
An Introduction to Virtualization

kernelthread.com
contents

Art
Comic

Fine Arts

Mouse

Automotive
Audi TT

Motorcycling

Computing
Apple

Hanoimania

Obfuscation

OS

Programming

Toys

Résumé
Contact

Projects

Publications

Résumé

meta

About

Blog

Forums

Home

book

Mac OS X
Internals

adsense

An Introduction to Virtualization
© Amit Singh. All Rights Reserved.

It's hot. Yet again.

Microsoft acquired Connectix Corporation, a provider of virtualization software
for Windows and Macintosh based computing, in early 2003. In late 2003, EMC
announced its plans to acquire VMware for $635 million. Shortly afterwards,
VERITAS announced that it was acquiring an application virtualization company
called Ejascent for $59 million. Sun and Hewlett-Packard have been working
hard in recent times to improve their virtualization technologies. IBM has long
been a pioneer in the area of virtual machines, and virtualization is an
important part of IBM's many offerings. There has been a surge in academic
research in this area lately. This umbrella of technologies, in its various
connotations and offshoots, is hot, yet again.

The purpose of this document can be informally stated as follows: if you
were to use virtualization in a an endeavor (research or otherwise),
here are some things to look at.

History

Christopher Strachey published a paper titled Time Sharing in Large Fast
Computers in the International Conference on Information Processing at
UNESCO, New York, in June, 1959. Later on, in 1974, he clarified in an email to
Donald Knuth that:

" ... [my paper] was mainly about multi-programming (to avoid waiting for
peripherals) although it did envisage this going on at the same time as a
programmer who was debugging his program at a console. I did not envisage
the sort of console system which is now so confusingly called time sharing.".
Strachey admits, however, that "time sharing" as a phrase was very much in
the air in the year 1960.

The use of multi-programming for spooling can be ascribed to the Atlas
computer in the early 1960s. The Atlas project was a joint effort between
Manchester University and Ferranti Ltd. In addition to spooling, Atlas also
pioneered demand paging and supervisor calls (that were referred to as
"extracodes"). According to the designers (1961): "... the Supervisor
extracode routines (S.E.R.'s) formed the principal 'branches' of the
supervisor program. They are activated either by interrupt routines or by
extracode instructions occurring in an object program." A "virtual
machine" was used by the Atlas supervisor, and another was used to run
user programs.

In the mid 1960s, the IBM Watson Research Center was home to the M44/44X
Project, the goal being to evaluate the then emerging time sharing system
concepts. The architecture was based on virtual machines: the main machine
was an IBM 7044 (M44) and each virtual machine was an experimental image
of the main machine (44X). The address space of a 44X was resident in the
M44's memory hierarchy, implemented via virtual memory and multi-
programming.

IBM had provided an IBM 704 computer, a series of upgrades (such as to the
709, 7090, and 7094), and access to some of its system engineers to MIT in
the 1950s. It was on IBM machines that the Compatible Time Sharing System
(CTSS) was developed at MIT. The supervisor program of CTSS handled
console I/O, scheduling of foreground and background (offline-initiated) jobs,
temporary storage and recovery of programs during scheduled swapping,
monitor of disk I/O, etc. The supervisor had direct control of all trap interrupts.

http://www.kernelthread.com/publications/virtualization/ (1 of 16)09.06.2008 13:26:10

http://www.kernelthread.com/
http://www.kernelthread.com/comic/
http://www.kernelthread.com/finearts/
http://www.kernelthread.com/compuart/
http://www.kernelthread.com/tt/
http://www.kernelthread.com/motorcycling/
http://www.kernelthread.com/mac/
http://www.kernelthread.com/hanoi/
http://www.kernelthread.com/obfuscation/
http://www.kernelthread.com/os/
http://www.kernelthread.com/programming/
http://www.kernelthread.com/toys/
http://www.kernelthread.com/contact/
http://www.kernelthread.com/projects/
http://www.kernelthread.com/publications/
http://www.kernelthread.com/resume/
http://www.kernelthread.com/about/
http://www.kernelthread.com/blog/
http://www.osxbook.com/forums/
http://www.kernelthread.com/
http://www.osxbook.com/
http://www.osxbook.com/

An Introduction to Virtualization

Around the same time, IBM was building the 360 family of computers. MIT's
Project MAC, founded in the fall of 1963, was a large and well-funded
organization that later morphed into the MIT Laboratory for Computer Science.
Project MAC's goals included the design and implementation of a better time
sharing system based on ideas from CTSS. This research would lead to Multics,
although IBM would lose the bid and General Electric's GE 645 would be used
instead.

Regardless of this "loss", IBM has been perhaps the most important force in
this area. A number of IBM-based virtual machine systems were developed:
the CP-40 (developed for a modified version of IBM 360/40), the CP-67
(developed for the IBM 360/67), the famous VM/370, and many more.
Typically, IBM's virtual machines were identical "copies" of the underlying
hardware. A component called the virtual machine monitor (VMM) ran directly
on "real" hardware. Multiple virtual machines could then be created via the
VMM, and each instance could run its own operating system. IBM's VM
offerings of today are very respected and robust computing platforms.

Old Problems

Robert P. Goldberg describes the then state of things in his 1974 paper titled
Survey of Virtual Machines Research. He says: "Virtual machine systems were
originally developed to correct some of the shortcomings of the typical third
generation architectures and multi-programming operating systems - e.g.,
OS/360." As he points out, such systems had a dual-state hardware
organization - a privileged and a non-privileged mode, something that's
prevalent today as well. In privileged mode all instructions are available to
software, whereas in non-privileged mode they are not. The OS provides a
small resident program called the privileged software nucleus (analogous to the
kernel). User programs could execute the non-privileged hardware instructions
or make supervisory calls - e.g., SVC's - (analogous to system calls) to the
privileged software nucleus in order to have privileged functions - e.g., I/O -
performed on their behalf. While this works fine for many purposes, there are
fundamental shortcomings with the approach. Consider a few:

● Only one "bare machine interface" is exposed. Therefore, only one kernel
can be run. Anything, whether it be another kernel (belonging to the
same or a different operating system), or an arbitrary program that
requires to talk to the bare machine (such as a low-level testing,
debugging, or diagnostic program), cannot be run alongside the booted
kernel.

● One cannot perform any activity that would disrupt the running system
(for example, upgrade, migration, system debugging, etc.) One also
cannot run untrusted applications in a secure manner.

● One cannot easily provide the illusion of a hardware configuration that
one does not have (multiple processors, arbitrary memory and storage
configurations, etc.) to some software.

