated TIMESTAMP

Task

taskID INT
labID INT
topicID INT
taskName VARCHAR(60)
taskDescription TEXT
answerID INT
taskCreated TIMESTAMP
taskStart TIMESTAMP
taskEnd TIMESTAMP
taskHash VARCHAR(60)

Topic

topicID INT
topicName VARCHAR(60)

Hint_Helper_Task

hintID INT
taskID INT

Group has lab

groupID INT
labID INT

VM_group

vmID INT
groupID INT
labID INT

Task_Template

templateID INT
templateName VARCHAR(60)
templateDescription
topicID INT
templateCreated TIMESTAMP
answerType INT

Answer_Type

answerID INT
typeName VARCHAR(40)

Task_Complete

taskID INT
groupID INT
submitted TIMESTAMP

Openstack_Token

tokenID INT
tokenToken TEXT
tokenCreated TIMESTAMP

PEMA Database Schema

Hint

hintID INT
profifiencyID INT
hintDescription TEXT

Hint_Helper_Template

hintID INT
templateID INT

Proficiency

profifiencyID INT
proficiencyName VARCHAR(60)

Pentesting Exercise Management Application (PEMA)

F.3 Lab Deployment Sequence Diagram

107

Instructor

Website Database

if

:Get Username
and Password

[Login OK]

[else]
:Return status

- Incorrect

:Enter URL

:Enter Username
and Password :Check Username

and Password

:Return status
- Correct

:Give error
message

:User is authenticated
and redirected

:AddStudent

if :Student inserted

[Student Added]

[else]
:Error when inserting

increase inserted by 1

:StudentAdded

:Give error
message

:Insert student

:CreateGroup

if :Group inserted
[Group Added]

[else]
:Error when inserting

increase inserted by 1

:Groups added

:Give error
message

:CreateGroup

if :Topic inserted

[Topic Created]

[else]
:Error when inserting

increase inserted by 1

:Topic added

:Give error
message

:CreateTopic

:Insert Topic

Lab Deployment
Sequence Diagram

if :Yes

:Hint description

:Hint description

:No

:CreateLab

if :Task Template
inserted

[Task Template
Added]

[else] :Error when inserting

increase inserted by 1
:Task Template

added

:Give error
message

:Use lab
template?

if
:Yes, use
template X

:No

:Insert Lab

if

if

[Lab inserted]

[else]

:Lab inserted
increase inserted by 1

:Lab added

:Error inserting
:Give error
message

:Lab inserted

Lab template created
:Lab added

:Err inserting

:Give error
message

[Lab inserted]

[else]

[Lab template
is used]

[Lab template
is not used] :Insert Lab

increase inserted by 1

:Insert Task
Template

:Select Topic

:Topic Selected

:Create Task
Template

:Select Lab

:Associate Task
to Lab

:Create Hint?

[Hint created]

[else]

:Lab Selected

if :Task inserted

[Task Added]

[else] :Error when inserting

increase inserted by 1

:Task added

:Give error
message

:Create Task

:SelectTask
Template

:Task Template
Selected

Pentesting Exercise Management Application (PEMA)

F.4 Task Delivery Sequence Diagram

111

Alternative

Alternative

If hash
correct

else

Alternative

:Database:Website

Check	hash	for	group	ID

User

Enter	hash
Check Validity

If invalid Error message

Hash	correct

Hash is wrong

Correct hash!
Mark	task	complete

Check	hash	against	other
group	hashes

If hatch
matches

else

Hash matches another groups hash

Notify	instructor

Hash does not match

Error	message

Task Delivery Sequence Diagram

Pentesting Exercise Management Application (PEMA)

F.5 Misuse Case: Student - Query Injection

Server

Tasks (R)

<<extend>>

Submit answer
to task

Bad student

<<threatens>>

<<threatens>>

<<threatens>>

Query injection

<<extend>>

SQL injection

<<extend>>

Command
injection

<<extend>>

XSS

Login

User profile
<<extend>>

Change
nicnkame

<<mitigates>>

Sanitize user
input

Figure 20: Appendix: Student query injection misuse case.

113

Pentesting Exercise Management Application (PEMA)

F.6 Misuse Case: Instructor - Query Injection

Server

Bad instructor

<<threatens>>

<<threatens>>

<<threatens>>

<<threatens>>

<<threatens>>

<<threatens>

<<threatens>>

<<threatens>>

Query injection

<<extend>>

SQL injection

<<extend>>

Command
injection

<<extend>>

XSS

<<mitigates>>

Sanitize user
input

Login

User profile

<<include>>

<<include>>

Labs

<<include>>

<<include>>

Task
Template

Topics

Manage users <<extend>> Edit nicknames
for students

<<extend>>
Add topic

names

Add Description

Add title

Add title

Add Description

<<extend>>
Change

nickname

Groups

Add name

Add description

<<include>>

<<include>>

<<threatens>>

<<threatens>>

Newsfeed

Add title

Add content

<<include>>

<<include>>

<<threatens>>

<<threatens>>

Figure 21: Appendix: Instructor query injection misuse case.

114

Pentesting Exercise Management Application (PEMA)

F.7 Misuse Case: Instructor - Unintentional Misuse

Server Accidental instructor

Manage

<<threatens>>

Delete active

Manage
students

Manage groups

Wrongly update
a student-group

Wrongly
update/delete a

user

<<threatens>>

<<threatens>>

Action check

<<mitigates>>

Cannot delete
active

lab/task/topic

<<mitigates>>

<<mitigates>>

<<mitigates>>

Task Lab Topic

<<extend>>

Topic

<<extend>>

Task

<<extend>>

Lab
<<extend>> <<extend>> <<extend>>

Figure 22: Appendix: Instructor unintentional misuse case.

115

Pentesting Exercise Management Application (PEMA)

F.8 Misuse Case: Admin - Unintentional Misuse

Server Accidental AdminManage
instructors

<<threatens>>

Remove active
instructor

Manage
students

Manage labs

Deleting active
labs

Wrongly
update/delete a

user

<<threatens>>

<<threatens>>

Action check

<<mitigates>>

Cannot delete
active lab

<<mitigates>>

<<mitigates>>

<<mitigates>>

Figure 23: Appendix: Administrator unintentional misuse case.

116

Pentesting Exercise Management Application (PEMA)

F.9 Misuse Case: Login

Login

<<mitigates>>

Limit failed
login attempts

<<threatens>>
Password
hijacking

Attacker<<extend>>

Brute Force
Authentication

<<extend>>

Dictionary
attacks

Server
<<mitigates>>

Password
policy

<<mitigates>>

Captcha

DoS Attack?<<extend>>Auth requests

Figure 24: Appendix: Login misuse case.

117

Pentesting Exercise Management Application (PEMA)

F.10 PEMA Directory and File-Structure

Figure 25: Appendix: PEMA Directory and File-Structire.

118

Pentesting Exercise Management Application (PEMA)

F.11 Gantt scheme - Start

6 13 20 27 3 10 17 24 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9
1/19 2/19 3/19 4/19 5/19 6/19

BITSEC3 - Bachelor Thesis
 Pre-project
 Research
 Pre-project writing
 Deadline

 Coding
 Create Diagrams
 Program frontpage of theme, e.g., w...
 Establish overview of Backend
 Create heat template (Backend)
 Establish automated testing
 Program all the plugins for the webp...

 Finalizing product
 Testing/Bugfixing

 Report
 Continual report-writing
 Finalizing report
 Deadline

 Presentation
 Presentation

Powered by TCPDF (www.tcpdf.org)

Figure 26: Appendix: Initial Gantt Schema.

