
Heuristic Techniques in AV Solutions: An Overview

Enterprise Networking Built
Around You… From XO
Customized solutions. Unmatched
support....
www.XO.com

Enhancing Security Through Quantum
Cryptography.
Quantum Cryptography is an emerging secu...
www.business.att.com

NISPOM and DCID 6/3 Compliance
Fulfill NISPOM and DCID 6/3
requirements...
ISDecisions.com

Threat level definition

Search: Home Bugtraq Vulnerabilities Mailing Lists Jobs Tools Vista

● News

● Infocus

● Foundations

● Microsoft

● Unix

● IDS

● Incidents

● Virus

● Pen-Test

● Firewalls

● Focus On: Vista

● Columnists

● Mailing Lists

● Newsletters

● Bugtraq

● Focus on IDS

● Focus on Linux

● Focus on Microsoft

● Forensics

● Pen-test

● Security Basics

● Vuln Dev

● Vulnerabilities

● Jobs

● Job Opportunities

● Resumes

● Job Seekers

● Employers

● Tools

● RSS

● News

● Vulns

Heuristic Techniques in AV Solutions: An
Overview

Markus Schmall 2002-02-04

Heuristic Techniques in AV Solutions: An Overview
by Markus Schmall

last updated February 4, 2002

Heuristic technologies can be found in nearly all current anti-virus (herein referred to as AV) solutions and also in

other security-related areas like intrusion detection systems and attack analysis systems with correlating

components. This article will offer a brief overview of generic heuristic approaches within AV solutions with a

particular emphasis on heuristics for Visual Basic for Applications-based malware.

What is Heuristic Scanning?

Traditionally, AV solutions have relied strongly on signature-based scanning, also referred to as scan string-based

technologies. The signature-based scan engine searches within given files for the presence of certain strings (often

also only in certain regions). If these predefined strings are found, certain actions like alarms can be triggered.

Modern scan string-based engines also support wildcards within the scan strings, which e.g. makes the detection of

slightly polymorphic malicious codes much easier. However, signature-based scanning only detects known malware

and may not detect against new attack mechanisms.

Heuristic scanning is similar to signature scanning, except that instead of looking for specific signatures, heuristic

scanning looks for certain instructions or commands within a program that are not found in typical application

programs. As a result, a heuristic engine is able to detect potentially malicious functionality in new, previously

unexamined, malicious functionality such as the replication mechanism of a virus, the distribution routine of a worm

or the payload of a trojan.

They do this by employing either weight-based systems and/or rule-based systems (both of which will be explained