We shall shortly enumerate several more reasons for needing virtualization,
before which let us clarify what we mean by the term.

A Loose Definition

Let us define "virtualization" in as all-encompassing a manner as possible for
the purpose of this discussion: virtualization is a framework or methodology of
dividing the resources of a computer into multiple execution environments, by
applying one or more concepts or technologies such as hardware and software
partitioning, time-sharing, partial or complete machine simulation, emulation,
quality of service, and many others.

Note that this definition is rather loose, and includes concepts such as quality
of service, which, even though being a separate field of study, is often used
alongside virtualization. Often, such technologies come together in intricate
ways to form interesting systems, one of whose properties is virtualization. In
other words, the concept of virtualization is related to, or more appropriately
synergistic with various paradigms. Consider the multi-programming paradigm:
applications on *nix systems (actually almost all modern systems) run within a
virtual machine model of some kind.

Since this document is an informal, non-pedantic overview of virtualization and
how it is used, it is more appropriate not to strictly categorize the systems that

http://www.kernelthread.com/publications/virtualization/ (2 of 16)09.06.2008 13:26:10

An Introduction to Virtualization

we discuss.

Even though we defined it as such, the term "virtualization" is not always
used to imply partitioning - breaking something down into multiple
entities. Here is an example of its different (intuitively opposite)
connotation: you can take N disks, and make them appear as one
(logical) disk through a virtualization layer.

Grid computing enables the "virtualization" (ad hoc provisioning, on-
demand deployment, decentralized, etc.) of distributed computing: IT
resources such as storage, bandwidth, CPU cycles, ...

PVM (Parallel Virtual Machine) is a software package that permits a
heterogeneous collection of Unix and/or Windows computers hooked
together by a network to be used as a single large parallel computer. PVM
is widely used in distributed computing.

Colloquially speaking, "virtualization abstracts out things."

Why Virtualization: A List of Reasons

Following are some (possibly overlapping) representative reasons for and
benefits of virtualization:

● Virtual machines can be used to consolidate the workloads of several
under-utilized servers to fewer machines, perhaps a single machine
(server consolidation). Related benefits (perceived or real, but often
cited by vendors) are savings on hardware, environmental costs,
management, and administration of the server infrastructure.

● The need to run legacy applications is served well by virtual machines. A
legacy application might simply not run on newer hardware and/or
operating systems. Even if it does, if may under-utilize the server, so as
above, it makes sense to consolidate several applications. This may be
difficult without virtualization as such applications are usually not written
to co-exist within a single execution environment (consider applications
with hard-coded System V IPC keys, as a trivial example).

● Virtual machines can be used to provide secure, isolated sandboxes for
running untrusted applications. You could even create such an execution
environment dynamically - on the fly - as you download something from
the Internet and run it. You can think of creative schemes, such as those
involving address obfuscation. Virtualization is an important concept in
building secure computing platforms.

● Virtual machines can be used to create operating systems, or execution
environments with resource limits, and given the right schedulers,
resource guarantees. Partitioning usually goes hand-in-hand with quality
of service in the creation of QoS-enabled operating systems.

● Virtual machines can provide the illusion of hardware, or hardware
configuration that you do not have (such as SCSI devices, multiple
processors, ...) Virtualization can also be used to simulate networks of
independent computers.

● Virtual machines can be used to run multiple operating systems
simultaneously: different versions, or even entirely different systems,
which can be on hot standby. Some such systems may be hard or
impossible to run on newer real hardware.

● Virtual machines allow for powerful debugging and performance
monitoring. You can put such tools in the virtual machine monitor, for
example. Operating systems can be debugged without losing
productivity, or setting up more complicated debugging scenarios.

● Virtual machines can isolate what they run, so they provide fault and
error containment. You can inject faults proactively into software to
study its subsequent behavior.

● Virtual machines make software easier to migrate, thus aiding

http://www.kernelthread.com/publications/virtualization/ (3 of 16)09.06.2008 13:26:10

http://www.csm.ornl.gov/pvm/pvm_home.html

An Introduction to Virtualization

application and system mobility.

● You can treat application suites as appliances by "packaging" and
running each in a virtual machine.

● Virtual machines are great tools for research and academic experiments.
Since they provide isolation, they are safer to work with. They
encapsulate the entire state of a running system: you can save the
state, examine it, modify it, reload it, and so on. The state also provides
an abstraction of the workload being run.

● Virtualization can enable existing operating systems to run on shared
memory multiprocessors.

● Virtual machines can be used to create arbitrary test scenarios, and can
lead to some very imaginative, effective quality assurance.

● Virtualization can be used to retrofit new features in existing operating
systems without "too much" work.

● Virtualization can make tasks such as system migration, backup, and
recovery easier and more manageable.

● Virtualization can be an effective means of providing binary
compatibility.

● Virtualization on commodity hardware has been popular in co-located
hosting. Many of the above benefits make such hosting secure, cost-
effective, and appealing in general.

● Virtualization is fun.

● Plenty of other reasons ...

Variations

Generically speaking, in order to virtualize, you would use a layer of software
that provides the illusion of a "real" machine to multiple instances of "virtual
machines". This layer is traditionally called the Virtual Machine Monitor (VMM).

There are many (often intertwined) high-level ways to think about a
virtualization system's architecture. Consider some scenarios:

A VMM could itself run directly on the real hardware - without requiring a
"host" operating system. In this case, the VMM is the (minimal) OS.

A VMM could be hosted, and would run entirely as an application on top of a
host operating system. It would use the host OS API to do everything.
Furthermore, depending on whether the host and the virtual machine's
architectures are identical or not, instruction set emulation may be involved.

From the point of view of how (and where) instructions get executed: you can
handle all instructions that execute on a virtual machine in software; you can
execute most of the instructions (maybe even some privileged instructions)
directly on the real processor, with certain instructions handled in software;
you can handle all privileged instructions in software ...

A different approach, with rather different goals, is that of complete machine
simulation. SimOS and Simics, as discussed later, are examples of this
approach.

Although architectures have been designed explicitly with virtualization in
mind, a typical hardware platform, and a typical operating system, both are
not very conducive to virtualization.

As mentioned above, many architectures have privileged and non-privileged
instructions. Assuming the programs you want to run on the various virtual
machines on a system are all native to the architecture (in other words, it
would not necessitate emulation of the instruction set). Thus, the virtual
machine can be run in non-privileged mode. One would imagine that non-
privileged instructions can be directly executed (without involving the VMM),
and since the privileged instructions would cause a trap (since they are being
executed in non-privileged mode), they can be "caught" by the VMM, and
appropriate action can be taken (they can be simulated by the VMM in
software, say). Problems arise from the fact that there may be instructions that
are non-privileged, but their behavior depends on the processor mode - these

http://www.kernelthread.com/publications/virtualization/ (4 of 16)09.06.2008 13:26:10

An Introduction to Virtualization

instructions are sensitive, but they do not cause traps.

