
PowerScan user guide

Thomas Langerud and Jøran Vagnby Lillesand

Master thesis
Spring 2008

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and Electrical Engineering

Department of Telematics

2

Contents

1 User Guide 5

1.1 Requirements . 5

1.1.1 Client . 5

1.1.2 Virtualization servers 6

1.1.3 Usage . 6

1.2 Environment Setup . 6

1.3 User Interface . 8

1.3.1 Graphical user interface 10

1.3.2 Command line usage 11

1.4 Malware sample scan . 12

1.5 Malware sample execution . 13

1.6 Malware sample analysis . 14

1.7 Update AV definition files . 15

1.8 Adding new anti-virus engines or tools 16

1.9 Saving console output . 16

1.10 Editing the XML configuration file 16

1.10.1 The “File” menu . 18

1.10.2 The “View” menu . 18

1.10.3 The “Delete” menu . 18

1.10.4 The “Host/VM” view 20

1.10.5 The “AVE” view . 21

1.10.6 The “Tools” view . 23

1.11 Understanding the XML configuration file 24

1.12 Redirection of console output 29

1.13 Understanding the properties file 29

1.14 PowerScan files . 31

1.15 Understanding the log files . 32

3

4

2 Configuration files 35
2.1 Example XML config file . 35
2.2 PowerScan XML Schema Definition (XSD) 38
2.3 Description of PowerScan’s XML with respect to the XSD

schema . 41
2.4 Properties file example . 45

Chapter 1
User Guide

This user guide describes how to set up and use the PowerScan analysis
framework and is intended to be as detailed as necessary to enable a user
to utilize the capabilities of the framework without knowledge of the source
code. The XML configuration and properties files are described in detail.

1.1 Requirements

To be able to use the PowerScan framework, there are some requirements
that will have to be fulfilled. The following are the system requirements for
the different components.

1.1.1 Client

The client is the computer that is to be used to run the PowerScan jar-file,
upload the malware samples and read the results. The following are the
requirements to the client:

� Java Runtime Environment: Minimum JRE 6.

� Operating system: Only Microsoft Windows XP has been tested, al-
though it will probably work on all Microsoft Windows platforms. The-

5

6 1.2. ENVIRONMENT SETUP

oretically, PowerScan should work on any platform as it is written in
Java, but this has not been tested.

1.1.2 Virtualization servers

The virtualization servers are the servers hosting the virtual machines used
by the PowerScan framework. The following are the requirements to the
virtualization servers:

� Operating system: The system has been tested with Ubuntu Server
Edition 7.10 with Linux kernel 2.6.22-14-server as host operating sys-
tem, although any OS supported by VMware Server should work.

� Virtualization software: The system requires VMware Server 1.x or
any other VMware Server version supported by VMware Vix. Has
been tested with VMware Server 1.0.6 for Linux.

1.1.3 Usage

The following requirements apply for the usage of the PowerScan framework:

� When the jar file is to be executed, it should be executed with the
directory containing the jar file as the working directory. This ensures
that relative references to configuration files etc. will work. The short-
cuts in supplied with PowerScan ensures the correct working directory
on Windows platforms.

1.2 Environment Setup

The PowerScan malware analysis framework is made up of an analysis envi-
ronment, an XML-formatted configuration file and a text formatted proper-
ties file in addition to the PowerScan jar-file running from a client worksta-
tion.

The malware sample scanning environment is made up of one or more hosts
running VMware Server. By default VMware Server listens on port 902, but

CHAPTER 1. USER GUIDE 7

it is possible to use customized port numbers. Once the server(s) have been
set up, virtual machines need to be created and a Microsoft Windows OS
installed. PowerScan requires that VMware Tools are installed on each of
the virtual machines, which can be done via the VMware Server interface.
The system supports each virtual machine (and thus Windows installation)
running one anti-virus engine and/or one or more dynamic analysis tools. To
avoid the tools interfering with each other, it is recommended to use only one
anti-virus engine or a few tools on each virtual machine. After the anti-virus
engine and/or analysis tools have been installed, the corresponding paths
and parameters must be written into the XML config file.

The following is a step-by-step installation instruction:

1. Install VMware Server on hosts running x86 architecture OSs, such as
Microsoft Windows or Linux/Unix. The test setup during the imple-
mentation in this thesis used Ubuntu Server, which provided very good
performance and stability. Host system requirements can be found in
section “Host System Requirements” of chapter 1 of the VMware Server
Online Library1.

2. A serial number is needed when installing VMware Server, this is issued
by VMware when registering for download at Download VMware Server
- http: // www. vmware. com/ download/ server . Note that there are
different serial numbers for Windows and Unix/Linux systems. Help
on installation may be found in chapter 2 of “Administration Guide”
on the VMware Server Online Library1.

3. Install VMware Server Console on the computer that should function
as the client. VMware Server Console is part of the “VMware Server
Windows client package”2. Requirements for the client is also found in
the “Administration Guide” on the VMware Server Online Library1.

4. Create as many virtual machines as desired on each host. Instructions
are given in chapter 2 of the “Virtual Machine Guide” on VMware
Online Library1.

5. Install Microsoft Windows XP3 as guest OS on the virtual machines.

1VMware Server 1 online library - http://pubs.vmware.com/server1/wwhelp/
wwhimpl/js/html/wwhelp.htm.

2VMware Server registration - http://register.vmware.com/content/download.
html.

3Or other supported OS. Although only tested with Win XP, PowerScan should work
with any Win NT OS. 64 bits guest OSs are also supported.

8 1.3. USER INTERFACE

Help on this operation may be found in the “Choosing and Installing
Guest Operating Systems” section of the “Guest Operating System
Installation Guide” on the VMware Online Library1. This guide also
lists known issues and compatibility between VMware products and
various guest OSs.

6. Create a user with administrator access on each guest OS. Note that
the users must have a password set in order to work with PowerScan.

7. Install the desired anti-virus engines and analysis tools on the desig-
nated virtual machines. This installation process is vendor specific, and
is not described here.

8. Take a snapshot of each VM using the VMware Server Console, as
shown in figure 1.6. The snapshot should, for performance reasons,
be taken when the guest OS is running, the user logged4 in and no
windows open5.

9. Once the virtual machines are set up, an appropriate config file and
properties file must be prepared. An example XML file is shown in
section 2.1. For an explanation of the XML, see section 1.11.

Note that the VMware environment need to be secured before uploading any
suspected malware samples. In particular, the network feature of the virtual
machine must be set up properly. Typically, before a malware sample is
executed, it should be ensured that the virtual machine does not have access
to the Internet or any other potentially unsecured networks. The network
options, shown in figure 1.2, are available by double clicking the “network
card” icon on the VMware Server Console status bar, as shown in figure 1.1.
Before running a malware sample, the network should be set to “Host-only”,
so that the malware is unable to communicate with the Internet.

1.3 User Interface

The PowerScan framework currently supports two interfaces; a graphical
user interface (GUI), a command line interface (CLI) and an application

4If not, the virtual machine must be powered on and the user logged in every time
PowerScan is run.

5As open windows may cause real-time scanners to interfere with the on-demand scan
operation.

CHAPTER 1. USER GUIDE 9

Figure 1.1: VMware Server Console status line.

Figure 1.2: VMware Server network options.

10 1.3. USER INTERFACE

Figure 1.3: The GUI main window.

programming interface (API)6. The command line interface is invoked by
default when launching the application. When using the CLI, all output from
the program is written to stdout, meaning that it will usually be directed to
the command line console. When using GUI, all output will appear on the
console area of the GUI window.

1.3.1 Graphical user interface

To use GUI, the application must be started with the “-GUI” command line
switch7 or by using the included Windows shortcut. The various areas of the
main GUI window are described below:

6The API can be called by using the PowerScan as a library and calling functions in
the edu.ntnu.item.jt.system.PowerScan class.