http://www.securityfocus.com/infocus/1542 (1 of 8)09.06.2008 13:45:59

http://www.securityfocus.com/contact
http://www.securityfocus.com/advertise
http://www.securityfocus.com/about
http://links.industrybrains.com/click?sid=254&rqctid=3492&pos=1&lid=486620&cid=135479&pr=2&tstamp=20080609074635&url=http://clk.atdmt.com/TIC/go/ndstrxoc0010000016tic/direct/01/
http://links.industrybrains.com/click?sid=254&rqctid=3492&pos=1&lid=486620&cid=135479&pr=2&tstamp=20080609074635&url=http://clk.atdmt.com/TIC/go/ndstrxoc0010000016tic/direct/01/
http://links.industrybrains.com/click?sid=254&rqctid=3492&pos=1&lid=486620&cid=135479&pr=2&tstamp=20080609074635&url=http://clk.atdmt.com/TIC/go/ndstrxoc0010000016tic/direct/01/
http://links.industrybrains.com/click?sid=254&rqctid=3492&pos=2&lid=500602&cid=136697&pr=2&tstamp=20080609074635&url=http://clk.atdmt.com/CNT/go/ndstrwir0090000186cnt/direct/01/
http://links.industrybrains.com/click?sid=254&rqctid=3492&pos=2&lid=500602&cid=136697&pr=2&tstamp=20080609074635&url=http://clk.atdmt.com/CNT/go/ndstrwir0090000186cnt/direct/01/
http://links.industrybrains.com/click?sid=254&rqctid=3492&pos=2&lid=500602&cid=136697&pr=2&tstamp=20080609074635&url=http://clk.atdmt.com/CNT/go/ndstrwir0090000186cnt/direct/01/
http://links.industrybrains.com/click?sid=254&rqctid=3492&pos=3&lid=430770&cid=136497&pr=2&tstamp=20080609074635&url=http://www.isdecisions.com/en/software/userlock
http://links.industrybrains.com/click?sid=254&rqctid=3492&pos=3&lid=430770&cid=136497&pr=2&tstamp=20080609074635&url=http://www.isdecisions.com/en/software/userlock
http://www.symantec.com/avcenter/threatcon/learnabout.html
http://www.securityfocus.com/
http://www.securityfocus.com/archive/1
http://www.securityfocus.com/vulnerabilities
http://www.securityfocus.com/archive
http://www.securityfocus.com/jobs
http://www.securityfocus.com/tools
http://www.securityfocus.com/vista
http://www.securityfocus.com/news
http://www.securityfocus.com/infocus
http://www.securityfocus.com/foundations
http://www.securityfocus.com/microsoft
http://www.securityfocus.com/unix
http://www.securityfocus.com/ids
http://www.securityfocus.com/incidents
http://www.securityfocus.com/virus
http://www.securityfocus.com/pen-test
http://www.securityfocus.com/firewalls
http://www.securityfocus.com/vista
http://www.securityfocus.com/columnists
http://www.securityfocus.com/archive
http://www.securityfocus.com/newsletters
http://www.securityfocus.com/archive/1
http://www.securityfocus.com/archive/96
http://www.securityfocus.com/archive/91
http://www.securityfocus.com/archive/88
http://www.securityfocus.com/archive/104
http://www.securityfocus.com/archive/101
http://www.securityfocus.com/archive/105
http://www.securityfocus.com/archive/82
http://www.securityfocus.com/vulnerabilities
http://www.securityfocus.com/jobs
http://www.securityfocus.com/jobs/opportunities
http://www.securityfocus.com/jobs/resumes
http://www.securityfocus.com/jobs/seekers
http://www.securityfocus.com/jobs/employers
http://www.securityfocus.com/tools
http://www.securityfocus.com/rss
http://www.securityfocus.com/rss/news.xml
http://www.securityfocus.com/rss/vulnerabilities.xml
http://www.securityfocus.com/print/infocus/1542
http://www.securityfocus.com/email/infocus/1542
http://digg.com/submit?phase=2&url=http://securityfocus.com/infocus/1542&title=Heuristic%20Techniques%20in%20AV%20Solutions%3A%20An%20Overview&bodytext=Heuristic%20technologies%20can%20be%20found%20in%20nearly%20all%20current%20anti-virus%20(herein%20referred%20to%20as%20AV)%20solutions%20and%20also%20in%20other%20security-related%20areas%20like%20intrusion%20detection%20systems%20and%20attack%20analysis%20systems%20with%20correlating%20components.%20This%20article%20will%20offer%20a%20brief%20overview%20of%20generic%20heuristic%20approaches%20within%20AV%20solutions%20with%20a%20particular%20emphasis%20on%20heuristics%20for%20Visual%20Basic%20for%20Applications-based%20malware.&topic=security
http://del.icio.us/post?url=http://securityfocus.com/infocus/1542&title=Heuristic Techniques in AV Solutions: An Overview
mailto:markus@mschmall.de
mailto:markus@mschmall.de
http://adserver.securityfocus.com/RealMedia/ads/click_lx.ads/www.securityfocus.com/infocus/701379014/x28/default/empty.gif/38316631643039653437343239646430
http://adserver.securityfocus.com/RealMedia/ads/click_lx.ads/www.securityfocus.com/infocus/663714787/Middle/OasDefault/Blackhat_USA_2008/BHUSA150x600.gif/38316631643039653437343239646430
http://adserver.securityfocus.com/RealMedia/ads/click_lx.ads/www.securityfocus.com/infocus/663714787/Middle/OasDefault/Blackhat_USA_2008/BHUSA150x600.gif/38316631643039653437343239646430

Heuristic Techniques in AV Solutions: An Overview

in greater detail later in this paper). A heuristic engine based on a weight-based system, which is a quite old styled

approach, rates every functionality that is detected with a certain weight according to the degree of danger it may

pose. If the sum of those weights reaches a certain threshold, also an alarm can be triggered.