119

Pentesting Exercise Management Application (PEMA)

F.12 Gantt scheme - End

6 13 20 27 3 10 17 24 3 10 17 24 31 7 14 21 28 5 12 19 26 2
1/19 2/19 3/19 4/19 5/19 6/19

BITSEC3 - Bachelor Thesis
 Pre-project
 Research
 Pre-project writing
 Deadline

 Coding
 Create Diagrams
 Program frontpage of theme, e.g., w...
 Program all the plugins for the webp...
 Establish overview of Backend
 Create docker-compose (Backend)
 Establish automated testing

 Finalizing product
 Testing/Bugfixing

 Report
 Continual report-writing
 Finalizing report
 Deadline

 Presentation
 Presentation

Powered by TCPDF (www.tcpdf.org)

Figure 27: Appendix: Gantt schema showing actual project timeline.

120

G Pre-project

121

NTNU Gjøvik

BITSEC3

Bachelorthesis for IT-Operations & InformationSecurity

Pre-project report

Authors:
Sander L. Berntsen

Erlend Einmo
Tobias Moe

Sondre Granerud

May 19, 2019

Contents

1 Introduction 1
1.1 Background . 1
1.2 Objectives . 1

1.2.1 Learning Objectives . 1
1.2.2 Impact Objective . 1

1.3 Target Audience . 1

2 Scope 1
2.1 Project Description . 1
2.2 Field of Study . 2

3 Project Organization 2
3.1 Roles and responsibility . 2

3.1.1 Group leader . 2
3.1.2 Secretary (Logging) . 2
3.1.3 Supervisor . 2
3.1.4 Employers . 2

3.2 Project rules . 3

4 Planning, reporting and Monitoring 3
4.1 Software development methodology . 3
4.2 Status meetings . 3

5 Organization of Quality Assurance 3
5.1 Documentation, source code and standardization . 3
5.2 Risk analysis . 4

5.2.1 Countermeasures . 5
5.3 Tools used . 5

6 Project plan 6
6.1 Gantt Scheme . 6

Bibliography 7

Appendices 8

A Group contract 8

1 Introduction

1.1 Background

The Pentesting Exercise Management Application, hereby called PEMA, platform is an initiative intended
to be a modular, scalable and virtualization agnostic platform that facilitates the deployment of virtual
scenarios for cyber securiy education for research purposes. The realization of the PEMA platform and all of
its components falls within the research scope of the Norwegian Cyber Security Range initiative. Together
with the Pentesting Lab Environment Deployment, hereby called PLED, PEMA form part of a platform
(a.k.a PEMA platform) that allows educators to deploy realistic environments suitable for training cyber
security students of Penetration Testing, Ethical Hacking and Attack and Defense courses, as well as for
cyber security competitions (such as Capture The Flag) and for research purposes.

1.2 Objectives

1.2.1 Learning Objectives

• Understand the differences in frameworks

• Coordination with another bachelor group (and a master thesis)

• Using Kanban in practice

1.2.2 Impact Objective

• Create a webdesign that the employer is satisfied with

• Create a scaling backend that can be easily deployed

• Make it easy for other people to work on our code

1.3 Target Audience

The target audience is learning institutions that focus on cybersecurity.

2 Scope

2.1 Project Description

1. Allow educators to create and deploy realistic environments that can supplement cyber security curric-
ula (such as Ethical Hacking and Attack and Defense courses), and cyber security competitions such
as CTF’s. The intention of PEMA is to provide an abstraction layer in the form of a Domain Specific
Language on top of lower level components such as configuration management tools (e.g. Puppet and
Ansible) and virtualization/Cloud platforms, allowing instructors to programmatically model any given
scenario (compose of both, vulnerable and not vulnerable systems) without having to worry about the
underlying technologies.

2. Provides a teaching environment that can be implemented into existing curricula and that can be
used by educators to impart knowledge related to cyber security in a practical way. This teaching
environment will also be referred within this document as the ”web portal”. This web portal should
support the creation of two different types of challenges, task based challenges and project based
challenges, which can be balanced or unbalanced and which can be carried out individually or as a
group.

1

3. Participants should be able to submit answers to the web portal in the form of hashes which will be
evaluated automatically by the application for correctness. The web portal also contains a diverse
variety of modules that enhances the functionality of the framework that can be enable/disable by
the instructor upon demand, such as a scoreboard a black market, a forum and a module that allows
students to reboot their own virtual machines.

2.2 Field of Study

• Web design

• Web security

• IT-infrastructure

• Relational database design

• Third party authentication

• Testing

• Automated testing

• REST-API

3 Project Organization

3.1 Roles and responsibility

3.1.1 Group leader

Tobias Moe
Tobias Moe will act as the project leader, whose responsibility it is to follow up on meeting hours, ap-
pointments, tasks are split evenly between the group members and be the contact person to the project
owner.

3.1.2 Secretary (Logging)

Erlend Einmo
Responsible for writing a log of the meetings held with third parties. In the case that he is unable to fulfil
his task, he is responsible for handing the task over to another group member on a per-meeting basis.

3.1.3 Supervisor

Erik Hjelm̊as
Erik is an Associate Professor at NTNU Gjøvik, he is our supervisor through this project, giving us guidance
and helping with some decisions along the way.

3.1.4 Employers

Danny Lopez
Danny is a master student and he will be our main contact person if we have any questions regarding the
project.

Basel Katt
Basel is an associate professor at NTNU Gjøvik in the Department of Information Security and Communi-
cation Technology.

2

3.2 Project rules

You can find the project rules in appendix A.

4 Planning, reporting and Monitoring

4.1 Software development methodology

Our first thought was to use Scrum as our software development model, but we quickly realized that scrum
would become to big and complex for us with the sprints as we wanted a more open and flexible model.
With Kanban we can easily change our focus from one thing to another, this is much harder if we were to
use scrum with sprints. Kanban has fewer rules and is more lightweight than scrum, this also makes it more
challenging as we need to be able to handle the lack of rules. However as we’ll mostly be working together
using a VoIP service (TeamSpeak) for our communication platform we feel confident that Kanban will work
better than Scrum.

The formula for Little’s Law[1] is commonly expressed as L=λW, where ”L” is the average number of
costumers, ”λ” is the average arrival rate and ”W” is the average time in the system. By redefining the
terms as follows we can use Little’s Law to our benefit:

• L becomes Work In Progress (WIP)

• λ becomes Delivery Rate (DR)

• W becomes Lead Time (LT)

This gives us the formula WIP = DR ∗ LT or DR = WIP/LT or LT = WIP/DR.
We will be using multiple Kanban boards on Trello to visualize our workflow. In our previous experiences

with Trello boards, we realized we quickly got a big board with heaps of entries, this can feel daunting and
disorganized. To cope with this we decided to split our tasks over multiple boards that will each represent
a part of the project, for example we will have one board for the frontend, one for the backend, one for the
report writing etc.

By using the Trello boards to visualize our workflow, we can use the redefined formula to estimate how
long each board will take to complete by using the following example.

We have a board with 10 WIP cards on it.

We know we can complete 2 cards in a day, which gives us a DR of 2.

By using the formula we can estimate that it will take 5 days to complete the board.

If we were to increase the amount of WIP cards to 20 then the LT would increase to 10, meaning it would
double the time to complete the board. In order to cope with the increase in WIP cards then we would need
to find a way to change the DR to 4, and this could prove difficult as it can be hard to ”push” more work
onto people.

By using this formula to our benefit we can efficiently plan ahead.

4.2 Status meetings

The group will have weekly meetings with supervisor and employers every Tuesday. Sometimes we may have
a joint meeting with the other bachelor group that we will be working with.

5 Organization of Quality Assurance

5.1 Documentation, source code and standardization

Our employers and ourselves have set high expectations for documentation and commenting when coding.
As other people most likely will be working on our code at a later date, we want to ensure that we have

3

good documentation ready for them. We will be following the PHP coding standard [2] and the standard
specified by the frameworks used. In case of a conflict between the two, the framework will take precedence.
The framework has highest priority, as this is the system which will do all the translation if necessary. We
will be storing our source code in a private git repository, e.g., Github or Bitbucket.