7Meaning that PowerScan must be launched as java -jar powerscan.jar -GUI.

CHAPTER 1. USER GUIDE 11

Figure 1.4: The GUI “Help” menu.

1. The menu line gives access to various options as shown in figures 1.4,
1.5, 1.7 and 1.8. The various menu options are described later in this
document.

2. The Malware sample path area contains a field for manual path entry,
a “Clear” button to clear the field and an “Open” button that allows
the user to browse the client file system. This field must contain the
path to the malware sample file to be analyzed (unless the operation
to be performed is update).

3. The Config file path area contains a field for manual path entry, a
“Clear” button to clear the field and an “Open” button that allows the
user to browse the client file system. This field must contain the path
to the XML config file described in section 1.10 of this document.

4. The file properties path area contains a field for manual path entry, a
“Clear” button to clear the field and an “Open” button that allows the
user to browse the client file system. This field should contain the path
to the properties file described in section 1.13 of this document.

5. The buttons in this area are used to invoke the various operations of
the PowerScan system.

6. The console text area is where the progress messages and result outputs
are printed.

1.3.2 Command line usage

The following is the text shown when using the CLI:

usage: java -jar powerscan.jar [arguments].

-ANALYZE <arg > Perform dynamic analysis of the supplied sample

with all (if any) registered dynamic analysis tools

from XML.

12 1.4. MALWARE SAMPLE SCAN

-c,--CONFIG <arg > XML Config file location. Default location:

config\config.xml

-EXECUTE <arg > Executes the supplied malware sample on any virtual

machine supporting real -time anti -virus detection and

extracts results.

-GUI Determines whether to use a GUI.

-s,--SETTINGS <arg > Properties file location. Default location:

config\powerscan.properties

-SCAN <arg > Performs a surface scan of the supplied malware

sample with all scan engines configured in the XML

config file.

-UPDATE Performs a update of all the AV engines listed in

the XML configuration file. If update can not be done

for a given scanner ,

the user will be instructed on how to perform it.

Listing 1.1: The CLI help text

This shows that all operations are started by running the application with
an appropriate switch. The location of the XML config file and properties
file should also be given to the application using an argument. If not, the
default locations are assumed.

1.4 Malware sample scan

Performing a malware sample scan in PowerScan means scanning the sus-
pected malware sample with the on-demand scan feature of the installed
anti-virus scanners.

Starting a malware sample scan using GUI is performed using the following
steps:

1. Input the paths to the config and properties files in fields 3 and 4 shown
in figure 1.3.

2. Input the path to the malware sample on the local system in field 2
shown in 1.3.

3. To read the configuration and initialize the system, choose “Start” from
the “System” menu choice, shown in figure 1.5.

4. Once “Now ready” appears in the text area, press the “Scan” button.

5. When the operation finishes, the result will appear in the text area.

CHAPTER 1. USER GUIDE 13

Figure 1.5: The GUI “System” menu.

Starting a malware sample scan using the CLI is done using the following
command:

> java -jar powerscan.jar -c <configFilePath > -s <propertiesFilePath >

-SCAN <malwareSamplePath >

Listing 1.2: Invocation of the PowerScan scan operation using the Command
Line Interface.

1.5 Malware sample execution

Some malware samples may use packers and avoid detection by the on-
demand surface scan, but might be detected when executed under surveil-
lance of a real-time anti-virus scanner. Executing a malware sample in the
test environment requires the following steps:

1. Input the paths to the config and properties files in fields 3 and 4 shown
in figure 1.3.

2. Input the path to the malware sample on the local system in field 2
shown in figure 1.3.

3. To read the configuration and initialize, choose “Start” from the “Sys-
tem” menu choice in field 1, shown in figure 1.5.

4. Once “Now ready” appears in the text field, press the “Execute” but-
ton.

5. When the operation finishes, the result will appear in the text area.

To start execution of a malware sample using the command line, use the
following command:

14 1.6. MALWARE SAMPLE ANALYSIS

> java -jar powerscan.jar -c <configFilePath > -s <propertiesFilePath >

-EXECUTE <malwareSamplePath >

Listing 1.3: Invocation of the PowerScan execute operation using the
Command Line Interface.

1.6 Malware sample analysis

When dynamic analysis tools are installed as a part of the testing environ-
ment, they can be used to analyze a malware sample. To execute the installed
analysis tools on the sample, requires the following steps:

1. Input the paths to the config and properties files in fields 3 and 4 shown
in figure 1.3.

2. Input the path to the malware sample on the local system in field 2
shown in figure 1.3.

3. To read the configuration and initialize, choose “Start” from the “Sys-
tem” menu choice in field 1, shown in figure 1.5.

4. Once “Now ready” appears in the text field, click the “Dyn. analyze”
button.

5. When the operation finishes, the result will appear in the text area.

One important difference between the scan and execute operation on the one
hand, and the analysis operation on the other, is that while the scan and
execute operations are executed on all the virtual machines in parallel, the
analysis operation is carried out on one virtual machine at the time. This
means that first, all the tools registered on one virtual machine is started
and the malware sample optionally executed, before the system sleeps for
the indicated amount of time (given in the properties file). The result files
(if any) are copied back, and the virtual machine is reverted to snapshot.
While the first virtual machine is reverted to snapshot, the tools registered
with the next virtual machine are started, and a new sleep period is started.
This is done to allow an operator time to interact with the analysis tool
and/or malware sample at one virtual machine at the time. The interaction
sleep period is set in the properties file, but the sleep can be skipped at any

CHAPTER 1. USER GUIDE 15

time by pressing the “Cancel” button in the GUI process monitor or pressing
the Enter key when using the command line.

When installing analysis tools, it is worth noting that some tools take the
name of the executable to be monitored as a parameter, while others need
to be started before the malware sample is executed on the system. In
the configuration file, there is an element associated with the analysis tool
that indicates whether the malware sample should be executed. For tools
taking the path to the sample as part of their parameter, the placeholder
“$samplePath” should be used in the parameter string to indicate insertion
of the malware sample path.

To start execution of a malware sample using the command line, use the
following command:

> java -jar powerscan.jar -c <configFilePath > -s <propertiesFilePath >

-ANALYZE <malwareSamplePath >

Listing 1.4: Invocation of the PowerScan analyze operation using the
Command Line Interface.

1.7 Update AV definition files

The definition files of the anti-virus engines needs to be updated relatively
frequently. This operation includes taking snapshot of the system after defini-
tion files have been updated8 To update the virus signature files, the following
steps should be performed:

1. Input the paths to the config and properties files in fields 3 and 4 shown
in figure 1.3.

2. To read the configuration and initialize, choose “Start” from the “Sys-
tem” menu choice in field 1, shown in figure 1.5.

3. Once “Now ready” appears in the text field, press the “Update” button.

4. When the operation finishes, the result will appear in the text area.

To initiate update of the anti-virus engines using the command line, use the
following command:

8This is done automatically unless otherwise is stated.

16 1.8. ADDING NEW ANTI-VIRUS ENGINES OR TOOLS

> java -jar powerscan.jar -c <configFilePath > -s <propertiesFilePath >

-UPDATE

Listing 1.5: Invocation of the PowerScan update operation using the
Command Line Interface.

1.8 Adding new anti-virus engines or tools

Adding new tools to the analysis environment requires installing the anti-
virus engine or tool on a virtual machine, and taking a snapshot after the
installation is complete. The various configuration parameters must then be
added to the XML configuration file to enable the framework to utilize the
tool/scan engine. The installation in the guest OS should follow an ordinary
Windows installation process, and is not described in any further detail here.
Taking snapshot using the VMware Server Console is shown in figure 1.6.

