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Preface

This Master’s thesis in AIMT at NTNU was carried out during the spring semester of 2019 with Prof.
Slobodan Petrovic as supervisor. Prof. Petrovic started this research[1] on the theoretic background
of using approximate search as a method for obtaining the Levenshtein distance between two bit
sequences of unequal lengths. Then utilise this in the generalised correlation attack[2] to recover
the initial state of the irregularly clocked Linear Feedback Shift Register (LFSR).

The topic of this thesis is to assess the practical implementation of this method on Central
Processing Unit (CPU) and Field-Programmable Gate Array (FPGA) using an unconstrained Ap-
proximate Row-wise Bit-Parallel (ARBP) search[1] using the shift-AND algorithm developed by
Baeza-Yates and Gonnet[3].

The reader’s background in this thesis is assumed to be familiar with computer architecture and
logic operations in electronic circuitry. These aspects are explained, but familiarity is still expected.

Magnus Øverbø
2019-06-01
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Abstract

Cryptanalysis on a cipher system the utilising 0/1 clocking Binary Rate Multiplier (BRM) as the
keystream generator renders Siegenthaler’s classical correlation attack[4] unusable since the output
sequence and the undecimated bit sequence generated by the irregularly clocked Linear Feedback
Shift-Register (LFSR) are of different lengths. Instead, by utilising the generalised correlation attack
developed by Golic and Mihaljevic[2] the Levenshtein distance between the two sequences can be
utilised as the basis for correlation.

In this thesis, we explore the application of implementing an unconstrained Approximate Row-
wise Bit-Parallel (ARBP) search, using Wu and Manber’s shift-AND algorithm[5], to obtain the
Levenshtein distance between the ciphertext and the undecimated bit sequence of the irregularly
clocked LFSR as the correlation metric. Our findings shows that the FPGA will perform better than
a Central Processing Unit (CPU) implementation, as it operates with constant mean execution time,
estimated by Ttot =Rops×4f . Where Rops represents the number of search state values which must
be updated throughout the search, and f is the FPGA designs clock rate.

The CPUs processing time is shown to be of linear growth, based on the length of the search
word as given by its periodic increase by a factor of

⌈
M
w

⌉
, where M is the search word length, and

w is the size of the CPUs machine word.
However, overall the time required for processing a real-world cipher system using Field-Programmable

Gate Array (FPGA) requires a large amount of resources. Even a feedback polynomial of L = 32,
with M = 1024 and a clock rate of f = 2.39GHz will require 43 days to complete, while M = 4096

would require 695 days to complete. Even so, given 700 FPGAs running simultaneously a search
can be completed within a day at the cost of the additional FPGAs needed, making it possible given
enough resources are available.
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1 Introduction

1.1 Background

Large number calculations on a Central Processing Unit (CPU) is not possible without a library pro-
viding a layer of abstraction, as CPUs can maximum hold 64b in a single register. This limitation is
a problem for cryptography requiring fast computations of large numbers since it creates latency. A
Field-Programmable Gate Array (FPGA) is a stateless system consisting of a large amount of inter-
connectable Configurable Logic Block (CLB), Random Access Memory (RAM) module and several
interfaces. FPGA is perfect for constructing logical circuits and performing logical operations as it
generates a circuit with programmable logic without having a fixed register size like CPUs. Applica-
tions for FPGAs are among others, signal processing, string matching and cryptanalysis as explored
in this thesis. It has already been shown to outperform CPUs in spam filtering by Borgund[6], and
in text searching, as studied by Irwin et. al[7] and Michailidis and Margaritis[8]. The downside is
that the clock frequency on a consumer-grade FPGA is much slower than a CPU, but its primary
strength is that it performs operations in parallel and concurrently.

The theoretical application of performing cryptanalysis using a constrained approximate bit-
parallel search algorithm is given in [1]. It details a cipher system built on the 0/1-clocking Binary
Rate Multiplier (BRM) which generates the irregularly clocked keystream to encrypt the plaintext.
The paper discusses the general correlation attack[2] and utilising a constrained Approximate Row-
wise Bit-Parallel (ARBP) search to recover the initial state of an irregularly clocked Linear Feedback
Shift Register (LFSR).

This thesis investigates the applicability of performing cryptanalysis of irregularly clocked LFSRs
by employing an unconstrained ARBP search on an FPGA. It evaluates the Levenshtein distance[2]
between the intercepted ciphertext and all undecimated bit sequences generated by the initial states
of the clocked LFSR. The thesis uses an unconstrained ARBP search with the shift-AND algorithm
developed by Wu and Manber[5], based on Baeza-Yates and Gonnets previous work[3], to obtain
the Levenshtein distance.

Approximate search requires processing the M bit search word and the ciphertext sequence,
which is tried embedded into the N bit search text allowing for K errors, where the search text is
the undecimated keystream sequence of length N = 2M bit. Given the limitation on a CPUs register
size w is mainly 64b, this thesis sought to determine if an FPGA could perform an unconstrained
ARBP search faster than a standard CPU, and what limitations occurs in relation to cryptanalysis.

1.2 Related Research

Petrovic[1] explore the theoretical applicability of using a version of the unconstrained approxi-
mate, bit-parallel search algorithm developed by Wu and Manber[5], to calculate the constrained

1



Cryptanalysis of Irregularly Clocked LFSR: using ARBP search on FPGA

Levenshtein distance between two bit sequences. This distance metric has been explored in the
past by Golic and Mihaljevic[2] to perform cryptanalysis of a cipher system which utilises BRM as
its keystream generator. More specifically, a 0/1 clocking generator, based on two separate LFSRs.
Golic and Mihaljevic[2] proposed a generalised correlation attack based on the constrained Lev-
enshtein distance as Siegenthaler’s[4] classical correlation attack, using Hamming distance, is not
possible with irregular clocked LFSR as the sequences are of different length.

This thesis seeks to build on Golic and Mihaljevic work regarding the estimation of Levenshtein
distance between an output sequence of length M and an undecimated LFSR sequence of N = 2M .
The thesis implements an unconstrained ARBP search as developed by Wu and Manber[5]. The
thesis also seeks to implement this algorithm on both a standard CPU architecture and using a spe-
cialised hardware, FPGA. which is capable of generating large complex circuits with programmable
logic. The reason for this is that FPGAs do not have constraints on register size, w, as opposed to
CPUs with w = 64b. Given this advantage, it was desirable to determine how efficient the imple-
mentation of this algorithm would be on an FPGA in the setting of cryptanalysis.

The topic of efficiency in bit-parallel searches on CPU and FPGA is well researched. Irwin et.al[7]
focused on exact string matching on an FPGA to improve the searching within an IDS. He utilised
the exact bit-parallel matching as developed by Baeza-Yates and Gonnet[3]. Their tests based itself
on searching a set of texts, given a set of search words where M = 32b. It evaluated its findings
against the same application run inside MatLab, which is not an ideal comparison as MatLab is a
scripting language. However, their result showed that FPGAs were 160 times faster than MatLab.

Borgund[6] explored a similar project to Irwin et.al[7], and tested the increased efficiency of
pattern recognition in spam email using an FPGA. The test performed was trying to match multiple
search words within the text of emails using the Levenshtein distance and approximate bit-parallel
search on FPGA. Borgunds results were evaluated against the same test on CPU, finding the FPGA
was 55 times faster.

A different paper details the same discovery, using the approximate bit-parallel search algorithm
as developed by Wu and Manber[5]. Michailidis and Margaritis[8] research is more closely related
to this thesis because their tests used long patterns testing. They found that the FPGA was 9-340
times faster than a CPU given M = 1024b. One difference between this thesis and Michailidis
and Margaritis is the implementation. Michailidis and Margaritis preloaded the FPGA with all data
required for the search, meaning it only had to handle the searching of fixed strings which is very
efficient. In this thesis, an entire system was implemented to automate the search in relation to
cryptanalysis, generate the data sets and transfer data.

In regards to specific hardware, Tran, Schindel, Liu and Schmidt[9] implemented approximate
bit-parallel search ofM = 512b on a CPU capable of running a 512b register per CPU core. Although
achieving excellent results in regards to CPU implementation and multithreading solutions, their
problem arises when M > 512b as the physical limits result in degraded performance. The cost of
these CPUs is also a consideration, even though they will not have an application for cryptanalysis
given its the limitation of M = 512b.

Even though the efficiency of searching on FPGA is researched, its focus has been on sequences
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shorter than w. Testing of search words longer than w is avoided on the background that the search
will lose efficiency. In this thesis, it is sought to verify this and test how long search words can be
processed, allowing K ≥ 1

4M errors.
This thesis implement a complete system for automated search with cryptanalysis as the focus,

on both CPU and FPGA. It performs an unconstrained ARBP search for all initial states of an irreg-
ularly clocked LFSR and is further used to obtain the search speed of both CPU and FPGA. Because
of this, the system must be capable of generating the search word and the search text automatically.
The search algorithm then tries to embed the search word into the search text, and report matches
to the host, allowing K errors to occur.

1.3 Scope of the thesis

For the scope of this thesis, the implementations must simulate the cipher system and generate an
arbitrary length search word, generate the search text, search all initial states of an LFSR given its
degree and polynomial, and record matches of interest. Part of the thesis is to implement this search
on both CPU and FPGA where most aspects of the information system are known. Meaning the
LFSRs feedback polynomials, ciphertext and the BRM are known. Then perform the cryptanalysis
by searching all undecimated bit sequences produced by the irregularly clocked LFSR, provided by
the set of possible initial states, and logging the correlation metrics obtained from the search.

Further cryptanalysis of the cipher system is out of scope for this thesis. Meaning the one-to-one
search for the combination of plausible undecimated bit sequences and clocking LFSR is out of the
scope of this thesis.

1.4 Contributions

This thesis seeks to evaluate how efficient FPGAs are in relation to CPUs for searching of N bit long
binary sequences using 1

2N long search words in the application of cryptanalysis. The reasoning
for this is to evaluate the FPGAs applicability as a platform for obtaining the Levenshtein distance
between two sequences and use it as the basis for cryptanalysis with the general correlation attack
by Golic and Mihaljevic[2]. The search implemented in this thesis is the unconstrained, approximate
row-wise bit-parallel search, using the shift-AND[3, 5] algorithm.

1.5 Research Questions and Hypothesis

The thesis objective is to perform and evaluate the application of running an unconstrained ARBP
shift-AND search on both FPGA and CPU. In doing so, the following hypothesis is developed based
on past research and the thesis problem.

FPGA will perform an unconstrained ARBP search faster than a CPU, given a normalised clock rate.

The following research questions are posed based on the hypothesis to prove or disprove the
hypothesis.

• How long search words can practically be processed.
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• How fast is the search performing.
• How do changes to polynomial, search word length and error threshold affect the perfor-

mance.
• How do the FPGA and CPU compare, given a normalised CPU clock speed.
• What are the limitations given each architecture.

1.6 Thesis Outline

The thesis consists of three main chapters. Chapter 2 goes through and explains the background
theory behind cryptanalysis, searching, and the system architectures used in the thesis project.
Chapter 4 goes through both system architectures and explains how the implementations designs,
discovered issues, and testing is also analysed to ensure the data collected would be valid. Chapter
6 discusses the results collected and the subsequent data analysis.

Chapter 1 entails the problem, defines the scope, discuss past research and poses the research
questions. Chapter 2 explores the background theory and concepts which the thesis bases itself
on. Some key aspects are Non-Deterministic Finite Automaton (NFA), unconstrained ARBP search,
and Golic and Milosevic’s proposed generalised correlation attack[2] and FPGAs. The background
theory provides the reader with knowledge of the required topics for this thesis.

The research methodology is discussed in chapter 3. It discusses the methods used for research,
experiment, software development and data analysis. In chapter 4, the implementation is explained
for both CPU and FPGA. It discusses the considerations made during the design and implementa-
tion, and analyses implementations to ensure they do not provide data which would be considered
tainted or incorrect.

Chapter 5 lists and explains the exact setup for the experiment and data collection. It presents the
overview of the data sets along with initial assumptions and assessments. Following this chapter,
it discusses the analysis of the gathered data, in chapter 6. Based on the obtained data sets, it
compares the implementations using a common factor before analysing the data sets behaviour to
draw a conclusion based on the characteristics and comparative analysis.

Lastly, chapter 7, summarises the findings and concludes this thesis before providing suggestions
for future work. The attached appendices list the data sets collected and the final set of source code
for both implementations.
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2 Cryptanalysis of irregularly clocked LFSR using ARBP search

In this thesis, all binary registers and sequences are depicted with the Most Significant Bit (MSB) as
the left-most bit and Least Significant Bit (LSB) as the right-most bit. Bit-wise shift operations are
left-shift operations, and numbering of registers and sequences are from right to left.

2.1 Stream Ciphers
A stream cipher is a class of encryption algorithms, which operates on the individual characters
or bits of a plaintext using an encryption transformation which varies with time. – Chapter 6.1,
Handbook of Applied Cryptography, Menezes et al. [10]

The stream cipher system in this thesis is a symmetric cipher, meaning the same key is used for
both encryption and decryption. The cipher system in this thesis is also a synchronous stream cipher
since the keystream is produced independently of the plaintext and ciphertext.

The cipher system in figure 1 operates in such a way that each bit of a plaintext(P ) is en-
crypted by bit from a pseudorandom bit sequence(X), the keystream. The ciphertext is generated
as Xi⊕Pi = Zi, by performing the bit-wise operation XOR on each pair of plaintext and keystream
bits, denoted by the i-th bit. To recover the plaintext, the same procedure using the bit-wise XOR
operation is employed, but on each pair of ciphertext and keystream bits, as Xi ⊕ Zi = Pi.

2.2 Linear Feedback Shift Registers

A Linear Feedback Shift Register (LFSR) is a binary shift-register, S, where a polynomial denotes
the feedback function and all bits are shifted each time it is clocked. Given the polynomial, the
shift-register produces a pseudorandom output bit sequence, which is used as the stream cipher’s
keystream. This operation is detailed in, for example, [11].

The LFSR is represented by its current state and its feedback polynomial, C(D), of degree
L, which is also the size of the binary shift-register. Church[12] represents polynomials as L + 1

long bit sequences, which is not applicable in software or hardware. To compute a polynomial it
has to be represented as a L bit long register, e.g. the polynomial C(D) = x3 + x+ 1 is represented
by a 3b register as; 1 0 1→ x3 + x.

A LFSR computes its next state by the following method and is calculated each time the LFSR
is clocked. Store the MSB SL, calculate the feedback value using the polynomial and current state,
shift the register and discard the current MSB. Insert the feedback value as the LSB, S1.

First, the MSB is temporarily stored because it is the current states output bit, and is discarded
by the future shift-operation. The feedback value, F (S), is calculated using the feedback polynomial
and the current state, as shown below. It produces a single bit output, which is assigned as the LSB,
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S1 after the shift operation occurs.

F (S) = (

L∑
i=1

C(D)i ∧ Si) mod 2 (2.1)

Following obtaining the feedback value, the next LFSR state is set by shifting the current state
by a single bit. The shift results in discarding the MSB, which is why it is temporarily stored, and
after the shift occurs, the LSB is set to the feedback value.

Si = Si−1 for i ∈ {2, .., L}
S1 = F (S)

(2.2)

When the LFSR is clocked n number of times the resulting pseudorandom output bit sequence,
X, produced will be n bit long. X is then further used to produce the ciphertext Z, as illustrated in
figure 1, by XOR-ing the X with plaintext P as denoted below.

Zi = Pi ⊕Xi for i ∈ {1, .., n} (2.3)

An important factor regarding the feedback polynomials used for an LFSR is that they should
be primitive polynomials. Utilising these polynomials will ensure that the maximum length period,
2L − 1, is generated. This is because these polynomials generate all possible states of the LFSR and
the maximum output, except for the 0 state, before it repeats itself. A list of primitive polynomials
for GF (2L) is, for example, provided by [13], which is derived from [12].

Figure 1: Encryption using LFSR

2.2.1 Clock Controlled Generators: Irregularly Clocked LFSR

In this thesis, the pseudorandom bit sequence is generated by an irregularly clocked LFSR, which
produces a decimated bit sequence of greater linear complexity. The method employed is a Binary
Rate Multiplier (BRM) called 0/1-clocking, see, for example, [14].

The BRM used in this thesis operates as shown in figure 2. It depicts two LFSR producing two
separate bit sequences, X and Y . These are fed into the decimation function producing the X ′

keystream bit sequence. This bit sequence is then XOR-ed with the plaintext, P , producing the
ciphertext, Z.
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The decimation function operates by clocking both LFSRs, X and Y simultaneously generating
the bits Xi, Yj . If Yj = 1 LFSR X is clocked once more, producing Xi+1. Xi+1 is then added to
the irregularly clocked bit sequence X ′ as X ′j . If Yj = 0, Xi is just forwarded to X ′ as bit X ′j .
The resulting bit sequence X ′ is then used as the keystream and is XOR-ed with P producing the
ciphertext Z.

The maximum number of deletions between X and X ′ is equal to the length M of the decimated
bit sequence, given that the probability Pr(Yj = 1) = 1. The minimum number of deletions is 0

given that the Pr(Yj = 1) = 0, which occurs if the clocking LFSR is initialised with the 0 state. The
clocking LFSR should produce a sequence of independent identically distributed binary variables,
Y , with Pr(Yj = 1) = 0.5 for all initial states of the LFSR.

Figure 2: Cipher system using the 0/1-clocking BRM as keystream generator

The LFSRs in this thesis utilise primitive feedback polynomials for two reasons. First, using
primitive polynomials of the same degree L in a BRM pseudorandom generator results in a linear
complexity of L(2L − 1)[15]. Secondly, the overall period is (2L − 1)2. The primitive polynomials
used in this thesis were selected from [13, 12] for GF (2L), where 2 ≤ L ≤ 32.

The linear complexity is based on the shortest period it generates, and the linear complexity is
defined as the shortest LFSR capable of generating the given sequence of bits.

2.3 Cryptanalysis

Given the cipher system, there are requirements for the generation of keystreams to ensure it has
adequate security. Regarding the statistical properties of the generated sequence, Golomb’s postu-
lates, as listed in [16], have to be satisfied and can be tested through various statistical tests and
autocorrelation. The linear complexity must be high, and the BRM 0/1-clocking LFSR used in this
thesis has a linear complexity of L(2L − 1)[15]. Lastly, the periods generated must be long, and in
this case, the overall period is (2L − 1)2[15].

Given these requirements, a keystream generator can be seen as adequately secure and resistant
against attacks. The cryptanalysist’s job then becomes to find a scientific method to break the cipher
system. In this case the task is to recover the initial states of the two LFSRs, X and Y , used to gen-
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erate the ciphertext, on the premise that the following parameters are known, the LFSRs feedback
polynomials, C(DX) and C(DY ), and the ciphertext Z of length M .

2.3.1 The Brute-Force Attack

Given the cipher system used in this thesis, recovering the initial state of both LFSR using a brute
force attack would require evaluating all combinations of initial states of X and Y . The search
scope would consist of (2L − 1)2 decimated keystreams X ′, which must be evaluated against the
ciphertext to recover the plaintext. Such a search quickly becomes infeasible to complete, e.g. given
a polynomial of degree 100, the search scope would consist of approximately 1.606E + 60, as
opposed to a single LFSR with only approximately 1.267E + 30.

Even though a brute-force method will find the correct solution eventually, the time require-
ments are usually well beyond the acceptable ones. Besides, there is a possibility of many possible
solutions that could be found given that the plaintext is too short or too generic.

2.3.2 Generalised Correlation Attack

Given Siegenthalers classical correlation attack[4] is based on the Hamming distance of two equal
length bit sequences, it is not usable given the cipher system in this thesis. When a BRM-based gen-
erator generates the pseudorandom sequence, the undecimated sequence and the output sequence
will be of different lengths, and Hamming distance is rendered unusable.

Golic and Mihaljevic[2] explored and developed a generalised correlation attack, which is based
on a constrained Levenshtein distance between two bit sequences of different lengths. The two
lengths must be of non-negative difference when calculating the correlation. Which in this case is
always positive. Golic and Mihaljevic propose the same cipher system, as illustrated in figure 2.
Where Pr(Yj = 1) = 0.5, and the Pr(Pj = 1) = p 6= 0.5 for all j. These parameters generate the
binary sequence Z, the ciphertext.

To evaluate the distance between a LFSR generated bit sequence and the ciphertext, 2L−1 initial
states must be evaluated and subsequently added to either of the possible hypotheses, H0 and H1.
Where the resulting Levenshtein distance d of the variable D is used for classifying the evaluations,
H0 a representing a plausible solution, and H1 representing a non-match. After evaluation two sets
of probability distributions are generated Pr(D|H0) and Pr(D|H1).

The evaluation is based on the length of the ciphertext, M and the selected threshold value, t,
which is set to achieve the desired probabilities for false-negatives Pm = 10−3 and false-positives
Pf ≈ 2−L.

Following the initialisation, the Levenshtein distance between the generated undecimated bit
sequence for each initial state of X is calculated using constrained search, explained in section
2.4.6. This constrained search allows match, substitution and deletions to occur, with the additional
requirement of only allowing a run of one deletion. The resulting Levenshtein distance d is then
classified as H0 or H1 according to t. The resulting set of Pr(D|H0) will contain the most plausible
initial states which could generate the solution.
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2.4 Search

Efficient searching algorithms is a well-researched topic, and for this thesis, the method employed
for searching is Wu and Manbers Approximate Row-wise Bit-Parallel (ARBP) search algorithm[5].
This search is built on the work regarding the exact search by Baeza-Yates and Gonnet[3] using
a bit-parallel algorithm. Baeza-Yates and Gonnet was the first to release the bit-parallel search for
exact pattern matching, which was based on finite automata theory, like Knuth, Morris and Pratts
algorithm[17], and it exploits the finite alphabet as Boyer and Moores algorithm[18] do.