One of the most popular architectures, IA-32, is not virtualization
friendly. The analysis in a paper titled Analysis of the Intel Pentium's
Ability to Support a Secure Virtual Machine Monitor reports at least
seventeen instructions on the Pentium that make it "non-virtualizable".
IA-32's privileged instructions cause a General Protection Exception when
executed in non-privileged mode. Instructions like STR can be
problematic: STR can be executed at any privilege level, but it tells you
the security state of the machine (the value it retrieves has the
Requestor Privilege Level, or RPL).

The IA-32 TLB (unified code and data in 386/486, separate in the
Pentium) is hardware managed. In contrast, architectures such as Alpha,
MIPS, PA-RISC, and SPARC use software managed TLB's, which are
easier to virtualize than hardware page tables. An IA-32 TLB entry cannot
be tagged, say with an address space identifier (ASID), which would
make it easier (and less expensive, in terms of TLB flushes) to manage
the address spaces of the VMM and its virtual machine kernels.

Architecture amicability aside, there are various other problems to solve.

When a process on a guest system running on a (hosted) virtual machine
invokes a system call, it should not be handled by the host. The host should
notify the guest operating system. One solution is for the virtual machine
monitor to use ptrace() to trace process execution and identify system call
entry. The VMM can then nullify the system call (say, by "converting" it to
getpid(), or to an invalid system call), which is executed by the host. Upon
system call exit, the VMM notifies the guest system kernel (through a signal,
say), which can take appropriate action.

A similar situation exists in case of page faults.

Mach is capable of running Unix as an application program. To achieve
this, Mach uses a Unix Server for providing BSD system services/
resources, and a Transparent System Call Emulation Library that
executes within the address space of a Unix task. Now, Mach supports
system call redirection - you can have a certain set of system calls to be
handled by user-space code within the calling task. When a user-level
Unix task issues a system call, the Transparent Emulation Library
intercepts the call (using the redirection facility), and transforms it into a
remote procedure call to the Unix Server (not always though - sometimes
the Emulation Library can handle the call).

When a typical operating system kernel running on real hardware has nothing
to do, it runs its idle thread, or loop. When the same kernel runs on a virtual
machine, this behavior is undesirable, because the virtual machine is wasting
its processor time. The virtual machine could have a mechanism to suspend
itself, instead of running the idle loop. For example, the Denali Isolation Kernel
uses a purely virtual instruction (idle-with-timeout) for this purpose.

Along similar lines, the virtual machine monitor would not know when a
memory page is no longer being actively used by a virtual machine.

Depending on how much, and how virtualization is done, there will be more
such issues. Figuring out yet more optimal ways to virtualize (particularly in
the face of hard-to-virtualize hardware) is an active area of research.

Emulation and Simulation

A virtualization framework may make use of emulation or simulation, perhaps
because the guest and host architectures are different, or even otherwise.

In the context of software, an emulator reproduces the behavior of one system
on another. It executes, or strives to execute, the same programs as the
"original" system, and produces the same results for the same input. It is
important that the user of an emulator is not supposed to care how. Software
emulators abound for old and new hardware architectures, video game

http://www.kernelthread.com/publications/virtualization/ (5 of 16)09.06.2008 13:26:10

An Introduction to Virtualization

consoles, etc.

In the context of computing, a simulation is an imitation of some real system.
A simulator can be informally thought of as an "accurate emulator". The ARMn
is a multiprocessor cycle-accurate simulator that can simulate a cluster of ARM
processor cores connected by custom communication schemes. The VCS
Verilog Simulator from Synopsys can do gate-level ASIC simulation, useful to
semiconductor people. There is exists an instruction-accurate simulator for the
picoJava processor core, which is essentially an accurate (reasonably) software
model of the real thing, and so on.

A related family is that of in-circuit emulators: a combination of hardware and
software that lets you run code on actual hardware while providing flexible and
powerful debugging facilities, etc.

Today the Turing machine has become the accepted formalization of an
effective procedure [Hopcroft and Ullman, Introduction to Automata
Theory, Languages, and Computation]. Alonzo Church hypothesized that
the Turing machine model is equivalent to our intuitive notion of a
computer. A Universal Turing Machine can compute any function that any
Turing machine can compute (Turing proved this). Often, the Church-
Turing thesis is (mis)understood to imply that the Universal Turing
Machine can simulate the behavior of any machine. Nevertheless, given
that an arbitrary computer is equivalent to some Turing machine, it
follows that all computers can simulate each other.

Examples

We have seen that in the original, traditional sense, virtualization provides
multiple execution environments (virtual machines), each of which is identical
to the underlying computer. Each virtual machine looks like a "real" machine to
its user, whereas in reality, it is an isolated (from others) environment running
on the really real machine under the supervision of a Virtual Machine Monitor
(VMM). Recent years have introduced several new connotations for the phrase
"virtual machine" (as some of the examples will indicate). This section provides
brief overviews of several frameworks (methodologies, projects, products,
concepts) related directly or indirectly to virtualization.

ABI/API Emulation

Rather than creating virtual machines to run entire operating systems, API
emulation can be used to create execution environments for running alien
programs on a platform.

Sun used WABI (Windows Application Binary Interface) to make Solaris more
appealing to those needing Windows applications. The WABI software sits
between an application and the operating system, intercepts the applications
Windows calls, and translates them to "equivalent" Unix calls. On x86, the
guest instructions were run directly on the processor, while they were
emulated and/or binary translated on SPARC. WABI can also use an optional
DOS emulator to run DOS applications.

Sun later had the SunPC software that emulates a PC hardware
environment on Solaris (SPARC). The software-only SunPC emulated a
286, but you could install a SunPC Accelerator Card (that had a
coprocessor such as a 133 MHz AMD 5x86), and run Windows 95,
although one session at a time since real hardware was used.

A later product is the SunPCi III, a coprocessor card with features such
as: mobile 1.4 GHz AMD Athlon XP 1600+ processor, up to 1 GB PC2100
RAM, AGP 8x equivalent 24-bit graphics, 10/100Base-T Ethernet, up to 3
USB 2.0 ports (two on an optional daughterboard), and a FireWire port
(on the optional daughterboard). The A: drive is the physical floppy drive,
while C: and D: are emulated via files on Solaris. Other drives can be
mapped to local or networked file systems, or the local optical drive.