1.9 Saving console output

When using the GUI, it is possible to save the text output that is currently
in the console text area. This is done by choosing “Output” from the menu
and then “Save”, shown in figure 1.7. This option saves the text currently
displayed in the text area to a file.

The similar operation when using the Command Line Interface would be
redirecting the output to file by appending “$>$ output.log” to the given
command so that for example the scan operation becomes:

> java -jar powerscan.jar -c <configFilePath > -s <propertiesFilePath >

-UPDATE > output.log

Listing 1.6: Redirection of the update operation out using CLI.

1.10 Editing the XML configuration file

As the configuration file is written in XML, it is human-readable and could be
edited using any text editor as described in section1.11. Another, hopefully

CHAPTER 1. USER GUIDE 17

Figure 1.6: Taking snapshot using VMware Server Console.

Figure 1.7: The GUI “Output” menu.

18 1.10. EDITING THE XML CONFIGURATION FILE

Figure 1.8: The GUI “Edit” menu.

more user friendly, means to edit the configuration is to use the built-in
graphical config file editor. The config editor is launched from the “Edit”
menu, and opens in a separate window. The main window is shown in figure
1.9. This figure shows the config editor in the “Host/VM” view.

The menus shown in field 1 of figure 1.9 are described in the following sec-
tions.

1.10.1 The “File” menu

The “File” menu offers the following choices, as shown in figure figure 1.10:

New config opens a new, empty configuration file.

Open config... launches a dialog box to select an XML file to edit.

Save config... launches a dialog box for saving the open XML file.

Exit closes the Config Editor.

1.10.2 The “View” menu

The “View” menu offers the following choices, shown in figure 1.12:

Host/VM view brings the user back to the host and virtual machine overview
window.

1.10.3 The “Delete” menu

The “Delete” menu offers the following choices, shown in figure 1.11:

CHAPTER 1. USER GUIDE 19

Figure 1.9: The config editor main window in “Host/VM view”.

20 1.10. EDITING THE XML CONFIGURATION FILE

Figure 1.10: The config editor “File” menu.

Figure 1.11: The config editor “Delete” menu.

Delete active host Only available in “Host/VM” view, this choice deletes
the host that is selected in the upper half of the window, field 2 in
figure 1.9.

Delete active VM Only available in “Host/VM” view, this choice deletes
the virtual machine that is selected in the bottom half of the window,
field 3 in figure 1.9

Delete active AVE Only available in “AVE” view, this choice deletes the
currently active anti-virus engine.

Delete active tool Only available in “Tools” view, this choice deletes the
currently active tool.

1.10.4 The “Host/VM” view

The “Host/VM” view shows the defined hosts in the upper half of the win-
dow, field 2 in figure 1.9, and the defined virtual machines defined for the

CHAPTER 1. USER GUIDE 21

Figure 1.12: The config editor “View” menu

selected host in the lower part, field 3. It is always possible to return to this
view by choosing the “View” menu on the menu bar and selecting “Host/VM
view”. Field 2 also contains buttons to add a new host, or to add a new vir-
tual machine to an already existing host. When a new host entry is created,
a new, empty virtual machine entry is also created, as a VMware host offers
no functionality in PowerScan unless it has a virtual machine registered.

When a host is selected in field 2, all the virtual machines that belong to
that particular host are shown in the field 3. A virtual machine may run an
anti-virus engine, and/or a set of analysis tools. If a host has an anti-virus
engine or tools entry registered, an “Edit AV engine” or “Edit analysis tools”
button is shown. If the host does not have an anti-virus engine or tool set
registered, field 3 will have an “Add AV engine” and an “Add analysis tool”
button.

Both the “Edit AV engine” and the “Add AV engine” button will change the
editor to the “AVE” view, described in section 1.10.5. The “Edit analysis
tools” and “Add analysis tool” buttons change to the “Tools” view, described
in section 1.10.6.

1.10.5 The “AVE” view

The config editor “AVE” view is shown in figure 1.13. This view allows
editing of all elements related to an anti-virus engine. In addition to the
element fields, the view has a “Save changes” button that saves the changes
made within the view. Note that this does not write the changes to file - the
only way of permanently storing the changes is via the “Save config...” File
menu choice! If the “AVE” view is left using the “Host/VM” choice on the
“View” menu, the changes are discarded.

An entire “AVE” element can be deleted by choosing the “Delete active

22 1.10. EDITING THE XML CONFIGURATION FILE

Figure 1.13: The config editor “AVE” view.

CHAPTER 1. USER GUIDE 23

Figure 1.14: The config editor “Tools” view.

AVE” command on the “Delete” menu. If no changes have been made, or
the changes have been saved by clicking the “Save changes” button, it is pos-
sible to navigate back to the “Host/VM” view by selecting the “Host/VM”
command from the “View” menu.

1.10.6 The “Tools” view

The config editor “Tools” view is shown in figure 1.14. This view allows
editing of all tools associated with a virtual machine. Switching between
different tools is done by selecting the appropriate tab at the top of the view
window. In addition to the element fields, the view has a “Save changes”
button that stores the changes in the system. Note that this does not write
the changes to file - the only way of permanently storing the changes is via
the “Save config...” File menu choice! If the “Tools” view is left using the

24 1.11. UNDERSTANDING THE XML CONFIGURATION FILE

“Host/VM” choice on the “View” menu, the changes are discarded. This
view also has an “Add tool” button that adds a new tool element to the
configuration.

The currently active tool can be deleted by choosing the “Delete active tool”
command on the “Delete” menu. If no changes have been made, or the
changes have been saved by clicking the “Save changes” button, it is possi-
ble to navigate back to the “Host/VM” view by selecting the “Host/VM”
command from the “View” menu.

1.11 Understanding the XML configuration

file

As mentioned earlier, PowerScan uses an XML structured configuration file to
represent its execution environment (meaning the associated VMware hosts,
virtual machines, installed scanners, tools and so on). Although the file can
be manipulated in the config editor GUI, it is also possible to edit the XML
directly using any text editor. This section describes the different parts that
make up the XML, and how they should be interpreted.

The skeleton of the XML config file is shown below.