5.2 Risk analysis

Below are our identified risks. We have only included the most relevant risks.

Risk Type Likelihood Consequence Value

1 Some functionalities are not doable in chosen
framework

Product Likely Significant 9

2 Frontend scope becomes to ambitious for our
experience

Product Likely Significant 9

3 Project is not complete in time Project Unlikely Critical 8

4 Significant change in requirements specifica-
tion

Project Unlikely Significant 6

5 Slight change in requirements specification Project Likely Slight 6

6 Illness over longer time period Project Unlikely Significant 6

7 Integration with PLED group not being feasi-
ble

Product Likely Slight 6

8 Backend scope becomes too ambitious for our
experience

Project Unlikely Significant 6

9 Application is vulnerable after project com-
pletion

Product Low Significant 3

10 Loss of documentation or source code Project/Product Low Significant 3

11 The Domain Spesific Language is not com-
pleted

Project Likely Significant 6

Table for identified risks

Acceptable risk (1-4) Considerable risk (5-10) Countermeasure necessary(11-16)

Table explaining colour and its values

We deem acceptable risks safe enough to leave them unaltered. Considerable risks are discussed internally
on a case-by-case basis to figure out whether there is a need for countermeasures or not. Risks that fall
under the category ”countermeasure necessary” are critical risks that can significantly impact the project,
and needs to be remedied.

Likelihood/Consequence Small Slight Significant Critical

Low 9, 10

Unlikely 4, 6, 8 3

Likely 5, 7, 11 1, 2

Very likely

Table for risk matrix before countermeasures

4

5.2.1 Countermeasures

• Countermeasure for risk number 1:

We will especially look for modular frameworks where we can meet the product requirements. This
will decrease the likelihood of the risk to unlikely.

• Countermeasure for risk number 2:

We will reach out to more experienced people for tips regarding frontend. By doing this we will reduce
the likelihood of the risk to unlikely.

• Countermeasure for risk number 3:

By using a software development strategy like Kanban we will have a good overview of all tasks and
their deadline, which reduces the likelihood of the risk to low.

• Countermeasure for risk number 4:

By having frequent meetings with employers we will reduce the likelihood of getting significant changes
in requirements specification low.

• Countermeasure for risk number 11:

Continue project as planned, propose solution in final report.

Likelihood/Consequence Small Slight Significant Critical

Low 4, 9, 10 3

Unlikely 1, 2, 6, 8

Likely 11 5, 7

Very likely

Table for risk matrix after countermeasures

5.3 Tools used

The group agrees on what tools we are going to use during the project and thesis. These decisions are based
on previous experience, as we have worked together as a group several times previously. The tools are chosen
to keep our development consistent, and to allow for effortless collaboration, with the ability to see what the
other members of the group are working on at any time.

Name Type Usage

Overleaf Collaborative LATEXwriting Report writing

Toggl Online tool used to track time Time tracking

Trello Used to visualize Kanban boards Tasklist

Google Drive Host documents Storage

Google Docs Used to write notes Noting

Draw.io Used to create diagrams Diagrams

TeamSpeak 3 Voice communication platform Communication

Facebook/Messenger Text communication platform Communication

Wordpress CMS framework for basic functionality Frontend

Docker Software containerization platform Backend

Openstack/SkyHiGh Cloud platform used to host the backend Backend

5

6 Project plan

6.1 Gantt Scheme

Figure 1: Gantt Schema.

In the image above one can see the proposed Gantt scheme for this project. The first month represents
the phase where we research all relevant parts of the project. After this we move over to the ”coding” phase,
where we will first start drafting all relevant diagrams for the project (SQL diagram, Use cases, Flowcharts,
etc..). We then move over to a stage where the group will be divided in two, where the focus for one part is to
create the theme while the other half starts working on creating the backend. When the theme is functional,
the entire group will begin making all the different plugins for the website. Then we will be doing relevant
testing and bugfixes on the website. The report writing is a continual process.

6

Bibliography

[1] Wikipedia. Little’s law. (Accessed: 26.01.2019). url: https://en.wikipedia.org/wiki/Little’s_
law.

[2] PHP Framework Interop Group. Coding Style Guide. (Accessed: 26.01.2019). url: https://www.php-
fig.org/psr/psr-2/.

7

Appendices

A Group contract

Group contract for PEMA bachelor

Timeframe:

This contract will last through the bachelor thesis for the spring semester of 2019.

Purpose:

The purpose of the contract is to ensure that all members of the group do their part in the work towards
the bachelor’s thesis.

Project leader:

Tobias Moe will act as the project leader, whose responsibility it is to follow up on meeting hours, ap-
pointments, tasks are split evenly between the group members and be the contact person to the project
owner.

Meeting hours:

The group will have weekly meetings every monday. In these meetings we will follow up on what everyone
did the last week, and we’ll set weekly goals for the coming week. We will also be discussing talking points
for the weekly meeting with the supervisor the next day.

Requirements:

Every group member is required to work approximately 30 hours a week starting from February 4th. All
meetings are obligatory, with the possibility of exceptions, when agreed upon by the group beforehand. All
members are required to write code following the code practices of the framework, and to comment their
code. All meetings with other parties need to have a meeting log (written in google Drive). Decisions need
to be documented, with reasoning for and against. Decisions are voted on within the group, and need a
majority (75%) to pass, in the case of a stalemate (50% / 2v2), we will ask a third party with relevant
knowledge for their opinion. If the stalemate still stands after the conversation with the third party, the
group leader has a veto/additional vote.

Consequences:

If a member of the group repeatedly breaks group-rules, or in other ways neglect the group work, the following
consequences will be enacted:

First instance:

A conversation/meeting between all members of the group, where the problem is attempted mediated.

Second instance:

If the conversation/meeting did not yield results, a written warning is given to the disobedient member
where: The broken rule is explained. Specific measures are set in action to remedy the problem. Information
about the consequence(s) if the member still neglects the work and rules set in place. First consequence:
conversation/meeting with whole group, including supervisor present.

8

If no improvement in members efforts/behavior:

Written exclusion from the group via supervisor. Nobody can be excluded from the group from the 1st of
May until final submission deadline.

Signatures:

.

Tobias Moe

Erlend Einmo

Sander Løken Berntsen

Sondre Granerud

9

H Meeting Logs

Meeting log appendices, in reverse chronological order.

H.1 May meeting logs

133

07.05.19 - Week 19
Weekly meeting

Talking points:
- Status + demo ​✔

Present:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, Sondre Granerud. (Group members)
- Erik Hjelmås (Supervisor)
- Danny Lopez (Principal)

Duration:

40 minutes

Discussion:

- Status
- We have a proof of concept, spinning up Kali VMs for each group when a lab is started.

- With some information returned.
- Horizon as an interface.

- Making pema into a Horizon-like platform?
- A full interface for instructors

- A lab has these objectives.
- These machines are attached to it…
- Etc

- An instructor view over the physical lab.
- Give instructors access to the Kali machines.
- Some discussion about users not providing their own keys, but getting ones generated

by PEMA.
- Decided that this is still the better solution.

- We show a little demo of recent changes.
- Wait for condition, or loop request until success, instead of sleep.

03.05.19 - Week 18
Meeting with Danny

Talking points:
- Status, report and product ​✔

Present:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, Sondre Granerud. (Group members)
- Danny Lopez (Principal)

Duration:

100 minutes

Discussion:

- Report:
- Content found in box.com
- Documentation

- First chapter not very clear
- Not much differentiation on what the NCR is, and the course?
- We need to talk about what NCR is.
- Stakeholders local:

- NTNU
- Instructors in Ethical Hacking Course
- Malware labs maybe?