Lxrun is software for executing Linux a.out and ELF binaries (x86 only) on x86
Unix systems such as SCO OpenServer, SCO UnixWare, and later, Solaris. This
is achieved by "remapping" Linux system calls on the fly. You need the Linux

http://www.kernelthread.com/publications/virtualization/ (6 of 16)09.06.2008 13:26:10

http://www.ee.princeton.edu/~xzhu/armn.html

An Introduction to Virtualization

shared libraries that the application requires, as well as the Linux dynamic
loader. Lxrun is thus a system call emulator. There are various caveats as to
what kind of applications will not run, etc.

Newer versions of the real-time LynxOS have Linux ABI compatibility.

Similarly, FreeBSD provides binary compatibility with a few Unix like systems,
including Linux. Over time, FreeBSD has evolved to actually include a process
file system (linprocfs) that emulates a subset of Linux's procfs.

Wine is software that lets you run Windows applications on Linux, FreeBSD,
and Solaris. Wine is x86 only, and does not emulate a processor.

It is perhaps not a widely known fact outside the Solaris community that
Microsoft had versions of Internet Explorer and Outlook Express for Solaris
(SPARC). This was achieved not by porting them to Solaris, but by using API
emulation. Mainsoft, the software company behind that effort, now has a
product called Visual MainWin that allows for applications developed on
Windows using Visual Studio to be run on Solaris, Linux, HP-UX, and AIX. It
recompiles the applications from source on the deployment platform, using the
latter's compilers.

There are far too many other examples to be enumerated here.

Bochs

Bochs is an open source x86 emulator written in C++. It is a user-space
emulator, and emulates the x86 processor, several I/O devices, and a custom
BIOS. Bochs is highly portable, and rather slow (not surprising since it
emulates every instruction and I/O devices): the primary author of Bochs
reports 1.5 MIPS on a 400 MHz Pentium II.

Nevertheless, Bochs is extremely flexible and customizable.

Chorus

The Chorus system's kernel provides a low-level framework on top of which
distributed operating systems could be implemented. For example, System V
Unix was implemented on Chorus this way, by making use of System V specific
emulation assist code in the Chorus kernel.

chroot()

Many frameworks, particularly those targeted at hosting providers, make use
of chroot() for filesystem sandboxing, either within the kernel, or in user-
space. FreeBSD's jail uses chroot(). Virtfs is a relatively simpler chroot()
based solution for Linux.

Denali

The Denali isolation kernel is an operating system, essentially an IA-32 virtual
machine monitor , that allows for untrusted services to be run in isolated
(protected) "domains". Denali does not aim to allow for unmodified operating
systems to run on it: an operating system must be ported to the Denali
architecture (for example, the processor architecture as presented by Denali is
not x86, but a version modified for virtualizability and scalability).

Dis

Dis is the virtual machine designed for the Inferno operating system. Although
Dis is conceptually similar in Java to many respects, the inventors describe key
differences (such as an instruction set that matches existing processor
architectures more closely, a less lazy garbage collection, etc.) in The design of
the Inferno virtual machine.

Disco

Disco was the outcome of a Stanford University project with the goals of
extending modern operating systems to run efficiently on large-scale shared

http://www.kernelthread.com/publications/virtualization/ (7 of 16)09.06.2008 13:26:10

http://www.lynuxworks.com/rtos/lynxos.php3
http://www.winehq.com/
http://www.mainsoft.com/
http://www.mainsoft.com/products/mainwin.html
http://bochs.sourceforge.net/
http://www.prongs.org/virtfs/
http://www.vitanuova.com/inferno/
http://www.cs.bell-labs.com/cm/cs/who/rob/hotchips.html
http://www.cs.bell-labs.com/cm/cs/who/rob/hotchips.html
http://www-flash.stanford.edu/Disco/

An Introduction to Virtualization

memory multiprocessors without a large implementation effort. Disco is
essentially a VMM, implemented as a multi-threaded shared memory program,
sitting atop the hardware and allowing multiple virtual machines. It virtualizes
all resources of the underlying machine. An instance of a virtual machine has a
MIPS R10K processor, main memory with contiguous physical addresses
starting at zero, a specified set of devices such as disk, network interfaces,
periodic interrupt timers, clock, and a console. The execution of a virtual
processor is emulated via direct execution on the real processor. The MIPS TLB
can be reloaded by software, and each TLB entry is tagged with an address
space identifier, so that the TLB does not have to be flushed on a MMU context
switch. Disco adds special device drivers (such as for UART, SCSI, Ethernet,
etc.) into the operating system, and intercepts all device accesses from a
virtual machine. Disco was used to run Silicon Graphics IRIX 5.3.

Ensim

Ensim has done a lot of pioneering work in the area of virtualizing operating
systems on commodity hardware. Ensim's Virtual Private Server (VPS)
technology allows you to securely partition an operating system in software,
with quality of service, complete isolation, and manageability. There exist
versions for Solaris, Linux, and Windows.

FreeBSD

The FreeBSD "jail" mechanism allows you to create an isolated existing
environment via software means. Jail uses chroot(2), and each jail has its
own "root". Processes in a jail do not have access to or visibility of files,
processes, or network services in other jails. A jail can be restricted to a single
IP address.

The jail feature is implemented by making various components of the FreeBSD
kernel "jail aware", such as the pty driver, the system call API, the TCP/IP
stack, and so on.

In 1998-99, I worked on the ECLIPSE operating system at Bell Labs.
There was a great interest in Quality of Service then. ECLIPSE was
derived from FreeBSD and included support both for quality of service
(even for legacy applications), and a layer to manage it. ECLIPSE had fair-
share schedulers for CPU, network, and disk. Protocols like NFS, WWW,
and FTP were QoS aware. A pseudo filesystem (the reservation
filesystem) was used to provide the user-level API for managing
resources.

While retrofitting QoS in an existing operating system (such as FreeBSD)
is a good idea, one cannot deny that it cannot be perfect due to the
architecture of the existing system. Typically you associate resource
guarantees (or weights) with an execution context (say, a "domain", in
which processes can run). One now needs to tag processes that belong to
this domain, which is great except there is plenty of activity in the kernel
that doesn't traditionally have access to process context. Modifying data
structures to propagate the tags is unclean, and may break compatibility
(say, because you changed the size of the proc structure). Thus, unless
you design an operating system with QoS in mind, interactions in the
system are complex enough that it is extremely difficult to charge all
activity to its rightful owner.