1: <PowerScan >

2: <VMwareHostList >

3: <VMwareHost host="">

4: <hostPortNumber ></hostPortNumber >

5: <hostUsername ></hostUsername >

6: <hostPassword ></hostPassword >

7: <VM vmxPath="">

8: <vmUsername ></vmUsername >

9: <vmPassword ></vmPassword >

10: <avEngine name="">

11: <avExecutablePath ></avExecutablePath >

12: <avParameters ></avParameters >

13: <avLogFilePath ></avLogFilePath >

14: <avLogFilter >

15: <avResultIdentifier ></avResultIdentifier >

16: <avResultPrefix ></avResultPrefix >

17: <avResultSuffix ></avResultSuffix >

18: </avLogFilter >

19: <avUpdateInfo >

20: <avUpdateExecutable ></avUpdateExecutable >

21: <avUpdateParameters ></avUpdateParameters >

22: <avUpdateLogPath ></avUpdateLogPath >

23: <avUpdateSuccessIndicator ></avUpdateSuccessIndicator >

24: </avUpdateInfo >

25: <realTimeScan >

26: <rtLogPath ></rtLogPath >

27: <rtResultIdentifier ></rtResultIdentifier >

CHAPTER 1. USER GUIDE 25

28: </realTimeScan >

29: </avEngine >

30: <analysisTools >

31: <dynamicAnalysisTool toolName="">

32: <toolExecutablePath ></toolExecutablePath >

33: <toolParameters ></toolParameters >

34: <executeMalwareExplicitly ></executeMalwareExplicitly >

35: </dynamicAnalysisTool >

36: </analysisTools >

37: </VM>

38: </VMwareHost >

39: </VMwareHostList >

40:</PowerScan >

Listing 1.7: Skeleton of the XML config file

The <PowerScan> element is the root element of the PowerScan XML
configuration and signifies that the XML indeed is a PowerScan configu-
ration file. It contains only one element; the <VMwareHostList>, which
is, as the name implies, a list containing one or more <VMwareHost> el-
ements. The <VMwareHost> element has a mandatory attribute “host”
which contains the host name or IP address of a host running VMware Server.
The <VMwareHost> element contains two elements, <hostUsername> and
<hostPassword>, which are required to connect to the server. Further, a
<VMwareHost> element contains one or more <VM> elements represent-
ing a virtual machine installed on the given host. The <VM> element has
a mandatory attribute “vmxPath”, which gives the path on the server to a
vmx file that contains configuration info for the VM. This path is needed to
be able to boot the VM without using the GUI-based VMware Server Con-
sole. A <VM> element contains a <vmUsername> and a <vmPassword>
element which contain user credentials for a user that must exist on the
virtual machine guest OS. In addition to the “vmxPath”, <vmUsername>
and <vmPassword> elements, a <VM> contains information about what
tools are installed on the virtual machine. A tool in this context can be
an anti-virus engine and/or one or more analysis tools. XML description of
the installed tools of the virtual machine are then given within the <VM>
element. The description of an anti-virus engine is shown below.

10: <avEngine name="">

11: <avExecutablePath ></avExecutablePath >

12: <avParameters ></avParameters >

13: <avLogFilePath ></avLogFilePath >

14: <avLogFilter >

15: <avResultIdentifier ></avResultIdentifier >

16: <avResultPrefix ></avResultPrefix >

17: <avResultSuffix ></avResultSuffix >

18: </avLogFilter >

19: <avUpdateInfo >

20: <avUpdateExecutable ></avUpdateExecutable >

21: <avUpdateParameters ></avUpdateParameters >

26 1.11. UNDERSTANDING THE XML CONFIGURATION FILE

22: <avUpdateLogPath ></avUpdateLogPath >

23: <avUpdateSuccessIndicator ></avUpdateSuccessIndicator >

24: </avUpdateInfo >

25: <realTimeScan >

26: <rtLogPath ></rtLogPath >

27: <rtResultIdentifier ></rtResultIdentifier >

28: </realTimeScan >

29: </avEngine >

Listing 1.8: The AV engine element of the XML config file

As can be seen, the <avEngine> element has a “name” attribute that is
used for identification of the engine. The value of this attribute could for
example be set to “F-secure” or “ClamWin”. Note that the element is only
used for visual identification, and can theoretically be set almost any value.
Then there follows four elements used when running an on-demand scan of
a sample file.

� The <avExecutablePath>element on line 11 gives the path to the ex-
ecutable used to initiate the on-demand scan.

� The <avParameters> element on line 12 holds any parameters or argu-
ments that should be passed to the executable. To insert the malware
sample path in the parameters, use the string “$samplePath”.

� The <avLogFilePath> on line 13 gives the path to a log file that is
retrieved from the VM after the scan has completed.

� The <avLogFilter> element on line 14 contains strings to look for in
the retrieved log file when parsing the result. These strings are used as
follows:

– The string given in the <avResultIndentifier> element on line 15
is used to fine the correct line in the log file. If this element is
empty, the entire log file is printed.

– The string given in the <avResultPrefix> element on line 16 is
used to determine from which position in line the result is starting.
If this element is empty, it is assumed that the result text starts
at the beginning of the line. If the element is set, the text AFTER
the prefix is extracted.

– The string given in the <avResultSuffix> element on line 17 is
used to determine at which position in the line the result text
ends. If the element is empty, it is assumed that the result text

CHAPTER 1. USER GUIDE 27

ends at the end of the line. If the element is set, the text starting
with the given string is removed.

For example, the interesting line in a log file may look like:

VIRUS FOUND: eicar test file found in selected file(s)

A filter definition like:

14: <avLogFilter >

15: <avResultIdentifier >VIRUS FOUND: </avResultIdentifier >

16: <avResultPrefix >: </avResultPrefix >

17: <avResultSuffix >found </avResultSuffix >

18: </avLogFilter >

Listing 1.9: The AV log filter element of the XML config file

would give the result eicar test file.

The next part of the <VM> element is used to hold information needed
to run virus definition database updates on the anti-virus engines. The
<avUpdateInfo> element contains the following elements:

� The <avUpdateExecutable> element on line 20 should contain the
path to the executable that performs the update.

� The <avUpdateParameters> element on line 21 holds any parameters
required by the update executable.

� The <avUpdateLogPath> element on line 22 holds the path to the log
file where the result of the update operation is written. If this tag is
not present (or empty), the update operation is started and no further
action is taken9.

� The <avUpdateSuccessIndicator> element on line 23 contains a string
that is searched for in the log file to determine the result of the up-
date operation. If the success indicator is found, the operation is as-
sumed to have succeeded, and the line(s) containing the success indica-
tor are printed. If the <avUpdateLogPath> element is present, but no
<avUpdateSuccessIndicator>, the entire log file is printed for manual
analysis by the user.

9This again means that the user will have to manually check the result of the update
operation. This might be desirable for updates performed on engines without support for
reporting the update result to stdout.

28 1.11. UNDERSTANDING THE XML CONFIGURATION FILE

The final element within the <avEngine> element is used when a malware
sample is executed in the OS installed on the virtual machine to see if the
sample is detected by the real-time functionality of an anti-virus engine. Fol-
lowing the convention of the other elements, the <realTimeScan> elements
contains a log file path and a result identifier. The <rtLogPath> element
holds the path to the real-time scanner log file, and the <rtResultIdentifier>
element a string used to find the line containing the result in the log file.

If a VM is used to perform dynamic analysis of malware, the <VM> ele-
ment needs to contain an <analysisTools> element. Although it is possible
for virtual machine to have both analysis tools and an anti-virus scanner,
it is generally recommended that they are installed on separate machines,
as they may interfere with each other. The <analysisTools> element is a
list containing information about one or more tools installed on the virtual
machine. The <analysisTools> element is shown below.

30: <analysisTools >

31: <dynamicAnalysisTool toolName="">

32: <toolExecutablePath ></toolExecutablePath >

33: <toolParameters ></toolParameters >

34: <executeMalwareExplicitly ></executeMalwareExplicitly >

35: </dynamicAnalysisTool >

36: </analysisTools >

Listing 1.10: The analysis tools element of the XML config file

The <dynamicAnalysisTool> element is the elements that represents one
tool. As seen on line 31, the element has an attribute “toolName” that is used
for identification10. The elements contained within the <dynamicAnalysis-
Tool> elements are the following:

� The <toolExecutablePath> element holds the path to the tool exe-
cutable.

� The <toolParameters> element holds the parameters that are supplied
to the executable. An important feature with this string is that occur-
rences of the string “$samplePath” is replaced with the path to the
malware sample on the virtual machine.

� The <executeMalwareExplicitly> element is a boolean value, holding
either true or false. true indicates that the malware sample should
be executed on the remote system after the tools have been started.

10As for anti-virus engines, the name is merely a visual identificator, and has no real
impact on the execution.

CHAPTER 1. USER GUIDE 29

Some tools do not require this, as they take the malware sample file as
a parameter. In the latter case, the value should be false. If there is
more than one tool installed on a single virtual machine, the malware
sample is executed after the tools have been started if any of the tools
have the <executeMalwareExplicitly> value true.

