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The diagnosis of Alzheimer’s disease (AD), especially in the early stage, is still not very

reliable and the development of new diagnosis tools is desirable. A diagnosis based on

functional magnetic resonance imaging (fMRI) is a suitable candidate, since fMRI is non-

invasive, readily available, and indirectly measures synaptic dysfunction, which can be

observed even at the earliest stages of AD. However, the results of previous attempts

to analyze graph properties of resting state fMRI data are contradictory, presumably

caused by methodological differences in graph construction. This comprises two steps:

clustering the voxels of the functional image to define the nodes of the graph, and

calculating the graph’s edge weights based on a functional connectivity measure of

the average cluster activities. A variety of methods are available for each step, but the

robustness of results to method choice, and the suitability of the methods to support

a diagnostic tool, are largely unknown. To address this issue, we employ a range of

commonly and rarely used clustering and edge definition methods and analyze their

graph theoretic measures (graph weight, shortest path length, clustering coefficient, and

weighted degree distribution and modularity) on a small data set of 26 healthy controls,

16 subjects with mild cognitive impairment (MCI) and 14 with Alzheimer’s disease. We

examine the results with respect to statistical significance of the mean difference in graph

properties, the sensitivity of the results to model and parameter choices, and relative

diagnostic power based on both a statistical model and support vector machines. We

find that different combinations of graph construction techniques yield contradicting, but

statistically significant, relations of graph properties between health conditions, explaining

the discrepancy across previous studies, but casting doubt on such analyses as a
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method to gain insight into disease effects. The production of significant differences in

mean graph properties turns out not to be a good predictor of future diagnostic capacity.

Highest predictive power, expressed by largest negative surprise values, are achieved for

both atlas-driven and data-driven clustering (Ward clustering), as long as graphs are small

and clusters large, in combination with edge definitions based on correlations and mutual

information transfer.

Keywords: Alzheimer’s disease, MCI, graph theory, resting-state fMRI, diagnosis, model by sufficiency, negative

surprise

1. INTRODUCTION

The two major challenges in Alzheimer’s disease (AD) research
consist in firstly, finding an effective treatment that at least
slows down the disease progress, and secondly, developing
diagnostic tools that can not only detect the disease at
the earliest stage, during which no symptoms related to
cognitive deficits are apparent (Sperling et al., 2011), but also
provide information into the progression of the disease. For
the latter challenge it is particularly desirable that the tools
can be deployed within the existing medical infrastructure
(i.e., not requiring specialized machinery or lab procedures),
such that it is feasible to scan a wide range of the elderly
population. Diagnosis procedures currently in use include
psychological tests, detection of abnormal concentrations of
disease specific biomarkers (Amyloid-β , tau proteins) in
cerebrospinal fluid and analysis of structural magnetic resonance
images (MRI).

Although abnormalities of Amyloid-β concentrations are
proposed to be the earliest disease indicator, they are not
very reliable in disease prognosis. Moreover, the changes in
Amyloid-β concentrations show the strongest increase in the
preclinical phase, and are thus uninformative with respect to the
further progression of the disease. Tau pathology, which probably
spreads along functional networks (Hoenig et al., 2018) better
predicts cognitive deficits and progression of the disease (Nelson
et al., 2012). However, the two methods measuring Amyloid-β
and tau concentrations, lumbar puncture and PET are invasive
(Schroeter et al., 2009; Sperling et al., 2011).

Possibly, synaptic dysfunction, another disease marker,
corresponds to the onset of AD even before Amyloid-β pathology
starts. Additionally, as it gradually worsens throughout the
course of the disease, it could serve as diagnostic marker for
all stages of AD. Dysfunction of synapses can be indirectly
measured via invasive FDG-PET and non-invasive functional
MRI, which might directly be combined with structural MRI
scans (Schroeter et al., 2009; Sperling et al., 2011). However, a
diagnostic framework based on functional MRI has yet to be
established.

Although many fMRI studies have investigated changes of
functional activity in AD (for a review see Dennis and Thompson,
2014), there is no consensus about which information should
be used. Such studies typically examine disrupted cortical
connectivity, either locally, considering single brain areas (e.g.,
Dillen et al., 2017) and their embedding in the network, or

globally, analyzing the entire constructed brain graph and the
statistics of its graph properties (Gits, 2016).

We argue that in order to develop a robust diagnosis tool
applicable to all disease stages, it is preferable to consider global
graph properties for the following reasons. First, global graph
properties seem to be more robust across sessions; consequently,
changes in these properties over time are more likely to reflect
disease progression than statistical fluctuations (Telesford et al.,
2010; Wang et al., 2014). Second, not all disease progressions
follow a stereotypical pattern. Whereas structural evidence of
AD is typically found predominantly in entorhinal cortex and
hippocampus, in atypical cases atrophy occurs primarily in other
areas, such as posterior cortex (Johnson et al., 2012). These
atypical cases might be better captured by global properties, since
they make use of the entire information provided by the brain.
Furthermore, analyzing the statistics of graph properties rather
than comparing the properties of single nodes allows the use of
data-driven brain clustering, which results in different numbers
and locations of brain clusters for each individual.

However, it is challenging to investigate the informativeness
of global graph properties due to the innumerable methods
of graph construction, comprising both the clustering of the
voxels to define the graph’s nodes, and the definition of
functional connectivity to define its edges. Across the range of
previous studies investigating graph properties in AD, a wide
variety of methodological approaches for graph construction and
properties assessment have been applied and are probably amajor
source of contradictory observations, such as the comparative
length of the shortest path in AD subjects with respect to control
being reported in two recent studies as both shorter (Zhao et al.,
2012) and longer (Sanz-Arigita et al., 2010).

It is a further challenge to identify an appropriate evaluation
method that not only enables us to compare the different
graph construction methods, but also permits the results to be
combined with other information indicating the probability of
a particular health condition. This means that pure classifiers,
although they achieve high discrimination performance
(Khazaee et al., 2015, 2017) do not meet these requirements
because they return a group membership (“AD,” “MCI,” or
“control”) and not a probability that can be combined with the
results of other diagnostic tests (e.g., derived from Amyloid-β
concentration measures) or individual patient risk factors
(Porta Mana et al., 2018).

In this article, we address these issues by presenting a
methodology for determining which combination of techniques
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to extract and analyze graphs from resting state fMRI data
provides the best basis for a diagnosis tool, assuming a given
initial data set. Here, we apply our methodology to a small data
set consisting of 26 control (C) elderly patients without any
indication of any form of dementia or other cognitive problems,
16 mild cognitive impaired (MCI) subjects and 14 patients
suffering from Alzheimer disease (AD) (Dillen et al., 2017). We
evaluate the combinations of graph construction and analysis
methods using a statistical model that partly compensates for
the small data set and also yields probabilities rather than
classifications, thus permitting the results to be combined with
other probabilities, as discussed above. In addition, we evaluate
the graph construction techniques with respect to robustness
of results to method configuration parameters and similarity of
results across different techniques.

Note that our aim here is not to demonstrate superior
classification (for which our data set is in any case too small)
or to propose a particular combination of techniques as optimal
(as this may vary between settings), but primarily to provide a
principled way for determining an appropriate combination of
techniques for a given data set, and secondarily to highlight the
sensitivity of graph theoretical analysis to the details of graph
construction.

To understand how different methods for constructing graphs
affect the resultant graph properties, and thus the ability to
distinguish between patient groups, we evaluate a range of
standard and non-standardmethods to construct the graphs. The
first step in graph construction consists in clustering adjacent
voxels, such that the activity of the resulting region can be
expressed by the average of time varying signal of the selected
voxels (see Figure 1). The decision as to which voxels form a
cluster is often based on atlases established for a standard brain
with predefined brain regions. In order to map this standard atlas
to the functional image or vice versa, registration algorithms are
used. Problematic in this step, especially for subjects potentially
suffering from neurodegenerative diseases, is the inhomogeneous
shrinkage of the brain, which hampers a correct registration

(Liu et al., 2017). In addition, individual brain regions derived
from standard brain templates are likely to execute several
cognitive processes in parallel, such that averaging the activity
across the voxels of these functional inhomogeneous regions
is not justified (Marrelec and Fransson, 2011). We therefore
also include activity driven algorithms, namely region growing
and selection (Lu et al., 2003) and Ward clustering, into our
evaluation.

In the second step in graph construction, functional
connectivity values are calculated based on the averaged signal
of the regions. In most studies this is carried out based on
the Pearson correlation coefficient, restricting the functional
connectivity to non-directional connections. Here we cover a
broader range of possible measures in the time domain: linear,
non-linear model-free and model-based (Wang et al., 2014)
that, depending on their exact realization, result in directed or
undirected graphs.

We then calculate a variety of graph measures on the single
nodes (weighted degree, cluster coefficient, closeness centrality),
edges (weights, shortest path) and the entire graph (modularity).
As several of these measures are only well-defined for binary
graphs, many studies binarize the weighted graphs obtained from
the previous steps into binary graphs, by setting weights above
an arbitrary threshold wmin to 1, and those below it to 0 (e.g.,
Supekar et al., 2008). The drawback here is that there is no
validation for an optimal threshold, and information that might
be relevant in AD may be lost. To investigate this problem, we
analyze the dependence of graph theoretic measures on wmin,
setting the weights below it to 0 but leaving the values above
unchanged.

To assess the suitability of combinations of graph construction
and analysis methods to inform a diagnosis tool, we set up a
statistical analysis based on a training data set of known health
conditions (healthy controls, mild cognitive impairment, and
Alzheimer’s disease), see section 5.6. The diagnostic usefulness
of the analysis pipeline is then defined as the performance of
the model against a labeled test data set. A model with good

FIGURE 1 | Overview of intermediate steps for graph construction, properties derivation and statistical analysis. Each picture illustrates the result of a processing step

starting from the preprocessed functional image (far left), which is clustered into regions, used as the nodes of the graph (second image). The averaged fMRI activity of

each region is then used to calculate the edges of the graph (third image) and based on the calculated graph properties (fourth image) of all graphs, the statistical

analysis estimates the probability density functions (pdf) of the three health conditions (last image) that are necessary for the evaluation of diagnostic performance

based on the negative surprise measure. For the first three steps of the pipeline we investigate a range of different methods, see sections 2.1, 5.3, 5.4, and 5.5 for

details.