In light of the problem described above, ECLIPSE also included Signaled
Receiver Processing (SRP) to alleviate a certain set of issues: protocol
processing of received packets in BSD Unix is interrupt-driven and may
cause scheduling anomalies that are unacceptable in systems that
provide QoS guarantees. SRP is an alternate mechanism that generates a
signal to the receiving process when a packet arrives. The default action
of this signal is to perform protocol processing asynchronously. However,
a receiving process may catch, block or ignore the signal and defer
protocol processing until a subsequent receive call. In any case, protocol
processing occurs in the context of the receiving process and is correctly
charged. Therefore, SRP allows the system to enforce and honor QoS
guarantees. Note that this is not the same as Lazy Receiver Processing
(LRP).

Hive

http://www.kernelthread.com/publications/virtualization/ (8 of 16)09.06.2008 13:26:10

http://www.ensim.com/

An Introduction to Virtualization

Hive is an internally distributed system consisting of multiple independent
kernels, or cells. The idea is to improve reliability by containing faults within a
cell, thus not affecting processes running on other cells. Each memory page in
hive has a small write permission bitmap, which allows the system to discard
corrupt page upon fault detection.

HP-UX Virtual Partitions

In Hewlett-Packard's own words: "Hewlett-Packard has created a family of
flexible, powerful, and far-reaching partitioning solutions - the HP Partitioning
Continuum for Always-On infrastructures. The solutions provide hard partitions,
virtual partitions, and resource partitions ..."

The HP Virtual Partitions (VPAR's) provide operating system and application
(including name space) isolation. A VPAR runs its own copy of HP-UX
(potentially different versions), and can be dynamically created, with a specific
set of resources assigned to it. Within a VPAR, you can further create resource
partitions.

There is a virtual machine monitor (the vPar Monitor) that sits on top of the
hardware (it is booted on the real hardware instead of HP-UX) and assigns
ownership of hardware resources to virtual machine instances (the vPar's).
Note that a vPar accesses physical memory and I/O hardware directly, without
involving the Monitor. A vPar is not, however, aware of the hardware resources
that are not assigned to it.

Linux/RK

Linux/RK is an Linux-based resource kernel implementation. The effort focuses
on incorporating quality of service (with respect to CPU, physical memory
pages, network bandwidth, and disk I/O) in a portable manner.

LPAR

IBM's Logical Partitioning (LPAR) allows you to run multiple, independent
operating system images of AIX and Linux on a single server (that supports
such partitioning, such as the pSeries family). The minimum resources needed
for a pSeries partition are: one processor, 256 MB memory, an I/O slot and its
attached devices. The AIX Workload Manager (WLM) is used for resource
management.

IBM introduced Dynamic Logical Partitioning (DLPAR) in AIX 5L Version 5.2.
DLPAR allows you to dynamically add and remove resources from active
partitions.

Other server families, such as the iSeries, and other IBM operating systems,
such as OS/400, also support logical partitioning. There is a primary OS/400
partition, that loads a hypervisor (known as "the Hypervisor"), which provides
partition control, mediation, and isolation. You can then have further OS/400
partitions, as well as Linux partitions.

Note that the POWER4 architecture has features that help in virtualization
(such as a special Hypervisor mode in the processor, the ability to include an
address offset when using non-virtual memory addressing, support for multiple
global interrupt queues in the interrupt controller, and so on. The firmware of
these machines is also specialized for virtualization.

IBM has a number of server offerings. The zSeries is IBM's mainframe
range that can run operating systems such as z/OS, z/OS.e, z/VM, VSE/
ESA, a transaction processing OS (TPF), and Linux. The iSeries are
midrange servers running OS/400 and Linux. The pSeries exist in various
ranges, and run AIX and Linux. There are other server solutions for
clustering, storage, etc.

Mac-on-Linux

Mac-on-Linux, or simply MOL, is a virtual machine implementation that runs
under Linux on most PowerPC hardware, and allows you to run Mac OS (7.5.2
to 9.2.2), Mac OS X, and Linux. Most of MOL's virtualization functionality is
implemented as a kernel module. A user process takes care of I/O, etc. There's

http://www.kernelthread.com/publications/virtualization/ (9 of 16)09.06.2008 13:26:10

http://www-2.cs.cmu.edu/~rajkumar/recent-papers.html
http://www.maconlinux.org/

An Introduction to Virtualization

even an (very limited) Open Firmware implementation within MOL.

MAE

The Macintosh Application Environment (MAE) was an X application that ran on
RISC machines (such as SPARCstation running SunOS and HP 9000/700
running HP-UX) and provided a virtual Macintosh environment. MAE emulated
the Motorola 68LC040 processor, with native execution whenever possible for
performance. MAE was based on System 7.x.

Microsoft Virtual Server

Microsoft has had its share of virtualization in the past. Windows NT had
several subsystems, or execution environments, such as the virtual DOS
machine (VDM), the Windows on Win32 (WOW) virtual machine for 16-bit
Windows, the OS/2 subsystem, the POSIX subsystem, and the Win32
subsystem. Note that while the OS/2, POSIX, and Win32 subsystems are
server processes, DOS and Win16 run within the context of a virtual machine
process. They all are dependent on the NT executive for basic operating
system mechanisms though.

The VDM was essentially a virtual DOS (derived from MS-DOS 5.0 code
base) running on a virtual x86. On x86, a trap handler was present to
handle privileged instructions. Windows NT also ran on MIPS, so an x86
emulator had to be there in the MIPS version.

Similarly, Windows 95 used virtual machines to run older (Windows 3.x and
DOS) applications. There was a System virtual machine that ran the kernel,
GDI, etc. The System virtual machine had an address space shared by all 16-
bit Windows programs, and a separate address space for each 32-bit Windows
program.

Microsoft has included virtualization as a key component of its server offerings
for the Enterprise with the acquisition of Connectix in early 2003. As with
Virtual PC, the idea is to run multiple operating systems simultaneously on one
machine.

Microsoft, and many enterprise software vendors, have also been making their
applications virtualized. Microsoft's SQL Server 2000 has multiple instance
capability. Microsoft's Exchange Server, File/Print Servers, IIS Server, Terminal
Server, etc. also don't really need virtualization support in the operating
system. There are pros and cons of virtualizing within an application, but there
are scenarios in which anything stronger, or lower level, is overkill, or not
optimal.

Nemesis

Nemesis is an operating system designed at the University of Cambridge
Computer Laboratory to support quality of service. The Nemesis kernel is
extremely small and lightweight, and most of the operating system code
executes in the application process itself. The kernel has a scheduler and some
other code for low-level CPU management. There is a single global page table
(a single address space), although per-process memory protection is still there.
Since the kernel performs much less work on behalf of an application, there is
much less scope for the "wrong" process being charged for somebody else's
work (often referred to as QoS crosstalk).