- External stakeholders:
- CTF participants etc..

- Ask hjelmås about Danny’s notes.
- We need more in-depth related to project.

- Business requirements
- High level.
- How is the business supposed to benefit from this.

- Quality aspects
- Availability
- Security …..
- Etc.
- Prioritize these.

- Functional requirements
- Can be related to the business requirements.
- Need to be precise, measurable and follow the correct format.

- Problem description
- Must be clear in the first chapter.

- How it relates to PEMA and the DSL
- Change more on how PEMA relates to the DSL, not describing the

actual DSL.
- The introduction makes it seem like the DSL.

- We want:
- Proof of Concept
- Could describe the Ethical Hacking course, our

experience.
- Assumptions and constraints

- Little focus on graphical design.
- We should not forget the order. (box, Danny is making a list)

- Technical in the actual implementation.
- Related works:

- There are similar projects, Danny has some notes in box.
- Webgoat
- Ec council link - important apparently.

- It has a lot of functionality that we wanted initially.
- Lacks proficiency levels.

- Architecture
- OWASP Juice shop, good example for illustrations of how the

system works.
- Application level.
- Appealing and easily understandable for the reviewer.

-
- General:

- Need to not forget we work on the infrastructure as well.
- Note:

- We should illustrate the Lab - Task hierarchy.
- PEMA is the PoC of the dashboard of NCR/PEMA.
- Mikhals work is the core.
- Danny will try to provide some functional requirements for the basic VM

management module.
- Test cases.

- E.g “Allows a dozen users at the same time”
- Roles and capabilities

- Make a nice table out of it.
- Grid of x - roles, y - permissions.

- Draw.io (drive) folders with diagrams that we can use and contribute.
- Especially Requirement Elicitation Process.
- Also uses MindMap, basically a more user-friendly draw.io
- Diagrams of what we have, and what we intended to have
- Sequence diagram.
- Activity diagram? ER-diagram

- Put more attention to the introduction.
- How we envision the implementation with the DSL.

- We need the sequence diagram as well.
- Danny will contact us.

- Compile mail with questions.

Pentesting Exercise Management Application (PEMA)

H.2 April meeting logs

138

30.04.19 - Week 18
Weekly meeting

Talking points:
- Report status ​✔

Present:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, Sondre Granerud. (Group members)
- Erik Hjelmås (Supervisor)

Duration:

35 minutes

Discussion:

- Talking about status
- A bit about our workflow writing the report..
- We are still developing PEMA, but focus is the report.
- Status about what is missing on the dev. Part.

- SSL: Ask ​Øivind Kolloen​ maybe?
- Feide: Talk to Lars Erik

- Discussion about meetings with the design student, and the student continuing the DSL
dev.

- Think a little about what the edge of the project is.
- What is the most important individual contribution from us.
- For a good grade, the individuality and such is important.
- Look at our punchline, our contribution to the project (as a group, without

employer etc.)
- How we have contributed to the project, other than the project description.

23.04.19 - Week 17
Weekly meeting

Talking points:
- Status on report ​✔

Present:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, Sondre Granerud. (Group members)
- Erik Hjelmås (Supervisor)

Duration:

35 minutes

Discussion:

- Talking about the report
- We expected the response, and reasoning behind…

- How should we write about the web-development process in the report
- Specify for each 3rd party function used etc…?

- Look at other reports on how they have done this.
- Using now-time, “this is how it is..” Not storytelling. Not tutorial.

- Storytell if concisely telling about why something turned out the way it did.
- Something about logging, installation and moving of PEMA etc..
- Confirming no DSL

- We should check with Basel and Danny what we should write about the
integration that was supposed to happen with the DSL.

- Gather some info from Basel and Danny on what to write here.
- We have plans for this, as well as the integration with PLED.

- What should have been in place to allow the DSL integration.
- Write it in a better way than “We did not have time for this”

- Emphasize the cooperation.
- HEAT php template to deploy Kali
- Make video demo.
- From chapter 3 and out

- No figures.
- More diagrams!

- Draft 2 - Weekend ->13th may.

Pentesting Exercise Management Application (PEMA)

H.3 March meeting logs

141

29.03.19 - Week 12
Meeting with all groups

Talking points:
-

Attendees:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, Sondre Granerud. (Group members)
- Erik Hjelmås (Supervisor)
- Danny Lopez (Employer)

Duration:

2 hours 10 minutes

Discussion:

- We need to make sure our documentation is good enough
- Requirements and such
- Scenarios (labs) etc..
- Test cases

- E.g. how a user logs into the website.
- Today, we are going to work on the architecture between all the groups.

- Sequence/activity diagram
- Draw the links between all the systems.

- General
- LAB styles

- Pen
- Malware

- CTF styles
- Jeopardy
- Attack/Defence

- Geir Olav wants to use PEMA for Malware labs from next year (semester?)
- Do we need fileserver for malware uploads?
- Answer types, likely text.
- Isolated labs for malware, simulating traffic etc. (DSL)

- NCR Meetings:
- 5th -
- 12th - Geir Olav will present his requirements for PEMA.

- Start with general components of the system.
- Try to see connection between components.
- Architecture diagram

- Sequence diagram
- UML Diagrams (If we want to go one step further)
- For processes:

- BPML?
- Workflow management diagram

- We show what we want from PLED while Danny prints something.
- The problem with “AND” statements on query.

- Seems like it displays parent as well.
- PLED will look at some good solutions for sorting between malware, challenges,

ansible etc..
- We discuss how we will pass information to Mikhal (DSL)

- YAML format.
- Little documentation, will likely not be any either, as Mikhal will not prioritize it at

all.
- Look at Mikhals GitHub to look at yaml examples etc.
- Mikhal needs at least a port that is defined in the image, we wonder if this is

something that can be sent through PEMA when the yaml file is sent.
- Making a sequence diagram.

- We are not too sure about the returning of IP addresses from the DSL, as the
spawning takes some time, and the IPs are not ready until the servers are up.

- Answers to tasks are stored in PLED
- “Everything that has to do with challenges (tasks), is stored in PLED.
- Flags are gotten from PLED when we get the vuln. App.

- We need a local temporary storage for “in-use flags”, that we can use for
answer validation.

- Passing of info to the DSL (yaml) is being put on the shelf? It will be implemented
after our work is done

26.03.19 - Week 12
Weekly meeting

Talking points:
-

Attendees:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, Sondre Granerud. (Group members)
- Erik Hjelmås (Supervisor)

Duration:

30 minutes

Discussion:

- Status
- Basically good, but we need to have a talk with Danny regarding some

clarifications.
- And we need a meeting with PLED and Mikhal regarding the links between our

projects.
- We show a little demo.

- Hjelmås thinks we are doing well, and have good progress.
- He also wants us to try our hand at designing the CSS ourselves.

- This would be nice for the thesis, as it shows more diverse skills.
- Hjelmås wants a draft of the report the evening of April 10th.

- + documentation.

22.03.19 - Week 11
NCR Showcase/demo

Talking points:
- Showcasing our project for Norwegian Cyber Range

Attendees:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, Sondre Granerud. (Group members)
- NCR (Including Danny and Basel)
- PEMA-Group
- PLED-Group
- Mikhal

Duration:

1 hour 5 minutes

Discussion:

- The instructor needs to be able to create topics when creating the lab.
- Events

- Something Basel and Mikhal is working on.
- Store Lab templates for the DSL in yaml for imports and exports.
- Looking at wireframes

- Make sure we follow the steps in there to create a lab, even if it is full of garbage.
- There is also a wish for CTF mode.

- CTF Showcase?
- Interface as is current, perfect for CTFs.

- Tasks and subtasks.
- Do we need possibility for answers in subtasks?
- If not, this can be made through the description.

18.03.19 - Week 11
Brainstorming meeting

Talking points:
- Where should we get a range of IP’s from? Mikhal?