Nearly all nowadays utilized heuristic approaches implement rule-based systems. This means, that the component of

the heuristic engine that conducts the analysis (the analyser) extracts certain rules from a file and this rules will be

compared against a set of rule for malicious code. If there matches a rule, an alarm can be triggered.

The first heuristic engines were introduced to detect DOS viruses in 1989. However, there now exist heuristic

engines for nearly all classes of viruses (even for old-fashioned, nearly outdated Excel4 formula viruses like XF/

Paix). Over the years, AV development has been impressive, and the technologies utilized within heuristic engines

have become more and more sophisticated. The first heuristic engines performed simple string- or pattern-matching

operations to detect malicious code and were often referred to as “minimized scan string” heuristics. One example of

this is evident in the following example string from VBA5 code:

Options.VirusProtection = 0

This string disables the built-in macro virus protection in Word97. A lot of heuristic engines for VBA-based macro

viruses initially contained this line as a scan string. The obvious attack against this scan string was to change the

representation of the “0”. Another possible malicious string (as shown in a couple of macro viruses, like some W97M/

Coldape variants) could be:

Options.VirusProtection = 1 AND 0

These technologies, which were introduced by virus programmers, are known as “anti-heuristic” technologies. They

forced heuristic engines to scan more precisely and to analyse expressions (the logical operation 1 AND 0 results

again in a 0).

Heuristic Engines and Encrypted Viruses

Historically, heuristic engines could only assess what was visible to them; as a result, encrypted viruses caused

them major problems. In response to this, modern heuristic engines try to identify decryption loops, break them,

and assess the presence of an encryption loop according to the additional functionality that is detected.

So how does an AV scanner identify an encryption loop (such as for M68k assembler as utilized on the current Palm

OS platform)? The presence of any combination of the following conditions/instructions could indicate an encryption

loop:

● initialization of a pointer with a valid memory address;
http://www.securityfocus.com/infocus/1542 (2 of 8)09.06.2008 13:45:59

Heuristic Techniques in AV Solutions: An Overview

● initialization of a counter;

● memory read operation depending on the pointer;

● logical operation on the memory read result;

● memory write operation with the result from the logical operation;

● manipulation of the counter; and,

● branching depending on the counter.

A simple example for M68k assembler could look like this (assembler instructions match the above described

conditions/instructions):

 Lea test(pc),a0
 Move.l #10, d0
 .loop
 move.b (a0), d1
 eor.b #0, d1
 move.b d1,(a0)+
 subq.l #1,d0
 bne.s .loop
 ...
test dc.b “Encryption with eor and key 0 !”

Of course, the example shown above is a quite trivial encryption loop, one that is quite easily detected by heuristic

engines. Nevertheless, an understanding of how encryption loops can be realized is the basis of implementing a

heuristic engine that is capable of detecting them. As a result we have seen a lot of viruses that try to hide the

encryption loops by inserting garbage code or making the encryption loop so long that the heuristic engine (to be

more precise, the analysis component) gets confounded.

If we look at such detections, we see that, in most cases, the detection of an encryption loop is not precise enough

for an exact classification, as several viruses could use the same encryption routines. In the world of binary viruses

we have seen a lot of encryption engines (like TPE); generally speaking, in macro viruses these are not used in

conjunction with common polymorphic engines (for example, the W97M/Pri engine is utilized quite often). Therefore,

for the purpose of detection and removal, engines often communicate with and/or utilise emulator systems, which

have, among other things, the ability to break and/or emulate encryption routines. After the encryption is broken (i.

e., the end of the encryption loop has been reached), the heuristic analysis of the now decoded part can start.