Related ideas can be found in Bell Labs' Pebble Operating System, the V++
Cache Kernel, and the MIT Exokernel Operating System. Yet another example
is that of the "Separation Kernel" that John Rushby talks about in his 1981
paper titled Design and Verification of Secure Systems. Rushby's paper
discusses the specific case of the "Secure User Environment" (SUE): a
minimally small and very simple kernel, providing a fixed, small number of
regimes, each of which runs a fixed, small program.

Plex86

Plex86 in its current life aims to provide a lightweight x86 virtual machine for
running Linux. It does not handle instructions that cannot be virtualized (thus,
it does not do any binary rewriting or code scanning). It also does not model

http://www.kernelthread.com/publications/virtualization/ (10 of 16)09.06.2008 13:26:10

http://www.bell-labs.com/project/pebble/
http://www.pdos.lcs.mit.edu/exo.html
http://plex86.sourceforge.net/

An Introduction to Virtualization

any I/O devices.

The Linux kernel needs minor modifications in order to run under Plex86.

Programming Language Virtual Machines

Programming languages are often implemented using virtual machines.
Benefits of doing this include isolation (the virtual machine is a sandbox) and
portability. The UCSD P-System was very popular in the 70s and the early 80s.
It was a virtual machine running p-code (akin to bytecode), with UCSD PASCAL
being the most popular programming language. The operating system itself
was written in PASCAL.

The Java Virtual Machine (JVM) is another well known virtual machine. The JVM
is an abstract computer: there is a Java VM specification that describes the
"machine" (in terms of things such as a register set, a stack, a heap that's
garbage collected, a method area, an instruction set, etc.) A JVM
implementation for a particular platform (such as x86/Linux, x86/Windows,
SPARC/Solaris, and so on) represents, among other things, a software
implementation of the above specification. Note that it is also possible to
implement the JVM in microcode, or even directly in silicon. The picoJava, for
example, is a Java processor core. You can compile a Java program on any
platform X and run it on any platform Y, given X and Y support JVM
implementations. Unless Y is a "Java processor", its instruction set would be
different from the (platform-independent) bytecode produced by the Java
compiler. A JVM could interpret the bytecode one (Java) instruction at a time,
or use JIT (Just-In-Time), a JVM-integrated optimization (it usually is faster,
but not always) that takes the bytecode and compiles it into native code for the
machine it is running on.

Note that the Java virtual machine doesn't really care about the Java
programming language: it only knows the format of the class file, that
contains JVM instructions (bytecodes), a symbol table, etc.

The JVM is not a multi-user virtual machine, although there have been
research efforts to re-architect the JVM for safe multi-tasking with multi-user
support.

Microsoft's .NET CLI is another example, and so is Parrot. There are many
more popular and/or successful programming language virtual machines.

QLinux

QLinux is an operating system that extends Linux to support quality of service.
It was a result of joint work by the Universities of Massachusetts (Amherst)
and Texas (Austin). QLinux includes a hierarchical start-time fair queueing (H-
SFQ) CPU scheduler, an H-SFQ packet scheduler for network, the Cello disk
scheduler, and Lazy Receiver Processing to incorporate fairer accounting of
protocol processing overheads.

QLinux is very similar to ECLIPSE: the latter is based on FreeBSD, uses
different scheduling algorithms, and uses a pseudo filesystem as a
management interface.

Shade

Shade is a virtual machine that emulates a target system's ABI by dynamically
cross-compiling the target machine code to run on the host system. Shade is
also a program profiler: it can be used to (programmatically) trace/profile the
programs that it executes.

Shade was a result of joint research by Sun Microsystems and University of
Washington, Seattle.

SILK

Scout is a modular operating system targeted for small network appliances. It
is communication-oriented, and incorporates several well-known network
architecture improvements under one roof. It supports assigning of resources/
limits to multiple data flows, that can be explicitly scheduled (so as to provide
QoS guarantees). Incoming packets are "early demultiplexed" to these flow
queues, and they are also dropped early if the queues become full. The single

http://www.kernelthread.com/publications/virtualization/ (11 of 16)09.06.2008 13:26:10

http://www.parrotcode.org/
http://lass.cs.umass.edu/software/qlinux/
http://www.cs.princeton.edu/nsg/scout/software.html

An Introduction to Virtualization

abstraction that captures these ideas is termed the path (a single TCP
connection encapsulating a flow of data is a path, for example). SILK stands
for Scout in the Linux Kernel. Scout exists as a Linux kernel module in SILK. It
includes its own CPU scheduler and threads package (the Linux scheduler is
still there). SILK runs as a highest priority real-time kernel task (which is
different from LRP).

Simics

Simics is a platform for complete system simulation. It began life as gsim in
1991, which itself was based on the g88 which was written by Robert
Bedicheck while at Tektronix. In the words of its project members: "[Simics]
attempts to strike a balance between accuracy and performance. That is, it is
sufficiently abstract to achieve tolerable performance level with, at the same
time, sufficient functional accuracy to run commercial workloads and sufficient
timing accuracy to interface to detailed hardware models." Simics model
various processors and devices accurately enough to be able to run unmodified
operating systems.

Simics is available for sparc-sun-solaris, x86-any-linux, and x86-
microsoft-windows. Simics can run various Linux ports (ARM, MIPS,
PowerPC, SPARC, x86, AMD64, IA64) on top of Simics hardware simulations,
as well as VxWorks (PowerPC), OSE (PowerPC), Solaris (SPARC), and various
Windows (x86, AMD64).

SimOS

SimOS is a complete machine simulator developed at Stanford. It is capable of
modeling complete computer systems (CPU, caches, multiprocessor memory
buses, network devices, disk drives, other I/O devices, ...), although it allows
you to control the level of simulation detail. Note that it is very similar to
Simics. The SimOS project started in 1992 with the simulation of the Sprite
system on SPARC hardware. The next implementation of SimOS simulated the
(MIPS based) hardware of an SGI machine in enough detail to support IRIX.
This implementation ran on an SGI machine as a host computer, allowing a
direct-execution mode.

SimOS has also been extended to model a Digital Alpha processor, on which a
port of Digital Unix can be run, and to the PowerPC, on which AIX can be run.

SimOS can optionally use Embra, a processor simulator that uses dynamic
binary translation to generate code sequences that simulate the given
workload.

Transitive is a company offering products based on dynamic binary
translation. Quoted verbatim from its web site: "Transitive was founded
in 2000 to create a software solution that enables applications written for
one processor based system to be easily transported to another processor
based system. The software solution, known as dynamic binary
translation, is designed to allow system vendors the maximum flexibility
in moving software applications to the optimum hardware platform."