1.12 Redirection of console output

Some applications print their output to the command line console and use a
log file format that is not human readable. This can make interpretation of
the result hard. There is, however, a means for redirecting the command line
console text output to a file that can be copied back to the client for further
examination. This is done by running the application through the Microsoft
Windows Command Prompt on the virtual machine. The Microsoft Windows
Command Prompt executable, cmd.exe, has a switch that executes whatever
is given after the switch and terminates. What makes this useful is that the
Command Prompt allows for redirection of output from application run under
it using the “>” operator. The following is an example XML configuration
of a tool using output redirection11:

<dynamicAnalysisTool toolName="ipconfig">

<toolExecutablePath >c:\windows\system32\cmd.exe</toolExecutablePath >

<toolParameters >/C ipconfig.exe > c:\ipconfig.log</toolParameters >

<toolResultFilePath >c:\ipconfig.log</toolResultFilePath >

<executeMalwareExplicitly >false </executeMalwareExplicitly >

</dynamicAnalysisTool >

Listing 1.11: Redirection of Command Prompt output on a virtual machine

1.13 Understanding the properties file

The properties file is a simple text-based configuration file that is used to set
global PowerScan constants. The format is a simple “key = value” scheme,
where the values are parsed from string to other data types by the system,
as shown in the table below. The following values are set in the properties
file:

11Note that the parameters contain both the file to be executed (ipconfig.exe) and the
> operator. Any tool can be launched via the Command Prompt in a similar manner.

30 1.13. UNDERSTANDING THE PROPERTIES FILE

Property Type Default Description
vmware.tools-
.timeout

int 60 Timeout for VMware Tools to start in the
Virtual Machines (VMware Tools are re-
quired for operation of PowerScan).

scanner-
.executionpath

string c:\\ Specifies where in the virtual machine the
malware should be copied (and executed).

snapshot.before.scan boolean false Specifies whether snapshots should be
taken before performing scans and mal-
ware execution. This is generally NOT
recommended, as storing snapshots is a
time consuming operation, which should
only be performed when changes are made
to the Virtual Machine.

polling.interval-
.minor

double 0.250 Sets polling interval for minor opera-
tions. This indicates how often the sys-
tem should check for completion of minor
non-blocking tasks, such as file execution.

polling.interval-
.major

double 1.000 Set polling interval for major opera-
tions. This indicates how often the sys-
tem should check for completion of major
non-blocking tasks, such as full scan oper-
ations.

scanner.timeout int 60 Maximum time to allow for individual scan
operations to finish.

update.timeout int 600 Maximum time to allow for updating to
finish.

full.scan.timeout int 600 Timeout for full scan. Used to prevent en-
tire system from crashing following failure
in a single scan thread. Should be greater
scanner.timeout value above, since copy-
ing of files etc. is included in this timeout
in addition to the actual scan.

malware.execution-
.timeout

int 25 Maximum time to allow malware to exe-
cute with real-time anti-virus scanner run-
ning in the background.

full.execution-
.timeout

int 240 Maximum total time for malware exe-
cution operation (for all registered scan-
ners). Used to prevent the entire system
from crashing following failure in a single
thread.

log.overwrite boolean false Specifies whether log files should be over-
written when program is executed. If set
to false, time and date are appended to
log files. Note that log files may take up
significant resources over time.

log.vmware string logs\\vmware.log Path for the VMware log file, where
VMware-related events are logged.

log.system.scanner string logs\\scanner.log Path to the log file for Scanner operations.
log.system string logs\\system.log Log path for system classes.
log.system.executor string logs\\executor.log Log path for the executor class (dynamic

analysis tools log).
executor.execution-
path

string c:\\ The path on the virtual machines where
the malware sample is copied to and exe-
cuted from when using the dynamic anal-
ysis functionality.

executor.localResult-
Path

string results\\ Directory on the client machine where log
files should be copied when using the dy-
namic analysis functionality.

Continued on next page

CHAPTER 1. USER GUIDE 31

Property Type Default Description
executor.overall-
.timeout

int 330 Sets the time the operator has to interact
with the analysis tool or malware sample
logging in to the virtual machine before
the result is copied back to local system.

xml.xsd.path string config.xsd Sets the path for the XSD file used to val-
idate the XML config file

All times are given in seconds. Note that backslashes (“\”) must be escaped
by another backslash, such that c:\program files\ becomes c:\\program
files\\. Also note that directories given on the remote machine must al-
ready be created on the virtual machine, as Vix 1.0 and 1.1 do not support
directory creation.

1.14 PowerScan files

The following files are found in PowerScan:

PowerScan.jar The PowerScan jar file. Contains the PowerScan code. Ex-
ecuted by running java -jar PowerScan.jar (requires that Java 6 or
newer is installed on the client machine). Note that the PowerScan file
must be executed with the root directory of PowerScan as the working
directory. In other words, the working directory must contain the other
files described in this section.

PowerScan GUI Microsoft Windows shortcut which launches the PowerScan
graphical user interface.

PowerScan CLI Microsoft Windows shortcut which launches the PowerScan
command line interface using cmd.exe.

vix.dll The Vix C library used for communication with VMware compo-
nents such as VMware Server hosts and virtual machines.

ssleay32.dll & libeay32.dll The OpenSSL toolkit for SSL/TLS. Exten-
sion used by Vix to enable secure communication.

userguide.pdf User manual of the PowerScan framework - this document.

32 1.15. UNDERSTANDING THE LOG FILES

eclipse_project.zip Eclipse project containing the needed files to import
PowerScan in Eclipse.

config\ Configuration related files.

powerscan.properties Default properties file for PowerScan, defining
constants.

config.xml Default XML configuration file for PowerScan.

config.xsd XML Schema Definition (XSD) file used to validate the
XML configuration.

lib\ External framework library files.

jna.jar Java Native Access framework, used to communicate with C
libraries.

simple-xml-1.7.1.jar Simple framework, used to serialize and dese-
rialize configuration to and from XML.

commons-cli-1.1.jar Apache Commons Command Line Interface frame-
work, used to offer the command line capability of PowerScan.

xercesImpl.jar Xerces Java Parser framework, used to validate the
XML configuration file against XSD.

logs\ Log files created by the PowerScan framework.

src\ The PowerScan source code.

javadoc\ The PowerScan javadoc files.

1.15 Understanding the log files

The PowerScan framework creates plain text formatted log file when execut-
ing operations. Paths for the log files are given in the .properties-file, see sec-
tion 1.13 for details. It is important to notice that the property log.overwrite
determines whether the log files should be overwritten, or if new log files
should be created every time the PowerScan program is executed. Not over-
writing the files is smart to keep history, but the number of log files can easily
become overwhelmingly large.

Log files are written to $workingDirectory\logs. Files with the following
prefixes are created:

CHAPTER 1. USER GUIDE 33

system Used by the XML error handler, XML reader and Connector classes.
These files contain log messages containing information about function-
ality such as reading from configuration file, initialization and connec-
tions to the hosts.

executor Used by the Executor class. An Executor object is a representa-
tion of a virtual machine with analysis tools installed. Information in
these files includes copying of files, execution of programs and snapshot
handling.

scanner Used by the Scanner class. A Scanner object is a representation
of a virtual machine with an anti-virus engine installed. Execution of
files, on-demand scans and the copying of files to and from a virtual
machine is logged in these files.

vmware Used by GuestOS and VMwareServer classes. Contains informa-
tion about operations against virtual machines, such as power-ons, login
attempts, copying of files and the taking of and reverting to snapshots.