A general problem in searching is the handling of large patterns as a Central Processing Unit
(CPU) loses efficiency when handling data larger than a single machine word, w. Several methods
for performing approximate search have been implemented, and the unconstrained approximate
row-wise bit-parallel search algorithm based on Wu and Manbers shift-AND algorithm is explained
in the following sections. The following sections details the concepts of the Non-Deterministic Fi-
nite Automaton (NFA)[3, 5], bit-parallel search[3, 5], the shift-AND algorithm and the difference
between constrained and unconstrained search.

An exact search is defined as the search word, or pattern, P exists as a direct subset of the search
text T , P ⊂ T . An approximate search is defined as, P is of distance k to Q, if it can be transformed
through k number of insertions, deletions or substitutions[5]. This is explained further in section
2.4.2, finite automata, and section 2.4.3, bit-parallel search.

2.4.1 Bit-Parallelism and Bit-operations

Bit-Parallelism, as explained by Navarro[19], chapter 1.3.1, is the representation of bit sequences
and processing of bit-wise operations in a computer and hardware. In hardware, many bits can be
represented as a single register of size w, which then can be updated in a single operation, e.g.
given the logical AND operation in figure 7, two registers of w size can be processed as a single
operation of parallel logic operations reducing the number of operations by w. This parallelism is
the aspect referred to and allows for high-speed processing of complete registers.

For a standard CPU w is 64b, but on an Field-Programmable Gate Array (FPGA) w can be set to
an arbitrary size given the FPGA has allocatable space for it. This ability is the reason why FPGAs are
more efficient in performing bit-wise operations, as CPUs must perform the same task repeatedly
until the entire value is processed.

Given this thesis uses bit-wise operations frequently, especially in the case regarding implemen-
tation, the used bit-wise operations are explained below. Arithmetic operations are not used in the
search, besides incrementing counters, so these concepts are not explained.

Bitwise shift
This operation is denoted by "« n" or "» n", which produces a left or
right shift of n positions. The operation will move all bits in the reg-
ister n positions the declared direction, which results in discarding
the n outermost bits and insert n 0-values at the shifted positions in
the register. An example of a left-shift of three is given to the right.

1101101 << 3 = 1101000
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Logical AND
This operation is denoted by "&". Given two registers, only the po-
sitions where a bit is set in both registers produce a set bit in the
resulting register, figure 7. This produces the truth table on the right
for each bit in the register.

0 0 0
0 1 0
1 0 0
1 1 1

Logical Inclusive OR / Logical OR
This operation is denoted by "|". Given two registers, all positions
with a set bit, regardless of the register, will produce a set bit in the
resulting register. This produces the truth table on the right for each
bit in the register.

0 0 0
0 1 1
1 0 1
1 1 1

Exclusive OR (XOR)
This operation is denoted by " ˆ ". Given two registers only positions
with a bit set in one of the register, will produce a set bit in the
resulting. This produces the truth table on the right for each bit in
the register.

0 0 0
0 1 1
1 0 1
1 1 0

2.4.2 Finite Automaton

As described by Navarro[19], an automaton is a directed cyclic or acyclic graph where every vertex
depicts a state q ∈ Q, and edges represent functional transitions D(qi, αj) between states and are
labelled by α ∈ Σ ∪ {ε}. D associate each state q ∈ Q with a set Q′ ⊂ Q for its set of edges,
α ∈ Σ ∪ {ε}. In the automaton there exists an initial state, I ∈ Q, regular states and final states
F ⊆ Q. Given this, the automaton is defined by A = (Q,Σ, I, F,D).

The automaton is a non-deterministic finite automaton, if there exist more than one transitions
from q ∈ Q, given a single label α. If there for every q ∈ Q exist only one transition for every
α it is said to be a deterministic finite automaton. Given figure 3, the left is an NFA, because
D(q0, α0) = q0, q1 and D(q2, α1) = q1, q3. Given the Deterministic Finite Automata (DFA), every
state q ∈ Q have only one transition with the same α.

Given an exact searching algorithm, each state has two transitions D. Either a horizontal match
transitioning it to the next state, or a mismatch returning the search to I, while the final value of

Figure 3: Automaton, NFA on the left, and DFA on the right
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the search pattern denotes a final state F marking a match.
In both Non-Deterministic Finite Automaton (NFA) and DFA, transitions from one state to an-

other will set the new state active. In a DFA only one state is active at a time because only one
transition exists from any state given a specific α. In NFA, multiple states can be active at the same
time, as there can exist more than one transition for α given a current state.

2.4.3 Bit-Parallel Search

Both Baeza-Yates and Gonnet’s[3], and Wu and Manber’s[5] proposed bit-parallel search algorithms
that are based on NFAs. Gonnets search is an exact pattern matching which is given by the NFA in
figure 4. Wu and Manber[5] proposed an approximate search based on Baeza-Yates and Gonnets
exact search algorithm, giving the NFA in figure 5.

Given the exact search by Baeza-Yates and Gonnet[3] only horizontal transitions are allowed,
indicating a direct match from the current state to the next value in the pattern. As shown in figure
4. In this event, both the pattern and search text is incremented, so the next state in the NFA is
evaluated against the next t ∈ T .

Figure 4: NFA for exact search of pattern 001011

When the search state reaches the end, state 6 in figure 4, a full match is registered. The state
of the search is represented as an M bit register R, the pattern length, and based on the algorithm,
the currently active states are represented by a set bit or unset bit. Eg. R = 001001, represent two
partial matches are occurring, and have reached position one of the pattern and position four of
the pattern. Example of exact search is shown in section 2.4.4 for a short example of the shift-AND
algorithm for exact search, but the update function for the search state is given below.

R′0 ← ((R0 << 1)|0m−11)&B[tj ]

Exact search utilises a single transition representing a direct match. Approximate search imple-
ments four transitions to allowK errors to occur. The NFA by Wu and Manber[5] has four transitions
from every state until the F ⊆ Q states denoting a match with k errors. The transitions are defined
as, match (horizontal), insertion (vertical), substitution (diagonal) and deletion (dashed diagonal).

Given the NFA for approximate search with K = 2, figure 5, the marked transitions are defined
as follows by Wu and Manber[5], and described by Navarro[19]. Horizontal transitions for a match
are the same as for exact search, and both the search text and pattern is advanced. A vertical
transition represents an insertion of a symbol into the pattern, and only the text advances. Solid
diagonal lines represent substitutions, and both the search text and pattern is advanced. Dashed
diagonal lines, ε, mean that a character of the pattern is deleted, the pattern is advanced, but not
the search text. Finally, the state I allows for an arbitrary number of bits to be skipped until the first
transition is made.
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The search state of an exact search is represented by a single M bit register that is updated
throughout the search. Approximate search organises this as a set of search states. RK

k=0, where R0

denotes the search state without errors, R1 allows a single error, until Rk=K allowing K errors to
occur during the search. The two update functions for calculating the new search states are given
below, see, for example [20].

R′0 ← ((R0 << 1)|0m−11)&B[tj ]

R′k ← ((Rk << 1)&B[tj ])|Rk−1|(Rk−1 << 1)|(R′k−1 << 1)|0m−11

Figure 5: Non-Deterministic Finite Automaton, allowing two errors

The horizontal transition forR0 is particular and updated the same way as an exact search, while
the rest are updated using the second function above and described below. The second function
implements all four transitions given for tj ∈ Tj as created by Wu and Manber[5] and explained by
Navarro[20]. In the list below, R′k−1 refers to the new search state value of the search state with
one less error than is currently being updated. Rk−1 Refers to the old value of the search state with
one less error allowed. Rk is the non-updated value of current search state, and R′k is the updated
search state value.

1. The horizontal transition is given by ((Rk << 1)&B[tj ]) which evaluates the next state for
correct match. The shifted search state value is OR-ed with the bit-mask of character tj . Any
matching bits will denote the new search state, R′k.

2. The vertical transition is given by R′k|Rk−1, by adding any missing bits from the non-updated
search state with one less error allowed. This represents inserting missing characters into the
pattern by advancing the text, but not the pattern.

3. The diagonal substitution transition is given by R′k|(Rk−1 << 1), by adding missing bits from

12



Cryptanalysis of Irregularly Clocked LFSR: using ARBP search on FPGA

the shifted register representing a non-updated search state with one lower error. This is
representing advancing the text and the pattern given the NFA.

4. The diagonal deletion of a character in the pattern is given by R′k|(R′k−1 << 1). This is done
by adding any missing bits from the updated search state of one less error to the new search
state, through a logical inclusive OR operation.

5. In addition, as given by [20], an additional OR operation is performed. R′k|0m−11 which
accounts for an unrepresented initial state, and simply sets the Least Significant Bit (LSB) of
R′k to 1.

2.4.4 Exact Bit-Parallel Search using Shift-AND

The search algorithm shift-AND by Baeza-Yates and Gonnet[3] for exact search is based on a NFA
and utilise register of M length to represent the current search state. The search state represents
all currently active states which have a partial or complete match. The NFA for the search is given
in figure 4 which deletes all non-match values until an initial match is found.

First, the search word, P , is processed to get the set of prefixes in the alphabet, Σ = {B[t0], B[t1]}.
Since Σ is binary, the prepossessing is given by, B[t0] =∼ P , the inverse of the pattern, and
B[t1] = P . For each tj ∈ T being searched, the current search state is updated according to the
shift-AND algorithm. Where the shift-AND calculation for an exact match is denoted below.

R′ = ((R << 1)|0m−11)&B[tj ]

Given the search text T = 10010110 and search word P = 001011, the exact shift-AND search
updates the search values as follows. Given the initial search state is R = 0, the updated search
state value is R′, with each set bit representing a match or partial match. This R′ is then used as
the R value for every tj being searched.

T = 10010110

p = 001011

B[tj = 0] = 110100

B[tj = 1] = 001011

R = 000000

(R << 1|1) = 000001

B[t1 = 0] = 110100

R′ = 000000
(R << 1|1) = 000001

B[t2 = 1] = 001011

R′ = 000001
(R << 1|1) = 000011

B[t3 = 1] = 001011

R′ = 000011

(R << 1|1) = 000111

B[t4 = 0] = 110100

R′ = 000100
(R << 1|1) = 001001

B[t5 = 1] = 001011

R′ = 001001
(R << 1|1) = 010011

B[t6 = 0] = 110100

R′ = 010000

(R << 1|1) = 100001

B[t7 = 0] = 110100

R′ = 100000
(R << 1|1) = 000001

B[t8 = 1] = 001011

R′ = 000001

2.4.5 Approximate Row-wise Bit-Parallel Search

As shown in explained in section 2.4.3, the approximate search is built upon the bit-parallel shift-
AND search by Wu and Manber[5]. Which is built on top of the exact bit-parallel search algorithm
by Baeza-Yates and Gonnet[3]. It is implemented as two separate functions, one for the initial
R0 state, which is calculated in the same manner as an exact search. From this value, the next
error level is calculated using the second function which represent all transitions possible from the
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current state allowing K errors.

R′k ← ((Rk << 1)&B[tj ])|Rk−1|(Rk−1 << 1)|(R′k−1 << 1)|0m−11

Even though this is a high-speed search at the hardware level, many calculations have to be
performed as given by Rops = N × (K + 1), which represent the total number of search state
updates needed to be performed for an entire approximate search. The example later in this section
with T of length N = 9 and K = 2 errors allowed. This results in 27 Rops to complete the search.

Given the NFA in figure 5 with T = 100101110, p = 001011 and K = 2 errors allowed, we get
the following approximate search states.

T = 100101110

p = 001011

B[tj = 0] = 110100

B[tj = 1] = 001011

R0 = 000000

R1 = 000001

R2 = 000011

B[t1 = 0] = 110100
R′0 = 000000

R′1 = 000001

R′2 = 000111

B[t2 = 1] = 001011
R′0 = 000001

R′1 = 000011

R′2 = 001111

B[t3 = 1] = 001011
R′0 = 000011

R′1 = 000111

R′2 = 001111

B[t4 = 1] = 001011
R′0 = 000011

R′1 = 001111

R′2 = 011111

B[t5 = 0] = 110100
R′0 = 000100

R′1 = 011111

R′2 = 111111

B[t6 = 1] = 001011
R′0 = 001001

R′1 = 011110

R′2 = 111111

B[t7 = 0] = 110100
R′0 = 010000

R′1 = 111111

R′2 = 111111

B[t8 = 0] = 110100
R′0 = 100000

R′1 = 111111

R′2 = 111111

B[t9 = 1] = 001011
R′0 = 000001

R′1 = 101011

R′2 = 111111

2.4.6 Constrained vs Unconstrained Search

Given the previous sections on correlation attacks, section 2.3.2, the idea of the constrained search
was introduced. This section briefly explains the idea of unconstrained and constrained search.
These search methods are implemented when calculating the edit distance between two sequences
and are used by Golic and Mihaljevic[2] when calculating the constrained Levenshtein distance.

In the NFA for approximate search method by Baeza-Yates and Gonnet[3] the set of operations
consists of match, insert, substitute and delete. An unconstrained search using the Levenshtein
distance calculates the number of operations required to transform sequence A into B using any
number of operations. Restrictions are not imposed on the operations and allow any number of
consecutive runs by a single operation.

As opposed to unconstrained search, constrained search can restrict the set of operations and
how they are used in the search, with the same goal of transforming A into B. As discussed con-
cerning cryptanalysis, in [2, 1], the constrained Levenshtein distance is calculated based on the
constraints proposed. For cryptanalysis, only match, deletion and substitution are allowed opera-
tions, since insert operations do not occur in the cipher system and can be disregarded. Restrictions
are also set on the number of consecutive runs of deletes to one since the 0/1 clocking BRM skips
maximum one bit at a time.
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2.5 Central Processing Unit

A Central Processing Unit (CPU)[21] is in its most basic definition is an electronic circuit component
which carries out the computer programs set of instructions, in order to complete the desired task.
A CPU has a specific set of instructions available, and only a subset of these can be utilised by
a computer program. This mapping is handled by the compilation process when generating the
computer program from source.

CPUs[21] are found in almost all commercial hardware, from computers to refrigerators, to
provide some functionality. CPUs are found as different components based on architecture and
functionality required. Generally, CPUs are mainly thought of existing in computers and servers,
but System on a Chip (SoC) systems like Arduino employ a Reduced Instruction Set Computer
(RISC)[22] to manage the tasks it is being employed for. A RISC employs a reduced instruction
set which limits the operations that the CPU can perform. Eg. Arduino and similar devices can be
found in drones, toys and devices where space is limited. These RISC have lower capability and
speed than regular CPUs found in computers and servers.

A standard commercial CPU consists of between two and eight cores, that are capable of run-
ning multiple threads simultaneously. This totals in 4-16 processes being able to run simultaneously
within a computer, but with the addition of scheduling[21], the CPU can handle an arbitrary num-
ber of processes simultaneously. Until the wait time between scheduled CPU access causes latency.

A CPU is restricted by its instruction set, but also its register size which puts a physical limit of
the number of bits it can process. Given a CPU with 64b architecture the maximum register size, or
machine word size w, that the CPU can handle in a single operation is 64b. If the search word is
longer than w, it is split into dMw e machine words and stored in separate address space locations,
this directly affects the processing time of each search word, as it requires dMw e times the number
of CPU operations to complete the processing of the entire search word.

While RISC has less capability, there exists CPUs with much higher capacity. Commercially avail-
able CPU, i.e. Intel Xeon Platinum 8180 processor consists of 28 cores, 56 threads and a clock
frequency of 2.5GHz (Max 3.8GHz) and is capable of rendering 512b vectors. A similar CPU was
explored by Tran et al. [9], testing its capabilities of processing long patterns using the ARBP search
by Wu and Manber[5]. This thesis also utilises the unconstrained Wu and Manber search, but with
even longer search words on a regular 4-core, 64b CPU. As Tran explains, two issues arose. First,
since M = 512b was the maximum length they could represent per CPU core, longer search words
were not tested given it would be split into several parts, causing an efficiency loss during com-
putation. Secondly, when performing a bit-wise left-shift operation, it required 31 additional steps
because the 512b vector is represented by 16 32b registers. Tran et al. [9] tested the runtime of
implementing the CPU specific 512b vector against a regular 8-core CPU using multithreading.

Tran et al. [9] results were that the 512b CPU vector was superior. Which is easily understood
as the natively implemented 512b vector is almost equivalent to a hardware implementation of a
512b register.

To handle large numbers, longer than w bits, in a program running on a CPU special libraries that
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support arbitrary-precision arithmetic has to be utilised. E.g. the GNU Multiple Precision Arithmetic
Library (GMP) library[23] provides this abstraction layer for the C programming language. It allows
allocation and handles many arithmetic and bit-wise operations. It contains three separate data
types of different aspects, MPZ, MPF, and MPN. MPZ is for standard signed integers, MPF is for
floating point, and MPN is for very low-level operation on positive integers. MPN is meant for low-
level applications, has an extensive function library, but suffers from being harder to implement than
MPZ. MPZ has a much lower threshold for implementation, a vast library and well documented.
However, it does not provide a function for bit-wise left-shift operations, meaning certain support
functionality would require custom implementation..

2.6 Field-Programmable Gate Array

A Field-Programmable Gate Array (FPGA) is a hardware device used to test and implement pro-
grammable logic circuits at near hardware-level efficiency. It is based on a semiconductor device
with a matrix configuration that is comprised of Configurable Logic Block (CLB) connected via
routable connections. An FPGA is usually designed to be infinite programmable, while its coun-
terpart Application-Specific Integrated Circuit (ASIC) is programmed from the manufacturer for a
specific task. Given this, an ASIC is more suited for the production of finished designs, while FPGA
is used for development or when the system must be re-configurable. This is one of the reasons
intricate systems such as signal processing, medical devices, automotive control units and ASIC

Figure 6: Nexys A7 100T XC7A100T CSG324C Xilinx chip
Source: https://reference.digilentinc.com/_media/reference/programmable-logic/nexys-a7/
nexys-a7-top-600.png
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prototyping utilise FPGA as they can be reconfigured, reprogrammed, and with relative ease extend
its physical capabilities.

As opposed to Central Processing Unit (CPU), the FPGA has a much lower clock frequency and
higher price range, but currently, consumer-grade FPGA boards have become affordable with a clock
rate of 50-150MHz. Current FPGAs have overall increased capabilities in the form of CLB density,
Block-RAM (BRAM), DSP blocks, clock frequency, and external connections, as seen by the Nexys
A7 in figure 6. In the case of the Xilinx Artix-7 FPGA chip a single CLB[24] is comprised of two logic
slices where each logic slice is comprised of four 6-input Look-Up Table (LUT), four flip-flops[25],
carry-chain logic[26] and four additional flip-flops used for latching.

A LUT is a truth table for combinational logic for a set of inputs, and these are used to resolve
the combinational logic. A flip-flop[25] is a fundamental component that can store information, e.g.
setting a flip-flop means it will hold the value and present it as the output. This is how registers are
managed in FPGAs. Carry-chain logic[26] is the basic functionality which makes an FPGA effective
in regards to arithmetic operations. Given an arithmetic operation producing a carry, the direct
output is sent as output, while the resulting carry is routed through the carry-chain logic to the next
logic element in the register. These building blocks are combined into a CLB and routing allows for
CLB to be interconnected carrying out complex logic.

Given the programmable interconnects between an FPGAs CLBs, complex hardware systems can
be implemented on an FPGA. This inter-connectivity enables one to design independent and parallel
circuits to process its work effectively. This is exemplified in figure 7 illustrating a basic logic-AND

Figure 7: AND operation on two registers
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operation. Two 6b registers generate a single 6b output through a bit-wise AND-operation. The
FPGAs architecture allows an arbitrary number of bits to be processed simultaneously based on its
design, while CPU can only process up to w bits simultaneously based on its physical constraints.

The AND-operation is implemented by using CLBs, but since these are of limited quantity in
the FPGA, implementation of Random Access Memory (RAM) is essential aspects of an FPGA. In
addition to Double Data Rate 2 (DDR2), BRAM is memory structures on the FPGA dedicated to
synchronous memory utilisation. BRAM has the advantage of being very simple, larger storage
capacity than CLB, and easily implemented in an FPGA design[27, 28]. It is implemented using
a standard design which is interpreted upon synthesis which allocates BRAM instead of CLBs to
contain the data. Representing the error table of size (K+1)×M in CLB is not feasible as it quickly
becomes larger than the number of available CLB.

2.6.1 FPGA Development Methodology

In difference to compiling an executable from source code for an operating system, generating
a functional program for an FPGA is more complicated and requires many stages as it generates
a hardware circuit. Xilinx[29] describes the design flow overview in their documentation. These
stages have to be run each time a change occurs in order to generate a functional bit-stream file for
the FPGA. Their description is summarised below.

Design Entry This stage constitutes the generation and implementation of the desired design. This
is where one generates source code and define constraints, such as timing constraints and
pin-out mapping for the FPGA board.

Functional Verification Here the functionality is verified through manual and automated simu-
lation pre and post-synthesis. Before synthesis, it is run a behavioural simulation to verify
RTL code and to confirm the design is functional. After programming the FPGA, functional
verification can be performed on the implemented design.

Design Synthesis Synthesising the design involves verifying the source code syntax, analysing the
design hierarchy for the optimal design and architecture, generating the netlist describing the
design.

Design Implementation This is run post-synthesis, which performs the following tasks. Translate,
map, place and route the design, and generating the programming file. Translate merges
netlists and constraints into a design file. Map fits the design into the FPGAs resources. Place
and route, places and routes the design to the timing constraints to create the optimal utili-
sation of the board. Programming file generation produces a bit-stream file used by the FPGA
to run the implemented design.

Timing Verification This is run after map, or place and route and verifies the timing of the imple-
mented design.
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Xilinx Device Programming Program the FPGA using the generated bit-stream file produced by
the design implementation. It is uploaded through the desired method, usually via JTAG on
consumer-grade FPGA boards.