Transitive says it has working solutions based on MIPS, x86, ARM/Xscale,
PowerPC, and Itanium.

SimOS runs on mips-sgi-irix-5.x, mips-sgi-irix-6.x, alpha-dec-
digitalunix, sparc-sun-solaris, and [5|6]86-any-linux.

Complete system simulators like Simics and SimOS have different
primary uses than, say, something you would use to run an additional
operating system for productivity. The variable level of detail these
simulators can reproduce can be used to design and develop processors
and devices, debugging and developing operating systems (since the
sequence of events leading to an error can be captured in greater detail),
testing for reliability and fault tolerance, studying memory behavior
(since various kinds of memory and memory spaces can be simulated)
etc.

http://www.kernelthread.com/publications/virtualization/ (12 of 16)09.06.2008 13:26:10

http://www.virtutech.com/technology/simulation.html
http://simos.stanford.edu/
http://research.compaq.com/wrl/projects/SimOS/SimOs.html
http://www.research.ibm.com/arl/projects/SimOSppc.html
http://www-flash.stanford.edu/Embra/
http://www.transitives.com/

An Introduction to Virtualization

Solaris

Sun introduced static partitioning in 1996 on its E10K family of servers. The
partitions, or domains, were defined by a physical subset of resources - such
as a system board with some processors, memory, and I/O buses. A domain
could span multiple boards, but could not be smaller than a board. Each
domain ran its own copy of Solaris. In 1999, Sun made this partitioning
"dynamic" (known as Dynamic System Domains) in the sense that resources
could be moved from one domain to another.

By the year 2002, Sun had also introduced Solaris Containers: execution
environments with limits on resource consumption, existing within a single
copy of Solaris. Sun has been improving and adding functionality to its
Resource Manager (SRM) product, which was integrated with the operating
system beginning with Solaris 9. SRM is used to do intra-domain management
of resources such as CPU usage, virtual memory, maximum number of
processes, maximum logins, connect time, disk space, etc.

The newest Sun reincarnation of these concepts is (tentatively) called "Zones":
a feature in the upcoming Solaris 10. According to Sun, the concept is derived
from the BSD "jail" concept: a Zone (also known as a "trusted container") is an
isolated and secure execution environment that appears as a "real machine" to
applications. There is only one copy of the Solaris kernel.

While working for Ensim Corporation, I started the Solaris Virtual Private
Server Project in late 1999. By the end of 2000, we had a virtualized
version of Solaris, rather similar to the Solaris 10 Zones feature. There is
only one instance of the kernel, but the operating system is divided into
multiple isolated execution environments via a thin software layer,
implemented mostly as a set of kernel modules. Each instance is visible
as a "normal" operating system to applications within it, and is capable of
running arbitrary complicated existing applications unmodified (such as
the Oracle database server), with quality of service, and in complete
isolation from applications on other instances.

Each instance can be managed (administered, configured, rebooted,
shutdown, etc.) independently of others.

Specific virtualization components include (but are not limited to):

● Virtualized system calls

● Virtualized uid 0 (each instance has its own "root" user)

● Fair share network scheduler

● Per-virtual OS resource limits on memory, CPU and link

● Virtual sockets and TLI (including port space)

● Virtual NFS

● Virtual IP address space

● Virtual disk driver and enhanced VFS (each instance sees its own
physical disk that can be resized dynamically, on which it can
create partitions)

● Virtual System V IPC layer (each instance gets its own IPC
namespace)

● Virtual /dev/kmem (each instance can access /dev/kmem
appropriately without compromising other instances or the system)

● Virtual /proc file system (each instance gets its own /proc with
only its processes showing up)

● Virtual syslog facility

● Virtual device file system

● Per-instance init

● Overall system management layer

Note that this was product quality software and all work was done

http://www.kernelthread.com/publications/virtualization/ (13 of 16)09.06.2008 13:26:10

http://wwws.sun.com/software/resourcemgr/
http://www.ensim.com/

An Introduction to Virtualization

without ever having seen the source code for Solaris.

Sphera

Sphera is a hosting automation and management software company. One of
their products (now marketed as an underlying technology) is VDS, or Virtual
Dedicated Server, that partitions a physical machine into multiple execution
environments in software.

SWsoft

SWsoft announced its acquisition of Plesk (maker of Plesk Server
Administrator) and Yippi-Yeah! E-Business (maker of Confixx, a control panel
popular in Europe). SWsoft's own product, Virtuozzo, allows you to create
Virtual Private Servers (or VPS, a terminology originally coined by Ensim).
Virtuozzo instances can be dynamically partitioned, and have quality of service
guarantees.

TCP/IP Stack Virtualization

It may be worthwhile in certain scenarios to virtualize just the network stack,
rather than an entire system. Isolated multiple network stacks (each with its
own port space, routing table, packet filters, parameters, etc.) could be
provided, either within the kernel, or running as user processes. Each stack
could be given resource limits or guarantees.

This approach has been used in academic projects as well as by virtualization
companies in their software.

User-Mode Linux

User-Mode Linux, or simply UML, is a port of the Linux kernel to the abstract
um architecture. In other words, UML is the Linux kernel ported to run on itself,
that is, the system call interface. UML runs on Linux as a set of Linux user
processes, which run normally until they trap to the kernel.

UML originally ran in what is now referred to as the tt (trace thread) mode. In
this mode, a special trace thread ptraces UML threads, gets notified upon
system call entry/exit, nullfies the original call (say, to getpid()), and notifies
the UML kernel to execute the intended system call. Since the UML kernel and
its processes both are in the "real" user space, the processes can read from
and write to the kernel's memory. UML makes the relevant memory read-only
temporarily, which hampers performance greatly. Modifications to the Linux
kernel exist (the skas mode, for "Separate Kernel Address Space") that
address many of these issues.

You can even compile a version of UML that can be nested inside another UML.

UMLinux

UMLinux is a framework for evaluating the behavior of networked Linux
machines in the presence of faults. The faults themselves are injected via
software in various locations such as the memory, CPU registers, block devices,
and network interfaces. UMLinux is similar to User-Mode Linux (UML), but since
the emphasis was on studying dependability behavior, UMLinux had memory
protection of the user mode kernel (which UML did not, initially). Furthermore,
UMLinux (the virtual machine, the "guest" kernel, and all the guest processes)
is implemented as a single process on the host system.