Frontiers in Neuroscience | www.frontiersin.org 3 September 2018 | Volume 12 | Article 528

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Bachmann et al. Exploring fMRI-Graphs for AD Diagnosis

performance can ultimately be employed in a clinical setting, to
assess the probability that a patient has one of the three health
conditions. For a more complete discussion of the development
and use of the statistical model, see Porta Mana et al. (2018).

In this study we use a statistical model constructed from
the following working hypothesis: the empirical means and
correlations of graph data from previous patients with a given
health condition are sufficient to predict the graph data of a
new patient with that same health condition. This is a partially
exchangeable model by sufficiency, and the resulting likelihood is
a multivariate t distribution (Porta Mana et al., 2018), described
in section 5.6. To assess which graph constructions have the
greatest predictive power, we calculate their log-probabilities or
negative surprises (Bartlett, 1952; Good, 1956, 1957a,b, 1983).
To validate this approach, we also compare the results of the
negative surprise with the classification performance achieved by
a support vector machine (SVM).

Our results show that clustering resulting in small graphs with
large clusters (Ward and atlas-based clustering) achieve highest
negative surprises (and best SVM classification performance).
Similarly, amongst the edge definition techniques, model-
free methods (linear and non-linear correlations, mutually
information transfer) obtain the highest negative surprise values.
Conversely, calculating the graph’s edge weights according to
transfer entropy (model based) achieves limited diagnostic
power but the ordering of the individuals based on their
average graph properties is very robust toward the applied
clustering method and choice of algorithm specific parameters.
We further demonstrate that significant differences in the means
of graph properties are very sensitive to method choice and to
parameterization choices for a given method. Therefore such
results, if taken at face value and not validated by alternate
methods, may well be artifactual and not provide insight into
the effects of a disease. Interestingly, the presence of significant
differences in mean values of graph properties is not a reliable
predictor of later diagnostic performance. In particular, atlas
clustering results in only few significant differences but reaches
the highest values for negative surprises and the best classification
scores for the SVM. Finally, we show that the effect of setting a
threshold on the graphs edge weights has only marginal effect on
the negative surprise as long as threshold values are small.

2. RESULTS

2.1. Graph Construction
2.1.1. Vertex Definition by Means of Clustering
A universal property of the clustering algorithms examined here
is the existence of a control parameter that regulates how the
clusters are formed, and thus preserves a certain feature (or
features) of the clusters. In atlas-based clustering, the preserved
features are the number of clusters and the number of voxels per
cluster. In Ward clustering, the number of resulting clusters is
fixed, which we violate to a small extent by deleting very small
clusters. In region growing and selection (RGS), the homogeneity
of each cluster is preserved. The freedom that each of the
algorithms leaves to the non-regulated features can either be
considered as a drawback of the algorithm, because it makes

graphs less easily comparable, or as an additional feature that
might even improve the diagnosis performance.

Figure 2 shows the number of nodes/clusters, the average
number of voxels per node and the average heterogeneity of
the nodes for two configurations of the RGS algorithm, four
configurations of the Ward algorithm, and the atlas algorithm
(see section 5.3 and Table 3). Most strikingly, the node properties
vary far more with respect to the clustering method chosen than
with respect to the health condition.

By construction, the number of nodes for atlas clustering are
the same for all individuals, and are the smallest over all the
clustering methods (top panel). In Ward clustering the number
of clusters is a parameter of the algorithm; it is not constant in
Figure 2 because we additionally include a parameter enforcing
a minimum cluster size. Thus, the number of nodes for Ward
clustering decreases as the minimum number of voxels per
cluster p increases from 10 for “ward1” to 25 in “ward4.” In RGS
clustering we do not have such restrictions and the number of
clusters is defined by the voxel dynamics. A consequence of this
is that the number of clusters per graph are more widely spread.

The average number of voxels per cluster, shown in the middle
panel of Figure 2, is unsurprisingly negatively correlated with the
number of clusters. For purposes of comparison, the number of
voxels for atlas clustering was first calculated for the standard
space and then downscaled in proportion to the relation of the
total number of voxels present in functional space to those in
standard space. An inverse correlation can also be seen in the
width of the distributions between the top two panels, for the
non-atlas methods. In the case of RGS clustering, this can be
explained by the fixation of the heterogeneity to one (see bottom
panel of Figure 2), leading to quite homogeneous numbers of
voxels per cluster, but to a wide range of the number of nodes,
namely from 200 to 1200. Since this range is so large, it could
be argued that graph properties that depend on this number
would not be comparable in a meaningful fashion. In order to
take care of such dependencies, we include the number of nodes
in our statistical analysis (section 5.6). For Ward clustering we
can observe that the numbers of nodes is inversely correlated not
only with the average number of nodes and its variability, but also
with the average heterogeneity and its variability. We observe the
highest degree of heterogeneity for atlas clustering, presumably
due to the high number of voxels per cluster.

Comparing node properties between the classes of clustering
methods, atlas and ward4 clustering seem to be quite similar,
which suggests they might result in similar graph properties and
diagnosis performance. In particular, we note that these methods
reveal a much smaller heterogeneity for the MCI group than for
the control and AD groups.

2.1.2. Edge Definition by Means of Functional

Connectivity
The edges of the graphs are constructed in four different ways,
described in detail in section 5.4. Linear correlations (corr)
are based on the Pearson correlation coefficient; non-linear
correlations (H2) result from a non-linear fit of piecewise linear
correlations; mutual information transfer (MIT) measures the
amount of shared information between two time varying signals
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FIGURE 2 | Node properties across different clustering algorithms. For each of the seven clustering methods detailed in section 5.3 and Table 3, and each subject

categorized in the health conditions: control (C, blue dots), mild cognitive impairment (MCI, green dots), and Alzheimer’s disease (AD, orange dots) we calculate the

total number of nodes/clusters generated (Upper Panel), the average number of voxels per node (Middle Panel), and the average cluster heterogeneity (Lower

Panel).

and transfer entropy (TE) describes in how far the future
uncertainty is reduced by the preceding activity of the considered
pair of nodes. As with the clustering algorithms described in the
previous section, we defined differently parameterized variants
of these four classes of technique (e.g., generating directed D or
undirected U graphs) which are listed in Table 4.

For each combination of vertex (RGS, Ward or atlas) and
edge definition technique (corr, H2, MIT, TE), we averaged over
the weights generated in each health condition for each variant
of both techniques. For example, for the combination of region
growing and transfer entropy (RGS TE) we averaged over all

combinations of clustering implementation (RGS1 and RGS2)
and edge detection (BTEU1, BTEU2, BTED1, BTED2 ). The
results are shown in Table 1 and exhibit a high variability in the
mean connection weights. For instance, the combination RGS TE
yields amaximalmeanweight of 0.158 for controls, which is three
times lower than the maximum mean weight of 0.493 obtained
by the RGS H2 combination. In particular, RGS clustering yields
higher values compared with Ward and atlas clustering for
model-free edge definitions (corr, H2, MIT). The smallest values
are obtained for TE. As a consequence, even small thresholds e.g.,
wmin = 0.3 already causeTE graphs to disintegrate. Accordingly,
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TABLE 1 | Mean and standard deviation of edge weight across different edge

definitions.

Combination ŵC ŵMCI ŵAD

Ward corr 0.328 ± 0.021 0.337 ± 0.04 0.315 ± 0.023

RGS corr 0.405 ± 0.076 0.363 ± 0.049 0.397 ± 0.113

atlas corr 0.319 ± 0.02 0.334 ± 0.054 0.307 ± 0.022

Ward H2 0.443 ± 0.18 0.398 ± 0.081 0.414 ± 0.057

RGS H2 0.452 ± 0.1 0.471 ± 0.126 0.493 ± 0.179

atlas H2 0.36 ± 0.057 0.352 ± 0.039 0.355 ± 0.042

Ward MIT 0.201 ± 0.004 0.2 ± 0.007 0.197 ± 0.004

RGS MIT 0.221 ± 0.026 0.204 ± 0.011 0.218 ± 0.037

atlas MIT 0.196 ± 0.003 0.197 ± 0.008 0.193 ± 0.003

Ward TE 0.163 ± 0.013 0.158 ± 0.015 0.156 ± 0.018

RGS TE 0.158 ± 0.026 0.149 ± 0.02 0.152 ± 0.042

atlas TE 0.163 ± 0.016 0.17 ± 0.011 0.165 ± 0.011

Means and standard deviations are taken across the average edge weight of every

individual graph in a health condition. Highest mean edge weights for each combination

across the three health conditions are highlighted in gray.

not all graph properties can be calculated and used for statistical
analysis, as shown in section 2.3.

It is also notable that there is no systematic relationship
between the three health conditions—for RGS corr, the control
graphs have the highest mean weight, for RGSH2, the AD graphs;
and for atlas corr, the MCI graphs. These results demonstrate
that conclusions drawn on health conditions based on weight
statistics should be treated with suspicion, as the outcome can
be strongly influenced by the method of calculation. A possible
explanation for the higher weights generated by RGS clustering is
that it produces a greater number of shorter distances compared
with the other clustering techniques. However, although Figure 3
does indeed confirm that edge weights become smaller with
cluster distance, it does not reveal a bias to shorter weights
for RGS. In fact, the converse is true: RGS clustering yields
stronger long-range connections for similar graph sizes [average
number of graph nodes: 379.69 ± 147.99 (RGS), 311.43 ± 33.59
(Ward); average edge weights for distances longer than 0.8: 0.25
(RGS), 0.18 (Ward)]. Therefore we conclude that connecting
homogeneous clusters allows stronger long-range connections
to be extracted. However, the statistics of the RGS connections
has a much larger variance then the ones derived from Ward
clustering. This is only partly due to the variance in the number of
nodes, since even if we choose three healthy subjects with similar
graph size (RGS: 297 ± 2.16, Ward: 297.33 ± 6.6), we still get
a higher standard derivation for RGS clustering in the weight
distribution (σRGS/σward = 1.6).

In the following we will treat the distribution of edge weights
as a graph property since it contains information about graph
structure.