34 1.15. UNDERSTANDING THE LOG FILES

Chapter 2
Configuration files

2.1 Example XML config file

<PowerScan >

<VMwareHostList >

<VMwareHost host="dhcp208 -210. ed.ntnu.no">

<hostPortNumber >902</hostPortNumber >

<hostUsername >XXXXXXX </hostUsername >

<hostPassword >XXXXXXX </hostPassword >

<vmList >

<VM vmxPath="/var/lib/vmware -server/Virtual Machines/winxp_0/

Windows XP Professional.vmx">

<vmUsername >XXXXXXX </vmUsername >

<vmPassword >XXXXXXX </vmPassword >

<avEngine name="clamwin">

<avExecutablePath >C:\Program Files\ClamWin\bin\clamscan.

exe</avExecutablePath >

<avParameters >--stdout --database="c:\program files\

clamwin\bin" --log=c:\result.log "$samplePath"</

avParameters >

<avLogFilePath >c:\result.log</avLogFilePath >

<avLogFilter >

<avResultIdentifier >FOUND</avResultIdentifier >

<avResultPrefix >: </avResultPrefix >

<avResultSuffix > FOUND</avResultSuffix >

</avLogFilter >

<avUpdateInfo >

<avUpdateExecutable >c:\program files\clamwin\bin\

freshclam.exe</avUpdateExecutable >

<avUpdateParameters >--stdout --config -file="c:\program

files\clamwin\bin\clamd.conf" --datadir="c:\program

files\clamwin\bin" --log="c:\update.log" </

avUpdateParameters >

<avUpdateLogPath >c:\update.log</avUpdateLogPath >

<avUpdateSuccessIndicator >Database updated </

avUpdateSuccessIndicator >

</avUpdateInfo >

35

36 2.1. EXAMPLE XML CONFIG FILE

<realTimeScan >

<rtLogPath ></rtLogPath >

<rtResultIdentifier ></rtResultIdentifier >

</realTimeScan >

</avEngine >

<analysisTools >

<dynamicAnalysisTool toolName="IPconfig">

<toolExecutablePath >c:\windows\system32\cmd.exe</

toolExecutablePath >

<toolParameters >/C ipconfig > c:\ipconfig2.log</

toolParameters >

<toolResultFilePath >c:\ipconfig2.log</

toolResultFilePath >

<executeMalwareExplicitly >false </

executeMalwareExplicitly >

</dynamicAnalysisTool >

<dynamicAnalysisTool toolName="Netstat">

<toolExecutablePath >c:\windows\system32\cmd.exe</

toolExecutablePath >

<toolParameters >/C netstat -a > c:\netstat.log</

toolParameters >

<toolResultFilePath >c:\netstat.log</toolResultFilePath >

<executeMalwareExplicitly >false </

executeMalwareExplicitly >

</dynamicAnalysisTool >

</analysisTools >

</VM>

<VM vmxPath="/var/lib/vmware -server/Virtual Machines/

winxp_default/Windows XP Professional.vmx">

<vmUsername >XXXXXXX </vmUsername >

<vmPassword >XXXXXXX </vmPassword >

<avEngine name="F-Secure 7.10">

<avExecutablePath >c:\Program files\f-secure\Anti -Virus\

fsav.exe</avExecutablePath >

<avParameters >/REPORT=c:\result.log "$samplePath"</

avParameters >

<avLogFilePath >c:\result.log</avLogFilePath >

<avLogFilter >

<avResultIdentifier >Infection </avResultIdentifier >

<avResultPrefix >: </avResultPrefix >

<avResultSuffix ></avResultSuffix >

</avLogFilter >

<avUpdateInfo >

<avUpdateExecutable >c:\program files\f-secure\anti -

virus\getdbhtp.exe</avUpdateExecutable >

<avUpdateParameters >-url=http:// avupdate.f-secure.com/

updates/ -gui=1 -ver=FSAV6</avUpdateParameters >

<avUpdateLogPath ></avUpdateLogPath >

<avUpdateSuccessIndicator ></avUpdateSuccessIndicator >

</avUpdateInfo >

<realTimeScan >

<rtLogPath ></rtLogPath >

<rtResultIdentifier ></rtResultIdentifier >

</realTimeScan >

</avEngine >

</VM>

<VM vmxPath="/var/lib/vmware -server/Virtual Machines/winxp_1/

Windows XP Professional.vmx">

<vmUsername >XXXXXXX </vmUsername >

<vmPassword >XXXXXXX </vmPassword >

<avEngine name="AVG">

CHAPTER 2. CONFIGURATION FILES 37

<avExecutablePath >c:\Program files\avg\avg8\avgscanx.exe</

avExecutablePath >

<avParameters >/REPORT=c:\report.txt /SCAN=$ samplePath </

avParameters >

<avLogFilePath >c:\report.txt</avLogFilePath >

<avLogFilter >

<avResultIdentifier >identified </avResultIdentifier >

<avResultPrefix ></avResultPrefix >

<avResultSuffix ></avResultSuffix >

</avLogFilter >

<avUpdateInfo >

<avUpdateExecutable >C:\Program Files\AVG\AVG8\avgupd.

exe</avUpdateExecutable >

<avUpdateParameters ></avUpdateParameters >

<avUpdateLogPath ></avUpdateLogPath >

<avUpdateSuccessIndicator ></avUpdateSuccessIndicator >

</avUpdateInfo >

<realTimeScan >

<rtLogPath >C:\Documents and Settings\All Users\

Application Data\avg8\Log\avgrs.log</rtLogPath >

<rtResultIdentifier >EID_Id_vir </rtResultIdentifier >

</realTimeScan >

</avEngine >

</VM>

</vmList >

</VMwareHost >

<VMwareHost host="129.241.208.158">

<hostPortNumber >902</hostPortNumber >

<hostUsername >XXXXXXX </hostUsername >

<hostPassword >XXXXXXX </hostPassword >

<vmList >

<VM vmxPath="C:\Virtual Machines\Windows XP Professional\Windows

XP Professional.vmx">

<vmUsername >XXXXXXX </vmUsername >

<vmPassword >XXXXXXX </vmPassword >

<analysisTools >

<dynamicAnalysisTool toolName="Norman Sandbox Analyzer">

<toolExecutablePath >C:\NSA >analyzer.exe</

toolExecutablePath >

<toolParameters > /d:c:\nsa /a:c:\nsa.log $samplePath </

toolParameters >

<toolResultFilePath >c:\nsa.log</toolResultFilePath >

<executeMalwareExplicitly >false </

executeMalwareExplicitly >

</dynamicAnalysisTool >

</analysisTools >

</VM>

</vmList >

</VMwareHost >

</VMwareHostList >

</PowerScan >

Listing 2.1: A sample XML configuration file

38 2.2. POWERSCAN XML SCHEMA DEFINITION (XSD)

2.2 PowerScan XML Schema Definition

The following listing shows the PowerScan XML Schema Definition (XSD),
which defines the rules for the PowerScan XML configuration file.

<?xml version="1.0" encoding="UTF -8" standalone="no"?>

<xsd:schema xmlns:xsd="http://www.w3.org /2001/ XMLSchema">

<!-- Define the simple elements first -->

<xsd:element name="hostPassword" type="xsd:string"/>

<xsd:element name="hostUsername" type="xsd:string"/>

<xsd:element name="avResultIdentifier" type="xsd:string"/>

<xsd:element name="avResultPrefix" type="xsd:string"/>

<xsd:element name="avResultSuffix" type="xsd:string"/>

<xsd:element name="avUpdateExecutable" type="xsd:string"/>

<xsd:element name="avUpdateParameters" type="xsd:string"/>

<xsd:element name="avUpdateLogPath" type="xsd:string"/>

<xsd:element name="avUpdateSuccessIndicator" type="xsd:string"/>

<xsd:element name="avExecutablePath" type="xsd:string"/>

<xsd:element name="avParameters" type="xsd:string"/>

<xsd:element name="avLogFilePath" type="xsd:string"/>

<xsd:element name="vmUsername" type="xsd:string"/>

<xsd:element name="vmPassword" type="xsd:string"/>

<xsd:element name="toolExecutablePath" type="xsd:string"/>

<xsd:element name="toolParameters" type="xsd:string"/>

<xsd:element name="toolResultFilePath" type="xsd:string"/>

<xsd:element name="rtLogPath" type="xsd:string"/>

<xsd:element name="rtResultIdentifier" type="xsd:string"/>

<xsd:element name="executeMalwareExplicitly" type="xsd:boolean"/>

<xsd:element name="hostPortNumber" type="xsd:integer"/>

<!-- Define attributes -->

<xsd:attribute name="host" type="xsd:string"/>

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="vmxPath" type="xsd:string"/>

<xsd:attribute name="toolName" type="xsd:string"/>

<!-- Define the complex elements -->

<xsd:element name="VMwareHostList">

<xsd:complexType >

<xsd:sequence >

<xsd:element maxOccurs="unbounded" minOccurs="1" ref="VMwareHost"/>

</xsd:sequence >

</xsd:complexType >

</xsd:element >

<xsd:element name="VMwareHost">

<xsd:complexType >

<xsd:sequence >

<xsd:element maxOccurs="1" minOccurs="1" ref="hostPortNumber"/>

<xsd:element maxOccurs="1" minOccurs="1" ref="hostUsername"/>

<xsd:element maxOccurs="1" minOccurs="1" ref="hostPassword"/>

<xsd:element maxOccurs="1" minOccurs="1" ref="vmList"/>

</xsd:sequence >

<xsd:attribute ref="host" use="required"/>

</xsd:complexType >

</xsd:element >

CHAPTER 2. CONFIGURATION FILES 39

<xsd:element name="vmList">

<xsd:complexType >

<xsd:sequence >

<xsd:element maxOccurs="unbounded" minOccurs="0" ref="VM"/>

</xsd:sequence >

</xsd:complexType >

</xsd:element >

<xsd:element name="avLogFilter">

<xsd:complexType mixed="true">

<xsd:sequence >

<xsd:element maxOccurs="1" minOccurs="1" ref="avResultIdentifier"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="avResultPrefix"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="avResultSuffix"/>

</xsd:sequence >

</xsd:complexType >

</xsd:element >

<xsd:element name="avUpdateInfo">

<xsd:complexType mixed="true">

<xsd:sequence >

<xsd:element maxOccurs="1" minOccurs="0" ref="avUpdateExecutable"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="avUpdateParameters"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="avUpdateLogPath"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="avUpdateSuccessIndicator

"/>

</xsd:sequence >

</xsd:complexType >

</xsd:element >

<xsd:element name="avEngine">

<xsd:complexType mixed="true">

<xsd:sequence >

<xsd:element maxOccurs="1" minOccurs="1" ref="avExecutablePath"/>

<xsd:element maxOccurs="1" minOccurs="1" ref="avParameters"/>

<xsd:element maxOccurs="1" minOccurs="1" ref="avLogFilePath"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="avLogFilter"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="avUpdateInfo"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="realTimeScan"/>

</xsd:sequence >

<xsd:attribute ref="name" use="required"/>

</xsd:complexType >

</xsd:element >

<xsd:element name="realTimeScan">

<xsd:complexType >

<xsd:sequence >

<xsd:element maxOccurs="1" minOccurs="1" ref="rtLogPath"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="rtResultIdentifier"/>

</xsd:sequence >

</xsd:complexType >

</xsd:element >

<xsd:element name="analysisTools">

<xsd:complexType >

<xsd:sequence >

<xsd:element maxOccurs="unbounded" minOccurs="0" ref="

dynamicAnalysisTool"/>

</xsd:sequence >

</xsd:complexType >

</xsd:element >

40 2.2. POWERSCAN XML SCHEMA DEFINITION (XSD)

<xsd:element name="dynamicAnalysisTool">

<xsd:complexType mixed="true">

<xsd:sequence >

<xsd:element maxOccurs="1" minOccurs="1" ref="toolExecutablePath"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="toolParameters"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="toolResultFilePath"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="executeMalwareExplicitly"/

>

</xsd:sequence >

<xsd:attribute ref="toolName" use="required"/>

</xsd:complexType >

</xsd:element >

<xsd:element name="VM">

<xsd:complexType mixed="true">

<xsd:sequence >

<xsd:element maxOccurs="1" minOccurs="1" ref="vmUsername"/>

<xsd:element maxOccurs="1" minOccurs="1" ref="vmPassword"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="avEngine"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="analysisTools"/>

</xsd:sequence >

<xsd:attribute ref="vmxPath" use="required"/>

</xsd:complexType >

</xsd:element >

<!-- Define the overall structure -->

<!-- Starting with one VMwareHostList element -->

<xsd:element name="PowerScan">

<xsd:complexType >

<xsd:sequence >

<xsd:element maxOccurs="1" minOccurs="1" ref="VMwareHostList"/>

</xsd:sequence >

</xsd:complexType >

</xsd:element >

</xsd:schema >

Listing 2.2: The W3C XML Schema definition

CHAPTER 2. CONFIGURATION FILES 41

2.3 Description of PowerScan’s XML with re-

spect to the XSD schema

This section describes the setup of PowerScan’s XML configuration file, with
respect to the defined XSD schema. It gives a description of the XML ele-
ments and their limitations, as they are described in the XSD. For the actual
XSD schema and an example XML file, refer to the sections above.

Schema languages are useful, as they can be used to verify that the given
XML config file is not only well-formed, meaning that it conforms to the
XML standard, but also that it conforms to specified rules concerning which
elements are optional, the number of allowed sub elements within elements
and so on.

When initiated, the PowerScan framework needs to be told how the lab
environment it is supposed to utilize is set up. The required information
includes how many VMware hosts are supposed to be used, their IP address
or host name, username and password for the host, how many VMware guest
OS instances are running and which AV engines or analysis tools are installed
on them and how the tools are to be executed. The layout of the XML file
is described below:

The XML file starts with one root element called <PowerScan>. A
<PowerScan> element is defined in XSD as follows:

<xsd:element name="PowerScan">

<xsd:complexType >

<xsd:sequence >

<xsd:element ref="VMwareHostList" minOccurs="0" maxOccurs="1" />

</xsd:sequence >

</xsd:complexType >

</xsd:element >

Listing 2.3: XSD PowerScan element

This means that a <PowerScan> element contains one and only one element
of the type <VMwareHostList>. The <VMwareHostList> element is also a
complex element1, defined as

<xsd:element name="VMwareHostList">

<xsd:complexType >

<xsd:sequence >

<xsd:element ref="VMwareHost" minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence >

</xsd:complexType >

1A complex element is an element that contains other elements and/or attributes.