Virtual PC

Microsoft acquired Connectix, the maker of Virtual PC, in early 2003. Connectix
was founded in 1988. The Virtual PC product was introduced in 1997, and has
been the only viable x86 virtual machine solution for the Macintosh. The
Windows product (Virtual PC for Windows) was introduced later. There is a
version even for OS/2.

While the Macintosh version uses an optimized CPU emulator, Virtual PC for
Windows exploits the fact that host and the guest have the same architecture:

http://www.kernelthread.com/publications/virtualization/ (14 of 16)09.06.2008 13:26:10

http://www.sphera.com/
http://www.sw-soft.com/
http://www.sw-soft.com/en/products/virtuozzo/
http://www.ensim.com/
http://user-mode-linux.sourceforge.net/
http://www.microsoft.com/windowsxp/virtualpc/

An Introduction to Virtualization

there is a Virtual Machine Monitor (VMM), or Hypervisor, that runs directly on
the underlying hardware alongside the host operating system. I/O (such as
disk and network) is handled in the user space via the host operating system.
Certain devices are entirely simulated in software (the BIOS, PIC, DMA
controller, IDE/ATA controller, real-time clock, buses, the keyboard, I/O, and
memory controllers, programmable timers, etc.) Several other devices are
partially implemented in software, and rely on their real counterparts (input
devices such as the keyboard, mouse, joystick, etc., video controller, floppy
drive, network interface, audio hardware, optical drive, hard disk drive, etc.)

VMware

VMware, recently acquired by EMC, was founded in 1998. Its first product was
VMware Workstation (1999). The GSX Server and ESX Server products were
introduced in 2001.

VMware Workstation (as well as the GSX Server) has a hosted architecture: it
needs a host operating system (such as Windows or Linux). In order to
optimize the complex mix of performance, portability, ease of implementation,
etc., the product acts as both a virtual machine monitor (talking directly to the
hardware), and as an application that runs on top of the host operating
system. The latter frees the VMM from having to deal with the large number of
devices available on the PCs (otherwise the VMM would have to include device
drivers for supported devices).

VMWare Workstation's hosted architecture includes the following components:
a user-level application (VMApp), a device driver (VMDriver) for the host
system, and a virtual machine monitor (VMM) that is created by VMDriver as it
loads. Thereafter, an execution context can be either native (that is, the
host's), or virtual (that is, belonging to a virtual machine). The VMDriver is
responsible for switching this context. I/O initiated by a guest system is
trapped the the VMM and forwarded to the VMApp, which executes in the
host's context and performs the I/O using "regular" system calls. VMware uses
numerous optimizations that reduce various virtualization overheads.

GSX Server is also hosted, but is targeted for server deployments and server
applications.

VMware ESX Server enables a physical computer to be available as a pool of
secure virtual servers, on which operating systems can be run. This is an
example of dynamic, logical partitioning. Moreover, ESX Server does not need
a host operating system (like VMware workstation) - it runs directly on
hardware (in that sense, it is the host operating system). ESX server was
inspired by work on Disco and Cellular Disco, which virtualized shared memory
multiprocessor servers to run multiple instances of IRIX. As mentioned earlier,
the IA-32 architecture is not naturally virtualizable. Certain "sensitive"
instructions must be handled by the VMM, and cannot be simply executed in
non-privileged mode because they don't cause a General Protection exception.
ESX Server solves this problem by dynamically rewriting portions of an
operating system kernel's code to insert traps at appropriate places - in order
to catch such sensitive instructions. ESX Server can run multiple virtual CPUs
per physical CPU. Multiple physical network interface cards can be logically
grouped into a single, high-capacity, virtual network device.

Since virtualization-unfriendliness of IA-32 is a long standing issue, many
approaches have been used to address it. Scanning code dynamically and
inserting an illegal instruction before each instruction of interest is one
option (which would then cause traps). You can also replace such
instructions with subroutine calls.

Almost all common x86 operating systems do not use all four privilege
modes provided by IA-32, which has been exploited for schemes to
protect a guest operating system kernel from its user level processes.

z/VM

z/VM, a multiple-access operating system that implements IBM virtualization
technology, is the successor to IBM's VM/ESA operating system. z/VM can
support multiple guest operating systems (there may be version, architecture,
or other constraints), such as Linux, OS/390, TPF, VSE/ESA, z/OS, and z/VM
itself. z/VM includes comprehensive system management API's for managing
virtual images.

http://www.kernelthread.com/publications/virtualization/ (15 of 16)09.06.2008 13:26:10

http://www.vmware.com/
http://www.vm.ibm.com/

An Introduction to Virtualization

The real machine's resources are managed by the z/VM Control Program (CP),
that also provides the multiple virtual machines. A virtual machine can be
defined by its architecture (ESA, XA, and XC, that refer to specific IBM
architectures), and its storage configuration (one of V=R, V=F, and V=V, refers
to how the virtual machine's guest real storage is related to the host real
storage).

Others

As mentioned in the beginning, the overview presented by this document is not
strictly limited to virtualization. There are numerous other systems not listed
above that could be discussed in the context of this document. It would be
impractical, if not impossible, to cover them all. Some systems not discussed
above include:

● Cellular IRIX

● Flask, Fluke, the OSKit (the Flux Research Group at University of Utah)

● Hurricane

● L4

● Mach

● Palladium (a project at SUNYSB, not the Trusted Computing architecture)

● QEMU CPU Emulator

● SPIN Modula-3 Operating System

● twoOStwo

● VINO

● VServer (Linux)

● Xen

References

TBD, even though this is the most important section of this document!

All contents of this site, unless otherwise noted, are ©1994-2006 Amit Singh. All Rights Reserved. Terms of Use

Hosted at Jaguar Technologies

http://www.kernelthread.com/publications/virtualization/ (16 of 16)09.06.2008 13:26:10

http://www.cs.utah.edu/flux/fluke/html/flask.html
http://www.cs.utah.edu/flux/fluke/html/
http://www.cs.utah.edu/flux/oskit/
http://www.cs.utah.edu/flux/
http://www.eecg.toronto.edu/EECG/RESEARCH/ParallelSys/hurricane.html
http://os.inf.tu-dresden.de/L4/
http://www-2.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html
http://www.ecsl.cs.sunysb.edu/palladium.html
http://fabrice.bellard.free.fr/qemu/
http://www.cs.washington.edu/research/projects/spin/www/external/overview.html
http://www.twoostwo.org/
http://www.eecs.harvard.edu/vino/vino/
http://www.linux-vserver.org/
http://www.cl.cam.ac.uk/Research/netos/xen/
http://www.kernelthread.com/legalese/
http://www.jaguarpc.com/

	kernelthread.com
	An Introduction to Virtualization