2.6.2 FPGA Design Debugging

Debugging an FPGA is done via many options at different stages and consists of electronic de-
bugging, code validation, simulation and testing. Electronic debugging is the task of verifying and
debugging the system after it has been implemented on the FPGA and testing its functionality via
measurement tools to verify the operation is correct. E.g. using an oscilloscope to verify the bit-
stream and clock frequency or output of a register through debug ports. Simulation and debugging
in software is mostly the same thing, this involves running the simulation, as shown in figure 9,
and stepping through the code to verify it operates and performs the tasks correctly. Code valida-
tion is run throughout the process of synthesis and implementation, and verifies that the code and
resulting schematics is functional.

The main debug process is through simulation, but as shown in figure 9 this quickly becomes
cluttered. The simulation shows the state of registers plotted along a timeline based on a simulate
clock rate and updates the registers based on the synthesised code. However, even though this is a
powerful tool, it can be prone to errors as the simulation generates a perfect clock signal which it is
not a real-world example and thus may result in errors on hardware. In figure 9 the following data,
among others, are shown, the output 16b LED-register, LFSR polynomial, search position, BRAM
allocation and BRAM operating status is shown.

2.7 Universal Asynchronous Receiver-Transmitter

Universal asynchronous receiver-transmitter (UART)[30] is a hardware device or program block
which implements the conversion and transfer of parallel data over a serial bridge using a specific
baud rate. The protocol is straightforward, but have a slow transfer speed with a baud rate of
maximum 115200bps, meaning the cost of this protocol is easily understood to be time. USB 2.0,
which the Nexys A7 board utilise, has a theoretic transfer speed of 480Mbps, as opposed to UART
115.2kbps. However, the implementation of USB2.0 communication is much more complicated and
requires more space on the FPGA. Using Timothy Goddards open source UART implementation[31],
both the FPGA requirements and implementation time is shortened severely, but at the cost of data
transfer speed. Therefore UART should only be used if the data transfer can be kept minimal or
is insignificant to the operation of the system. This thesis only utilises the transmission aspect
of the UART protocol because it was not necessary to receive data. Which results in a reduced
implementation of the UART protocol.

The UART protocol functions as a system of two communicators, A and B in figure 8, each with
an interconnected receiver and transmitter, utilising a common baud rate. The transmitter of A is
connected to the receiver of B and vice versa, using a dedicated line.

To send data, a fixed 7-9b register containing data set on the transmitter (A). The transmitter
encapsulates the data by pre-pending a single start bit to the data register. Then it appends one or
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zero parity bits (yellow), and lastly one or two stop bits (pink). This is then transferred in serial
to the receiver at the specified baud rate. The receiver B, then receives the data and reconstructs
original data register and presents it to the recipient as a fixed size register.

Figure 8: UART protocol
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Figure 9: Vivado simulation view. Source: Magnus Øverbø
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3 Methodology

3.1 Research methodology

For this thesis, the research methodology employed is a deductive approach[32], where quantita-
tive methods[33] are used in the experimental design and for data analysis. The deductive research
approach was used because the hypothesis and research questions are formulated on the basis of
existing theory. The research method is then meant to confirm or disprove the hypothesis and pro-
vide the foundation for answering the research question through experimentation and subsequent
data analysis.

With the experiment, we seek to asses how the subjects dependent variable, processing time,
are affected by changes in the independent variables, polynomial, search word length and error
threshold. With this in mind, we hypothesise that the Field-Programmable Gate Array (FPGA) im-
plementation will perform better than the Central Processing Unit (CPU), given its ability to process
arbitrary length search words without efficiency degradation.

The experimental design was based on a true-experimental design, within-subjects-design[33],
where both subjects are given the same treatments and observed. The observations yield numerical
data in interval form and are used for statistical analysis to obtain the mean processing time at a
comparable level within and between subjects. The data is also used in line graphs to evaluate the
collected data sets for each subject and as a method of comparative analysis.

3.2 Experiment

In this thesis, we perform the research using a within-subjects-design design to determine the cause-
and-effect relationship between the independent variables and the dependent variable. Each sub-
ject, FPGA and CPU, is run through the same baseline of tests to obtain results that are comparable
during analysis.

The within-subjects design depicted in table 1 represents the two subjects independent variables
which affect the dependent variable, processing time, that is observed and measured. We structured
the experiment as follows; for each polynomial, it tests the elements from the set of search word
lengths, and for each search word length it test several error thresholds. Each test is then repeated
to increase the internal validity of the obtained measurements.

In the design, the treatment issued is a change to any of the independent variables, which is
observed by measuring the impact on the dependent variable.

22



Cryptanalysis of Irregularly Clocked LFSR: using ARBP search on FPGA

Table 1: Within-Subject Experimental design

Subj
Variables Time→

Pol Search word Error Test and observation

CPU
11

M = {16, ..1024} K = { 14M, .., , 12M}
Tx→ Obs Obs Obs

16 Tx→ Obs Obs Obs

FPGA
11

M = {64, ..2048} K = { 14M, .., , 12M}
Tx→ Obs Obs Obs

16 Tx→ Obs Obs Obs
20 Tx→ Obs Obs Obs

3.3 Data analysis

The quantitative data gathered from the experimental phase were analysed as individual subjects
by using statistics and graph analysis[34]. The statistical analysis is limited to find the common
factor within the subjects tests, and later for comparative analysis between subjects[34].

To assess the subjects individual behaviour and draw conclusions, we plotted the obtained data
as line graphs for visual analysis. This method was later employed to perform a comparative analysis
between subjects.

Although the number ofRops is the generic base number used for comparison, it is based on three
separate variables. This posed an issue since all of them vary throughout the data sets, but each
variable may have a different impact on the dependent variable. The experiment design, table 1,
allows us to organise the tests into a hierarchy of subclasses then used for plotting and interpreting
the graphs. The subjects are represented as individual sets as a combination of the subject and
polynomial degree. Further, the search word length plotted along the X-axis with multiple data
points representing error thresholds resulting in a time-measurement along the Y-axis.

The goal with the intra-class analysis is to establish how fast the runtime is, based on the com-
mon factor mean time per Rop. This intra-class analysis is then further used in a comparative inter-
class analysis, which is intended to show the overall difference between the two subjects.

3.4 Software Development

Two implementations had to be developed, for CPU and FPGA, ensuring only architectural differ-
ences were the contributor to differences in the measured processing time during the experiment
phase. Since there was no implementations capable of performing a search of the entire search
space existed, we had to implement both. The implementations were developed using an iterative
development process with regular milestones of deliveries[35]. During each iteration, only small
tasks were worked on to facilitate fast development with fewer errors and refactoring when needed.

The development order is shown in figure 10, where each task consisted of several iterations
and milestones. Iterative development is a simple development method suited for small systems
and fast development.

In this thesis, we could start with the single building block of implementing the search algorithm
and keep adding functionality around it. Before beginning the development, several Proof of Con-
cept (PoC) was created to learn about searching, and the algorithms were implemented and used
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Figure 10: Software development progression

as the starting point for the CPU implementation.
The first building block was implementing the shift-AND algorithm[3]. Once basic functionality

was verified, the surrounding system functionality was implemented. Eg. Data collection, looped
search, and debug information. Simultaneously the task of learning FPGA design, and the Hardware
Design Language (HDL) Verilog was begun via various open sources[36, 25, 37, 38].

Upon completing the CPU implementation, the development of the FPGA implementation began
using the CPU as a template. All features were broken down into iterations, then redesigned and
implemented for FPGA during iterations.

After the first major version was released, additional features were added to automate tasks,
and large portions of the code were improved, e.g. through the implementation of GNU Multiple
Precision Arithmetic Library (GMP) MPZ library[23] for CPU, and the implementation of Block-
RAM (BRAM) for FPGA.

3.5 Problems and Limitations

3.5.1 Bias

An issue regarding this experimental design is the bias caused by both implementations being de-
veloped by the author. In the case of Borgund[6], the FPGA design was developed by the author
and the CPU implementation was provided by Prof. Slobodan Petrovic. For this thesis it was not an
option as existing systems did not meet the requirements.

With this in mind, the implementations have been created as equal as possible, considering the
significant differences between the architectures. It is however imperative that for future use that
the CPU and FPGA implementation is evaluated against a third party and analysed to discover any
bias.

Even though there is a bias, It is also clearly shown that the results achieved in this thesis are
congruent with the findings by previous work, see, for example, [6, 7, 8].
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4 Implementation

The following chapters explain the two implementations created for this thesis to evaluate if there
is a benefit to utilise Field-Programmable Gate Array (FPGA) for searches. It first describes the C
implementation and choices made, followed by an explanation of the FPGA design. Lastly, in this
chapter, it discusses the issues and corresponding mitigations employed regarding the implementa-
tions and how they compare to each other.

As a starting point and to figure out the requirements for this software, in terms of processing
and data acquisition, Several Proof of Concept (PoC) programs were written in C to understand
and create a basic implementation of different search algorithms. Both for exact and approximate
searches explained by Navarro in [19].

For the implementation used in this thesis, an unconstrained Approximate Row-wise Bit-Parallel
(ARBP) search using the shift-AND search algorithm was implemented, given by Baeza-Yates and
Gonnet[3]. The choice for using shift-AND search, as opposed to the faster shift-OR, was because
the example code provided by Navarro[20] used the shift-AND algorithm and therefore easier to
implement. However, in the C implementation, a shift-OR would reduce the processing time because
it removes an operation when updating the search state value.

By implementing a multiple precision arithmetic library, the implementation can process arbi-
trarily large numbers independent of w. The chosen library was the GNU Multiple Precision Arith-
metic Library (GMP) MPZ[23], based on the software was written in C on a Linux system.

The FPGA design was designed and written in Verilog using the Vivado IDE, using the predefined
board files[39] and FPGA constraint files[40] as provided by DigilentInc. The constraint file creates
an abstraction layer by mapping physical pins, e.g. switches, Light Emitting Diodes (LED) and
clocks, to variables for use in the source code. The FPGA implementation was designed based on
the previously created C implementation but leveraged the hardware advantages that are provided
by FPGA.

4.1 CPU Implementation

The logical flow of operations in this software is illustrated in figure 11, while the source code in
its entirety is provided in appendix B.1.

In the preamble, this software initialises the variables before using an initial state, a plaintext of
length M and a polynomial of degree L to simulate the encryption process, generating the M bit
intercepted ciphertext(search word). From this, it creates the M bit prefix values, which ends the
preamble phase.

Next, it will iterate through each of the 2L − 1 initial states of the clocked Linear Feedback
Shift Register (LFSR). For each initial state of the clocked LFSR, it generates the undecimated bit
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Figure 11: Logic flow diagram of Central Processing Unit (CPU) implementation, written in C

sequence which is N bit long. The length N = 2M as the maximum undecimated length possible is
2M due to the 0/1 clocking Binary Rate Multiplier (BRM). Also, an arbitrary number of initial skips
is allowed until the first bit is matched.

After generating the search text, the search function will create the initial representation of
the search state table allowing K errors, represented by an array R consisting of K + 1, M bit
representations of the search state value. For each position in the search text, all search state values,
RK

k=0, are updated before logging the match with least errors to stdout and file.
When it comes to the search algorithm, the most significant difference between FPGA and CPU

lies in the implementation of how search state values are updated, see listing 4.1 and 4.2. Given
the source code for updating the R0 search state, several sequential steps have to be performed —
each requiring multiple function calls and CPU operations when the search word is longer than w.
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1 mpz_set( oldR , R[0]); //Init oldR to cur R[0] (R[i])
2
3 mpz_set(tmp1 , R[0]);
4 mpz_lshift( tmp1 , m ); // lshift
5 mpz_setbit( tmp1 , 0 ); //OR with 1
6 mpz_and( tmp1 , tmp1 , B[Ti] ); //AND with B[Ti]
7
8 mpz_set( newR , tmp1 ); //Set newR to tmp
9 mpz_set(R[0], newR); //Set R[0] to R’[i]

Listing 4.1: Calculation of R0. Exact search

Given the source code 4.1 the number of steps required for calculating the initial R0, oldR and
newR values requires six GMP operations, along with a bit-wise left-shift operation that requires
L + 5 steps where L is the size of the LFSRs binary representation. This calculation is however
without taking into consideration how many actions each GMP function call requires, but a look at
some of the primary functions, e.g. mpz_setbit function encompass a large number of operations
due to error handling and calculations.

1 while( i < K ) {
2 mpz_clear( tmp1 ); mpz_clear(tmp2);
3 mpz_init(tmp1); mpz_init(tmp2);// reset and initialise temp variables
4
5 // Substitute and deletion
6 mpz_ior(tmp2 , oldR , newR); //tmp2 = (oldR|newR)
7 mpz_lshift(tmp2 , m); //tmp2 = <tmp2 > << 1
8 mpz_setbit( tmp2 , 0 ); //tmp2 = <tmp2 > | 1
9 #if !defined INC_INSERT

10 // Insertion
11 mpz_ior(tmp2 , oldR , tmp2); //tmp2 = oldR | <tmp2 >
12 #endif
13
14 mpz_set(tmp1 , R[i]); //Copy value
15 mpz_lshift(tmp1 , m); //tmp1 = R[i]<<1
16 mpz_and(tmp1 , tmp1 , B[Ti]); //tmp1 = <tmp1 > & B[Ti]
17
18 mpz_ior(tmp1 , tmp1 , tmp2); //tmp1 = <tmp1 > | <tmp2 >
19
20 mpz_set(newR , tmp1); //newR = <tmp1 >
21 mpz_set(oldR , R[i]); //Store R[i] for next error
22 mpz_set(R[i], newR); //R[i] == R’[i]
23
24 i++; //Next error
25 }

Listing 4.2: Calculation of RK
1 . Approximate search

Following this initial calculation is a set of repeating calculations for updating the remaining K
search states values, code 4.2. It requires two left-shift operations and nine GMP operations. Each
update of the search state will then require K(2(L+ 5) + 9) operations. So given the polynomial is
of degree L = 11, K = 16 and M = 64, the number of operations for a CPU to perform for each
position in the search text is.

(L+ 5) + (K(2(L+ 5) + 9)) = (11 + 5) + 16× ((2(11 + 5)) + 9))

= 16 + (16× 41 = 672
(4.1)
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The result above is arbitrary for several reasons, but illustrates the drawback of CPU processing.
First, it does not account for the number of actions performed by the functions in the GMP library,
given based on the "mpz_setbit" function it would constitute upward of twenty separate operations
for each operation call. Secondly, given that this is a CPU with w = 64b, each value larger than
w, e.g. search state value, would be split and require several CPU operations to calculate an entire
variable. Each of these two drawbacks adds to the processing time, which is why FPGAs perform
searches more efficiently as opposed to a CPU.

The implementation does not utilise parallel processing, which would enable much faster run
times. Given the assumption that multithreading does not result in unnecessary interrupts, one can
assume that it would divide the total processing time by the number of allocated threads. Parallel
processing has not been implemented and therefore not verified, but was implemented by Tran
et.al[9] with excellent results and should be explored as mentioned in further work 7.2. However,
by not implementing parallel processing, both systems in question are running the implemented
search in serial, keeping the data comparable.

4.2 FPGA implementation

The logical flow of operations in the finished Field-Programmable Gate Array (FPGA) hardware
design is illustrated in figure 12 and described in this section, while the source code is provided
in its entirety in appendix B.2. For the development in this thesis, the Digilent Inc Nexys A7 FPGA
development board with the Artix-7 100T CSG324 chip was used, as shown in figure 6-

The starting point for the FPGA design was the initial Central Processing Unit (CPU) implemen-
tation, but the major difference in architecture resulted in significant differences. These differences
are how the search state values are updated and how data is transferred using Universal asyn-
chronous receiver-transmitter (UART) for collection. The FPGA design made up of three separate
Verilog modules. The UART module by Tim Goddard[31, 41], the Block-RAM (BRAM) module by,
for example InventBoxTutorials[27] and TimeToExplore[28], and the custom module designed to
perform the unconstrained Approximate Row-wise Bit-Parallel (ARBP) shift-AND search[3]. The
modules are described separately in the following sections, followed by the explanation of the over-
all hardware design,

4.2.1 BRAM module

The Verilog code for the BRAM module is provided in appendix B.4. This module is a standard
Hardware Design Language (HDL) design and is used to avoid storing data in Configurable Logic
Block (CLB)s by utilising the dedicated built-in BRAM of the FPGA board. BRAM has a significant
advantage because it is dedicated Random Access Memory (RAM) that does not use CLBs and has
a larger storage capacity than CLBs, as explained in section 2.6. Dynamic Random Access Memory
(DRAM) would be even better as it provides much larger storage space, but BRAM is much easier
to implement and utilise. However, given requirements for even larger search words, DRAM must
be implemented as the BRAM on Nexys A7 is expended given M = 4096 and K = 1023.

The BRAM module is implemented with four inputs, one output and an internal two-dimensional
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data structure for holding the addressable data. All actions are performed on the input clock rate
and are synchronous. The input and output data registers contain the data to be written to and
read from the BRAM. These registers are M bit large and hold one search state in each address
space. The two remaining inputs are the address register and the action input register which sets if
the current operation is to read data from a location in the BRAM or write data to a position in the
BRAM.

4.2.2 UART module

The Verilog code for the UART communication module is shown in appendix B.5. Timothy Goddards[31,
41] originally wrote the UART protocol module and was reduced in this thesis to only perform trans-
mission of data to simplify the design. The UART module runs synchronous based on the provided
clock signal, one parameter, two inputs, and two outputs which control the data transfer.

The "CLOCK_DIVIDE" parameter specifies how many clock cycles a bit should be transmitted to
generate the desired baud rate for UART transfer. The "CLOCK_DIVIDE" number, Tp, is calculated
below[31]. An issue with the UART protocol is that it is slow, which is explained later in this section.

Tp =

⌊
Brate × 4

f

⌋
Tp =

⌊
115200× 4

1
50E+6

⌋
→
⌊

50E + 6

115200× 4

⌋
= b108.507c = 108

(4.2)

The two inputs, besides clock and reset signal, are "TRANSMIT" which signals the module to start
transmitting the currently loaded 8b input value, "TX_BYTE". When the transmission has begun, the
UART module will set the output register "IS_TRANSMITTING" to 1. Once the transfer has started,
the input "TRANSMIT" is no longer needed and the "IS_TRANSMITTING" is set to zero upon finishing
the entire 8b transmission. The last output variable "TX" is mapped to the Nexys A7 UART bridge
pin which sends the communication across the combined JTAG and UART micro USB port.

Data transfer issue

Using UART for data transferring data is a slow method as it does not support high baud rates. There
are also issues regarding transfer distance, but in this implementation it is not an issue as the range
is maximum 50cm. However, using this protocol is a drawback as the design runs sequentially, and
the data transfer halts further processing until it has finished. An example calculation of potential
total transfer time is shown below.

Eg. with a mean of 20 matches per initial state, f = 50MHz, 96b transferred per match, and
Brate = 115200bps results in the following calculation.

Rmean = 20

Tp = 108

f = 50MHz

b = 96

S = (216 − 1)

Ttot = f × (S × b× Tp ×Rmean)

Ttot =
1

50E + 6
× ((216 − 1)× 96× 108× 20)

Ttot =
13589337600

50E + 6
= 271s

(4.3)
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The result is a data transfer time of 271 seconds, which given appendix A table 4, a search of
L = 16, M = 1024 and K = 511 has a runtime of 5510s. Data transfer time would in this case add
4.9% additional processing time affecting the measurements considerably.

To minimise the impact transfer time has on the total measurement, the system is designed
only to transfer the matches found for the correct undecimated initial state. Doing so provides
the ability to measure the whole processing time without the transfer time, affecting the total
transfer time significantly. This feature was also applied in the CPU implementation to keep the
processing measurements comparable. The result of this is the reduced data transfer time of 0, 0041s

or 0.0001% of the total transfer time given the above example.

4.2.3 Ciphersearch Module

The Verilog code for the communication module is provided in full in appendix B.3 and illustrated
in figure 12. This module is made up of three separate ALWAYS blocks and two imported modules
where the ALWAYS blocks are designed for deriving a new clock rate, running the actual search and
handling the orchestration regarding transferring data across UART. The two instantiated modules
are the BRAM and UART module.

Before the search begins, the design is loaded onto the FPGA, which loads the design and sets
the initial values of the variables and registers, which applies to all modules in the design before
the FPGA starts to run.

First off the clock rate is set, by deriving a clock rate from the FPGAs clock or using the FPGA
clock directly in the design. The clock is provided to each module and Verilog ALWAYS block. The
second ALWAYS block is the primary system and acts as a state machine that controls the FPGA cir-
cuit, which in turns runs the Non-Deterministic Finite Automaton (NFA) based unconstrained ARBP
shift-AND search. The final ALWAYS BLOCK is the UART orchestrator which handles the interaction
with the UART module. All of these ALWAYS blocks and modules are driven concurrently by the same
clock at each clock pulse, but the FPGA design simulates an Finite State Machine (FSM) based on
current states triggering different operations accordingly.

Primary "ARBP" ALWAYS block

The main always block, represented by the ARBP block in figure 12, operates as a state machine
which performs different tasks based on which state it is in, as described below. This ALWAYS block
is responsible for running the central part of the system, controlling and interacting with other
modules. This block will generate the M bit search ciphertext, N bit search text, prefixes, search
state table for RK

k=0, maintain its state and perform the search.

State 0 It starts in state zero, generating the intercepted M bit ciphertext and the prefixes. Which
is simulated by generating a 0/1 clocking Binary Rate Multiplier (BRM) from two Linear
Feedback Shift Register (LFSR), where the clocking LFSR is used to decimate the clocked
LFSRs output sequence. Finally, the output bit is XOR-ed with the plaintext before updating
the prefixes. This state is repeated until the desired length M of the ciphertext is achieved.
For the remainder of the search, this state does not repeat since the ciphertext is constant.
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Figure 12: Logic flow diagram of FPGA design
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State 1 State one initialises the variables to start a new search, which includes setting the initial
state of the LFSR, generating the initial state of the search state table RK

k=0 in BRAM. This
state is triggered every time the initial search vector is changed after a search has finished.