Attendees:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, ​Sondre Granerud​. (Group members)
- PLED - Group
- Mikhal - Masters student
- Erik Hjelmås (Supervisor)
- Danny Lopez (Employer)
- Basel Katt

Duration:

1 hour 50 minutes

Discussion:

- Danny gives intro.
- Manual labor to create server-side of labs.

- Puppet or ansible.
- Mikhal likes ansible, yaml based works well with python (his work)
- Danny thinks its not as agnostic as initially thought.
- Decision: Basically, go for ansible. We are using HEAT anyways.

- Or everything through DSL
- PLED explains their Docker setup.
- PLED explains their vulnerability setup

- Automation is difficult, because of the nature of the vulnerability-files.
- As of now atleast requires some manual work.

- Offensive security has a db of basically all vulnerabilities, except what PLED
wants.

- They are using a scraper to gather info from exploitDB.
- AnsibleDirectory, basically PuppetForge
- Deployment

- Services described in DSL?
- Something called Galaxy is used, did not get the context.
- [Mikhal] Need to deploy a service with some parameters.
- What info should be included, and what should be set as default

- With regards to vm deployment.
- Basel gives PLED some ideas of where/how to get vulnerabilities.

- Their way of scraping seems alright, but if there is a website change, it needs a
rework.

- Their scraper can build a complete database in 40k seconds (11hrs).
- Then update on change.

- Basel will try to contact exploitDB, try to get vulnerable applications.
- Danny has two design-students that have shown interest in helping with GUI.

- We need to come up with some requirements for design students.
- Maybe use Dannys templates.
- We will have a meeting with the design students.

- Populating the VMs with “realistic” filesets etc.
- Basel: Build database gradually manually.
- Danny: Datasets for Cyber Forensics.
- This will be integrated with PLED.

- First in a group of Libraries(databases) of information useful to PEMA.
- They will basically have a PoC, where Mikhal deploys a simple version with

emails or something
- PLED: REST-API is up and running
- Vulnerability metadata

- Used for deployment and scoring etc.
- BPMN Diagram​?

- Could be useful for thesis, show what part of the “big picture” we are talking
about.

- UML Activity diagram?
- Having an interface towards PLED, basically a view of what is in the PLED databases.

- What vulnerabilities are available etc…
- Is available for testing.
- They will send us the info needed. (Can be put in the phabricator-wiki)

- Authentication
- Login.ncr.ntnu.no
- Choose where you want to go, what platform you want to go to.
- Hella confused on the NCR integration.

- Have CTF availability.

- We have a short talk with PLED regarding the API, after the meeting has ended.

12.03.19 - Week 10
Weekly meeting

Talking points:
- Clarification/specifying of what a task needs to contain.

- Task notes.txt
- Should a task have one or several possible topics?

- Having the possibility for an answer on a lab.
- The answer being on the lab itself, having a single answer for entire lab.

- Who should handle group creation?
- Students or instructors?
- Perhaps instructor chooses if done by students or instructor?

- Should there always be assigned 3 VMs for a group (even if there is only 1 person on
the group)?

- Where should we get a range of IP’s from? Mikhal?

Attendees:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, Sondre Granerud. (Group members)
- Erik Hjelmås (Supervisor)

Duration:

40 minutes

Discussion:

- Status
- Pled wants to talk, related to login.
- We show this weeks demo/new features.
- Errors in popups vs displayed on the page.

- Errors on page more modern.
- Labs displaying topics based on tasks, not set in the lab-creation.
- Create specific demo-usernames etc.
- Write a good, precise report.

05.03.19 - Week 11
Weekly meeting

Talking points:
-

Attendees:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, Sondre Granerud. (Group members)
- Erik Hjelmås (Supervisor)

Duration:

30 minutes

Discussion:

- Status
- Progress is slower than anticipated
- Should we have more focus on ease of use for other devs later down the line.

- Code quality
- Use Best-practice.
- Clean, simple documentation.

- Concise.
- Code design that is easy to use for the average dev.
- Ask someone who might actually take over the code. (To look at our

documentation/code)
- Other bachelor group?

- Offer user-testing in exchange etc..
- Ask some Prog. students maybe?

- User testing
- Espen Torseth (NCR)

- Technically strong. Could be asked, but pref. Bachelor groups.
- Sander is fighting with some testing software, but getting along fine.
- Sondre has gotten a local swarm working.

- https://snyk.io/​ - Have a look at this. Seems like a good thing for security.

Pentesting Exercise Management Application (PEMA)

H.4 February meeting logs

150

27.02.19 - Week 9
Weekly meeting + demo.

Talking points:
- Showing a demo of our progress. ​✔

Attendees:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, Sondre Granerud. (Group members)
- Erik Hjelmås (Supervisor)
- Danny Lopez (Employer)

Duration:

1 hour 15 minutes

Discussion:

- Starting with question about how we are doing.
- We have had a slow week, because of Campus-net being priority. (Part-exams)

- Sondre shows the demo using docker …
- Do you want the entire deployment automated?

- Yes. If it is locked down you’ll have to dig into the code to change things. (?)
- Tobias showing the wordpress-side of the demo.
- Database++ deletion on shutdown.

- Could be negated to keep data.
- Multiple themes for usability etc...?

- Child-themes sound like a better fit for what Danny wants.
- Danny will try to get Basel, he will likely want to see our progress.

- He was busy.
- Using admin-dashboard for posts and such?

- Make posts through the dashboard
- “Edit mode” ?

- Editing things through the admin-dashboard.
- Ask pros. About opinions on how we should integrate creating/auditing of labs,

tasks etc…
- Ask Lars-Erik?

- We are going to prioritize creation of labs.
- Check for add-user plugins?
- Add to user:

- Proficiency level
- Focus on the core, ease-of-use for adding users is not focus.
- GDPR is a question. Might need to import users to dodge some GDPR problems.

- QuestBack
- Connect uses from CTF?

- Would we be interested in presenting our demo next week or week after, for NCR
meeting?

- Will get back to us when. We pref. 2 weeks.
- Possibility for feedback from people who know what they are doing.

- Clarification on different themes
- Basically just the layout/interface. Functionality needs to stay.
- Core func. Is stored in the theme.
- We could probably move interface to child-themes, to allow for easier

interface-changes later on.
- Reference everything, even if you have a conversation with someone who might be an

expert on a forum etc.
- A wild Basel appears.
- We show him the wordpress part of the demo.
- Divide interface into different parts

- Topology… etc..
- Editor, drop down menus, drag & drop to create interfaces

- We will stick to the editor I think, with the potential for drop downs.
- Hierarchy:

- Lab
- Vulnerabilities

- Topic
- Tasks

- Labs not necessarily linear.
- Optional.
- Grey out tasks until prev. Is completed etc.

- Ontology of topics
- A scenario should list what topics it contains.
- Start with set of topics

- Maybe query them from somewhere else later. (Plugin?)
- From now on we will show a little demo in the weekly meetings, whenever we have

made any significant change/progress.

19.02.19 - Week 8
Weekly meeting.

Talking points:
- Should we use other plugins that are already created (e.g., a plugin that forces login

etc..)? This will make us dependant on others. ✔
- A “Newsfeed” showing latest updates and such. ✔
- File sharing. ✔

- We can create a new Google Drive where we share diagrams etc.
- As we are already using Drive for file-sharing internally in the group, this would

be the easiest and most familiar option for us.

Attendees:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, Sondre Granerud. (Group members)
- Erik Hjelmås (Supervisor)
- Danny Lopez (Employer)

Duration:

45 minutes

Discussion:

- General status.
- What we have done this week, and our discoveries
- Plan for this week etc..

- Q1:
- Dev [of plugins] might stop, so might be sketchy.
- Wordfence seems good.
- Look at it (with Danny) on a per-plugin basis.