2.2. Graph Properties
A recent survey by Gits (2016) of studies investigating graph
properties in AD reveals no clear and systematic differences
between heath conditions. For example, the mean clustering

FIGURE 3 | RGS clustering yields stronger long-range connections then Ward

clustering. Frequency (Upper Panel) and connection distance normalized to

maximum graph distance (Lower Panel) across a range of graph edge

weights calculated based on BcorrU1 for RGS1 (light gray bars) and ward2

(dark gray) clustering. Mean values and standard deviation (blue vertical lines)

are calculated across single histogram values of all subjects independent of

health condition.

coefficient was found to be both significantly smaller (Supekar
et al., 2008) and larger (Zhao et al., 2012) in AD compared
to the aged-matched control group. We consider it likely
that differences in methodology account for many of the
contradictions. However, the stage of AD reached by the
examined subject group may also play an important role. To
investigate this aspect more closely, we examine the finding by
Kim et al. (2015) that local efficiency, which corresponds to
our definition of closeness centrality divided by the number
of nodes in the network minus one, is increased for MCI,
decreased for initial stages of AD and increased for severe AD
stages with respect to the control group. The results of applying
similar methods (atlas-based clustering combined with BMITU)
are shown in Figure 4. The top panel shows the relationship
between the health conditions when closeness centrality is
calculated on the full, non-thresholded graph, which reproduces
the findings of Kim et al. (2015), at least for initial stages of
AD. However, if the measure is calculated on the graphs’ rich
club, i.e., the sub-graphs consisting of the nodes in the top
10% for degree, a different picture emerges, as shown in the
middle panel of Figure 4. Here, AD has an increased closeness
centrality with respect to both the control and mild cognitive
impairment groups, which is in line with advanced AD stages
in Kim et al. (2015).

More evidence that the outcome of a graph theoretical
analysis can be highly sensitive toward the exact methodological
implementation is given by considering the difference between
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FIGURE 4 | Relationship of sub-graph properties across heath conditions is

dependent on graph size. (Upper Panel) Average closeness centrality ĉc

across graph nodes for complete graphs constructed with atlas BMITU1 for

the different health conditions C (left), MCI (middle) and AD (right). Each dot

corresponds to the graph of an individual (connected dots indicate the mean

values). (Middle Panel) As in top panel, but on the basis of the rich club

graphs. (Lower Panel) Difference of the averaged ward1 BMTID2 graph

weights of the control group ŵC and the AD group ŵAD (left vertical axis, blue

discs) and significance of this difference (right vertical axis, turquoise

diamonds) as functions of the graph thresholding value wmin. All ŵ are positive

and are only calculated as long as graphs are connected (which is the case for

wmin <0.5). Average is taken across the weights of individual graphs. The

dashed dark blue line indicates ŵC − ŵAD = 0; the dashed turquoise line

indicates a significance level of 0.05.

the mean weights in the control and the AD conditions, and its
significance (section 5.7.1), in dependence on the thresholding
weight used to convert weighted graphs into simple graphs. This
is illustrated in the bottom panel of Figure 4. Here, depending
on where we set the threshold for considering an edge to be
relevant, results having a significance level of p < 0.05 can be
observed for both ŵC > ŵAD (wmin ∈ {0.0, 0.1} ) and ŵC < ŵAD

(wmin ∈ {0.3, 0.4}).
Extending this analysis, we find that contradictory significant

results can be obtained for a variety of graph metrics across
(and sometimes within) clustering methods. Figure 5 shows the
percentage of significant results obtained for health condition
relationships in average edge weight, weighted degree, shortest
path and clustering coefficient. Most strikingly, for most
examined relationships, if significant differences are found at all,

they are found in both directions, e.g., both for d̂C > d̂MCI

and for d̂C < d̂MCI (weighted degree). Often a clustering
algorithm favors a particular comparison direction, e.g., for the

clustering coefficient, RGS clustering yields ˆclcMCI > ˆclcAD

whereas Ward and atlas clustering yields ˆclcMCI < ˆclcAD.
However, we also find cases where significant differences are
found in both directions with approximately equal frequency,
such as ŝpC > ŝpAD and ŝpC < ŝpAD for Ward
clustering. In addition, we find some clustering algorithms
show a systematic behavior across metrics, e.g., for RGS
x̂C > x̂MCI with x ∈ {w, d, sp, clc}.

The largest number of significant differences is found for the
comparison of controls with MCI, followed by the comparison of
controls with AD. Only few significant differences of the means
are found for AD and MCI. This relation among the groups is in
line with the observed differences in heterogeneity observed for
Ward and atlas clustering, for which MCI showed much lower
heterogeneity and AD slightly lower values compared to controls
(bottom panel of Figure 2).

Focusing on the clustering methods that bring about the most
significant differences comparing the entire graph properties
distributions results, we find the highest fraction for RGS,
followed by Ward clustering. Atlas-based clustering yields only
a few significant results. Figure 6 shows the breakdown of the
proportion of significant results for each clustering method
on the edge definition technique (shown in collated form in
Figure 4). Notably, transfer entropy (TE) only rarely produces
significant differences. All other edge definition methods show a
similar fraction of significant comparisons. The highest number
of significant comparisons across the different graph properties is
generated by RGS clustering combined withMIT.

To what extent a greater proportion of significant
relationships is likely to make this graph construction method a
good basis for a diagnostic tool depends on two aspects. First, the
significance test is performed only on mean values, but ideally
the overall distributions should overlap as little as possible.
Second, the correlation between graph properties should be
small in order to avoid redundant information.

In this section we considered only the first moments (means)
of the graph properties taken from an individual brain. However,
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FIGURE 5 | Significant relationships in graph metrics between health conditions dependent on clustering methods. Percentage of significant differences for each

clustering method RGS (dark gray), Ward (light gray), and atlas (black) for different averaged graph properties: edge weight (Upper Left), weighted degree (Upper

Right), shortest path (Lower Left) and clustering coefficient (Lower Right). Fraction of significant differences are calculated for each health condition over all graphs

constructed with the corresponding clustering including all variants in parameters, edge definition techniques, thresholds and rich club sub-graphs. The abscissa

labels show which pairs of health conditions are compared (C-MCI, C-AD, MCI-AD) and the ordinate labels the direction of the significant differences (“<,” “>”).

Significance is calculated as in the lower panel of Figure 4.

FIGURE 6 | Significant relationships in graph metrics between heath conditions dependent on edge definition methods. Percentage of significant differences for each

clustering technique [Ward (left), RGS (middle), atlas (right)] for each class of edge definition method clustering method [corr (dark blue) , H2 (light blue), MIT (purple),

TE (pink)] for averaged graph properties: edge weight (Upper Left), weighted degree (Upper Right), shortest path (Lower Left) and clustering coefficient (Lower

Right). Fraction of significant differences are calculated for each health condition over all graphs constructed with the corresponding clustering and edge techniques

including all variants in parameters, thresholds and rich-club sub-graphs. Significance is calculated as in the lower panel of Figure 4.
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as explained in section 5.5, we use the first four moments of
the individual distributions for our statistical analysis. Since the
p-value of the other moments is not calculated, its influence on
the statistical analysis cannot be considered.

In order to evaluate the methods based on robustness
due to methodical variation, we investigate how the order of
subjects (all subjects independent of their health conditions are
ordered according to their average value of a certain graph
property) is affected by the exact realization of the graph
construction methods. Graphs constructed by methods based
on similar underlying features of the data will tend to show
a systematic ordering of subjects, regardless of the absolute
values of the calculated graph metrics. Figure 7 shows the
commonalities and differences, which are illustrated with a
dendrogram (see section 5.7.2) calculated on the Euclidean
distance between the resulting ordered arrays of average
graph weights. The continuous pink area show that graphs
constructed using transfer entropy are most robust to the
choice of clustering technique. Moreover, linear and non-
linear correlations (dark and light blue) occupy contiguous
blocks and so are most similar to each other. The leaves
denoting atlas clustering (black) are rather spread out, indicating
a high sensitivity of this method to the choice of edge
definition.

In this section we have shown that the relationship of graph
properties between health conditions strongly depends on the
methods used for graph construction. For our data we find
more significant mean differences for control-AD and control-
MCI then for MCI-AD. With respect to clustering and edge
definition methods, the largest number of significant differences
are found for RGS and Ward clustering, and for model-free edge
definitions. These results show that conclusions on how graph
properties change due to AD have to be drawn carefully, and
ideally validated by other methods, as they can be highly sensitive
to the methods used for graph construction.

2.3. Evaluation of Graph Construction
Methods Based on Negative Surprise
Having examined the consequences of particular choices for
clustering and edge definition techniques in the previous
sections, we now evaluate their combinations by considering
their ability to help a clinician to discriminate among patient
groups. This discrimination is achieved by using the graph data
within a statistical model, which specifies the likelihood of the
graph data. The model is described in section 5.6; the likelihood
is a distribution which depends on a set of parameters. In general,
the kind of graph data—i.e., their construction method—and the
statistical model with its parameters are interdependent: they
cannot be freely varied separately. Therefore our evaluations of
the predictive power of the various graph construction methods
have to be understood with a caveat: they depend on our specific
choice of statistical model.

To quantify the discriminating power for each graph
construction combination, we use a metric based on the final
probabilities for the correct health conditions known as the
log-probability, or negative surprise (Bartlett, 1952; Good, 1956,
1957a,b, 1983): a sure event, i.e., with unit probability, has
surprise equal to zero; whereas an impossible event, i.e., with
zero probability, has surprise equal to infinity, reflecting the fact
that its occurrence would be contrary to all our expectations. A
high surprise (in absolute value) therefore signals a low predictive
power of the data we are using. The expectation or average of the
surprises is the Shannon entropy (Shannon, 1948; Bartlett, 1952;
McCarthy, 1956; Bernardo, 1979; Jaynes, 2003: section 11.3).

Another possibility, of a more decision-theoretical character,
is to consider a metric based on the average utilities obtained
with each particular graph-construction method. Given several
possible courses of action (e.g., treat or dismiss) and their utilities
or costs with respect to each health condition (e.g., treating
an Alzheimer patient, dismissing a healthy patient, dismissing
an Alzheimer patient, or treating a healthy one), the clinician

FIGURE 7 | Sensitivity of subject order to clustering and edge detection techniques. The dendrogram shows the distance of subject order, calculated by ordering all

subjects according to their average graph edge weights and calculating the Euclidean distance between the resulting rank arrays. For better legibility, instead of

naming the dendritic leaves, of which every leaf corresponds to a particular combination of clustering and edge definition techniques, e.g., ward2 BTED2, the top row

of colors code for the class of clustering method: Ward (light gray), RGS (dark gray) and atlas (black); and the bottom row codes for the class of edge definition

method: corr (dark blue), H2 (light blue), MIT (purple) and TE (pink).
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FIGURE 8 | Negative surprise of the different graph construction methods.

Each dot represents a specific node clustering (e.g., RGS1) and edge

definition (e.g., BcorrU1). Dots are grouped together according to their main

class (e.g., RGS corr). Red dots highlight the results of ward4 clustering.

Negative surprise expected by chance is −1.1.

should choose the action that maximizes the expected utility, the
expectation being calculated from the final probabilities for the
possible health conditions (Sox et al., 2013). This kind of metric
therefore requires not only the final probabilities—which depend
on the graph-construction method—but also a table of utilities.

Numerical tests show that the two kinds of metric yield similar
results, at least for utility tables close to the identity (treating
an ill patient and dismissing a healthy one have unit utility; the
remaining combinations have zero utility).We therefore choose a
metric based on the negative surprise, which is simpler and more
intuitive than a utility metric.

In order to have an approximate idea of the relative predictive
powers of the graph-construction methods we would like to
use a statistical method that can be kept the same, as much as
possible, across different methods. For this reason we choose a
model based on the working hypothesis of sufficiency of mean
and correlations of past data, as explained in the Introduction.
This model ignores any restricted range of variability of graph
quantities (e.g., positive or bounded). As explained in PortaMana
et al. (2018), this choice is non-standard but does not entail
contradictions. The model has some free parameters; their values
reflect the fact that the units of measure for the graph quantities
make the latter of order unity. This choice of a generic, common
statistical model allows us to sidestep the demanding problem
of tailoring it for the different graph quantities from our 850
graph-construction methods.

Figure 8 shows the obtained negative surprises for all
combinations of graph construction methods except H2D, which
is left out due to an inadequacy of the statistical model, resulting
in unrealistic values between −1.26 and −0.66 with a mean and
standard deviation of−0.94± 0.19.

The differences in negative surprise between the different
graph construction method are in general small. The best
results are obtained for ward4 clustering combined with mutual
information (MIT) based edge definition. Across edge definition

methods, linear correlation (corr) and mutual information give
the best results and transfer entropy (TE) the worst. The rather
poor performance of TE edge definition is in line with the
small number of significant differences found for this method
(compare Figure 6). Comparing the different clusteringmethods,
atlas and ward4 clustering give the best results, as long as
the edge definition is not TE. These two clustering methods
have in common a very small number of graph nodes and
(correspondingly) the highest number of voxels per cluster
(compare Figure 2).

As explained above, the comparison of graph-construction
methods can be affected by the statistical model and its
parameters, especially for small datasets. As a complementary
analysis we compare the negative surprises with the classification
performances of a support vector machine (SVM, section
5.7.1) based on the same graph constructions. In a clinical
setting, a misclassification between control and AD has more
severe consequences than between MCI and AD. To avoid
introducing an asymmetric misclassification penalty, we perform
the classification between pairs of classes only (control-AD, C-
MCI, MCI-AD).

Figure 9 shows the relationship between the SVM
performance (measured as proportion of correct classifications)
against the negative surprise. As long as TE edge definition
is excluded, the two performance measures are positively
correlated. In particular RGS clustering achieves low
performance in both negative surprise and SVM classification.
Furthermore, atlas clustering achieves a high classification
performance across all edge definitions. The exact SVM
classification results for each realization of graph construction
method are depicted in Figure S2 (see Supplemental Material).

Figure 10 demonstrates that thresholding graphs has only a
minor effect on the negative surprise for small thresholds up to
0.2. No systematic relationship can be observed for the effect of
larger thresholds; for example, increasing the threshold to 0.4
causes a decrease in negative surprise for RGS clustering with
linear correlations or mutual information, but an increase for
atlas clustering with transfer entropy edge detection. Likewise,
the creation of highly connected and rich club sub-graphs
typically decreases the negative surprise, but in some cases
increases it (e.g., RGSH2U). Overall the highest negative surprise
(−0.66) is obtained for ward4 clustering combined with BMITU1
thresholded at wmin = 0.1.

These results suggest that the best combination of graph
construction techniques to use for this data set is the atlas-
based or ward4 clustering combined with linear correlation
methods or mutual information transfer. Thresholding the graph
edges, which might reduce experimental noise and does lower
computational complexity, has only a minor effect on the
predictive power, as long as threshold values are small. Reducing
the graphs complexity via larger thresholds or extracting the
rich-club of the graph should be done with care, since the
results can change in either direction. Although transfer entropy
yields lower negative surprises then the model-free functional
connectivity measures, we would not conclude that this edge
definition performs worse in general, since it achieves high values
in SVM classification. It is very likely that our choice of statistical
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FIGURE 9 | Relationship between SVM classification performance and

negative surprise. The average SVM performance achieved by each

combination of clustering method and edge definition with respect to each pair

of health conditions: control-AD (Upper Panel), control -MCI (Middle Panel),

and MCI-AD (Lower Panel), is plotted against the negative surprise

calculated for all health conditions. Each marker corresponds to the averaged

performance across the parameter space of a specific clustering method [atlas

(black squares), Ward (dark gray octagons), RGS (light gray pentagons)] and a

specific edge defintion (corr, H2, MIT, TE). The regression line is calculated for

all points but TE (superimposed red crosses). Pearson correlation coefficients r

of the datasets are r = 0.59 (Upper Panel), r = 0.77 (Middle Panel),

r = 0.69 (Lower Panel).

model is not ideal, and a more tailored choice would improve
performance.

3. DISCUSSION

In this article we have compared different techniques for
constructing and analyzing graphs. By applying a statistical
model, we have demonstrated a principledmethod for choosing a
combination of techniques for a given data set. By examining the

varied outcomes of the techniques, we have shown how sensitive
the results of graph theoretical analyses, such as significant
differences in mean properties, can be to the choice of clustering
or edge definition technique.

With regards to the predictive power of the graph construction
techniques, measured in terms of negative surprise, we find
that Ward and atlas clustering yield the highest performance
of the clustering techniques, and region growing and selection
clustering (RGS) the lowest. In particular, the variant of Ward
clustering that produces large clusters and small numbers
of nodes (ward4) achieved the highest performance values.
Analogously for the edge detection methods, we find better
performance for the model-free methods (linear and non-
linear correlations, mutual information transfer) than for the
model-based method of transfer entropy. For this particular
data set, a combination of ward4 clustering with mutual
information derived edges achieves best results. Therefore, we
would recommend this combination as the primary target for a
more narrowly focussed investigation based on a larger data set.

The performances we obtain are above chance level but still far
away from optimal prediction of the three health conditions. One
reason for this sub-optimal prediction might lie in our choice
of statistical model and its parameters. With our small data set
(26 controls, 16 MCI, 14 AD) the model and its parameters
have a high influence on the final probabilities, and thus on the
performance (Porta Mana et al., 2018). We avoided tailoring the
statistical model for the theoretic and practical reasons explained
in section 2.3. Even if the model is not tailored, the results are
consistent with the classification performance of support vector
machines (see Figure 9 and Figure S2), for the model-free edge
definition techniques.

It remains unclear why Ward and atlas clustering are more
successful than RGS, especially in combination with model-free
edge definition. One possibility is that this is related to the
large variability in graph sizes generated by RGS (Figure 2). In
addition, the variance of weight distributions across subjects,
and the variance of the cluster distances, are much larger in
RGS then in Ward clustering (Figure 3). This could be related
to the variance in the number of nodes; however, choosing
graphs similar in size causes even higher variances (section 2.1).
Therefore we assume that the number and connectivity of the
small functional units extracted by RGS are highly variable across
subjects. This variance might be even higher across subjects
within a health condition than across health conditions, such that
changes due to AD cannot be detected. This assumption might
at first glance seem to contradict the high number of significant
comparisons observed (Figure 5). However, we only calculate the
significance level for the means of the distributions and not their
entire shape. In addition, it is likely that some graph properties
correlate with the graph size, and thus that apparent significant
differences in graph properties are simply reflecting significant
differences in numbers of nodes detected, and do not provide
further information useful for classification or understanding the
nature of the disease. Further investigation is needed on this
matter.

The low negative surprise of transfer entropy (TE) compared
with other model-free functional connectivity measures might
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FIGURE 10 | Negative surprise for different graph edge thresholds wmin

(wmin = 0 for complete graphs, indicated by a vertical dashed line) and rich

club graphs (rich) for different edge definitions: corr (First Panel), H2U

(Second Panel), MIT (Third Panel), TE (Fourth Panel) and different

clustering methods Ward (light gray), RGS (dark gray) and atlas (black). Each

dot is the result of averaging across all possible parameters of a general graph

construction method (for wmin = 0 the average across all points of a swarm in

Figure 8). Since some methods yield small edge weights, some graphs

become unconnected for large wmin such that the statistical analysis is not

conducted; no values are depicted in this case. Markers are connected for

better visual comprehension.

have several reasons. The comparison of the negative surprise
with the support vector machine classification suggests that a
better choice of a statistical model is possible: the classification
results for TE are similar to those of the model-free measures. In
TE the data of a certain time interval in the past is used in order to
calculate howmuch the uncertainty of the future is reduced. Here
we use the data of the last 15 s. This time period might be poorly
chosen, influencing the overall negative surprise. In addition TE
is more sensitive to short recording periods than other methods,
which may well also result in a reduced performance (Pereda
et al., 2005).

With regards to the robustness of the graph theoretical
outcomes, we discovered that relationships between mean graph
properties, such as closeness centrality, edge weight or clustering
coefficient (Figures 4–6) were sensitive to choice of clustering
and edge definition techniques, to parameter choices for a
given technique, and to the manner in which sub-graphs were
defined (thresholding value and rich club). Formost relationships
between graph properties X, we could find significant (p <

0.05) differences in both directions, i.e., both XAD > XC

and XAD < XC, for specific choices of clustering and edge
definition technique. This strongly suggests that a degree of
suspicion should be applied to studies reporting such significant
differences, especially if these results are argued to give insight
into how a disease affects brain properties, unless the significance
level is much more compelling or the reported differences can be
validated with alternate methods.

We also investigated the sensitivity to method choice
of the ordering of subjects according to a graph theoretic
metric (Figure 7). In this analysis, transfer entropy was the
most consistent. Nevertheless, the distributions of the negative
surprises is as broad for transfer entropy as for other edge
definitions (Figure 8). In general, the exact parameter selection
within an edge definition method causes only slight changes in
the negative surprise, more crucial is the exact realization of the
clustering method: ward4 clustering generally achieves a better
performance then ward3 clustering. These two variants differ
only in the number of predefined clusters (see Supplemental
Material Figure S1). Applying a lower threshold wmin on the
graph’s edge weights has little effect on the negative surprise for all
methods, as long as only small weights (up to 0.2) are set to zero.
Thresholding higher weights or extracting the graph’s rich club
has unpredictable effects on the results, and so should be used
with caution (Figure 10). Atlas clustering was least consistent
in the subject ordering analysis, suggesting that although it
may provide a good basis for a diagnostic tool, care should be
taken in reporting discoveries of particular relationships in graph
properties between health conditions, as these may well turn out
to be critically dependent on the edge definition method used.

Due to the intense computational requirements of the survey
performed in this article, we recognize that it would be
advantageous to develop heuristics for choosing between graph
construction methods without performing the full calculation
for each combination. Our results suggest that properties visible
at the clustering stage, such as average heterogeneity, may give
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some indication of predictive performance: graph constructions
that result in different degrees of heterogeneity between the
health conditions seem to be more discriminable by the later
steps of the calculation. More research is needed in this area,
which is outside the scope of the current study. In addition, it is
tempting to consider t-test results of the mean graph properties
as a heuristic. Our results suggest that this approach is largely
inadequate. It holds for edge definition via transfer entropy,
which gives very few significant results and the negative surprise
is rather small compared with the model-free edge definitions.
Conversely, region growing clustering yields most significant
differences but a generally poor negative surprise. This may be
due to graph properties being highly correlated, and so not
providing additional information to the statistical model. In
addition we used the first four moments (wherever possible) in
our statistical model, rather than just the mean, which may also
partially account for this apparent contradiction.

In addition to considering the predictive power and
robustness of graph construction techniques, we can also evaluate
them according to their practicality, i.e., speed of calculation and
the extent to which they are easily available in establishedmedical
infrastructure and diagnostics. In general, applying graph
theoretic measures to fMRI data for improving AD diagnosis
makes sense, since MRI scans are already implemented in AD
diagnostics for detecting structural changes such as hippocampal
dystrophy caused by AD or AD-unrelated pathology (e.g.,
brain tumors). Softwares such as SPM (Tzourio-Mazoyer et al.,
2002) and FSL (Jenkinson et al., 2012) are frequently used in
medical research and mainly support clustering that is atlas
and independent component analysis based. Ward clustering,
which is the fastest of all these clustering methods, is a standard
hierarchical clustering method and implemented in all standard
programming softwares such as Python and Matlab. The region
growing algorithm is not implemented in established softwares
and is also computational very demanding. Given that it does
not out-perform atlas or Ward clustering, we therefore do
not recommend it. For edge definition and graph properties,
several software packages are available based on Matlab (Wang
et al., 2014; Kruschwitz et al., 2015) or Python1, which provide
a comprehensive range of edge definition and graph analysis
methods.

In general we recommend using statistical models and not
pure classifiers such as support vector machines as diagnostic
tools, since statistical models calculate a probability of a diagnosis
rather than assign a classification, i.e., “Given the fMRI scan,
person x has a 80% probability of having Alzheimer’s disease,”
rather than “Given the fMRI scan, person x has Alzheimer’s
disease.” Probabilities can be easily combined with other
probabilities of other diagnostic tests (Porta Mana et al., 2018)
such as cognitive assessment, amyloid beta and tau protein
occurrence in cerebrospinal fluid, blood tests, and structural
MRI2 (Johnson et al., 2012). This allows the medical doctor to
conclude, for example: “Given the results of the cognitive test
and cerebrospinal fluid analysis and structural and functional

1https://github.com/dpisner453/PyNets.
2https://www.alz.org/research/diagnostic_criteria/.

MRI scan, person x has a 95% probability of having Alzheimer’s
disease.” After the estimation of the probability for a disease, she
has to decide on a treatment, also taking into consideration such
factors as “how harmful would the treatment be for a healthy
person,” which can be expressed in a utility function (Porta Mana
et al., 2018). In addition, the statistical model used in this work
allows an estimation of how much the model can be trusted, and
therefore evaluate whether the sample size is sufficiently large
(Porta Mana et al., 2018).

3.1. Relationship to Previous Studies
Studies focusing on the graph properties extracted from resting-
state fMRI in AD and its pre-stages generally have one of
two aims. The first aim is to identify significant differences
in the graph properties between health conditions, and to use
these to gain insight into the effects of AD on the physical
brain and its cognitive processes. These studies complement the
picture revealed by investigations based on structural MRI and
functional changes on the basis of EEG and MEG recordings.
Typically a variety of graph properties (e.g., nodal degree,
clustering coefficient, averaged shortest path, local efficiency,
betweenness centrality, global efficiency, small worldness) are
calculated, and used to motivate an account of how disease-
related modifications to these properties result in a reduced
capacity to transfer and process information.

However, such studies reveal entirely contradictory results.
For example, the value of the clustering coefficient in AD with
respect to controls has been reported to be increased, unchanged,
and decreased, respectively (Supekar et al., 2008; Sanz-Arigita
et al., 2010; Zhao et al., 2012). Analogous contradictions have
been found for the comparative length of the shortest path
(Supekar et al., 2008; Sanz-Arigita et al., 2010; Zhao et al.,
2012). These contradictions could be caused by methodological
differences or by not separating the different states of AD. Our
results show ample evidence that the precise choice of graph
construction techniques can easily account for contradictory
findings, even for atlas based clustering, in which the number
and size of clusters is held constant across all subjects (Figure 5).
Evidence that the separation of different AD stages is relevant
was provided by Kim et al. (2015), who demonstrated a non-
monotonic behavior of global efficiency, local efficiency and
betweenness centrality across different stages of AD and MCI.
In our study, we could reproduce the pattern of increase and
decrease of closeness centrality across conditions (Figure 4).
However, we also demonstrate that the same analysis based
on the rich club sub-graph yields a different pattern, and that
contradictory (but significant) results can be obtained for the
same graph construction techniques with different choices of
threshold. We thus conclude that differences in graph properties
between health conditions are currently ill-suited to provide
an account of disease mechanisms in AD, unless either: (1)
a specific method of graph construction can be shown to be
more representative of the underlying connectivity than other
methods, (2) the differences can be shown to be robust to choice
of graph construction, (3) the differences can be validated by
another analytical approach, or (4) the significance level is shown
to be substantially more persuasive than p < 0.05.
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The second category of studies use graph theoretical
information as input for machine learning algorithms to
classify the health conditions of the subjects. Note that for
this purpose it is irrelevant if a difference between health
conditions is not robust to method choice, as the goal is
not to understand the effects of the disease but to robustly
distinguish between conditions. Recent studies have reached
very high performance: 100% accuracy in discriminating AD
and control (Khazaee et al., 2015), and 93% for AD, MCI
and control classification (Khazaee et al., 2017). In the latter
work they extract more than two dozen local and global graph
properties, resulting in roughly 3, 000 features, since each of
the local properties is calculated for all brain areas. Only a
small subset of features is then used for classification, e.g.,
in-degree of the left middle temporal gyrus. They found that
the classification power of local graph measures is larger than
that of the global ones. Local changes in graph properties
that do not propagate to global mean values have also
been reported for area specific (frontal cortices, parietal and
occipital regions) synchronization levels (Sanz-Arigita et al.,
2010).

In this work we do not compare node-specific graph
properties, because Ward and RGS clustering do not result in
the same spatial location of clusters across subjects. Instead,
we consider, wherever possible, the first four moments of
the entire distributions of graph properties. This is more
information than typically used for global measures, where
often only the first moment (the mean) of a graph property
distribution is taken into consideration. Nevertheless, it is
still possible that considering single nodes, of which some
may be more damaged by AD than others, could yield a
better diagnostic performance. This requires further study in
a survey considering only atlas based clustering. Again, this
is out of scope of the current study, but we remark that
the statistical model methodology we employ here would be
equally applicable to such an investigation. The advantage of
taking the entire distribution lies in the possibility of using
purely data driven clustering algorithms (e.g., Ward clustering)
that can be substantially faster than atlas based clustering,
since they do not depend on a time and memory consuming
registration of the individual brain image to standard space.
In addition, the global distribution is more likely to be more
robust against brain morphologic abnormalities such as brain
tumors or brain shrinkage, and is more stable across recording
sessions (Telesford et al., 2010; Wang et al., 2014). Finally,
a short recording time might be expected to have a weaker
influence on entire graph property distributions then on single
nodes. Thus we conclude that global measures are preferable,
if a good diagnostic performance can be reached. Although
the goal of this work was not classification, we note that
we obtain up to (80–90%) correct classification using an off-
the-shelf support vector machine on leave-one-out subsets of
our data for pairwise (C-AD, C-MCI, AD-MCI) comparisons.
Whether global measures can reach the impressive performance
shown by Khazaee et al. (2017) can only be investigated
on a sufficiently large data set, ideally with several hundred
participants.

3.2. Limitations of This Study
In each step of the graph construction and analysis pipeline
(Figure 1) we set limits to the endless space of possible
methods and their corresponding parameters. Here we will
shortly summarize the reasons motivating the selection of the
methods examined here and the exclusion of others, given the
constraint of limited computational and temporal resources. As
a general principle, we aimed to include the most commonly
used method(s) and additional methods that we found to be
reasonable, even if they are not currently frequently used.

Starting with the fMRI pre-processing, we had to decide
whether to include global signal regression. The global signal
(the average activity across all brain voxels) is assumed to
originate partly from vascular and respiratory processes that do
not represent neuronal activity. However, there is also evidence
that it contains neuronal-signaling based components, since it is
negatively correlated with the EEG signal and strongly correlated
with the activity of the largest network in the brain (the default
mode network, which plays a major role in rest state activity)
when noise levels are low (Murphy and Fox, 2017). Without
global signal regression, the Pearson correlation distribution
derived from the signal of all voxels, or the average activity of
clustered voxels, is biased to the right such that negative values
are rare and small. The correction for the global signal centers this
distribution, such that negative values aremuchmore prominent.
This also changes the properties of the graphs extracted from
such data, for example an increase in modularity combined
with fewer unconnected nodes has been reported (Schwarz and
McGonigle, 2011; Hayasaka, 2013).

Speaking against global signal regression is the finding that
correction for white matter, CSF and motions yield the most
stable graph properties across sessions compared with additional
applied global regression (Schwarz and McGonigle, 2011). In
diagnostics it is important to have only small variance in the
outcome across different sessions if the health condition of
a subject is stable, such that small changes that indicate a
worsening of the health condition can be rapidly detected.
Moreover, we define the edges of our graphs as the absolute
values of the functional connectivity values. As the negative part
of the correlation distribution is small without global regression,
different possible treatment of negative correlations (taking the
absolute values or setting them to zero) should have only a
small influence on the resulting graph properties, at least when
the underlying functional connectivity are based on correlations.
Consequently, we elect not to include global signal regression in
our pipeline.

In the clustering step, the most commonly used method is
to define clusters based on cortical regions defined by a brain
atlas. We supplemented this with two data-driven clustering
approaches: Ward clustering and RGS clustering. We selected
Ward clustering, as it has been shown to perform better
than alternative hierarchical clustering methods with respect
to reproducibility and accuracy (Thirion et al., 2014). RGS,
a method derived from image processing (Lu et al., 2003),
was selected because we could adjust the method to produce
functionally homogeneous clusters. In this formulation, the only
free parameter of the algorithm is the minimal cluster size.
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For both data-driven methods, we selected parameters such
that graphs did not exceed a maximal size of 1,500 nodes,
due to computational limitations. We excluded clustering based
on independent component analysis, because of its laborious
implementation and the requirement for domain expertise to
distinguish noise from activity-related components. We also
excluded all clustering algorithms that do not take functional
consistency into account, e.g., dividing the voxels into cuboid
patches, as has been proposed for structural data (Amoroso et al.,
2017).

With regards to methods for edge definition, we limit
our survey to functional connectivity measures that act in
the time domain and not in the frequency domain, thus
omitting frequency based wavelet analysis (Supekar et al.,
2008), synchronization likelihood (Sanz-Arigita et al., 2010)
and coherence (Wang et al., 2014). The most commonly used
and simplest functional connectivity measure is the Pearson
correlation coefficient (e.g., Zhao et al., 2012), which we name
BCorrU in our work. We also test two additional model-free
and one model-based method. A further model-based method
based on Granger causality was excluded because it is too
computationally expensive for larger graphs (Wang et al., 2014).

A thresholding operation is often applied to graphs extracted
from fMRI, setting all values below wmin to zero. The aim of
this step is to reduce experimental noise, which mainly manifests
in the weaker edges, and to make the computation of graph
properties computationally less demanding (Bordier et al., 2017).
The threshold wmin can be defined in several ways: it can be
set arbitrarily, without satisfying a certain demand, or such
that certain properties of the graphs are preserved, e.g., average
number of edges per vertex (Sanz-Arigita et al., 2010), node
density (Zhao et al., 2012), small world behavior (Bassett et al.,
2008) or a fixed cluster coefficient. Alternatively, it can be set
such that information on the network’s community structure is
maximized; see, e.g., Bordier et al. (2017). In a variant of the
thresholding approach, it has been proposed to transform the
edge weights by applying a power law (Schwarz and McGonigle,
2011). In this study, for the sake of simplicity, we examine graph
properties as a function of wmin without targeting any specific
value of a graph property. Potentially, our results would reveal
a different picture if wmin was optimized for each subject to
attain, for example, a specific average nodal degree. However,
comparison of these two different thresholding mechanisms
resulted in no major difference in the relationships of graph
properties between the control and AD groups (Sanz-Arigita
et al., 2010).

We do not binarize our graphs (setting all values below
wmin to zero and those above it to one) as is frequently
done (e.g., Zhao et al., 2012), as this leads to a loss
of information, and moreover some distributions of graph
properties would become discrete (e.g., only ones and zeros for
edge weights distributions), such that higher moments would
be uninformative. The disadvantage of using weighted graphs
lies in the limitation of possible graph properties. Most graph
properties are well-defined for binary graphs and have been
partly extended to weighted graphs. Here, we calculate the
(normalized) weighted degree, shortest path, closeness centrality,

clustering coefficient, and the modularity. We only investigate
the most commonly used metrics and do not include more
complex methods such as the minimal spanning tree (Çiftçi,
2011).

In addition to the restrictions of scope with regards to the
examined techniques, a clear limitation of this study is the
small data set. As our aim here is primarily to provide a
methodology for evaluating and comparing analysis methods,
rather than to draw conclusions on the effect of Alzheimer’s
disease on the graph properties of the cortex, a small data
set is less problematic. Indeed, for the explorative survey
carried out here, a large data set would have been prohibitively
expensive with respect to computational resources. Moreover,
many studies applying graph analysis to fMRI data are based
on similarly sized data sets, which highlights the importance
of raising awareness about the methodological artifacts we have
identified.

The results of our survey indicate which combinations of
methods are promising in view of Alzheimer diagnosis and
should be investigated further in future studies based on larger
data sets. Naturally, such studies could yield some quantitatively
different results to those reported here, particularly with regard
to the classification performance. Nonetheless, we would like
to summarize some conclusions of the work that are unlikely
to change with a larger data set. First, our results show that
different combinations of methods can lead to contradictory
findings with regard to significant differences in mean properties
(section 2.2). This effect is unlikely to be resolved by a larger
sample size. Second, methods showing good robustness with
respect to parameter choice for a small sample size (e.g.,
TE edge definition, see Figure 7), are likely to remain robust
with increasing sample size. Likewise, there is no reason to
assume that methods performing well in all circumstances
for the small data set, e.g., Ward clustering combined with
corr edge definition (section 2.3), would perform worse for
larger data sets. Finally, we assert that thresholding the graphs
of a large data set with a small wmin (as shown in section
2.3) would similarly not result in a sudden jump in negative
surprise.

3.3. Application of Approach to Other
Analysis Techniques
We have demonstrated a systematic, quantitative approach for
comparing and evaluating sequences of algorithms that result
in classification of fMRI data based on the first four moments
of simple graph theoretic metrics defined on the whole graph.
However, the approach we present is equally well suited for
assessing pipelines based on other metrics, as we briefly outline
in the following.

One possibility is to consider the graph properties of
individual nodes, as these have been shown to be very informative
(Xia et al., 2014; Khazaee et al., 2015; Wang et al., 2016; Dillen
et al., 2017).

This entails the use of atlas based clustering. We speculate
that a global analysis of graph properties would be both faster
and more robust to brain abnormalities and short recording
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times, and so would be the preferable approach if equivalent
performance levels can be attained.

A second possibility is to extend our approach to a hierarchical
analysis. This could potentially be of great use, as previous studies
based on PET imaging have suggested that in Alzheimer’s disease,
long range connections become weaker but local clustering
increases (Pagani et al., 2016, 2017). These alterations would
not be observable using the graph analyses so far considered,
although we have taken the first step by calculating the
modularity, which compares the ideal dissection of the given
graph intomodules with that of a random graphwith similar edge
weights.

To capture the graph meta-structures it is necessary to
cluster graph nodes into modules, or sub-graphs. Modules
can be defined either purely functionally, such that each node
(ideally) has the strongest connections to the nodes in its
own cluster, and the weakest connections to nodes of other
clusters, or based on anatomic structures, such that nodes
in a cluster are part of large, anatomo-functionally similar
brain areas. Analogous to the variety of methods for spatial
clustering and edge definition investigated in this study, there
are many techniques used to cluster nodes into modules (e.g.,
k-clustering, hierarchical clustering and spectral clustering, for
a review see Schaeffer, 2007 or anatomo-functional clustering,
see Pagani et al., 2016), and likewise multiple options for
analysing the characteristics of the resulting modular structure
(e.g., module degree or participation coefficient; see Guimerá and
Nunes Amaral, 2005). Such a comprehensive study is outside the
scope of the current work, but could well provide great insight
into health condition related alterations in the global network
structure of the brain.

4. CONCLUSIONS

In order to achieve a robust and successful Alzheimer’s disease
diagnosis based on graphs extracted from fMRI data, we
recommend clustering that results in rather small graphs with
large clusters. Ward clustering, in which the number of clusters
can be predefined, is fast, but requires programming knowledge
to implement it. Atlas clustering is well established standard fMRI
analysis software applications, but it is slow andmight be affected
bymorphologic abnormalities in the brain, such as atrophy which
is a common symptom of AD.

Edge weights should be calculated based on correlations or
mutually information transfer, especially if a focus of the study
is uncovering significant differences in mean graph properties
between health conditions. We emphasize that the existence,
magnitude and direction of such significant differences can be
very sensitive to the methods chosen, and the parameterization
of those methods, and so such findings should be reported with
care, especially if a biological interpretation of said findings is
claimed. Transfer entropy rarely gives significant results, but is
more robust toward parameter changes in the algorithm and
different clustering algorithms. Finding appropriate statistical
models may be an additional challenge for this method.

Weak thresholding may be used for complexity reduction as
it has little effect on performance. Applying a higher threshold
or extracting the rich club sub-graph (The 10% of nodes with
highest degree) causes unsystematic changes in the negative
surprise and should therefore be used with caution, and validated
against the full graph.

In summary, our quantitative evaluation and comparison
of graph construction and analysis methods provides insight
into how contradicting results come about in studies of graph
properties of fMRI data, and identifies a number of potential
methodological artifacts. Moreover, it provides a blueprint for
establishing appropriate analysis pipelines, and serves as a
well-founded starting point for future research on larger data sets.

5. METHODS

5.1. Data Acquisition
The recruitment and neuropsychological assessment of the
study participants is given in Dillen et al. (2017). Demographic
information is given in Table 2.

Anatomical MRI and resting state fMRI (rfMRI) images
were obtained from a 3T MR-Brain-PET scanner (Siemens,
Erlangen, Germany) in the Memory Clinic Cologne Juelich. The
parameters for the single-shot echo planar imaging sequence of
the functional (T2* weighted) image are the following: TR =

3, 000 ms, TE = 30 ms, FA = 90◦, FOV = 200 × 200 mm2,
matrix = 80 × 80, voxel resolution = 2.5 × 2.5 × 2.8, 50
oblique slices parallel to the infra-supratentorial line, gap =

0.28 mm, interleaved, scan time = 7 min. Parameters of
the high-resolution T1-weighted structural image based on a
magnetization-prepared rapid gradient echo sequence: TR =

2, 250 ms, TE = 3.03 ms, FA = 9◦, FOV = 256 × 256 mm2,
matrix = 256 × 256, voxel resolution = 1 mm isotropic, 176
sagittal slices, no gap, interleaved, scan time = 314 s. For more
detail see Dillen et al. (2017).

5.2. Preprocessing of fMRI-Data and
Extraction of Cortical Data
Image preprocessing is accomplished using FMRIB’s Software
Library tools (FSL; Woolrich et al., 2009; Jenkinson et al., 2012).
We carry out the following steps for the structural T1-weighted
image: skull-stripping (Smith, 2002) with bias field correction
(Keihaninejad et al., 2010; Leung et al., 2011; Popescu et al.,
2012) and for the functional T2-weighted image: discarding the
first 10 volumes (out of 140 each taken after 3 sec), motion

TABLE 2 | Demographic information of participants.

Controls MCI AD

Number 26 16 14

Age 62.38 [50, 73] 70 [55, 78] 71 [61, 78]

Sex 10 f, 16 m 7 f, 9 m 7 f, 7 m

Years of education 15.3 [8, 25] 12.75 [8, 21] 12.83 [7, 18]

Average and minimal and maximal values [min, max] are given for age and years of

education; female (f), male (m).
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correction (Beckmann and Smith, 2004), spatial smoothing using
a 4mm full width at half maximum Gaussian kernel, high-
pass temporal filtering at 0.02Hz and a six-parameter, rigid-
body linear transformation procedure in MCFLIRT (Jenkinson
et al., 2002). More details can be found in Dillen et al. (2017),
where the same preprocessing is applied. In addition we carry
out white matter and cerebrospinal fluid regression (FSL regfilt,
MELODIC) to the functional image in order to reduce noise.

In order to extract only cortical voxels from the entire
brain fMRI image, as needed for the data-driven clustering
described in the next section, we first register cortical regions
(frontal- , occipital-, temporal-, and insular-cortex) defined in
the MNI structural atlas (Collins et al., 1995) to the structural
and then to the functional space. For this registration we
apply the transformation matrix obtained from registering the
entire standard brain first to the individual structural brain
(linear registration with FSL/FLIRT; Jenkinson and Smith, 2001;
Jenkinson et al., 2002) and then to the functional space (non-
linear registration with Advanced Normalization Tools, ANTs;
Avants et al., 2011). In order to extract only gray matter tissue, we
apply the gray matter image of the structural space (segmentation
with FSL-FAST; Zhang et al., 2001) registered to functional space
as described above, as a mask to the to the functional image.

5.3. Data-Driven and Atlas Based
Clustering of Cortical Voxels
In order to construct graphs we cluster cortical voxels into
regions using three different methods. Two of these methods, the
Ward clustering and the region growing and selection algorithm
(RGS) are data driven, such that only neighboring voxels with
similar activity are combined into a single region. For these
algorithms the number of regions per brain and the participating
voxels in a region can differ for each individual and strongly
depend on predefined algorithm-specific parameters. The atlas-
based cluster algorithm, in contrast, produces the same number
of clusters and a constant number of voxels per region across
individuals, because the individual brains are mapped onto a
standard brain.

5.3.1. Atlas-Based Clustering
For each subject we linearly register the rfMRI image first to
the structural, skull-removed image (image segmentation for
skull removing with SPM8, Wellcome Department of Cognitive
Neurology, London, UKFSL; linear registration with FSL/FLIRT;
Jenkinson and Smith, 2001; Jenkinson et al., 2002) and then,
through a non-linear mapping, to the MNI standard brain [non-
linear registration with Advanced Normalization Tools (ANTs;
Avants et al., 2011); MNI 152 standard brain, non-linear 6th
generation (Grabner et al., 2006)]. Regions of interest (ROIs) of
the resulting functional image in standard space are extracted
such that they match the 94 regions identified by the Oxford
lateral cortical atlas (regions have a probability above 50%)
(Desikan et al., 2006). A demonstration of how the brain is
clustered according to the brain areas is given in the first panel
of Figure 12.

TABLE 3 | Parameters used for the different clustering algorithms.

Minimal number of Number of Threshold T of Pearson

Method voxels per cluster p clusters k correlation coefficient

ward1 10 5,000 –

ward2 25 5,000 –

ward3 10 2,000 –

ward4 25 2,000 –

RGS1 55 – 0.75

RGS2 50 – 0.75

atlas – – –

Ward clustering (ward), region growing and selection (RGS), atlas-based clustering (atlas).

5.3.2. Ward Clustering
Ward clustering (Python: sklearn.cluster.AgglomerativeClustering,
Pedregosa et al., 2011) is a data-driven clustering algorithm,
which is initiated by defining each voxel as a cluster and then,
in each iteration step, merging the two neighboring clusters
(even of different sizes) that after merging show minimal
intra-cluster variance compared with all other possible variations
of combining two adjacent clusters. In this way, the number of
clusters is reduced by one in each iteration step. In our case the
clustering stops after k clusters (Table 3) are formed. Afterwards,
we discard away all clusters that contain less then p voxels
(Table 3). An example of the outcome of Ward clustering
algorithm is depicted in the second panel of Figure 12.

5.3.3. Region Growing and Selection
The region growing and selection algorithm is a modified
version of the algorithm described in Lu et al. (2003). Region
growing implies that each voxel serves as an initial seed (center)
and neighboring voxels are added iteratively if they fulfill a
certain growing criteria. (Figure 11A) The condition proposed
for adding a voxel to a region is based on the Pearson correlation
coefficient R between the averaged time-varying signals of the
pre-merged region and the signal of the voxel to be tested (Lu
et al., 2003). If this correlation is higher then a pre-defined
threshold T (Table 3), the voxel is merged to the region. We
tighten the growth criteria by imposing a second condition that
allows the merging of voxels only if, in addition to exceeding
the correlation threshold, the resulting cluster is also functionally
homogeneous. Here, functional homogeneity means that the
time-varying signals of all voxels can be expressed as instances
of a single signal with varying levels of noise. The number of
independent signals in a cluster can be estimated by the spatial
functional heterogeneity h (Marrelec and Fransson, 2011):

h = n0 +
en0 − bn0

(en0 − en0+1)− (bn0 − bn0+1)
, (1)

where en are the eigenvalues of the NxN covariance matrix
of all N time varing signals in a cluster that exceed the
eigenvalues generated by the broken-stick model bn, such that
en > bn =

∑N
i=n 1/i . The index n0 accounts for the

smallest eigenvalues that fulfill this inequality equation, such that

Frontiers in Neuroscience | www.frontiersin.org 17 September 2018 | Volume 12 | Article 528

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Bachmann et al. Exploring fMRI-Graphs for AD Diagnosis

FIGURE 11 | Region growing and selection algorithm. (A) Region growing, left: each voxel (colored squares) serves as center for a cluster, right: example of a growing

region (purple), only adjacent voxels that fulfill the fusion criteria are added to the growing cluster. (B) Region selection. Small regions (pink) with centers overlapping

with larger regions (green) get deleted (from left to right) in a iterative manner. Remaining regions can still overlap as long as their centers do not cover other regions.

This illustration is in 2D for simplicity, the algorithm used for fMRI data acts in 3D following the same rules.

FIGURE 12 | Clustering of the cortical functional image. Illustrated are the clustering outcome of the atlas (Upper Panel) and the Ward clustering (ward4, Middle

Panel) and RGS (RGS1, Lower Panel) algorithms for frontal, sagital and horizontal brain sections (from left to right) of a randomly chosen healthy individual. Individual

clusters are depicted by a randomly chosen individual color, for clustering parameters see Table 3.

en0 > bn0 and en0+1 < bn0+1 . A value of h = 1 indicates a
homogeneous cluster.

The region selection algorithm iteratively selects the largest
region and deletes all clusters that have their centers in that
region, excluding the possibility that centers overlap with
other regions. However, clusters can still overlap (Figure 11B).
Applying this framework does not guarantee that clusters remain
spatially connected after deleting regions with overlapping
centers. Nevertheless, a check for spatial consistency reveals that

only a negligible fraction of the clusters are disrupted in that way.
Finally, we took only the clusters that comprised a minimum
number of voxels p (Table 3). The outcome of RGS is illustrated
in the last panel of Figure 12.

5.4. Edge Definition
A graph consists of nodes (vertices) that are connected through
edges, that might be weighted or binary and directed or
undirected. We construct individual brain graphs by defining
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nodes that represent clusters as described in section 5.3, such
that the mean activity of a cluster becomes a node attribute.
We presume that all graphs are fully connected and edge
weights are defined in terms of functional connectivity. Since
functional connectivity can be calculated in several ways, we
apply a range of different connectivity measures. In Wang
et al. (2014) many such methods are evaluated, taking the
structural connectivity of a toy model as reference. As a starting
point, for each proposed category of functional connectivity,
measured in time, we select the analysis measurement that
captures structural connectivity best. We follow this strategy
for all proposed measurement categories in Wang et al. (2014),
leaving out only Granger causality measures, due to limited
computational resources. We thus use linear and non-linear
correlation (corr and H2) and mutual information transfer
(MIT) for the model-free category and transfer entropy (TE) for
the model-based category. In all groups the bivariate methods
perform better then the partial ones. In conclusion we select
for each of the families the bivariate implementation that can
be both directed and undirected. For consistency we use the
same abbreviations for the different methods as in Wang et al.
(2014) and the same Matlab toolbox Mulan3 which they made
public. Here we provide only a short description of the applied
methods and more details can be inferred from Wang et al.
(2014).

Linear correlation (corr) are measured based on the Pearson
correlation coefficient (Rodgers and Nicewander, 1988) in a pair-
wise manner. For directed connectivity (BCorrD) delays of up to
5 time steps (Table 4) are considered and the largest connectivity
value is selected. We do not take into account time lags for
undirected correlation (BCorrU).

Non-linear correlations (H2) are based on piece-wise linear
correlations of two time signals on which the non-linear curve
is fitted (da Silva et al., 1989). Bivariate directed (BH2D) and
bivariate undirected (BH2U) are defined as above for linear
correlations.

Mutual information indicates how much information is
shared between two time varying signals by means of Shannon
entropy (Grassberger et al., 1991). For BMITD1 individual
histograms of two time series are contrasted to the joint
histogram across different time delays. No delays are taken into
account in BMITU.

Transfer entropy (Schreiber, 2000) describes how far in the
past the activity of a node can reduce the uncertainty of the
future activity of another node for which the past activity is
also considered. Bivariate directed (BTED, Chicharro, 2011) and
bivariate undirected (BTEU) are defined as above for linear
correlations.

All methods were tested for a window size that comprises
the whole time range (130 time points/6.5min) and for a sliding
window of 50 time points (2.5min) with an overlap of 10 time
points (0.5min), see Table 4. If the methods revealed negative
weights, the absolute value was considered. The resulting graphs
are directed or undirected weighted graphs with values between

3https://github.com/HuifangWang/MULAN.

TABLE 4 | Parameters of the different functional connectivity measures.