State 2 State two generates the search text one bit at a time. However, during the first run of each
search, an arbitrary number of skips is allowed until the bit matches the first prefix value.

State 3 State three performs the update of R0, allowing only horizontal transitions which is the
exact search method by Baeza-Yates and Gonnets[3]. The R0 value is temporarily stored in
Rold, as read from R_ODATA_WIRE giving the Rk−1 value for the next search state.

After calculating the next search state R′k based on the current search text bit B[Ti], the new
value is written to BRAM, and temporarily stored in Rnew

1 Rold <= R_odata_wire; //
2 //R0 exact search
3 {R_idata , Rnew} <= {2{ ((( R_odata_wire << 1) | 1) & B[Ti]) }};
4 R_write <= 1; //

Listing 4.3: Calculation of R0

State 4 State four runs a loop forRK
k=1 to update the remaining search states. It starts each iteration

by writing the current search state of Rk into temporary storage Rold, from BRAM. Then it
calculates the new value R′k based on Wu and Manber’s[5] algorithm, and writes it into
temporary storage for the next search Rnew. During the calculation, it uses the Rold and Rnew

values from the previous search state, as it does not acquire the new values before the next
clock pulse.

When all K+1 search states values are updated, it will jump to state five if it is at the solution
state. Otherwise, it jumps to state six. Even though the cipher system does not utilise insertion
in the ciphertext, the search used during experimentation allowed for this transition.

1 Rold <= R_odata_wire;
2 ‘ifdef INC_INSERT
3 // Insert transtition allowed
4 {R_idata ,Rnew} <= {2{(( R_odata_wire <<1)&B[Ti])| Rold |((( Rold|Rnew ) < <1)|1)}};
5 ‘else
6 // Insert transition removed
7 {R_idata ,Rnew} <= {2{(( R_odata_wire <<1)&B[Ti ])|((( Rold|Rnew ) < <1)|1)}};
8 ‘endif

Listing 4.4: Calculation of RK
k=1

State 5 State five sequentially reads the search state table RK
k=0 looking for matches, marked by a

set Most Significant Bit (MSB). When found it signals the UART ALWAYS block to transfer data
by setting the UARTTXWAIT register, Then it waits until the UARTTXWAITACK register is set by
the UART ALWAYS block before progressing to the next state.

State 6 State six resets the needed variables and increments the position counter in the search text.
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State 7 State 7 will, based on the position counter, jump to state two if it has not reached the end
of the search text. Otherwise, it will set the next initial state for the LFSR and jump to state 1
for starting the next search.

4.2.3.1 UART ALWAYS block

This ALWAYS block has the task of orchestrating the transfer of data from FPGA to the host using
UART. For each match that occurs, it has to transfer three sets of 32b values in the form of four
separate 8b registers, totalling 96b representing the initial state, current position and the lowest
error level represented as a 32b integer.

When the primary ALWAYS block raises the UARTTXWAIT register, this block begins loading data
into the UART TX_BYTE register and raises the transfer signal. Then it waits for the UART module
to raise its transmitting flag, at which point the transfer signal is lowered and waits for the UART
modules "transmitting" flag to be lowered. When it is lowered, the counter is incremented, and the
cycle repeats itself by loading the next 8b register and wait for its transfer.

When the counter reaches thirteen, the UARTTXWAITACK signal is raised allowing the primary
ALWAYS block to continue to its next state. Once the UARTTXWAIT signal is lowered, the UART
ALWAYS block is put into wait mode where all registers are reset.

4.3 Testing methodology

4.3.1 FPGA

The Python source code for measuring the FPGA processing time is given in appendix B.2 as source
code listing B.6. It starts by reading the 96b output and reconstructs the three original variables;
position in the search text, current initial LFSR state, and the minimum error level where the match
occurred. Then it will control check the error level value to remove data which has been received
incorrectly, due to possible shifts in the byte order when data is collected. If an error occurs, it drops
the current data and restarts the search. The error level is used for this because it is the lowest value
and therefore faster to error check.

When the first data point is registered in the data set, it records the current time as the start.
All subsequent data points are registered, but when the search repeats, the first duplicate match
is discarded, and the timestamp logged as the end of the search. After this, it closes the serial
connection, calculates the total elapsed search time and writes the data to stdout and file.

During this process, it will not measure the preamble, as explained in section 4.2.3. The mea-
surements start and end at state five of the FPGA design, which avoids the preamble generation in
state zero.

A problem with this measurement is the time required to transfer the 96b per match is too high.
UART data transfer is generally not recommended because it is slow, but its simplicity made it very
easy to implement, and the assessments of the mitigations employed showed it would not affect
the overall measurements. The mitigation was to skip the data transfer when it is not searching the
solution state and is also done for the CPU implementation. The assessment is discussed in section
4.4.1.
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The testing itself was performed by connecting the Nexys A7-100T FPGA board[42] to a Ubuntu
laptop using the combined JTAG, power and UART USB port. The Ubuntu system was set up with
Python3, PySerial (Python library[43]), and the Vivado suite installed for loading the generated
bit files on to the FPGA. Once the bit file is loaded onto the FPGA, the design starts running. The
python script is then run until it has finished collecting the entire search and outputs its data.

The Nexys A7-100T FPGA board used for testing and development include the Artix-7 XC7a100T-
CSG324C chip, 100MHz clock rate, 4860kb BRAM and 15850 logic slices each with four 6-input
Look-Up Table (LUT)s and eight flip-flops[42].

4.3.2 CPU

The measurements for the CPU implementation showed early that the time requirements would
be quite different from the FPGA. Therefore required more reliable hardware, which is the reason
for running the CPU implementation on server hardware where effects from outside forces were
monitored, and the test could run for an arbitrary amount of time.

System specifications for the test system were the following. A Virtual Machine (VM) running
Ubuntu 18.04.2 server with 10GB RAM, and 4 CPU cores allocated were set up with git for repos-
itory management, GNU Compiler Collection (GCC) for compiling the C program, and the GNU
Multiple Precision Arithmetic Library (GMP) library. The physical virtualisation server it was set up
on was a Dell R320 with 92GB DDR3 RAM, single 2.4GHz 6-core CPU (Intel Xeon CPU E5-2430L
v2 @ 2.40GHz), which ran Ubuntu 18.04 using KVM/QEMU as the virtualisation platform.

Several other VMs was running on the virtualisation platform, which is why the system resources
were monitored during runtime, to verify that the performance was unaffected by external factors.
Since the CPU implementation only runs on a single thread, three tests could be done simultane-
ously accounting for any new processes to use the last core.

The processing time was measured by setting the parameters in the source code, compile it and
run it inside a screen session. The compiled executable was executed with the time command[44]
to measure the total runtime.

Using the time program does not affect the executables processing time as it forks off the ex-
ecutable as a child process and only holds a handle to it. This method enables it to run inquiries
regarding the process and log the metadata. Since the executable was instantiated as a separate
process, it is not affected by the time program, in addition to the VM having four cores available.

As mentioned in the previous section and described in section 4.4.1, the CPU measurements
contains the entire runtime, including the preamble. This issue is discussed in section 4.4.2, where
it shows that the time required to generate the preamble is insignificant compared to the total
processing time.

4.4 Assessment of variables in data collection

As mentioned in the previous section, 4.3, this section explores specific issues which may affect the
data set used for measurements. These issues involve how the FPGA and CPU have reduced the
output to only the solution state and how the preamble affects the CPU processing time.
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4.4.1 Data transfer / Output timing issue

As discussed in the section on UART in sections 2.7 and 4.2.2, the UART protocol is slow and do not
have clock synchronisation. The first is also true for the CPU when it writes to stdout. To minimise
the impact on the total processing time, given different polynomial degrees, search word lengths
and number of errors allowed. Both implementations have minimised its output to only send the
data for the solution state of the clocked LFSR, reducing the impact that this variable has on the
total processing time, as depicted in section 4.2.2.

Given the data set in appendix A table 4 of L = 16,M = 1024 andK = 511, with an approximate
number of matches per initial state rounded down to 1500. This minimisation of output reduces
the processing time from 20384s(eq. 4.4) to 0.311s(eq. 4.5). The time used to transfer the reduced
output is a minuscule variable in the data collection as it makes up 0.0056% of the total processing
time.

Rmean = 1500

Tp = 108

f = 50MHz

b = 96

S = (216 − 1)

Ttot = f × (S × b× Tp ×Rmean)

Ttot =
1

50E + 6
× ((216 − 1)× 96× 108× 1500)

Ttot =
1.0192E + 12

50E + 6

Ttot = 20384.006s => 05 : 39 : 44

(4.4)

Rmean = 1500

Tp = 108

f = 50MHz

b = 96

S = 1

Ttot = f × (S × b× Tp ×Rmean)

Ttot =
1

50E + 6
× (1× 96× 108× 1500)

Ttot =
1× 15552000

50E + 6

Ttot = 0.311s

(4.5)

4.4.2 Preamble generation

Preamble generation time is the time required to simulate the encryption process obtain the inter-
cepted ciphertext, and then generate the alphabet prefixes, which encompasses the entire initiali-
sation process described in section 2.4.5, regarding ciphertext generation.

For the FPGA, the preamble is disregarded as it is not part of the measurement, as explained in
section 4.3. However, for the CPU implementation, this preamble generation is still minuscule. As
shown in appendix A table 7, this epoch is extremely short even at very large search words.

Table 7 contains measurements for the preamble time for two separate polynomials L = 11 and
L = 16, for M = [64...32768]. The highest comparable value is M = 1024 for the collected data set,
but the preamble generation time was measured up to M = 32768. Figure 13 shows the graph of
how long the preamble generation time takes based on the search word length.

At L = 11 and M = 1024 the preamble requires 0.01 seconds to generate, and given L = 16

the preamble requires 0.016 seconds to generate. Compared to the total processing runtime for the
same values we get the percentage of time spent on preamble generation in equation 4.6 and 4.7.
For the measured data in equation 4.6 we get the worst case preamble time for L = 11 is 0,0001%
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of the total processing time, making the impact insignificant. Even at the lowest measurements,
equation 4.8 with M = 64, is too low to have a significant impact on the data set with 0.044%
given L = 11 and M = 64.

T11,1024 = 15036

T%11,1024 =
0.01

150.36
T%11,1024 = 0.0001%

(4.6)

T16,1024 = 541101

T%16,1024 =
0.016

5411.01
T%16,1024 = 0.000003%

(4.7)

T11,64 = 4.57

T%11,64 =
0.002

0.0457
T%11,64 = 0, 044%

(4.8)

T16,64 = 140.86

T%16,64 =
0.003

1.4086
T%16,64 = 0.0021%

(4.9)
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Figure 13: Time required for generating the preamble on CPU
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5 Results

5.1 Data gathering

The data points are collected from a single measurement using the parameters described in section
3.2, but data points under half an hour was verified for consistency during testing. Data points of
more than half and hour was only measured once in order to obtain a broader set of data points
within the time frame.

The data set collected is given in appendix A table 4 and 6. A subset of this data is plotted in
figure 14, and the entire data set is illustrated in figure 16.

This data set contain measurements for Field-Programmable Gate Array (FPGA) using three
separate polynomials of varying degrees on FPGA, but only two polynomials was used for the CPU
implementation. All of these polynomials are shorter than commonly used in current encryption
schemes, but larger polynomials would result in exponentially higher processing times and there-
fore avoided in this thesis.

To generate the search word, the cipher system, figure 2, was simulated as part of the preamble,
see section 2.1. In this process several parameters was set for the test and are listed in table 2.
The resulting M bit, decimated output was then XOR-ed with the plaintext, for which the collected
data is a zero-noise plaintext. This poses an issue with regards to the match statistic only being
based on delete actions, and not incorporating substitutions. The reason for this was to ensure the
best possible match statistics when performing the search, in order for the correct initial state to be
included in the findings. Implementing noise in the plaintext and performing a complete study of
statistics regarding matches for this implementation of was outside the scope of the thesis.

Implementing noise into the plaintext, would not affect the processing time directly, but instead
affect the number of matches which would occur. Which in return forces one to adjust the error
threshold K which would impact the search, but with data collected for K = 1

2M the required
error level should be captured.

The only changes made for each data collection, within the same polynomial degree, of the
implementations was the desired search word length M and error threshold value K. During the
tests, the error threshold was primarily set at 1

4M and 1
2M with a third measurement in between

where possible.
The polynomials below was selected from a list of primitive polynomials for GF (2L), provided

by [13], which is derived from [12].
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Table 2: Parameters used for preamble and search

Clocking LFSR Clocked LFSR
L Polynomial Init State Init state Plaintext

11 x11 + x8 + x6 + x5 + x4 + x1 + 1 300 1024 ∅
16 x16 + x9 + x8 + x7 + x6 + x4 + x3 + x2 + 1 300 1024 ∅
20 x20 + x9 + x5 + x3 + 1 300 1024 ∅

5.2 Data set

A subset of the data set with run-times higher than 5E+ 4 being removed, is illustrated in figure 14
and shows the captured data for six separate data sets. The data sets represented are the Central
Processing Unit (CPU) implementation with two different polynomials and four data sets for the
FPGA implementation, where the polynomial of degree twenty was run at two clock rates. Figure 14
shows that both FPGA and CPU are increasing exponentially in total processing time. However these
are growing at vastly different rates which is due to the different implementations and hardware
platform they are running on. This is explored further in chapter 6.

Figure 14 plots the search word length, with multiple threshold values K along the X-axis. This
give multiple measurements per point on the X-axis for each polynomial. Then the total time used
by a specific M , K combination is plotted along the Y-axis, which includes the preamble generation
time for CPU and data transfer time for FPGA.

As clearly shown in figure 14 the CPU will grow at a much faster rate, which increases further
given a polynomial of a higher degree. The same tendency is seen for the FPGA, but at a much
slower rate.

The two polynomials tested on the CPU are of degree 11 and 16. L = 11 was only tested for
search words up to 1024b, as the bit sequences generated would start repeating itself given longer
sequences of the search text, given N = 2M . L = 16 was also tested for up to M = 1024b, but are
omitted in figure 14.

The data sets was collected using regularly spaced intervals up toM = 512b because the process-
ing time began exceeding one hour for polynomials of degree eleven, and twenty hours for degree
sixteen. Above 512b the increments are increasing between measurements up to the maximum of
2048b.

The number of data points captured for CPU is much greater than FPGA, because the CPU
processing time is not constant, but increases depending on the search word length. Due to this it
required more data points during analysis.

FPGA was tested with three polynomials, because the processing time allowed for this to be
done for search words up to 512b. This polynomial of degree twenty was also used to test the FPGA
implementation using a higher clock rate. This was in order to test the hypothesis that changes in
the FPGA clock rate is directly affecting the processing time.
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Figure 14: Total processing time plotted by architecture and polynomial degree. With search word length M

on the X-axis, with multiple errors K.

5.2.1 Data set Internal validity

Preferably all observations is made multiple times in order to reduce errors within a set of measure-
ments caused by reliability or errors of a single observations. However, because the time require-
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ment for capturing even a single measurement on FPGA and CPU require several hours to complete,
this was not possible. Several measurements regarding CPU with M = 1024b would each require
150 hours. For CPU it is possible to capture this data given time since multiple data captures can be
performed simultaneously. The same on FPGA would not be feasible, as it can only run one search
at a time, which require up to 12 hours to complete. Even though the time frame did not allow for
collecting a more comprehensive data set, possible future research should seek to capture an even
larger data set.
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6 Analysis

6.1 Foundation for analysis

In order to compare the measurements a common understanding of how many calculations has to
be performed in total is fundamental. This is the foundation for how much work has to be performed
for a specific search by the Central Processing Unit (CPU) or the Field-Programmable Gate Array
(FPGA). This is discussed in section 2.4.5 which gives the calculation of Rops and denoted below.
The number of operations required to perform a search is illustrated in figure 15.

Rops = (2L − 1)×N × (K + 1)

The figure shows that the number of operations within a single polynomial increases linearly
when either K, the number of errors allowed, or M , the search word length, is static. This is
show as the linear plot which has a static K value, When both M and K increase the growth is
exponential. This is shown with the two exponential plots, the lowest exponential plot is using a
K = 1

4K, and the other K = 1
2M . The latter is the case for this thesis, as the number of errors must

be increased along with the search word size in order to get matches.
This is because of the non-linear function used introduces between zero and M number of skips

and this requires the error threshold to be increased in relation with the search word length. Other-
wise one will not get any matches. During testing the minimum number of errors required looks to
be approximately 1

4M . Which is due to the testing being performed with a zero noise plaintext and
a primitive polynomial. This causes the intercepted ciphertext to only contain deletes operations at
a rate of approximately 0.5, and not any substitutions.

6.1.1 Further analysis

Given the Rops number, further analysis will use this as the basis for interpreting the processing
time as it will give the approximate time used to perform each separate calculation. Even though
there are other task happening intermittently during the search, the vast majority of runtime time is
spent on during these repetitive operations. As explained in section 4.4.2, the time used to generate
preamble and transferring data is reduced and has an insignificant impact of the total runtime when
the search word is large enough.

In addition to using the number of Rops to compare the processing time, the clock rates of the
CPU and FPGA is vastly different will be used for comparison
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6.2 Initial analysis of data

Given figure 14 in section 5.2 shows a subset of the entire data set, with a threshold value on the
Y-axis. It shows clearly that the CPU has quite an extreme exponential growth. Making it unsuitable
in a practical application where any requirement for speed is needed, even at very low polynomial
degrees with short search words. The figure also suggest that the FPGA has an exponential growth
at larger polynomials of degree 20, as opposed to degree 11 where it is not visually recognisable in
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the figure.
In both scenarios the data shows that it would require large amounts of time using the two

implementations tested along with the equipment used during the thesis. However, there are sev-
eral improvements and methods which could improve both implementations significantly and is
discussed later in this chapter. This include multithreading and distributed computing for the CPU
implementation and for FPGA investing in an enterprise level FPGA or even implementing the de-
sign in actual hardware.
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6.3 FPGA runtime analysis

This section analyses the FPGA processing time and how it is affected by the changes in the poly-
nomial, search word, and error threshold.

When capturing the data, the time spent transmitting data across Universal asynchronous receiver-
transmitter (UART) is not subtracted from the processing time. But as discussed in section 4.2.2 it
has an insignificant impact on the overall processing time, when the search word becomes larger
than 256 bit. This is shown in figure 17.

Figure 17 plots the data using the search word length along the X-axis with multiple data points
illustrating the different error thresholds used in testing. On the Y-axis it plots the mean time used
process a single search state value calculation (Rop). The Rops number is explained in section 2.4.5
and represent the total number of calculations which has to be performed in order to complete an
entire search.

The mean time used per Rop is extrapolated from the measured data total runtime. It illustrates
how long a single calculation takes for the specific combination of polynomial degree, search word
length and error threshold on that platform. Looking at figure 17 it appears to show a distribution
following an exponential decay, but given certain issues which could affect and skew the relation
between Rops and other tasks could cause shorter search words to have inaccurate measurements.
These issue relate to search text generation, Block-RAM (BRAM) IO operations, and UART data
transfer.

A second part of this is that we know the timing for each set operations performed on the FPGA
is equal in time because all actions has to be completed within a single clock pulse. This gives a
specific timing for each operation.

Since the Nexys A7 has a clock rate of f = 100MHz and the implementation ran at f = 50MHz,
means each FPGA operation specifically used 1

50E+6 second to complete a single set of operations.
Either it being generating a new bit in the search text, performing 1

108 of a UART transfer, or
calculate an entire Rop value.

Given that the Rop mean time in figure 17 stabilises at 80E − 9 gives us the ability to infer that
on average when the search word is larger than 256b, it will require approximately four operations
to calculate a single Rop. Giving us a quotient to use for estimating FPGA runtime.

mean(T/Rop)
f

→ 80E − 9
1

50E+6

= 80E − 9× 50E + 6 = 4 (6.1)

This quotient holds true independent of clock rate used to run the implementation, as discussed
further in section 6.6 on FPGA runtime estimation. The reason for this is that FPGA does not change
its operating requirements regardless of the variables in place. Because the design operates on basic
bitwise operations, eg left-shift, OR, AND and XOR, it does not require complex Look-Up Table
(LUT)s for calculating addition of large registers which could slow down the processing time.

The only operating requirement for this FPGA design is that it is able to complete each set of
operations within the current clock pulse. If the design is unable to complete its current set of
operations, the current operations will stop and leave registers in their current. Given the design
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is able to complete the set of operations, the search word, error threshold and polynomial can be
of arbitrary size. The FPGA will not require splitting a register in multiple sequential steps to be
able to compute the result of an bitwise operation. Resulting in a consistent processing time which
appears to be constant. Given the plotted data in figure 17 and table 4 in appendix A.
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Figure 17: Mean time for FPGA to perform each Rop calculation based on an M bit search word
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Given that the time requirement stays constant independent of search word length, the error
threshold and the polynomial, the total processing time is only dependent on the total number of
operations required to perform the entire search and the FPGAs clock rate. The result is that the
total processing time will have an growth rate of Rops × (4f). Where the Rops grows linearly when
the search word length or error threshold is consistent. When both is increased the growth rate is
exponential. Given figure 14 we see that this is the case for FPGA when the polynomial degree is
twenty and sixteen as the growth rate is exponential.

The last remarks in regards to processing time for FPGA is the comparison of data sets gathered
for FPGA with a polynomial of degree twenty at 50MHz and 100MHz clock rate. Where we can see
that two data sets shows that the doubling of the FPGAs clock rate reduces the processing time by
half. Eg. with L = 20, M = 512 and K = 255 the total time measured is 881.5s for a clock rate of
f = 50MHz and 440.82s for f = 100MHz clock rate.