- Check how the dev. Looks, and if the community is active.
- Make sure to document properly.
- Can look at plugins as PoC.
- Talk to Lars Erik Pedersen about NTNU login.
- PLED was told to talk to him.
- He knows his stuff.

- Q2:
- Interesting, would be nice to look into.
- Use post WP post functions for it?

- Q3:
- Google Docs is prolly fine.
- Danny will ask Basel.
- Could use a Phabricator repo.

- Might get access to The Box.
- Sharing a SkyHigh instance with Danny, with the repo running.

- Hjelmås wants demo next week?
- Git-repo testing?

- Pipelines.yaml
- Running code through a “pipeline”.
- Check if phabricator has this functionality.
- We can ask Lars Erik about phabricator as well.
- HarborMaster.
- Push to BitBucket as well, and do testing there.
- See obligs for OS-subject.

12.02.19 - Week 7
Weekly meeting

Talking points:
- Should we make misuse cases for rogue instructors/admins. ✔
- Admin role, is it really needed. ✔

- Assuming Admin(s) have access to backend (database)
- Clarification about what “Topics” actually is. ✔

- Is it purely a “Topic” with a short description, that labs/tasks are placed under?

Attendees:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, Sondre Granerud. (Group members)
- Erik Hjelmås (Supervisor)
- Danny Lopez (Employer)

Duration:

40 minutes

Discussion:
- Status
- Q1:

- We trust admin.
- Accidental misuse. We already have.

- Action confirmation.
- Q2:

- GUI better than CLI
- Harder for user to mess up in GUI.

- Multiple roles for same person?
- Instructor can be admin?
- Only one ‘active’ role at a time.
- Hjelmås: Start with two roles.

- Admin: Manage plugins.
- Admin: Stats.
- Instructor: Also some stats.

- Average time to solve a case.
- Time stats at least for sure.

- Q3:
- Forum and task topics are not directly related.
- Way to categorize the topics.
- Tagging with topic, allowing for multiple.

- See tasks listed under topic through clicks etc..
- Name and short desc.
- Discussion board topics:

- Instructor makes them at least.
- Moderation, aka instructors will always be able to see them.

- Functional requirements for modules:
- Will be posted on phabricator.
- + email for notification.

- Upload diagrams into phabricator.
- Readme and folders.

- Ordering by difficulty.
- Task attribute:

- Locked

08.02.19 - Week 6
Meeting with PLED group about API.

Talking points:
- API ​✔

Attendees:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, Sondre Granerud. (Group members)
- PLED-Group

Duration:

40 minutes

Discussion:
- CVE tall på vulnerabilities + evt. Kjente navn.

- CVSS score.
- Type
- Platform
- Type/kategori

- Authentication
- API keys/tokens.

- Lages i PEMA, sendes med i GET requesten.
- Faste tags ofc.
- Json/XML
- ? som delimiter.
- PLED viser eksempel
- Litt snakk om hvordan autentisering kan gjøres.

- Inntil videre en key som legges til manuelt.
- Etterhvert databaser eller noe med exchange av gyldige keys.

- Subqueries for å hent ut liste med ting osv.

05.02.19 - Week 6
Meeting with Basel about use case diagrams

Talking points:
- Ask about opinions on the current state of our use case diagrams ​✔

Attendees:

- Tobias Moe, Erlend Einmo, Sondre Granerud. (Group members)
- Basel Katt (Employer)

Duration:

30 minutes

Discussion:

- Mainly discussing how our current use case diagrams look (feat. no internet)
- Basel thinks these look good.

- Basel is skeptical to our use of the classification “labs”
- Would rather like to have them called “scenarios”

01.02.19 - Week 5
Meeting with Danny for clarification about functional requirements.

Talking points:
- We had several questions about the functional requirements, these were written down in

the “Functional Requirements” doc, and marked with (​Ask Danny​)

Attendees:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, Sondre Granerud. (Group members)
- Danny Lopez (Employer)

Duration:

1 hour 19 minutes

Discussion:

- Got clarification about our questions regarding the func. Reqs.
- These are found in the functional requirements doc.

- Proposed a few ideas of our own.
- Discussed how the point/currency system will work.

- Black market
- A “store” maybe?

- Discussed a few potential new features, most of which fall under the “if we have time”
category.

- Embedded terminal. (Like codecademy) (Would be really cool)
- There is a wish for a ‘CTF’ mode.

- We have a ​link ​to a proof of concept, but CTFs are pretty similar in format.
- We decided that a new role would be a good idea ‘Student Assistant’.

- Basically instructor but with like, no privs.
- Mainly answer forum posts.
- StudAss. role permissions will prolly be discussed more in detail later.

- Danny will write functional requirements for the modules Soon™.

Pentesting Exercise Management Application (PEMA)

H.5 January meeting logs

160

Meeting logs for January
29.01.18 - Week 5
Subtitle

Talking points:
- Confirming everything to be written in english. ✔
- Confirm thesis deadline. (15th or 20th?) ✔
- Common git repo? (Put full wordpress in git, or just our themes/plugins etc.) ✔
- CI/CD with auto-testing and deployment, or simply just automated testing.
- What diagrams do we need to create? ✔

Present:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, Sondre Granerud. (Group members)
- Erik Hjelmås (Supervisor)
- Danny Lopez (Employer)

Duration:

34 minutes

Discussion:

- [Pre-project] Report looks good, nothing really missing.
- Good enough for now
- More on the individual modules
- Specify the extent of “real equipment” with regards to realism.

- Would like local and FEIDE authentication.
- Two different auths, not mixed.

- Ask IT dept. about SAML or LDAP?
- We will use Wordpress, this okay.
- Not too flashy graphics etc.

- Not graphical designer bachelor..
- The scoring module modular

- Different scoring algorithms etc..
- Cross-platform?

- Wordpress should be pretty simple to make agnostic.
- Security concerns important for our thesis.

- “Security champion”?
- All of us should have this role. Because BITSEC.
- Misuse cases.

- Private repository
- Deadline should be the 20th, but still says 15th.

- 20th confirmed.

- Gantt scheme is fine.
- Write about the framework in the pre-project?

- Hjelmås agrees its not the right place “already here”.
- Diagrams starting next week:

- Copy Danny's use-cases.
- Sensors like diagrams :)
- Database diagram.
- Some use cases.

- High level use-cases.
- Misuse cases.

- Will hear about the repository

22.01.19 - Week 4
Meeting about Wordpress

Talking points:
- Wordpress ✔
- Maybe other frameworks? ✔

Present:

- Tobias Moe
- Danny Lopez (Employer)
- Carlos

Duration:

20 minutes

Discussion:

- Carlos didn’t have much experience with Wordpress (or php in general)
- He said it would be difficult to learn plugins/themes/widgets and to fully understand

Wordpress core
- Said we should look into Autolab (​https://github.com/autolab/Autolab​)
- There are benefits and drawbacks to using Wordpress, we need to weigh them

ourselves

Group meeting with PLED - 22.01.19 - Week 4
Meeting with PLED to establish the division and exact assignments

Talking points:
- Choosing a framework - Discussed in the group-meeting. ✔

- Wordpress (+ VueJS) vs. Laravel from scratch.
- Prosjektavtale ✔

Present:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, Sondre Granerud. (Group members)
- PLED-Group
- Erik Hjelmås (Supervisor)
- Basel Katt, Danny Lopez (Employer)

Duration:

55 minutes

Discussion:

- Setting up schedule for the semester.
- Development plan. (scrum version)
- Chart (gantt)

- Interfaces biggest concern. (Uncertain relevance to PEMA)
- Deployment manually, or grepping from PLED.
- Thoughts about API, but probably not needed.

- Basel says API is required.
- Separate from the DB?

- PLED-entries need metadata.
- Telling if something is exploitable or not/compatible etc..