Depending on the environment, this emulation process is complicated; therefore for some platforms there exist no

full emulators.

Visual Basic for Applications (VBA) and Visual Basic Script (VBS) are typical examples of complex environments in

which emulators can be very helpful to break encryptions; however, a complete emulation is very complex. In most

cases (such as the W97M/AntiSocial family, which utilizes encryption), a high number of encrypted instructions and
http://www.securityfocus.com/infocus/1542 (3 of 8)09.06.2008 13:45:59

Heuristic Techniques in AV Solutions: An Overview

the existence of typical macros like the Auto* macros or certain document handlers are already, without the usage

of emulators, fully sufficient to detect this class of macro virus. This is evident in this example taken from the

decryption engine of W97M/AntiSocial.D:

Line 1:

Private Sub Document_Open(): Application.EnableCancelKey = wdCancelDisabled

The definition of the private document handler Document_Open() (often inaccurately referred to as a macro) is not

typical for common applications, so it should be flagged with a low priority. The next operation disables the ‘ESC’

key and has the same security risk level as the definition of the private document handler and, therefore, should be

flagged accordingly.

Line 2:

For d = 6 To ThisDocument.VBProject.VBComponents.Item(1).CodeModule.CountOfLines: C$
= ""

This line simply initializes a ‘For’ loop, depending on the number of lines. Such strings should be flagged by heuristic

engines, as a request to count the lines of the existing macro code is suspicious. Additionally a heuristic engine

should remember that ‘d’ is an integer variable, the maximum value of which depends on the number of lines of

code.

Line 3:

I = (ThisDocument.VBProject.VBComponents.Item(1).CodeModule.Lines(d, 1))

A line of code, depending on the counter, will be read from the macro code. The range from the counter is chosen

that way, so that every line of the malicious code can be accessed. Again, this can be seen as a memory-read

operation as described above and should be flagged. Furthermore, the variable ‘I’ should be stored as a string

variable containing line information.

Line 4:

f = (Mid(I, 2, 1)): For X = 3 To Len(I): B$ = Asc(Mid(I, X, 1)) - f: C$ = C$ & Chr(B
$): Next X: A = C$

A set of operations will be done with the read content from the previous line. Actually, for the heuristic, the type of

encryption that is occurring here is not really important; the existence of such a routine is suspicious enough and

http://www.securityfocus.com/infocus/1542 (4 of 8)09.06.2008 13:45:59

Heuristic Techniques in AV Solutions: An Overview

should be flagged. For emulation issues, the analysis of encryption functionality has to go deeper.

Line 5:

ThisDocument.VBProject.VBComponents.Item(1).CodeModule.ReplaceLine d, A: Next d: End
Sub

This line replaces existing code (the parameter ‘d’ defines the line number and ‘A’ defines the actual content) and is

another critical operation (equivalent to the memory-write operation mentioned above), which has to be flagged

with a high security risk level. This line also contains the end of the outer ‘for’ loop, which is responsible for

accessing all lines within a certain range of the document.

Line 6:

'6Vxo|gzk&Y{h&Jui{sktzeIruyk./@&Uvzouty4Yg|kTuxsgrVxusvz&C&6

This line (as well as all of the following 13 lines) contains this kind of comment with encrypted code. How does the

heuristic engine detect that this kind of comment is encrypted?

● the string is quite long (i.e., consists of more than forty characters) and contains no spaces;

● it is not typical to start a comment with a number; and,

● the string contains suspicious mixture of numbers, special characters and ordinary alphabet characters.

Even by looking at these six lines, it is quite obvious that this code contains suspicious operations, which is sufficient

reason for a heuristic engine to issue an alert.

Nowadays, we also see engines that mix heuristic detection abilities with generic detection approaches. This means

that the engines try to identify that a certain set of functionality found within a file belongs to a special class/family

of malicious code. Removal capabilities are most often available for this kind of files detected by “class/family”

detection.