6.4 CPU runtime analysis

This section analyses the CPU runtime and how it is affected by the changes in search word length
and error threshold.

When capturing the data, the preamble generation time is not subtracted from the total process-
ing time. As discussed in section 4.4.2, the preamble can be considered insignificant in comparison
to the overall required. Even though it has an exponential growth rate, the worst case in the data
set is 0.044% of the overall processing time with a polynomial of degree eleven, and search word
length of 64b. Which in itself has too small values to be a reliable measurement, as shown in the
analysis of FPGA, section 6.3.

Figure 18 and 19 is plotted in the same manner as for FPGA analysis in figure 17. Search word
length along the X-axis with multiple measurements indicating different error thresholds, and the
mean time used per search state value calculation (Rop) along the Y-axis. This gives the comparison
on how processing on CPU differs from FPGA, where the result was a constant mean time when the
search word was increased beyond 256b.

A major difference between the FPGA and CPU data sets is that the mean Rop time has a lin-
ear growth rate along the X-axis when calculating the mean directly. As shown in figure 18. This
indicates that CPU measurements are affected severely by a phenomenon which occurs on the CPU
and not on the FPGA. The theory in section 2.5 suggests that this is specifically due to the address
space splitting the values into separate values. Thus increasing the number of operations needed to
be performed by the search.

Given that the server was running a 64b operating system, the hypothesis for how the linear
growth occurred was that the mean time increased based on the search word length. Meaning that
it increased based on number of splits which occurs of the M-bit long search word. The goal is to
have a constant mean time, if possible, for the search. This is because a search consists of a specific
number of operations performed in order to complete.

Deducing the linear growth and how it occurs was done through testing and measuring the
linear growth between data points, but did not yield results for the mean time even though it was
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known M < 256b provided less consistent data, none of the results reached a consistent mean time.
Since the operating system, and GMP was built on 64b, the linear growth was contributed to this.
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Figure 18: Mean time for CPU to perform each Rop calculation based on an M bit search word
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Based on this several factors was tested, first
⌈
M
64

⌉
was tested as a contributing factor for the

mean time, but did not yield results. Further testing showed that
⌈
M
32

⌉
was the most suitable factor

because the GNU Multiple Precision Arithmetic Library (GMP) MPZ utilises the 32b UNSIGNED INT

as their base value for representing data. The resulting estimation for processing time of the CPU is
given below.

Ttot

(2L − 1)×
⌈
M
32

⌉
× 2M ×K

(6.2)

The new mean time multiplies the number of Rops by the factor
⌈
M
32

⌉
which is the number

that every M-bit value is split into. This yields the following graph, figure 19, following the same
plotting as figure 17 and 18. Disregarding noisy data the distribution appears similar to figure 17.
Where the initial short search words below 256b contains data affected by ratio between Rops and
other operations performed by the software. It has a negative exponential plot which stabilises at
approximately 0.437E − 6 given the last data point at M = 1024.

However this data set have not captured data above 1024b because of the time requirement for
collecting these samples. Given the data collected and presented it can be inferred that the mean
time per Rop should be approximately 0.437E − 6 as shown by the data collected above a search
word of 512b. Estimating processing times using this is discussed further in section 6.6.

For FPGA, we could stipulate that the system used four clock cycles to perform each search
state value calculation. On CPU this is not directly relatable because there are many operations
happening simultaneously causing interference. Given the same interpretation as for FPGA, we get
1044 CPU clock cycles per search state value (Rop) calculation at M = 1024b. However, this value
has not been shown to be translatable between CPUs of different clock speeds. Estimation and how
close this value is able to plot the total processing time is discussed in section 6.6.

T

f
→ 0.437E − 6

1
2.39GHz

= 0.437E − 6× 2.39E + 9 = 1044

The conclusion for the data collected and overall processing time is as follows. Meaning the
processing time is constant, but it is directly affected by how the search word size is represented on
the system. Given a 32b representation it will increase the overall processing time by the number
of address spaces the search word is split across.

It is also discovered that GMPs MPZ library is not the most appropriate method of performing
these calculations, given that speed is a critical factor and MPZ utilise 32b values and causes a lot of
overhead which could be disregarded. Which is discussed in section 4.1. A far better library could
be GMP MPN, which can process positive integers and are very low level as described by GMP[23].

6.5 Normalised clock comparison

In the previous sections the two implementations were analysed independently. This section ex-
plores how much better the FPGA is in relation to the CPU, both with and without a normalised
clock rate. This comparison is illustrated in figure 20.
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The following figure 20 plots the total total processing time as measured for the FPGA at f =

50MHz and CPU at f = 2.39GHz and last the FPGA using an estimated clock rate of f = 2.39GHz.
The graph is plotted using logarithmic representation along both axis, with search word length
along the X-axis and total processing time along the Y-axis.

As figure 20 shows and previously seen. The CPUs processing time is much slower at completing
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a search, even in relation to the FPGA at f = 50MHz. For the lowest comparable data point
with a search word of 64b and 1

2M error threshold, the FPGA is 13 times faster than the CPU at
f = 2.39GHz. Given a normalised clock speed, this is increased to 670 times faster.

Building on the discoveries in the previous sections where CPU processing time increases linearly
based on the search word length, while the FPGA processing time remains constant. Based on this
the difference in processing time should increase quite severely. For FPGA at f = 50MHz the
difference is a 173 times faster, while at f = 2.39GHz it becomes 8454 times faster.

The result is quite clear given the current data, but given a better implementation on CPU using
multithreading and lower-level libraries with less overhead could reduce the CPU processing time.
Given that each thread implemented reduces the processing time equally, on a standard 6 core
CPU with 2 threads one could potentially reduce the processing time by 12. However, even so the
resulting processing time is still far slower, as opposed to the normalised clock rate on an FPGA.

6.6 FPGA Estimated Runtime

Given the data gathered in section 6.3 and 6.4 it was derived the following equations for estimating
the total runtime processing of both FPGA and CPU. The errors between estimation and measure-
ments are plotted in figure 21, and as percentages. The FPGA total runtime is estimated as follows
using the mean number of clock cycles per Rop.

Ttot = Rops × 4f

Ttot = Rops ×
4

50E + 6

(6.3)

The CPU total runtime is estimated as follows, using the number of CPU cycles based on the
measurement at M = 1024b. This number was selected because the data for shorter search words
can is unreliable.

Ttot = Rops ×
⌈
M

32

⌉
× 1044f

Ttot = Rops ×
⌈
M

32

⌉
× 1044

2.39E + 9

(6.4)

Figure 21 illustrates the errors between the estimated processing times and actual measured
data for the polynomial of degree 16. Given the results it shows that CPU processing times is less
reliable when estimating processing time as opposed to the FPGA. This is due to the data set being
shorter and only measured for search words up to 1024b. Given data points for longer search words,
it could yield better estimation.

The worst estimation for FPGA is 6.1% at a 64b search word, whereas CPU has a much larger
error rate of 21%. In conclusion the FPGA can be estimated reliably, with very little error rate. At
M=2048b the error for FPGA is between 22.3 and 26.6s giving an error at approximately 0.2%. For
CPU it can not be drawn any conclusions, because it is solely based on the value at M=1024 since
this has the lowest error rate -0.5% however, this is however an error of -2967s. Given this data the
conclusion in regards to CPU is that the processing time can not be estimated with good reliability.
Even though the percentage is low, it still results in a large time difference.
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6.7 Issues and Obstacles

During this thesis there were some obstacles to overcome. This section discusses the main issues
and obstacles..

6.7.1 GMP

The final implementation was based on the GMP library, which provides several library implementa-
tions. The MPZ-library with supporting functions was selected because it is a commonly used library
and was appropriate regarding the platform and language already used. It is not the best library,
but the time requirement made us opt for the MPZ library as it would be fast to implement and the
functional requirements was in place. The MPN library would be a better option, but its handling
of type and conversion between types required more time for implementation than possible.

During the implementation of MPZ some of the functions source code was explored, and the
implementations focus on error handling and verifying. Resulting in a large overhead, as noted in
section 4.1. These additional steps, along with variables being split across multiple 64b registers,
causes each operation to be less effective. Which is where the FPGA excels. Due to this future work
should focus on testing the MPN library.

6.7.2 FPGA External communication

Microcontroller based programming languages can easily utilise complex system functionality, eg.
Ethernet and WiFi. Even though there are libraries and finished IP designs available there are issues
in regards to implementing them into a FPGA design, ranging from board differences, clock speed,
port mappings, design requirements and complexity.

The main reason for utilising UART for communication was because the design was openly
licensed, low impact on the FPGA and simple to implement, with very little configuration required.

6.7.3 FPGA utilisation

The designed FPGA implementation utilised Configurable Logic Block (CLB) in the beginning, which
is of a finite amount on an FPGA. Initially before implementing BRAM to store the Non-Deterministic
Finite Automaton (NFA) (K+1)×M number of search state values was stored in CLBs as registers,
resulting in it maxing out on utilisation at M = 1024. This was because the number of CLBs was
wasted on simply storing the values of search state registers.

Converting the design to utilise BRAM made it possible to perform search up to M = 4096

with K = 1023. After this the FPGA maxed out the BRAMs storage capacity, as the Nexys A7 has
a capacity of 4,860kb BRAM it can maximum store the search state values for K ≤ 1186 given
M = 4096.

Given this, further development requires the implementation of DRAM, which is built into the
FPGA and has a much larger capacity.

54



Cryptanalysis of Irregularly Clocked LFSR: using ARBP search on FPGA

Figure 22: Device utilisation summary, L(16), M(2048), K(1024). Source: Magnus Øverbø
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7 Conclusion

In this thesis introduction, we posed the following hypothesis.

Field-Programmable Gate Array (FPGA) will perform an unconstrained Approximate Row-wise Bit-
Parallel (ARBP) search faster than a Central Processing Unit (CPU), given a normalised clock rate
and serialised search.

The experiment showed that the FPGA has a significantly better performance than the Cen-
tral Processing Unit (CPU) when performing an unconstrained Approximate Row-wise Bit-Parallel
(ARBP) search using the shift-AND algorithm[3], confirming our main hypothesis. Given the two
implementations, the Field-Programmable Gate Array (FPGA) at f = 50MHz is 13-173 times faster
than the CPU. However, since the Nexys A7 FPGA could natively run at f = 100MHz, the FPGA
is actually be 26-346 times faster. Utilising external clock or Phase-Locked Loop (PLL) the clock
rate can be increased even further increasing the difference. Overall, this constitutes to FPGA being
much faster than the CPU.

As it becomes time consuming to search the entire search space with one FPGA, but given an
actor with enough resources it is possible to search very large search spaces. Although plausible,
the requirements becomes increasingly high. E.g. given 100000 hypothesised hardware circuits,
with f = 5GHz, mean Rop = f , each running 100 parallel searches would still only be effective
up to L ≤≈ 50, see table 3. Even though this is only an example, it shows the requirements for
such systems quickly becomes large and expensive, but is still plausible given enough resources.
Although the cost is increasing significantly in relation to the search space.

Table 3: Time estimation for hypothesised circuit

L M K Rops Estimated time
40 2048 1024 4.61E+018 92.32 sec
50 2048 1024 4.72E+021 26.26 hours
60 2048 1024 4.84E+024 3.07 years
70 2048 1024 4.95E+027 3143.45 years
90 2048 1024 5.19E+033 3296.14E+06 years
120 2048 1024 5.58E+042 3.54E+18 years

7.1 Answers to research questions
How long search words can practically be processed

Both CPU and FPGA can process M ≤ ∞, given the ability to store and maintain the M ×K table
of search state values. In regards to practicality, the main factors are the feedback polynomial of
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degree L, clock rate f , and number of parallel operators. Given 365 FPGAs, f = 2.39GHz and
L = 32 can easily be searched within one day.

For the CPU implementation this becomes impractical at L = 16, M = 1024 and K = 289 re-
quiring 6.26 days, but with parallel processing this would be reduced significantly. CPUs are mainly
affected by the factor

⌈
M
w

⌉
, and therefore needs special CPUs with w as large as possible.

How fast is the search performing

The FPGA has a consistent execution time of approximately 4f per search state value update (Rop).
The total processing time is thereby calculated using

Ttot = Rops × 4f

The CPU do not have a consistent mean Rop time and results in unreliable estimates. Using the
most stable value at M = 1024 as the mean Rop time, we get Rop = 1044f yielding the estimation
of total processing time.

Ttot = Rops ×
⌈
M

w

⌉
× 1044f

How do changes to polynomial, search word length and error threshold affect the performance

The polynomial sets the basis for the total number of Rops. For FPGA, both K and M increase the
time linearly given individual change, but since both increases when the search word increases the
result is an exponential increase in total processing time.

The same goes for the CPU, but the search word length also causes the entire search to increase
by a factor of

⌈
M
w

⌉
, resulting in a faster growth.

How do the FPGA and CPU compare, given a normalised CPU clock speed

Comparatively, FPGA is much faster given the implementations, even without normalised clock
speed, but CPUs with many cores and w = 512b[9] could initially make CPU faster than an FPGA.
Even so, investing the same effort into the FPGA would cause it outperform the CPU given the
growth factor of

⌈
M
w

⌉
.

What are the limitations given each architecture

FPGAs has a limitation on the number of Configurable Logic Block (CLB)s and clock rate, and
should be run at the fastest speed possible. The CLB limitation require better design to reduce the
utilisation and allow for longer searches. The FPGA should also run multiple instances of the search
in order to run multiple searches simultaneously and reduce the processing time.

CPUs main issue is regarding register size, which can be increased using better CPUs[9], but
would only delay the effects of the issue. Another issue is that the processing should be multi-
threaded throughout to increase the speed[9].
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7.2 Future Work

Given the conclusion, there are several questions which pose a topic for further research. The
main questions are listed below and encompass improving CPU implementation and whether other
algorithms could yield faster processing times given polynomials of higher degree.

7.2.1 Improvement of CPU implementation

Several methods could be employed to improve upon the CPU implementation used in this thesis
to provide the absolute best possible performance but involves several tasks. Multithreading is key
when it comes to improving speed on a CPUs and should be implemented, but not by itself as it
would not improve the search time given the

⌈
M
w

⌉
factor increasing the search time every w bits. To

combat this, either using better libraries or implementing the search on physical computer nodes
utilising enterprise-grade CPUs which allowing for large w to be processed, as explored by Tran
et.al[9]. It would not remove the factor but greatly reduce it.

7.2.2 Processing time for large polynomials

An interesting aspect is how to reduce the processing time for large polynomials. Currently, poly-
nomials of degree L = 20 are easily searched, but searching a polynomials of degree L ≥ 32.
becomes increasingly difficult and costly with the current method. For CPU, search-OR will improve
the search time, but an FPGA would not benefit in time, as the shift-AND executes within a single
clock pulse. Methods to increase processing time could be by increasing the clock rate of the design,
clustering FPGAs, or improving the design.
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A Data sets

A.1 FPGA Measurements

Table 4: Data set collected from FPGA with 50MHz clock rate.

Variables FPGA
L M K R-ops T (50MHz) Sec Match Mean T/Rop

11 64 15 4192256 00:00:00.352 0.35 1 83.96E-09
11 64 31 8384512 00:00:00.800 0.80 96 95.36E-09
11 128 33 17817088 00:00:01.472 1.47 8 82.64E-09
11 128 63 33538048 00:00:02.944 2.94 192 87.78E-09
11 256 79 83845120 00:00:07.151 7.15 308 85.29E-09
11 512 139 293457920 00:00:23.679 23.68 33 80.69E-09
11 512 159 335380480 00:00:27.726 27.73 628 82.67E-09
11 1024 289 1215754240 00:01:37.820 97.82 171 80.46E-09
11 1024 349 1467289600 00:01:59.276 119.28 1306 81.29E-09
11 1024 511 2146435072 00:02:53.883 173.88 1535 81.01E-09
16 64 15 134215680 00:00:11.440 11.44 1 85.23E-09
16 64 31 268431360 00:00:22.303 22.30 96 83.09E-09
16 128 39 671078400 00:00:55.183 55.18 92 82.23E-09
16 128 63 1073725440 00:01:27.550 87.55 192 81.54E-09
16 256 69 2348774400 00:03:10.699 190.70 12 81.19E-09
16 256 127 4294901760 00:05:46.887 346.89 384 80.77E-09
16 512 139 9395097600 00:12:37.196 757.20 17 80.59E-09
16 512 255 17179607040 00:23:00.986 1380.99 768 80.39E-09
16 768 209 21138969600 00:28:19.496 1699.50 25 80.40E-09
16 768 255 25769410560 00:34:31.098 2071.10 971 80.37E-09
16 768 383 38654115840 00:51:42.251 3102.25 1152 80.26E-09
16 1024 289 38922547200 00:52:05.070 3125.07 99 80.29E-09
16 1024 383 51538821120 01:08:55.982 4135.98 1369 80.25E-09
16 1024 511 68718428160 01:31:50.719 5510.72 1536 80.19E-09
16 1536 511 103077642240 02:17:45.337 8265.34 1941 80.19E-09
16 1536 767 154616463360 03:26:29.259 12389.26 2304 80.13E-09
16 2048 569 153005875200 03:24:22.798 12262.80 32 80.15E-09
16 2048 767 206155284480 04:35:18.288 16518.29 2743 80.13E-09
16 2048 1023 274873712640 06:06:56.513 22016.51 3072 80.10E-09
20 64 15 2147481600 00:03:02.939 182.94 11 85.19E-09
20 64 31 4294963200 00:05:55.191 355.19 96 82.70E-09
20 128 39 10737408000 00:14:41.497 881.50 108 82.10E-09
20 128 63 17179852800 00:23:17.498 1397.50 192 81.35E-09
20 256 69 37580928000 00:50:51.070 3051.07 71 81.19E-09
20 256 127 68719411200 01:32:24.214 5544.21 384 80.68E-09
20 512 255 274877644800 06:08:02.559 22082.56 768 80.34E-09

63



Cryptanalysis of Irregularly Clocked LFSR: using ARBP search on FPGA

Table 5: Data set collected from FPGA with 100MHz clock rate.

Variables FPGA
L M K R-ops T (100MHz) Sec Match Mean T/Rop

20 128 39 10737408000 00:07:20.821 440.82 108 41.05E-09
20 512 255 274877644800 03:04:01.732 11041.73 768 40.17E-09

A.2 CPU Measurements

Table 6: Data set collected from 2.39GHz CPU

Variables CPU C w/GMP
L M K R-ops T (2.39GHz) Sec Match Mean T/Rop Mean T/Rop

⌈
M
32

⌉
11 16 3 262016 00:00:00.130 0.13 3 4.96E-07 4.96E-07
11 16 7 524032 00:00:00.260 0.26 24 4.96E-07 4.96E-07
11 32 7 1048064 00:00:00.700 0.70 13 6.68E-07 6.68E-07
11 32 15 2096128 00:00:01.490 1.49 48 7.11E-07 7.11E-07
11 64 15 4192256 00:00:04.570 4.57 7 1.09E-06 5.45E-07
11 64 31 8384512 00:00:10.000 10 96 1.19E-06 5.96E-07
11 96 27 11004672 00:00:17.730 17.73 53 1.61E-06 5.37E-07
11 96 47 18865152 00:00:33.090 33.09 144 1.75E-06 5.85E-07
11 128 33 17817088 00:00:35.740 35.74 8 2.01E-06 5.01E-07
11 128 63 33538048 00:01:12.560 72.56 192 2.16E-06 5.41E-07
11 192 54 43232640 00:02:03.720 123.72 39 2.86E-06 4.77E-07
11 192 95 75460608 00:04:00.620 240.62 288 3.19E-06 5.31E-07
11 208 54 46835360 00:02:23.640 143.64 4 3.07E-06 4.38E-07
11 208 103 88561408 00:05:09.500 309.50 311 3.49E-06 4.99E-07
11 224 59 55023360 00:03:04.970 184.97 0 3.36E-06 4.80E-07
11 224 111 102710272 00:06:23.430 383.43 335 3.73E-06 5.33E-07
11 256 63 67076096 00:04:08.610 248.61 0 3.71E-06 4.63E-07
11 256 79 83845120 00:05:22.470 322.47 308 3.85E-06 4.81E-07
11 288 74 88430400 00:06:09.110 369.11 432 4.17E-06 4.64E-07
11 288 143 169786368 00:13:18.430 798.43 3 4.70E-06 5.23E-07
11 320 94 124457600 00:09:51.010 591.01 286 4.75E-06 4.75E-07
11 320 159 209612800 00:17:45.750 1065.75 480 5.08E-06 5.08E-07
11 352 89 129697920 00:10:50.180 650.18 1 5.01E-06 4.56E-07
11 352 175 253631488 00:23:57.680 1437.68 528 5.67E-06 5.15E-07
11 384 104 165070080 00:14:57.170 897.17 38 5.44E-06 4.53E-07
11 384 191 301842432 00:30:40.910 1840.91 576 6.10E-06 5.08E-07
11 416 109 187341440 00:18:48.840 1128.84 9 6.03E-06 4.64E-07
11 416 207 354245632 00:38:41.920 2321.92 624 6.55E-06 5.04E-07
11 448 119 220093440 00:23:58.860 1438.86 18 6.54E-06 4.67E-07
11 448 223 410841088 00:48:54.250 2934.25 671 7.14E-06 5.10E-07
11 480 129 255465600 00:29:54.800 1794.80 25 7.03E-06 4.68E-07
11 480 239 471628800 00:59:35.240 3575.24 719 7.58E-06 5.05E-07
11 512 139 293457920 00:35:34.810 2134.81 33 7.27E-06 4.55E-07
11 512 159 335380480 00:41:26.330 2486.33 628 7.41E-06 4.63E-07
11 512 255 536608768 01:13:50.000 4430 768 8.26E-06 5.16E-07
11 1024 255 1073217536 04:10:36.000 15036 0 14.01E-06 4.38E-07
16 16 3 8388480 00:00:04.380 4.38 12 5.22E-07 5.22E-07
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L M K R-ops T (2.39GHz) Sec Match Mean T/Rop Mean T/Rop