- Figuring out who does what in the link between PEMA and PLED.
- Templates need to be a thing.
- Danny is unsure about why the API is required.
- PLED: Dynamic database.

- Will PEMA and PLED use the same interface?
- Would be the best solution. - A PLED tab or something.
- Instructor supposed to be able to use GUI for lab creation.
- PEMA query PLED metadata.
- Basel - Outside PLED, everything should be API.

- Everything that has to do with vulns. should be in PLED.
- Wants PLED to be separate interface.

- Maybe admin interface?
- PEMA still main interface for the instructor.

- Define interfaces that work separately.
- Then implement API stuff, and “merge” systems later, using the

“subsystems” PLED and PEMA.

- Integration testing later? Would be advantage.
- Would be nice for the bachelor thesis.

- Using git, or maybe a separate platform developed here on NTNU?
- Integration with Mihkal?

- Would be cool, but do not rely on it.
- Integrating concept of CTF into vulnerabilities
- Should PEMA have GUI-editor?

- Editor or wizard, (User friendly) for lab-creation. GUI or import from file.
- Associate with student group
- Describe the lab.
- Mihkals work.
- Specify where to deploy.

- Possible to save the lab (template?)
- With all dependencies etc…

- Project should be balanced or unbalanced.
- Balancing like how you describe the task.
- A lab can have several difficulties or not.

- Can have two levels
- Same topology and such.
- Differentiated with hints and how the task is described.
- Instructor selects​ if students choose level themselves or get

assigned to a level.
- Automatic filtering?

- Based on a “test task” or something. Something
to test the proficiency of the students.

- Grading still uncertain.
- Difficulty and all this is technically out of scope, but would be nice.
- Interface for evaluation perhaps?

- Create it as a module. (Big plus - Danny)
- Wordpress?

- Danny uncertain, ask Carlos?
- We think it is a good option.

- Uncertain about 3rd party auth.
- FEIDE integration?

- Enough time wasted looking at frameworks, will probably go with Wordpress.
- (Or maybe VueJS)

- There is a bachelor's thesis from a few years back using Wordpress. Would
be interesting to look at.

- 2016/17 Not many reports published….
- Hjemås has a draft from May 15.
- Development platform for ammunition and rocket company.

- Scalable-secure wordpress.
- Got an explanation on the Prosjektavtale.

18.01.18 - Week 3 - Extra meeting
Meeting about Functional requirements and Frameworks

Present:
- All group members.
- Danny

Duration:

30 minutes

Functional requirements:

- Interface requirements
- with regards to available labs/exploits etc..

- Feide login?
- Login redirection based on role and student “balance” (diff.)

- Every module has its own requirements
- Scoreboard…
- Should be able to be enabled or disabled on demand by instructor.
- (Scoreboard modular algorithms)
- Students

- Basic VM control (restart etc) and request larger VMs etc..
- Should not know through interface how many targets.

- Task based
- Scaling/balancing
- Grading per difficulty.
- Feedback after tasks/projects.

- Knowledge base
- Forum basically.
- Charts?

- Black market
- Currency to buy hints etc.
- Currency per task.

- If hints used, points deducted from payout
- Idea - Difficulty: Good students get less points?

- Important:
- Score
- Black market
- VM management

- We will get a document with details.

18.01.18 - Week 3
Frameworks/patterns meeting

Present:
- All group members.
- Danny Lopez
- Øistein Kolloen

Duration:

23 minutes

Meeting contents:
- Danny explains the functional requirements.

- Has to be modular.
- Will be built on and merged in the future.
- Will be a production system.

- Partially pre-made content
- Wordpress plugins​? - Has HUGE plugin database.
- Likely the best option.
- Carlos - Corner office, has experience with Wordpress.

- From scratch
- Look into ​Vue.JS​ - Frontend

- RestAPI - Feeds the frontend.
- Laravel, Django (Python)

- Sort of same things.
- Mye back and forth.

- Dropping Moodle.

15.01.19 - Week 3
Talking points:

- Make bachelor more BITSEC oriented ✔
- Moodle, look at pros/cons ✔
- What is this first delivery (1. feb) ✔
- Access to OpenStack and SkyHigh VMs ✔ (Solved, but not at meeting)

Present:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen, Sondre Granerud. (Group members)
- Erik Hjelmås (Supervisor)
- Danny Lopez (Employer)
- Mihkal (Master student)
- PLED-group (for first 10 minutes of meeting)

Duration:

45 minutes

Discussed:

- Explaining our views on moodle.
- Everyone mostly agreed, and moodle is out of the picture, at least until

meeting with Øyvind about frameworks.
- Will look into frameworks for PHP this week.
- Øivind Kolloen​ as co-supervisor.

- Meeting with him regarding frameworks ++.
- Python for backend programming potentially?
- Containers? Scalability.
- Web-app as a docker container.
- PEMA and PLED separate, other than querying PLED database.

- Queries PoC is basically the only thing required in collab with PLED (For now)
- Main funct.

- Instructor view and Student view.
- Create tasks.
- Deploy labs.
- GUI (Vs CLI ?)

- Domain Specific Language translation.
- Actual deployment, but very quick and dirty, as a proof of concept.

- GUI Straight into OpenStack SDK or something. But not ignoring
Mihkals work, making it easy to implement after completed thesis.

- Modules. Code modularity. - Someone will for sure continue work in the future.
- Instructor to choose which modules to be used in a given task.
- Scoring would be interesting
- Deployment to either all or individual students.

- Better explained tasks, easier etc…
- Monitoring.

- Student progress etc.
- Separate flag (+ IP) database (with scoring system, Danny's work)

- We will prolly make PoC

Good webapp bachelor:

Webapplikasjon for statistisk analyse
INGDAT
Kaja Hannestad, Marius S. Olsen, Jonas T. Nørvåg

Notes on Pre-project report (February submission)
- Look at previous groups handins (Webapp bachelor ^)

- Usually appendix to thesis.+ basically the first 2 chapters of thesis.
- Not hugely important.
- Content is very important, as it will be what is mostly in chapter 1 and 2 of the thesis.
- The report is what is graded, remember this.
- Requirement descriptions, use cases,...

09.01.19 - Week 2
Present:

- Tobias Moe, Erlend Einmo, Sander L. Berntsen (Group members)
- Erik Hjelmås (Supervisor)
- Basel Katt, Danny Lopez (Employer)

Duration:

- 20 minutes

Discussed:

- Scheduled weekly meetings with Erik Hjelmås, Basel Katt and Danny Lopez
- Tuesdays at 13:30

- We will be working with Mihkal
- He’s creating the deployment of labs for PEMA

- We presented our ideas of how we can make the bachelor more directed towards
BITSEC

- Will be further discussed (and decided) in the next meeting
- Our supervisor advised us to look into Moodle for our web design
- As well as API-based development.