Components of a Heuristic Engine

Depending on the environment and the technological level, the following components can be found within heuristic

engines:

● variable/memory emulator;

● parser;

● flow analyzer;

● analyzer;
http://www.securityfocus.com/infocus/1542 (5 of 8)09.06.2008 13:45:59

Heuristic Techniques in AV Solutions: An Overview

● disassembler/emulator; and,

● weight-based system and/or rule based system.

When looking at script-based malicious code, the first step for a detection engine, which does not necessary have to

be implemented as a part of a heuristic engine, may be to normalize the given input file and remove bad formatting,

shorten irritating variable names and optionally tokenize the given script. Speaking of traditional macro viruses,

there are also AV engines that work directly with the PCode (a meta code) found within the OLE file structures.

Once the file type is confirmed, the heuristic engine will check for the entry point of the given file. In case of binary

files, this is fairly straightforward, as most files of this type have a clearly identifiable start point (for example, the

Win32 PE entry point). For script-based malicious code, it is possible to have a couple of entry points (such as a

couple of Auto* macros and document handlers within MS Word documents). The easiest approach is obviously to

scan the complete program ignoring program flow. Obviously this approach will miss a lot of samples, such as those

that use tricky parameter parsing between macros/function; as such, it typically has a high risk of returning

inadequate results.

The main loop of every heuristic engine has to select/extract the information (typically the opcodes for the next

instruction, or the next line in case of script-based malware) and pass the instruction to the core analyzer element.

This analyzer element has to identify the operation and set flags according to this identification. Furthermore the

communication with possible variable emulators or memory emulators is typically handled by the analyzer part.

Looking back at the W97M/AntiSocial.D example, it important for the analyzer to know that the variable ‘d’, as used

in line 3 and 5, is actually not static or dependent on the number of code lines. The rating is obviously higher, when

the variable ‘d’ is not static.

Rating the Found Functionality

After the complete program has been analyzed, the found functionality can be rated. This task is typically performed

by weight-based systems or rule-based systems. The former system gives every found functionality a special weight

and simply adds weights of the found functionalities. This type of technology is not often used in its basic form

anymore, as it causes a lot of false positives. For macro viruses, traditional weight-based systems could produce a

very high rating if a high number of copy operations from the current document to the global document template

(“normal.dot”) are found. This rating could result in a warning, even if no other malicious operation is found. So the

AV programmers had to implement systems that produced an alarm only if special conditions are met, so the idea of

utilizing rule-based systems within heuristic AV solutions was born.

Obviously, much better results can be reached when using rule-based systems. A rule-based system simply

compares found functionality with a set of rules. If a predefined rule is found within the code, the rule-based system

returns with a positive result. Depending on the exactness of the complete system, results like “generic virus” or e.
http://www.securityfocus.com/infocus/1542 (6 of 8)09.06.2008 13:45:59

Heuristic Techniques in AV Solutions: An Overview

g. “VBS/Loveletter variant” are realizable. Nevertheless, it should be never forgotten that heuristic engines can

cause false positives; for example, if the weight-based system is trained falsely or there are bad rules deployed

within the rule-based system.

Current Situation - Why Do We Need Heuristics?

Having offered a brief overview of heuristic approaches and components of heuristic engines, we want to look more

closely at why heuristic approaches are useful for both the user and the AV companies. In the last couple of years

we have seen a couple of outbreaks (W97M/Melissa, VBS/Loveletter, W32/Nimda, … just to name a few) that have

illustrated how the need for protective solutions based on heuristic approaches in general have became more urgent.

Additionally, we have seen a lot of malicious code that simply copies known ideas. As a result, this kind of malicious

code offers perfect attack points for heuristic engines. When heuristic engines and generic approaches are capable of

detecting slight variants of known malware, the AV research labs can look at other problems and optimize their time

handling.

We have also encountered an increase in polymorphic/metamorphic malware, which often can be only detected by

algorithmic approaches like a heuristic engine. Taking these developments into account, the usage of heuristic

technologies within AV solutions is absolutely necessary. Furthermore, AV solutions are not the only area in which to

utilize heuristic technologies. It is also possible to add heuristic features (e.g. utilizing rule-based systems) to

intrusion detection systems and firewalls.