⌈
M
32

⌉
16 16 7 16776960 00:00:09.040 9.04 24 5.39E-07 5.39E-07
16 32 7 33553920 00:00:23.150 23.15 12 6.90E-07 6.90E-07
16 32 15 67107840 00:00:49.150 49.15 48 7.32E-07 7.32E-07
16 64 15 134215680 00:02:20.860 140.86 1 1.05E-06 5.25E-07
16 64 31 268431360 00:05:00.590 300.59 96 1.12E-06 5.60E-07
16 96 27 352316160 00:09:19.410 559.41 24 1.59E-06 5.29E-07
16 96 47 603970560 00:17:33.910 1053.91 144 1.74E-06 5.82E-07
16 128 39 671078400 00:22:10.880 1330.88 92 1.98E-06 4.96E-07
16 128 63 1073725440 00:36:58.380 2218.38 192 2.07E-06 5.17E-07
16 160 44 943704000 00:39:52.910 2392.91 27 2.54E-06 5.07E-07
16 160 79 1677696000 01:16:58.000 4618 241 2.75E-06 5.51E-07
16 192 54 1384099200 01:08:33.000 4113 69 2.97E-06 4.95E-07
16 192 95 2415882240 02:11:30.000 7890 287 3.27E-06 5.44E-07
16 208 59 1635753600 01:26:33.000 5193 90 3.17E-06 4.54E-07
16 208 103 2835306240 02:48:57.000 10137 312 3.58E-06 5.11E-07
16 224 69 2055177600 02:00:46.000 7246 261 3.53E-06 5.04E-07
16 224 111 3288284160 03:27:20.000 12440 336 3.78E-06 5.40E-07
16 256 69 2348774400 02:23:09.000 8589 12 3.66E-06 4.57E-07
16 256 127 4294901760 05:00:00.000 18000 384 4.19E-06 5.24E-07
16 352 175 8120048640 13:13:22.000 47602 528 5.86E-06 5.33E-07
16 448 129 7633516800 14:01:39.000 50499 246 6.62E-06 4.73E-07
16 448 223 13153136640 25:55:36.000 93336 672 7.10E-06 5.07E-07
16 512 139 9395097600 18:15:47.000 65747 17 7.00E-06 4.37E-07
16 512 255 17179607040 37:17:02.000 134222 768 7.81E-06 4.88E-07
16 1024 289 38922547200 150:18:21.000 541101 99 13.90E-06 4.34E-07

Table 7: Timing of preamble generation on 2.39GHz CPU

Variables Time
L M Time (2.39GHz) Sec
11 64 00:00:00 0.002
11 256 00:00:00 0.004
11 512 00:00:00.01 0.007
11 768 00:00:00.01 0.011
11 1024 00:00:00.01 0.010
11 2048 00:00:00.03 0.025
11 4096 00:00:00.10 0.098
11 8192 00:00:00.35 0.352
11 16384 00:00:01.38 1.376
11 24576 00:00:03.12 3.120
11 32768 00:00:05.46 5.460
16 64 00:00:00 0.003
16 256 00:00:00 0.004
16 512 00:00:00.01 0.007
16 768 00:00:00.01 0.012
16 1024 00:00:00.02 0.016
16 2048 00:00:00.03 0.033
16 4096 00:00:00.10 0.097
16 8192 00:00:00.36 0.356

65



Cryptanalysis of Irregularly Clocked LFSR: using ARBP search on FPGA

L M Time (2.39GHz) Sec
16 16384 00:00:01.37 1.370
16 24576 00:00:03.09 3.090
16 32768 00:00:05.47 5.470

A.3 Estimation

Table 8: Estimation of runtime processing for FPGA

Variables Time
L M K Rops S (50MHz) S (100MHz) S (2.39GHz)
32 2048 512 9.02E+15 721983315.09 360991657.55 15104253.45
32 2048 1024 18.03E+15 1442559255.31 721279627.65 30179063.92
32 2048 1024 18.03E+15 1442559255.31 721279627.65 30179063.92
32 4096 1024 36.06E+15 2885118510.61 1442559255.31 60358127.84
32 4096 2048 72.09E+15 5767422271.46 2883711135.73 120657369.70
32 4096 1024 36.06E+15 2885118510.61 1442559255.31 60358127.84
32 6144 1536 81.12E+15 6489405586.55 3244702793.28 135761623.15
32 6144 3072 162.18E+15 12974589048.46 6487294524.23 271434917.33
32 6144 1024 54.10E+15 4327677765.92 2163838882.96 90537191.76
32 8192 2048 144.19E+15 11534844542.92 5767422271.46 241314739.39
32 8192 4096 288.30E+15 23064059586.30 11532029793.15 482511706.83
32 8192 1024 72.13E+15 5770237021.22 2885118510.61 120716255.67
32 10240 2560 225.27E+15 18021435379.70 9010717689.85 377017476.56
32 10240 5120 450.45E+15 36035833884.99 18017916942.50 753887738.18
32 10240 1024 90.16E+15 7212796276.53 3606398138.27 150895319.59
32 12288 3072 324.36E+15 25949178096.91 12974589048.46 542869834.66
32 12288 6144 648.62E+15 51889911944.53 25944955972.26 1085563011.39
32 12288 1024 108.19E+15 8655355531.84 4327677765.92 181074383.51
32 14336 3584 441.48E+15 35318072694.55 17659036347.27 738871813.69
32 14336 7168 882.83E+15 70626293764.91 35313146882.46 1477537526.46
32 14336 1024 126.22E+15 10097914787.14 5048957393.57 211253447.43
32 16384 4096 576.60E+15 46128119172.60 23064059586.30 965023413.65
32 16384 8192 1.15E+18 92244979346.14 46122489673.07 1929811283.39
32 16384 1024 144.26E+15 11540474042.45 5770237021.22 241432511.35
32 18432 4608 729.74E+15 58379317531.08 29189658765.54 1221324634.54
32 18432 9216 1.46E+18 116745968688.21 58372984344.11 2442384282.18
32 18432 1024 162.29E+15 12983033297.76 6491516648.88 271611575.27
32 20480 5120 900.90E+15 72071667769.98 36035833884.99 1507775476.36
32 20480 10240 1.80E+18 144129261791.13 72064630895.57 3015256522.83
32 20480 1024 180.32E+15 14425592553.06 7212796276.53 301790639.19
32 22528 5632 1.09E+18 87205169889.31 43602584944.65 1824375939.11
32 22528 11264 2.18E+18 174394858654.90 87197429327.45 3648428005.33
32 22528 1024 198.35E+15 15868151808.37 7934075904.18 331969703.10
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Table 9: Estimation error FPGA

Variables Time
L M K Rops Est (50MHz) Measured (50MHz) Diff S
16 64 15 134.22E+06 10.74 11.44 0.70
16 64 31 268.43E+06 21.47 22.30 0.83
16 128 39 671.08E+06 53.69 55.18 1.50
16 128 63 1.07E+09 85.90 87.55 1.65
16 256 69 2.35E+09 187.90 190.70 2.80
16 256 127 4.29E+09 343.59 346.89 3.29
16 512 139 9.40E+09 751.61 757.20 5.59
16 512 255 17.18E+09 1374.37 1380.99 6.62
16 768 209 21.14E+09 1691.12 1699.50 8.38
16 768 255 25.77E+09 2061.55 2071.10 9.55
16 768 383 38.65E+09 3092.33 3102.25 9.92
16 1024 289 38.92E+09 3113.80 3125.07 11.27
16 1024 383 51.54E+09 4123.11 4135.98 12.88
16 1024 511 68.72E+09 5497.47 5510.72 13.24
16 1536 511 103.08E+09 8246.21 8265.34 19.13
16 1536 767 154.62E+09 12369.32 12389.26 19.94
16 2048 569 153.01E+09 12240.47 12262.80 22.33
16 2048 767 206.16E+09 16492.42 16518.29 25.86
16 2048 1023 274.87E+09 21989.90 22016.51 26.62

Table 10: Estimation error CPU

Variables Time
L M K Rops Est (2.39GHz) Measured (2.39GHz) Diff S
16 64 15 134.22E+06 117.26 140.86 23.60
16 64 31 268.43E+06 234.51 300.59 66.08
16 128 39 671.08E+06 1172.56 1330.88 158.32
16 128 63 1.07E+09 1876.10 2218.38 342.28
16 256 69 2.35E+09 8207.93 8589 381.07
16 256 127 4.29E+09 15008.79 18000 2991.21
16 512 139 9.40E+09 65663.48 65747 83.52
16 512 255 17.18E+09 120070.36 134222.00 14151.64
16 1024 289 38.92E+09 544068.81 541101 -2967.81
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B Source Code

B.1 CPU Implementation in C

1 /* *############################################################################
2 ** TITLE: CipherSearch
3 ** AUTHOR: Magnus Overbo
4 ** ABOUT: Ciphersearch utilise the GMP library to manage arbitrary sized
5 ** numbers and perform an unconstrained approximate row -based bit
6 ** parallell search. It searches for an intercepted bitsequence ,
7 ** generated by a dessimated LFSR encrypted with a message , and
8 ** tries to find this in all possible generated states which is
9 ** not dessimated.

10 **
11 ** Release: 20190313 - 64b version
12 ** Release: 20190328 - GMP library version for arbitrary bit size
13 **#########################################################################* */
14
15 // -----------------------------------------------------------------------------
16 // INCLUDES
17 // -----------------------------------------------------------------------------
18 #include <stdio.h>
19 #include <assert.h>
20 #include <stdlib.h>
21 #include <string.h> // strlen
22 #include <stdint.h> //64b Int
23 #include <inttypes.h> //64b int
24 #include <gmp.h> // arbitrary integer size
25
26 // -----------------------------------------------------------------------------
27 // GLOBAL VARIABLES
28 // -----------------------------------------------------------------------------
29 char* FNAME; // Output filename
30 const int ALPHASIZE = 2; // Alphabet size , 0 & 1
31 int m = 896; //Size of search word
32 int n = 1738; //Size of text
33 int slen = 448; //K value
34 int deg = 11; // Polynomial degree
35 int SSTATE = 1024;
36 int CSTATE = 1;
37 mpz_t PLAINTEXT; // Message to encipher
38 mpz_t TEXT; // Search text
39
40 // -----------------------------------------------------------------------------
41 // LFSR STRUCT
42 // -----------------------------------------------------------------------------
43 struct LFSR {
44 mpz_t POLYNOMIAL; // Polynomial definition
45 mpz_t STATE; //LFSR state
46 int DEGREE; // Polynomial degree
47 };
48
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49
50 // -----------------------------------------------------------------------------
51 // FUNCTION DECLARATIONs
52 // -----------------------------------------------------------------------------
53 mpz_t* genAlphabet( int ); //Gen array of the alphabet
54 int lfsr_iterate( struct LFSR *); //Gen next state & output
55 void lfsrgen(mpz_t , int , int , mpz_t , //Gen an LFSR
56 uint_least64_t , int , mpz_t *);
57 mpz_t* arbp_search( mpz_t*, int ); //Main search function
58 mpz_t* genError(int); //Gen init error table
59 void genPrefixes( mpz_t*, mpz_t ); // Generate the prefixes
60 void genEncrypt( mpz_t , mpz_t , mpz_t ); // Encrypt the plaintext
61 void mpz_lshift( mpz_t , int ); //Left shift bin seq by 1
62 char* pb( mpz_t , int ); //Print prepending zeros
63
64 // -----------------------------------------------------------------------------
65 // MAIN FUNCTION
66 // -----------------------------------------------------------------------------
67 int main(int argc , char *argv []){
68 if( argc != 5 ){ // Check required input parameters
69 printf("Too few arguments\n");
70 return 0;
71 }
72
73 deg = atoi( argv [1] ); // Polynomial degree
74 m = atoi( argv [2] ); // Search word length
75 slen= atoi( argv [3] ) + 1 ; // Allowed errors
76 n = 2*m; // Serach text length 2m
77
78 printf("0: %s\n", argv [0]); //Debug
79 printf("L:\t%d\n", deg);
80 printf("M:\t%d\n", m);
81 printf("N:\t%d\n", n);
82 printf("K:\t%d + 1\n", slen -1);
83
84 FNAME = malloc (60* sizeof(char )); // Filename allocation
85 sprintf(FNAME , "cipherserach_L%dM%dK%d_%s.log", deg , m, slen -1, argv [4]);
86
87 mpz_t max; mpz_init( max );
88 mpz_setbit(max , deg); //Set max val , eg 2048 in 2^11
89
90 mpz_t pol; mpz_init( pol );
91 if( deg == 11 ){ //Set polynomial based on degree
92 mpz_set_ui(pol , 1209); //2^11 irreducible polynomial
93 printf( "POL: 1209\n" );
94 }
95 else if( deg == 16 ){
96 mpz_set_ui(pol , 33262); //2^16 irreducible polynomial
97 printf( "POL: 33262\n" );
98 }
99 else{