I Time Tracking Output

171

Summary Report
January 01, 2019 – May 20, 2019

TOTAL HOURS: 1620:04:46

163.9 h

131.1 h

98.3 h

65.6 h

32.8 h

0.0 h

3
5

:5
0 6
0

:0
5 8
4

:1
1

8
5

:1
3 1

1
2

:0
5

7
8

:3
9

5
6

:2
2

7
0

:3
8

7
9

:3
5

7
5

:1
9

9
3

:2
4

1
2

8
:2

7

9
9

:3
1

1
7

:4
9

1
:0

7

1
1

2
:2

7

1
3

2
:2

0 1
6

4
:1

4

1
3

2
:4

0

1/1 -

7/1

15/1 -

21/1

29/1 -

4/2

12/2 -

18/2

26/2 -

4/3

12/3 -

18/3

26/3 -

1/4

9/4 -

15/4

23/4 -

29/4

7/5 -

13/5

21/5 -

27/5

USER DURATION

SL Sander Loken 413:54:36

MR Mrtobbzi1 413:09:49

Einmoerlend 409:47:50

PH Phenipa 383:12:31

TIME ENTRY DURATION

Report 393:33:28

Coding - Theme 327:44:25

Meeting 142:01:42

Research 82:23:51

Database 81:44:33

Testing 67:52:36

Docker 61:17:59

Code review 49:36:18

Project Planning 48:42:06

Coding - Wordpress 39:37:24

Openstack integration 30:45:15

SSL 30:13:59

Diagrams 27:59:59

Discussion 27:21:32

Administrative 18:43:31

Use cases 16:56:00

Page 1/6PEMA

Other time entries 173:30:08

USER - TIME ENTRY DURATION

Einmoerlend 409:47:50

Administrative 9:43:31

Administrative/Research 1:04:15

Coding 4:55:00

Coding - Theme 117:45:35

Coding - Wordpress 39:37:24

Database 4:52:03

Diagrams 8:08:51

Discussion 0:43:56

General work 0:00:03

Meeting 36:40:04

Misuse Cases 5:30:11

Presentation 1:05:00

Project Planning 10:52:14

Report 123:31:24

Research 18:21:29

Page 2/6PEMA

Research - Wordpress 12:33:58

Research: Diagrams 7:02:26

Seminar 1:15:59

Use Cases 6:04:27

MR Mrtobbzi1 413:09:49

Administrative 2:00:00

Brainstorm meeting 1:48:00

Coding - Plugin - OpenStack 14:32:04

Coding - Plugin/Theme 4:29:34

Coding - Theme 209:58:50

Database 2:52:01

Diagrams 4:08:20

Discussion 1:03:36

ERD diagram 3:20:44

Meeting 22:01:00

Meeting Danny 0:40:00

Meeting PLED 0:40:00

Page 3/6

USER - TIME ENTRY DURATION

PEMA

Meeting with Basel 0:30:00

Meeting with Carlos 0:20:00

Meeting with Danny 1:45:00

Meeting with Danny/Øivind 1:05:00

Meeting with supervisor 8:03:14

Misuse case 4:29:50

Prepearing Demo 1:18:45

Presentation for NCR 1:00:00

Project Planning 16:32:07

Report 71:30:01

Research 14:35:34

Research diagrams 3:58:59

Research Laravel 2:54:12

Research Vuejs 2:04:28

Research Wordpress 4:58:17

Seminar 2:16:07

Sequence Diagram 2:02:16

Page 4/6

USER - TIME ENTRY DURATION

PEMA

Use case 6:11:50

PH Phenipa 383:12:31

Administrative 7:00:00

Backups 9:16:58

Database 13:52:00

Deploying 2:54:11

Diagrams 8:37:47

Discussion 25:34:00

Docker 61:17:59

Finishing touches 7:33:00

General 14:39:29

Heat template research 4:49:00

Meeting 47:59:00

Moodle 0:21:05

Presentation prep 1:30:00

Project Planning 21:17:45

Report 98:35:28

Page 5/6

USER - TIME ENTRY DURATION

PEMA

Research 6:16:00

SSL 30:13:59

SSL/Report 4:28:50

Use cases 16:56:00

SL Sander Loken 413:54:36

Backend 7:57:00

Code review 49:36:18

Database 60:08:29

Diagrams 7:05:01

Fuzzing 7:57:31

Meeting 35:21:38

Openstack integration 30:45:15

Report 99:56:35

Research 43:10:48

Seminar 1:16:17

Static Analysis 2:47:08

Testing 67:52:36

Created with toggl.com Page 6/6

USER - TIME ENTRY DURATION

PEMA

P
entesting Exercise M

anagem
ent A

pplication

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

B
ac

he
lo

r’
s

pr
oj

ec
t

Sander Løken Berntsen
Erlend Einmo
Sondre Granerud
Tobias Moe

Pentesting Exercise Management
Application

PEMA

Bachelor’s project in IT-Operations and Information Security
Supervisor: Erik Hjelmås

May 2019

	Preface
	Contents
	List of Figures
	List of Tables
	Listings
	Abbreviations and Other Terminology
	Introduction
	Norwegian Cyber Range
	Background
	Project Description
	Boundaries
	Project Goals
	Learning Objectives
	Impact Objectives

	Target Audience
	Application Audience
	Report Audience

	Academic Background
	Project Organization
	Administrative Roles
	Functional Roles
	Project Rules
	Tools

	Software Development Methodology
	Schedule

	The Report
	Organization
	Practical information

	Requirements
	Functional Requirements
	Student functionality
	Instructor functionality
	Security requirements

	Non-Functional Requirements
	Accessibility
	Availability
	Maintainability
	Reliability
	Scalability
	Security
	Usability

	Use Case
	Use Case-Diagram
	Misuse Cases
	High-level Use Cases

	Sequence Diagrams

	Technical Design
	Frameworks
	Deciding on server side programming language
	Deciding on frontend programming language

	CMS and LMS
	Moodle
	WordPress
	Conclusion

	Web development
	Theme
	Page Templates
	WPDB Class
	Code Practices
	Enqueuing Scripts
	Plugins
	AJAX
	Hooks
	jQuery
	jQuery Plugins

	Database
	MySQL
	MariaDB
	Conclusion

	Webserver
	Nginx
	Apache
	Conclusion

	Choosing an Operating System
	Windows
	Linux
	Distributions
	Conclusion

	Containers or Virtual Machines
	Virtual Machines
	Containers
	Scaling
	Conclusion

	PEMA Cooperation
	PLED
	DSL

	Development Process
	Development Tools
	Coding Environment
	Project Management

	Planning for Future Work

	Implementation
	Setup of test environment
	Webserver
	Docker

	Installation and configuration
	Configuration
	The source code
	Docker swarm

	Docker implementation
	Web-application
	Directory and File Structure
	PEMA Roles
	PEMA-Lab Hierarchy
	The Loop
	Page Templates
	Custom Admin Pages
	Enqueing scripts and styles
	Site Navigation
	Usage of WPDB class
	Custom hooks
	jQuery
	jQuery Plugin

	Plugins
	Openstack Plugin
	Integration with PLED

	Security
	Wordpress
	Prepare function
	Output Encoding
	Nonces
	Security Plugins
	Permissions

	Backend
	HTTPS
	Docker swarm

	Deployment
	Testing and User Feedback
	Purpose
	Testing Scope
	Static Analysis
	Dynamic Testing
	Fuzz Testing
	Code Review

	Discussion
	Tools
	Writing tools
	Task Management

	Results
	Project Outcome
	Unfulfilled Requirements
	Alternative Solutions
	For Future Implementation
	Schedule

	Complications
	Static Analysis
	Development methodology
	HTTPS
	Linking to pages in WordPress
	jQuery data()
	jQuery Plugins
	WordPress plugins

	Evaluation
	Carrying Out The Project
	Group Evaluation

	Conclusion
	Future Work

	Bibliography
	Project Agreement
	Group Contract
	Permissions Tables
	Custom Capabilities
	WordPress Standard Capabilities

	Custom WordPress Hooks Table
	Backend actions
	Frontend actions

	OWASP ZAP Report
	Diagrams
	ER-Diagram
	PEMA Database Schema
	Lab Deployment Sequence Diagram
	Task Delivery Sequence Diagram
	Misuse Case: Student - Query Injection
	Misuse Case: Instructor - Query Injection
	Misuse Case: Instructor - Unintentional Misuse
	Misuse Case: Admin - Unintentional Misuse
	Misuse Case: Login
	PEMA Directory and File-Structure
	Gantt scheme - Start
	Gantt scheme - End

	Pre-project
	Meeting Logs
	May meeting logs
	April meeting logs
	March meeting logs
	February meeting logs
	January meeting logs

	Time Tracking Output