Method Window size Window overlap Number of bins Max. delay

BcorrU1 130 – – –

BcorrU2 50 0.2 – –

BcorrD1 130 – – 5

BcorrD2 50 0.2 – 5

BH2U1 130 – 10 –

BH2U2 50 0.2 10 –

BH2D1 130 – 10 5

BH2D2 50 0.2 10 5

BMITU1 130 – 5 –

BMITU2 50 0.2 5 –

BMITD1 130 – 5 5

BMITD2 50 0.2 5 5

BTEU1 130 – – 5

BTEU2 50 0.2 – 5

BTED1 130 – – 5

BTED2 50 0.2 – 5

Bivariate (B), undirected (U), directed (D), linear correlation (corr), non-linear correlation

(H2U), mutual information entropy (MIT), transfer entropy (TE).

zero and one for all methods except non-linear correlations,
where values can exceed one.

Many studies transfer weighted graphs into binary ones by
setting all values below a threshold wmin to zero and above
to one e.g., Zhao et al. (2012). Following this strategy we
also investigate the effect of setting all weights below wmin

to zero but leaving higher weights unchanged. As far as the
remaining graphs are still connected (left panels in Figure 13)
and single nodes are not disconnected from the network (right
panels in Figure 13) we study the disease diagnosis capacity for
wmin ∈ {0.1, 0.2, ...0.7, 0.8}. In addition we extract the rich club
of the graphs. The rich club is a subgraph that comprises the
nodes that are most strongly connected to the network. In this
work we define the rich club as the 10% of nodes with highest
degree.

5.5. Graph Properties
This section describes the different graph properties that are
either characteristics of single nodes (weighted degree, closeness
centrality, cluster coefficient), of pairs of nodes (shortest path)
or of the entire network (modularity). In the first two cases we
get a range of values for each graph. Since we do not know,
which are the important features of the resulting distributions,
we take the first four moments for our statistical analysis. Because
graphs based on data-driven clustering contain different number
of nodes and the calculated graph properties might be dependent
on the number of nodes, we also include the number of nodes in
the subsequent analysis (section 5.6).

5.5.1. Weighted Degree
The weighted degree degw describes how strongly a node is
connected to all other vertices of the network, obeying the
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FIGURE 13 | High thresholds on graph edges cause the graphs to dissociate. (Upper Panel), Illustration of graph with edge weights larger then 0.1 (wmin > 0.1,

Left) and larger then 0.9 (wmin > 0.9, Right). In the according weight histograms (Lower Panel) the red bars correspond to the edges drawn in the upper graph.

Edges corresponding to the black bars are not shown.

equation:

degw(v) =
∑

u∈V\{v}

wuv (2)

where wuv is the weight on the edge between nodes u and v of all
nodes V in the graph. This definition implies a high dependency
of the weighted degree on the number of nodes in a graph. To
address this problem, we normalize the weighted degree

degn(v) =
degw(v)

deg(v) · wmax
(3)

with wmax being the maximal weight of the graph. The resulting
values are between 0 and 1.

5.5.2. Shortest Path and Closeness Centrality
The shortest path distw(u, v) between a pair of nodes u and v
describes the path that minimizes the sum of the weights of its
participating edges. A small shortest path should indicate a strong
functional connectivity, therefore we consider the inverse of the
graph weights for its calculation. Its computation is carried out
using Dijkstra’s algorithm (Rivest et al., 2000), which requires the
weights to be positive.

Based on the shortest paths of a network we calculate closeness
centrality Cw(v) - a measure that indicates how strongly a node v
participates in all shortest paths of the graph. It is given by:

Cw(v) =
n− 1

∑

u∈V\{v} distw(u, v)
(4)

Here, n is the number of all nodes V in the graph.

5.5.3. Clustering Coefficient
The clustering coefficient cc(v) describes to what degree the
neighbors of a node v are connected among each other and
with node v. Since our network is weighted, we use the Zhang-
Horvath clustering coefficient (Zhang and Horvath, 2005; Kalna
and Higham, 2007), which is an extension to the “standard”
algorithm applied to binary graphs:

cc(v) =

∑

i6=v

∑

j 6=i,j 6=v ŵviŵijŵjv
(

∑

i6=v ŵvi

)(
∑

i6=v ŵ
2
vi

) (5)

for i, j neighbors of v and ŵ denoting the weights normalized by
the highest weight in the network, such that 0 ≤ ŵ ≤ 1.

5.5.4. Modularity
A graph can be partitioned into smaller components. Modularity
measures the deviation of the properties of these components as
compared to the components of a random graph with the same
edge weights. Accordingly, the modularity of a partition p of a
network G into communities c is given by Newman (2004):

Q(p) =
1

2m

∑

i,j∈V

(

wij −
degw(i) · degw(j)

2m

)

δcicj (6)

where δcicj is 1, if the community ci of node i is the same
as the community cj of node j, and 0 otherwise, and m =
1
2

∑

i,j∈V wij is the total sum of edge weights in a network.
Although there are many different definitions in literature
about what a community consists of, we define a community
as a group of strongly interconnected nodes that make only
weak connections to other communities. In addition, a node
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can maximally contribute to one community. Hence we want
to find the partition that maximizes modularity, which is
computationally very demanding, so it is important to use a
very effective algorithm. We therefore use the fast algorithm
by Blondel et al. (2008), which is implemented in the Python
packages community. Unfortunately this implementation is only
suitable for undirected graphs, so we investigate modularity only
for these type of graphs.

5.6. Statistical Model
The generated graph data is used as input for an
exchangeable parametric statistical model. Let us recall
that the purpose of the fMRI scan of a patient is to
give the clinician a likelihood for the patient’s health
condition,

P(graph data from fMRI scan | health condition ∧ prior info),
(7)

which she combines with the likelihoods from other tests and
her initial probability assignment, to obtain via Bayes’s theorem a
final probability for the health condition (Sox et al., 2013):

final probability
︷ ︸︸ ︷

P(health condition| results of all tests ∧ prior info) ∝

likelihoods









P(graph data from fMRI scan| health condition ∧ prior info)

×P(results of other tests| health condition ∧ prior info)

× · · ·

× P(health condition| prior info)
︸ ︷︷ ︸

initial probability

. (8)

The prior information also includes test results from previous
patients, so that the prediction becomes more accurate and
reliable, the more patients have been previously observed.

The functional dependence of the likelihood on the graph
data is determined by the statistical model we use, and may
be different for each health condition. The statistical model
is determined by additional assumptions or hypotheses. Such
hypotheses and the functional form of the likelihoodmay depend
on the particular space of graph data (e.g., real-valued, or
positive, or bounded within a finite range, or combinations
thereof), and therefore on the graph construction method.

As explained in section 2.3, our purpose is to assess as far
as possible the relative predictive power of the different graph
construction methods. We therefore would like the functional
dependence on the graph data space to be minimal. In the
present study we adopt the working hypothesis that only the first
and second empirical moments—means and correlations—of the
graph data from past patients with the same health condition are
relevant tomake predictions about a new patient. This hypothesis
is adopted for all graph construction methods. We also assume
our initial knowledge of the graph data to be approximately
invariant under rescalings of their values (Minka, 2001). Finally,
we do not take into account the natural range of variability
(positive, bounded, etc.) of the graph data; this choice does not
seem to impact the predictive power of the model (Porta Mana
et al., 2018).

These assumptions almost uniquely determine the statistical
model and the likelihood (Porta Mana et al., 2018): it turns
out to be a multivariate t distribution (Minka, 2001; Kotz
and Nadarajah, 2004; Murphy, 2007). More precisely: select a
particular health condition, e.g., Alzheimer’s disease. Denote with
f 0 the d-dimensional vector of graph data obtained from the
patient’s fMRI scan via a particular graph construction method,
and with (f i) the graph data of n previous patients with the
selected health condition. Then the likelihood that the present
patient has the selected health condition is

p[f 0| (f i), κ0, δ0, ν0,∆0,M] ≡ p(f 0| κ , δ, ν,∆,M)

= t
[

f 0
∣
∣ ν − d + 1, δ, κ+1

κ (ν−d+1)∆

]

(9)

κ = κ0 + n, ν = ν0 + n,

with (10)

δ =
κ0 δ0 + nSf

κ0 + n
, ∆ = ∆0 + n Cov(f )

+
κ0 n

κ0 + n

(
Sf − δ0

)(
Sf − δ0

)
⊺
,

where t is a multivariate t distribution with ν − d + 1 degrees of
freedom, mean δ, and scale matrix κ+1

κ (ν−d+1)∆, and

Sf :=
1

n

∑

i f i, Cov(f ) :=
1

n

∑

i(f i −Sf )(f i −Sf )⊺ (11)

are the empirical mean and covariance matrix of the previous
graph data.

The parameters κ0, ν0, δ0, ∆0 should reflect our initial
knowledge of the graph parameters. For the reasons explained
above and in section 2.3, we fix one set of values identically
for all graph construction methods: κ = 1, (δ0)a = 0.5,
∆0 = 2.5I, where I is the identity matrix. These values
yield an initial distribution (before any data from previous
patients) centered on positive values of unit order of magnitude,
as all the graph data indeed are for each graph construction
method.

5.7. Supportive Evaluation Measures of
Graph Construction Methods
5.7.1. Significance Test
We measure the significance level of the mean values of a
graph property distribution between pairs of the three healthy
conditions (control-AD, control-MCI, MCI-AD) based on the
Student’s t-test, if variances are equal (F-test ), and Welch’s t-test
otherwise. The underlying null hypothesis is that the means of
the two data arrays are assumed to be equal, which is rejected for
p-values smaller then 0.05.

5.7.2. Dendrograms of Subject Order
Subjects indexed from 1 to 56 (total number of participants)
across all health conditions are ordered according to the mean
values of a given graph property distribution. The indices of
the ordering (the rank) calculated for each graph construction
method is then used in order to construct the dendrogram. In the
dendrogram, the Euclidean distance between two indices arrays
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is indicated by the height of the top of the U-link linking the
two arrays. In addition, arrays with a small distance are clustered
together.

5.7.3. Support Vector Machines
For all complete graphs constructed by all different
graph construction methods, we apply a support vector
classification (Python: sklearn.svm.SVC) on each pair of
health conditions (control-AD, control-MCI, MCI-AD).
Hereby we choose the graph properties such that the
performance of the algorithm maximizes. We use the default
parameters and do not optimize performance by varying
the kernel coefficient or the penalty parameter of the error
term.
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