100 printf("Invaldig polynomial degree\n");
101 return 0;
102 }
103
104 printf("START:\t%s\n", argv [4]); //Debug
105
106 mpz_init(PLAINTEXT );
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107 mpz_set_ui(PLAINTEXT , 0); // Default value is 0
108
109 printf("START\n");
110 mpz_t* B = genAlphabet( ALPHASIZE ); // Generate alphabet
111
112 mpz_t LCLK; mpz_init(LCLK); //LFSR for dessimating
113 lfsrgen(LCLK , deg , m, pol , 300, 0, NULL); // Clocking LFSR
114 mpz_t LDES; mpz_init(LDES); //LFSR to be dessimated
115 lfsrgen(LDES , deg , n, pol , SSTATE , 0, NULL); // Dessimated LFSR
116
117 mpz_t CIPHER; mpz_init( CIPHER ); //Gen intercepted ciphertext
118 genEncrypt( CIPHER , LCLK , LDES );
119
120 genPrefixes( B, CIPHER ); //Gen prefixes for the alphabet
121
122 char* t = pb(pol ,deg);
123 // Output generated data
124 #if defined DEBUG
125 printf( "Setup:" );
126 printf( "\n\tPOLY:\t\t%s", t); mpz_out_str(stdout , 2, pol);
127 free(t); t = pb(PLAINTEXT , m);
128 printf( "\n\tPLAINTEXT :\t%s", t); mpz_out_str(stdout , 2, PLAINTEXT );
129 free(t); t = pb(LCLK , m);
130 printf( "\n\tLFSR CLK:\t%s", t); mpz_out_str(stdout , 2, LCLK);
131 free(t); t = pb(LDES , n);
132 printf( "\n\tLFSR DES:\t%s", t); mpz_out_str(stdout , 2, LDES);
133 free(t); t = pb(CIPHER ,m);
134 printf( "\n\tCIPHER :\t\t%s", t); mpz_out_str(stdout , 2, CIPHER );
135 free(t); t = pb(B[0], m);
136 printf( "\nAlphabet :\tB[0]:\t%s", t); mpz_out_str(stdout , 2, B[0]);
137 free(t); t = pb(B[1], m);
138 printf( "\n\t\tB [1]:\t%s", t); mpz_out_str(stdout , 2, B[1]);
139 free(t);
140 printf( "\n\n" );
141 #endif
142
143 mpz_clear( LCLK ); // Cleanup LFSRs
144 mpz_clear( LDES );
145
146 mpz_t tmp; mpz_init( tmp ); // Geneate tmp variable
147
148 uint_least64_t i = 1; // initial state counter.
149 FILE* fh = fopen(FNAME , "w"); //Open output file for writing
150
151 //While i less than 2^deg
152 while( mpz_cmp_ui( max , i ) > 0 ){
153 CSTATE = i;
154 mpz_set_ui( tmp , i); //For binary display
155 t = pb(tmp , deg);
156 #if defined DEBUG
157 printf("\nINITIAL STATE\t%"PRIu64"\t%s", i, t);
158 mpz_out_str( stdout , 2, tmp); printf("\n");
159 #endif
160
161 lfsrgen( TEXT , deg , n, pol , i, 1, B ); // Undessimated bitseq iv=i
162 #if defined DEBUG
163 free(t); t = pb(TEXT ,n);
164 printf( "TEXT:\t\t%s", t ); mpz_out_str(stdout , 2, TEXT);
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165 free(t); t = pb(CIPHER ,m);
166 printf( "\nCIPHER :\t\t%s", t); mpz_out_str(stdout , 2, CIPHER );
167 printf( "\n" );
168 #endif
169
170 #if defined DEBUG
171 printf( "Perform ARBP search\n" );
172 #endif
173 mpz_t* MATCH = arbp_search(B, slen);
174
175 free(t); t = pb(tmp , deg);
176 //Print initial state and all matches to screen and file
177 #if defined DEBUG
178 printf( "INITSTATE\t%"PRIu64"\n", i);
179 printf("\nMATCH\t" );
180 fprintf( fh, "INITSTATE\t%"PRIu64"\t%s", i, t );
181 mpz_out_str(fh, 2, tmp);
182 fprintf( fh, "\nMATCH\t" );
183 #else
184 if( CSTATE == SSTATE ){
185 printf( "INITSTATE\t%"PRIu64"\n", i);
186 fprintf( fh, "INITSTATE\t%"PRIu64"\t%s", i, t );
187 mpz_out_str(fh, 2, tmp);
188 fprintf( fh, "\nMATCH\t" );
189 }
190 #endif
191 free( t );
192
193 #if !defined DEBUG
194 if( CSTATE == SSTATE ){
195 #endif
196 int j = 0;
197 int k = 0;
198 while( j<n ){ //For each position
199 if( mpz_cmp_ui(MATCH[j], m) < 0){ //If match is less than m
200 if( k > 0 && (k%15)==0 ){ // Decoration of stdout
201 printf("\n\t");
202 }
203 printf( "\t%d:", j); mpz_out_str(stdout , 10, MATCH[j] );
204 fprintf( fh, " %d:", j); mpz_out_str( fh, 10, MATCH[j] );
205 mpz_clear( MATCH[j] );
206 k++; // increment counter for print
207 }
208 j++; //Next position
209 }
210 fprintf( fh, "\n");
211 printf( "\n\n" );
212 fprintf( fh, "\n" );
213 fflush( fh );
214 #if !defined DEBUG
215 }
216 #endif
217 i++; //Next initial state
218 free(MATCH);
219 }
220 mpz_clear( TEXT ); // Clear variables
221 mpz_clear( PLAINTEXT );
222 mpz_clear( CIPHER );
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223 mpz_clear( B[0] );
224 mpz_clear( B[1] );
225 free( B ); //Free up memory
226 fclose( fh ); // Close data file
227 printf("\n\nSoftware done\n");
228 return 0;
229 }
230
231
232
233 /* *############################################################################
234 **
235 ** FUNCTIONS
236 **
237 **#########################################################################* */
238 /* -----------------------------------------------------------------------------
239 * Prepend zeros to a binary representation of a number.
240 * returns a char pointer to an array filled with missing zeros or nothing
241 * if it is already full.
242 -----------------------------------------------------------------------------*/
243 char* pb( mpz_t num , int len ){
244 size_t plen = len+1 - mpz_sizeinbase( num , 2 );
245 if( plen == 0 )
246 return "";
247 char* pre = malloc( plen * sizeof(char) ); // Allocate plen length array
248 int i = 0;
249 while( i < plen -1 ){
250 pre[i++] = ’0’;
251 }
252 pre[i]=’\0’;
253 return pre;
254 }
255
256 /* -----------------------------------------------------------------------------
257 * Left shift MPZ_T variable to the left
258 * n number of shift
259 * rop is mpz_t value to shift
260 -----------------------------------------------------------------------------*/
261 void mpz_lshift( mpz_t rop , int len ) {
262 mpz_t tmp; mpz_init( tmp ); //temp variable
263 int i = len -1;
264 while( i > 0 ){
265 if(mpz_tstbit(rop , i-1) == 1){
266 mpz_setbit( tmp , i ); //set bit if it
267 }
268 i--;
269 }
270 mpz_set(rop , tmp); //Set original var to tmp
271 mpz_clear(tmp);
272 }
273
274 /* -----------------------------------------------------------------------------
275 * Generates the cipher which then becomes the prefix.
276 * Y is the clocking LFSR
277 * X is the encrypting LFSR
278 -----------------------------------------------------------------------------*/
279 void genEncrypt(mpz_t rop , mpz_t CLK , mpz_t DES){
280 int i = 0; int j = 0;
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281 int x, y;
282 mpz_t CIPHER; mpz_init(CIPHER );
283
284 while( i < m ){ // Counter for clocking lfsr
285 x = 0; y = 0;
286 #if defined DEBUG
287 printf("CLK(%d)=%d ", i, mpz_tstbit(CLK , i) );
288 #endif
289
290 if( mpz_tstbit(CLK , i) == 1 ){
291 j++; // Decimate LFSR by skipping a bit
292 #if defined DEBUG
293 printf("\tDES(%d)=%d --> \tDES(%d)=%d", j-1,
294 mpz_tstbit(DES , j-1), j, mpz_tstbit(DES , j) );
295 #endif
296 }
297 #if defined DEBUG
298 else{
299 printf("\t\t\tDES(%d)=%d", j, mpz_tstbit(DES ,j));
300 }
301 #endif
302
303 //Val of dessimated LFSR output
304 if( mpz_tstbit(DES , j) == 1 ) x = 1; //grab value of bit
305 if( mpz_tstbit(PLAINTEXT , i) == 1 ) y = 1; //Grab value of bit
306 if( (y^x) == 1 ) mpz_setbit(CIPHER , i); //Xor to get CIPHER
307
308 #if defined DEBUG
309 printf(" ^ P(%d)=%d == C(%d)=%d\n", i, mpz_tstbit(PLAINTEXT , i),
310 i, mpz_tstbit(CIPHER , i) );
311 #endif
312 i++; j++; // Increment counters
313 }
314 #if defined DEBUG
315 printf("\n");
316 #endif
317 mpz_set(rop , CIPHER ); //Set var to generated cipher
318 mpz_clear( CIPHER );
319 }
320
321
322 /* -----------------------------------------------------------------------------
323 * Generate initial m-bitmasks for the alphabet of ALPHASIZE
324 -----------------------------------------------------------------------------*/
325 mpz_t* genAlphabet( int ALPHASIZE ){
326 mpz_t* B = malloc (( ALPHASIZE )* sizeof( mpz_t ));
327 #if defined DEBUG
328 printf( "Generating 0-masks for the alphabet\n" );
329 #endif
330
331 int i=0;
332 while( i < ALPHASIZE ){
333 mpz_init( B[i] );
334 mpz_set_ui( B[i], 0 );
335 #if defined DEBUG
336 printf("\tB[%d]",i);
337 mpz_out_str(stdout , 2, B[i]);
338 printf("\n");
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339 #endif
340 i++;
341 }
342 #if defined DEBUG
343 printf( "\tDone\n\n" );
344 #endif
345 return B;
346 }
347
348
349
350 /* -----------------------------------------------------------------------------
351 * LFSR iteration function
352 * Calculates the next state of the LFSR by first grabbing the MSB as output
353 * value. Then it calculates the AND of cur state and the polynomial before
354 * running an XOR on all bits that are set in the temp var to generate the
355 * feedback value.
356 *
357 * Finally it left shifts the entire original state and sets the LSB to the
358 * value of the feedback polynomial.
359 *
360 * The feedback value is then set
361 -----------------------------------------------------------------------------*/
362 int lfsr_iterate( struct LFSR* lfsr) {
363 int i = 0; // Counter
364 int fbck = 0; //XOR calculated value
365 int ret = mpz_tstbit( lfsr ->STATE , lfsr ->DEGREE -1 );
366
367 mpz_t tmp; mpz_init( tmp );
368 mpz_and(tmp , lfsr ->STATE , lfsr ->POLYNOMIAL );
369
370 while( i < lfsr ->DEGREE ){ //Calc feedback
371 fbck = fbck + mpz_tstbit( tmp , i );
372 i++;
373 }
374 fbck = fbck % 2;
375 mpz_lshift(lfsr ->STATE , lfsr ->DEGREE ); //Left shift
376 if( fbck == 1 ) mpz_setbit( lfsr ->STATE , 0 );
377
378 return ret; // Return output character
379 }
380
381
382 /* -----------------------------------------------------------------------------
383 * Generate LFSR and output an n-length bitsequence
384 * With all arbitrary skips until first prefix is met
385 -----------------------------------------------------------------------------*/
386 void lfsrgen(mpz_t rop , int psize , int olen , mpz_t p,
387 uint_least64_t iv, int skip , mpz_t* B){
388 int i; // Counter var
389 int initmatch = 0; //Check if first prefix is found
390 struct LFSR lfsr; // Create struct variable
391 #if defined DEBUG
392 printf("Generating LFSR\n");
393 #endif
394
395 lfsr.DEGREE = psize; //Set polynomial degree
396
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397 mpz_init( lfsr.POLYNOMIAL );
398 mpz_set(lfsr.POLYNOMIAL , p); //Set polynomial
399
400 mpz_init( lfsr.STATE );
401 mpz_set_ui(lfsr.STATE , iv); //Set initial vector (seed)
402
403 mpz_t OUTPUT;
404 mpz_init( OUTPUT );
405 int tmpOUT = 0; //temp char holder
406 char* t;
407 i = 0; //Zero out counter
408 while( i < olen ){
409 tmpOUT = lfsr_iterate (&lfsr);
410 if( initmatch == 0 && skip == 1) {
411 if( mpz_tstbit(B[tmpOUT], 0) == 1 ){
412 initmatch = 1; //Set state to found
413 if( tmpOUT == 1 )
414 mpz_setbit(OUTPUT , i); //Set output to tmpvar
415 i++; //inc counter
416
417 #if defined DEBUG
418 t = pb(B[0],m);
419 printf("\tinitmatch found\t\t%d |\t0: %s", tmpOUT , t);
420 mpz_out_str( stdout , 2, B[0] );
421 free(t); t = pb(B[1],m);
422 printf("\n\t\t\t\t\t1: %s", t); mpz_out_str( stdout , 2, B[1] );
423 printf("\n");
424 free(t);
425 #endif
426 }
427 #if defined DEBUG
428 else{
429 t = pb(B[0],m);
430 printf("\tinitmatch not found\t%d |\t0: %s", tmpOUT , t);
431 mpz_out_str( stdout , 2, B[0] );
432 free(t); t = pb(B[1],m);
433 printf("\n\t\t\t\t\t1: %s", t); mpz_out_str( stdout , 2, B[1]);
434 printf("\n");
435 free(t);
436 }
437 #endif
438 }
439 else {
440 if( tmpOUT == 1) mpz_setbit(OUTPUT , i);
441 i++; //Next bit
442 }
443 }
444
445 //Print LFSR information
446 #if defined DEBUG
447 printf("\n");
448 printf("\tDEGREE :\t%d\n", psize );
449 printf("\tLENGTH :\t%d\n", olen);
450 printf("\tPOL:\t"); mpz_out_str( stdout , 2, lfsr.POLYNOMIAL );
451 printf("\n\tSTT:\t"); mpz_out_str( stdout , 2, lfsr.STATE );
452 printf("\n");
453 printf("\tDone\n");
454 #endif
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455 mpz_set(rop , OUTPUT );
456 mpz_clear(OUTPUT );
457 }
458
459
460
461 /* -----------------------------------------------------------------------------
462 * Creates the prefixes
463 -----------------------------------------------------------------------------*/
464 void genPrefixes( mpz_t* B, mpz_t P ){
465 int j = 0;
466 #if defined DEBUG
467 printf("Generating prefixes\n");
468 #endif
469 mpz_t tmp; mpz_init(tmp); mpz_set_ui( tmp , 1 );
470 while( j<m ){
471 int ci = mpz_tstbit(P, j); //Char value 0/1
472
473 #if defined DEBUG
474 printf( "j=%d\tPj=%d |\t%s", j, mpz_tstbit(P,j), pb(B[ci],m) );
475 mpz_out_str(stdout , 2, B[ci]);
476 #endif
477
478
479 mpz_ior( B[ci], B[ci], tmp ); // current value or-ed with 10^(j-1)
480 mpz_lshift( tmp , m );
481
482 #if defined DEBUG
483 printf( "\n\t\t%s", pb(B[ci],m));
484 mpz_out_str( stdout , 2, B[ci]); printf( "\n" );
485 #endif
486
487 j++; //Next pattern character
488 }
489 mpz_clear( tmp );
490 #if defined DEBUG
491 printf("\n\tDone\n\n");
492 #endif
493 }
494
495
496
497 /* -----------------------------------------------------------------------------
498 * Creates the error list of K-size
499 -----------------------------------------------------------------------------*/
500 mpz_t* genError(int K) {
501 mpz_t* R = malloc( K*sizeof(mpz_t) ); // Allocate memory for array
502 #if defined DEBUG
503 printf("Gen error R[%d..%d]\n", 0, K-1);
504 #endif
505 int k = 0; //Set counter
506 while( k<K ){
507 int i = 0;
508 mpz_init( R[k] );
509 while( i < k ){
510 mpz_setbit( R[k], i );
511 i++;
512 }
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513 #if defined DEBUG
514 printf("\tR[%d]\t= ", k);
515 mpz_out_str( stdout , 2, R[i]);
516 printf( "\n" );
517 #endif
518 k++;
519 }
520 #if defined DEBUG
521 printf("\tDone\n");
522 #endif
523 return R;
524 }
525
526
527 /* -----------------------------------------------------------------------------
528 * Perform search on TEXT and PREFIX
529 -----------------------------------------------------------------------------*/
530 mpz_t* arbp_search(mpz_t* B, int K) {
531 mpz_t tmp1; mpz_init( tmp1 ); //Tmp variables
532 mpz_t tmp2; mpz_init( tmp2 );
533 //Match for each position in text
534 mpz_t* R = genError( K ); //Gen error -table
535 mpz_t* MATCHES = malloc( n * sizeof(mpz_t) );
536
537 mpz_t oldR , newR; // Create and init variables
538 mpz_init( oldR ); mpz_init( newR );
539
540 #if defined DEBUG
541 printf( "Beginning search\n"); //Debug
542 #endif
543 uint_least64_t pos = 0; //Start search from char 1
544 while( pos < n ){ // Search entire string
545 int Ti = mpz_tstbit(TEXT , pos); //Grab current chars int value
546
547 mpz_clear( oldR ); mpz_init( oldR ); // Reset variables
548 mpz_clear( newR ); mpz_init( newR );
549
550 mpz_set( oldR , R[0]); //Init oldR to cur R[0] (R[i])
551
552 mpz_set(tmp1 , R[0]);
553 mpz_lshift( tmp1 , m ); // lshift
554 mpz_setbit( tmp1 , 0 ); //OR with 1
555 mpz_and( tmp1 , tmp1 , B[Ti] ); //AND with B[Ti]
556
557 mpz_set( newR , tmp1 ); //Set newR to tmp
558 mpz_set(R[0], newR); //Set R[0] to R’[i]
559
560 uint_least64_t i = 1; //Calc matches with K allowed errors
561 while( i < K ) {
562 mpz_clear( tmp1 ); mpz_clear(tmp2);
563 mpz_init(tmp1); mpz_init(tmp2);// reset and initialise temp variables
564
565 // Substitute and deletion
566 mpz_ior(tmp2 , oldR , newR); //tmp2 = (oldR|newR)
567 mpz_lshift(tmp2 , m); //tmp2 = <tmp2 > << 1
568 mpz_setbit( tmp2 , 0 ); //tmp2 = <tmp2 > | 1
569 #if !defined INC_INSERT
570 // Insertion
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571 mpz_ior(tmp2 , oldR , tmp2); //tmp2 = oldR | <tmp2 >
572 #endif
573
574 mpz_set(tmp1 , R[i]); //Copy value
575 mpz_lshift(tmp1 , m); //tmp1 = R[i]<<1
576 mpz_and(tmp1 , tmp1 , B[Ti]); //tmp1 = <tmp1 > & B[Ti]
577
578 mpz_ior(tmp1 , tmp1 , tmp2); //tmp1 = <tmp1 > | <tmp2 >
579
580 mpz_set(newR , tmp1); //newR = <tmp1 >
581 mpz_set(oldR , R[i]); //Store R[i] for next error
582 mpz_set(R[i], newR); //R[i] == R’[i]
583
584 i++; //Next error
585 }
586
587 #if !defined DEBUG
588 if( CSTATE == SSTATE ){
589 #endif
590 mpz_init( MATCHES[pos] );
591 mpz_set_ui( MATCHES[pos], m ); //Init val of match at cur pos
592 int j = 0; //Init counter
593 if( mpz_tstbit(newR , m-1) == 1 ){ //Check if R-table has a match
594 while( j<K ){ //Loop R-table for matches (MSB set)
595 if(mpz_tstbit(R[j], m-1) == 1){ // Check if MSB set
596 mpz_set_ui(MATCHES[pos], j); //Set match to the R-level (0-K)
597 j = K; //Skip to end
598 }
599 j++; //Next error value
600 }
601 }
602 #if !defined DEBUG
603 }
604 #endif
605 pos += 1; //Next position in search text
606 }
607
608 #if defined DEBUG
609 printf("Search done.\n");
610 #endif
611 mpz_clear( oldR );
612 mpz_clear( newR );
613 free(R);
614
615 #if defined DEBUG
616 return MATCHES;
617 #else
618 if( CSTATE == SSTATE ) return MATCHES;
619 else return NULL;
620 #endif
621 }

Listing B.1: C ARBP source code
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B.2 FPGA Implementation and Design in Verilog

B.2.1 Testbench

1 ‘timescale 1ns / 1ps
2 // //////////////////////////////////////////////////////////////////////////////
3 // Engineer: Magnus Overbo
4 //
5 // Create Date: 20190212
6 // Revision Date: 20190324
7 // Design Name: FPGA Ciphersearch
8 // Module Name: testbench
9 // Project Name:

10 // Target Devices: FPGA Ciphersearch
11 //
12 // Revision:
13 // Revision 0.01 - File Created
14 // Revision 1.00 - Testbench simulating clock , switches and LED registers
15 // //////////////////////////////////////////////////////////////////////////////
16
17 module testbench ();
18 reg synclock; // Create reg for synclock
19
20 reg [15:0] SWreg =0; // Simulate button state
21 wire [15:0] SWwire;
22
23 reg [15:0] LEDreg; // Simulate LED pins
24 wire [15:0] LEDwire;
25
26 reg UARTreg; // Simulate UART pin
27 wire UARTwire;
28
29 // Modules
30 arbp s1( synclock , SWreg , LEDwire , UARTwire );
31
32 initial begin
33 synclock = 1’b0; // Initialise simulated clock
34 #5000 $finish; // Finish after 5k iterations
35 end
36
37 //Clock pulse simulation
38 always #1 synclock = !synclock;
39
40 endmodule

Listing B.2: Verilog Testbench source code
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B.2.2 ARBP search FPGA (main program)

1 ‘timescale 1ns / 1ps
2 // #############################################################################
3 //# Engineer: Magnus Overbo
4 //#
5 //# Create Date: 20190219
6 //# Design Name: FPGA Ciphersearch
7 //# Module Name: arbp
8 //# Project Name: FPGA Ciphersearch
9 //# Target Devices: nexys A7

10 //# Description: Performs the ARBP search for a generated bitsequence.
11 //# Generated by the LFSR , starting at the "init" state
12 //#
13 //# Revision:
14 //# Revision 0.1 - 20190314 Initial version generated , with all as registers
15 //# Revision 0.2 - 20190322 Improved speed and refactoring M <= 256b
16 //# Revision 0.3 - 20190324
17 // #############################################################################
18
19 ‘define DEGREE11
20 // ‘define DEGREE16
21 // ‘define DEGREE20
22 // ‘define DEGREE30
23
24 // ‘define INC_INSERT
25
26
27 // #############################################################################
28 //# Approximate RBP Search
29 //# Generates an LFSR of length N and performs ARBP search after each bit is
30 //# generated by an LFSR
31 // #############################################################################
32 module arbp(input clk , input [15:0] SW, output [15:0] LED , output UART_RXD_OUT );
33 // -----------------------------------------------------------------------------
34 //-- INPUT VARIABLES
35 // -----------------------------------------------------------------------------
36 reg [15:0] LEDreg = 16’h0000; // Values sent to output LED
37 reg [15:0] SWreg = 16’h0000; // Switch registers
38 reg runclock= 0; // Halftime clock
39
40
41 // -----------------------------------------------------------------------------
42 //-- PARAMETER DEFINITIONS
43 // -----------------------------------------------------------------------------
44 ‘ifdef DEGREE11
45 parameter POL = 11; // Polynomial degree
46 parameter MAXSTATEVAL = 2048; //Value to mod LFSR state with
47 ‘elsif DEGREE16
48 parameter POL = 16; // Polynomial degree
49 parameter MAXSTATEVAL = 65536; //Value to mod LFSR state with
50 ‘elsif DEGREE20
51 parameter POL = 20; // Polynomial degree
52 parameter MAXSTATEVAL = 1048576; // Value to mod LFSR state with
53 ‘elsif DEGREE30
54 parameter POL = 30; // Polynomial degree
55 parameter MAXSTATEVAL = 1073741824; // Value to mod LFSR state with
56 ‘endif
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57
58
59 parameter M = 256; //Size of cipher/prefix/search word
60 parameter N = 512; //Size of search text
61 parameter K = 69; //Max error size
62 parameter Kbin = 32; //Lengt needed to represent address space
63 parameter Blen = 8; // Length of a byte for UART transmission
64
65
66 parameter SOLVESTATE = 1024; //Init state to use for LFSR2 and as output state
67 parameter DESSTATE = 300; //Init state for clocking LFSR
68
69
70 // -----------------------------------------------------------------------------
71 //-- GLOBAL VARIABLES
72 // -----------------------------------------------------------------------------
73 // Prefixes
74 reg [(M -1):0] B[0:1]; // Alphabet prefixes
75
76 //ARBP Error calculation
77 reg [M-1:0] Rold; //R[i]
78 reg [M-1:0] Rnew; //R’[i]
79
80 //LFSR variables
81 ‘ifdef DEGREE11
82 // Feedback pol: x^11 + x^8 + x^6 + x^5 + x^4 + x^1 + 1
83 reg [POL -1:0] POLYNOMIAL = 11’ b10010111001;
84 ‘elsif DEGREE16
85 // Feedback pol: x^16 + x^9 + x^8 + x^7 + x^6 + x^4 + x^3 + x^2 + 1
86 reg [POL -1:0] POLYNOMIAL = 16’ b1000000111101110;
87 ‘elsif DEGREE20
88 // Feedback pol: x^20 + x^9 + x^5 + x^3 + 1
89 reg [POL -1:0] POLYNOMIAL = 20’ b10000000000100010100;
90 ‘elsif DEGREE30
91 // Feedback pol: x^30 + x^23 + x^2 + x^1 + 1
92 reg [POL -1:0] POLYNOMIAL = 30’ b100000010000000000000000000011;
93 ‘endif
94
95 reg [POL -1:0] LFSRinitState = 1;// Initial state of LFSR
96 reg [POL -1:0] LFSRstate; // current state of LFSR
97 reg LFSRfbck; // Feedback variable
98
99 //Temp variables

100 integer r = 0; // Counter for error calc loop
101 integer i = 0; // genearal purpose counter
102 reg STATEtrigger= 0; // Triggers end of current state
103
104 //FSM variables
105 reg Ti; // Current value
106 reg INITFIND = 0; //Reg showing that first val is found
107 integer POSITION = 0; // Position in text
108 integer STATE = 0; //FSM state variable
109
110 //UART variables
111 wire uartIsTxWire; // is_transmitting wire where val is read
112 reg uartIsTx; // stored tx state
113 reg uartReset = 0; //rst
114 reg uartTx = 0; // transmit
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115 integer txState = 0; //State for UART transmission
116 integer uartCounter = 0; // Counter for uart
117 integer uartState = 0; // State variable for uart
118 reg [7:0] uartTxData = 0; // tx_byte
119 reg [31:0] uartTxLFSRState; // Stores current init states
120
121 //UART control variables
122 reg uartTxWait = 0; //Wait / signal variable for arbp
123 reg uartTxWaitAck = 0; //Wait / signal variable for uart
124
125 //LFSR for generating cipher
126 integer ENCSTATE = 0;
127 ‘ifdef DEGREE11
128 // Polynomial deg 11
129 reg [POL -1:0] LFSR_CLK_POLY = 11’ b10010111001;
130 reg [POL -1:0] LFSR_DES_POLY = 11’ b10010111001;
131 ‘elsif DEGREE16
132 // Polynomial deg 16
133 reg [POL -1:0] LFSR_CLK_POLY = 16’ b1000000111101110;
134 reg [POL -1:0] LFSR_DES_POLY = 16’ b1000000111101110;
135 ‘elsif DEGREE20
136 // Polynomial deg 20
137 reg [POL -1:0] LFSR_CLK_POLY = 20’ b10000000000100010100;
138 reg [POL -1:0] LFSR_DES_POLY = 20’ b10000000000100010100;
139 ‘elsif DEGREE30
140 // Polynomial deg 30
141 reg [POL -1:0] LFSR_CLK_POLY = 30’ b100000010000000000000000000011;
142 reg [POL -1:0] LFSR_DES_POLY = 30’ b100000010000000000000000000011;
143 ‘endif
144
145 reg [POL -1:0] LFSR_CLK_STATE= DESSTATE;
146 reg [POL -1:0] LFSR_DES_STATE= SOLVESTATE;
147 reg LFSR_CLK_BIT;
148 reg LFSR_DES_BIT;
149
150 reg PTXT = 0;
151 reg CIPHERBIT = 0;
152
153 reg R_write = 0;
154 reg [Kbin -1:0] R_addr = 0;
155 reg [M-1:0] R_idata = 0;
156 wire [M -1:0] R_odata_wire;
157
158
159
160 // -----------------------------------------------------------------------------
161 //-- ASSIGN
162 // -----------------------------------------------------------------------------
163 assign LED = LEDreg;
164
165
166 // -----------------------------------------------------------------------------
167 //-- Modules
168 // -----------------------------------------------------------------------------
169 uart #(. CLOCK_DIVIDE (217)) console(clk , uartReset , UART_RXD_OUT , uartTx ,
170 uartTxData , uartIsTxWire );
171 //uart #(. CLOCK_DIVIDE (108)) console(runclock , uartReset , UART_RXD_OUT , uartTx ,
172 // uartTxData , uartIsTxWire );
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173 sram #(. ADDR_WIDTH(Kbin), .DATA_WIDTH(M), .DEPTH(K)) R_array
174 (.clk(clk), .i_addr(R_addr), .i_write(R_write), .i_data(R_idata),
175 .o_data(R_odata_wire) );
176
177 // -----------------------------------------------------------------------------
178 //-- Independent update of Swith positions
179 // -----------------------------------------------------------------------------
180 always @(posedge clk) begin
181 SWreg <= SW;
182 runclock <= !runclock;
183 end
184
185 // -----------------------------------------------------------------------------
186 //-- FSM for running ARBP search
187 // -----------------------------------------------------------------------------
188 always @(posedge clk) begin
189 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
190 //++ LFSR: Generate CIPHER text bit by bit
191 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
192 if( STATE == 0 ) begin // Calculate LFSR
193 if( r == M ) begin
194 ENCSTATE <= 0;
195 STATE <= 1;
196 end
197 else begin
198 if( ENCSTATE == 0 ) begin //Gen clock bit
199 LFSR_CLK_BIT <= LFSR_CLK_STATE[POL -1]; //MSB = output
200 LFSR_CLK_STATE <= LFSR_CLK_STATE << 1; //Left shift
201 LFSR_CLK_STATE [0] <= ^( LFSR_CLK_POLY & LFSR_CLK_STATE ); // feedback val
202 ENCSTATE <= 1; //Next state
203 end
204 else if( ENCSTATE == 1 ) begin // Calculate bit
205 LFSR_DES_BIT <= LFSR_DES_STATE[POL -1]; //MSB = output
206 LFSR_DES_STATE <= LFSR_DES_STATE << 1; //Left shift
207 LFSR_DES_STATE [0] <= ^( LFSR_DES_POLY & LFSR_DES_STATE ); // feedback val
208 ENCSTATE <= 2; //Next state
209 end
210 else if( ENCSTATE == 2 ) begin //Store as cipher bit
211 if( LFSR_CLK_BIT == 0 ) begin // Output bit ready
212 CIPHERBIT <= LFSR_DES_BIT ^ PTXT; //XOR with plaintext
213 ENCSTATE <= 3; //Next state
214 end
215 else begin
216 LFSR_CLK_BIT <= LFSR_CLK_BIT - 1; // Decimate LFSR
217 ENCSTATE <= 1; // Generate next LFSR bit
218 end
219 end
220 else if( ENCSTATE == 3 ) begin
221 B[0][r] <= !CIPHERBIT; // Generate 0 prefix
222 B[1][r] <= CIPHERBIT; // Generate 1 prefix
223 r <= r + 1; // Increment counter <M
224 ENCSTATE <= 0; //Go to initial state
225 end
226 end
227 end
228
229 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
230 //++ Initial state
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231 //++ Reset variables , error array and move on to next stage
232 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
233 else if( STATE == 1 ) begin
234 if( i == K ) begin // Preliminary setup , done.
235 i <= 0; // Reset counter
236 r <= 0; //
237 STATEtrigger <= 0; // Unset reg
238 POSITION <= 0; //Zero counter for position in text
239 STATE <= 2; //Next stage in FSM
240 INITFIND <= 0; //Zero out first find
241 R_write <= 0;
242 R_addr <= 0;
243 LFSRstate <= LFSRinitState; //Store value for later use
244 end
245 else begin
246 if( i == 0 ) begin
247 R_addr <= i;
248 R_idata <= 0;
249 R_write <= 1;
250 end
251 else if( i < K) begin
252 R_idata <= (R_idata << 1) | 1;
253 R_addr <= i;
254 end
255 i <= i + 1;
256 end
257 end
258
259
260 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
261 //++ LFSR: grab output bit and iterate the LFSR
262 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
263 else if( STATE == 2 ) begin // Calculate LFSR
264 if( STATEtrigger ) begin //LFSR gen done
265 i <= 0; //reset variables
266 r <= 0; //
267 STATEtrigger <= 0; //
268 R_addr <= 0; //
269 R_write <= 0; //
270 uartTxLFSRState <= LFSRinitState; //
271
272 // Trigger on initial match , and all subsequent values
273 if( B[Ti ][0]==1 || INITFIND ==1 ) begin
274 INITFIND <= 1; //Set INITFIND
275 STATE <= 3; //Next State
276 end
277 else begin // Initial loop until first match
278 STATE <= 2; //Don ’t count as position
279 end
280 end
281 else begin
282 Ti <= LFSRstate[POL -1]; //grab MSB as output
283 LFSRstate <= LFSRstate << 1; //Left shift register
284 LFSRstate [0] <= ^( POLYNOMIAL & LFSRstate ); //AND pol with state
285 STATEtrigger <= 1; // Trigger done stat
286 end
287 end
288
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289
290 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
291 //++ Initialise ARBP search R0 Exact search
292 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
293 else if( STATE == 3 ) begin // Primary ARBP search
294 if( R_write == 0 ) begin
295 Rold <= R_odata_wire; //
296 //R0 exact search
297 {R_idata , Rnew} <= {2{ ((( R_odata_wire << 1) | 1) & B[Ti]) }};
298 R_write <= 1; //
299 end
300 else begin
301 STATE <= 4; //
302 r <= 0; //
303 R_write <= 0; //
304 end
305 end
306
307
308 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
309 //++ Run ARBP algorithm for current position
310 //++ With continous output to LED array
311 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
312 else if( STATE == 4 ) begin
313 if(r >= K ) begin // Algorithm finished
314 r <= 0; //
315 STATEtrigger <= 0; //Reset trigger
316 R_write <= 0; //Stop write
317 R_addr <= 0; // Reset BRAM address
318 // Output data via UART
319 if( SW[0] == 0 ) begin //Run output always
320 STATE <= 5; //Next stage in FSM
321 end
322 //Show solve -state matches only
323 else if( SW[0] == 1 && LFSRinitState == SOLVESTATE ) begin
324 STATE <= 5; //Next stage in FSM
325 end
326 else begin //Skip output
327 STATE <= 6; //Next stage in FSM
328 end
329 // Trigger LED indicators for LFSR state and matches
330 if(POL <= 16 )
331 LEDreg <= LFSRinitState; // Current initial state
332 else
333 LEDreg <= LFSRinitState[POL -1:POL -16]; // Current initial state
334
335 end
336 else begin
337 case( i )
338 0: begin
339 R_addr <= R_addr + 1;
340 r <= r + 1;
341 R_write <= 0;
342 end
343 2: begin
344 Rold <= R_odata_wire;
345 ‘ifdef INC_INSERT
346 // Insert transtition allowed
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347 {R_idata ,Rnew} <= {2{(( R_odata_wire <<1)&B[Ti])| Rold |((( Rold|Rnew ) < <1)|1)}};
348 ‘else
349 // Insert transition removed
350 {R_idata ,Rnew} <= {2{(( R_odata_wire <<1)&B[Ti ])|((( Rold|Rnew ) < <1)|1)}};
351 ‘endif
352 end
353 3: begin
354 R_write <= 1;
355 end
356 endcase
357 i = (i + 1) % 4;
358 end //else
359 end // State
360
361
362 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
363 //++ Transfer match data
364 //++ Mark ready for transmission , wait until ack signal is recieved.
365 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
366 else if( STATE == 5 ) begin
367 if( uartTxWait == 1 ) begin //Wait until transmission done
368 if( uartTxWaitAck == 1 ) begin // Reset values , go to next state
369 uartTxWait <= 0;
370 STATE <= 6;
371 end
372 end
373 else if( Rnew[M-1] == 0 ) begin //NO matches
374 STATE <= 6;
375 end
376 else if( R_odata_wire[M-1] == 1 ) begin // Match found
377 uartTxWait <= 1; //
378 end
379 else if( R_addr == K-1 && r == 0 ) begin
380 STATE <= 6;
381 end
382 else begin //
383 if( r==1 ) begin //
384 R_addr <= R_addr + 1; //
385 end
386 r <= (r + 1) % 4; // Iterate wait variable
387 end
388 end
389
390
391 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
392 //++ Reset and increment POSITION variable
393 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
394 else if( STATE == 6 ) begin
395 STATEtrigger <= 0; //Reset statetrigger
396 POSITION <= POSITION + 1; //Inc position
397 R_addr <= 0;
398 r <= 0; //Reset remaining vars
399 i <= 0;
400 Rold <= {M{1’b0}};
401 Rnew <= {M{1’b0}};
402 STATE <= 7;
403 end
404
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405
406 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
407 //++ Returns you to state 0 with next intial state if POSITION N is reached
408 //++ otherwise return you to STATE 1 for next value
409 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
410 else if( STATE == 7 ) begin
411 if( POSITION >= N ) begin //If end of search
412 STATE <= 1; // go to 0 state
413 if( LFSRinitState == MAXSTATEVAL -1 ) begin
414 LFSRinitState <= 1; //Skip 0 state (loop of death)
415 end
416 else begin
417 LFSRinitState <= LFSRinitState + 1; //Next LFSR init state
418 end
419 end
420 else STATE <= 2; //Jump to next position
421 end
422
423
424 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
425 //++ Catch all state return to initial State
426 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
427 else begin
428 LFSR_DES_STATE <= DESSTATE; //
429 LFSR_CLK_STATE <= SOLVESTATE; //
430 STATE <= 0; // Something is wrong , go to zero
431 end
432 end
433
434
435
436
437
438
439 // ------------------------------------------------------------------------------
440 //-- UART transmission control
441 // ------------------------------------------------------------------------------
442 //-- uartTxWait == 0 - ARBP search does not need data transmitted
443 //-- uartTxWait == 1 - ARBP wants data transmitted and awaits ack signal
444 //-- uartTxWaitAck == 0 - Zero untill entire protocol has been transmitted
445 //-- uartTxWaitAck == 1 - 1 to signal ARBP that tx is complete
446 // ------------------------------------------------------------------------------
447 always @(posedge clk) begin
448 uartIsTx <= uartIsTxWire; //Load current state value into reg
449
450 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
451 //++ Wait while ARBP state is signalling stop
452 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
453 if( uartTxWait == 0 ) begin
454 uartCounter <= 1;
455 uartTxWaitAck <= 0;
456 uartReset <= 0;
457 uartTxData <= 8’h00;
458 uartState <= 0;
459 uartTx <= 0;
460 end
461
462 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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463 //++ Hinder state 0 while ack is being sent
464 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
465 else if( uartTxWaitAck == 1 ) begin
466 end
467
468 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
469 //++ SET transmission data
470 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
471 else if( uartState == 0 ) begin
472 case(uartCounter)
473 // Transfer POSITION as 32b number
474 1: uartTxData <= POSITION[ 7: 0];
475 2: uartTxData <= POSITION [15: 8];
476 3: uartTxData <= POSITION [23:16];
477 4: uartTxData <= POSITION [31:24];
478
479 // Transfer initial state as a 32b number
480 5: uartTxData <= uartTxLFSRState[ 7: 0];
481 6: uartTxData <= uartTxLFSRState [15: 8];
482 7: uartTxData <= uartTxLFSRState [23:16];
483 8: uartTxData <= uartTxLFSRState [31:24];
484
485 // Transfer error level of match as a 32b number
486 9: uartTxData <= R_addr[ 7: 0];
487 10: uartTxData <= R_addr [15: 8];
488 11: uartTxData <= R_addr [23:16];
489 12: uartTxData <= R_addr [31:24];
490
491 //Stop transmission
492 13: uartTxWaitAck <= 1; // Signal transmission done
493 endcase
494 uartState <= 2; //Next state
495 end
496
497 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
498 //++ Signal transmission when transmission is "OFF"
499 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
500 else if( uartState == 2 ) begin
501 if( uartIsTx == 0 ) begin // UART grabs the data
502 uartTx <= 1; // Signal transmission
503 uartState <= 3; // Next state
504 end
505 end
506
507 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
508 //++ Signal transmission stop when transmission has started
509 //++ Will not stop before it has transmitted 8b
510 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
511 else if( uartState == 3 ) begin
512 if( uartIsTx == 1 ) begin
513 uartState <= 4; //Next state
514 uartTx <= 0; //Pause transmission
515 end
516 end
517
518 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
519 //++ Increment counter and jump to state 0 when transmission has stopped
520 // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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521 else if( uartState == 4 ) begin
522 if( uartIsTx == 0 ) begin
523 uartState <= 0; // Reset UART state
524 uartCounter <= uartCounter + 1;// Increment counter for next data
525 end
526 end
527 end
528
529 endmodule

Listing B.3: Verilog ARBP module source code
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B.2.3 Block Ram Module (Verilog)

1 ‘timescale 1ns / 1ps
2 // //////////////////////////////////////////////////////////////////////////////
3 // Engineer: Magnus Overbo
4 //
5 // Create Date: 03/24/2019 12:22:01 PM
6 // Module Name: ram
7 // Revision 1.0 initial version
8 // //////////////////////////////////////////////////////////////////////////////
9

10 module sram #( parameter ADDR_WIDTH =8, DATA_WIDTH =8, DEPTH =256) (
11 input wire clk ,
12 input wire [ADDR_WIDTH -1:0] i_addr ,
13 input wire i_write ,
14 input wire [DATA_WIDTH -1:0] i_data ,
15 output reg [DATA_WIDTH -1:0] o_data
16 );
17
18 // Create RAM array
19 reg [DATA_WIDTH -1:0] memory_array [0:DEPTH -1];
20
21 always @(posedge clk) begin
22 if( i_write ) begin // Write data to memory
23 memory_array[i_addr] <= i_data;
24 end
25 else begin //Store data to output reg
26 o_data <= memory_array[i_addr ];
27 end
28 end
29
30 endmodule

Listing B.4: Verilog BRAM module
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B.2.4 UART communication FPGA (shortened version Verilog)

1 ‘timescale 1ns / 1ps
2 // Documented Verilog UART
3 // Copyright (C) 2010 Timothy Goddard (tim@goddard.net.nz)
4 // Distributed under the MIT licence.
5 //
6 // Permission is hereby granted , free of charge , to any person obtaining a copy
7 // of this software and associated documentation files (the "Software"), to deal
8 // in the Software without restriction , including without limitation the rights
9 // to use , copy , modify , merge , publish , distribute , sublicense , and/or sell

10 // copies of the Software , and to permit persons to whom the Software is
11 // furnished to do so, subject to the following conditions:
12 //
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
15 //
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , EXPRESS OR
17 // IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,
18 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER
20 // LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM ,
21 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 // THE SOFTWARE.
23
24
25 module uart(
26 input clk , // The master clock for this module
27 input rst , // Synchronous reset.
28 output tx, // Outgoing serial line
29 input transmit , // Signal to transmit
30 input [7:0] tx_byte , // Byte to transmit
31 output is_transmitting // Low when transmit line is idle.
32 );
33
34 //100MHz clock which is derived to clock once every cycle == 50MHz
35 parameter CLOCK_DIVIDE = 217; // (100 MHz / ( 115200*4)) = 217
36
37 // States for the transmitting state machine.
38 // Constants - do not override.
39 parameter TX_IDLE = 0;
40 parameter TX_SENDING = 1;
41 parameter TX_DELAY_RESTART = 2;
42
43 reg [10:0] tx_clk_divider = CLOCK_DIVIDE;
44
45 reg tx_out = 1’b1;
46 reg [1:0] tx_state = TX_IDLE;
47 reg [5:0] tx_countdown;
48 reg [3:0] tx_bits_remaining;
49 reg [7:0] tx_data;
50
51 assign tx = tx_out;
52 assign is_transmitting = tx_state != TX_IDLE;
53
54 always @(posedge clk) begin
55 if (rst) tx_state <= TX_IDLE;
56
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57 // The clk_divider counter counts down from the CLOCK_DIVIDE constant.
58 // Whenever it reaches 0, 1/16 of the bit period has elapsed. Countdown timers
59 // for the receiving and transmitting state machines are decremented.
60 tx_clk_divider <= tx_clk_divider - 1;
61 if (! tx_clk_divider) begin
62 tx_clk_divider <= CLOCK_DIVIDE;
63 tx_countdown <= tx_countdown - 1;
64 end
65
66 // Transmit state machine
67 case (tx_state)
68 TX_IDLE: begin
69 if (transmit) begin
70 // If the transmit flag is raised in the idle state , start
71 // transmitting the current content of the tx_byte input.
72 tx_data <= tx_byte;
73 // Send the initial , low pulse of 1 bit period
74 // to signal the start , followed by the data
75 tx_clk_divider <= CLOCK_DIVIDE;
76 tx_countdown <= 4;
77 tx_out <= 0;
78 tx_bits_remaining <= 8;
79 tx_state <= TX_SENDING;
80 end
81 end
82 TX_SENDING: begin
83 if (! tx_countdown) begin
84 if (tx_bits_remaining) begin
85 tx_bits_remaining <= tx_bits_remaining - 1;
86 tx_out <= tx_data [0];
87 tx_data <= {1’b0 , tx_data [7:1]};
88 tx_countdown <= 4;
89 tx_state <= TX_SENDING;
90 end else begin
91 // Set delay to send out 2 stop bits.
92 tx_out <= 1;
93 tx_countdown <= 8;
94 tx_state <= TX_DELAY_RESTART;
95 end
96 end
97 end
98 TX_DELAY_RESTART: begin
99 // Wait until tx_countdown reaches the end before we send another

100 // transmission. This covers the "stop bit" delay.
101 tx_state <= tx_countdown ? TX_DELAY_RESTART : TX_IDLE;
102 end
103 endcase
104 end
105
106 endmodule

Listing B.5: Verilog UART module

92



Cryptanalysis of Irregularly Clocked LFSR: using ARBP search on FPGA

B.2.5 Data receiver script

1 #!/usr/bin/env python3
2 #-------------------------------------------------------------------------------
3 # Author: Magnus Overbo
4 # Date: 20190324
5 # Version: 1
6 # Description:Opens RS232 communication to read 32b values sent from an FPGA.
7 # It parses the data and performs synchronisation. When the data
8 # repeats itself , it will automatically stop receiving data and
9 # print its data to file and screen.

10 #-------------------------------------------------------------------------------
11
12
13 #-------------------------------------------------------------------------------
14 # Library import
15 #-------------------------------------------------------------------------------
16 import serial #UART / RS232 library
17 import sys #System
18 import datetime
19 from Crypto.Util.number import bytes_to_long #Convert bytestring to long
20
21
22 #-------------------------------------------------------------------------------
23 # Global variables
24 #-------------------------------------------------------------------------------
25 JSONDATA = {}
26 i = 0
27 POS = None
28 STT = None
29 ERR = None
30 RUN = True
31 DELAY = False
32 LFSRSIZE = int(sys.argv [1])
33 M = int(sys.argv [2])
34 K = int(sys.argv [3])
35 C = int(sys.argv [4])
36 DSTART = None
37 DEND = None
38 LINIT = -1
39 #Open COM port for UART communication at 115200 baud rate
40 serialConnection = serial.Serial("/dev/ttyUSB1", 115200 , timeout =1/1000)
41
42
43 #-------------------------------------------------------------------------------
44 # Helper function for printing binary representation of data
45 #-------------------------------------------------------------------------------
46 def binp( a, l ):
47 A = "{:b}".format( a )
48 L = l - len(A)
49 return "{}{}".format("0"*L, A)
50
51
52 #-------------------------------------------------------------------------------
53 # Main loop
54 #-------------------------------------------------------------------------------
55 while RUN:
56 DATA = serialConnection.read (1) #Read 1 byte
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57 if len(DATA) == 0 or len(DATA) > 2 or DELAY: #Data synch (Skip one byte)
58 DELAY = False
59 continue
60
61 #Load 32b data to generate long data
62 if i < 4:
63 POS = DATA if i == 0 else DATA + POS
64 elif i < 8:
65 STT = DATA if i == 4 else DATA + STT
66 elif i < 12:
67 ERR = DATA if i == 8 else DATA + ERR
68
69 if i == 11: #Convert and store data
70 STT = bytes_to_long(STT)
71 POS = bytes_to_long(POS)
72 ERR = bytes_to_long(ERR)
73
74 if ERR > K: #if ERR > K, means byte mismatch
75 JSONDATA = {} # easiest to remove and redo
76 DELAY = True # Force delay to resynch
77 i = 0
78 DSTART = None
79 DEND = None
80 sys.stdout.write("Error: {}\t{}\t{}\n".format( binp(STT ,10), POS , ERR) )
81 sys.stdout.write("Resetting collected data , and skipping: 1B\n\n")
82 continue
83
84 if LINIT != STT: #New LFSR state logged
85 sys.stdout.write("STATE: {: >10}\t{}\n".format(STT , binp(STT ,LFSRSIZE )))
86 LINIT = STT
87
88 if DSTART == None:
89 DSTART = datetime.datetime.now()
90
91 if STT in JSONDATA.keys (): #Add data to array
92 if POS in JSONDATA[STT].keys ():
93 DEND = datetime.datetime.now()
94 RUN = False #End
95 else:
96 JSONDATA[STT]. update( { POS:ERR } ) #new position
97 else:
98 JSONDATA.update( { STT : {POS:ERR} } ) #Entire new
99 i = (i + 1) % 12 #Mod counter

100 serialConnection.close() #Close connection to UART RS232
101
102
103 #-------------------------------------------------------------------------------
104 # Output data data to file and console
105 #-------------------------------------------------------------------------------
106 TDELTA = DEND -DSTART
107 PSTR="fpga_L {}M{}K{}C{}_{}.log"
108 fh = open(PSTR.format(LFSRSIZE , M, K, C, DSTART.strftime(’%Y%m%d%H%M%S’)), "w")
109 for key in sorted(JSONDATA.keys ()):
110 sys.stdout.write( "{}\t{}\t".format( key , binp(key ,LFSRSIZE) ) )
111
112 sys.stdout.write("\nMATCH_COUNT: {}\n".format( len(JSONDATA[key].keys ()) ) )
113 fh.write("\nMATCH_COUNT: {}\n".format( len(JSONDATA[key].keys ()) ) )
114
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115 fh.write("INITSTATE {}\t{}\ nMATCH\t".format( key , binp(key ,LFSRSIZE) ) )
116 for skey in sorted(JSONDATA[key].keys ()):
117 sys.stdout.write("{} ".format(skey))
118 fh.write( "{}:{} ".format(skey , JSONDATA[key][skey ]))
119 sys.stdout.write( "\n\n" )
120 fh.write( "\n\n" )
121
122 fh.write("START :\t{}\ nEND:\t{}\ nTOT:\t{}\n".format(
123 DSTART.strftime(’%Y %m %d %H:%M:%S.%f’),
124 DEND.strftime(’%Y %m %d %H:%M:%S.%f’),
125 TDELTA)
126 )
127 sys.stdout.write("START :\t{}\ nEND:\t{}\ nTOT:\t{}\n".format(
128 DSTART.strftime(’%Y %m %d %H:%M:%S.%f’),
129 DEND.strftime(’%Y %m %d %H:%M:%S.%f’),
130 TDELTA)
131 )
132
133
134 fh.close()

Listing B.6: Python data logging script
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