42
2.3. DESCRIPTION OF POWERSCAN’S XML WITH RESPECT TO

THE XSD SCHEMA

</xsd:element >

Listing 2.4: XSD VMwareHostList element

This shows that a <VMwareHostList> element is a list containing at least
one but possibly an arbitrary high number of <VMwareHost> elements. The
<VMwareHost> element contains the following elements:

<xsd:element name="VMwareHost">

<xsd:complexType >

<xsd:sequence >

<xsd:element maxOccurs="1" minOccurs="1" ref="hostPortNumber"/>

<xsd:element maxOccurs="1" minOccurs="1" ref="hostUsername"/>

<xsd:element maxOccurs="1" minOccurs="1" ref="hostPassword"/>

<xsd:element maxOccurs="1" minOccurs="1" ref="vmList"/>

</xsd:sequence >

<xsd:attribute ref="host" use="required"/>

</xsd:complexType >

</xsd:element >

Listing 2.5: XSD VMwareHost element

As seen, a <VMwareHost> contains the password and username for the
host, and an element called <vmList>, which is a list one or more <VM>
elements. Each <VM> element represents a guest OS running Windows XP,
and has the following elements

<xsd:element name="VM">

<xsd:complexType mixed="true">

<xsd:sequence >

<xsd:element maxOccurs="1" minOccurs="1" ref="vmUsername"/>

<xsd:element maxOccurs="1" minOccurs="1" ref="vmPassword"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="avEngine"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="analysisTools"/>

</xsd:sequence >

<xsd:attribute ref="vmxPath" use="required"/>

</xsd:complexType >

</xsd:element >

Listing 2.6: XSD VM element

The last two elements of the <VM> shows that a guest OS can run one
AV engine, or one or more analysis tools. An AV engine has the following
configurable properties;

<xsd:element name="avEngine">

<xsd:complexType mixed="true">

<xsd:sequence >

<xsd:element maxOccurs="1" minOccurs="1" ref="avExecutablePath"/>

<xsd:element maxOccurs="1" minOccurs="1" ref="avParameters"/>

<xsd:element maxOccurs="1" minOccurs="1" ref="avLogFilePath"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="avLogFilter"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="avUpdateInfo"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="realTimeScan"/>

CHAPTER 2. CONFIGURATION FILES 43

</xsd:sequence >

<xsd:attribute ref="name" use="required"/>

</xsd:complexType >

</xsd:element >

Listing 2.7: XSD avEngine element

The AV engines are used for on-demand scan, and the first two parameters
are used to configure the command used to initiate the scan. The third
parameter, <avLogFilePath>, is the path to the log or result file in which
the result of the on-demand scan is written. This may be a standard log
file that the AV engine uses, or the console output piped to a temporary file.
The <avLogFilter> element is used to filter the result file looking for specific
words that indicate a malware hit. It is defined as follows:

<xsd:element name="avLogFilter">

<xsd:complexType mixed="true">

<xsd:sequence >

<xsd:element maxOccurs="1" minOccurs="1" ref="avResultIdentifier"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="avResultPrefix"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="avResultSuffix"/>

</xsd:sequence >

</xsd:complexType >

</xsd:element >

Listing 2.8: XSD avLogFilter element

At regular intervals, the AV engines need to update their definition/signature
database. This is hard to schedule using automatic updaters, as the guest
OSs are reverted to snapshot at unpredictable intervals (typically after each
use). To deal with this, PowerScan supports automatic update of all regis-
tered engines. The <avUpdateInfo> element contains path to the update
executable and parameters, a path to a log file and some word or words to
look for in the log that indicate a successful update operation. Note that this
element is optional, as some engines may not support automatic updates via
the command line.

<xsd:element name="avUpdateInfo">

<xsd:complexType mixed="true">

<xsd:sequence >

<xsd:element maxOccurs="1" minOccurs="0" ref="avUpdateExecutable"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="avUpdateParameters"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="avUpdateLogPath"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="avUpdateSuccessIndicator

"/>

</xsd:sequence >

</xsd:complexType >

</xsd:element >

Listing 2.9: XSD avUpdateInfo element

44
2.3. DESCRIPTION OF POWERSCAN’S XML WITH RESPECT TO

THE XSD SCHEMA

The <realTimeScan> element of the <avEngine> is, as the name indicates,
configuration parameters for the use of real-time scan functionality. The
malware sample is executed within the guest OS, and the real time scan
log is parsed to look for indicators showing the the executable has been
recognized as containing malware. Although real-time scanner alerts often
are shown in GUI pop-ups, PowerScan relies on parsing the log file of the
anti-virus solution in order to determine if an infection was noted. This is
because the Vix framework does not support GUI interaction.

In addition to scanning the malware sample with an AV scanner, it is also
possible to set up guest OSs running one or more analysis tools. These tools
are often executed with the malware sample as a parameter, but in some
cases the analysis tool is started before the sample is executed. The <VM>
element contains an <analysisTools> element, which is a list containing one
or more <dynamicAnalysisTool> elements. The <dynamicAnalysisTool>
element contains the configuration parameters for an analysis tool, and is
defined as

<xsd:element name="dynamicAnalysisTool">

<xsd:complexType mixed="true">

<xsd:sequence >

<xsd:element maxOccurs="1" minOccurs="1" ref="toolExecutablePath"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="toolParameters"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="toolResultFilePath"/>

<xsd:element maxOccurs="1" minOccurs="0" ref="executeMalwareExplicitly"/

>

</xsd:sequence >

<xsd:attribute ref="toolName" use="required"/>

</xsd:complexType >

</xsd:element >

Listing 2.10: XSD dynamicAnalysisTool element

This element contains a path to start the tool, a string that may contain
parameters, a log file path to be able to copy back the result and an element
called <executeMalwareExplicitly> which is used to indicate whether the
malware should be executed explicitly, or if it is supplied as a part of the
parameter string. If the malware path needs to be included as part of the
parameters, it can be inserted using the string $malwarePath.

An example XML config file can be found in section 2.1, and the appurtenant
XSD file in 2.2.

CHAPTER 2. CONFIGURATION FILES 45

2.4 Properties file example

VMware host setup

Note that all times are given in seconds.

Virtual machine setup

Specify timeout for waiting for tools to start in Virtual

Machines (tools is required for operation)

vmware.tools.timeout = 30

Scanner parameters

Specify the path on the virtual machines in which to execute the malware

sample.

Note that backslashes (\) will have to escaped by another backslash , such

that c:\ program files\ becomes c:\\ program files \\.

Also note that the directory must already be created on the virtual

machine ,

as VIX 1.0 and 1.1 does not support directory creation.

The execution path must end with a file separator (typically slash (/) or

backslash (\)).

scanner.executionpath = c:\\

Specify whether snapshots should be taken before performing scans.

This is generally NOT recommended , as storing snapshots is a time

consuming

operation , which should only be performed when changes are made to the

Virtual Machine.

It may also lead to instabilities in the virtual machines and cause scan

failures.

snapshot.before.scan = false

Set polling interval for minor operations

polling.interval.minor = 0.250

Set polling interval for major operations

polling.interval.major = 1.000

Maximum time to allow for individual scan operations to finish.

scanner.timeout = 60

Maximum time to allow malware to execute with real -time anti -virus scanner

running

malware.execution.timeout = 25

Maximum total time for malware execution operation (for all registered

scanners)

full.execution.timeout = 240

Maximum time to allow for updating to finish

update.timeout = 600

Timeout for full scan. Used to prevent entire system from crashing

following failure in a single thread.

full.scan.timeout = 600

Determine whether log files should be overwritten when program is executed

.

Note that log files may take up significant resources over time.

log.overwrite = false

Log files

46 2.4. PROPERTIES FILE EXAMPLE

VMware calls

log.vmware = logs\\ vmware.log

Scanner log (scan logic)

log.system.scanner = logs\\ scanner.log

System log (main thread)

log.system = logs\\ system.log

Executor log

log.system.executor = logs\\ executor.log

Executor path to location of malware sample

Note that backslashes (\) will have to escaped by another backslash ,

such that c:\ program files\ becomes c:\\ program files \\.

Also note that the directory must already be created on the virtual

machine , as VIX 1.0 and 1.1 does not support directory creation.

The execution path must end with a file separator (typically slash (/) or

backslash (\)).

executor.executionpath = c:\\

Path to which the result files from the analysis tools should be copied

on the local system

executor.localResultPath = c:\\ test\\

Sets the time in seconds for which the operator is allowed to interact

with the malware sample/analysis tools

executor.overall.timeout = 30

Sets the path for the XSD file used to validate the XML config file

xml.xsd.path = config.xsd

Listing 2.11: Example PowerScan properties file