Markus Schmall is currently working in the IT Security department of T-Mobile Germany and can be reached at markus@mschmall.
de.

SecurityFocus accepts Infocus article submissions from members of the security community. Articles are published based on
outstanding merit and level of technical detail. Full submission guidelines can be found at http://www.securityfocus.com/
static/submissions.html.

Comments Mode:

 Expand all | Post comment

http://www.securityfocus.com/infocus/1542 (7 of 8)09.06.2008 13:45:59

http://www.securityfocus.com/static/submissions.html
http://www.securityfocus.com/static/submissions.html
http://www.securityfocus.com/print/infocus/1542
http://www.securityfocus.com/email/infocus/1542
http://digg.com/submit?phase=2&url=http://securityfocus.com/infocus/1542&title=Heuristic%20Techniques%20in%20AV%20Solutions%3A%20An%20Overview&bodytext=Heuristic%20technologies%20can%20be%20found%20in%20nearly%20all%20current%20anti-virus%20(herein%20referred%20to%20as%20AV)%20solutions%20and%20also%20in%20other%20security-related%20areas%20like%20intrusion%20detection%20systems%20and%20attack%20analysis%20systems%20with%20correlating%20components.%20This%20article%20will%20offer%20a%20brief%20overview%20of%20generic%20heuristic%20approaches%20within%20AV%20solutions%20with%20a%20particular%20emphasis%20on%20heuristics%20for%20Visual%20Basic%20for%20Applications-based%20malware.&topic=security
http://del.icio.us/post?url=http://securityfocus.com/infocus/1542&title=Heuristic Techniques in AV Solutions: An Overview
http://www.securityfocus.com/cgi-bin/index.cgi?c=infocuscomments&op=display_comments&InfocusID=1542&expand_all=true&mode=threaded
http://www.securityfocus.com/comments/infocus/post/1542

Heuristic Techniques in AV Solutions: An Overview

● ONLINE CLASSIFIEDS

● Enterprise Security - Host Intrusion Prevention
Learn about Defense in-depth, using host IDS / IPs. Free Whitepaper

● Try the #1 Anti-Spam/Virus for Exchange Server
Try the acclaimed SPAMfighter Exchange Module for free. Small Business Server also compatible.

● NISPOM and DCID 6/3 Compliance
Fulfill NISPOM and DCID 6/3 requirements for Session Controls with UserLock. Download a free trial

Buy a link Now

 Privacy Statement
Copyright 2007, SecurityFocus

http://www.securityfocus.com/infocus/1542 (8 of 8)09.06.2008 13:45:59

http://links.industrybrains.com/click?sid=254&rqctid=3492&pos=4&lid=376066&cid=54503&pr=2&tstamp=20080609074636&url=http://gw.vtrenz.net/%3fRDNBL3EPPD%3dclicksrc:PPC_IBrains%26utm_source%3dindustrybrains%26utm_medium%3dcpc%26utm_campaign%3dhip
http://links.industrybrains.com/click?sid=254&rqctid=3492&pos=5&lid=440877&cid=62098&pr=2&tstamp=20080609074636&url=http://www.spamfighter.com/exchange_ib.asp%3fcid%3dib11
http://links.industrybrains.com/click?sid=254&rqctid=3492&pos=6&lid=430770&cid=136497&pr=2&tstamp=20080609074636&url=http://www.isdecisions.com/en/software/userlock
http://www.industrybrains.com/securityfocus
http://www.securityfocus.com/privacy

	securityfocus.com
	Heuristic Techniques in AV Solutions: An Overview

	KOPFCCFFPEHEDPKBNGMPJGAFMBDOMPGI:
	form1:
	x:
	f1: /
	f2: alldoc
	f3:

	f4:

	form2:
	x:
	f1: display_comments
	f2: infocuscomments
	f3: 1542
	f4: [threaded]

	f5:

