
June 2008
Svein Johan Knapskog, ITEM
Steffen Emil Thorkildsen, Kripos
André Årnes, Oracle

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Forensic Key Discovery and
Identification
Finding Cryptographic Keys in Physical Memory

Carsten Maartmann-Moe

Problem Description
In this project, the student will study principles and investigate methods for cryptographic key
discovery in memory captured from live machines, using a computer forensic perspective. The
student will perform searches for keys with the intent to and identify these, based on previous
research by Adi Shamir and Nicko van Someren and Torbjörn Pettersson. The primary objective is
to analyze and use these methods, and eventually further develop them. Subsequently, the student
will develop a proof-of-concept tool to perform key retrieval from memory dumps, using open-
source cryptographic software. The master thesis will be written under supervision of the High
Tech Crime Division at the National Criminal Investigation Service (NCIS), as an extension to the
previous minor thesis "Digital Evidence and Cryptography".

Assignment given: 15. January 2008
Supervisor: Svein Johan Knapskog, ITEM

Abstract

Communication and whole-disk cryptosystems are on the verge of becoming
mainstream tools for protection of data, both in corporate laptops and pri-
vate computing equipment. While encryption is a useful tool, it also present
new problems for forensic investigators, as clues to their investigation may be
undecipherable. However, contrary to popular belief, these systems are not im-
penetrable. Forensic memory dumping and analysis can pose as ways to recover
cryptographic keys that are present in memory due to bad coding practice,
operation system quirks or hardware hacks. The volatile nature of physical
memory does however challenge the classical principles of digital forensics as its
transitory state may disappear at the flick of a switch.

In this thesis, we analyze existing and present new cryptographic key search
algorithms, together with different confiscation and analysis methods for images
of volatile memory. We provide a new proof of concept tool that can analyze
memory images and recover cryptographic keys, and use this tool together with
a virtualized testbed to simulate and examine the different states of platforms
with several separate cryptosystems. Making use of this testbed, we provide
experiments to point out how modern day encryption in general are vulnerable
to memory disclosure attacks. We show that memory management procedures,
coding practice and the overall state of the system has great impact on the
amount and quality of data that can be extracted, and present simple statistics
of our findings. The discoveries have significant implications for most software
encryption vendors and the businesses relying on these for data security.

Using our results, we suggest best practices that can help investigators build
a more comprehensive data foundation for analysis, by reconstructing virtual
memory from RAM images. We also discuss how investigators may reduce the
haystack by leveraging memory and process structure on Windows computers.
Finally we tie this to current digital forensic procedures, and suggest an op-
timized way of handling live analysis based on the latest development in the
field.

i

Preface

This Masters thesis is a product of the author’s Master studies at the Nor-
wegian University of Science and Technology (NTNU) and was given in co-
operation with the Norwegian National Criminal Investigation Service (NCIS,
in Norwegian: Kripos), High Tech Crime Division. The research and writing
were performed over a five-month period (February-June 2008) at NCIS in Oslo,
Norway.

The work may be seen upon as an extension of previous work by the au-
thor on Digital Evidence and Cryptography, where the usage and states of a
cryptosystem were examined.

Acknowledgements

• My tutor and NCIS employee Steffen E. Thorkildsen for his creativity,
encouraging criticism and skilled advice.

• Tutor André Årnes for constructive feedback and his previous work on
virtualization software and digital forensics.

• NCIS, for generously letting me use their work space and providing me
with necessary equipment, software and licenses.

• The Open Source and Digital Forensic community in general, for providing
invaluable tools and inspiring source code.

iii

Contents

Abstract i

Preface iii

Contents v

List of Figures ix

List of Tables xi

List of Listings xiii

1 Introduction 1
1.1 Problem Definition . 3
1.2 Cryptographic Key Search Scenarios 3

1.2.1 Confiscation of Computer with Encryption Software . . . 3
1.2.2 Post-capture Decryption of Communications 4

1.3 Scope . 4
1.4 Intended Audience . 5
1.5 Related Work . 5
1.6 Document Structure and Highlights 7

I Background 9

2 Cryptography 11
2.1 Terminology . 12

2.1.1 Main Cryptographic Goals 13
2.1.2 Good and Bad Guys . 14
2.1.3 Cryptographic Attack Models and Problem Size 14

2.2 Introduction to Selected Ciphers 15
2.2.1 Rijndael (AES) . 15
2.2.2 Serpent . 16
2.2.3 Twofish . 16
2.2.4 RSA . 16

2.3 Cryptographic Keys . 16
2.3.1 Symmetric Cipher Keys 17
2.3.2 Public-key Cipher Keys 18
2.3.3 Pseudo-randomness . 19

v

vi FORENSIC KEY DISCOVERY AND IDENTIFICATION

2.3.4 Key Length . 27
2.3.5 Key Management . 29

2.4 Implementing Cryptography . 38
2.4.1 Purging Keys From Memory 38
2.4.2 Compiler Optimizations 38
2.4.3 String Handling in Auxiliary Applications 39
2.4.4 Prevention of Swapping or Paging 40
2.4.5 Hardware Encryption versus Software Encryption 40

3 Windows Memory Management 41
3.1 The Memory Manager . 41

3.1.1 Introduction . 42
3.1.2 Memory Structure . 42
3.1.3 Paging . 43
3.1.4 Address Translation . 46

3.2 The Physical Memory as Seen by the Digital Investigator 48

4 Digital Forensics 49
4.1 Digital Forensics Basics . 49
4.2 Digital Forensics Principles . 51

4.2.1 Digital Forensics and Volatile Data 52
4.2.2 Incident Response and the States of a Crime Scene 52

5 Forensic Memory Acquisition and Analysis 55
5.1 Volatile Memory Acquisition . 55

5.1.1 Live Digital Forensics . 56
5.1.2 Process Memory Dumping 56
5.1.3 Full Dump of Physical Memory 57
5.1.4 Comparison of Existing Acquisition Techniques 60

5.2 Existing Tools for Windows Memory Dump Analysis 60
5.2.1 The PTFinder Software Tool 62
5.2.2 The PoolFinder Software Tool 62
5.2.3 The Volatility Software Tool 62
5.2.4 The Memparser Software Tool 62
5.2.5 The KnTTools Software Tool 62
5.2.6 Harlan Carvey’s Tools . 63

5.3 Summary . 63

II Methodology and Practical Work 65

6 Methodology 67
6.1 Cryptographic Key Search Strategies 67

6.1.1 Strategy 1: Brute-Force Dictionary Attack 67
6.1.2 Strategy 2: Compression Trial and Error 68
6.1.3 Strategy 3: Estimating Entropy 68
6.1.4 Strategy 4: Cryptographic Key Schedule Searches 71
6.1.5 Strategy 5: Structural Searches 72

6.2 Preprocessing: Rebuild Virtual Memory 79
6.3 Proof of Concept Tool: Interrogate 80

CONTENTS vii

6.3.1 Choice of Programming Language 80
6.3.2 Usage . 81
6.3.3 Sample Output . 81

6.4 The Testbed and Environment 82
6.4.1 VMware Server . 82
6.4.2 Case Generation Procedure 84

6.5 Cryptographic Software Classes 84
6.5.1 The Whole-disk Encryption Class 85
6.5.2 The Virtual Disk (Container) Encryption Class 85
6.5.3 The Session-based Encryption Class 85

6.6 Definition of Target Operating System States 85
6.6.1 The Live State . 85
6.6.2 The Screensaver State . 86
6.6.3 The Dismounted State . 86
6.6.4 The Hibernation State . 86
6.6.5 The Terminated State . 86
6.6.6 The Logged out State . 86
6.6.7 The Reboot State . 86
6.6.8 The Boot State . 86

6.7 Cryptographic Applications . 87
6.7.1 Truecrypt . 88
6.7.2 BitLocker . 89
6.7.3 FileVault . 90
6.7.4 DriveCrypt . 91
6.7.5 BestCrypt . 92
6.7.6 PGP . 93
6.7.7 ProtectDrive . 94
6.7.8 WinZip Encryption . 95
6.7.9 WinRAR Encryption . 96
6.7.10 Skype . 97
6.7.11 Simp Lite MSN . 98
6.7.12 OpenSSL and Apache . 99

6.8 Expected Results . 100

7 Results 101
7.1 Truecrypt Results . 102
7.2 BitLocker Results . 104
7.3 FileVault Results . 107
7.4 DriveCrypt Results . 109
7.5 BestCrypt Results . 110
7.6 PGP Results . 111
7.7 ProtectDrive Results . 112
7.8 Results from WinZip and WinRAR Encryption 114
7.9 Skype Results . 115
7.10 Simp Lite MSN Results . 116
7.11 OpenSSL and Apache Results . 117
7.12 Other Keys Found During Research 118

viii FORENSIC KEY DISCOVERY AND IDENTIFICATION

8 Discussion 119
8.1 Evaluation of Proof of Concept Tool Interrogate 119

8.1.1 Performance Evaluation 119
8.1.2 Limitations . 121
8.1.3 Further Improvements . 122

8.2 General Discussion . 123
8.3 Towards a Forensically Sound Approach to Cryptographic Mem-

ory Forensics . 126
8.4 A Proposal for Best Practice . 128

8.4.1 Key Points for Best Practice Acquisition 128
8.4.2 Key Points for Best Practice Analysis 129

8.5 Limitations and Caveats . 130

III Conclusions 131

9 Conclusions 133
9.1 Future Work . 134

Abbreviations 135

References 137
Publications . 137
Web References . 145

IV Appendices 149

A Source Code 151
A.1 interrogate.h . 151
A.2 interrogate.c . 155
A.3 stat.c . 166
A.4 util.c . 169
A.5 virtmem.c . 174
A.6 rsa.c . 177
A.7 aes.c . 179
A.8 serpent.c . 183
A.9 twofish.c . 187
A.10 Makefile . 192

B Data Structures Related to Windows Memory Analysis 193

C Copyright Information 201
C.1 Interrogate Source Code Licence (GPL) 201
C.2 Wikimedia Content . 201
C.3 Copyrighted Content . 202

List of Figures

2.1 A classical cryptosystem. 13
2.2 The key distribution problem. Figure adapted from Handbook of

Applied Cryptography. 17
2.3 Which JPEG image contains the most information? 20
2.4 Entropy-graph for 1800 bytes of memory containing a 512-bit

RSA key. The key is located at offset 0x460. 22
2.5 Example of a (non-random) high-entropy region in memory. . . . 23
2.6 Lattice test for Unix function rand(). 25

3.1 Virtual and physical address space relation. 43
3.2 256 MB of RAM Memory from Windows XP (running Truecrypt)

visualized by interpreting each byte as a 256-color palette color.
The image can be ”read” from the upper left corner, row by row.
The image has 8192 rows, and is 8 pages wide (8192 x 8 x 4096 =
256 MB). The border of the pages can be seen as vertical stripes
in the image. 44

3.3 Output from pstat on a system running Truecrypt. 46
3.4 Address translation on a x86 computer using 4 KB page size and

no PAE. Figure adapted from Wikipedia (see Appendix C) . . . 47
3.5 The 32-bit virtual address on x86 Windows systems. 47
3.6 Valid x86 hardware PTE (PDE). 47

4.1 The (improved) IDIP model. 50

5.1 Comparison of Existing Memory Imaging Methods. 61

6.1 Entropy and estimate of entropy of a JPEG image (Figure 2.3(a)).
Window size 256 bytes, values measured using the two algorithms
Naive-Entropy-Search and Entropy-Search 69

6.2 Three visualized 128-bit AES keys with key schedule in memory.
The whole key schedule is marked with blue lines. 71

6.3 Plot of entropy from the Twofish S key vectors of 256-bit keys. . 75
6.4 Plot of entropy from the Twofish K key vectors. 76
6.5 Plot of entropy from 4 KB full keying tables from Twofish. . . . 76
6.6 The Truecrypt main window with a Twofish-encrypted virtual

disk mounted. 88
6.7 BitLocker in progress. 89
6.8 FileVault preferences pane. 90

ix

x FORENSIC KEY DISCOVERY AND IDENTIFICATION

6.9 The DriveCrypt Demo main window. 91
6.10 BestCrypt main window with a Serpent virtual disk mounted. . . 92
6.11 PGP Desktop Control panel. 93
6.12 The ProtectDrive pre-boot authentication screen. 94
6.13 WinZip screenshots. 95
6.14 WinRAR main window. 96
6.15 Skype main window. 97
6.16 Simp Lite MSN main window. 98
6.17 Creating a private RSA key with OpenSSL. 99

7.1 The Truecrypt driver (truecrypt.sys) running in the System.exe
process. Screenshot from Sysinternals Process Explorer. 102

7.2 Enabling BitLocker for use without a TPM. 104
7.3 BitLocker successfully set up in VMware. 106
7.4 Screenshot from the process of revealing the FileVault key. 108

8.1 Percentages of found keys sorted by Software Class and State. . . 124
8.2 Taskbar Notification area icons. From left to right: DriveCrypt,

Truecrypt, BestCrypt, PGP Desktop and ProtectDrive. 128

List of Tables

2.1 Tolerance intervals for runs of various lengths. 23
2.2 Reference for large numbers. 27
2.3 ”AES-security”-matching RSA modulus sizes. All sizes in bits. . 29

6.1 Measured entropy values for the S-box keys of a 256-bit Twofish
key schedule. 1 ∗ 1012 samples were used, and the entropy value
rounded off to four decimals. The arrow indicates that there exist
many values in the interval [3.0000, 2.0000]. 75

6.2 Intervals of measured runs of different lengths in the Twofish key
schedule. Runs of 6 or more are all counted in the ’6’-bin. 78

6.3 Software classes and their expected results. 100

7.1 Truecrypt disk encryption key search results. 102
7.2 BitLocker key search results. 104
7.3 FileVault key search results. Note that hibernation mode does

not exist on Apple OS X. 107
7.4 DriveCrypt key search results. 109
7.5 BestCrypt key search results. 110
7.6 PGP key search results. 111
7.7 ProtectDrive key search results. 112
7.8 WinZip and WinRAR key search results. 114
7.9 Skype key search results. 115
7.10 Simp Lite key search results. 116
7.11 OpenSSL and Apache key search results. 117

8.1 Average runtimes for Interrogate (time in minutes). The entropy
algorithms were tested with their default settings (window size is
256 bytes). 120

xi

List of Listings

3.1 Windows method ExAllocatePoolWithTag 45
6.1 Truecrypt Twofish key schedule struct 77
6.2 Twofish key schedule structures 78
A.1 interrogate.h . 151
A.2 interrogate.c . 155
A.3 stat.c . 166
A.4 util.c . 169
A.5 virtmem.c . 174
A.6 rsa.c . 177
A.7 aes.c . 179
A.8 serpent.c . 183
A.9 twofish.c . 187
A.10 Makefile . 192
B.1 EPROCESS data structure . 193
B.2 KPROCESS data structure . 195
B.3 PEB data structure . 195
B.4 ETHREAD data structure . 196
B.5 KTHREAD data structure . 197
B.6 TEB data structure . 198
B.7 POOL HEADER data structure 199

xiii

Chapter 1

Introduction

During the last decades cryptography has grown to become the most impor-
tant contributor to the privacy and authentication of data in an increasingly
interconnected world. By using modern cryptography, an entity can achieve
sufficient confidence in the privacy of its data to enable a wide range of ap-
plications that would not be possible without it. E-commerce, Virtual Private
Networks (VPNs) and Digital Rights Management (DRM) all use cryptogra-
phy to provide security mechanisms to the user, to mention some. Often an
invisible workhorse, cryptography can bind together the idea of freedom of in-
formation that the Internet represents with applications that need security like
online banking and private communication. Furthermore, it may do so in a way
that allows a carefully balanced relationship between secrecy and openness, a
balance that will enable third parties to verify the authenticity and security of
the system or protocol.

Freedom of speech, privacy and legal rights are just some of the important
values that can be protected by the use of cryptography. For example, en-
crypting communication can prevent a government suppressing the voice of its
population, and signing data using digital signatures may juridically tie a per-
son to a a certificate of authenticity. Using cryptography, a person may choose
to be anonymous on the net. The choice is entirely his or hers, and this free-
dom of choice reflects the power of applied cryptography that strongly embodies
principles such as net neutrality and justice. However, it is also possible to use
cryptography as a device of restriction; by denying access, protecting digital
rights over copyrighted material or hiding contraband and illegal material like
child pornography.

The dual-edged nature of cryptography has rendered its usage, designs and
applications for heavy debate and often government control [1, 2, 3, 4]. Cryp-
tography has historically been subject to a high level of secrecy and cloaking,
including heavy import and export regulations. The reason for this is quite obvi-
ous; governments wish to use the strength of cryptography while denying other
governments, organizations or individuals opposing the government the same
tool. Thus, in high stake situations like wars, diplomatic crisis or other matters
of national security, substantial efforts are laid down in terms of funds and re-
sources on both sides of the conflict; inventing new algorithms and breaking the
existing.

1

2 FORENSIC KEY DISCOVERY AND IDENTIFICATION

For a long time, crisis and war were the driving forces behind the invention
of new cryptographic algorithms and applications. The intelligence community
had more or less monopoly in the field, and today it is still uncertain what
magical crypto-cracking machines they may possess [5]. Despite many tinfoil-
hat conspiracy theories, the idea that governments want control over data and
communications is not far fetched. In fact history shows us that it is reality [2,
6, 7, 4, 8, 9] [RIP00, Gel05]. Breaking ciphers is basically a game of time and
resources. Governments often has plenty of both.

As the use of encryption has increased, so has the number of crimes where
digital evidence can be found [10]. It is nearly impossible to live in the western
world without leaving trace in a digital format, whether it be credit card trans-
actions, telephone records or internet usage. The need for interpretation and
acquisition of these data has influenced the rise of the field of digital forensics,
conducted by both law enforcement and private businesses. The use of cryptog-
raphy poses as a problem for the digital investigator, as it may be used to hide
data that may shed light on the chain of events that led up to or were a part of
a crime.

Modern cryptographic best-practices, acquired from countless hard-learned
lessons, suggest that open standards that enable peer review and public scrutiny
is the preferred practice of gaining confidence in a cryptographic method. Thus
it is not the secrecy of the design, but that of a key that provides the security
of the system, according to Kerckhoffs’ principle [11]. No cipher can be said
to be 100 percent secure, but a cipher that has resisted ten years with public
evaluation and testing is certainly preferable to a new cipher with a higher
on-paper grade of security.

Using this principle and joining forces, the academic and intelligence com-
munity, corporations and standardization organizations have come up with
some remarkably strong ciphers, notably the Advanced Encryption Standard
(AES) [12, 13] and public-key schemes like RSA [14]. AES and RSA with
proper key lengths seem unbreakable on paper in the foreseeable future, but
what about in practice?

When a smart man sees an obstacle, he goes around it. Famous cryptologist
Schneier has pointed out that although software-based encryption is common
and easy to implement, it does not offer any physical protection of the algorithm
or the key [7]. Any person that has physical access to the system can analyze
it with debugging or reverse engineering tools, modify the algorithm or look for
the key. Such creative attacks has a reputation of defeating cryptosystems that
are secure on paper. While hardware systems may offer protection by tamper-
resistant devices or other physical defenses, software is dependent on mercy and
good behavior1 from the computer and operating system it runs on.

Recently the attention of the security community has been focused on phys-
ical access attacks that can defeat encryption mechanisms [Sch08, Fel08, Zet08].
It is most common to think of these attack vectors as a way for crackers to get
in, but nearly all of them require physical access, which involves committing a
crime (e.g., theft of laptop) or at least a large risk for the average attacker.

1Small malicious programs called trojans are often used by attackers to modify Operating
System (OS) code so that it may reside undetected by virus defense systems. It is therefore
extremely hard to guarantee only good behavior from an operating system. In addition, their
complex structure and closed-source nature makes it difficult to even trust them out of the
box.

1.1. PROBLEM DEFINITION 3

A group of professionals that often do have the privilege of total physical
access and virtually zero risk, are digital forensic investigators. Since the nature
of cryptography makes it attractive for hiding incriminating data, the encrypted
material often contain exactly this evidence that investigators seek. In this thesis
we consider approaches for the investigators to defeat cryptosystems by means
of finding the key or parts of it in volatile memory and swap space.

1.1 Problem Definition

We seek to discover new methods for cryptographic key location, improvements
of the existing methods, and perhaps most importantly answer the following
question: How does the state of the system effect the chances of uncovering keys
in memory, and how can the chances of such a discovery be maximized?

By focusing on these problems, the author strive to unify memory analysis,
cryptography and digital forensics in a way that will allow a higher success
rate for law enforcement when encountering cryptographic applications on live
digital crime scenes.

Although aim the thesis is aimed at law enforcement agencies, it clearly
highlights some of the problems the security community faces today in terms of
protection of data using software encryption. Many of the approaches mentioned
in our research can be exploited by criminals or people with malicious intent;
and these risks are hard to mitigate with todays standard practices.

1.2 Cryptographic Key Search Scenarios

Cryptographic applications are in general required to keep its keys in some
sort of form in physical memory when operating. To aid our treatment of
cryptographic key searches, we present three different example scenarios where
such searches may be feasible, and of help to forensic investigators. The list
below is not exhaustive, there may be possible to identify several other scenarios.

1.2.1 Confiscation of Computer with Encryption Software

Whole-disk encryption systems are gaining popularity and are, especially in the
business-sector of the market, used to protect valuable and sensitive data. This
type of software exist on both laptops and desktops, and in the future, mobile
devices. Several operating systems come with such cryptosystems integrated,
like Microsoft Vista’s BitLocker (Ultimate and Business edition) [15] [Mic08c]
and Mac OS X’s FileVault [App08]. Using these systems, the user may attempt
to conceal all data on his or hers hard drive, effectively thwarting regular forensic
investigations of the hard drive.

Additionally, encryption software that feature container or virtual disk en-
cryption can be used to protect a subset of the data on a computer. This is
an encryption method that the user can relate to (it is analogous to that of a
locked container), and it is therefore quite widespread [16, 17]. OS X comes
with such software out of the box, and applications like Truecrypt [Fou08a]
and BestCrypt [Jet08] feature this type of encryption. Other applications like
WinZip feature both compression and encryption, ensuring the security of files
during transfer or storage.

4 FORENSIC KEY DISCOVERY AND IDENTIFICATION

Memory analysis and key extraction can be useful to an investigator when
encountering powered on computers with encryption software, or if remains of
the physical memory can be retrieved from the hard drive. This may be the
possible as a result of hibernation or other OS-related processes like paging.

1.2.2 Post-capture Decryption of Communications

Several messaging applications including mail, texting, chat- and voice-chat
applications come with encryption options either as standard features or plug-
in modules. These applications or modules encrypt communication with similar
clients from end-to-end, using strong algorithms. Consequently, law enforcement
agencies cannot read the messages passed back and forth, and possibly miss vital
data in the context of lawful interception.

Dumping the encrypted data can however yield success if the decryption key
is made available at a later point in time, depending on the type of cryptosys-
tem. This may leverage methods where the investigators is able to perform
surveillance on suspects over an extended period of time, and decrypt the mate-
rial after the encryption key is found (either by questioning, cracking or forensic
memory and hard drive searches). If the computing equipment that was uti-
lized in the communication is confiscated while it is live or just powered on, key
extraction may be possible. It has also been shown that decryption of whole
SSL/TLS sessions are possible even when only network dumps and key material
is made available [18].

1.3 Scope

This thesis is formed in the mindset of digital forensics. There exists several
attempts [19, 20] to formulate best-effort practices and frameworks for memory
forensics, but due to the young age of the research and the multitude of different
architectures and software available, there is inherent redundancy and lack of
standards.

The scope of this thesis limits itself to forensically sound discovery of en-
cryption keys. Consequently, we stress to keep all methods and research within
forensically sound practices. The techniques for memory dumping will be ad-
dressed, and their feasibility for a forensic investigator analyzed. Searches on
the hard drive for any remanence of cryptographic key data, plaintext or other
clues will not be considered; even though this is a procedure that an investigator
certainly would have conducted.

One other major limitation is time. This thesis was created within a five-
month period, and the depth of treatment of several of the subjects are limited
because of these time constraints. We also limit our research to Windows op-
erating systems, owing to the fact that Windows is by far the most used OS
in the private segment of the market today, and consequently what an inves-
tigator encounters most of. In addition to its dominating market share, the
aforementioned time restrictions forced us to abandon other platforms. That
being said, many of the methods suggested and implemented in this thesis is
applicable with none or minor modifications on any device or platform using
(volatile) memory.

1.4. INTENDED AUDIENCE 5

The basics of cryptographic aspects like key properties, generation and usage
will be covered, all which can have great impact on the possibilities of finding
cryptographic keys in memory. We will not discuss the encryption procedures
at any length, unless it is necessary to clarify certain characteristics of the
search methods. For further reading on the art of cryptology, please be referred
to Kahn’s excellent The Code Breakers [2], or for a more technical approach,
Bruce Schneier’s Applied Cryptography [7] is the de-facto standard.

1.4 Intended Audience

The primary audience of this thesis are digital forensics professionals, law en-
forcement and the IT security community in general. We assume fairly high
technical skills, but no theoretical knowledge of cryptography or memory man-
agement is needed, as the necessary background will be covered. It is however
assumed that the reader knows programming and has basic computer knowl-
edge.

1.5 Related Work

Dumping and examining volatile memory for forensics purposes is a relatively
immature procedure, even though the concept has been known for a long time [21].
The memory acquisition process is especially irregular and unstandardized,
mostly because of the number of different operation systems and platforms,
and there exists a myriad of different approaches. A good comparison of the
available methods for Microsoft Windows can be found in the paper Windows
Memory Forensics by Ruff [22]. The methods for extracting volatile memory
ranges from DMA access via FireWire by Dornseif [23] and Martin [24] to simply
copying of memory from /dev/mem on Unix-flavor platforms.

An approach on cryptographic key search and identification are proposed
by Shamir and van Someren, suggesting the prospect of ”lunch-time” attacks
against mainframes in their article Playing Hide and Seek with Stored Keys [25].
In their paper they propose to use simple statistical and visual methods to lo-
cate memory regions that (likely) contains encryption keys. In another arti-
cle, Pettersson discusses searches for structural properties of the code that are
holding the key, by analyzing and ”guesstimating” the values of surrounding
variables [26]. Ptacek [Pta08] drafts how to extract and verify RSA keys from
memory, using a simple mathematical analysis of the parameters found. On
identifying RSA keys, Klein suggests searching for ASN standard prefixes of the
DER-encoding, both identifying certificates and private keys in memory [27].

In a related paper, Harrison and Xu presents experiments [28] showing that
Apache web- and OpenSSH servers can be subverted into disclosing its private
RSA key by exploiting an information leak in the linux kernel [LF05]. They also
discuss methods for mitigating the risk, and show that RSA keys are disclosed
statistically within one to five minutes after attack start.

Also related, the authors of Volatools (Walters and Petroni) describes a
hypothetical attack against TrueCrypt [Fou08b], by studying its (and the un-
derlying OS’s) internal structures and behavior [29]. The attack is used as an
argument to incorporate memory forensics in regular digital forensics, but they

6 FORENSIC KEY DISCOVERY AND IDENTIFICATION

do not describe how to locate the different structures in memory, and neither
discuss the fact that some of these may be paged out, thereby breaking the
chain of data structures that leads to the master key.

A recent breakthrough was released by Halderman et al. during the writing
of this thesis, in their paper Lest We Remember: Cold Boot Attacks on Encryp-
tion Keys [30]. In the article, they demonstrate that it is possible to leverage
remanence effects2 in DRAM modules to ”coldboot” the target computer, load
a custom OS extracting the memory to an external drive, locate the key ma-
terial and decrypt hard drives automatically. Because of the risk of bit errors
in a decaying memory image, they even suggest methods for correcting such
errors by utilizing the inherited ”dead state” structure of the DRAM modules
and an error-correcting code. A complete and automated cracking procedure is
demonstrated several places at the Internet [McC08, HSH+08], but at the time
of writing no source code has been released. The authors do however promise
to do so in the future [McC08]. Nonetheless, they seem to focus on malicious
attacks on the systems using whole-disk crypto like Bitlocker, FileVault and
TrueCrypt, and not a forensic investigation.

Most of these methods treat the memory as a large blob of bytes, although
in fact memory is highly structured. Some of the methods suggest skipping
duplicate regions and reserved address space, but do not consider to reduce the
haystack by just looking at the probable regions of the memory. Such reduction
may be performed by dumping the memory space of processes that are involved
in encryption, and analyzing the output. Process dumping and analysis has
been done in other fields of memory analysis, where analysts have dumped the
memory address space of a specific process by fetching pages from RAM and
swap space. Using the dump they are able to verify3 and sometimes be able to
totally reconstruct an executable file [31], even from dead processes. According
to several articles (see Schuster [32] and Carvey [33]), these techniques are able
to identify trojans, rootkits and viruses that are stealthy and/or armored in
Windows memory dumps.

Research has also been performed to indicate the age of freed user process
data in physical memory. Solomon et al. have shown that large segments of
pages are unlikely to survive more than five minutes, even on a lightly loaded
system. However, they are able to find smaller segments and single pages up to
two hours after initial commit [34].

There also exist several publications on the digital forensics field from the
author’s home institution the Norwegian University of Science and Technol-
ogy, notably Bent Kristoffer Onshus’ minor thesis Cryptographic Credentials
and Encrypted Data in Digital Evidence [35] and Andreas G. Furuseths Digital
Forensics: Methods and tools for retrieval and analysis of security credentials
and hidden data [36]. These do, however, tend to focus on the hard drive rather
than the memory as a target of investigation.

Despite all this contemporary research, there exist little information on what
and how much data that can be found in memory dumps. In the minor thesis
Digital Evidence and Cryptography [18], we attempted to shed light on how the
different states of the system impacts the data that can be found. We used stan-

2Remanence effects is the effect that all Dynamic Random Access Memory (DRAM) mod-
ules keep their state for a time (typically a few seconds) before it needs to be refreshed by the
memory controller.

3By using tools like SSDeep by J. Kornblum [Kor07].

1.6. DOCUMENT STRUCTURE AND HIGHLIGHTS 7

dard hard drive forensic tools together with memory dumps to identify plaintext
copies of encrypted content, effectively subverting crypto. This thesis will fo-
cus on how to use all of the above memory forensics methods in combination
together with cryptographic knowledge to extract key material from volatile
memory, and perform controlled experiments that will indicate the probability
of such an extraction to be successful.

1.6 Document Structure and Highlights

Throughout this thesis, code will mainly be represented as C or C++ unless
otherwise noted, while pseudocode is printed using the syntax from Introduction
to Algorithms (famously known as CLRS, abbreviated from its authors) [37].
The exception is the description of the cryptographic ciphers themselves, that
rather will be given in mathematical notation.

The rest of the thesis is divided into four main parts that are organized as
follows:

• The first part of the thesis treats the theoretic background necessary to
discuss cryptographic key searches and memory acquisition and analy-
sis. Specifically, we treat the theoretic background of cryptographic keys,
digital forensics and Windows memory internals.

• In the second part, the theory is merged with the practical part performed
as a part of this thesis. A complete methodology is presented, together
with algorithm descriptions and the virtualized testbed utilized to perform
our scientific experiments. The applications that are tested are introduced,
and we provide well-defined cryptographic software classes and operating
system states to facilitate case generalization and a more clear discussion of
the subject. Moreover, we present the results from these experiments and
provide a broad discussion of their significance and implications. Finally,
we outline an approach towards a more forensically sound practice for
volatile memory acquisition and analysis.

• The third part concludes the thesis, and provides a summary of our find-
ings and conclusions. Suggestions for future work are also proposed.

• The appendices contains the source code of the proof of concept tool In-
terrogate developed as a part of this thesis, Windows memory-related data
structures provided as a convenience for the reader and copyright infor-
mation.

Part I

Background

9

Chapter 2

Cryptography

Cryptography, derived from the Greek kryptó ”hidden” and gráfo ”to write”, is
the ancient science and art of hiding the content of a message from prying eyes.
Although now considered a branch of modern number theory and computer
science, it was originally literarily done by hand as early as 4000 years ago [2].
The Egyptians employed substitution ciphers to substitute hieroglyphs with less
common varieties of hieroglyphs in inscriptions on grave chambers, presumably
in order to obfuscate the meaning of the inscriptions for people who did not
know how to reverse the substitutions.

Number theory and its applications is also an ancient art, dating back to
the Pythagoreans [38]. Two of the oldest number-theoretic algorithms, the
Euclidean algorithm and the sieve of Eratosthenes (both conceived around 300
BC) are still used and are closely related to most modern cryptosystems.

Ever since computers first were employed in the field of cryptography, com-
plexity of newborn cryptographic algorithms were permitted to rise. A com-
puting device is ideal for encryption and decryption, it is deterministic and can
perform sequential and parallel tasks that would have been impossible for a hu-
man at the same speed. These advances has not only improved cryptography,
but also the art of breaking codes, namely cryptanalysis.

It is a well-known fact that there is a ceaseless battle between creating and
breaking cryptographic algorithms and protocols. Algorithms used today may
be broken in the future, as a consequence of technology advances and increased
computing power. One thing that has not changed since the Egyptians carved
their legacy in stone, is the fundamental property of the key, that is, one or more
objects that must be kept secret to maintain the security of the cryptographic
system. Most theoretic attacks on cryptography therefore often concentrate on
finding this key in addition to flaws in algorithms design, but also practical
attacks can benefit from focusing on the key.

We will use this chapter to discuss cryptography in a somewhat superficial
way; there is no need to fully understand each algorithm or intricate mathemat-
ical evidence to realize that if the key of a cipher is compromised, all is lost in
terms of security. To be able to locate cryptographic keys in volatile memory,
we need to develop an understanding their properties and usages. Therefore the
focus will lie on cryptographic topics that relate to the generation, management,
usage and storage of cryptographic keys.

First, we will discuss the basics of cryptography, before introducing the ci-

11

12 FORENSIC KEY DISCOVERY AND IDENTIFICATION

phers analyzed in this thesis. Secondly we will treat cryptographic keys, with
emphasis on the key management procedures of the selected ciphers. An intro-
duction to randomness and its applications in cryptography is also given, be-
fore we discuss implementation-specific issues related to key management and
volatile memory analysis.

2.1 Terminology

Cryptography uses its own terminology, that we will attempt to follow through-
out this thesis. Generally, the cryptographic terminology in this thesis is con-
sistent with Schneier’s Applied Cryptography.

First of all, crypto will often be used as shorthand for cryptography, or even
cryptology. Encryption is the process of encoding a message to hide its content,
and decryption is the inverse operation. The mathematical notation for these
two operations are E() and D(), respectively. A visualization of these processes
can be seen in Figure 2.1.

Cipher will denote the cryptographic algorithms discussed, and plaintext
and ciphertext the corresponding pair of plain and enciphered messages. In
diagrams and formulas these two objects are often denoted m for plaintext and
c for ciphertext. Using this and the mathematical notations for encryption, we
can see that:

E(m) = c (2.1)

The decryption process can thus be noted as:

D(c) = m (2.2)

And by swapping E(m) for c we easily see that decryption of encrypted
content work as follows:

D(E(m)) = m (2.3)

The ciphers are dependent on one ore more keys for their secrecy, as men-
tioned in Chapter 1. We indicate encryption and decryption of plaintext m
using a key K as:

EK(m) = c (2.4)
DK(c) = m (2.5)

Keys are also in some cases denoted e and d (mostly in public-key contexts),
for encryption key and decryption key respectively. Some algorithms use dif-
ferent keys for encryption and decryption. Such keys are enumerated using
subscripts, e.g., K1,K2.

A system consisting of a cipher, all possible plaintext/ciphertext pairs and
corresponding keys is called a cryptosystem. The classical cryptosystem is pic-
tured in Figure 2.1. Please note that the keys may or may not be the same, as
described above.

2.1. TERMINOLOGY 13

Encryption

Decryption

Plaintext Pi Ciphertext Ci

Key

Key
Classical Cryptosystem

Figure 2.1: A classical cryptosystem.

2.1.1 Main Cryptographic Goals

Menezes et al. [1] defines four goals or services cryptography attempts to provide:

1. Confidentiality is a service used to keep the content of informa-
tion from all but those authorized to have it. Secrecy is a term
synonymous with confidentiality and privacy. There are numer-
ous approaches to providing confidentiality, ranging from phys-
ical protection to mathematical algorithms which render data
unintelligible.

2. Data integrity is a service which addresses the unauthorized
alteration of data. To assure data integrity, one must have
the ability to detect data manipulation by unauthorized parties.
Data manipulation includes such things as insertion, deletion,
and substitution.

3. Authentication is a service related to identification. This func-
tion applies to both entities and information itself. Two parties
entering into a communication should identify each other. In-
formation delivered over a channel should be authenticated as
to origin, date of origin, data content, time sent, etc. [...]

4. Non-repudiation is a service which prevents an entity from deny-
ing previous commitments or actions. When disputes arise due
to an entity denying that certain actions were taken, a means
to resolve the situation is necessary.[...] A trusted third party
is needed to resolve the dispute.

It is possible to identify many other applications of crypto, but these func-
tions are usually the basis of any such application. For example, Digital Rights
Management (DRM) may be employed through use of the confidentiality, in-
tegrity and authentication mechanisms. As may be seen, the borders between
these services are not set in stone, and some overlap do occur.

14 FORENSIC KEY DISCOVERY AND IDENTIFICATION

2.1.2 Good and Bad Guys

When discussing crypto, we usually set up a scenario where an malicious attacker
attempts to intercept and interpret a confidential message transmitted over
some insecure or open medium. The two entities attempting to communicate
are often called Alice and Bob, and we will stick to this convention throughout
this thesis. We will also use Mallory as our name for the adversary, although
the adversary in our text might be an investigator with presumably ”good” or
lawful intentions. In fact, we assume that the adversary is such an investigator;
by using Mallory as denomination for all attackers, we illustrate the fact that
the methods discussed can be utilized by any person with sufficient technical
skills.

While the classic scenario of sending confidential messages over an insecure
link (e.g., the Internet) is adequate for most purposes when discussing cryp-
tosystems, we also need to consider a scenario where Bob or Alice encrypts his
or her hard-drive. The necessity of such a protection can be linked to many
different scenarios, for example enterprise laptop theft or simply privacy consid-
erations. In this seemingly straight-forward scenario, the cryptosystem needs
to prevent any access to the protected data, even if the adversary gets physical
access. Actually, this scenario is a version of our classical scenario, where the
insecure medium is the same as the platform where the encryption/decryption
takes place. As we shall see, this has significant influence on the security of the
cryptosystem.

2.1.3 Cryptographic Attack Models and Problem Size

Considering attacks on cryptographic applications or ciphertexts, we generally
divide the attack types into four distinct attack models [6]:

• Ciphertext only attacks are mounted by trying to recover the key or plain-
text from the ciphertext. Only the ciphertext is available to the adversary.

• A known plaintext attack is performed if the cryptanalyst has access to
the ciphertext and some of the plaintext.

• In a chosen plaintext attack the analyst may choose the plaintext, and
obtains the ciphertext by encrypting it.

• Chosen ciphertext is the opposite, here the analyst may choose the cipher-
text, and obtain the plaintext by decryption. The goal for these last two
attacks are to uncover the key, and may be difficult to mount in real-life.

These attack models are relevant to all cryptography, but the attack model
in this thesis is somewhat different: We attempt to locate a key in an arbitrary
amount of data. To test that the found key indeed is the key we are looking for,
the above attack models may be used. For example, one approach for identifying
a key could be to attempt to apply all subsets of the volatile memory as a key,
and decrypting a chosen ciphertext that has a known plaintext. If the ciphertext
decrypts to the correct plaintext, the key is found.

We do however need to pay attention to the computational effort needed
to run such a brute-force attempt. To describe computational complexity, we
define the following terms:

2.2. INTRODUCTION TO SELECTED CIPHERS 15

Time Complexity

The time complexity denotes the expected time to solve a problem, in our case
this often means expected time for cracking the cipher. Given a cipher where
brute-force key search is the best option, this value is directly dependent on the
key size. Note that this terminology does not express the time complexity in
time measurement units like seconds or years, but rather in problem size. The
time complexity for guessing a 56-bit key is therefore around 255, how long time
it will really take to guess it depends on your resources and luck.

Space Complexity

Just like time complexity, space complexity denotes the problem size in terms of
space requirements. There exists methods for cipher-cracking that requires huge
amounts of data, for example Rainbow Tables [39] and differential cryptanal-
ysis [40, 41]. Space complexity is, like time complexity, expressed in problem
size.

Also please note that even if some cryptographic vendors advertise with ”un-
breakable” and ”military grade” ciphers, no cipher is unbreakable. We use the
term computationally infeasible to denote all tasks that are so computation-
ally heavy that they are impossible to perform with available resources, either
present or future [7]. Using this, we can see that a cipher that has a key size
of 256 bits and no better way of breaking it than guessing the correct key has
a predicted solving complexity of 2256−1 = 2255. Given that a MIPS year1 is
around 31.5 trillion instructions per year, a typical Intel Core 2 @ 3.2 GHz com-
puter would (theoretically) use 529.812.463 years to break the key. An array of
a million distributed processors with the same specifications would still use 530
years. Consequently, we would consider this algorithm computationally secure.
Some people would reason that this means the cipher is impossible to break.
But impossible is a word that should be carefully weighed when used together
with cryptography. To put these huge numbers in perspective see Section 2.3.4,
that treats key lengths.

2.2 Introduction to Selected Ciphers

In this thesis, we will focus our attention towards some selected ciphers, whose
keys are to be searched for in memory. We’ve selected the three block ciphers
with highest vote-counts from the AES selection process [42], namely Rijndael
(now AES), Serpent and Twofish, and one of the most popular public-key ci-
pher RSA. We will briefly introduce each of these algorithms here as their key
properties will be treated more in-depth later in the thesis (see Section 2.3.5).

2.2.1 Rijndael (AES)

The Rijndael cipher was selected as the Advanced Encryption Standard in
2001 [12], formed from a proposal by Joan Daemen and Vincent Rijmen [43]. It
is a Substitution-Permutation (SP)-network based cipher that works on 128-bit

1MIPS (Million Instructions Per Second) is a measuring unit equalling one million pro-
cessing steps per second [Wik08]. As a result, a MIPS year is 1000000 ∗ 365days/year ∗
86400seconds/day, or approximately 31.5 trillion instructions.

16 FORENSIC KEY DISCOVERY AND IDENTIFICATION

blocks, and can use either 128, 198 or 256 bit keys. AES is widely in use, fast
in both software and hardware and is regarded as the de-facto standard in most
new cryptographic applications. AES encryption is present in a vast range of
applications, among others Truecrypt, Vista BitLocker, OS X FileVault, Drive-
Crypt, BestCrypt, PGP, ProtectDrive, WinZip, WinRAR, Skype, Simp Lite
and OpenSSL.

2.2.2 Serpent

Serpent came second in the AES selection process [And00], after a submission
from Ross Anderson, Eli Biham and Lars Knudsen [44]. It is a 128-bit block
cipher based on a SP-network. To provide reliable and scrutinized security
properties, it reuses the S-boxes from DES, perhaps the world’s most analyzed
cipher. While primarily intended for use with 256-bit keys, all keys are padded
up to 256 bits if needed, and the cipher therefore accept shorter keys. Examples
of applications that feature Serpent encryption are among others Truecrypt and
BestCrypt.

2.2.3 Twofish

Twofish ended third at the last AES conference, and it is a 128-bit cipher that
accepts variable-length keys up to 256 bits [Sch98]. The cipher is based on a
16-round feistel structure with a bijective encryption function F made up by
key-dependent S-boxes, matrix multiplication over a Galois Field (GF (28)) and
several other transformations described in Section 2.3.5. It was submitted by
Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall and
Niels Ferguson [45]. Applications that feature Twofish encryption are among
others Truecrypt, BestCrypt and PGP.

2.2.4 RSA

RSA (abbreviated from its authors, Rivest, Shamir and Adleman) is an algo-
rithm for public-key cryptography first described in 1977. It can operate on
variable plaintext lengths, and use keys of variable length, usually powers of
two (1024, 2048, etc.). It is in wide use in communications protocols and key
exchanges, and also in areas like mail encryption. Being a public-key algorithm,
it is far slower than the block ciphers described above. RSA is utilized in many
applications, among them PGP, Simp Lite, Skype and OpenSSL.

2.3 Cryptographic Keys

This paper attempts to shed light on the possibilities of finding cryptographic
keys in volatile memory. As a consequence, a basic theoretic treatment of such
keys and their properties is warranted. Cryptographic keys have many usages,
storage options, protocols and best practices associated with them, some of
which we will attempt to summarize in this section. Traditionally, ciphers are
divided into two main categories based on the key types, namely symmetric
ciphers and public-key ciphers.

2.3. CRYPTOGRAPHIC KEYS 17

2.3.1 Symmetric Cipher Keys

Symmetric ciphers are based on a single key that usually are used both for
encryption and decryption. All parties that has access to this secret key are
able to decrypt ciphertext encrypted under the key. Some of the most commonly
used algorithms today are the Data Encryption Standard (DES and 3DES) [46],
Advanced Encryption Standard (AES) [13, 12], Twofish [47, 45], Serpent [44,
48], CAST [49, 50], and IDEA [51] (which is patent protected).

Symmetric keys must be kept secret from unauthorized entities, and this
can often lead to the famous key distribution problem (Figure 2.2); if no contact
has been made beforehand by two communicating parties, how can they agree
on a common key? If the key is to be transmitted from Bob to Alice, that
would require some sort of mechanism to provide confidentiality and integrity
of the key, but that is exactly what we are trying to archive in the first place
by using cryptography. Thus we are facing the same problem (establishing a
shared secret) over again.

Figure 2.2 illustrates this problem. Alice and Bob are attempting to com-
municate securely, facing and adversary that can eavesdrop on their messages.
To establish the shared secret e, a secure channel is needed.

As we can see, a key distribution protocol that solves this problem is needed
to effectively use a symmetric algorithm in a communications scenario. Several
such protocols exist; the Diffie-Hellman (DH) key agreement method [52] is
commonly used, but another elegant solution to the problem is available through
public-key cryptography.

Adversary

Key source

Encryption

E
e
(m) = c

Plaintext source

Decryption

D
d

(c) = m

Destination

Alice Bob

m

e

e

c

m

Secure channel

Unsecured channel

Figure 2.2: The key distribution problem. Figure adapted from Handbook of
Applied Cryptography.

18 FORENSIC KEY DISCOVERY AND IDENTIFICATION

2.3.2 Public-key Cipher Keys

A public-key cipher is a cryptographic algorithm that uses a mathematically
linked pair of keys, one public key (here denoted byKpub) that can be distributed
freely, and a private (Kpriv) key that must be kept secret from anyone else than
the owner. Using our formerly established naming conventions, the public key is
used by the sending entity to encipher messages, and decrypted by the receiver
using the its private key:

1. Alice: EKpub
(m) = c

2. Bob: DKpriv
(c) = m

Public and private keys are usually a collection of mathematical primitives
(depending on the cipher type) used in the encipher/decipher calculations. For
example, in RSA the tuple (e, n) is the public key, where e is a number relative
prime to the product φ = (p − 1)(q − 1) and n is the modulus (n = pq) of the
calculations. The private key is a number d relative prime to n such that:

ed ≡ 1 (mod φ) (2.6)

As opposed to symmetric keys, public keys are not just random bits, but
(potentially large) numbers with distinct and provable mathematical properties
(like primality). The security of the cipher relies on these properties, so proper
selection and testing of the qualities of the numbers are of utmost importance
(see Section 2.3.3).

Since public-key cryptography was made famous by the invention of RSA [14,
53], several other algorithms have been suggested [1, 4], among others the Digital
Signature Algorithm/Standard (DSA or DSS) [54], Diffie-Hellman [52], ElGamal
encryption [55], NTRU [56], and Elliptic Curve (EC) versions of these [1, 57, 58].
Although in widespread use, symmetric key algorithms are favored for bulk
encryption because of performance reasons; public-key ciphers are significantly
slower than their symmetric brethren, and their key sizes must be much larger
to provide the equivalent security (see Section 2.3.4).

Returning to the key distribution problem, we can see that public-key crypto
solves it by simply encrypting the shared secret (K) with the public key of the
receiver:

EKpub
(K) = c (2.7)

The receiver can retrieve the key by decrypting c:

DKpriv
(c) = K (2.8)

The receiver can now decrypt the key using his or her private key. Public-
key cryptography solves the key distribution problem, but introduces another
one; namely how ascertain that a given public key actually belongs to the entity
claiming it. The problem has thus been transformed to an authentication issue.

2.3. CRYPTOGRAPHIC KEYS 19

2.3.3 Pseudo-randomness

One of the building blocks for symmetric and public-key cryptosystem key gen-
eration are Random-Number Generators (RNGs). These are used to generate
random keys or nonces with desired properties, like for example large prime num-
bers. There exists a number of academic papers on the subject [59, 60, 61, 62],
even whole books filled with random numbers taken from decaying radioactive
material. Generating true random sequences is however not as easy as it may
seem.

True randomness is hard to define accurately. It is not possible to say that a
sequence of bits is not random; the output ’0101010101010101’ may very well
be the output of a truly random process, even if it does not look random to a
human observer. As a result, randomness is a highly objective property. The
one thing separating truly random from pseudo-random is that the sequence
cannot be reliably reproduced [7]. Sources that are believed to be random are
the decaying of radioactive material, movement of particles suspended in liquid
or gas (Brownian motion) or simply the sampling of movement of the inter-
national stock market2. All these are stochastic processes lacking order and
predictability, and therefore they may be interpreted as truly random.

The problem is that it is hard to produce truly random bit sequences on a
computer; it is per definition a deterministic machine. If you input data, and
get some data out in return, you know that if you input the same data at the
same state, you will get the same output.

Consequently, it is not feasible to generate real random numbers using com-
puters3. Instead, pseudo-random sequences can be generated efficiently at a
computing device. These are numbers that appear random, but are determin-
istically computed from a given state or seed. In this thesis, we use Schneier’s
definitions [7] of pseudo-random sequences; that it must look random. That is,
it passes chosen statistical tests, some of which are covered in Section 2.3.3. We
call this the pseudo-random property.

Unfortunately pseudo-random number generators are per definition not truly
random at all. Like most RNGs supplied in compilers and programming lan-
guages they are highly predictable, and a skilled observer could predict the next
output by studying past output. As a consequence, all RNGs are not suitable
for cryptographic applications. In addition to the pseudo-random property we
want cryptographically secure RNGs to be unpredictable, so that it is impossi-
ble to predict the next bit in the sequence based on the previous bits. We call
this the cryptographically secure pseudo-random property.

To verify this property of a RNG, rigorous testing is performed with the
generator to build confidence that the output it is undistinguishable from a truly
random output. We will cover some of these tests in the following sections.

2Whether or not the stock market is a stochastic process or not is a debatable issue, a
stock broker would probably oppose this idea.

3Without a truly random source connected to the computer.

20 FORENSIC KEY DISCOVERY AND IDENTIFICATION

Entropy

(a) The Persistence of Memory by Sal-
vador Daĺı

(b) Random Noise

Figure 2.3: Which JPEG image contains the most information?

One of the most widely used measures for information content and random-
ness is entropy. The information content tells us how much information one
symbol gives us, when we view the information stream as a continuos stream of
stochastic nature; that is, that the next symbol to be read are unknown to us,
and that the information we receive may look arbitrary and chaotic.

Streams of bits and bytes in digital media are such stochastic streams, their
readability depending on the granularity in which we look upon them. A stream
of bits may look totally random and without patterns, but by grouping these
symbols into higher level and predefined symbols like bytes or words, patterns
may emerge. The interpretation of the patterns thus depends on the symbols
used at the machine reading the stream, and a stream may be interpreted dif-
ferentially at different machines. This would of course not yield any sensible
information transfer, since without a properly defined alphabet it is hard (but
not necessarily impossible) to decipher what the stream really should be inter-
preted as.

The entropy of a message M with an alphabet size of ω is defined by Shan-
non [63] as:

H(M) = E{I} =
ω∑

i=1

piIi =
ω∑

i=1

pilog

(
1
pi

)
, 0 ≤ pi ≤ 1 (2.9)

Here, E{.} is the statistical expectation operator and I is the information
content, while parameter pi is the probability of encountering that symbol i.
We easily see that in an uniform distribution, all these probabilities will assume
the same value, namely 1/ω.

When we are working with information transfer (which, essentially all digital
media and computers are all about) we have to treat the signals like stochastic
information. This is indeed the core of information theory; true information
transfer happens when the receiver does not know what the next piece of infor-
mation will be before he has received it. The logicality of this statement should
be quite clear; there’s no sense in transferring information that the receiver al-
ready know. Thus entropy also tells us something about the uncertainty of a
message or stream, that is, how many bits that are needed to be recovered to
discover the meaning of the message. In cryptographic terms, the uncertainty

2.3. CRYPTOGRAPHIC KEYS 21

is how many bits of the plaintext that need to be discovered to infer the whole
message. If a message can be represented by a single bit, like a typical boolean
relationship "true"/"false", a cryptanalyst needs only do discover one care-
fully selected bit to recover the whole plaintext. If the ciphertext "lal" is either
"true" or "false", one one bit plaintext could reveal the whole plaintext since
the entropy of the message is 1.

Random sequences of symbols has entropy approaching the maximum value
for the alphabet, and thus mimics the properties of a uniform distribution. This
is quite logical, since we want each symbol in the alphabet to appear with the
same probability as the others, so that no one can predict the next symbol
accurately. A random sequence of bytes Mbytes will approach a entropy value
of 8 bits per byte when a large enough sample size is used, since the alphabet
size ω = 28 = 256 and each pi in W = {p1, p2, ..., pω} equals 1/256. We may
express this as (using 2.9):

H(Mbytes) =
256∑
i=1

pi log2

(
1
pi

)

=
1

256

256∑
i=1

log2 (256)

= log2(256)
= 8 bits/byte

Since we are measuring the information content (entropy) of bytes and using
the base 2 logarithm, the information content in each symbol (e.g., byte) is
measured in bits, and expressed by bits per symbol or bits per byte. The choice
of base for the logarithm is essentially free, but base 2 is commonly used for
digital information content.

It also follows from the above that random data cannot be significantly
compressed, since it is already approaching its maximum entropy value

√
ω,

depending on the sample size n as explained above. We can express this as

lim
n→∞

H(Mbytes) =
√
ω (2.10)

Therefore, given a large enough sample size, random data will approach its
maximum entropy value. That is, it is not possible to express the information
any more efficiently using bits, and the random data representation is therefore
a minimal representation. Consequently, if you could express the information
more efficiently, it would be an indication of non-random data.

As inferred from the above there exists many other types of data that shares
the property of high entropy with encrypted data. Compressed files have high
entropy; JPEG images has typically an entropy value of 7.9-8 bits per byte. This
does not mean that compressed data is random, it is usually highly correlated,
but still has high entropy values.

In Figure 2.4, a 1800-byte segment of the physical memory of a Ubuntu
Server 7.10 using OpenSSL is visualized by sliding a 256-byte window over it
and calculating the entropy of each window. A 512-bit RSA key is located
at offset 0x460, and as we can see, it has a distinctly higher entropy value
(around 7.0) than its surroundings. Unfortunately, this is not always the case.

22 FORENSIC KEY DISCOVERY AND IDENTIFICATION

Figure 2.4: Entropy-graph for 1800 bytes of memory containing a 512-bit RSA
key. The key is located at offset 0x460.

The surrounding data may very well have high entropy values, as shown in
Figure 2.5.

Figure 2.5 shows a typical non-key high entropy region taken from an image
of the physical memory of a Windows system. The region is clearly not random,
as it is simply a sequential string of bytes. For a pure entropy search, this
region would probably be counted as a search hit. If we are to reduce the
number of false positives when searching for high-entropy regions like suggested
by Shannon, we need to distinguish between compressed, non-random data like
the above and (pseudo-)random data.

Other Statistical Methods for Evaluating Randomness

Fortunately, there exists a myriad of statistical methods for evaluating the ran-
domness of data [61]. Many of these methods are needed by the cryptanalysts
that designs RNGs, so that they may evaluate the randomness of the output of
these. χ2-distributions (Chi-square), poker tests and run lengths can be used to
accurately estimate whether the data analyzed is random or not. These meth-
ods can only say if the data is statistically random, but several of these tests are
sensitive to correlation and other factors that indicate non-random data.

An idea is to utilize these test to analyze key structures in memory, and gen-
erate signatures and methods to identify random data (e.g., keys or ciphertext).
We will briefly go through some of these tests here; the simple statistics tests
like counting, poker and runs are usually able to identify pseudo-randomness,
while the more advanced like χ2 and arithmetic mean are more sensitive to
the predictability of the data. Therefore they can indicate the quality of the
pseudo-randomness, and if it is cryptographically secure. All test data in this
section is assumed to be 20 000 bits, and all tests has a error probability of

2.3. CRYPTOGRAPHIC KEYS 23

Figure 2.5: Example of a (non-random) high-entropy region in memory.

10−6 unless another value is mentioned. While the tests are described as appli-
cable for bit-level granularity, the tests can usually be performed using bytes or
DWORDs instead.

Runs Test A run is a sequence of bits of the same value, either ”0”s or ”1”s.
The runs lengths tested are normally from 1-6 bits, and the test is passed if
the counted number of such runs falls within an acceptable interval. National
Institute of Standards and Technology (NIST) has among other specified some
acceptable intervals [64] for runs testing, which are reproduced in Table 2.1.

Run Length Interval
1 [2267, 2733]
2 [1079, 1421]
3 [502, 748]
4 [233, 402]
5 [90, 223]
6 [90, 233]

Table 2.1: Tolerance intervals for runs of various lengths.

Long Runs Test The long runs test are a variation of the runs test, testing
for runs with lengths of 34 or longer. These runs should not exist, and the test

24 FORENSIC KEY DISCOVERY AND IDENTIFICATION

fails if any is encountered.

Monobit Test This test simply counts the number of ”0”s and ”1”s, and as we
discussed earlier, these numbers should be roughly the same. NIST recommends
that the test should pass if the number of ”1”s falls within [9654, 10346] for 20000
bits.

Poker Test The poker test divides the sequence of bits into four-bit segments
and counts the frequency (denoted fi) of each of the 24 = 16 possible values.
The test is passed if the value

X =
16

5000

15∑
i=0

f2
i − 5000 (2.11)

lies within the interval [1.03, 57.14] according to NIST.

The χ2 Test Pearson’s χ2 (chi-square) test is probably the most used test for
the randomness of data, and it is extremely sensitive to small variations in its
input. Mathematically, it can be described as the statistic

χ2 =
t∑

i=1

(H(Xi)− E(Xi))2

E(Xi)
(2.12)

for t distinct events Xi where the expected value E(Xi) of the event Xi may
be expressed as

E(Xi) = nP (Xi) (2.13)

where n is the number of observations and P (Xi) is the probability for the
occurrence of Xi. In essence, the test gives information on goodness of fit, that
is, how well an empirically collected probability distribution corresponds to a
theoretically expected distribution. As mentioned before, a random sequence
should be uniformly distributed, which means that the expected value of all
P (Xi) will be the same (where ω is the alphabet size):

P (Xi) = 1/ω ⇒ E(Xi) = n/ω (2.14)

Whether this actually occurs can then be calculated using the χ2 test (using
2.12 and 2.14):

χ2 =
ω−1∑
i=0

(H(Xi)− n/ω)2

n/ω
=
ω

n

ω−1∑
i=0

H(Xi)2 − n (2.15)

This test is repeated for samples of data (essentially partial sequences of Xi,
in our case memory bytes), and the test passes if the result is within the interval
[ω − 2

√
ω, ω + 2

√
ω]. In reality, the distribution is estimated using numerical

methods, and several libraries and implementations exist to do this.
Based on the above assumptions, the error probability (that a ”good” ran-

dom sequence is interpreted as a ”bad” one) is around two percent. We can thus
relate the output of the test to a percentage of how often a truly random se-
quence would exceed the result value, like Walker does in his tool ENT [Wal08].

2.3. CRYPTOGRAPHIC KEYS 25

This will give an indication of how ”suspect” the supposedly random sequence
is of being non-random. Randomness is as mentioned hard to measure.

We will use the ENT tool to measure the randomness of several data types
during this thesis, and we can already now establish that compressed data fails
the chi-square test as expected (see Section 2.3.3).

Arithmetic Mean Test The arithmetic mean of a sequence of symbols is
simply the the sum of the symbols divided by the length of the sequence. When
the symbols are bytes, this value should be around ω

2 = 127.5 This is equivalent
to the Monobit test for bytes.

Serial Correlation Coefficient This test measures the possible existing de-
pendencies of the symbols in the information measured. For C code, the test will
give values approaching ±0.5, while totally uncorrelated data will have values
near ±0.0. Uncompressed bitmaps and other highly uncompressed and corre-
lated data will give values approaching ±1. The test passes if data is sufficiently
uncorrelated. NIST specifies the following test value for a range of 10000 bits,
b1, ..., b10000, and for a t in the range 1 ≤ t ≤ 5000:

Zt =
5000∑
i=1

bi ⊕ bi+1 (2.16)

Figure 2.6: Lattice test for Unix function rand().

Visual Tests In addition to the above tests, it is possible to visually spot
non-uniformness by plotting the output of the function investigated (e.g., the
RNG) on a 2D or 3D graph. For example, the lattice test is formed by plotting
the output of three different instances of an RNG on a 3D map, and visually

26 FORENSIC KEY DISCOVERY AND IDENTIFICATION

confirming the uniform distribution. The output should take the shape of a
cube, like in Figure 2.6.

The ENT Tool

John Walker’s ENT tool can be used to measure the randomness of a given input.
To illustrate the former discussion about randomness, we will use the program
to measure the randomness of a compressed JPEG file with high entropy. Using
the image in Figure 2.3(a) as input, the output of the command is as follows:

$ ent persistence_memory.jpg

Entropy = 7.940680 bits per byte.

Optimum compression would reduce the size

of this 7611 byte file by 0 percent.

Chi square distribution for 7611 samples is 707.44, and randomly

would exceed this value less than 0.01 percent of the times.

Arithmetic mean value of data bytes is 126.5066 (127.5 = random).

Monte Carlo value for Pi is 3.063091483 (error 2.50 percent).

Serial correlation coefficient is 0.100115 (totally uncorrelated = 0.0).

The chi-square value is interpreted according to the tool description [Wal08]:

”The chi-square distribution is calculated for the stream of bytes in
the file and expressed as an absolute number and a percentage which
indicates how frequently a truly random sequence would exceed the
value calculated. We interpret the percentage as the degree to which
the sequence tested is suspected of being non-random. If the per-
centage is greater than 99% or less than 1%, the sequence is almost
certainly not random. If the percentage is between 99% and 95% or
between 1% and 5%, the sequence is suspect. Percentages between
90% and 95% and 5% and 10% indicate the sequence is ”almost
suspect”.”

As we can see the image has a high entropy (7.940680 bits per byte), but
the chi-square value clearly indicate non-randomness by being ”almost certainly
not random”.

To put this in perspective, we extracted the private exponent from a 4096-bit
(512-byte) RSA key, and ran the output through ENT:

$ ent private_exp

Entropy = 7.601792 bits per byte.

Optimum compression would reduce the size

of this 512 byte file by 4 percent.

Chi square distribution for 512 samples is 266.00, and randomly

would exceed this value 30.51 percent of the times.

Arithmetic mean value of data bytes is 128.9434 (127.5 = random).

Monte Carlo value for Pi is 3.058823529 (error 2.63 percent).

Serial correlation coefficient is -0.011168 (totally uncorrelated = 0.0).

The exponent appears random to all of the tests, except the Monte Carlo
value that has and error of 2.63 percent. This is however due to the slow

2.3. CRYPTOGRAPHIC KEYS 27

Reference Magnitude
One million (106) 220

Seconds in a year 225

Global population 232

Age of universe 234 years
1 MIPS Year (MY) 245 operations
1 Sony PlayStation 3 Year (230400 MIPS) 263 operations
Estimated number of protons in the universe 2256

Table 2.2: Reference for large numbers.

convergence nature of the Monte Carlo test (and is also why it is not covered
in this thesis). Thus the sequence is essentially random, which is as expected.
In contrast, if we input the whole DER-encoded (see Section 2.3.5) private key,
we see that the tests are extremely sensitive to non-randomness, and that the
small tags from the DER encoding affect the chi-square output of ENT:

$ ent private_key.der

Entropy = 7.895050 bits per byte.

Optimum compression would reduce the size

of this 2349 byte file by 1 percent.

Chi square distribution for 2349 samples is 370.66, and randomly

would exceed this value less than 0.01 percent of the times.

Arithmetic mean value of data bytes is 124.6607 (127.5 = random).

Monte Carlo value for Pi is 3.058823529 (error 2.63 percent).

Serial correlation coefficient is 0.042607 (totally uncorrelated = 0.0).

Consequently we need to adopt advanced techniques to use entropy and
randomness evaluation methods to find such keys in memory.

2.3.4 Key Length

While the randomness of crypto keys are important, key lengths are also vital
to the security of the cipher. Since any attacker can launch a brute-force key-
guessing attack on a cipher key, it should be long enough to make this approach
computationally infeasible.

The numbers in Table 2.2 represent some examples of large numbers, pro-
vided to present some context to the discussion around key lengths. The num-
bers treated in cryptography are extremely big, often beyond human compre-
hension. As we can see, brute-forcing a 256-bit AES key is roughly equivalent to
searching for one particular proton in the entire universe. This strongly imply
that a symmetric key of this size likely will withstand all foreseeable increases
in computing power.

Symmetric Key Length

Symmetric keys are in general only susceptible to brute-force attacks, as they
does not have any internal structure and mostly can be interpreted as random
sequence of bytes. To mount such an attack, the attacker must have access to a

28 FORENSIC KEY DISCOVERY AND IDENTIFICATION

small amount of ciphertext and its corresponding plaintext. The attacker does
not need large amount of plaintext/ciphertext pairs, often a known header in a
Transmission Control Protocol (TCP) packet or the header of a known filetype
is enough. As a result, the space complexity of the attack is virtually zero. The
time complexity of the attack is directly dependent on the key size; a 56 bit
DES key has 256 possible permutations, and the expected time used searching
for the key is 1

2 (256) = 255 since the key statistically will be found on the half
way.

To infer anything usable from the above, we need to compare these numbers
with the numbers in Table 2.2. First of all, to say anything about the security
of the cipher, we assume that the adversary knows every detail of the cipher we
use, and that he has access to vast amounts of plaintext/ciphertext pairs. Now
recall an important principle from Section 1.2: The security of the cipher should
rest in the key, and not the algorithm design. Clearly this implies that for the
cipher to be secure, we need a key size that will withstand such a brute-force
attack.

So how long will it take to mount a successful brute-force attack on a 56-bit
key? The answer is that it depends on the approach; the search does not need
to be sequential. The attacker may divide the key range in segments and assign
each to a devoted chip or distributed computer. With enough money, dedi-
cated hardware may crack such keys far faster than a software-based approach.
Notably, the COPACOBANA project [Cop07] and the Electronic Frontier Foun-
dation (EFF) DES Cracker [65] are able to crack 56-bit DES in 6.4 days and 22
hours, respectively (COPACOBANA has a much lower cost associated). Other
approaches uses more easily available hardware to perform similar attacks. For
example, recent research suggest that 52 PlayStation 3 consoles can be used to
crack DES in 9 days using 30,056 Euro as a one-time cost [66].

But the time complexity raises exponentially, and not everyone has resources
or wits to construct their own hardware cracker. Diffie argues in his paper
Ultimate Cryptography that even with a breakthrough i quantum computing,
key sizes up to 250-400 bits should suffice in the future [67]. Brute-forcing these
has a time complexity way beyond our apprehension, and even if we were able
to harvest all the power from the sun and other stars and channelize all this
energy into the task of breaking the keys, we would be faced with a mind-
boggling number of years of waiting [7].

So faced with 56, 128, 192 or 256-bit keys and a strong cipher, what should
one chose? Of course, this depends on the value of the data, available resources
and performance demands. 56-bit keys are insufficient for general security, while
128-bit is the clear choice for now. This gives 2128 different keys and an expected
brute-force time complexity of 2127 ≈ 1.70∗1038, which makes it 271 times harder
to guess than the 56-bit key. If the system is designed to stand the test of time,
a 256-bit key would be a wise choice.

Public-Key Key Length

Public keys are vulnerable to other attacks than symmetric keys. Since the
public modulus of an RSA key is the product of two large primes p and q, one
way of attacking the key is to try to factor the modulus and recover the private
key d. This is a hard problem, given large enough modulus. Most public-key
system security rely on one-way functions that are easy to perform one way,

2.3. CRYPTOGRAPHIC KEYS 29

Year / Cipher AES-128 AES-192 AES-256
2001 2644 3224 6897 7918 13840 15387
2010 2942 3560 7426 8493 14645 16246
2020 3296 3956 8042 9160 15574 17235
2030 3675 4379 8689 9860 16538 18260

Table 2.3: ”AES-security”-matching RSA modulus sizes. All sizes in bits.

but computationally infeasible the other way. It is therefore interesting to see
how fast one can solve such problems of different sizes.

Factoring is hard, but it is getting easier. The General Number Field Sieve
(GNFS) [68, 69], the currently fastest factoring algorithm for large numbers [70],
is constantly improving its performance. At the time of writing, the current
record is factoring a 200 digit (corresponding to 663 bits) number in 3 months
on a cluster of 80 2.2 GHz Opterons [71], achieved by Bahr, Boehm, Franke and
Kleinjung May 2005. Clearly, this makes 512 bit RSA insufficient for security.

Lenstra points out that to mach AES-128 security, a RSA key length in the
interval [2942, 3560] bits is needed in 2010 [72]. A summary adapted from his
paper is shown in Table 2.3, where the predicted sizes are represented in two
columns for each AES key length: One minimum and one conservative value. It
is of course not sensible to make predictions in this field of study, since history
has shown that new methods for factorization very well may be invented. This
implies that to select a key size, one have to know the resource level of an
adversary, and choose large enough key sizes accordingly.

However, when searching for keys in memory, we face the opposite problem
(at least when using the entropy approach): The longer the key, the easier it is
to locate; large amounts of data are needed to accurately estimate the entropy.
We will discuss this further in Section 2.3.5.

2.3.5 Key Management

When users are given the option to choose their own passwords (and thereby
keys), the tend to choose strings based on birthdays, pets, football teams or
anything else that helps remembering them. This can undermine the security
of even the most secure cryptosystem.

Instead, users should be encouraged to choose passphrases or abbreviated
passwords that contain as many different types of ASCII characters as possible.
Words from a dictionary should be kept out, and also information that can be
tied to the person owning the key. Of course, the user wants ’Bob83’ as his
password, it is his or her choice.

In addition, a proper key churning process like the one described in the
following section should be undertaken by the cryptographic application, so
that the password selected by the user not is used directly in the encipherment
process. A good cryptographic practice is to never use the master key for any
encryption tasks at all, but instead derive keys from it or encrypt the encryption
keys used with the master key.

Key management is therefore a difficult task. Keeping the key secret is what
the security of the system depends on, and keeping it secret often depend on

30 FORENSIC KEY DISCOVERY AND IDENTIFICATION

external and less controllable entities like users, operating systems and applica-
tions. In this section we will consider the different usage and storage options
for keys that are relevant to this thesis and memory forensics.

Generating Keys

Key generation or churning is not something you do to create easy-to-remember
keys, but rather a random byte-string of a given length. The U.S. Department
of Defense recommends DES in Output FeedBack (OFB)-mode, with an Initial-
ization Vector (IV) created from an amount of state indicators at the generating
computer (e.g., registers, system clock and counters) [73]. The plaintext can be
typed in by hand by an administrator, for example a 8-character password. The
output of the cipher is then used as key.

There exist many ways of doing key generation, and we will not cover them
here. The important lesson is that the key should essentially be as random as
possible, to prevent better-than-brute-force attacks. In the case where parts of
the key has mathematical properties, these should of course be tested accord-
ingly.

Key Storage

Usually a cryptographic key can be stored in two distinct4 places on a computer;
in physical memory (RAM) during usage, and on secondary memory or other
non-volatile memory at all other times. We focus on the former scenario, but
cannot exclude the possibility of encountering keys on the hard drive. In a
real investigation, effort should be laid down to search in all available storage
mediums for keys.

The storage of keys on secondary memory is clearly a security versus usability
tradeoff, ideally no such storage should be performed, and the user should be
required to present the password or key every time it is needed. This is obviously
not feasible in many forms of operation, for example consider a SSL web server
that needs its private key every time it receives a HTTPS request.

Instead many applications encrypt their keys using a user-supplied password,
decrypts it at startup and keeps the decrypted key in memory while the crypto-
graphic application is running. The storage format and encoding on disk varies
from application to application (and even within applications), but in memory
the processor is usually dependent on a raw byte representation to make quick
use of the key.

Trusted Computing and the TPM Chip Another approach to key storage
is to store them at a tamper-resistant device or a token. This is one of the
ideas behind the Trusted Platform Module (TPM) chip, that comes pre-installed
at most new computers today. The initiative lobbying the chip, the Trusted
Platform Group (TPG), assess that the TPM can among other things be used
for key storage [74]. The TPM keeps track of the state of the computer, and will
only release the key if the computer is in a ”trusted state”; this is to prevent
unauthorized use and malware modifications of the OS.

4Keys may be subject to swapping, and hence may be residual at secondary storage. In
that case, the borders between secondary and primary memory is not as clear (from our
viewpoint).

2.3. CRYPTOGRAPHIC KEYS 31

The TPM thus aims to counter the untrusted nature of computers today,
by tracking the different states during boot and operation. The chip itself is
tamper-resistant, which means it is hard to desolder or read the chip without
destroying it. Thus, the confidentiality and integrity of the data encrypted
with this key is protected not only by the state of the computer, but also by a
hardware layer of security.

Unfortunately, recent research shows that in some cases the TPM makes
whole-disk encryption systems like Microsoft BitLocker less secure, because the
key is loaded into memory at boot time, before login. This allows an attacker
to perform a coldboot attack even if the computer is powered off at the point
in time where it is seized [30].

As an example on how keys are stored and handled, we will discuss RSA,
AES, Serpent and Twofish keys and their representation in memory, and how
the representation may be utilized to generate search signatures that are able
to accurately extract keys from memory dumps.

RSA Key Storage Private RSA keys are mostly stored represented as .PEM
files, where the key data resides, base64 encoded for portability, between two
textual delimiters:

-----BEGIN RSA PRIVATE KEY-----

MIIBPAIBAAJBAJnAyV66JVf2EGyIf7xzqVSwPVWD912gOi02UiHlUXmXkY9b4Nbp

4kpUyRhliaDWSV2yu0pq3EAJMEbPLb2pYL8CAwEAAQJBAJVwTcimQDmYTipPGWg/

Oqu3iEWfuEPlweXD0FxlmKUGbKTGdgzwixkoD4GCy0DlQqJ9vhkaSgYOGISVBoVK

hNECIQDIDQTY1ALDqAND/5OCFHRVI7nmgqVLblME2UkNdsxwFQIhAMTA/8zlEEov

TI7O+Yp2nzR1YwixplmSt8ZhWzklF26DAiEAlpaeQG4PiqLNmoEn07J8A576EFfl

/4sTuUGrKRR1PiUCIQC6sAYHfDGAsnCJ8ImGgBd/xwI49ZdJ1pTZfvb3ueIJ0QIg

QkOyt4ZWM0SjYC0Ke6ZnQ+5IXeh2dfldfE9qBCLzyD0=

-----END RSA PRIVATE KEY-----

When the key is stored at disk, it is usually encrypted using a password.
OpenSSL uses DES, 3DES or AES encryption for this. When the key is used
however, the key is decrypted, base-64 decoded and used in its plain form, which
is ASN.1 [75] DER5 encoding as specified in PKCS #8 [76, 14]. The ASN.1
encoding specifies several data types markers that are used in the encoding
process of the key, among others SEQUENCE (represented by the hexadecimal
value 0x3082) and INTEGER (which corresponds to 0x02). These identifiers are
used to identify different instances of data values and their properties (size,
etc.) in a DER-encoded file. We will discuss how to leverage these properties
for cryptographic key search in Section 6.1.5.

The AES Key Schedule

In the paper Lest We Remember: Cold Boot Attacks on Encryption Keys [30],
Halderman et al. uses the properties of the AES key schedule to search for
AES keys in memory. The key schedule (sometimes called round key or key
expansion) is an array of keys derived from the master key, each key used in
the separate rounds of the cipher. This key schedule is often computed ahead
of time, in what appears to be a security-performance tradeoff. We will briefly
explain the AES 128-bit key schedule here, the approach for 198 and 256 bit

5Distinguished Encoding Rules, a subset of Basic Encoding Rules (BER), set by the ASN.1
standard.

32 FORENSIC KEY DISCOVERY AND IDENTIFICATION

keys is in principal the same, albeit with slightly modified key schedules. For
more on the AES key schedule, see [12, 13] or [38].

The key schedule uses some of the common operation in Rijndael’s Galois
field:

• The rotate operation, a 8-bit circular rotate on a 32-bit word

• The rcon operation; 2 exponentiated to a user supplied value in the Galois
field

• The S-boxes, sbox

• A key schedule routine schedule core

Basically, the inner loop of the key schedule routine schedule core performs
the following operations (for a 128-bit key):

1. Take in an input of a 32-bit word and an iteration number i

2. Copy the input over to the output

3. Use rotate on the output

4. Apply sbox on all four individual bytes in the output word

5. On the leftmost byte of the output, XOR the byte with 2rcon(i)

The actual key expansion, the expand key operation, uses these operations
to expand the 128-bit (16 bytes) to a full 176 bytes key schedule:

1. The first 16 bytes is the master key

2. The iteration value i is set to 1

3. Until we have 176 bytes of key schedule, do:

(a) To create the first four bytes, do:

i. Create t, a four-byte temporary value
ii. Give t the value of the proceeding four bytes

iii. Perform schedule core on t, with i as iterator value
iv. Increment i by one
v. Xor t with for four-byte block 16 bytes before the new expanded

key. This becomes the next four bytes in the key schedule

(b) To create the next 12 bytes of the key schedule, do the following three
times:

i. Assign the value of the proceeding four bytes to t

ii. Xor t with for four-byte block 16 bytes before the new expanded
key. This becomes the next four bytes in the key schedule

There exists several test vectors for this operation, for example, the empty
key 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 generates the fol-
lowing key schedule:

2.3. CRYPTOGRAPHIC KEYS 33

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

62 63 63 63 62 63 63 63 62 63 63 63 62 63 63 63

9b 98 98 c9 f9 fb fb aa 9b 98 98 c9 f9 fb fb aa

90 97 34 50 69 6c cf fa f2 f4 57 33 0b 0f ac 99

ee 06 da 7b 87 6a 15 81 75 9e 42 b2 7e 91 ee 2b

7f 2e 2b 88 f8 44 3e 09 8d da 7c bb f3 4b 92 90

ec 61 4b 85 14 25 75 8c 99 ff 09 37 6a b4 9b a7

21 75 17 87 35 50 62 0b ac af 6b 3c c6 1b f0 9b

0e f9 03 33 3b a9 61 38 97 06 0a 04 51 1d fa 9f

b1 d4 d8 e2 8a 7d b9 da 1d 7b b3 de 4c 66 49 41

b4 ef 5b cb 3e 92 e2 11 23 e9 51 cf 6f 8f 18 8e

As a comparison, here is a hexadecimal dump representation of a real 128-
bit key (b6 e4 48 2d c1 bd 00 89 3f 02 f9 dd 5d a5 10 22) found in the
memory of Windows Vista:

$ hexdump -C vista-simp-key-2

00000000 b6 e4 48 2d c1 bd 00 89 3f 02 f9 dd 5d a5 10 22 |..H-....?...].."|

00000010 b1 2e db 61 70 93 db e8 4f 91 22 35 12 34 32 17 |...ap...O."5.42.|

00000020 ab 0d 2b a8 db 9e f0 40 94 0f d2 75 86 3b e0 62 |..+....@...u.;.b|

00000030 4d ec 81 ec 96 72 71 ac 02 7d a3 d9 84 46 43 bb |M....rq..}...FC.|

00000040 1f f6 6b b3 89 84 1a 1f 8b f9 b9 c6 0f bf fa 7d |..k............}|

00000050 07 db 94 c5 8e 5f 8e da 05 a6 37 1c 0a 19 cd 61 |....._....7....a|

00000060 f3 66 7b a2 7d 39 f5 78 78 9f c2 64 72 86 0f 05 |.f{.}9.xx..dr...|

00000070 f7 10 10 e2 8a 29 e5 9a f2 b6 27 fe 80 30 28 fb |.....)....’..0(.|

00000080 73 24 1f 2f f9 0d fa b5 0b bb dd 4b 8b 8b f5 b0 |s$./.......K....|

00000090 55 c2 f8 12 ac cf 02 a7 a7 74 df ec 2c ff 2a 5c |U........t..,.*\|

000000a0 75 27 b2 63 d9 e8 b0 c4 7e 9c 6f 28 52 63 45 74 |u’.c....~.o(RcEt|

000000b0

The Serpent Key Schedule

Serpent’s key schedule has a format similar to the AES key schedule; it uses its
user supplied key as the first round key, with the following round keys derived
from this master key. It also uses functions from the cipher to calculate the
round keys, by utilizing its S-boxes.

If the master key supplied is smaller than 256 bits, the key is padded by
appending a ”1” bit to the Most Significant Byte (MSB) end, followed by as
many ”0” bits as necessary to make up 256 bits. The cipher needs 132 32-bit
words of key material, hence we need to derive 33 128-bit sub keys K0, ...,K32

from the master key. The derivation process can be described as follows, based
on the discussion in [48, 44]:

1. Set the value of the first two sub keys, K1 and K2, to each half of the
user-supplied master key

2. Expand the key up to 256 bits if necessary as explained above

3. Treat the key as 8 32-bit words w−8, ..., w−1 and expand it to a prekey
w0, ..., w131 by the following transformation:

wi = (wi−8 ⊕ wi−5 ⊕ wi−3 ⊕ wi−1 ⊕ φ⊕ i) << 11 (2.17)

where φ is the fractional part of the golden ratio (
√

5 + 1)/2.

34 FORENSIC KEY DISCOVERY AND IDENTIFICATION

4. Calculate the round keys using the eight S-boxes. The words of the final
key schedule, k0, ..., k131 are calculated in the following way:

{k0, k1, k2, k3} = S3{w0, w1, w2, w3}
{k4, k5, k6, k7} = S2{w4, w5, w6, w7}
{k8, k9, k10, k11} = S1{w8, w9, w10, w11}
{k12, k13, k14, k15} = S0{w12, w13, w14, w15}
{k16, k17, k18, k19} = S7{w16, w17, w18, w19}

. . .

{k128, k129, k130, k131} = S3{w128, w129, w130, w131}

5. Renumber the 32-bit words into 128-bit keys of the form

Ki = {k4i, k4i+1, k4i+2, k4i+3}

The result is a 560-byte array of the master key together with 33 derived
round keys. As an example, the following is a key schedule found in a Windows
XP memory image using Truecrypt Serpent with key
6f 69 97 c5 40 ff ff d3 c0 22 ce f8 6e c4 3c 54
41 5d 26 95 95 5e 2d b5 fc 5a 1a ee 57 dd 95 3d:

6f 69 97 c5 40 ff ff d3 c0 22 ce f8 6e c4 3c 54

41 5d 26 95 95 5e 2d b5 fc 5a 1a ee 57 dd 95 3d

9b 56 94 5c 21 f0 c0 09 a7 9a 2d 56 24 8e 46 2d

57 c0 f1 d6 61 ee 5f 60 ed 72 f7 63 e4 be 53 ae

86 d7 cc e8 96 09 eb 59 e6 23 e4 10 4b d0 63 14

5c c4 76 75 56 83 9d be 21 d5 79 cd c0 af a5 b4

7e 9f 1e 43 af c2 34 78 e0 ce 3c 39 2d ff 69 a7

b1 91 d2 86 1e fb d4 7d f8 a8 70 19 cb 35 36 8e

ca 99 78 14 40 6c 3e 0f 59 58 d3 df f8 fd 9a 58

79 94 99 13 9d d8 4d 7a 03 86 e5 6a 16 8d 06 01

85 8e f3 9c 97 bf f5 d2 79 ec 9a b7 35 bf 09 6b

03 23 ed 0f e3 8b 3e e2 6c af 31 71 71 59 d6 80

5a 75 c7 c4 d2 28 88 91 42 16 b5 04 97 99 9a 9d

ac 82 94 71 3e 50 cd 33 6b 94 9a e4 cf 33 a8 5e

3a 87 93 f5 8b 94 f4 4a e0 8a fe f4 3d f0 26 bc

61 89 8e af 13 63 42 6a 91 64 ad 40 aa dc ec 1c

79 c4 44 c4 e0 b0 3c 46 c1 f9 1e a9 b9 1c ec db

dc b1 21 78 29 77 a6 81 d6 fb 83 5c db 8c 55 76

bb 33 52 6d 66 41 65 f2 4c e1 9f 6a 4c 25 c1 2a

7f ac 71 b8 e4 18 b2 6b 8d 87 92 38 1c 86 61 98

2e 6b 0b f2 02 f0 71 38 eb 6e 36 fb 81 4d ca fc

17 d3 f8 ef f6 fc 97 a4 3b 47 a0 e6 f6 5a e5 e9

29 ae 85 d2 95 3b c2 50 e4 74 8a 0d c1 b1 6c dd

88 11 b3 5d eb 24 4e b2 b0 70 b1 99 68 4d c3 77

61 9c 9d 7b 97 7f 58 46 24 ca 18 16 15 87 f8 bb

8a 66 a3 17 5a cc 6a 55 6e eb de d0 27 91 b1 bb

b8 25 8c c7 57 4b bc 80 a3 cb 67 95 f0 2e 8a b3

d5 c7 b7 7a a9 67 a7 6a 1a 25 14 d9 32 dd fb 37

8a e4 34 e3 69 d5 1d 18 b5 7a 0e fc 2e 5a ee 87

72 5d 1b 6d b7 cc 19 82 00 c1 14 6c 7c 83 8a a4

0d a8 33 77 48 3c 88 21 64 88 fa 53 19 ae 7f 89

67 1d 84 66 3e 17 c4 11 8e 92 1f b3 45 14 6b ed

a7 db f5 35 c5 1a 67 8c 11 a2 8c c8 38 6c 58 e5

e8 bb 2b eb 68 ec 6e e6 e6 86 57 d2 09 23 c1 dc

80 87 7c 0a d7 71 24 39 c1 84 0e bf 12 ae db 3b

2.3. CRYPTOGRAPHIC KEYS 35

Here the two first 16-byte vectors are the 256-bit master key, and the 33
remaining rows the 128-bit sub keys.

The Twofish Key Schedule

Twofish uses a slightly different approach than AES and Serpent, by utilizing
key-dependent S-boxes together with round keys in the encryption process [45].
Twofish is a 16-round feistel-based structure with additional input and output
whitening, where the keyed S-boxes are combined with a Maximum Distance
Separable (MDS) matrix and a Pseudo-Hadamard Transform (PHT) to form the
core of each round, resulting in a far more complex key schedule than the last
two examples. The cipher can operate with keys of length N = {128, 192, 256}
bits.

If the algorithm is compiled for a modern-day computing device with suffi-
cient amounts of memory, it also combines several of the operations and rep-
resents them as a 4 KB table in memory. This is mainly done because of
performance reasons, and the resulting encryption operation reduces itself to
only four table lookups and three XORs [47].

The size of this table both makes Twofish keys both easier and harder locate.
Easier since the 4 KB table makes an excellent search signature, and harder
because the size of the whole key schedule exceeds 4096 bytes, which is the
usual size of a page in memory. The key schedule may therefore be scattered
over several pages at different locations in the physical memory. We will treat
this problem more in-depth in Section 6.1, for now we assume that the whole
key schedule occupies a continuous address space in the memory investigated.

The full key schedule consists of 40 32-bit words of expanded key K0, ...,K39,
the keys for the S-boxes and the optional 4 KB table that merges the S-box
lookup and MDS matrix multiplication. Before discussing the key schedule
generation, we briefly describe the MDS matrix, an error correcting code matrix
RS, the function h and permutations q0 and q1 which are all needed to calculate
the schedule.

MDS Matrix The MDS matrix is given by:

MDS =

01 ef 5b 5b
5b ef ef 01
ef 5b 01 ef
ef 01 ef 5b

where the notation is in hexadecimal form.

RS Matrix This matrix (abbreviated from Reed-Solomon, an error-correcting
code) is defined in [45] as:

RS =

01 a4 55 87 5a 58 db 9e
a4 56 82 f3 1e c6 68 e5
02 a1 fc c1 47 ae 3d 19
a4 55 87 5a 58 db 9e 03

36 FORENSIC KEY DISCOVERY AND IDENTIFICATION

The Function h The function h takes a 32-bit word X and a list L =
{L0, Lk−1} of 32-bit words as input (where k is defined as k = N/64), and
produces a single word of output. The function works in k stages. In each
stage, one must perform the following operations:

1. Split X and L into bytes:

li,j = bLi/28jc mod 28

xj = bX/28jc mod 28

for i = 0, .., k − 1 and j = 0, ..., 3.

2. While yk,j = xj , apply the following sequence of substitutions and XORs:

(a) If k = 4, do:

y3,0 = q1 [y4,0]⊕ l3,0

y3,1 = q0 [y4,1]⊕ l3,1

y3,2 = q0 [y4,2]⊕ l3,2

y3,3 = q1 [y4,3]⊕ l3,3

(b) If k ≥ 4, do:

y2,0 = q1 [y3,0]⊕ l2,0

y2,1 = q1 [y3,1]⊕ l2,1

y2,2 = q0 [y3,2]⊕ l2,2

y2,3 = q0 [y3,3]⊕ l2,3

(c) For all cases, do:

y0 = q1 [q0 [q0 [y2,0]⊕ l1,0]⊕ l0,0]
y1 = q0 [q0 [q1 [y2,1]⊕ l1,1]⊕ l0,1]
y2 = q1 [q1 [q0 [y2,2]⊕ l1,2]⊕ l0,2]
y3 = q0 [q1 [q1 [y2,3]⊕ l1,3]⊕ l0,3]

where permutations q0 and q1 will be explained in the next paragraph.

3. Multiply the resulting vector Y = [y0, ..., y3] with the MDS matrix:

Z =

z0
z1
z2
z3

 =

 · · · · ·
... MDS

...
· · · · ·

 ·

y0
y1
y2
y3

4. Return Z

2.3. CRYPTOGRAPHIC KEYS 37

The Permutations q 0 and q 1 The functions q0 and q1 are fixed 8-bit
permutations. For input value x, output value y is defined as follows in [45]:

a0, b0 = bx/16c, x mod 16
a1 = a0 ⊕ b0
b1 = a0 ⊕ (4 >> b0)⊕ 8a0 mod 16

a2, b2 = t0 [a1] , t1 [b1]
a3 = a2 ⊕ b2
b3 = a2 ⊕ (4 >> b2)⊕ 8a2 mod 16

a4, b4 = t2 [a3] , t3 [b3]
y = 16b4 + a4

where t0, ..., t3 are 4-bit S-boxes, different ones for q0 and q1, respectively.

Generating the Key Schedule Finally, the creation of the key schedule can
be defined. To expand the key into 40 32-bit words, perform the following steps:

1. Split the key M into vectors with its even and odd bytes Me and Mo:

Me = {M0,M2, ...,M2k−2}
Mo = {M1,M3, ...,M2k−1}

2. Derive vector S, by by taking the key bytes in groups of 8, interpreting
them as a vector over GF (28), and multiplying them with the RS matrix:

Si =

si,0

si,1

si,2

si,3

 =

 · · · · ·... RS
...

· · · · ·

 ·

m8i

m8i+1

m8i+2

m8i+3

m8i+4

m8i+5

m8i+6

m8i+7

3. Interpret each result of 4 bytes as a 32-bit word of the vector S for i =

0, ..., k−1. These are the S-box keys, and the vector is used in the ”reverse”
order, e.g.:

S = {Sk−1, ...S0}

4. Then expand the key and form expanded keywords Kj :

ρ = 224 + 216 + 28 + 20

Ai = h(2iρ,Me)
Bi = (h((2i+ 1)ρ,Mo)) << 8
K2i = (Ai +Bi) mod 232

K2i+1 = ((Ai + 2Bi) mod 232) << 9

38 FORENSIC KEY DISCOVERY AND IDENTIFICATION

Finally, if specified, the 4 KB table is generated based on the S keys. This
quite complicated generation procedure generates a large amount of keying ma-
terial. Worse, for the sake of our research, Twofish does not use its master key
as part of this material. Thus we cannot use the similar procedure as in AES
and Serpent to search for keys.

Notes on the Twofish Key Schedule Early in the AES selection process,
certain notes were made on the Twofish key schedule by the authors of the
algorithm [77]. Furthermore, Mirza and Murphy published some interesting
properties of the key schedule, namely that the S-box keys did not have an
uniform distribution, but rather would seem to follow a Poisson distribution
with mean 1 [78].

The Twofish team quickly researched the matter, and later proved that the
properties did not affect the security of the cipher [79]. However, in Section 6.1.5
we will leverage these properties to locate Twofish keys in volatile memory.

2.4 Implementing Cryptography

Implementation of cryptography is not a task for the faint-hearted. In addition
to the security of the underlying algorithm, other properties like good coding
practice, code verification, key storage, large numbers arithmetics and key han-
dling all have large impact on the overall security of the implementation of a
cipher.

It is therefore generally not recommended to implement own ciphers, or even
implement own versions of scrutinized, existing ciphers. If one after these words
of warning still has to use own code and not use existing libraries, it is important
to be aware of certain cryptography-specific issues. On software implementa-
tions, the cipher is at mercy of the underlying software—often closed-source
OSes that offer limited security guarantee for precious data like keys. These
issues may have an impact on our research, because failing to address them
creates a larger window of opportunity when searching for keys in memory.

2.4.1 Purging Keys From Memory

Good cryptographic applications should purge or wipe keys and plaintexts from
memory as soon as they are no longer needed. For some applications, keys must
reside in memory while the applications is running, and in that case they should
be purged the moment it terminates.

2.4.2 Compiler Optimizations

Welschenbach notes that even if data is deleted in the code of the application,
compiler optimizations may still thwart the effort [38]. Consequently, is not
sufficient to dereference a pointer to the data or set the value of the data to zero,
since we have no guarantee that the data will be overwritten. The behavior of
code like:

2.4. IMPLEMENTING CRYPTOGRAPHY 39

void a_function () {
unsigned char *secret;
struct key_info *key;
...
/* Overwrite varibles (Not compiler -safe)*/
secret = 0;
memset(key , 0, sizeof(key));

}

are entirely compiler- and OS-dependent, and thus cannot be trusted.
Both the memset() function and the zero assignment above is simply ignored

by most compilers if optimization switches like GCC -O2 are used, which are
often true for release binaries. This is perfectly reasonable for optimization
purposes, since there is no need to explicitly overwrite memory with zeroes if
the data is not to be referenced again. This leads to the possibility of sensitive
data residing in memory or pagefiles even after the termination of the crypto
application.

Therefore, compiler-safe purging methods are essential to any cryptographic
implementation. To make the above method compiler safe, one would attempt
to explicitly overwrite the content of the data before freeing any memory, by
calling a dedicated purging function:

void purge_keys(unsigned char *secret , struct key_info *key) {
*secret = 0;
*key = memset(key , 0, sizeof(key));

}

void a_function () {
unsigned char *secret;
struct key_info *key;
...
/* Overwrite varibles (Compiler -safe)*/
purge_keys(secret , key);

}

The purging function purge keys() accepts the secrets as arguments, and
sets them to zero. This call cannot be ignored by the compiler on the principle
of optimization strategy.

2.4.3 String Handling in Auxiliary Applications

Just like keys, plaintexts should also be purged from memory using a compiler-
safe operation. Unfortunately, many cryptographic applications act as a proxy
for other applications, encrypting plaintext from the other program before sub-
mitting it over an unsecured channel. The encrypting application has no control
over string- and memory handling of these applications, and they can therefore
not guarantee that plaintext won’t be present in pagefiles or memory.

In the author’s minor thesis [18], the poor string handling of applications
often undermined the strong ciphers of the crypto applications. It is therefore
not always easy to secure generic applications with the use of cryptography.

40 FORENSIC KEY DISCOVERY AND IDENTIFICATION

2.4.4 Prevention of Swapping or Paging

Software-based cryptographic software need to make sure that sensitive content
like keys never are written to disk as a result of virtual memory management
(see Chapter 3). There are several ways of doing this, but they are all dependent
on the good behavior of the underlying OS. This is a security risk that has to
be assessed when designing a software encryption tool.

2.4.5 Hardware Encryption versus Software Encryption

In addition to the notes above, hardware encryption has several benefits in terms
of security when compared to software implementations. Tamper-resistant de-
vices may secure cryptographic credentials so that they cannot be read unen-
crypted, and if the algorithm is hard-coded, it cannon be altered. Furthermore,
the algorithm is not dependent on underlying systems in the same way as soft-
ware.

While the security properties of hardware encryption are strong, its portabil-
ity, cost and distribution properties are not. Hardware encryption is expensive,
and if the algorithm is broken, one may be forced to buy new equipment, as
opposed to download new software from an update site.

It is no secret that hardware encryption both performs faster and more
secure than its software counterparts, but today the momentum of software-
driven encryption is huge. To a forensic investigator, the weakness of software
encryption provides an opportunity to break cryptographically secure ciphers
by uncovering their keys.

Chapter 3

Windows Memory
Management

The memory management system is an essential part of any modern OS. When
searching for cryptographic keys in a raw memory dump, it is important to
realize that the memory management procedures of the underlying OS can be
exploited to identify interesting objects, pages or regions in the memory.

By using all available metadata of the memory management system to lessen
the haystack, an investigator may save resources, increase hit rates and reduce
false positives. Indeed, we will show that it can leverage searches for keys that
would not have been possible with a brute-force approach.

The memory management systems available are as many as there are dif-
ferent flavors of operating systems, and a treatment of all of them is beyond
the scope of this thesis. Instead, we will focus our attention towards Microsoft
Windows systems, specifically Windows XP. Secondly, we will cover the rele-
vant essentials of its memory management system, and present an approach
for locating interesting data by using our knowledge of the Windows memory
internals.

3.1 The Memory Manager

I order to provide memory to the multitude of processes on modern computers,
the OS needs to provide a virtualization layer of memory called the virtual
address space. Microsoft Windows uses such a virtual memory layout. For the
rest of this discussion, the term virtual address will refer to an address in the
virtual address space, while physical address will be the physical location of the
data in main memory (RAM). The virtual address space facilitates sharing of
the scarce resource of RAM modules between a large number of processes. As
a result of this, some sort of address translation or mapping between a virtual
address and a physical address is needed.

The inner workings and structures of Windows are largely undocumented,
and most of the structures mentioned in this chapter are the result of reverse
engineering or debugging. Many of the data structure definitions are simply
examined using the Windows Debugging Tools (WDT) package with the proper
symbols [Mic08a]. In Appendix B, we give a complete overview of the structures

41

42 FORENSIC KEY DISCOVERY AND IDENTIFICATION

related to memory management, as reference for specially interested individuals.
For more on how to interpret these outputs, please be referred to Microsoft
Windows Internals, Fourth (or fifth) Edition [80].

3.1.1 Introduction

Windows’ memory working horse is the Memory Manager. The memory man-
ager is responsible for managing the virtual and physical address space of the OS,
including tasks like paging1, memory allocation and de-allocation. Through-
out this thesis we will treat the memory management system as if Windows
is booted with no Page Address Extension (PAE) [80] [Mic07, Mic08b] and no
/3GB switch [Old04] and the standard 4 KB page size. This is done for sim-
plicity and coherence; the methods described could very well be implemented
without these constraints2.

Each process on 32-bit Windows has per default a 2 GB virtual address
space called the process address space. The rest of the 4GB maximum virtual
memory size is reserved for system use. The virtual address space is further
divided into smaller 4 KB units called pages. Each page is owned by a given
running process, and may be referenced using its virtual address. The memory
of a process that is resident in the physical memory is called the current working
set. When the memory becomes overcommitted, that is, when the applications
running is trying to use more memory than is available, the memory manager is
responsible for paging pages out to a pagefile at secondary storage, and bringing
them in again when needed. The memory manager also provides services that
are beyond the scope of this thesis, like execution protection and locking of
memory.

The memory of a running process is thus split into pages that may or may
not be resident in the physical memory. A graphical representation of this can
be seen in Figure 3.1. Here, the pages of the process that were allocated at
the same time (by for example calling malloc()) are continuous in the virtual
address space, but may be scattered or not even present in the physical memory.
This can have large effects on what that is to be found when considering forensics
investigations of memory dumps.

3.1.2 Memory Structure

Physical memory is simply divided into 4 KB chunks of called frames. In Figure
3.2, we have visualized the physical memory of a Windows XP Professional
computer with 256 MB of RAM by interpreting each of the memory bytes as
a color value (giving a possible 256 different colors for each byte). Zero (0x00)
is represented as the color black, and 0xff is white. In the figure, the pattern
formed by the 4 KB standard pages can be seen as vertical lines throughout the
figure.

1Paging and Swapping is in effect the same.
2When the /3GB switch is set, Windows provides a 3 GB virtual address space per process

instead of the default 2 GB. This results in a 1 GB system virtual address space. The /PAE
switch enables Page Address Extension, a feature provided by later Intel and AMD processors.
The effective result of having this switch set is several page directories per process, and hence
the virtual address translation is slightly more complicated. Both these switches are set at
boot time. For further reading, see [Old04] and [Mic07, Mic08b].

3.1. THE MEMORY MANAGER 43

Figure 3.1: Virtual and physical address space relation.

In the virtual memory is divided into a system space and a user space,
both 2 GB in size. All addresses from and above 0x80000000 are reserved for
system use, and pointers to this area cannot be referenced by a non-system
process thread unless they map to shared memory section. Likewise, a process
thread cannot access another process’ address space unless it is shared and/or
the thread uses cross-process memory functions allowing access to the memory.
The system space contains among other kernel code, page tables, drivers and
special memory areas like the Nonpaged pool (see Section 3.1.3).

3.1.3 Paging

By the means of paging, the memory manager swaps pages in and out of physical
memory as they are needed. The memory manager marks each page in the
process address space with either free, reserved or committed. A process may
reserve pages for future committing, or reserve and commit in a single call. The
former is analogous to reserving space with malloc() or the Windows equivalent
VirtualAlloc() in C, and later assign a value to the reserved space.

A committed page is a page that when referenced actually translates to a
valid page in main memory. Any references to uncommitted pages will cause
an access violation; the page is not mapped to any physical storage and the
reference cannot be resolved.

When a process tries to reserve a memory range larger than the currently
available physical memory, the memory manager needs to page out other pages
to make space. These pages are written to a file called PAGEFILE.SYS, usually
located in the boot partition of the system. If the pages are needed at a later

44 FORENSIC KEY DISCOVERY AND IDENTIFICATION

Figure 3.2: 256 MB of RAM Memory from Windows XP (running Truecrypt)
visualized by interpreting each byte as a 256-color palette color. The image can
be ”read” from the upper left corner, row by row. The image has 8192 rows,
and is 8 pages wide (8192 x 8 x 4096 = 256 MB). The border of the pages can
be seen as vertical stripes in the image.

3.1. THE MEMORY MANAGER 45

point in time, the memory manager fetches them into physical memory again.
Finally, when a process terminates or explicitly frees address space, the

memory manager marks the corresponding pages as free.

The Virtual Address Descriptor (VAD) Tree

To keep track of the virtual addresses in use, the memory manager keeps a
structure of Virtual Address Descriptors (VADs) to facilitate lazy evaluation
of page tables—waiting to perform page table creation until required. A VAD
describes an allocation of virtual memory, so that when the address is referenced,
page tables and PTEs can be created as needed.

By keeping a self-balancing binary tree of VADs (The VAD tree), the memory
manager can locate the VAD for each virtual address quickly, and perform the
necessary operations when referenced. Therefore, the memory manager waits to
create a page table until a page fault occurs, and then it creates a page table for
that page. This method significantly improves performance for high-committing
processes.

The Nonpaged Pool

Since applications often tries to allocate memory smaller than the page size,
Windows provides a pool of pages that are reserved for such reservations. If
no such pool was provided, a one-byte reservation would potentially lead to the
waste of 4095 bytes, since the rest of the page cannot be used by any other
process. This is an unacceptable waste of precious resources.

A subset of these system memory pools is the Nonpaged pool. Processes that
need to ensure that some of their data never is paged out for performance or
security reasons may request allocations from this pool. The memory manager
asserts that allocations in this memory area never will be paged out, and always
will be resident in the physical memory.

In Windows, applications can request memory from the Nonpaged pool by
calling the API method ExAllocatePoolWithTag. The method takes three
parameters, as seen in Listing 3.1.

Listing 3.1: Windows method ExAllocatePoolWithTag
PVOID

ExAllocatePoolWithTag(
IN POOL_TYPE PoolType ,
IN SIZE_T NumberOfBytes ,
IN ULONG Tag
);

The Tag parameter is user selectable, and saved in a ”reverse” little endian
fashion. A call like:

char *pointer = ExAllocatePoolWithTag(NonPagedPool,4096,’GATa’);

would therefore return a result in a 4096-byte allocation in the nonpaged
pool with the tag ”aTAG”. Also note that it is possible to allocate memory
blocks larger than or equal the page size, if so, a page-aligned buffer is allocated
in the virtual address space [MSD08b].

46 FORENSIC KEY DISCOVERY AND IDENTIFICATION

Cryptographic applications are encouraged to use this feature for storage of
sensitive information, including keys and plaintexts. Since the available memory
in the nonpaged pool per process are small, careful consideration is needed when
assessing whether or not to use the feature.

As an example, the Truecrypt device driver truecrypt.sys allocates mem-
ory from the NonPaged pool to ensure that no pages are written to disk. This
can be observed on a system running Truecrypt using the command pstat, and
the output from such a command can be seen in Figure 3.3. Here, column 3, 4
and 5 represent code, data and paged memory, respectively. As we can see, no
memory is paged for the Truecrypt device driver.

Figure 3.3: Output from pstat on a system running Truecrypt.

3.1.4 Address Translation

To translate a 32-bit virtual address into a physical, the memory manager needs
to perform two lookups, in the page directory and a page table. This operation
is pictured in Figure 3.4 and described below.

A virtual address is interpreted as three distinct components–the page di-
rectory index, the page table index and the byte index. This structure is shown
in Figure 3.5.

To translate a virtual address, the memory manager uses the page directory
index to perform a lookup in the page directory (one per process). Each ex-
ecutive process structure (EPROCESS) contains a pointer to the kernel process
block (KPROCESS). The KPROCESS contains a pointer to the process page direc-
tory that together with the CR3 processor register form the physical address of
that process. The value of the CR3 register is loaded from the EPROCESS at each
context switch. The entry in the directory (the Page Directory Entry (PDE),
a 32-bit structure) points to a particular page table; each process may have up
to 512 page tables.

The PDE structure is isomorphic to the Page Table Entry (PTE), and can
be seen in Figure 3.6. The Page Frame Number (PFN) points to the frame

3.1. THE MEMORY MANAGER 47

Figure 3.4: Address translation on a x86 computer using 4 KB page size and
no PAE. Figure adapted from Wikipedia (see Appendix C)

Page Directory
index

Byte indexPage Table index

31 21 011

10 bits 10 bits 12 bits

Virtual Page Number

Figure 3.5: The 32-bit virtual address on x86 Windows systems.

Page Frame Number U

31 011

20 bits 12 bits

Protection
(bit 9-5)

P
C
w

G
l

L D A
C
d

W
t

OWV

Figure 3.6: Valid x86 hardware PTE (PDE).

48 FORENSIC KEY DISCOVERY AND IDENTIFICATION

in physical memory where the page table can be found for PDEs, or the page
PTEs. The last 12 bits describes the page and its properties.

The EPROCESS data structure is shown in Listing B.1 as outputted from the
Windows Debugging Tools. Note the Pcb member pointing to the KPROCESS
and the VadRoot member pointing to the VAD tree root.

Having located the page table, the memory manager uses the page table
index from the virtual address to lookup the PTE. If it is valid, the PTE points
to the desired page in the physical memory, and finally the desired data is found
by using the byte index as a index within that page. If the page is invalid (e.g.,
it is paged out), the memory management fault handler locates the page and
tries to make it valid by loading it (and potentially other pages) into memory.

3.2 The Physical Memory as Seen by the Digital
Investigator

Applications and system code uses virtual addresses to reference its data and
code, but when analyzing data from a dump, we don’t know the memory man-
agement structures that the memory manager does, and cannot easily interpret
the scattered pages in main memory.

Furthermore, we don’t necessarily have access to registry values and other
settings of the running operating system at the time of analysis. This especially
a potential problem when the target system uses whole-disk encryption. Many of
these parameters are needed to infer where in the physical memory the memory
management structures may be located.

However, there exists searching tools that aims to combat these limitations
(see Section 5.2). Some of these tools can reconstruct entire processes from
memory and pagefile, resulting an an executable that may be scanned for viruses
or verified against known version using fuzzy hashing like SSDeep [Kor07]. As
mentioned, the memory management structures are largely undocumented by
Microsoft, and therefore the results from many of these tools suffer from proof
of concept nature and large amounts of false positives or negatives.

In Chapter 6 we suggest how to use our knowledge of the memory manage-
ment system and its structures to perform new types of searches for crypto-
graphic keys in physical memory dumps.

Chapter 4

Digital Forensics

In this chapter we will summarize the current paradigms related to digital mem-
ory forensics in general, and this thesis specifically. An introduction to the
terminology and basic theory behind digital forensics is given, and several im-
portant forensics principles are discussed. Furthermore, a brief discussion of the
different states of a system at the time of acquisition and their implications on
the data available is given.

4.1 Digital Forensics Basics

To allow a brief discussion of digital forensics, a basic terminology is needed.
The terminology used in this report is generally consistent with Mohay et. al [81]
and Carrier and Spafford [83]. Generally the term forensics will in this thesis
refer to digital forensics, as defined in Kruse and Heiser [82]:

”Preservation, identification, extraction, documentation, and inter-
pretation of computer media for evidentiary and/or root cause anal-
ysis.”

Cause analysis if often performed by forming hypotheses of the course of
events related to the crime. An hypothesis is (forensically speaking) a theory
of how and in what sequence of events a digital crime or incident unfolded. To
verify or refute a hypothesis one must find supporting or refuting evidence, and
these can be physical or digital. This report focuses on the latter. In such a
manner we can define digital evidence as [83]:

”Digital evidence of an incident is any digital data that contain
reliable information that refutes or supports a hypothesis about the
incident.”

An important aspect here is that evidence is not the same as proof. As
Willassen notes on his blog on the subject [Wil08] after discussing the properties
of proofs:

”[...] Evidence on the other hand, is an item that provides infor-
mation about the sequence of events. In an investigation, there are
usually many evidence items. Every single item tells its own story

49

50 FORENSIC KEY DISCOVERY AND IDENTIFICATION

about the sequence of events and may confirm or refute the inves-
tigator’s theory about what happened. Taken together, the evidence
items may be sufficient to convince the fact finder that the investi-
gator’s theory of the sequence of events is correct. But there is no
need to prove the absolute correctness of every single evidence item.
Indeed, this is impossible, since proving the correctness of an empir-
ical evidence item must necessarily have to rely on other empirical
evidence items, which themselves have to be proven correct and so
on ad infinitum.”

In the case of search for cryptographic keys we don’t look for evidence di-
rectly; encrypted material can be metaphorically looked upon as a locked con-
tainer that may or may not contain evidence, and the cryptographic key is
needed to open it. Given such a ”black box”, it is not alway obvious how much
(if any) effort that should be laid down attempting to break the container.
Methods that ensure that all measures are taken to ”catch” the key while it
exists in digital form are thus vital to be able to decrypt encrypted data and
uncover potential evidence. The worst case for an investigator is, if a strong
cipher is used, to be forced to brute-force the key.

Digital Crime Scene Investigation Phases

System Preservation
& Documentation

Phase

Evidence Searching
& Documentation

Phase

Event Reconstruction
& Documentation

Phase

Figure 4.1: The (improved) IDIP model.

When performing a digital investigation, it is also desirable to follow a cer-
tain process model or framework for digital investigations [81, 84, 85]. Such
a model allows us to relate our work to phases of a digital investigation, and
think about and discuss their limitations and implications. It also promotes
reproducibility and may enforce the strength of evidence in a later trial. Sev-
eral such frameworks exist, notably the Integrated Digital Investigation Process
model (IDIP) suggested by Carrier and Spafford [86]. This model were further
improved An Event-based Digital Forensic Investigation Framework [83], which
is the framework we have chosen to follow in this thesis.

As seen in Figure 4.1, the framework divides the digital crime scene investiga-
tion into three main phases, where the System Preservation and Documentation
and Evidence Search and Documentation phases are most relevant to this thesis.
The Event Reconstruction and Documentation phase is where the hypotheses
are formed and evaluated, and this process is not considered in this thesis: We
only treat crypto key discovery and interpretation, and leave the cause anal-
ysis to classical digital forensics methodology. The process model is entirely
abstract, while we aim to provide a more hands-on approach for searching for
cryptographic keys in memory dumps.

The system preservation phase is generally performed by documenting and
preserving the crime scene as it was when first encountered. As a regular in-

4.2. DIGITAL FORENSICS PRINCIPLES 51

vestigator would take photographs of physical objects in a regular crime scene,
a digital investigator will additionally try to preserve the states of the digital
artifacts found, like computers, cell phones and digital storage media. To pre-
serve a digital crime scene, imaging tools are used to make identical copies of
the components of the crime scene, while attempting to inflict as little change
as possible to the overall state.

After securing the crime scene, searches for data that can be used to infer
knowledge of the event chain are performed. This is the evidence search phase,
and like the former phase, documentation is essential. The searches are generally
performed at the preserved images from the digital crime scene, to prevent
interference. The findings will be used to support or refute hypotheses, and
may spawn additional searches for evidence, and even lead to new crime scenes.
Both these phases relate to a few core forensic principles, namely the Locard
Principle, the Order of Volatility and the Chain of Custody.

4.2 Digital Forensics Principles

We are concerned with finding crypto keys from crime scenes where cryptogra-
phy has been or is in use. To be able to do so in a forensically sound manner, we
need a procedures to guarantee that as good results as possible will be archived.
We will relate our discussion to these principles that are highly relevant when
evaluating the forensically soundness of such a procedure:

The Locard Principle The Locard Principle states that Tout contact laisse
des traces – Every contact leaves a trace. This is true both in the physical
and digital world, and as digital investigators we try to honor this principle
by performing as little actions as possible on live digital crime scenes, and use
write blockers when imaging disk drives to be certain that no unauthorized or
unintended change is made to a crime scene. This is closely tied to the the idea
of atomic data transactions, that are guaranteed to either completely occur, or
have no effects. When assessing memory acquisition methods, atomicity is of
great importance.

The Order of Volatility In order to gather as much data material as possible
with small or no impact on the target system state, it is also wise to follow the
Order of Volatility (OOV) [87]. It states that data should be collected from
volatile sources first, since these are most likely to change rapidly. The idea is
to preserve a digital crime scene in a particular state, so that it can be analyzed
post-capture. This ground rule (together with the Locard principle) is in force
when digital investigators make image copies of whole hard drives, CD-ROMS,
thumb drives and all other found data for later analysis. According to the OOV,
physical memory should be collected as one of the first objects at a digital crime
scene, as it is highly volatile.

The Chain of Custody To create reliable evidence, it important to make
sure that the evidence remains intact and in the same state as it was when
it was seized. Thus, investigators use write blockers and cryptographic hash

52 FORENSIC KEY DISCOVERY AND IDENTIFICATION

functions1 to verify that no change has been done to the data sources during or
after investigation. To further support the Chain of Custody evidence is kept
at physically secure locations, and a log is usually kept to keep track of where
it has been, which individuals that have had access to it and what actions that
has been performed using it since acquisition.

When considering new approaches in digital forensics, we need to look care-
fully and select methods that don’t interfere with these three core principles.

4.2.1 Digital Forensics and Volatile Data

In a classical digital forensics investigation, the chain of custody is maintained
by the fact that one usually has a original physical data source, whether it be
a disk drive or a DVD-ROM. Thus, the hashes taken in the documentation
phases of an investigation may later be verified against a new hash by hashing
the original data source.

Volatile data is different. Because no physical representation of the data
exist after powering off a computer, it is difficult to verify any data captured
from it while powered on using hashes. The original data source is non-existent,
and what’s worse: It is quite impossible to reproduce the distinct state of it at
the time of acquisition. The volatility of RAM modules are so considerable that
a difference in milliseconds of the start of an acquisition procedure can influence
the data in the resulting memory dump. This is in sharp contrast to less volatile
media like disk drives.

4.2.2 Incident Response and the States of a Crime Scene

The state of a digital crime scene may change rapidly. For example, shutting
down a computer may alter the state of the hard drive, or trigger hidden soft-
ware that overwrites potential evidence. When seen in the light of the above
principles, it is evident that caution should be taken to preserve the crime scene
in its original state. A digital crime scene can even change state without ex-
ternal influence, as a result of an automated process. For example, consider a
scheduled virus scan or backup procedure; both these will alter the state of the
system when executed. It is also possible to alter the state of a digital crime
scene from another physical location, using network access to shell or remote
desktop applications. In some cases, it is therefore desirable to pull the network
plug and disable wireless Network Interface Cards (NICs) when encountering a
live digital crime scene.

A computer’s state can be defined as the product of the states of all its soft-
ware and hardware. For example, running software, present hardware, remote
user interaction and scheduled tasks are all a part of the overall state of a sys-
tem. The number of possible states is therefore incomprehensible, and it may
be impossible to accurately evaluate a computer’s state when encountered at a
crime scene. Therefore, methods for generalization of states could be of help

1It may be interesting to note that several weaknesses has been found in the most common
hash functions used today. Collisions have been found for MD5 [88] and (64-step) SHA-1 [89],
and this may be used as a defense in court by claiming that a given checksum does not
sufficient collision resistance and that it may have been tampered with. To preserve the chain
of custody SHA-256 is used for hashing in this thesis.

4.2. DIGITAL FORENSICS PRINCIPLES 53

to an investigator to reduce the chance of significant state alteration. Such a
framework should help preserve the digital crime scene at a certain (generalized)
state, so that imaging and documenting of the components that compose the
crime scene may proceed.

As described earlier, the state of a computer may have great impact on the
data available for analysis. When considering memory analysis, the extreme ex-
ample is when a powered off computer is encountered, where simply no physical
memory is available at all. Memory information may still be found in page-
and hibernation files, but given whole-disk encryption, a powered off system
is a ”black box” case. The other extreme is the case where the computer is
powered on, and cryptographic software is running. Between these extremes,
there exist a countless number of states that all have different impact on the
state of the physical memory. To be able to conclude anything regarding the
presence of crypto keys in the different states of a computer, we need to define
generic and broad states that embrace all these intermediate states, and at the
same time are reproducible, reasonable and identifiable. We will return to this
task in Section 6.6.

Chapter 5

Forensic Memory
Acquisition and Analysis

In this chapter, we consider the volatile memory acquisition methods and frame-
works presently available to forensic investigators, and assess their quality for
forensic usage. Secondly, a presentation of the existing work within the field
of memory analysis is given, and the selected tools and methods considered for
forensics usage by applying our core forensic principles from Chapter 4.

Finally, we will summarize the present methods and discuss the need for new
software and a forensically sound memory acquisition and analysis practice, and
argue why new development is needed in the field of cryptographic key discovery.

The terminology within this field is somewhat confusing, probably both as
a result of the maturity of it and lack of standards. Therefore, many terms
like ”dumping” and ”acquisition” may have similar or converging meanings,
depending on the context. The author has attempted to be as consistent as
possible, but some overlapping of terms may occur.

5.1 Volatile Memory Acquisition

The process of seizing volatile memory on computing devices is still not a ma-
ture science, as a result of the many different OSes, versions and hardware plat-
forms available. On Windows, there exist a myriad of strategies, few of which
are forensically sound. In addition to the non-standard nature of the acquisi-
tion procedures, there exists few working frameworks or step-by-step procedures
available that ensures that the principles in Section 4.2 are honored. The first
individuals that encounter a ”live” digital crime scene need to know what to do
and perhaps more importantly, what not to do.

By researching how the different states of a digital crime scene influence the
number of keys found in our investigations, we aim to provide a best practice
for incident response teams, with respects to volatile collection procedures. We
concentrate our research on cryptographic keys, but the procedures described
for memory collection are the ones believed to have the least impact on the
state of the target computer, and thus be the most forensically sound approach.
They may therefore prove valuable for any forensic investigation.

55

56 FORENSIC KEY DISCOVERY AND IDENTIFICATION

Despite its maturity level, forensic dumping and examination of volatile
memory is an area of great research effort, spurred by the recent activity in
the field. A good summary of the existing acquisition procedures on Windows
computers are provided by Nicolas Ruff [22], and we will provide a similar brief
summary here. In addition, we will treat some of the methods not mentioned,
and provide an assessment of their value for a digital forensics investigation.

Roughly, the existing methods on memory examination and/or dumping
can be categorized into three groups: live digital forensics, process memory
dumping and full dump of physical memory. In addition, data resources like
the pagefile, secondary storage, registry entries and operating system or service
pack information comes into play when analyzing the resulting data.

5.1.1 Live Digital Forensics

Performing live analysis or live digital forensics on a system can be done through
the use of debugging tools, several of the tools from Sysinternals (now a part of
Microsoft) and many others. By ”live”, we mean in the sense that the system is
not halted, and the analysis is done while the system is running. By inspecting
memory usage, process behavior, etc., an administrator can obtain a picture of
eventual (hostile) activity. For servers and other computers demanding high up-
time this may be an alternative before an eventual forensic investigation takes
place, but one should be aware that any interaction with the system can poten-
tially destroy evidence [90]. Some of this potential destruction can be countered
by keeping detailed logs of actions during analysis, but as a forensics procedure
for memory, this method is not sound because of the high volatility. Further-
more, rootkits that use hiding techniques can subvert the system into reporting
false data to the investigator. A live analysis is therefore not recommended as
a forensic procedure for volatile memory analysis; post-capture analysis like the
ones below are advisable (if applicable).

5.1.2 Process Memory Dumping

An alternative to inspecting the live computer is to dump the address space of
certain interesting processes and inspect them offline. This permits hashing of
the data, and thus secures that no changes can be done to the captured data.
This facilitates preservation of the Chain of Custody.

Several tools exists to dump processes from live computers, among other
pmdump by Arne Vidström [Vid06], Process Dumper by Tobias Klein [Kle06]
and Userdump by Microsoft. All these has a distinct disadvantage; that they
do not pause the process while dumping, thus potentially creating a ”smear” in
the dumped content.

Another approach is to use the script adplus.vbs included in the WDT
package [33]. This script is able to pause processes while dumping, creating a
static image of the process at the time of capture.

However, there is one more disadvantage when considering these methods for
a digital investigation: To create a complete process image, all eventually paged-
out pages must be loaded into memory, potentially causing the memory manager
to page other pages (potential evidence) out to disk. Furthermore, the paging
operation may overwrite invalid pages that may be of interest to an investigator.
The procedures does not keep the memory at its initial state, thus they interfere

5.1. VOLATILE MEMORY ACQUISITION 57

with the Locard Principle. There is probably possible to implement methods
that does not scramble physical memory to the same extent, but no such software
was found at the time of writing. In addition, these methods needs to load
the dumping software into memory, further thrashing the state of the memory.
Lastly, it is a highly OS-dependent method.

5.1.3 Full Dump of Physical Memory

Full physical memory dumps follow the same paradigm that common digital
investigation does: Dump first, then analyze. The whole contents of the RAM
is dumped to a file, for example on external media. This method fits cleanly into
the IDIP process model, by following the same steps of conduct. For forensic
usage, this method is preferred to the live analysis and process dumping, as it
has a firm anchorage in the Locard and OOV principles.

We will summarize the different methods for full memory dumps here, and
provide an assessment of their feasibility for forensic usage.

Hardware-based Memory Acquisition

The concept of having dedicated hardware to dump memory may seem like a
good idea, and there exist attempts to commercialize solutions like Tribble [19].
This method leaves no footprint in memory or on disk, and is totally OS-
independent. However, hardware-based acquisition has several disadvantages
that makes it unusable for the majority of digital crime scenes: It is expensive
and requires pre-installation, the latter being a problem that is hard to counter.
It is neither 100% foolproof, as shown by Rutkowska [91].

Direct Memory Access Through Firewire DMA

As suggested by several researchers, Firewire (IEEE 1394) may be used to dump
the entire memory from a computer with the necessary hardware (e.g., a Firewire
port) [24, 23, 92]. Unfortunately, the demand for such a interface is a drawback,
along with the fact that it is not foolproof, and may be operating system de-
pendent. It does neither stop the system activity, resulting in a smeared image
of the physical memory.

It does however leave a minimal footprint, as no processes and software are
run on the target system, thus respecting both the Locard Principle and the
OOV.

DD and Other Software-based Approaches

The Unix command dd is a popular choice for acquisition of both memory
and disk content. There even exists forensics-tailored versions of the utility to
satisfy evidence and Chain of Custody demands. It is also included on many
forensics toolkits and Live CDs, like Helix [Ef05]. For example, these tools (and
many others) can be used together with netcat (nc) or cryptcat to stream
the content of the physical memory to another computer over the network (the
forensic computer has IP address 1.1.1.1)1:

1A physical memory dump over the network is largely bottlenecked by network transfer
limits, and do therefore not honor the OOV in a large degree.

58 FORENSIC KEY DISCOVERY AND IDENTIFICATION

Forensic computer: $ cryptcat -l -p 1234 | zcat > physical_memory.dmp

Target computer: $ dd if=\\.\PhysicalMemory conv=noerror | gzip |

cryptcat 1.1.1.1 1234

Just as with process dumping, the use of a software-based approach has
several drawbacks, first of all it requires software access to a special device like
/dev/mem on Linux, /dev/kmem on Mac OS X (now removed) and
\Device\PhysicalMemory on Windows (only available on systems preceding
Windows 2003 SP1).

Additionally, the launch of a process will cause change in the memory on the
target computer. Thirdly it is highly OS-dependent, which cannot always be
trusted. Finally, it can be slow (up to several hours), and it does not normally
pause the target system, potentially creating a smear in the obtained image.

Recent research attempts to counter these drawbacks by loading a specialized
OS in a confined space of memory on the target computer, halt the host OS,
and extract memory [93]. A proof of concept tool called BodySnatcher were also
implemented, and experiments suggest large improvements over the classical dd
method. According to the article, BodySnatcher only causes 8.4% change to
the memory, compared to 46% for dd on a computer under normal load using
512MB of RAM. However, the approach has limitations because of the low-
level nature of the software; it is highly hardware-dependent, and support for
different chipsets and processors must be improved.

CrashDump Memory Dumping

By crashing a Windows system (inflicting a Blue Screen), it is possible to make
the OS write all memory to disk before rebooting. This requires setting certain
settings beforehand, by default Windows only performs a ”minimal memory
dump” when a fatal error occurs.

Inflicting such an error is easier than anticipated, either with Windows-
supplied software (NotMyFault [Rus05, Mic07]) or even a keyboard shortcut [22].
However, the methods require registry editing and a reboot, and Windows writes
the content by default to the boot partition, potentially overwriting evidence.
These are substantial drawbacks for a forensics investigator.

Virtualization Snapshots

An ideal image of the physical memory can be archived by the use of virtual-
ization software. In the case of VMWare Server [VMw07], a snapshot or simply
suspending2 the virtual computer will result in a full write-out of the memory
of that computer to a single file at the host. This is the acquisition method used
in this thesis, for a further treatment, see Section 6.4.1.

This method may be a more viable approach in the future, when virtualiza-
tion software is more prevalent, at least in the server and business segment of
the market.

2In VMware Server, a snapshot is required for the memory to be written to disk. However,
in VMware Fusion, the memory is written to disk upon pushing the ”suspend” button.

5.1. VOLATILE MEMORY ACQUISITION 59

Hibernation Mode Memory Dumping

Many modern computer systems feature Hibernation mode, where the content
of the memory is written to disk by the operating system before the computer
goes to sleep. When the computer is waked up, the OS restores the content of
the memory (and actually the processor state) from the content on disk so that
the system may proceed at the point where it went into hibernation. The user
usually faces a logon screen to authenticate before normal usage may commence.

Windows stores its memory content in a file called HIBERFIL.SYS in the
root catalog of the boot partition. This file is largely proprietary, but has
been reverse engineered by Suiche and Ruff [94, 95]. The content of memory
is compressed within the file, and Suiche and Ruff has written a C library that
allows decomposition of hibernation files, and even the construction of dd-style
memory dumps from the file. When such a reconstruction has been performed,
the resulting dump may be searched as a regular memory dump.

If the target system supports Hibernation, the feature may be enabled via
the Control Panel. No reboot is necessary, making this method superior to crash
dumping. However, the hibernation file will be written to its default destination,
potentially overwriting evidence (including an eventual former hibernation file).
Furthermore, if the system uses whole-disk encryption, the hibernation dump is
a moot point, since the system will encrypt the file before entering hibernation
mode. Whole-disk encryption systems often also feature authentication before
any memory is loaded back in by using a pre-boot authentication screen.

Hibernation can be a good option if available, since it pauses the computer at
a given state, and provides an atomic view of the memory. It is though advisable
to acquire an eventual existing hibernation file first, to prevent overwriting. If
a computer is encountered in its hibernation state, the hibernation file may
provide invaluable information on the system state at the point in time when
hibernation started, and keys may be found in the decompressed memory image.

Pulling the Plug or Power-cycling

Pulling the plug or powering off the target computer may seem like a counter-
intuitive thing to do when trying to preserve the crime scene, but recent research
suggests that this my be the right thing to do. By power-cycling (”coldbooting”)
the computer, the contents stay intact (or intact enough to correct it) because
of remanence effects in DRAM modules [30].

By quickly powering the computer on again and booting from a external OS
over a network or from a thumb drive, the memory may be extracted in a close to
atomic fashion. It is also possible to halt the system in the BIOS until necessary
equipment is present (most BIOSes feature a pause or boot menu hot-key, are
fairly small and do not feature Power-On Self-Tests (POSTs) anymore). Given
the presence of a ”Reset”-button, it can be used to forcibly reset the computer,
and halt it in the boot process while acquisition proceeds.

Halderman et al. also show that cooling down the DRAM modules with a
dust remover can in an inverted position (or even using liquid nitrogen) could
preserve their state for an extended period. This may permit investigators to
physically remove the modules, freeze them using liquid nitrogen canisters and
later extract the data when back at the lab. Another approach is to create a
portable motherboard with free DRAM slots and a custom OS for dumping, so

60 FORENSIC KEY DISCOVERY AND IDENTIFICATION

that acquisition may be done on site. However, further research on the impact
of these methods are likely needed.

This method may be a bit risky, but since powering off the computer leaves
the disks and OS in an untouched state, it is honoring both the Locard and OOV
principles. Compared to the methods above, it requires no pre-installation, it
is atomic and not OS- or strictly hardware-dependent.

The main drawback with these methods is that they are highly hardware and
BIOS-dependent, and that the risk of loosing data is imminent: If whole-disk
encryption is present at the target system and the process somehow fails, the
hard drive may be undecipherable as a direct result of the acquisition method.
Another drawback is that the method is dependent on remanence effects that
are not present in for example SRAM. In addition, certain computers (notably
laptops like the MacBook Air) have soldered or physically hard-to-get RAM
modules, that can be tough to extract without custom tools and previous expe-
rience.

5.1.4 Comparison of Existing Acquisition Techniques

In Figure 5.1, we have placed the above techniques in a graph comparing their
feasibility as digital forensic methods, based on the previous discussion. The
x-axis denotes the atomicity of the acquisition technique, that is, how well it
the resulting dump matches the real physical memory. The y-axis represents
the ”timing” of the method; whether the method can be applied regardless
of system, or if configurations or installations (both software and hardware)
has to be performed on the system prior to acquisition. Please note that the
methods are placed on the graph based on their estimated properties, and the
placement is intended to be informal only. The coldboot technique does not
really fit under either category, but we define it as a hardware technique since
it ultimately depends on hardware to work.

It can quite clearly be seen that many of the methods discussed are not di-
rectly suitable for a digital forensic approach. The coldboot method could prove
valuable in some cases, since it is the one with the least impact on the running
system. If it fails, at least the rest of the computer is left in its original state. If
a software-based method is necessary, the BodySnatcher proof of concept tool
seems promising, but further research has to be performed on the feasibility and
performance of the tool.

5.2 Existing Tools for Windows Memory Dump
Analysis

The current set of tools available to the digital investigator when it comes to
memory dumps are unfortunately not as numerous as the tools available for
disk analysis. The applications are largely characterized with proof of concept
nature or being in an early development stage. Furthermore, few scientific
tests and experiments have been performed to evaluate their performance and
accuracy. However, this is likely to change in the near future, and the time to
come certainly looks promising.

To make the most of cryptographic memory forensics, tools for rebuilding
the virtual address space both from process address space and pool allocations

5.2. EXISTING TOOLS FOR WINDOWS MEMORY DUMP ANALYSIS 61

Atomicity

A
va

ila
bi

lit
y

Atomic
Non-

Atomic

Just-in-Time

Ahead-of-Time

Hardware-based Software-based

Fi
rew

ire

Cras
hD

um
p

Sn
ap

sh
ot

Trib
ble

Cold
bo

ot

Bod
yS

na
tch

erUse
of

/d
ev

/m
em

 or

Ph
ys
ica

lM
em

ory

Id
ea

l M
em

ory
 Im

ag
ing

 M
eth

od

Figure 5.1: Comparison of Existing Memory Imaging Methods.

62 FORENSIC KEY DISCOVERY AND IDENTIFICATION

could prove useful when the data structures that are searched for are known,
but potentially scattered in main memory. Like discussed earlier, this can in
some cases be true when Twofish is used as cipher. Therefore, some examples
of the existing analytic tools for memory dumps are warranted.

5.2.1 The PTFinder Software Tool

Andreas Schuster’s PTFinder [Sch07] scans the memory dump for EPROCESS
structures, and are able to output process graphs (or XML-structures) that
even contains terminated processes. Using data from PTFinder, one can use
some of his other PERL scripts (memdump.pl) to even manually restore exe-
cutable images of processes from memory. In the related paper Searching for
Processes and Threads in Microsoft Windows Memory Dumps [32] he also de-
scribes many of the undocumented kernel data structures like the EPROCESS and
the POOL HEADER structure. Most of these were gathered using the Windows De-
bugging Tools [Mic08a].

5.2.2 The PoolFinder Software Tool

In a related tool named PoolFinder [96], Schuster attempts to locate pool
headers based on the POOL HEADER structure. The tool outputs to a SQLLite
database, which makes it possible to search for pool tags using Structured Query
Language (SQL). He also includes a utility for dumping these allocations to disk.
However, the tool may present large number of false hits. When testing the tool,
we experienced that it frequently ”lost track” of the forward and backward links
in the linked list of pool headers, resulting in garbled output.

5.2.3 The Volatility Software Tool

Another approach is made by the tool suite Volatility (formerly Volatools and
FATKit) [Sys07] [97], by traversing a structure known as the Virtual Address
Descriptor (VAD) tree. This structure is kept in memory by the windows kernel
to keep track of its virtual allocations (see Section 3.1.3). The tools are able
to display a wide range of information, and even dump the process memory
described by the VAD tree [98].

5.2.4 The Memparser Software Tool

Memparser [Bet05] is a direct result of the Digital Forensics Research Confer-
ence (DFRWS) 2005 challenge [DFR05], and is capable of finding processes and
dumping their memory including system memory, and print loaded modules and
process environment information. It may be seen as a combination of Schuster’s
tools, but written in C and thus much faster. However, it is only able to parse
Windows 2000 dumps, cannot find terminated processes, and the upstream on
the project looks quite weak.

5.2.5 The KnTTools Software Tool

Another tool that grew out of the DFRWS 2005 challenge is the now commer-
cially available KnTTools [Inc07]. It includes KnTDD, a acquisition tool for

5.3. SUMMARY 63

physical memory, and KnTList, a tool for parsing the memory dump. The
latter is meant as a compliment to Schuster’s work, and has a similar output.

5.2.6 Harlan Carvey’s Tools

In his book Windows Forensics Analysis [33], Carvey presents tools with many
of the same functions as all the above mentioned applications. His PERL scripts
are free, but unfortunately they are only aimed at Windows 2000 memory
dumps [Car06].

5.3 Summary

This chapter has summarized some of the current paradigm within forensic
memory acquisition and analysis. As discussed, there is a great need for stan-
dardization of the fields, to support contemporary digital forensics procedures.
Forming such standardization is unfortunately hard because of the wide range of
hardware and software available, and the fact that physical memory’s volatility
makes it hard to acquire. We will return to address this issue in Section 8, where
we suggest several key points to facilitate a more forensically sound approach
to memory forensics.

Part II

Methodology and Practical
Work

65

Chapter 6

Methodology

During the research of this thesis, it became clear that custom software had to
be developed to facilitate search for keys in memory dumps. To the author’s
knowledge, no such software exist, and while the coldboot authors have promised
to release their source code for public use, no timeframe for this release is given
at the time of writing.

Therefore, a proof of concept tool called Interrogate were developed, based
on a unification of the theoretic background of cryptography, memory system
and volatile digital forensics. The tool is able to locate keys from several different
ciphers, so that we were able to test the chances of uncovering such keys in a
digital crime scene investigation.

6.1 Cryptographic Key Search Strategies

Several strategies for cryptographic key searches in memory dumps has been
proposed by other researchers. As mentioned in Chapter 1, entropy, structural
properties, kernel data structure and key schedules have all been used to locate
crypto keys. We will discuss some of the arguments for and against each strategy
here, and define existing and new search strategies we have implemented in our
proof of concept tool. Among these several new approaches based on combining
existing and new methods are proposed.

6.1.1 Strategy 1: Brute-Force Dictionary Attack

The ultimate näıve approach, using each sequence of bytes in memory as de-
cryption key, is actually quite feasible. For a 2 GB memory dump, this ap-
proach has a time complexity of trying all byte offsets, e.g., around 2(10243) =
2147483648 = 231. We did however not attempt this approach in our research,
but a simple bash script together with OpenSSL would probably suffice.

Thus, if one knows the key size, algorithm, algorithm mode and some plain-
text, this strategy is quite viable, although not very elegant. We can do better
by utilizing the properties of cryptographic keys as discusses in Section 2.3.

67

68 FORENSIC KEY DISCOVERY AND IDENTIFICATION

6.1.2 Strategy 2: Compression Trial and Error

We can utilize the randomness properties discussed in Section 2.3.3 to search for
random data by sampling a large enough chunk of bytes and then attempting
to compress it. Compression functions rely on redundancy and inequalities in
the probabilities of the symbols to form a more efficient representation of the
information, so if a slight compression rate is archived, the data is probably not
random. However this is not a feasible nor clever approach, since compression
would put a heavy toll on performance of the search.

6.1.3 Strategy 3: Estimating Entropy

Using entropy to locate RSA keys were first proposed by Shamir and van
Someren [25]. Their technique were among others to estimate entropy by count-
ing unique bytes within a window corresponding to the key size. For example,
a 64-byte window would match a 512-bit key. By visually inspecting regions
that surpassed a heuristic threshold, they were able to pinpoint suspect areas
of the memory. Using a visual confirmation method, they are able to identify
512-bit RSA keys in something they call a ”lunchtime attack”. Using a fairly
small memory space (around 300 kB) they only get a few false positives, and
no false negatives.

The algorithm can be described as follows (where the window offset is printed
to the user if the counter returned is above a heuristic threshold):

Entropy-Search(DUMP,window size, threshold)
1 for i← 0 to length[DUMP]− window size
2 do BYTES [256] = NULL
3 count = 0
4 � Iterate through window
5 for j ← 0 to window size
6 do c ← DUMP [i+ j]
7 � Check if byte value has been counted before
8 if BY TES[c] = 0
9 then BY TES[c]← 1

10 count ← count +1
11 � Return offsets where the byte count is high
12 if count > threshold
13 then return i

We used this method to estimate entropy of the image in Figure 2.3(a), and
the result can be found in Figure 6.1. Here, the upper graph represent the true
entropy values obtained by sliding a 256-bit window over the JPEG image. The
lower graph represent the corresponding method when using the unique byte
count method suggested by Shamir. By comparing the graphs, one can see that
the estimate is quite good.

However, a problem with this method occurs when a too small or large
window size is used. If a small window size is used, the statistical data within
each window is insufficient to accurately estimate entropy, and when a large
window is used, the unique byte count may approach its maximum value (that
is, the alphabet size ω) regardless of the randomness of the data.

6.1. CRYPTOGRAPHIC KEY SEARCH STRATEGIES 69

(a) The Persistence of Memory Entropy

(b) The Persistence of Memory Unique Byte Count

Figure 6.1: Entropy and estimate of entropy of a JPEG image (Fig-
ure 2.3(a)). Window size 256 bytes, values measured using the two algorithms
Naive-Entropy-Search and Entropy-Search

70 FORENSIC KEY DISCOVERY AND IDENTIFICATION

Furthermore, the size of the memory that are available on modern computers
has grown substantially since 1998 when the article was written, and our research
suggests that memory images in average has numerous regions with high entropy
when memory are seized from a system under normal load. Visual inspection
of these would be a tedious task. Of course, location of such regions could be
a great input for a future brute-force approach on the keys, by treating each
offset in these regions as a key.

It is possible to reduce the number of false positives by performing statistical
tests on the identified regions, like discussed in Section 2.3.3. One straight-
forward approach is to test the statistical properties of each found region, and
discard the regions that are under a heuristic threshold. This could greatly
reduce the number of false positives.

Unfortunately, not all keys are suitable for an entropy-based search. Sym-
metric keys are in general too short (in terms of bytes) to be located by this
method. For example, a 256-bit (32-byte) AES key has a length that is 8 times
smaller than the size of the alphabet (considering bytes with an alphabet size
ω = 28). Accurately identifying such small regions is statistically hard, since we
need more data to get an precise estimate of entropy. Therefore, we also cre-
ated another more näıve algorithm Naive-Entropy-Search, by calculating
the true entropy within each window, using the original Shannon equation with
he same algorithm as Entropy-Search. Although providing better accuracy,
the algorithm suffers in terms of performance, and the output were largely the
same. We also attempted to use the statistical methods in Section 2.3.3 to test
whether regions were (pseudo) random or not, but were largely disappointed in
the results. This is largely due to the size of the keys being searched for.

In Figure 6.2, we’ve visualized three different 128-bit AES keys found in the
memory of a Windows XP system, with their expanded key schedule (a total
of 176 bytes). Here, each byte value is interpreted as a each of 256 possible
grey-tones, and printed out in a 16-byte wide format. We’ve also included the
surrounding 176 bytes before and after the key schedules, and the key schedule
is marked with light blue index lines. The first of these line is the 16 byte master
key. Since the key schedule in most implementations will be positioned in an
array or continuous memory region, measuring the entropy of this structure
could be a viable approach. If we look at the figures, we can see that even if
we were able to identify this region by means of entropy measurement, the key
does not stand out compared to its surroundings. However, this will probably
return quite a few positives, and we can do better by using the techniques from
the coldboot attack.

Summarized, the drawbacks of the entropy-based search is rather substan-
tial. The search strategy does however feature one major advantage; it is highly
implementation-independent, and will, unless key obfuscation techniques are
employed, locate interesting regions independent of OS, algorithm and imple-
mentation.

Entropy-based search methods combined with structural knowledge of the
Twofish key schedule can be used to locate Twofish keys, as noted in Sec-
tion 6.1.5.

6.1. CRYPTOGRAPHIC KEY SEARCH STRATEGIES 71

(a) 128-bit AES key (b) 128-bit AES key (c) 128-bit AES key

Figure 6.2: Three visualized 128-bit AES keys with key schedule in memory.
The whole key schedule is marked with blue lines.

6.1.4 Strategy 4: Cryptographic Key Schedule Searches

By using the method suggested in the coldboot article, AES keys can be located
in memory. We implemented this method, since no implementation was avail-
able at the time of writing, and such a method was needed to answer our problem
definition. The method can probably be extended to any AES implementation
that pre-calculates its key schedule.

By utilizing the Serpent key schedule, we also propose a new algorithm for
location of Serpent keys.

Cryptographic Key Schedule Search for AES Keys

Based on the description from Halderman et. al., we implemented our own
version of the algorithm:

AES-Search(DUMP, key size)
1 for i← 0 to length[DUMP]
2 � Treat each offset in DUMP as a key
3 do key ← DUMP [i]
4 � Generate AES key schedule based on key size
5 if key size = 128
6 then ks ← Expand-Key(key)
7 elseif key size = 192
8 then ks ← Expand-Key-198(key)
9 else ks ← Expand-Key-256(key)

10 � Compare the key schedule against data at offset
11 if ks = DUMP [i]
12 then return ks

This straight-forward search is reported to output few false positives, and
should, using a good error-correcting code against remanence effects, also be

72 FORENSIC KEY DISCOVERY AND IDENTIFICATION

robust against false negatives. We did not calculate the hamming distance
between the key schedules like suggested above, because we are dealing with
atomic memory copies created with virtualization software (see Section 6.4.1).

Cryptographic Key Schedule Search for Serpent Keys

We may utilize the Serpent key schedule structure discussed in Section 2.3.5 in
the same way as we utilized the AES keys schedule, by treating each 256-bit
string in the memory as a key, calculate its key schedule, and compare it to the
560 bytes at the current offset within memory.

We hereby propose a new algorithm for locating Serpent keys, based on the
same procedure for locating AES keys. The search can be described with the
following algorithm, where we iterate through each byte of memory, generate
key schedules based on the data at the offsets and compare the results against
the data found after the offsets:

Serpent-Search(DUMP)
1 for i← 0 to length[DUMP]
2 � Treat each offset in DUMP as a key
3 do key ← DUMP [i]
4 � Generate Serpent key schedule (560 bytes)
5 ks ← Serpent-Set-Key(key)
6 � Compare the key schedule against data at offset
7 if ks = DUMP [i]
8 then return ks

The key schedule routines for Serpent are less computationally heavy than
the AES key schedule generation, resulting in a slightly faster implementation.

6.1.5 Strategy 5: Structural Searches

Both Pettersson [26] and Waters and Petroni [29] suggests structural searches
based on the analysis of open-source cryptographic tools and kernels. Pettersson
suggests a direct search for the C data structures (e.g., struct) holding the keys,
by interpreting each region in the memory dump as a potential structure, and
testing certain heuristics like pointer addresses.

Waters and Petroni has a rather different approach, where they utilize several
kernel data structures related to drive management to locate a chain of struc-
tures ultimately leading to the data structure holding the master key. They do
however seem to neglect the fact that the pointers between these structures are
pointers in the virtual address space, and that some sort of address translation is
required. The pages containing these structures may also be paged out, further
complicating the task of finding them. However, their work is hypothetical and
related to their tool Volatility [Sys07], that has the ability to extract process
memory from memory dumps, and their attack may therefore be feasible.

Structural search is highly implementation-specific, and in the case of Pet-
tersson, based on several assumptions that are not always true. A decent ap-
proach could nevertheless be to utilize these methods, and try the outputs as
keys. Even with a substantial magnitude of false positives, the approach would
have a relatively small time complexity.

6.1. CRYPTOGRAPHIC KEY SEARCH STRATEGIES 73

Structural Search for RSA keys

To search for RSA keys in memory, we can use these field types mentioned in
Section 2.3.5 together with some basic knowledge about the keys to develop a
search pattern. This search strategy has been suggested by several researchers,
notably Halderman et. al. [30], Ptacek [Pta08] and Klein [27]. We add some
structural checkups to provide a higher degree of accuracy an fewer false posi-
tives.

First, that according to the RSA Cryptography Standard and PKCS #8
all private keys are values of type RSAPrivateKey in DER encoding with the
following structure:

RSAPrivateKey ::= SEQUENCE {

version Version,

modulus INTEGER, -- n

publicExponent INTEGER, -- e

privateExponent INTEGER, -- d

prime1 INTEGER, -- p

prime2 INTEGER, -- q

exponent1 INTEGER, -- d mod (p-1)

exponent2 INTEGER, -- d mod (q-1)

coefficient INTEGER, -- (inverse of q) mod p

otherPrimeInfos OtherPrimeInfos OPTIONAL

}

We see that the structure starts with the field SEQUENCE, and then a two-
byte value indicating the length of the blob. According to PKCS #8 the value
of the version will always be ”0”, unless multi-prime RSA is used. We assume
from now on that this value is ”0”. If we base-64 decode a private-key .PEM
file, we can observe the DER encoded file in its raw (hexadecimal) format:

$ openssl rsa -inform PEM -outform DER -in private.key -out private.der

$ hexdump -C testdata/private.der

00000000 30 82 01 3a 02 01 00 02 41 00 b6 16 cc 12 6a 56 |0..:....A.....jV|

00000010 e1 b8 84 59 91 7d 4b 90 d2 54 02 f2 42 f6 c1 c3 |...Y.}K..T..B...|

00000020 54 96 04 c3 8a 5a 8b ee 4d de a3 0c 0f 01 50 a9 |T....Z..M.....P.|

00000030 a0 6e bb 9e bc 43 41 b8 0c 0a 88 29 68 12 2d 53 |.n...CA....)h.-S|

00000040 8e e9 03 2a d6 16 cd 01 ee 5d 02 03 01 00 01 02 |...*.....]......|

00000050 40 6e 94 b9 aa 15 5a 5e 0a 28 96 1c 7c f2 ff 28 |@n....Z^.(..|..(|

00000060 3c 4c ed c3 2d 07 cf 0f f7 6b 3d 35 30 77 fa 68 |<L..-....k=50w.h|

00000070 de dd e6 c2 86 22 5b d2 03 e8 56 5b 6c a7 1c 7f |....."[...V[l...|

00000080 d4 55 4e ae e7 e3 67 a6 b7 45 bf 7a 9b 3e 80 12 |.UN...g..E.z.>..|

00000090 21 02 21 00 dd 00 0a 7e 78 bd ed 7d fa c0 cf e6 |!.!....~x..}....|

000000a0 14 d3 98 84 fe 9d e4 ce 9f 01 7c e5 a0 44 56 2f |..........|..DV/|

000000b0 4e 8a ec ef 02 21 00 d2 ed 31 25 01 61 f8 9d 88 |N....!...1%.a...|

000000c0 25 79 e7 52 65 b8 01 84 2c 8c 05 54 47 9c 63 88 |%y.Re...,..TG.c.|

000000d0 02 55 f2 f6 3c 71 73 02 20 17 d9 e6 48 09 fd ed |.U..<qs. ...H...|

000000e0 80 b8 2c 51 03 b2 e1 b7 47 3b 37 8d 37 23 80 04 |..,Q....G;7.7#..|

000000f0 9b bf b5 40 5b f0 ad 1b af 02 20 48 6b 01 75 88 |...@[..... Hk.u.|

00000100 1d 00 03 ee 2b 97 c8 11 25 35 60 e7 e5 77 89 98 |....+...%5‘..w..|

00000110 df 21 55 96 eb de 60 95 a4 38 fb 02 21 00 bc b8 |.!U...‘..8..!...|

00000120 ca 9f 12 a7 4e be 68 d6 f7 13 48 5e 9c c0 35 4d |....N.h...H^..5M|

00000130 02 95 74 8a 6d bf 53 ff f7 35 04 ab 6c 71 |..t.m.S..5..lq|

0000013e

We observe the SEQUENCE value (0x3082) and the length (pointing at the
end of the file (0x013a + 0x4 = 0x013e), followed by the INTEGER version field
(0x02). Every INTEGER field is based on the following syntax (where length
and value may be several bytes):

74 FORENSIC KEY DISCOVERY AND IDENTIFICATION

marker(0x02) length value

The length byte can take on a long or short form. In the short form, bit
8 of the byte has value ”0”, and bits 7-1 indicate the length of the integer (in
bytes). If the length of the integer is over 127 bytes, the long form is used. Here
bit 8 of the byte has value ”1” and bits 7-1 indicate the number of additional
lengths bytes. For example, if we have a 2048-bit RSA key, the first byte of the
modulus length field would be 0x82 (10000010 in binary), and the second and
third byte 0x0101 (which is the length of the modulus, 257 bytes) [Kal93].

We can use these values and search for them in a memory dump (or any
other blob of data for that matter) by performing raw string matching and
some structural checkups, for example by controlling that the public exponent
is either 1 or 65537 (0x01001):

RSA-Search(DUMP)
1 for i← 0 to length[DUMP]
2 � Search for ASN.1 signature
3 do if DUMP [i] = 0x3082
4 then Parse-DER(DUMP [i])

The method Parse-DER implements the structural checkups, and writes
the full DER-encoded keys to files on the disk.

Structural Searches for Twofish Keys

Based on the structural properties of the Twofish key schedule discussed in
Section 2.3.5, we suggest several methods for locating Twofish key schedules
generated from 256-bit keys. It is important to remember that even if we were to
find such a key schedule, there seems to be no straight-forward way of deducing
the key from the data obtained; the MDS matrix multiply and the h function is
to the author’s knowledge not reversible. Thus, even if we were able to identify
the S keys, we cannot deduce the master key, and hence not verify whether or
not the found round keys Kj matches the S vector, and vice versa.

However, the master key is not needed to decrypt content encrypted under
it, the S vector and the round keys would suffice. Therefore, a simple brute-
force attempt using all bytes in memory as these, could be a viable approach.
This would require a modification of the original source code to permit input of
the S and K vectors instead of a regular key.

We could do even better if we were able to identify certain properties of
these vectors and search for them in the memory. Fortunately, the Twofish key
schedule has just the properties we need to form such a search signature.

For a large number of Twofish key schedules, we clearly see that the en-
tropy value of the S keys (Figure 6.3) take on distinct values, not a uni-
formly distributed high entropy value. This is congruent with the notes on
the Twofish key schedule in [79, 77, 78]. We conducted a large number of
experiments generating such key schedules, and found that the entropy values
falls within the values in Table 6.1. The values between 3.0000 and 2.0000
are omitted for the sake of space, as these have an extremely low probability
and are tested as a range in our proof of concept tool (e.g., with code like
((entropy <= 3.0000) && (entropy >= 2.0000))). The table can be com-
pared to Figure 6.3, where a lower number of samples were used.

6.1. CRYPTOGRAPHIC KEY SEARCH STRATEGIES 75

Entropy Values
4.0000 3.8750 3.7500 3.7028 3.6250 3.5778
3.5000 3.4528 3.4056 3.3750 3.3278 3.2806
3.2744 3.2500 3.2028 3.1556 3.1494 3.1250
3.0778 3.0306 3.0244 3.0000 −→ 2.0000

Table 6.1: Measured entropy values for the S-box keys of a 256-bit Twofish
key schedule. 1 ∗ 1012 samples were used, and the entropy value rounded off to
four decimals. The arrow indicates that there exist many values in the interval
[3.0000, 2.0000].

Furthermore, we have conducted experiments using large number of key
schedules1, that indicate that the sub keys Kj has entropy values in the relaxed
range [6.1, 7.4], as seen in Figure 6.4.

Figure 6.3: Plot of entropy from the Twofish S key vectors of 256-bit keys.

If we look at the 4 KB table, we see that it can only take on one distinct
entropy value, namely the maximum possible 8 bits per byte (Figure 6.5).

As an example, a Twofish key schedule (without the large table that would
not fit on this page) found in a Windows XP running Truecrypt with Twofish
is presented here:

4aa9faa2 c00f0e9e 6cd17283 b12ac515

5ef3944a a9296b94 1a450617 66deaefc

72e068d4 0e9b7a91 e321a47e af9da9e0

7caaaf0f 98ebeac4 17538a58 2e91ec60

1The graphs in this thesis is formed using 100.000 sample key schedules although we con-
ducted experiments using up to 1.000.000.000.000 samples when verifying these properties.
The graphs from these experiments has a size that are not suitable for inclusion in a PDF
document.

76 FORENSIC KEY DISCOVERY AND IDENTIFICATION

Figure 6.4: Plot of entropy from the Twofish K key vectors.

Figure 6.5: Plot of entropy from 4 KB full keying tables from Twofish.

6.1. CRYPTOGRAPHIC KEY SEARCH STRATEGIES 77

dae09381 c9bf4322 1c64263f c7370026

75d29686 4b21fdbc 5f710b05 e941147d

22044248 e91468a1 042495ea 504e3746

4ffee71a 00a84644 d2870d27 55ed855a

3a748153 3b8a8150 87d4772c b7824076

296a3807 261a476b 02f2854f 645f1f42

effe9aa2 9602ff2c 21c85355 73662510

eeeeaa88 04050707 560b56e7 a93453a9

The first ten 16-byte keys are the round keys Kj , while the last four words
are the S vector (read from right to left). Please note that the 32-bit words
are printed in Litte-Endian, so the Least Significant Byte (LSB) is the leftmost
byte of each word. The representation above is implementation-specific for True-
crypt [Fou08b], other applications may use other structures for managing their
key material. However, adjusting search signatures to other implementations is
a straight-forward task.

Listing 6.1: Truecrypt Twofish key schedule struct
/* Twofish key structure , taken from TrueCrypt implementation */
typedef struct {

unsigned int l_key [40];
unsigned int s_key [4];
unsigned int mk_tab [4 * 256];
unsigned int k_len;

}
twofish_tc;

If we look at the Truecrypt source code, it uses a C structure to store the
fully expanded key schedule, as seen in Listing 6.1. Here, the l key vector is the
sub- and whitening keys, the s key vector is the four S-box keys, the mk tab
is the 4 KB table and the k len integer is the number k = N/64 as treated
in Section 2.3.5, which in the case of Truecrypt always is 4 because it only
uses 256-bit keys (N = 256). Using this information, we propose the following
algorithm (where w, x, y and z are heuristic entropy thresholds):

Truecrypt-Twofish-Search(DUMP)
1 for i← 0 to length[DUMP]
2 � Treat each offset in DUMP as a key schedule struct
3 do ks ← (twofish tc)DUMP [i]
4 if k len = 4
5 then e mk ← Entropy(mk tab)� Entropy of 4 KB table
6 e s ← Entropy(s key) � Entropy of S-box keys
7 e l ← Entropy(l key) � Entropy of sub keys
8 � Check heuristic entropy thresholds
9 if e mk = 8 and w < e s < x and y < e l < z

10 then return ks

A Less Implementation-dependent Search

To counter the drawback of only being able to search for Truecrypt keys, we
propose another method of locating Twofish key schedules by means of counting
runs. In addition to being highly entropic, the 4 KB table also has a quite
constant number of runs (see Section 2.3.3). By evaluating a large number of

78 FORENSIC KEY DISCOVERY AND IDENTIFICATION

key schedules, we have set a heuristic threshold for such runs of length from
one to six, as seen in Table 6.2. By counting runs in each 4 KB window of
the memory dump, we can locate probable 4 KB tables. To verify these tables,
we perform the same checkups as with the Truecrypt Twofish key schedule,
using data structures taken from both the Truecrypt implementation and the
other implementations of Twofish, including the SSH, Linux/GPG and reference
implementation [Sch98]. The structs from these implementations can be found
in Listing 6.2. This facilitates finding more than one type of key schedule data
structures.

Run Length Interval
1 [485, 520]
2 [0, 0]
3 [1, 12]
4 [0, 0]
5 [0, 0]
6 [0, 1]

Table 6.2: Intervals of measured runs of different lengths in the Twofish key
schedule. Runs of 6 or more are all counted in the ’6’-bin.

Listing 6.2: Twofish key schedule structures
/* Twofish key sructure from Linux and GPG implementations
* Isomorphic with SSH impelentation below as far as we are concered. */

typedef struct {
unsigned int s[4][256] , w[8], k[32];

}
twofish_gpg;

/* SSH twofish key schedule */
typedef struct {

unsigned int s[4][256]; /* Key -dependant S-Boxes */
unsigned int k[40]; /* Expanded key words */
int for_encryption; /* encrypt / decrypt */

}
twofish_ssh;

/* Twofish key structure taken from Nettle */
typedef struct {

unsigned int k[40];
unsigned int s[4][256];

}
twofish_nettle;

/* Twofish optimized implementation */
typedef struct {

unsigned int K[40];
unsigned int k_len;
unsigned int QF [4][256];

}
twofish_opt;

Counting runs can be optimized for sequential searches, and is thus signif-
icantly faster than measuring entropy with a large window size like 4 KB. By
just keeping track of the runs that ”fall out” and enter the searching window, we
can reduce the runtime of our algorithm significantly. The implementation of

6.2. PREPROCESSING: REBUILD VIRTUAL MEMORY 79

this algorithm can be found in the source code in Appendix A. The pseudocode
for the search algorithm can be described as follows:

Optimized-Twofish-Search(DUMP,window size)
1 run[6]← NULL
2 firstrun, lastrun, i ← 0
3 � Calculate runs for first window
4 Runs(DUMP [i], run, firstrun, lastrun)
5 if Is-Mk-Tab(run)
6 then Validate-Tf-Ks(DUMP [i])
7 i ← i+ 1
8 � Iterate through rest of data using optimized runs method
9 for i to length[DUMP]− window size

10 do Runs-Optimized(DUMP [i], run, firstrun, lastrun)
11 if Is-Mk-Tab(run)
12 then Validate-Tf-Ks(DUMP [i])

Here, the Runs method counts the number of runs in a window, while the
Runs-Optimized method uses the numbers from the preceding runs to keep
track of the runs within each sequential window. The Is-Mk-Tab function
simply performs a heuristic check on the number of runs, using the data from
Table 6.2. Finally, the Validate-Tf-Ks uses the structures from Listing 6.2
to perform heuristic checkups on the S-box keys and sub keys, and outputs the
full key schedule if enough tests are passed.

6.2 Preprocessing: Rebuild Virtual Memory

As discussed in Section 3.2, a digital investigator may face keys that are dis-
tributed over several non-contiguous pages in memory. To counter this, we wrote
a simple virtual address reconstructor. Memory reserved with an instance of a
system call (e.g., malloc or any equivalent) are generally given contiguous vir-
tual memory. Therefore, if we could fetch pages from the physical memory via
virtual addresses and address translation, we could rebuild the virtual address
space of a process, and search the reconstructed data for keys as opposed of the
original memory dump. This also facilitates a significant reduction of search
data.

To reconstruct the virtual address space of a process, we only need to know
the location of its Page Directory Base (PDB). Using this, the reconstruction
procedure greedily iterates through all virtual addresses, one page at a time,
and looks them up in the process page directory and page tables. To locate the
page directory base for the target process, a tool like PTFinder or Volatility
can be used. This search method requires extensive knowledge about the cryp-
tographic application, its processes and threads; specifically we need to know
what thread and process that handles the cryptographic keys. For transparent
cryptosystems, these threads usually operates in the process System.exe, which
has its PDB at 0x00039000.

This reconstruction method is not complete, as we do not fetch pages that
are paged out to the pagefile. It is also prone to fetch pages that are not a part
of the process, since we iterate through the whole address space of the process

80 FORENSIC KEY DISCOVERY AND IDENTIFICATION

(0x00000000 - 0xffffffff), and many addresses may not be in use. Our im-
plementation does however permit specification of memory range to reconstruct,
to facilitate selection of only interesting memory regions like the NonPaged Pool.

The reconstruction method can be used as a preprocessing step to lessen the
haystack for all the above search strategies, and hence significantly improve the
performance of the search.

6.3 Proof of Concept Tool: Interrogate

Implementing most of the above search strategies, a proof of concept search
tool called Interrogate was developed. The application is able to identify and
locate 128, 192 and 256-bit AES keys, 256-bit Serpent and Twofish keys and
arbitrary-length RSA keys encoded with ASN.1. RSA keys are written to disk in
a DER format, and it is also able to greedily reconstruct process memory given
the location of that process’ PDB like discussed in Section 6.2. Furthermore,
the tool can indicate location of high entropy regions in memory, and therefore
indicate location of interest to a forensic investigator that is looking for crypto
keys.

The source code of Interrogate is presented in Appendix A under the GNU
Public License (GPL). The author chose to release the code under this license
to permit further development in the field, and as a consequence of the belief
that open source is beneficial to both the IT security community and the public
in general.

The tool makes the some assumptions about the target computer (e.g., the
system that the memory dump were acquired from), namely that it is a 32-bit
Little Endian system. In addition, to utilize the virtual memory reconstruction
features, the target system must be Windows XP, with no PAE or /3GB switch.
All the other functions, including the key search, are OS-independent in regards
of target system.

Being a proof of concept tool, it is not guaranteed to locate keys, nor cor-
rectness of the keys found. It performs very few (if any) checkups on the dump
image, and it is up to the user to verify checksums and maintain the integrity
of the input. Nevertheless, the tool can be used as it is to forensically locate
keys in real investigation cases. The input file(s) need not be a memory dump
at all, any digital file could be searched for keys.

The tool is downloadable from the Interrogate SourceForge site at http:
//interrogate.sourceforge.net. Please be referred to this site for the latest
release.

6.3.1 Choice of Programming Language

The tool was implemented in ANSI C, mainly because of performance consid-
erations. C is fast, and it simplifies several of the structural searches due to the
fact that most operating systems and cryptographic software are implemented
using C or C++.

6.3. PROOF OF CONCEPT TOOL: INTERROGATE 81

6.3.2 Usage

Interrogate is a command-line tool, and may be compiled and executed using a
command sequence similar to this:

$ make

$./interrogate

Type ./interrogate -h for further help on the different options for running
the application. The tool should compile nicely2 with GCC 3.x and 4.x on Linux
and Mac OS X, and probably lower versions too (not tested). In Windows XP,
the tool can be compiled with Eclipse IDE for C/C++ Developers (CDT) version
3.3.2, GCC and Make for Windows.

6.3.3 Sample Output

Interrogate is here used to search for Serpent keys in a Windows XP SP2 memory
dump. One single key is found:

$./interrogate -a serpent win-xp-sp2.vmem

Interrogate Copyright (C) 2008 Carsten Maartmann-Moe <carmaa@gmail.com>

This program comes with ABSOLUTELY NO WARRANTY; for details use ‘-h’.

This is free software, and you are welcome to redistribute it

under certain conditions; see bundled file licence.txt for details.

Attempting to load entire file into memory, please stand by...

Success, starting search.

--

Found (probable) SERPENT key at offset 017ba008:

f7 7e 33 ed 83 16 e9 00 c3 81 0a d3 29 33 b3 65

a0 65 35 e6 37 c6 30 30 a5 0c 61 1b e8 b7 29 8a

Expanded key:

f7 7e 33 ed 83 16 e9 00 c3 81 0a d3 29 33 b3 65

a0 65 35 e6 37 c6 30 30 a5 0c 61 1b e8 b7 29 8a

e3 1d 37 70 a9 4a 9e 3e 2a d0 0c 82 e6 4e 9f c2

b8 4b 85 c5 99 4c d2 87 3c 99 d6 0d 73 62 71 bf

04 93 cc 86 d2 05 dc aa ea bd 8f 60 e0 32 83 ac

a6 29 1b 1c e3 73 21 f3 25 ff f1 29 82 cb 52 40

b0 9b 10 84 0f 91 e8 0e c9 70 b1 54 33 f4 1c 5b

2d 2d e5 ab 01 42 2c fc e1 a5 5d 2a 0c 23 88 aa

e3 fc 3b c2 53 15 eb ef 19 9e 3e 8b ff 13 d0 4e

0d 61 a9 f7 6f 1f 45 f4 50 e1 a6 80 0e 19 92 82

e2 11 23 2d a8 5e b8 18 c6 f0 d2 f1 4b cd e5 29

97 5f 7f 3d 74 3d 86 22 2d 40 e9 08 02 58 d4 29

99 1d c6 51 fd 05 5a db 5a 4a d9 b9 09 b0 33 f8

37 f3 d5 5e 96 a0 92 e7 6f a4 72 62 26 4b 81 fe

9a ad 80 c9 96 84 bd 88 7e 25 a7 2a da ea 84 d8

23 46 d0 96 ef 86 2b b0 37 37 00 0b be 0b fc bb

c0 62 c1 ef 6d 66 5b 46 ce 9c d1 f3 01 80 ea 97

53 d1 d7 f9 ae 25 62 6a e4 a7 13 2d 9b e1 2a 13

5f 38 f6 04 7e 2c 4d 1f 7a 08 54 ee 91 d1 73 ed

40 60 8e bd cb 7b 93 32 0c 77 76 bb 94 ac ac 81

1d bf 8d 72 38 4b 51 99 44 3e 77 8a b7 a9 8d 7f

2As mentioned in the source code, compiler optimizations using any of the -O switches
with GCC will result in a non-functioning Twofish search.

82 FORENSIC KEY DISCOVERY AND IDENTIFICATION

60 96 14 9f 86 08 71 60 39 6b 13 a4 f4 f2 22 82

a9 e7 2a 06 15 15 b8 47 ec 81 d2 6c 12 44 3a a5

4a 31 5c 4d f9 f1 7d db 27 d0 76 a0 0c 63 6c cf

19 ae 06 8f e2 ba aa b8 c4 dd da 1d c0 3b 25 9d

52 9d 82 b4 06 d0 da f5 2d 8c 7d 39 b6 df 09 0f

24 40 d5 84 31 97 b6 c1 48 15 ad 40 0b 3c 34 fa

4a fb be a4 50 70 09 96 ca c5 31 29 16 11 bc b7

a4 f5 43 04 5d 03 b9 8f c5 a9 fd e5 f8 83 53 11

72 f4 a9 20 76 e6 f9 eb 13 94 cc 9e 07 19 21 9b

f6 92 b3 5a 3f 9d 54 8a bf b5 c4 ba e2 03 8e 88

bb 0b c1 92 b2 af c3 79 aa 76 bb 39 b2 ad 49 25

4a ad 71 f7 dd fb d3 7c d9 94 e3 c9 d4 f1 83 67

a1 e8 45 e0 bb 36 39 bb 66 e8 c4 60 95 2b 38 19

dd a2 19 f8 7e a8 be e1 47 29 85 f8 d1 d6 d1 9f

A total of 1 keys found.

Spent 1090 seconds of your day looking for the key.

6.4 The Testbed and Environment

To facilitate our research, we needed a testbed that had a low cost associated
and was able to perform atomic memory dumps. Furthermore, we desired an
as easy as possible acquisition procedure for the memory dump.

We chose to utilize virtualization software to generate memory dumps for
testing and development. Virtualization software permits running several in-
stances of different OSes on virtual hardware on a host computer. The hard
drives of the virtual machines exist as files on the host hard drive, and the virtu-
alization software runs a virtualization layer (”hypervisor”) between the virtual
hardware and the host hardware and OS.

Using virtualization has several advantages for research purposes:

• Atomicity of memory dump (see Section 5.1)

• ”Snapshot” functionality provide reversibility to a ”clean” state

• Easy to maintain several copies of the same system without extra hardware

• Easy to adjust hardware to the given application (for example, adjusting
the amount of physical memory with a sliding bar)

• Multitasking: Several tests can be performed in parallel on different OSes
on the same computer at the same time

The flexibility of a virtualized environment allows us to study the different
states of a system more thoroughly and efficient, and with a far less cost asso-
ciated compared to a hardware-based approach. Additionally, the acquisition
procedure for physical memory is somewhat simplified compared to the real-life
alternative, as discussed in Section 5.1.

6.4.1 VMware Server

VMware Server version 1.0.5 [VMw07] was chosen as the virtualization solution
for this thesis. The software runs on hosts using both Linux and Windows,
and is able to support a large number of Virtual Machines (abbreviated VM or

6.4. THE TESTBED AND ENVIRONMENT 83

clients) running within the application. It is free of charge, and supports a wide
range of operating systems, both on the client and host side. It also features
”snapshot”-functionality, allowing preserving the state of a virtual machine for
later use. Furthermore, the virtual machine can be suspended, and exported
into other VMware applications like Player, Fusion or Workstation. It is also
possible to download virtual machines directly from the VMWare site, allowing
download-and-play OSes.

The ”snapshot”-functionality of VMware server was utilized in this report to
make atomic images of the physical memory at the virtual machine. To reduce
the impact on the state of the target OS, all networking functions were turned
off after all the necessary software had been installed. In addition, the ”shared
folder”-functionality that allows the client machines access to designated host
folders was turned off to prevent cross-contamination between the host and the
target.

VMware and Forensic Research

VMware has successfully been utilized for forensic purposes in previous research.
Notably, the Virtual Security Testbed ViSe [99] were used for forensic recon-
struction by Årnes et. al. [100, 101], where the virtual testbed was utilized to
study the effects of computer attacks as a part of a computer crime reconstruc-
tion.

The VMware .vmem Format and Acquisition

Pressing the snapshot button in vmware server triggers a process that saves the
full information of the target machine to the host disk. The contents of the
RAM is written to a file named VMname-SnapshotXX.vmem within the working
directory of the VM on the host. The format of the .vmem files is simply a plain,
binary representation of the physical memory, thus providing us with an atomic
view of the memory state. For acquisition, the memory file is simply hashed
using SHA-256 for integrity measurement, and copied into a working directory
for further analysis.

Hibernation file Acquisition

The hibernation memory was processed in two different ways, either by restart-
ing the target machine and take a snapshot at the password prompt if no pre-
boot authentication is present, or by using the hibernation file (HIBERFIL.SYS).
To grab this file, we mounted the .vmdk virtual disks at the host using the
vmware-mount.pl script included in VMware Server. Force mode is necessary
when mounting since the VM filesystem is marked as ”in use” when in hiber-
nation mode:

$ mkdir /media/vm/

$ vmware-mount.pl Windows.vmdk 1 -o ro, force /media/vm/

And in another terminal:

$ cp /media/vm/hiberfil.sys .

The hibernation file was then converted to a memory dump file using Sand-
man [94], hashed using SHA-256 and analyzed as a memory dump using Inter-
rogate.

84 FORENSIC KEY DISCOVERY AND IDENTIFICATION

6.4.2 Case Generation Procedure

The following procedure was utilized to generate data memory dumps for cryp-
tographic key searches:

1. Two general users, Bob Internetuser <bob.internetuser@gmail.com>
and Alice Internetuser <alice.internetuser@gmail.com> were created,
with email addresses and accounts for messaging services if needed.

2. A fresh copy of Windows XP SP2 was was installed, and updated with all
security patches.

3. A snapshot of the clean OS (disconnected from the network) was taken
using VMware Server built-in snapshot function. This was stored at an
external drive due to VMware Server’s inability to have more than one
snapshot stored at a time.

4. Software were installed, passwords and keys generated for the specific
tools.

5. General usage (browsing, mail correspondence) of the OS was initiated to
remove the pristine condition of the OS.

6. Another snapshot was taken. This snapshot is the basis of our analysis of
each cryptographic tool.

7. One or more of the cryptographic tools were used together with general
usage.

8. A snapshot was taken, the resulting .vmem memory image was seized,
hashed using SHA-256 and analyzed according to forensic methodology
and the respective case using the Interrogate tool.

9. The .vmem memory image was after analysis verified towards the image
pre-analysis by hashing it with SHA-256 again and comparing the hashes.
This ensures the integrity of the target file, and maintains the Chain of
Custody.

10. The system was reverted to the snapshot taken in step 6, and then the
procedure was repeated from step 7 to facilitate the several states of each
case, for example Screensaver or Reboot state, etc.

11. Finally we restored the snapshot from the external hard drive, and re-
peated from step 4 for each piece of software.

6.5 Cryptographic Software Classes

For the sake of clarity and simplicity in the remaining discussion, we define three
main software classes that each of the cryptosystems tested fall into. These
classes are broad and not intended for any use outside this thesis; the crypto
applications are classified according to the expected presence and lifetime of
their keys in memory.

6.6. DEFINITION OF TARGET OPERATING SYSTEM STATES 85

6.5.1 The Whole-disk Encryption Class

Full Disk Encryption (FDE, from now on denoted ”Whole-disk encryption”)
and other cryptosystems that need to keep their keys in memory while the
system is powered on falls within this class. Whole-disk cryptosystems should
feature pre-boot authentication, and of course, not load any keys into memory
before after authentication. Good cryptographic practice also suggest that the
applications should detect shutdowns, screensaver activation or hibernation, in
time to wipe the keys from memory.

6.5.2 The Virtual Disk (Container) Encryption Class

This class contains crypto applications that feature standalone file containers
that can be mounted as disks or read/written using any other method. The
common denominator here is that these applications need to keep the keys in
memory while active, but should immediately upon dismounting or closing wipe
its keys. Just like in the Whole-disk class, cryptographic best practice suggest
that keys should be wiped at shutdowns, screensaver activation or hibernation.
Note that Apple’s FileVault falls within both this class and the former because
it only encrypts the home folder of the user.

6.5.3 The Session-based Encryption Class

These applications generates session or short-lived keys to encrypt session-based
information. Some of them may indeed generate a new key for each cryptogram.
Nevertheless, these applications should wipe the key from memory as soon as
the session is closed or the one-time key is used. Typical cryptosystems that
falls within this category includes e-mail and IM encryption.

6.6 Definition of Target Operating System States

In this section we predefine the states that are tested using VMware and Interro-
gate. Recall that modern computer has a finite number of states it can be in at
any point in time. The real number of states is of course quite much larger than
the eight states defined in this thesis, but by simplifying and merging we aim to
provide states that are decipherable and clarifying to any person encountering
a system where cryptography has been or is in use.

The states defined here is thus not exhaustive, but common and generic
states that have impact on the chances of finding keys in volatile memory.

6.6.1 The Live State

In this state both system and cryptosystem are in a logged in state, and the
cryptosystem is in use. If the cryptographic application uses virtual disks these
are mounted. For Session-based cryptography of data like IM messages or
zipped file containers, the encryption is in progress.

86 FORENSIC KEY DISCOVERY AND IDENTIFICATION

6.6.2 The Screensaver State

The system is in the same state as Live, but has been left alone until the
screensaver is activated. We use the default Windows screen saver, with a one-
minute delay and password protection. Since the screen saver actually may
affect the state of the computer by running scheduled tasks in the background,
the acquisition is performed immediately after screen saver activation. For some
systems, it is impossible to guarantee that encryption still is in progress.

6.6.3 The Dismounted State

Only applicable to file-container or Virtual Disk cryptosystems. All disks
mounted through the cryptosystem are dismounted, and the system is suspended
immediately afterwards.

6.6.4 The Hibernation State

Not applicable for Whole-disk cryptosystems. System is set to hibernate,
suspended, the .vmdk virtual disk mounted at the host and the hibernation file
is extracted for analysis.

6.6.5 The Terminated State

Not applicable for Whole-disk cryptosystems. In this state, the cryptographic
application is terminated and virtual machine immediately suspended. Beyond
that identical to the Live state.

6.6.6 The Logged out State

The user is logged out, after recent activity on the system using the target
cryptographic application. Note that this is not identical to a freshly booted
system; the system will typically present a logon screen.

6.6.7 The Reboot State

The user has rebooted the system, but not performed any action since reboot.
This may leave the system in several different sub-states: Boot prompt, crypto-
graphic boot prompt (for example, a PGP whole-disk encryption logon screen
or other pre-boot authentication mechanism) or XP logon screen.

6.6.8 The Boot State

Fresh boot. System has been powered off for an extended period of time, enough
for any DRAM remanence effects to be ineffectual. VMware automatically
clears the virtual RAM at a complete shutdown, so in our case the machine was
restarted immediately. No user action has been performed, as in the Reboot
state.

6.7. CRYPTOGRAPHIC APPLICATIONS 87

6.7 Cryptographic Applications

Over the next pages, we briefly present the cryptographic software tested with
Interrogate. The inner details of their encryption methods will in general not
be discussed, because as we will later discover, knowledge of operation and
encryption modes are in general not be needed to locate keys in memory.

In addition to Windows XP applications, certain selected applications (Bit-
Locker, FileVault and OpenSSL) that may have great impact on future digital
investigations was included in the set. As both BitLocker and FileVault is bun-
dled out of the box in Windows Vista and OS X, and integrates seamless in
these, they have a greater chance of being used than their standalone rivals.
OpenSSL is the common cryptographic key generator for the popular Apache
web server, and prevalent in most Linux distributions. We have also chosen
quantity applications over depth of search; most negative search results were
not investigated furthers, even if expecting to find keys in the specific state.
The reason for this is to be able to conclude broadly on the chances of finding
keys in volatile memory, and not be limited to certain applications.

88 FORENSIC KEY DISCOVERY AND IDENTIFICATION

6.7.1 Truecrypt

Name Truecrypt
Version 5.1a
Author Truecrypt Foundation
Licensing Open Source
URL http://www.truecrypt.org

Truecrypt [Fou08a] is an open-source, free of charge encryption suite licensed
under the GNU Public License. It features strong 256-bit encryption using either
of the three AES finalists Rijndael, Serpent and Twofish, or two of them together
in cascade mode. As of version 5.1, it is able to encrypt the system disk, as
well as independent file containers that may be mounted as virtual drives using
the Truecrypt device driver and USB or flash disks. The former falls within the
Whole-disk software class, the latter within Virtual Disk.

Figure 6.6: The Truecrypt main window with a Twofish-encrypted virtual disk
mounted.

The whole encryption/decryption process is entirely transparent, and except
from a small Truecrypt icon in the task bar of Windows, there is no visual sign
of encryption. If system disk encryption is used, the system presents the user
with a authentication screen pre-boot. Encrypted virtual disks exist as normal
files on the host filesystem, and must be opened and mounted in the Truecrypt
main window (see Figure 6.6).

In addition to its encryption feats, Truecrypt claims it provides two levels of
plausible deniability, by the use of hidden volumes and the fact that no Truecrypt
volume is identifiable. This feature is likely not to hide the volumes from a
seasoned investigator, as there will be disk space that cannot be accounted for,
unless they are sufficiently small.

6.7. CRYPTOGRAPHIC APPLICATIONS 89

6.7.2 BitLocker

Name BitLocker
Version N/A
Author Microsoft
Licensing Commercial, bundled with Windows Vista
URL http://www.microsoft.com/windows/

products/windowsvista/features/details/
bitlocker.mspx)

BitLocker Drive Encryption is included in Windows Vista Ultimate Edition,
and is able to encrypt the entire disk(s) of the system. The applications uses
AES-256 in CBC mode with a custom diffuser called Elephant to mitigate the
risk of manipulation attacks [15].

Figure 6.7: BitLocker in progress.

Vista requires per default a TPM chip to activate BitLocker, in addition to
a certain partitioning scheme of the drive that is to be protected by encryption.
The TPM chip ships out with newer computers, but are still not prevalent at
all manufacturers. It is used for storage of the keys used for encryption, and
as noted in the coldboot article [30], defaults to load the keys into RAM before
authentication. This permits the extraction of keys from powered off machines,
and makes the default BitLocker configuration insecure.

It is however also possible to use BitLocker without a TPM, by editing cer-
tain group policies. This procedure is described in Section 7.2. Since BitLocker
already is known to be vulnerable in the Boot state when the TPM is used for
key storage, BitLocker was tested without TPM support in this thesis.

90 FORENSIC KEY DISCOVERY AND IDENTIFICATION

6.7.3 FileVault

Name FileVault
Version N/A
Author Apple Inc.
Licensing Commercial, bundled with OS X since version 10.3
URL http://docs.info.apple.com/

FileVault is a 128/256-bit AES home directory encryption tool that is in-
cluded in OS X releases as of version 10.3 ”Panther”. It uses a key derived from
the users password as master key, and encrypts and mounts the user’s home
directory as an image. Thus, the image is mounted and dismounted each time
the user logs on or off, and no boot-time logon is necessary. There can exist
several such encrypted containers at one system, one for each user that has en-
abled FileVault. As of the latest version of OS X, 10.5 ”Leopard”, FileVault
uses 256-bit encryption and sparse bundles of 8 MB size instead one big image
and 128 bits.

Figure 6.8: FileVault preferences pane.

FileVault has received some criticism for not encrypting the whole system
drive, but this is a conscious choice from the designers, and not a flaw. This
do however result in the possibility of sensitive material existing outside the
container, and in the fact that FileVault does not cleanly fit into any of our
cryptographic software classes.

6.7. CRYPTOGRAPHIC APPLICATIONS 91

6.7.4 DriveCrypt

Name DriveCrypt
Version 4.61 (Demo Version)
Author Secustar
Licensing Commercial
URL http://www.secustar.com

DriveCrypt is a commercial Whole-disk encryption system that boasts 256-
bit AES, Blowfish, CAST and Triple DES (3DES) among its ciphers. The
system is able to encrypt the boot disk of the system, featuring pre-boot au-
thentication. It also supports standalone virtual disks that can be assigned drive
letters and mounted as needed.

Figure 6.9: The DriveCrypt Demo main window.

The tool can encrypt CD-ROMs, DVDs and other data containers. Similarly
to Truecrypt, it supports steganographic techniques to hide encrypted containers
in music files or hidden partitions. In addition it supports creation of ”fake”
passwords that can be used to reveal ”fake” content if someone is forcing the user
to reveal a password. Like many of the other whole-disk encryption systems,
it is completely transparent except from a small system tray icon (that can be
disabled).

92 FORENSIC KEY DISCOVERY AND IDENTIFICATION

6.7.5 BestCrypt

Name BestCrypt
Version 8.04.4
Author Jetico
Licensing Freeware
URL http://www.jetico.com

BestCrypt is a freeware Virtual Disk container and Whole-disk encryp-
tion system capable of using several ciphers, among them AES, Serpent and
Twofish. According to the developer Jetico, several countermeasures has been
implemented in the latest release following the Coldboot article, among others
crash detection, and wiping of keys at shutdown and restart [Jet08]. We tested
the virtual drive encryption, which is supported by a custom BestCrypt device
driver that handles on-the-fly encryption similarly to the Truecrypt driver.

Figure 6.10: BestCrypt main window with a Serpent virtual disk mounted.

The encryption is performed using all the largest key sizes specified in the
algorithm’s specification, using LWR Encryption mode. BestCrypt may in ad-
dition create self-extracting archives, and the encrypted data may be visible as
virtual drives, folders or NTFS partitions.

6.7. CRYPTOGRAPHIC APPLICATIONS 93

6.7.6 PGP

Name PGP Desktop
Version 5.1a
Author PGP Corporation
Licensing Commercial & Open Source
URL http://www.pgp.com

While originally used for e-mail encryption, Pretty Good Privacy (PGP)
products has been diversified into a full set of cryptographic applications by the
PGP Corporation. One of these encryption suites is called PGP Desktop, and
features whole-disk encryption in addition to virtual file containers, e-mail and
Instant Messaging (IM) encryption. The tool is capable of using many types of
ciphers in addition to RSA, among these AES, Twofish and ElGamal.

Figure 6.11: PGP Desktop Control panel.

Like the other Whole-disk encryption systems, when system-disk encryp-
tion is in use, it presents the user with a pre-boot authentication screen. Fig-
ure 6.11 shows the main application window; from here the user can manage his
or hers encrypted devices and files.

The encryption suite acts as a proxy for e-mail and IM messages, encrypt-
ing/decrypting messages on-the-fly before handing them over to the network or
requesting application. Thus, PGP Desktop falls within all our cryptographic
software classes.

94 FORENSIC KEY DISCOVERY AND IDENTIFICATION

6.7.7 ProtectDrive

Name ProtectDrive
Version 8.2
Author SafeNet Inc
Licensing Commercial
URL http://www.safenet-inc.com/products/data_

at_rest_protection/protectdrive.asp

ProtectDrive is a Whole-disk encryption system designed to encrypt system
disks and Universal Serial Bus (USB)/Firewire external drives. It features sev-
eral ciphers, among them AES. Like most of the whole-disk encryption systems,
it features pre-boot authentication that can be token-based. It does however
stand out because it uses the current Windows password as base for the en-
cryption key. A subsequent change of Windows password will not change the
encryption key however, but the new password used for authentication. The
USB encryption key is derived from a user selected password, and the design of
both these key derivation processes are undocumented and likely proprietary.

Figure 6.12: The ProtectDrive pre-boot authentication screen.

By integrating with existing Windows directory services, ProtectDrive sup-
ports ease of deployment in large organizations. It boasts features like remote
management and software pushing to numerous users at the same time. In
addition, token-based two-factor authentication is supported at boot via a au-
thentication screen (see Figure 6.12).

6.7. CRYPTOGRAPHIC APPLICATIONS 95

6.7.8 WinZip Encryption

Name WinZip
Version 11.2
Author WinZip International LLC
Licensing Commercial
URL http://www.winzip.com

WinZip is a commercial file compression tool that features both proprietary
and state of the art encryption, namely Zip 2.0 encryption and both 128 and
256 bit AES, respectively. Keys are derived using a password as authentication
method. The files are thus stored both compressed and encrypted in a single Zip
file on the hard drive. We assign this tool to the Session-based software class
because of the short time interval where the keys presumably are in memory.

(a) WinZip main window. (b) WinZip Encryption dialog.

Figure 6.13: WinZip screenshots.

Zip 2.0 encryption is flawed and has been broken [102], while the AES imple-
mentation is based on Gladman’s open source implementation [Win06, Gla06].
However, the WinZip implementation has been found to have several weak-
nesses [103]. The implementation has later been FIPS certified, but it is still
fairly easy to brute-force the password protection3.

3This is of course dependent on your resources in terms of computing power and the quality
of the user-selected password.

96 FORENSIC KEY DISCOVERY AND IDENTIFICATION

6.7.9 WinRAR Encryption

Name WinRAR
Version 3.71
Author RARLAB
Licensing FreeWare/Commercial
URL http://www.rarlab.com

WinRAR is an alternative to WinZip, also featuring compression and en-
cryption using AES-128. The solution mainly boasts the same features and
formats as its commercial counterpart, and the same type of password protec-
tion authentication method. WinRAR compresses and encrypts files into single
containers, and it is assigned to the Session-based software class, based on the
same reasoning as WinZip.

Figure 6.14: WinRAR main window.

Due to the popularity and penetration of compression software like WinZip
and WinRAR, they tend to be more widely used for encryption than standalone
encryption tools [104].

The encryption feature of WinRAR has received much scrutiny, just like
WinZip. In a paper, Yeo and Phan describes several attacks against the feature,
and summarizes by describing it as appearing to ”offer slightly better security
features [than WinZip]” [104].

6.7. CRYPTOGRAPHIC APPLICATIONS 97

6.7.10 Skype

Name Skype
Version 3.8.0.115
Author Skype
Licensing Freeware
URL http://www.skype.com

Skype is an internet phone communications tool that allows friends to call
for free online and for low rates from computer to computer or to the Plain Old
Telephone System (POTS). Skype is a Session-based tool.

Figure 6.15: Skype main window.

The Skype protocol and its cryptographic procedures are kept in the dark by
a strict closed source regime at Skype. It uses RSA and AES-256 in combination
to secure its communications, resulting in a complicated proprietary protocol
that only recently has been (partly) reverse engineered [105]. The protocol and
the cryptographic implementation has in addition been analyzed by a Skype-
hired, but external computer security expert [106]. It is no secret that Skype
uses advanced methods to conceal its secrets, including obfuscation techniques
and encryption of code.

98 FORENSIC KEY DISCOVERY AND IDENTIFICATION

6.7.11 Simp Lite MSN

Name Simp Lite MSN
Version 2.2.11
Author Secway
Licensing Commercial/Freeware
URL http://www.secway.fr/us/products/

simplite_msn

The Simp family of encryption tools provides encryption for IM protocols
like MSN and ICQ, and it is thus a Session-based application. It uses AES
with 128 bit keys and RSA for authentication of users, and acts like a proxy for
the messaging application; the chat messages are sent to a port at localhost
where Simp Lite encrypts the message before transmitting it over the network.
At the other end, Simp Lite decrypts the message before handing it over to the
receiving IM client.

Figure 6.16: Simp Lite MSN main window.

Simp has several different modes depending on previous communications and
key exchanges between the users. Upon receiving a text chat from a person using
Simp software for the first time, one must approve of the other’s public RSA
key for future use. This key should be verified using a different and preferable
secure channel, and future chats between these two entities will be automatically
authenticated and encrypted.

The keys are stored in encrypted form in the Windows registry using an
unknown algorithm and a key derived from a user-selected password.

6.7. CRYPTOGRAPHIC APPLICATIONS 99

6.7.12 OpenSSL and Apache

Name OpenSSL
Version 0.9.8g
Author The OpenSSL Project
Licensing Open Source
URL http://www.openssl.org
Name Apache
Version 2.2.8
Author The Apache Software Foundation
Licensing Open Source
URL http://www.apache.org

OpenSSL is a cryptographic suite, primarily used in cooperation with the
HTTP server Apache to generate SSL certificates and perform other crypto-
graphic duties like certificate signing. All SSL certificates consists of a pri-
vate/public key pair, usually RSA keys. The SSL server uses its private key to
encrypt/decrypt communications between itself and the clients, and to perform
this operation it needs the private key to be resident in memory.

Figure 6.17: Creating a private RSA key with OpenSSL.

The keys are kept in memory at all times, mainly because of the performance
degradation that would follow from decryption of the key at each HTTPS-
request.

100 FORENSIC KEY DISCOVERY AND IDENTIFICATION

6.8 Expected Results

Generally, we expect to find encryption keys for Whole-disk of Virtual Disk
cryptosystems while the disks are mounted. Implementation-specific quirks or
key obfuscation techniques could thwart our search attempts, and no reverse
engineering is performed if a key that are expected to be in memory is not
found.

While in operation, cryptosystems are required to keep the key in some form
in memory, and thus may be vulnerable to a coldboot attack. However, good
cryptographic practice recommends wiping of keys when they are not in use [38].
We do therefore not expect to find keys when the cryptosystem is terminated,
containers dismounted, or in any other state where there are no need for the
keys to be resident in memory. We have summarized the expected results for
each cryptographic software class (see Section 6.5) in Table 6.3. See explanation
of this type of table in Chapter 7.

We also suspect that not all cryptographic applications pre-compute the key
schedules, thereby decreasing the timeframe the full key schedule is stored in
RAM. This may especially be true for the Session-based class of applications,
and may drastically reduce the window of opportunity when the key is in mem-
ory.

State / Software Class Whole-disk Virtual Disk Session-based
Live Yes Yes Yes
Screensaver Yes Yes No
Dismounted N/A No N/A
Hibernation N/A Yes No
Terminated N/A No No
Logged out Yes No No
Reboot No No N/A
Boot No No N/A

Table 6.3: Software classes and their expected results.

Chapter 7

Results

This chapter contains the results of the research performed during the writing
of this thesis. The findings were derived using the methodology described in the
preceding chapters together with the theoretical background in Chapters 2, 4, 3
and 5.

The structure of the rest of this chapter is as follows: Each application is
introduced together with its findings, and a brief discussion of the results and
specific search methods used. For the sake of clarity, the application specific
results are discussed here rather than in Chapter 8. A simplified representation
of the findings can be found in a table similar in format to the table below.

State / Cipher Cipher Name
Live Key found?
Screensaver Key found?
Dismounted Key found?
Hibernation Key found?
Terminated Key found?
Logged out Key found?
Reboot Key found?
Boot Key found?

Here, each row in the table is simply answered by a ”Yes”/”No” value,
indicating if keys were found in that state, using the particular software with
the cipher in that column. If the state was not tested or is unavailable for the
cipher (for example, it is hardly recommendable to dismount a system disk used
in whole-disk encryption), a value of ”N/A” is inserted. All applications were
tested using their default settings unless otherwise noted, on a Windows XP
build 2600.xpsp sp2 gdr.070227-2254.

101

102 FORENSIC KEY DISCOVERY AND IDENTIFICATION

7.1 Truecrypt Results

We tested version 5.1a of Truecrypt, using both the independent system disk
and virtual disk encryption and all its available ciphers. The full results can be
found in Table 7.1.

Whole-disk Virtual Disk
State / Cipher AES Serpent Twofish AES Serpent Twofish
Live Yes Yes Yes Yes Yes Yes
Screensaver Yes Yes Yes Yes Yes Yes
Dismounted N/A N/A N/A No No No
Hibernation N/A N/A N/A No No No
Terminated N/A N/A N/A No No No
Logged out Yes Yes Yes No No No
Reboot No No No No No No
Boot No No No No No No

Table 7.1: Truecrypt disk encryption key search results.

To safely extract Twofish keys, we cannot rely upon sequential pages in
dumped memory, as explained earlier. Instead, we used the reconstruct method
in Interrogate to rebuild the virtual memory of the System.exe process, which
runs the Truecrypt device driver thread. The mounting of a virtual disk drive
creates four new Truecrypt threads in System.exe, who are responsible for
on-the-fly encryption/decryption during the time the drive is mounted (See
Figure 7.1). These threads allocate memory using the previously discussed
method ExAllocatePoolWithTag [Fou08b].

Figure 7.1: The Truecrypt driver (truecrypt.sys) running in the System.exe
process. Screenshot from Sysinternals Process Explorer.

7.1. TRUECRYPT RESULTS 103

To reconstruct this part of memory, we first used PTFinder (any tool able
to find the value of the PDB of a process would suffice, see Section 5.2) to find
the CR3/PDB value of the System.exe process, and used this as part of the
input to Interrogate (output from PTFinder truncated):

$./ptfinder_xpsp2 --nothreads Truecrypt-Image.vmem

No. Type PID TID [...] Offset PDB Remarks

---- ---- ------ ------ [...] ---------- ---------- ----------------

1 Proc 0 [...] 0x00559080 0x00039000 Idle

[...]

33 Proc 4 [...] 0x01bcc830 0x00039000 System

$./interrogate -r 00039000 -a twofish Truecrypt-Image.vmem

In general, we had no trouble finding keys when Truecrypt was running and
disks mounted. Truecrypt uses a header key to encrypt the master key in the
header section of the virtual or physical drives [Fou08a], and both this and the
master key were found during normal operation. We were also able to verify
these keys by modifying the Truecrypt source, compiling it as a command-line
tool and mounting the disks using this tool.

Truecrypt seem to be purging keys as soon as they are not needed (e.g.,
at the the point of dismounting of the disk), as good cryptographic practice
suggest. We found no traces of the keys in the hibernation file, and in the case
of the system partition encryption, this file would also be encrypted making
such a search impossible.

We did however on some of the tests encounter a third Twofish key in ad-
dition to the master and the header key, also after dismounting the encrypted
drive. We are however unsure of the origin of this key, and no further research
were conducted on the matter. For completeness, the key’s sub-, whitening-
and S-box keys are presented here in the format of the Truecrypt Twofish data
structure (see Listing 6.1):

a354793d 6e1a33f0 6ab01a83 7df52a97

12fbc877 d427152a cf9eb934 69f6e699

3ce0b947 7c5ab06d 66d41ad8 4e9f86dd

d25f6999 a3a35380 5c7cc0e2 27517ce9

9c43a538 b58d216a 49136074 4053fa28

8dd37cac 2d732874 725e993f 3f874a31

c06b1d66 b3045d42 69a78bf1 318e9035

795d6178 7692a11c cf239ae9 bafeb974

8926908b fffc400d 16a21cf1 ec65cfb2

22ad4541 01a0f21f 08fe84ab ef282332

104 FORENSIC KEY DISCOVERY AND IDENTIFICATION

7.2 BitLocker Results

Vista with BitLocker Drive Encryption was tested without the default TPM
support1. The full results can be found in Table 7.2.

State / Cipher AES-128 with Elephant Diffuser
Live Yes
Screensaver Yes
Dismounted N/A
Hibernation N/A
Terminated N/A
Logged out Yes
Reboot No
Boot No

Table 7.2: BitLocker key search results.

To be able to use BitLocker without a TPM in VMware, some adjustments
had to be done. It is possible to run BitLocker without a TPM by utilizing
an USB drive as authentication, by modifying a group policy in Vista before
running the BitLocker initialization wizard, as shown in Figure 7.2.

Figure 7.2: Enabling BitLocker for use without a TPM.

According to Microsoft however, BitLocker does not support running in a
virtualized environment by design. Because a virtualized TPM does not exist
for VMware, and USB support at boot is dismal, we had to create a virtual
floppy disk2 with the authentication info on it to be able to pass the BitLocker
self-test before encryption. Furthermore, to initiate this test, we had to modify

1This default configuration is known to be vulnerable in all states, even Boot because the
key is loaded from the TPM before authentication [30].

2The fact that floppy disk booting is permitted by BitLocker is undocumented by Microsoft.

7.2. BITLOCKER RESULTS 105

the VM’s .vmx file to accept USB devices, since the experimental support for
Vista in VMware did not support USB out of the box. Because the USB support
did not work in VMware Server, we were forced to use VMware Fusion for the
BitLocker experiments. The following steps was performed to enable BitLocker
in VMware Fusion:

1. First, to enable USB support in Vista under VMware, we added the fol-
lowing lines in the .vmx file:

usb.present = "TRUE"

usb.generic.autoconnect = "TRUE"

2. To be able to enter the BIOS setup by pressing F2 at boot, we extended
the boot delay in the .vmx file (time in milliseconds):

bios.bootDelay = "5000"

3. From the run menu, we ran gpedit.msc, and enabled Local Computer
Policy → Computer Configuration → Administrative Templates → Win-
dows Components → BitLocker Drive Encryption → Control Panel Setup:
Enable advanced startup options (see Figure 7.2).

4. We created a virtual floppy-disk floppy.flp by creating a blank FAT-
formatted .dmg image using OS X’s Disk Utility and changing its extension
to .flp.

5. Then the floppy was added in the VMware Fusion VM settings pane and
set to be always connected. We rebooted into the boot setup menu (by
pressing F2 at boot), and moved the floppy disk to last in the boot order.

6. The system was then rebooted, an USB disk drive was connected and the
BitLocker wizard was started via the Control Panel.

7. We chose to ”Require USB key at every startup”, and saved the keys to
the USB drive.

8. To copy the keys over to the floppy, we opened a command prompt with
administrator privileges, and issued the command (where A: is the floppy
mount point):

C:\Windows\System32>cscript manage-bde-wsf -on C: -rp -sk A:

9. Finally we unplugged the USB drive, and initiated the BitLocker self-test.
When the system booted into Vista, the encryption begins.

This is of course not a recommendable setup, since the permanent mounting
of the floppy drive would cause the system to boot every time without authen-
tication. The setup is for research purposes only.

BitLocker keys were found in all the expected states. In general, we found
eight 128-bit keys in each dump, consisting of a total of five distinct keys with
three duplicates. This confirms the results from Halderman at al. However,
some of the found keys may be keys that are resident in Vista memory at

106 FORENSIC KEY DISCOVERY AND IDENTIFICATION

Figure 7.3: BitLocker successfully set up in VMware.

all times regardless of BitLocker, see Section 7.12. No attempt were made to
confirm the keys.

In addition two keys was unexpectedly found in the Reboot state. They
did not match any of the keys found in the Live, Screensaver and Logged
out states, and it is therefore assumed that the keys are not used for user-mode
encryption:

c7 9a ee ee 69 c6 df 9d 89 ca 9c 88 6b c7 41 2f

00 19 fb 91 69 df 24 0c e0 15 b8 84 8b d2 f9 ab

b7 80 99 ac de 5f bd a0 3e 4a 05 24 b5 98 fc 8f

f5 30 ea 79 2b 6f 57 d9 15 25 52 fd a0 bd ae 72

87 d4 aa 99 ac bb fd 40 b9 9e af bd 19 23 01 cf

b1 a8 20 4d 1d 13 dd 0d a4 8d 72 b0 bd ae 73 7f

75 27 f2 37 68 34 2f 3a cc b9 5d 8a 71 17 2e f5

c5 16 14 94 ad 22 3b ae 61 9b 66 24 10 8c 48 d1

21 44 2a 5e 8c 66 11 f0 ed fd 77 d4 fd 71 3f 05

99 31 41 0a 15 57 50 fa f8 aa 27 2e 05 db 18 2b

16 9c b0 61 03 cb e0 9b fb 61 c7 b5 fe ba df 9e

and

b0 a2 3f 29 86 9d 79 cc 18 60 9a c7 c1 5c 75 f0

fb 3f b3 51 7d a2 ca 9d 65 c2 50 5a a4 9e 25 aa

f2 00 1f 18 8f a2 d5 85 ea 60 85 df 4e fe a0 75

4d e0 82 37 c2 42 57 b2 28 22 d2 6d 66 dc 72 18

c3 a0 2f 04 01 e2 78 b6 29 c0 aa db 4f 1c d8 c3

4f c1 01 80 4e 23 79 36 67 e3 d3 ed 28 ff 0b 2e

79 ea 30 b4 37 c9 49 82 50 2a 9a 6f 78 d5 91 41

3a 6b b3 08 0d a2 fa 8a 5d 88 60 e5 25 5d f1 a4

f6 ca fa 37 fb 68 00 bd a6 e0 60 58 83 bd 91 fc

97 4b 4a db 6c 23 4a 66 ca c3 2a 3e 49 7e bb c2

52 a1 6f e0 3e 82 25 86 f4 41 0f b8 bd 3f b4 7a

These keys were not counted in the results for BitLocker in Table 7.2, because
of the mismatch with the other keys. It is not without concern we note that
these keys are present however, and the matter should be researched further. A
qualified guess would be that they decrypt or are a part of the derivation of the
master key from the floppy credentials, but since the format of this is unknown
we were unable to conclude on this matter.

7.3. FILEVAULT RESULTS 107

7.3 FileVault Results

FileVault was tested at a OS X 10.4 ”Tiger” instance, and the key located using
Interrogate. Please note that Tiger was run on a physical Macbook with 1 GB of
RAM, and not within VMware. Acquisition was performed using the coldboot
technique, utilizing SYSLINUX on a USB drive together with msramdmp. The
full results can be found in Table 7.3.

State / Cipher AES-128
Live Yes
Screensaver Yes
Dismounted N/A
Hibernation N/A
Terminated N/A
Logged out No
Reboot No
Boot No

Table 7.3: FileVault key search results. Note that hibernation mode does not
exist on Apple OS X.

As expected, we found the AES key present when in the Live and Screen-
saver states. We were also able to verify the key by using an administrator
account and the hdiutil tool supplied with OS X:

administrator$ su root

Password:

root# cp /Users/aliceinternetuser/aliceinternetuser.sparseimage .

root# hdiutil attach -debug aliceinternetuser.sparseimage >& out

root# grep encryption-key out

4 : <CFString 0xa7a829f4 [0xa080b1c0]>{contents = "encryption-key"} =

<CFData 0x331670 [0xa080b1c0]>{length = 16, capacity = 16, bytes =

0xa470ea89c3d4d1dca0bcbb672021752e}

The hdiutil tool mounts the encrypted sparse image, and if in debug
mode, prints the key in plain form to stderr. By grepping for a known string
(”encryption-key”), we are able to verify the key found in memory (see Fig-
ure 7.4). Mounting the encrypted sparse image at the host was not attempted,
although this would have been possible by the use of VileFault [107].

FileVault seems to practice immediate wiping of keys from memory when
they are not needed. Although a heavily debated feature, the fact that only the
home directory is encrypted helps FileVault protect against memory analysis
since it has fewer vulnerable states than whole-disk encryption systems.

108 FORENSIC KEY DISCOVERY AND IDENTIFICATION

Figure 7.4: Screenshot from the process of revealing the FileVault key.

It should also be noted that we found copies of the user’s master key password
in the memory in several of the states. This would make cryptographic key
searches a moot point, since this password effectively could unlock the user’s
key chain and retrieve the FileVault key.

7.4. DRIVECRYPT RESULTS 109

7.4 DriveCrypt Results

We tested the DriveCrypt’s virtual disk encryption with AES-256 using a free
demo version of the tool. Secustar claims the demo version ”provides no se-
curity”, but as we were unable to locate any vendor information addressing
the coldboot attacks, the software were tested nevertheless. A summary of our
results can be found in Table 7.4.

State / Cipher AES-256
Live Yes
Screensaver Yes
Dismounted Yes
Hibernation Yes
Terminated No
Logged out No
Reboot No
Boot No

Table 7.4: DriveCrypt key search results.

Generally, we found DriveCrypt to be vulnerable to the cryptographic key
searches and memory analysis attacks; three distinct AES keys were found when
the cryptosystem was in the Live, Screensaver and Hibernation states. We
also discovered an extra duplicate Twofish key of unknown origin when the
system was live and the virtual disk was dismounted:

4c 5d 19 7a d7 4b dd b2 45 d1 2d 0c 6a ea 1d ae

90 a3 c3 b0 4d cb cc cc ea c9 00 2b 8e 06 d9 89

22 68 be 63 f5 23 63 d1 b0 f2 4e dd da 18 53 73

c7 0e 2e 3f 8a c5 e2 f3 60 0c e2 d8 ee 0a 3b 51

47 8a 6f 4b b2 a9 0c 9a 02 5b 42 47 d8 43 11 34

a6 14 ac 27 2c d1 4e d4 4c dd ac 0c a2 d7 97 5d

4d 02 23 71 ff ab 2f eb fd f0 6d ac 25 b3 7c 98

99 79 bc 61 b5 a8 f2 b5 f9 75 5e b9 5b a2 c9 e4

7f df 4a 48 80 74 65 a3 7d 84 08 0f 58 37 74 97

f3 e3 2e e9 46 4b dc 5c bf 3e 82 e5 e4 9c 4b 01

b1 6c 36 21 31 18 53 82 4c 9c 5b 8d 14 ab 2f 1a

09 81 3b 4b 4f ca e7 17 f0 f4 65 f2 14 68 2e f3

d4 5d 3b db e5 45 68 59 a9 d9 33 d4 bd 72 1c ce

73 c1 a7 c0 3c 0b 40 d7 cc ff 25 25 d8 97 0b d6

1c 76 cd ba f9 33 a5 e3 50 ea 96 37 ed 98 8a f9

Because DriveCrypt is closed source and we only had access to a demo
version, the key was not investigated further. We were also unable to verify the
keys found because of the same reasons.

110 FORENSIC KEY DISCOVERY AND IDENTIFICATION

7.5 BestCrypt Results

BestCrypt was tested using its virtual drive encrypting capabilities, with the
AES, Serpent and Twofish ciphers. It generally seems to manage its keys well,
by wiping them from memory at dismount and/or shutdown. We did on certain
instances find keys probably originating from cryptographic algorithm self-tests
like the key 00 01 ... 1e 1f. Apart from that, no unexpected keys were
encountered.

State / Cipher AES-256 Serpent Twofish
Live Yes Yes No
Screensaver Yes Yes No
Dismounted No No No
Hibernation Yes Yes No
Terminated No No No
Logged out No No No
Reboot No No No
Boot No No No

Table 7.5: BestCrypt key search results.

We found the countermeasures (see Section 6.7.5) to work as specified by
Jetico, but unexpectedly we were not able to locate any Twofish keys. We are
currently unsure of the reason for this, but suspects that the implementation
in BestCrypt is slightly different from the ones we implemented in Interrogate.
We hold the probability of that key obfuscation techniques are in use as low,
since they are not present for AES and Serpent keys.

As Jetico mentions in its advisor on the coldboot article, BestCrypt is vul-
nerable when the virtual disks are mounted and on hibernation, where the keys
are written to the hibernation file. Being vulnerable in the Hibernation state
is not recommendable, since the hibernation file may exist on the boot partition
of the disk drive for an extended period of time. From a digital forensics point
of view, it does permit investigators to use the Hibernation acquisition method,
as described in Section 5.1.3.

7.6. PGP RESULTS 111

7.6 PGP Results

We tested PGP Desktop with virtual and full disk encryption with pre-boot
authentication and e-mail messaging using both AES and Twofish. AES-256
was utilized as the cipher for the full disk encryption, RSA for the email en-
cryption and Twofish for the virtual disks. A summary of our results is shown
in Table 7.6.

Whole-disk Virtual Disk Session-based
State / Cipher AES-256 Twofish RSA
Live Yes Yes No
Screensaver Yes Yes No
Dismounted N/A No N/A
Hibernation N/A Yes No
Terminated N/A No No
Logged out Yes No No
Reboot Yes No N/A
Boot No No N/A

Table 7.6: PGP key search results.

PGP whole-disk encryption is vulnerable to the same attacks as the other
similar systems we have tested. However, PGP also fails to wipe its keys from
memory at a reboot, resulting in keys in memory at the pre-boot authentication
screen. We were repeatedly able to locate these keys, regardless of cipher. We
consider this to be bad cryptographic practice, and in effect, it enables attackers
that encounters PGP desktops in pre-boot authentication mode to find the keys,
given that a restart has been performed. The attack is clearly an opportunistic
attack, and it also depends on the boot manager to not wipe the memory at
boot. Still it is a weakness that should be addressed in upcoming releases, and
the author has notified PGP Corporation of this.

We were not able to locate any RSA keys in the memory dumps; this may
be due to the implementation specific details of PGP, or wiping of keys. We
were able to locate Twofish keys using Interrogate in the expected states when
the tool used virtual disk encryption.

112 FORENSIC KEY DISCOVERY AND IDENTIFICATION

7.7 ProtectDrive Results

We tested both whole-disk and USB drive encryption, using AES-256 as our
cipher choice. The full results can be found in Table 7.7.

System Drive USB Drive
State / Cipher AES-256 AES-256
Live Yes Yes
Screensaver Yes No
Dismounted N/A No
Hibernation N/A No
Terminated N/A Yes
Logged out Yes Yes
Reboot Yes Yes
Boot No No

Table 7.7: ProtectDrive key search results.

ProtectDrive distinguishes itself from the other cryptosystems tested in a
negative way due to the overwhelming number of keys present in memory at all
times. Even freshly installed copies, not yet utilized for encryption, contained
between 11 and 20 keys, all duplicates of three or more keys. These do not
disappear from physical memory until the system is shut down and restarted
(not power-cycled) or ProtectDrive is uninstalled using the Control Panel in
Windows.

Being unable to test these keys, we attempted several re-installations of the
tool to see what changed, using a new Windows password at each installation.
Generally we found three distinct keys with duplicates in memory:

1. 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

This key is obviously not random, and probably not used for encryption,
but rather as a self-check for the encryption algorithm.

2. a5 50 84 b1 31 5d 33 cc a1 c5 f3 33 f6 e7 d6 b7
3d d7 b8 60 07 8e d5 ab 2d aa 3d 28 aa 05 3e db

The second key was found as many duplicates on each re-installation, and
are, based on a qualified guess, believed to be some kind of application
master key. The usage or need for such a key is however unclear.

3. A random-looking key that changed for each re-installation or USB drive
encrypted. A qualified guess would probably suggest that this is the main
encryption key.

When testing USB encryption, a fourth key was also present, presumably
the USB master key. This key is wiped from memory when the USB key is
removed using the ”Safely remove hardware” Windows feature. If the USB
drive is pulled out without using this feature, the key wiping is still performed,
and the USB key is not present in memory at the time of acquisition.

7.7. PROTECTDRIVE RESULTS 113

The USB drive encryption dismounts and wipes keys when the screensaver
activates, and our research suggests that it does so successfully. We also at-
tempted to forcefully terminate the ProtectDrive process; this resulted in find-
ing all the keys found while the cryptosystem was in the Live state. Finally, we
logged the user using the USB device out without ejecting it, and surprisingly
the key was not wiped. If the system is rebooted with the USB drive inserted,
this key is also present at the pre-boot authentication screen.

Keys were also present after decryption of the system drive and reboot.
As mentioned, a full uninstall of the application had to be performed to get
rid of the keys. If the computer was simply rebooted, all keys were present in
memory at the boot prompt. Like PGP, this is a security flaw that is worrying.
However, the application does not seem to load any keys pre-authentication,
and it is therefore not vulnerable in the Boot state. SafeNet Inc. has been
notified of all of the above weaknesses.

Although the usage of the keys found is pure qualified guesswork, it is wor-
rying that they are present in states such as Reboot. It is also disturbing that
the keys are present in memory when they presumably are not needed at all,
like when no encryption is employed. The share number of keys in memory is
in addition troublesome from a security perspective, and it is unclear why and
how so many instances of the keys are present. Compared to the other whole-
disk encryption systems, ProtectDrive stands out as having a rather careless
key management practice.

114 FORENSIC KEY DISCOVERY AND IDENTIFICATION

7.8 Results from WinZip and WinRAR Encryp-
tion

WinZip and WinRAR boast both compression in terms of size and security
by encryption. We tested WinZip and WinRAR by creating a large encrypted
archive in a virtual machine, and took snapshots both during the encryption
process and afterwards. The full results can be found in Table 7.8.

WinZip Winrar
State / Cipher AES-128 AES-256 AES-128
Live No No No
Screensaver No No No
Dismounted N/A N/A N/A
Hibernation No No No
Terminated No No No
Logged out No No No
Reboot N/A N/A N/A
Boot N/A N/A N/A

Table 7.8: WinZip and WinRAR key search results.

Although the Gladman implementation [Gla06] is compatible with the key
schedule search method for AES keys, we were largely disappointed to not find
any keys for neither WinZip or WinRAR. The results for these two applications
are therefore largely inconclusive; since we did not find any keys in the expected
state (e.g., Live) we cannot deduce if the keys are properly wiped in any of the
other states.

7.9. SKYPE RESULTS 115

7.9 Skype Results

We tested Skype by text and voice chatting between two instances of Windows,
one Vista and one XP SP2 system on VMware. Both these systems were sus-
pended in the separate states, and both systems analyzed using Interrogate.
The results can be found in Table 7.9.

State / Cipher AES-256 RSA
Live No No
Screensaver No No
Dismounted N/A N/A
Hibernation No No
Terminated No No
Logged out No No
Reboot N/A N/A
Boot N/A N/A

Table 7.9: Skype key search results.

Interrogate was unable to locate any Skype AES and RSA keys. We sus-
pect that this is due to key obfuscation methods, based on the history of the
Skype protocol [105]. However, it is important to note that these obfuscation
methods does not contribute to the security of the application, as it could be
reverse engineered and the search algorithm adjusted to the findings. Thus, the
obfuscation techniques does nothing more than halt a potential attacker; it does
not provide any additional cryptographic strength.

Skype is believed to use correctly implemented AES encryption. We are
nevertheless not able to conclude how efficiently it operates in terms of key
management and wiping.

116 FORENSIC KEY DISCOVERY AND IDENTIFICATION

7.10 Simp Lite MSN Results

We tested Simp Lite by running two clients on a Vista and XP SP2 system, and
exchanged keys between the clients. Afterwards, some basic messages were sent
back and forth between the clients, suspending the machines at different times
during conversation. The resulting memory images were subsequently analyzed
using Interrogate.

State / Cipher AES-128 RSA
Live No No
Screensaver No No
Dismounted N/A N/A
Hibernation No No
Terminated No No
Logged out No No
Reboot N/A N/A
Boot N/A N/A

Table 7.10: Simp Lite key search results.

The results from the cryptographic key searches on Simp Lite memory dumps
can be found in Table 7.10. No AES or RSA keys were found during operation,
and consequently we were unable to locate any keys in the remaining states
as well. Because of Simp Lite’s commercial license and closed source, we were
unable to research the matter further. However, we suspect that key obfusca-
tion techniques are in use, or that the implementation is slightly different and
therefore cannot be found using key schedule search. We have been unable to
locate any information whether or not Simp Lite is implemented according to
FIPS standards, and as with Skype we are unable to conclude on Simp Lite’s
key management procedures.

7.11. OPENSSL AND APACHE RESULTS 117

7.11 OpenSSL and Apache Results

We tested a generic Apache web server together with OpenSSL on Ubuntu 7.10
by generating a couple of key pairs, and finally installing one of them in the
server. An automates script were used to subsequently issue HTTPS requests
to the server over a closed network using the VMware virtual network bridge.
A snapshot of the server was then taken and analyzed with Interrogate; the full
results can be found in Table 7.11.

State / Cipher RSA
Live Yes
Screensaver Yes
Dismounted N/A
Hibernation N/A
Terminated N/A
Logged out Yes
Reboot No
Boot No

Table 7.11: OpenSSL and Apache key search results.

Although we found RSA keys, only one of them matched the key assigned to
the server. The other generated keys that were not used by OpenSSL were not
present in memory, suggesting that OpenSSL wipes keys after generation. Since
the server ran as root and as a daemon, it continued running after logging out of
X. Keys were also found when no HTTPS requests were issued, suggesting that
the server keeps its private key in memory at all times, regardless of incoming
traffic. Although we found the RSA key, it seems like Apache and OpenSSL
were built with security in mind, and for the SSL server to function it is clearly
necessary to keep the key in memory at all times.

This opens up for an interesting attack for an adversary that has managed to
get root access to a server running OpenSSL: By searching memory for private
keys, he is able to extract keys that otherwise are encrypted (on disk). When
the keys are extracted he may reposition to another machine, network or router,
and using WireShark he may decrypt all subsequent and previous SSL traffic
given a normal SSL ciphersuite [18].

118 FORENSIC KEY DISCOVERY AND IDENTIFICATION

7.12 Other Keys Found During Research

While searching for Simp Lite keys, three 128 bit AES keys were found to
be present in memory of Windows Vista at all times. These differed on each
installation of Vista, but remained the same for each instance at different points
in time. It is not clear why these keys are present at out-of-the box Windows
Vista Business and Ultimate Edition systems, but we reproduce three of them
here for completeness:

1. 0d 89 e5 5b ea 9f b7 d9 da fb bd 09 3e f2 fd 31

2. b6 e4 48 2d c1 bd 00 89 3f 02 f9 dd 5d a5 10 22

3. fc 2a 2f e2 40 fd f9 33 36 4d cc f6 3c 95 04 46

The self-test vector key 00 01 ... 1e 1f were also located in several in-
stances of Windows XP without any cryptographic tools installed.

Chapter 8

Discussion

In the following sections, we will discuss the results from Chapter 7 and evaluate
the proof of concept tool Interrogate, its performance and cryptographic key
search algorithms. First, suggestions for new features and improvements both
in the existing algorithms and search strategies are proposed, and secondly we
suggest how the overall performance of the tool may be significantly improved.

Third, we provide an in-depth discussion of the research results, and assess
how these results can contribute to new live response methods for law enforce-
ment and other forensics groups. Finally, we will discuss the possibility for a
forensically sound approach to memory forensics, with emphasis on recovering
cryptographic keys.

8.1 Evaluation of Proof of Concept Tool Inter-
rogate

Although a proof of concept tool, Interrogate performed as better than ex-
pected, notably when looking for symmetric keys. RSA keys proved difficult
to locate using the techniques proposed by other researches, and seems highly
implementation and OS dependent.

8.1.1 Performance Evaluation

Interrogate is mostly not optimized in terms of time or space, in fact, most of the
cryptographic key search strategies could indeed be significantly faster. We’ve
demonstrated one such optimized approach in Optimized-Twofish-Search,
on our test computer the average of these searches perform much faster in an
accuracy/speed trade-off (256 MB in just over 10 seconds).

In addition to speed and accuracy, memory consumption and handling comes
into play when running Interrogate at systems with lower specifications.

Speed

An overview of the average running times at two test computers, an Ubuntu
7.10 computer with Intel Core 2 Duo 6400 @ 2.13 GHz and 3.2 GB of RAM
and a Macbook running OS X 10.5 with an Intel Core Duo @ 2 GHz and 2

119

120 FORENSIC KEY DISCOVERY AND IDENTIFICATION

Algorithm / Memory Dump Size 256 MB 512 MB 1 GB
AES-Search (256 bits) 18 57 114
Serpent-Search 19 40 84
Optimized-Twofish-Search 0.2 0.5 1
Truecrypt-Twofish-Search 0.11 0.22 0.44
RSA-Search 0.01 0.05 0.1
Entropy-Search 9 20 39
Naive-Entropy-Search 28 61 123
AES-Search (Virt. Mem. Reconstr.) 1.06 1.1 1.25

Table 8.1: Average runtimes for Interrogate (time in minutes). The entropy
algorithms were tested with their default settings (window size is 256 bytes).

GB of RAM, can be found in Table 8.1. These times are an average of five
measurements taken using the Unix time command, and are rather presented
as an estimate of expected runtimes rather than statistically correct data. The
disk reading operation of the memory dump has been left out by first loading
the dump into memory, and then running Interrogate; the time averages in the
table is measured from search algorithm start to end.

The results show the significant gap between non-optimized (AES-Search
and Serpent-Search) algorithms and the optimized method for Twofish keys
(Optimized-Twofish-Search) in terms of running time, from almost two
hours to a couple of seconds. The Truecrypt-specific structural Twofish search
(Truecrypt-Twofish-Search) is also faster and more accurate than its im-
plementation independent counterpart. It should also be noted that the recon-
struction of virtual memory space has a relatively constant runtime compared
to the other algorithms, because the resulting memory to be searched for has
the approximately same size regardless of memory dump size. For example,
the reconstruction of System.exe’s virtual memory can in one instance take 10
seconds on a 1 GB dump, and reduce the search data (e.g., the reconstructed
virtual memory) to only 10 MB. This significantly improves search performance,
and makes it dependent on the number of pages that a process has in memory
at the time of acquisition rather than physical memory size. Finally, the en-
tropy based searches (Entropy-Search and Naive-Entropy-Search) are
notoriously slow when the window size increases (the runtimes typically grow
exponentially), and should be optimized.

Memory Usage and Management

Interrogate attempts to read the entire memory dump into memory at startup;
this greatly enhances the performance when the host computer has enough
memory compared to the size of the dump. If the memory image size approach
the available physical memory at the host, excessive paging will occur, and this
reduces performance.

It is also unable to handle files larger than 2 GB because of the standard 2
GB process address space. A segmentation fault will occur if when analysis of
such large files are attempted. A dynamic file reading algorithm could probably
counter both of these drawbacks.

8.1. EVALUATION OF PROOF OF CONCEPT TOOL INTERROGATE121

Accuracy

Accuracy is here loosely defined as the tool’s ability to correctly locate keys, in
other terms, its precision. As we in most cases do not know the key’s represen-
tation in the memory dump or if it is present at all, this term is not ideal, but
it is used due to the lack of better terms.

We’ve generally designed the algorithms implemented in Interrogate to rather
give false positives than false negatives, in order to facilitate our research on
crypto key finding probabilities. While the AES-Search and Serpent-Search
nearly have a 100% accuracy, the Optimized-Twofish-Search is much more
greedy in terms of output. Several searches with this algorithm turned out 20
and more hits including the correct keys, many of which are duplicates. There
is also a slight possibility for keys being ”found” twice with the algorithm, as
some structural properties may be overlapping.

The memory reconstruction method works as expected: it is crude and
greedy in terms of pages fetched, but successfully reconstructs virtual memory
space. The feature does however need further testing, as it was implemented in
a late stage of the thesis and therefore were not scrutinized as rigorously as the
rest of the code.

Interrogate’s accuracy is additionally not very good when it comes to RSA
keys, due to the implementation of RSA-Search and the structural differences
in the representation of keys in memory in Linux and Windows. We were not
able to locate any RSA keys in Windows at all using RSA-Search, while in
Linux several matches were found. The accuracy on Unix platforms seems to
be around 100%.

Entropy-Search and Naive-Entropy-Search are in general not accu-
rate, and hard to use. Previous research on the key’s entropy properties must
have been performed to accurately pinpoint interesting regions. These regions
can be quite wide in terms of bytes, further complicating the investigation. In
addition, a large number of false positives are found regardless of system state.
An implementation that also uses an upper threshold (e.g., search for a spe-
cific, narrow entropy value interval) would probably counter some of the false
positives.

8.1.2 Limitations

Like previously mentioned, the entropy-based searches has proven to be of little
value, as the memory size has grown significantly since Shamir suggested the
approach. The usage of this type of search is therefore limited, and the method
needs further development before these limitations can be mitigated.

We also attempted to implement a feature for checking of randomness in
data, to be able to distinguish between (pseudo)random data and compressed
data, etc. Both implementations of χ2 test and the other tests mentioned in
Section 2.3.3 were attempted, with poor results. It is however clear that many
of these methods has properties that make them suitable for cryptographic key
searches, as implemented with the Optimized-Twofish-Search algorithm.

122 FORENSIC KEY DISCOVERY AND IDENTIFICATION

8.1.3 Further Improvements

Based on our experience with Interrogate, we outline several improvements that
would enhance its usability, accuracy and efficiency:

Large File Support To support files that has a size of 2 GB and greater,
Interrogate should support dynamic reading of memory dumps. this would also
improve performance for files larger than the memory available at the computer
running it. In addition, large file support would enhance running times for host
systems with large amounts of physical memory.

Reversing of the Twofish Key Schedule Generation To use a similar
method to the AES key schedule on Twofish keys, we need to be able to infer
the S-box and sub-keys from the 4 KB S-box table. To do this, we would have
to reverse the generation of the 4 KB table and the S-box keys. Although this
was not attempted, it could prove to be a viable approach. In addition, no
attempts was made to deduce the master key from the key material found in
memory. If such a deduction is computationally feasible, we would not need
to modify current Twofish source code to apply the key material found. Both
these (theoretic) improvements would greatly increase the accuracy of Twofish
key schedule searches.

More Statistical Checks To improve the precision of the searches, further
statistical experiments should be performed. As mentioned in Section 2.3.3,
there exist several methods that could improve an entropy-based search.

Support More Ciphers and Key Sizes To expand the applicability of the
tool, more algorithms and key sizes should be added to the supported ciphers
list. Ciphers like CAST, DES and 3DES, ElGamal and DSA all has properties
that would make them feasible for key search. For Twofish, more statistical
analysis is needed to adjust the heuristics applied in the search algorithm to
other key sizes, since the statistical properties of the S-boxes may change as a
function of the key size.

Improve RSA-Search To improve the RSA-Search, one should consider
the structure of RSA keys in Windows. One example of such a format can be
found on Microsoft Developer Network (MSDN), under the name of Private
Key BLOB [MSD08a].

Reverse Engineering To improve hit rates for closed-source applications,
their key handling procedures could be reverse engineered, and search signatures
formed from the obtained knowledge. Applications that this applies to, are
among others Skype, Simp Lite and BestCrypt.

Integrate With Acquisition Tool To complete Interrogate as a forensic
tool, it should be integrated with acquisition software and bootable software
that can dump physical memory. One such small-footprint memory dumper and
OS is msramdmp [McG08] and SYSLINUX. Furthermore, to make it capable of

8.2. GENERAL DISCUSSION 123

handling bit-errors from coldboot-style acquisition methods, an error-correcting
code functionality should be applied in Interrogate in accordance with [30].

Search For All Keys at Once Since most of our search methods are sequen-
tial and performed byte-by-byte, all of the search matching algorithms could be
combined to effectively search for all key material present regardless of cipher.
This would be a nice feature in the cases where the cipher used is unknown.

Check for Duplicate Keys A simple duplicate key checkup should be added
to lessen output.

Include Pagefile in Memory Reconstruction In addition to improving
the virtual memory reconstruction in terms of precision, the pagefile could easily
be included in the process. Such an inclusion would build a complete virtual
memory address space, with both valid and invalid (paged out) pages.

Support Windows Memory Modes Support for PAE and 3GB user ad-
dress space should be implemented, so that the memory reconstruction method
would work on target computers supporting these modes.

Support More OSes The memory reconstruction methods are highly OS-
dependent, and support for other OSes like Linux, Windows Vista and Mac OS
X should be implemented.

Increase Efficiency For several of our algorithms, easy improvements like
checking for blank pages could greatly reduce the runtime of the application. In
addition, we believe that several of the algorithms can be optimized further than
the present level. The author of this thesis and the source code is no seasoned
C programmer. The source code of the tool can probably, as a direct result of
the above, be improved both with respects to code quality and efficiency. It is
the author’s hope that parts of the code can be incorporated in future memory
forensics suites.

Comprehensive Documentation and Testing To further expand the us-
age of Interrogate, the tool needs to be fully documented and tested.

8.2 General Discussion

The cryptographic software classes defined in Section 6.5 mainly behaved ac-
cording to our expectations. It may be interesting to notice that the notion of
whole-disk encryption being vulnerable in any of the well-defined states were
not present prior to some four months ago, when the coldboot article was pub-
lished. Our expectations were formed from quite recent work in the field, and we
believe that many corporations and individuals still don’t know that in certain
states, most software encryption solutions are broken. Although vendors claim
”it’s a feature [of DRAM], not a bug”, the security of their applications clearly
suffer from this ”feature”.

124 FORENSIC KEY DISCOVERY AND IDENTIFICATION

With that in mind, our results also indicate that most cryptographic appli-
cations feature strong key management. With some exceptions, namely PGP
and ProtectDrive, keys were rarely encountered in unexpected states. These
exceptions shows that key management is not trivial, and that cryptographic
programming is recommendable only to the experts. Especially ProtectDrive
seem to practice sloppy key management, and a full review of their code is
recommended.

In Figure 8.1, the percentages of found keys per software class and system
state is presented as a grouped histogram. If a state were not tested (e.g., it
is represented with ”N/A” in the result tables) it was not counted as a part of
the data used to form this graph. A can be seen, a 100% hit rate were archived
for the Whole-disk software class in the expected states. The Virtual Disk
software state has slightly lower hit rates in its expected states, mostly due to
our inability to locate Twofish keys with BestCrypt. We can also clearly see our
failure to locate Session-based keys.

Even with good key management procedures, the Whole-disk and Virtual
Disk systems are vulnerable to memory forensics due to the fact that they
have to keep the key in memory at all times. As mentioned, this is not a
design flaw, but rather a part of the design, and necessary both for performance
and feasibility of on-the-fly encryption. This does however create a quite large
window of opportunity for an adversary to dump and analyze memory.

Figure 8.1: Percentages of found keys sorted by Software Class and State.

A smaller window of opportunity is present when dealing with Session-
based cryptographic software. We were unable to locate any keys in this soft-
ware class, and we suspect that the small window of opportunity combined with
proprietary key structures and key obfuscation techniques is to blame. How-
ever, it is probably only a matter of time before these applications are reverse
engineered, possibly making a key search feasible. In the mean time, mem-
ory analysis has proven effective against many of these applications by locating

8.2. GENERAL DISCUSSION 125

plaintext copies in memory [108, 18].
As treated in the introduction in Chapter 1, we outlined two cryptographic

key search scenarios to point to probable usage areas for cryptographic key
recovery. When seen in the context of our results, several conclusions can be
made on the feasibility of the scenarios. While finding key in memory from a
whole-disk encrypted computer seem almost certain, we cannot present a reli-
able way of finding session-based keys, due to the fact that we were unable to
locate them in our experiments (Except RSA keys from Apache). Therefore, we
cannot conclude whether post-capture decryption of communications is feasible
or not outing our methods. However, it has been shown that if a private SSL key
is made available, it can be used to decrypt the dumped traffic post-capture [18].
Finding such a key is more likely to proceed through legal channels (e.g., de-
manding extradition of SSL private key from an internet host) than memory
analysis at the moment.

We do believe that memory analysis and key extraction is a powerful ad-
dition to secret searches: Government agencies may in special cases perform
searches that are performed prior to arrest of suspects, without the suspects
knowledge [109][RIP00]. This method can be specially effective when working
against organized crime and unlawful networks like pedophile rings, to secure
evidence without risking alerting the more attractive suspects further up the
food chain. Naturally such invasive techniques are restricted with heavy regu-
lations based on national legislation. If such a search is successfully performed
towards a suspect using whole-disk encryption, the investigators may continue
their surveillance of the suspect knowing that they will be able to decrypt his
disk if it is seized at a later point in time, regardless of computer state. A sus-
pect may even feel a false sense of security using encryption, leaving evidence
on his disk that he/she would not have done if encryption had not been in use.
There is a slight risk that the key may be changed prior to acquisition, but all
the whole-disk encryption systems we have tested change their keys rarely or
never. We assume this is a security-performance trade-off, because changing
the master key would require a full re-encryption of the disk. Nevertheless, not
changing cryptographic keys regularly is bad cryptographic practice.

Of course, these scenarios are not exhaustive, and the applications of memory
analysis are vast and yet mostly undiscovered. As the penetration of handheld
devices in the business and private segments of the market increases, we’re also
likely to see an increase in encryption solutions suitable for these. Incidents
like the one in the UK where social security numbers and sensitive informa-
tion were compromised because of a stolen laptop [New06], are good catalyzers
for cryptographic software. The increase will probably first be concentrated
around software solutions, since these can fit on already manufactured units,
and are generally cheaper than the hardware alternative. For most purposes,
many would also argue that they provide sufficient security. However, hand-
held devices are often ”always-on” devices, making them vulnerable to memory
dumping attacks. In addition, they are small, easy to forget, easy to pickpocket
and worst of all: full of information. The information on these devices may in
many cases be extremely valuable (or sensitive) to the company or individual
owning it, surpassing the value of the device itself by several magnitudes. Proper
protection is therefore essential: Software encryption usually provide protection
for the risk of data leakages, but to a skilled attacker, the always-on property
together with memory analysis can indeed defeat this protection. Thus, we

126 FORENSIC KEY DISCOVERY AND IDENTIFICATION

expect to see tamper-resistant hardware encryption modules on business-class
handheld devices in the future.

8.3 Towards a Forensically Sound Approach to
Cryptographic Memory Forensics

The discussion so far has revolved around the proof of concept tool and the
chances of uncovering keys from memory dumps. Having clarified Interrogate’s
weaknesses, outlined room for improvement and discussed the results in general,
we will consider how it (or a similar tool) may be utilized to maximize the
chances of key recovery for a digital investigator.

The results clearly indicate that the state of the system at the point of
acquisition plays a vital role for an investigator. It is therefore increasingly
important for a live response or forensics team to know what to do if a live
system using cryptography is found.

First, upon arriving at a digital crime scene, it is desirable to be able to
detect encryption. This is not always trivial. On-the-fly applications or any
of the other Whole-disk and Virtual Disk encryption systems discussed in
Chapter 7 can appear absent, since they only operate as a device at kernel level.
Many of these systems runs as a couple of thread in a system process (like
System.exe), and may therefore be hard to spot for an untrained eye. Except
for these threads, whole-disk applications are often completely transparent, and
the system may appear to not run any crypto at all.

To further complicate the matter, several cryptosystems feature hidden disk
volumes/partitions, that may be invisible if not mounted [Fou08a]. This is to
provide deniability, that is, to deny that the data even exits. If the volumes or
partitions on the contrary are mounted, failing to dump their content before
pulling the plug on the target computer may give an investigator an unpleasant
surprise when attempting to analyze the hard drive, only to find that a large
partition of it is encrypted.

The alternative to a memory dump when encountering encryption is, if possi-
ble, to extract the data while the system is live. Doing this, we do not honor the
important principles of digital forensics, as mentioned in Section 4.1. Reading
the content of an encrypted virtual or physical volume will potentially page out
pages in memory, and therefore also effect the state of the hard drive. Thus, the
risk of overwriting potential evidence is present. This risk should be assessed on
a case-by-case basis, and compared against the risk of loosing data because of
encryption. The comparison should then be used as a rationale to decide how
and if the encrypted volumes should have their data extracted prior to imaging.

Furthermore, copying all the content of a drive using the target OS rises sev-
eral trust issues. Rootkits and malware may have altered the OS, and therefore
even normal disk read/write operations cannot be trusted [91] [Rut06]. The
operating system or software running at the target may conceal encrypted par-
titions, or the fact that it is encrypted at all. In addition, copying of encrypted
content is not always possible. Notably, the Screensaver, Logged out and
Hibernation states can make such copying infeasible, and our research suggests
that all these states have high success rates for key recovery given a memory
dump. This all counts in favor of using imaging or dumping techniques instead

8.3. TOWARDS A FORENSICALLY SOUND APPROACH TO
CRYPTOGRAPHIC MEMORY FORENSICS 127

of live forensics, and it is therefore advisable that investigators should stick with
the old paradigm of image first, analyze later.

If a partition or disk acquired turns out to be (partially) encrypted, the inves-
tigator may later face undecipherable data, and if no memory dump is available,
he may be faced with a brute-force attempt as his only option. Consequently we
can hardly recommend coldbooting a computer before documenting its internals
and making reasonable sure that no encryption ”booby traps” are set.

On the other side, if a memory dump is available, an investigator faced
with an encrypted drive has more options than brute-forcing the encryption.
Even the process of using each byte offset in the dump as a potential key is a
significantly faster than brute-forcing modern ciphers. A memory dump may
thus act as an insurance for the investigator; if encrypted material is uncovered
later in the investigation, his chances of finding the key vastly improves if a
memory dump was taken at the crime scene.

The feasibility of taking such a dump is unfortunately not the best, as dis-
cussed in Section 5.1. We believe that the methods will be further improved in
the future, as there is great interest in the field from forensic organizations at the
moment. However, today, investigators will often be faced with a troublesome
acquisition procedure, that may yield results that cannot be trusted.

When a memory image has been secured, the investigation can proceed along
the normal path of actions. The amount of data available for analysis will not
grow substantially because of the dumping, as the physical memory versus disk
space ratio decreases rapidly with new digital storage technologies1.

The author believes that there’s a substantial upside to memory dumping
combined with classical digital forensics. The advantages of having memory
dumps in an investigation will also likely rise, as the maturity of analyzing
software increases.

From the above it is important to note that memory analysis and crypto-
graphic key searches are not an alternative to classical digital forensics, but
rather an addition to the existing methods. The methodologies are not mutu-
ally exclusive, as some investigators seem to think, and can easily be combined.
Even though the acquisition methods are immature, they are plentiful, and the
same goes for memory analysis. However, just as we needed to create our own
tool to investigate the presence of crypto keys in memory, further understand-
ing and reverse engineering of operating systems and cryptographic software is
needed to fully take advantage of the potential that lies within memory analysis.

We believe that at present time, the investigator is faced with a core choice:
To dump memory or not. As we will outline in the following section, we believe
that memory dumping should be performed as routinely as disk imaging in any
digital forensics investigation. This view is not only based on cryptographic
considerations, but also on the fact that failing to dump memory effectively dis-
regards a large portion of the digital crime scene, and hereby potential evidence.
If cryptography is in use, the consequences of not taking a memory dump may
be radically higher, as it may potentially destroy evidence.

1Typically, the relation between the size of physical versus secondary memory on a modern
computer is approaching 1/1024, since terrabytes (TB) now are becoming increasingly com-
mon on hard drives, while physical memory still resides in the lower scale of gigabytes (1-4
GB).

128 FORENSIC KEY DISCOVERY AND IDENTIFICATION

8.4 A Proposal for Best Practice

Digital forensics is a highly situation-dependent field, and it is therefore hard
to give recommendations set in stone on best practices, as each crime scene is
different. The motive behind confiscation of data may also shift, for example
consider a situation where the investigators must keep the machine powered on
while searching for cryptographic keys. This would make several of the methods
treated in this thesis impracticable. Therefore, some best practices are presented
here as key points sorted on the two main tasks, acquisition and analysis.

8.4.1 Key Points for Best Practice Acquisition

The best practices in this section are designed to maximize the amount of data
available to the investigator and the chances of uncovering cryptographic keys.
The proposal fits into existing digital forensics frameworks as the IDIP model,
and is intended as an addendum to existing processes. The key points mentioned
here are thus to be performed together with existing digital forensics procedures.

Although not experimentally treated in this thesis, the current set of acqui-
sition procedures for physical memory acquisition favor investigators that are
technically skilled and has knowledge of what to do; and equally important:
What not to do.

Educate Incident Response Teams It is vital to educate incident response
teams and other personnel that performs normal digital acquisition procedures
so that they integrate physical memory acquisition into existing procedures.
Digital investigation frameworks are valuable only if they are used in real life,
and to accommodate this, education is the only answer. Focus should lie on
why and how physical memory should be acquired, and how to recognize that
encryption is in use. For example, teams should know how to identify whole-
disk cryptosystems. Many of these can be stealthy, but per default they usually
use system tray icons like the ones in Figure 8.2, and this may be utilized as
one of several steps for identification. It is also important to know that states
like Screensaver and Logged out have high success-rates for extracting keys,
especially for whole-disk encryption systems.

Figure 8.2: Taskbar Notification area icons. From left to right: DriveCrypt,
Truecrypt, BestCrypt, PGP Desktop and ProtectDrive.

Prepare, Plan & Practice To be ready to acquire any computer’s physical
memory, sufficient preparation is needed. Acquisition software should be ac-
quired, and incorporated in existing forensic toolkits. Forensics teams should
create detailed plans, both general and specifically for each case, that have deci-
sion trees for each of the states that the target computer/device may be in. One
should also consider handheld devices, as many of these have (or will have in the
near future) encryption capabilities [110]. To be sure that the methods work

8.4. A PROPOSAL FOR BEST PRACTICE 129

as expected, practice runs should be performed in a controlled environment. In
this sense, it is important to remember that volatile memory is in real danger
of disappearing permanently, in contrast to hard drives that are unlikely to be
completely unreadable as a result of bad acquisition procedures.

Don’t Pull the Plug (And if Necessary, Coldboot) The research in this
thesis indicates that the chances of uncovering keys are highest while the com-
puter is Live. If there is concern that the overall state of the machine may
change due to automated processes, network interaction or other factors, we
propose that network should first be disconnected, and if applicable, attempt to
coldboot the computer. If possible, take a memory dump before coldbooting;
remember that the physical memory likely will contain information about the
automated process, and a lot of potential evidence. The system can ususally
be halted in BIOS to preserve the state of the RAM, while preparations for
extraction proceeds2. It is also recommendable to attempt to acquire hiberna-
tion and pagefiles before a hard reboot, but whether this is practicable or not
must be assessed on a case-by-case basis. If the hibernation method is used for
acquisition, eventual old hibernation files should be secured first.

Always Perform Full Memory Dumps (if Possible) It is absolutely es-
sential to perform full memory dumps in any digital forensics investigation. In
this thesis we have only touched a small part of the potential of memory foren-
sics, and its usages are likely to rise. As mentioned before, the upside for such
an acquisition is substantial, and a memory dump may provide invaluable if
encrypted material is encountered at a later stage in the investigation. If full
dumping is not possible, attempt to use process dumping or other means of
obtaining the (parts of) the physical memory.

8.4.2 Key Points for Best Practice Analysis

Utilize Additional Resources Hibernation files, registry values and page-
files should all be used in combination with a physical memory dump to facilitate
a more comprehensive picture of the machine and software state.

Reconstruct Virtual Memory One utilization method for the additional
resources addressed above, is reconstruction of virtual memory and processes.
We attempted one such approach in this thesis, and several others are possi-
ble. Reconstruction of virtual address space reduce search data and facilitate
searches that can locate keys that would otherwise not be possible. The method
does also provide a significant performance gain.

Utilize Memory Analysis Tools As discussed in Section 5.2, there exist
many freely available tools to analyze memory, any of which can be used to
reduce the haystack when looking for cryptographic keys. One such utilization
can be to extract process memory and use this as base for a cryptographic key
search. Another approach can be to use PoolFinder (see Section 5.2.2) to find
a specific application’s allocated pages in the NonPaged pool.

2This procedure is dependent on the BIOS and the absence of a POST at boot.

130 FORENSIC KEY DISCOVERY AND IDENTIFICATION

Develop Methods to Preserve the Chain of Custody Different legisla-
tions have different demands for the preservation of the Chain of Custody, and
analysis and documentation methods should of course be adjusted to the ap-
propriate level. As mentioned earlier, it is usually impossible to verify volatile
memory content against its original source at a later point in time. Law enforce-
ment in countries with high demands to the Chain of Custody should develop
routines to satisfy these demands. For example, the use of fuzzy hashing could
be used to compare two memory dumps taken at an interval.

Utilize Virtualization Software to Experiment Virtualization software
is an ideal tool to experiment with analysis techniques for volatile memory,
as explained in Section 6.4. To be able to extract as much information as
possible from memory dumps, forensics teams should test and reverse engineer
cryptosystems and OSes, and use their findings in future investigations.

Perform Cryptographic Key Searches in Unlikely Situations Armored
viruses and code obfuscation using encryption techniques are becoming more
common in the malware world [111]. ”Extorsion-ware”, viruses and worms that
hold files on unsuspecting users’ hard drives as ”hostages” by encrypting them,
has recently emerged in the wild on the Internet [Lab08]. Cryptographic key
searches can in some cases provide a solution to these situations, by deliberately
infecting a constrained virtual machine, dump and analyze memory and recover
the decryption key.

Last Resort: Using the Dump as Dictionary If an investigator face
encrypted data and no keys are found using Interrogate or similar tools3, it
is feasible to use each byte offset in the memory dump as a potential key for
a dictionary attempt. This is significantly more effective than a brute-force
attempt on the encryption mechanism or password, for example, a 2 GB memory
dump could possibly reduce the effort of breaking a 128-bit cipher with a factor
of 2128/231 = 297.

8.5 Limitations and Caveats

There are some limitations to our research. First of all, all acquisitions were
performed during or immediately preceding execution of the cryptographic soft-
ware, and we did not consider how long time user or kernel-level data survives
in volatile memory. Research suggests that user-level data are unlikely to sur-
vive more than five minutes, even on a lightly loaded system. However, smaller
segments and single pages can be found up to two hours after initial commit [34].

Secondly, because of time limitations, we also had to refrain from performing
deeper analysis of many of the cryptographic applications. We fear that this
has affected the results, especially in the session-based cryptographic software
class.

3To the author’s knowledge, no such tool exist freely at the time of writing.

Part III

Conclusions

131

Chapter 9

Conclusions

This thesis has discussed the search for cryptographic keys in the physical mem-
ory of computing devices, and how the state of the device affect the feasibility
of such a search. We have explored different key types and treated digital mem-
ory acquisition, analysis and forensics. Furthermore, we have analyzed previ-
ously suggested methods and provided new algorithms for key identification and
memory reconstruction, to facilitate search for keys in volatile memory. Imple-
mentations of these algorithms were used to build a proof of concept tool, that
were used to search for keys in a virtual environment. By relating our research
to well-defined states of computers running cryptographic software, a broad dis-
cussion regarding the feasibility and potential reward of performing memory
dumping and analysis was given. We have also discussed the current paradigms
of memory forensics and cryptography, and outlined how live response teams
can maximize the chances of being able to extract keys from dumped physical
memory.

As outlined in the problem definition, this thesis has unified memory analy-
sis, cryptography and digital forensics in a way that will allow a higher success
rate for law enforcement when encountering cryptographic applications on live
digital crime scenes. We find the chances of locating encryption keys surpris-
ingly high, to an extent where even the most brute-force approach usage of
the memory dump would provide a significant performance boost compared to
attempting to break the cipher itself.

Our research strongly suggests that finding cryptographic keys through a
memory disclosure attack is an opportunistic approach, its success being depen-
dent on the overall state of the target OS and cryptosystem. Particularly, the
Live, Screensaver and Logged out states have high success rates1, although
our findings indicate that other more unexpected states may be vulnerable as
well: Several of the cryptographic tools tested failed to properly wipe their keys
after usage. Cryptographic systems that pre-compute cipher key schedules have
all been found to be vulnerable to key schedule searches, adding up to a strong
incentive to include memory dumping in existing digital forensics procedures.
The author of this thesis strongly suggests integrating such a procedure, as
disregarding volatile memory is disregarding a large part of the digital crime
scene.

1For Whole-disk encryption systems, the success rate in our experiments was 100%.

133

134 FORENSIC KEY DISCOVERY AND IDENTIFICATION

From a security perspective, the main lesson that can be drawn from this is
to never leave a computing device using encryption powered on unless it is in
use or physically protected. The memory disclosure attacks described poses as a
big threat against handheld devices, and the industry will need to shift its focus
towards tamper-resistant hardware devices to mitigate the risk of compromising
keys. Using the memory analysis techniques described in this thesis, a skilled
attacker can defeat even the strongest software encryption.

While memory analysis and key identification may be possible when a Live
computer is encountered, the outlook for such an identification is far more dismal
when the computing device is turned off. Therefore, significant resources should
be directed at the education of forensics teams and other personnel that are
likely to encounter digital crime scenes, so that the right decisions are made to
minimize the risk of data loss due to encryption.

9.1 Future Work

Further development is needed in the field of cryptographic memory analysis
as outlined in Section 8.1, as well in the memory acquisition field. To expand
the usage areas of memory forensics, a significant effort is needed to reverse
engineer OS and application code. To be able to fully take advantage of the
closed-source keys found in this report, applications that are able to make use of
the keys are needed; for example encrypted virtual disk mounters. Experiments
of cryptographic key searches on more applications are also needed; encryption
is in use in far more types of software than the ones included by the three
software classes defined in this thesis.

The field of memory forensics is as mentioned relatively young of age, and
has yet to move out from a proof of concept stage to a fully fledged science. Fur-
ther understanding of the memory internals of computers, including handheld
devices, is needed to take memory forensics to the next level.

Based on this, several open research questions can be defined. We are still
uncertain of the origin and usage of many of the keys found, and a further and
deeper treatment of these would prove beneficial. A natural extension to this
thesis would be to investigate mobile devices utilizing encryption, as these will
be prevalent in the future digital forensics field. In addition, we see a great need
for a good framework for incident response teams, complete with decision trees,
with respects to volatile memory forensics.

Abbreviations

Abbreviation Plaintext
AES Advanced Encryption Standard
AIM American Online (AOL) Instant Messenger
AKE Authenticated Key Exchange
AMD Advanced Micro Devices
ASCII American Standard Code for Information Interchange
BSoD Blue Screen of Death, the feared Microsoft error message
CAST Cipher, from Carlisle Adams and Stafford Tavares
CRHF Collision-Resistant Hash Function
DES Digital Encryption Standard
DFRWS Digital Forensics Research Conference
DH Diffie-Hellman (key exchange or keys)
DRAM Dynamic Random Access Memory
DRM Digital Rights Management
DSA Digital Signature Algorithm
ECC Elliptic Curve Cryptography
FDE Full Disk Encryption, Whole-disk encryption
GB Gigabyte, 1024 MB
GCC GNU Compiler Collection
GF Galois Field
GNFS General Number Field Sieve
GNU GNU’s Not Unix
GPG GNU Privacy Guard
GPL GNU Public License
GUI Graphical User Interface
HTTP(S) Hyper Text Transfer Protocol (SSL/TLS)
IDEA International Data Encryption Algorithm
IDS Intrusion Detection System
IEEE Institute of Electrical and Electronics Engineers
IM Instant Messaging
IP Internet Protocol
IT Information Technology
IV Initialization Vector
KB Kilobyte, 1024 bytes
LSB Least Significant Bit
MB Megabyte, 1024 KB
MD5 Message Digest algorithm nr. 5
MDS Maximum Distance Separable

135

136 ABBREVIATIONS

MIPS Million Instructions Per Second
MitM Man-in-the-Middle (attack)
MS Microsoft
MSDN Microsoft Developer Network
MSB Most Significant Bit
MSN Microsoft Network
MY MIPS Year
NCIS Norwegian National Criminal Investigation Service
NIC Network Interface Card
NIST National Institute of Standards and Technology
OFB Output FeedBack (mode)
OOV Order Of Volatility
OS Operating System
OTR Off-the-record (messaging)
OWHF One-Way Hash Function
PAE Page Address Extension
PDE Page Directory Entry
PDB Page Directory Base
PDT Page Directory Table
PFN Page Frame Number
PGP Pretty Good Privacy, a public-key encryption system
PHT Pseudo-Hadamard Transform
PIN Personal Identification Number (four digit password)
POST Power-On Self-Test
POTS Plain Old Telephone System
PRNG Pseudo-Random Number Generator
PTE Page Table Entry
RAM Random Access Memory
RNG Random Number Generator
ROM Read-Only Memory
RSA Short for ”Rivest, Shamir, & Adleman”
RSAP RSA Problem
SHA-X Secure Hashing Algorithm (X is the output bit-length)
SIGMA ”SIGn-and-MAc”
SP Substitution-Permutation (network)
SQL Structured Query Language
SRAM Static Random Access Memory
SSH Secure Shell
SSL Secure Sockets Layer
TB Terrabyte, 1024 GB
TCP Transmission Control Protocol
TLS Transport Layer Security
TPG Trusted Platform Group
TPM Trusted Platform Module
URL Universal Resource Locator
USB Universal Serial Bus
VAD Virtual Address Descriptor
VM Virtual Machine
WDT Windows Debugging Tools

Publications

[1] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 1996.

[2] David Kahn. The Codebreakers: The Comprehensive History of Secret
Communication from Ancient Times to the Internet. Simon & Schuster,
2rev edition, 1997.

[3] E. Mumford. Dangerous Decisions: Problem Solving in Tomorrow’s
World. Springer, 1999.

[4] David Salomon. Data Privacy and Security. Springer Professional Com-
puting, 2003.

[5] Dan Shumow and Niels Ferguson. On the possibility of a back door in
the NIST SP800-90 dual EC PRNG. Presentation at the CRYPTO 2007
conference, November 2007.

[6] Mark Stamp and Richard M. Low. Applied Cryptanalysis. Wiley, 2007.

[7] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source
Code in C. John Wiley & Sons, 2. edition, 1995.

[8] Dorothy E. Denning. Information Warfare and Security. Addison Wesley,
1999.

[9] Barak D. Jolish. The encryption debate in plaintext: National security
and encryption in United States and Israel. Lecture Notes in Computer
Science, 1962:202–224, 2001.

[10] Robert Richardson. Csi computer crime and security survey 2007. Tech-
nical report, CSI, 2007.

[11] Auguste Kerckhoffs. La cryptographie militaire. Journal des Sciences
Militaires, 9:5–38, 161–191, 1883.

[12] NIST. Announcing the Advanced Encryption Standard (AES). FIPS 197,
NIST, 2001.

[13] Joan Daemen and Vincent Rijmen. Design of Rijndael: Aes - the Advanced
Encryption Standard. Springer-Verlag Berlin and Heidelberg GmbH Co,
2002.

[14] RSA. PKCS 1 v2.1: RSA cryptography standard. Technical report, RSA
Laboratories, 2002.

137

138 PUBLICATIONS

[15] Niels Ferguson. AES-CBC + Elephant diffuser: A disk encryption algo-
rithm for Windows Vista. August 2006.

[16] Benjamin Adida, Lauren B. Fletcher, Lydia Sandon, Enouch Chang,
Michelle Hong, and Kristina Page. The future of trespass and property in
cyberspace. Technical report, Massachusetts Institute of Technology and
Harvard Law School, 1998.

[17] Trusted Platform Group. Trusted platform modules strengthen user and
platform authenticity. Technical report, Trusted Platform Group, 2005.

[18] Carsten Maartmann-Moe. Digital evidence and cryptography. Minor the-
sis, Norwegian University of Science and Technology, 2007.

[19] Brian D. Carrier and Joe Grand. A hardware-based memory acquisi-
tion procedure for digital investigations. Digital Investigation, 1(1):50–60,
2004.

[20] Timothy Vidas. The acquisition and analysis of random access memory.
Journal of Digital Forensic Practice, 1(4):315–323, 2006.

[21] Giovanni Di Crescenzo, Niels Ferguson, Russell Impagliazzo, and Markus
Jakobsson3. How to forget a secret. Lecture Notes in Computer Science,
1563:500–509, 1999.

[22] Nicolas Ruff. Windows memory forensics. Journal in Computer Virology,
2007.

[23] Maximillian Dornseif. Firewire - all your memory are belong to us. Pre-
sentation at CanSecWest/Core05, 2005.

[24] Antonio Martin. Firewire memory dump of a Windows XP computer: A
forensic approach. 2007.

[25] Adi Shamir and Nicko van Someren. Playing hide and seek with stored
keys. Lecture Notes in Computer Science, 1998.

[26] Torbjörn Pettersson. Cryptographic key recovery from linux memory
dumps. In Chaos Communication Camp, 2007.

[27] Tobias Klein. All your private keys are belong to us. Tutorial, 2006.

[28] Keith Harrison and Shouhuai Xu. Protecting cryptographic keys from
memory disclosure attacks. In Dependable Systems and Networks, 2007.

[29] AAron Walters, , and Jr. Nick L. Petroni. Volatools: Integrating volatile
memory forensics into the digital investigation process. Technical report,
Komoku, Inc., 2007.

[30] J. Alex Halderman, Seth. D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum,
and Edward W. Felten. Lest we remember: Cold boot attacks on encryp-
tion keys. 2008.

[31] J. Kornblum. Identifying almost identical files using context triggered
piecewise hashing. Digital Investigation, 3:91–97, 2006.

PUBLICATIONS 139

[32] Andreas Schuster. Searching for processes and threads in Microsoft Win-
dows memory dumps. In DFRWS, 2006.

[33] Harlan Carvey. Windows Forensic Analysis. Syngress, 2007.

[34] Jason Solomona, Ewa Huebnera, Derek Bema, and Magdalena Szezynska.
User data persistence in physical memory. Digital Investigation, 4:68–72,
2007.

[35] Bent Kristoffer Onshus. Cryptographic credentials and encrypted data
in digital evidence. Minor thesis, Norwegian University of Science and
Technology, 2005.

[36] Andreas Grytting Furuseth. Digital forensics : Methods and tools for
retrieval and analysis of security credentials and hidden data. Master’s
thesis, Norwegian University of Science and Technology, 2005.

[37] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, 2001.

[38] Michael Welschenbach. Cryptography in C and C++. Apress, 2 edition,
2005.

[39] Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off.
Advances in Cryptology - CRYPTO 2003, 2729:617–630, 2003.

[40] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data En-
cryption Standard. Springer Verlag, 1993.

[41] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryp-
tosystems. Advances in Cryptology, pages 2–21, 1990.

[42] James Nechvatal, Elaine Barker, Lawrence Bassham, William Burr, Mor-
ris Dworkin, James Foti, and Edward Roback. Report on the development
of the Advanced Encryption Standard (AES). Technical report, NIST,
2000.

[43] Vincent Rijmen and Joan Daemen. AES proposal: Rijndael. 1999.

[44] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A proposal for the
Advanced Encryption Standard. Technical report, Cambridge University,
2000.

[45] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall,
and Niels Ferguson. Twofish: A 128-bit block cipher. In Third AES
Candidate Conference, 2000.

[46] National Institute of Standards and Technology. Data Encryption Stan-
dard (DES). FIPS 46-2, NIST, 1975.

[47] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall,
and Niels Ferguson. The Twofish Encryption Algorithm: A 128-Bit Block
Cipher. Wiley, 1999.

[48] Ross Anderson, Eli Biham, and Lars Knudsen. The case for serpent. In
Third AES Candidate Conference, 2000.

140 PUBLICATIONS

[49] C. Adams and J. Gilchrist. The CAST-256 encryption algorithm. RFC
2612, Network Working Group, 1999.

[50] C. Adams. The CAST-128 encryption algorithm. RFC 2144, Network
Working Group, 1997.

[51] Xuejia Lai and James L. Massey. A proposal for a new block encryption
standard. In EUROCRYPT, pages 389–404, 1990.

[52] E. Rescorla. Diffie-Hellman key agreement method. RFC 2631, IETF,
1999.

[53] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Technical report, Massachusetts
Institute of Technology, 1977.

[54] NIST. Announcing the Digital Signature Standard (DSS). Federal Infor-
mation Processing Standards Publication 186, NIST, January 2000.

[55] Taher ElGamal. A public-key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on Information The-
ory, 31(4):469–472, 1985.

[56] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-
based public key cryptosystem. Lecture Notes in Computer Science,
1423:267–288, 1998.

[57] Don Johnson, Alfred Menezes, and Scott Vanstone. The Elliptic Curve
Digital Signature Algorithm (ECDSA). Technical report, Certicom Re-
search and University of Waterloo, 1999.

[58] NIST. Recommendation for pair-wise key establishment schemes using dis-
crete logarithm cryptography. Special Publication 800-56A, NIST, 2006.

[59] Johannes Blömer. Randomness and secrecy - a brief introduction. Journal
of Universal Computer Science, 12(6):654–671, 2006.

[60] Olav Kallenberg. Random Measures. Akademie-Verlag, 1986.

[61] Donald E. Knuth. The Art of Computer Programming. Vol. 2: Seminu-
merical Algorithms. Addison-Wesley, 3 edition, 1997.

[62] RAND. A Million Random Digits with 100, 000 Normal Deviates. RAND,
2001.

[63] C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379–423 and 623–656, July and October 1948.

[64] NIST. Security requirements for cryptographic modules. FIPS 140, NIST,
1994.

[65] Electronic Frontier Foundation. Cracking DES. O’Reilly Associates, Inc,
1998.

PUBLICATIONS 141

[66] Dag Arne Osvik and Eran Tromer. Cryptanalytic applications of the
PlayStation 3: the case of DES. Presentation at the Rump session at
SHARCS, 2006.

[67] Whitfield Diffie. Ultimate cryptography. Communications of the ACM,
2001.

[68] Matthew E. Briggs. An introduction to the general neumber field sieve.
Master’s thesis, Virginia Polytechnic Institute and State University, 1998.

[69] On Polynomial Selection For the General Number Field Sieve. Thorsten
kleinjung. Mathematics of Computation, 75(256), 2006.

[70] Carl Pomerance. A tale of two sieves. Notices of the AMS, 1996.

[71] Jens Franke. On the factorization of RSA200. Presentation at
SHARCS’06, April 2006.

[72] Arjen K. Lenstra. Matching AES security using public key systems. In
Asiacrypt, 2001.

[73] National Bureau of Standards. Password usage. FIPS 112, U.S. Depart-
ment of Commerce, 1985.

[74] Boris Balacheff, Liqun Chen, Siani Pearson, David Plaquin, and Graeme
Proudler. Trusted Computing Platforms. Prentice Hall, 2003.

[75] ITU-T. Abstract Syntax Notation One (ASN.1) specification of basic
notation. Reccomandation X.680, ITU-T, 2002.

[76] RSA. PKCS 8: Private-key information syntax standard. Technical re-
port, RSA, 1993.

[77] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall,
and Niels Ferguson. On the Twofish key schedule. Lecture Notes in Com-
puter Science, (1556), 1998.

[78] Fauzan Mirza and Sean Murphy. An observation on the key schedule of
Twofish. Technical report, Information Security Group, Royal Holloway,
University of London, 1999.

[79] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall,
and Niels Ferguson. Further observations on the key schedule of Twofish.
Twofish technical report, 1999.

[80] Mark E. Russinovich and David A. Solomon. Microsoft Windows Inter-
nals. Microsoft Press, 2005.

[81] George Mohay, Alison Anderson, Byron Collie, Olivier de Vel, and Rodney
McKemmish. Computer and Intrusion Forensics. Artech House, 2003.

[82] W. Kruse and J Heiser. Computer Forensics: Incident Response Essen-
tials. Addison-Wesley, 2002.

[83] Brian Carrier and Eugene Spafford. An event-based digital forensic inves-
tigation framework. Digital Forensic Research Workshop, 2004.

142 PUBLICATIONS

[84] Kevin Mandia and Chris Prosise. Incident Response: Investigating Com-
puter Crime. McGraw-Hill, 2001.

[85] Marc Rogers, Jim Goldman, Rick Mislan, Tim Wedge, and Steve DeBrota.
Computer forensics field triage process model. In 2006 Conference on
Digital Forensics, Security and Law, 2006.

[86] Brian Carrier and Eugene Spafford. Getting physical with the digital
investiagtion process. International Journal of Digital Evidence, 2, 2003.

[87] D. Brezinski and T. Killalea. Guidelines for evidence collection and archiv-
ing. RFC 3227, IETF, 2002.

[88] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash func-
tions. In EUROCRYPT, 2005.

[89] C. De Cannière and C. Rechberger. Finding SHA-1 characteristics. In
Asiacrypt, volume 4284, pages 1–20, 2006.

[90] Brian D. Carrier. Live digital forensic analysis. Communications of the
ACM, 2006.

[91] Joanna Rutkowska. Beyond the CPU: Defeating hardware based RAM
acquisition tools. Presentation at Black Hat DC 2007, 2007.

[92] Adam Boileau. Hit by a bus: Physical access attacks with Firewire. Pre-
sentation at Ruxcon 2006, 2006.

[93] Bradley Schaltz. Bodysnatcher: Towards reliable volatile memory acqui-
sition by software. Digital Investigation, 4:126–134, 2007.

[94] Matthieu Suiche. Sandman project. Technical report, 2008.

[95] Nicolas Ruff and Matthieu Suiche. Enter Sandman. Presentation at Pac-
Sec 2007, 2007.

[96] Andreas Schuster. Pool allocations in Windows memory forensics. Pre-
sentation at IMF 2006, 2006.

[97] AAron Walters. Fatkit: Detecting malicious library injection and upping
the “anti”. Digital Investigation, 3(4):197–210, 2006.

[98] Brendan Dolan-Gavitt. The VAD tree: A process-eye view of physical
memory. Digital Investigation, (4):62–64, 2007.

[99] Michael Richmond. ViSe: A virtual security testbed. Master’s thesis,
Department of Computer Science, University of California, Santa Barbara,
2005.

[100] André Årnes, Paul Haas, Giovanni Vigna, and Richard A. Kemmerer. Dig-
ital forensic reconstruction and the virtual security testbed ViSe. Detec-
tion of Intrusions and Malware Vulnerability Assessment, pages 144–163,
2006.

PUBLICATIONS 143

[101] André Årnes, Paul Haas, Giovanni Vigna, and Richard A. Kemmerer.
Using a virtual security testbed for digital forensic reconstruction. Journal
in Computer Virology, 2(4):275–289, 2007.

[102] Michael Stay. Zip attacks with reduced known plaintext. Lecture Notes
in Computer Science, 2355, 2002.

[103] Tadayoshi Kohno. Attacking and repairing the WinZip encryption scheme.
In 11th ACM Conference on Computer and Communications Security,
2004.

[104] S.-W. Yeo and C.-W Phan. On the security of the winrar encryption
feature. International Journal of Information Security, 2006.

[105] Philippe Biondi and Fabrice Desclaux. Silver needle in the skype. Pre-
sentation at Black Hat Europe 2006, 2006.

[106] Tom Berson. Skype security evaluation. Technical report, Anagram Lab-
oratories, 2005.

[107] Jacob Appelbaum and Ralf-Philipp Weinmann. Unlocking FileVault. Pre-
sentation at 23rd Chaos Communication Congress, December 2006.

[108] Eoghan Casey. Practical approaches to recovering encrypted evidence.
International Journal of Digital Evidence, 1(3), 2002.

[109] Department of Justice. The USA PATRIOT Act: Preserving Life and
Liberty, 2001.

[110] Michael W. Burnette. Forensic examination of a RIM (BlackBerry) wire-
less device. Technical report, Rogers & Hardin LLP, 2002.

[111] Eric Filiol. Strong cryptography armoured computer viruses forbidding
code analysis: the bradley virus. In EICAR Best Paper Proceedings, 2005.

Web References

[And00] Ross Anderson, Serpent home page, 2000, http://www.cl.cam.ac.
uk/~rja14/serpent.html.

[App08] Apple, OS X Leopard - security, 2008, http://www.apple.com/
macosx/technology/security.html.

[Bet05] Chris Betz, Memparser, 2005, http://sourceforge.net/projects/
memparser.

[Car06] Harlan Carvey, Windows IR, 2006, http://sourceforge.net/
projects/windowsir.

[Cop07] Copacobana, COPACOBANA project, 2007, http://www.
copacobana.org/, visited November 4, 2007.

[DFR05] DFRWS, Digital forensics research conference 2005 forensic chal-
lenge, 2005, http://www.dfrws.org/2005/challenge.

[Ef05] E-fense, Helix - incident response computer forensics live cd, 2005,
http://www.e-fense.com/helix.

[Fel08] Ed Felten, New research result: Cold boot attacks on disk encryption,
2008, http://www.freedom-to-tinker.com/?p=1257.

[Fou08a] Truecrypt Foundation, Truecrypt, 2008, http://www.truecrypt.
org/.

[Fou08b] , Truecrypt source code, 2008, http://www.truecrypt.org/
downloads2.php.

[Gel05] Barton Gellman, The FBI’s secret scrutiny, Washington Post (2005),
http://www.washingtonpost.com/wp-dyn/content/article/
2005/11/05/AR2005110501366.html, visited November 14.

[Gla06] Brian Gladman, AES and combined encryption/authentication modes,
2006, http://fp.gladmand.plus.com/AES/index.thm.

[HSH+08] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clark-
son, William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Ap-
pelbaum, and Edward W. Felten, Lest we remember: Cold boot attacks
on encryption keys, 2008, http://citp.princeton.edu/memory/.

[Inc07] GMG Systems Inc, Knttools, 2007, http://www.gmgsystemsinc.
com/knttools.

145

146 WEB REFERENCES

[Jet08] Jetico, Bestcrypt faq, 2008, http://www.jetico.com/bestcrypt_
faq.htm.

[Kal93] Burton S. Kaliski, A layman’s guide to a subset of ASN.1, BER, and
DER, RSA laboratories technical note, RSA Laboratories, 1993.

[Kle06] Tobias Klein, Process dumper, 2006, http://www.trapkit.de/
research/forensic/pd.

[Kor07] Jesse Kornblum, Ssdeep, 2007, http://ssdeep.sourceforge.net/.

[Lab08] Kapersky Lab, Kapersky lab reports a new and dangerous blackmailing
virus, 2008, http://www.kapersky.com/news?id=207575650.

[LF05] Mathieu Lafon and Romain Francoise, Information leak in the linux
kernel ext2 implementation, 2005, http:arkoon.net/advisories/
ext2-make-empty-leak.txt.

[McC08] Declan McCullagh, Disk encryption may not be secure enough,
new research finds, 2008, http://www.news.com/8301-13578_
3-9876060-38.html.

[McG08] Wesley McGrew, msramdmp: Mcgrew security ram dumper, 2008,
http://mcgrewsecurity.com/projects/msramdmp/.

[Mic07] Microsoft, Windows internals, 2007, http://www.microsoft.com/
technet/sysinternals/information/windowsinternals.mspx.

[Mic08a] , Debugging tools for Windows, 2008, http://www.windows.
com/whdc/devtools/debugging/.

[Mic08b] , Memory limits for Windows releases, 2008, http://msdn2.
microsoft.com/en-us/library/aa366778.

[Mic08c] , Windows Vista: Features explained: BitLocker drive
encryption, 2008, http://www.microsoft.com/windows/products/
windowsvista/features/details/bitlocker.mspx.

[MSD08a] MSDN, Private key blobs, 2008, http://msdn.microsoft.com/
en-us/library/aa387401.aspx.

[MSD08b] , Windows driver kit, 2008, http://msdn2.microsoft.com/
en-us/library/aa972908.

[New06] BBC News, Security raised over laptop theft, 2006, http://news.
bbc.co.uk/1/hi/uk/6160800.stm.

[Old04] The old new thing: The oft-misunderstood /3gb switch, 2004,
http://blogs.msdn.com/oldnewthing/archive/2004/08/05/
208908.aspx.

[Pta08] Thomas Ptacek, Recover a private key from process
memory, 2008, http://www.matasano.com/log/178/
recover-a-private-key-from-process-memory/.

WEB REFERENCES 147

[RIP00] Regulation of Investigatory Powers Act (RIPA), 2000, http://www.
opsi.gov.uk/acts/acts2000/20000023.htm.

[Rus05] Mark E. Russinovich, Unkillable processes (NotMyFault), 2005,
http://blog.technet.com/markrussinovich/archive/2005/08/
17/unkillable-processes.aspx.

[Rut06] Joanna Rutkowska, Introducing blue pill, 2006,
http://theinvisiblethings.blogspot.com/2006/06/
introducing-blue-pill.html.

[Sch98] Bruce Schneier, Twofish, 1998, http://www.schneier.com/
twofish.html.

[Sch07] Andreas Schuster, Forensic blog, 2007, http://computer.
forensikblog.de/en/.

[Sch08] Bruce Schneier, My data, your machine, 2008, http://www.
schneier.com/essay-142.html.

[Sys07] Volatile Systems, The Volatility framework, 2007, https://www.
volatilesystems.com/VolatileWeb/volatility.asp.

[Vid06] Arne Vidström, pmdump, 2006, http://www.ntsecurity.nu/
toolbox/pmdump.

[VMw07] VMware, The VMware site, 2007, http://www.vmware.com.

[Wal08] John Walker, ENT: A pseudorandom number sequence test program,
2008, http://www.fourmilab.ch/random/.

[Wik08] Wikipedia, Instructions per second, 2008, http://en.wikipedia.
org/wiki/Instructions_per_second.

[Wil08] Svein Y. Willassen, Moments in time: Evidence is not
proof, 2008, http://willassen.blogspot.com/2008/04/
evidence-is-not-proof.html.

[Win06] WinZip, AES encryption information: Encryption specification AE-1
and AE-2, 2006, http://www.winzip.com/aes_info.htm.

[Zet08] Kim Zetter, Researchers: Disk encryption not secure, 2008, http:
//blog.wired.com/27bstroke6/2008/02/researchers-dis.html.

Part IV

Appendices

149

Appendix A

Source Code

A.1 interrogate.h

Listing A.1: interrogate.h
/* ==
* interrogate.h
*
* Main header file for Interrogate: Structural and entropy -based search for
* crypto keys in binary files or memory dumps.
*
* http :// interrogate.sourceforge.net
*
* Copyright (C) 2008 Carsten Maartmann -Moe <carmaa@gmail.com >
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not , see <http :// www.gnu.org/licenses/>.
* ==
*/

#define NOFSYMBOLS 256 /* Number of symbols in alphabet (ASCII =256) */
#define WINDOWSIZE 256 /* Windowsize in BYTES */
#define KEYSIZE 256 /* Default keysize in BITS */
#define THRESHOLD 7.0 /* Default entropy threshold */
#define BCMOD 20 /* Modifier for byte count threshold */
#define TRUE 1
#define FALSE 0

#define NO_KEYTYPE -1 /* Keytype definitions below */
#define AES 0
#define RSA 1
#define SERPENT 2
#define TWOFISH 3
#define TWOFISH_TC 4
#define NOF_KEYTYPES 5

#define LEFT 0
#define RIGHT 1

#define rotlFixed(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
#define rotrFixed(x,n) (((x) >> (n)) | ((x) << (32 - (n))))

151

152 A.1. INTERROGATE.H

#define NOF_TF_IMP 4; /* Number of Twofish implementations */
#define TF_SBOX_SIZE 4096;
#define TF_RUNS 6 /* Runs to measure */

/* ----------------------------
* Twofish key structures below
* ----------------------------
*/

/* Twofish key structure , taken from TrueCrypt implementation */
typedef struct {

unsigned int l_key [40];
unsigned int s_key [4];
unsigned int mk_tab [4 * 256];
unsigned int k_len;

}
twofish_tc;

/* Twofish key sructure from Linux and GPG implementations
* Isomorphic with SSH impelentation below as far as we are concered. */

typedef struct {
unsigned int s[4][256] , w[8], k[32];

}
twofish_gpg;

/* SSH twofish key schedule */
typedef struct {

unsigned int s[4][256]; /* Key -dependant S-Boxes */
unsigned int k[40]; /* Expanded key words */
int for_encryption; /* encrypt / decrypt */

}
twofish_ssh;

/* Twofish key structure taken from Nettle */
typedef struct {

unsigned int k[40];
unsigned int s[4][256];

}
twofish_nettle;

/* Twofish optimized implementation */
typedef struct {

unsigned int K[40];
unsigned int k_len;
unsigned int QF [4][256];

}
twofish_opt;

/* Page Table Entry struct (PTE). Note that Windows uses the
* same structure for Page Directory Entries (PDEs).
*/

typedef struct {
unsigned int valid :

1;
unsigned int write :

1;
unsigned int owner :

1;
unsigned int write_through :

1;
unsigned int cache_disabled :

1;
unsigned int accessed :

1;
unsigned int dirty :

1;
unsigned int large_page :

1;
unsigned int global :

1;
unsigned int copy_on_write :

1;
unsigned int transition :

A.1. INTERROGATE.H 153

1;
unsigned int prototype :

1;
unsigned int pfn :

20;
}
pte;

/* Virtual address for 32-bit x86 Windows systems */
typedef struct {
unsigned int byte_offset :

12;
unsigned int pt_index :

10;
unsigned int pd_index :

10;
}
virtual_address;

/* Interrogate context */
typedef struct {

int keytype , /* Keytype to be searched for */
keysize , /* The key size that are to be searched for */
wsize , /* The search window size */
nofs , /* The number of symbols in our alphabet */
bitmode , /* Bitmode boolean */
verbose , /* Verbose mode */
naivemode , /* Calculate true entropy */
quickmode , /* Non -overlapping entropy windows */
interval , /* Only search in interval (boolean) */
from , /* Starting point */
to, /* End point */
cr3 , /* CR3 offset in case recunstruction of mem */
filelen , /* Input file length in bytes */
bytethreshold; /* Threshold for bytecount */
FILE *output_fp; /* Pointer to output file for statistics */
float threshold; /* Entropy threshold */
long count; /* Number of keys found */

}
interrogate_context;

/* -------------------
* Function prototypes
* -------------------
*/

/* interrogate.c: Main Program */
void init(float *ek);
void initialize ();
void keysearch(interrogate_context *ctx , unsigned char *buffer);
void search(interrogate_context *ctx , unsigned char *buffer);
void quicksearch(interrogate_context *ctx , unsigned char *buffer);
void rsa_search(interrogate_context *ctx , unsigned char *buffer);
void aes_search(interrogate_context *ctx , unsigned char *buffer);
void serpent_search(interrogate_context *ctx , unsigned char *buffer);
void twofish_search(interrogate_context *ctx , unsigned char *buffer);
void twofish_search_old(interrogate_context *ctx , unsigned char *buffer);

/* stat.c: Statistics */
double approxlog2(double x);
float ent(interrogate_context *ctx , unsigned char *buffer , int length);
float *ent_opt(unsigned char *buffer);
int countbytes(interrogate_context *ctx , unsigned char *buffer);
void runs(interrogate_context *ctx , unsigned char *buffer , int *runs_count ,

int run_length , int *firstrun , int *lastrun);
void runs_opt(interrogate_context *ctx , unsigned char *buffer ,

int *runs_count , int run_length , int *firstrun , int *lastrun);

/* rsa.c: RSA functions */
int parse_der(unsigned char *buffer , int offset);
void output_der(unsigned char *buffer , int offset , size_t size , long *count);

/* aes.c: AES functions */
void rotate(unsigned char *in);

154 A.1. INTERROGATE.H

unsigned char rcon(unsigned char in);
unsigned char gmul(unsigned char a, unsigned char b);
unsigned char gmul_inverse(unsigned char in);
unsigned char sbox(unsigned char in);
void schedule_core(unsigned char *in, unsigned char i);
void expand_key(unsigned char *in);
void expand_key_192(unsigned char *in);
void expand_key_256(unsigned char *in);

/* serpent.c: Serpent functions */
void serpent_set_key(const unsigned char userKey[], int keylen ,

unsigned char *ks);

/* twofish.c TwoFish functions */
void twofish_set_key(twofish_tc *instance , const unsigned int in_key[],

const unsigned int key_len);
unsigned int mds_rem(unsigned int p0 , unsigned int p1);
void gen_mk_tab(twofish_tc *instance , unsigned int key[]);

/* nppool.c Nonpaged Pool functions */
void reconstruct(interrogate_context *ctx , unsigned char *buffer);
void print_pte(virtual_address *addr , pte *pd, pte *pde , pte *pt , pte *pte ,

unsigned char *page);

/* util.c: Utility functions */
unsigned char *read_file(interrogate_context *ctx , FILE *fp);
FILE *open_file(interrogate_context *ctx , char *filename , char *mode);
int checkbyte(unsigned char index , int *array);
void printblobinfo(int start , int end , int bytes , float wins , float entropy);
void print_hex_array(unsigned char *buffer , int length , int columns);
void print_hex_words(unsigned int *buffer , int length , int columns);
int validkeytype(char *keytype , int length);
int min(int a, int b);
void print_to_file(FILE *fp , float value);
unsigned getbits(unsigned x, int p, int n);
unsigned int byteshift(unsigned int x, int direction , int n);
int is_mk_tab(int *run);
void validate_tf_ks(interrogate_context *ctx , unsigned char *buffer ,

int offset);
double format(double Value , int nPrecision);

A.2. INTERROGATE.C 155

A.2 interrogate.c

Listing A.2: interrogate.c
/* ==
* interrogate.c
*
* Structural and entropy -based search for crypto keys in binary files or
* memory dumps.
*
* http :// interrogate.sourceforge.net
*
* Copyright (C) 2008 Carsten Maartmann -Moe <carmaa@gmail.com >
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not , see <http :// www.gnu.org/licenses/>.
* ==
*/

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <math.h>
#include <string.h>
#include <time.h>

#ifdef _WIN32
#include <fcntl.h>
#include <io.h>
#else
#include <unistd.h>
#endif

#include "interrogate.h"

/*
* Main search method.
*
* Reads entire file (memory dump) into memory and searches file for
* cryptographic keys. Dispatches appropriate searching method based on user
* input (e.g., the switches set at the command line. Also prints some
* headers for entropy searches.
*/

void keysearch(interrogate_context *ctx , unsigned char *buffer) {

printf("Success , starting search .\n\n");

if ((ctx ->keytype == NO_KEYTYPE)) {
printf(" Interval | Size | Windows | %s\n",

(ctx ->naivemode) ? "Entropy" : "Byte Count");
}
printf("--"

"--\n");

/* Set filelen to be the interval ending point if interval mode is
* set */

if (ctx ->interval)
ctx ->filelen = ctx ->to;

/* Search */
switch (ctx ->keytype) {
case RSA:

rsa_search(ctx , buffer);

156 A.2. INTERROGATE.C

break;
case AES:

aes_search(ctx , buffer);
break;

case SERPENT:
serpent_search(ctx , buffer);
break;

case TWOFISH:
twofish_search(ctx , buffer);
break;

case TWOFISH_TC:
twofish_search_old(ctx , buffer);
break;

default:
if (ctx ->quickmode) {

quicksearch(ctx , buffer);
} else {

search(ctx , buffer);
}
break;

}

free(buffer);
}

/* ==
* Searchfunctions for RSA , AES , SERPENT and TWOFISH key types.
* ==
*/

void rsa_search(interrogate_context *ctx , unsigned char *buffer) {
int i;

/* Calculate der -encoding parameters like lenght of data blob etc.
* according to PKCS #8 */

int FLAG1 = 0x30;
int FLAG2 = 0x82;

/* Set interval parameter */

if (ctx ->interval)
ctx ->filelen = ctx ->to;

for (i = ctx ->from; i < ctx ->filelen - 1; i += 2) {
unsigned char c1 , c2, c3;
int foundAt = -1;
c1 = (unsigned char) buffer[i];
c2 = (unsigned char) buffer[i + 1];
if (c1 == FLAG1) {

if (c2 == FLAG2) {
foundAt = i;

}
} else if (c2 == FLAG1) {

c3 = (unsigned char) buffer[i + 2];
if (c3 == FLAG2) {

foundAt = i + 1;
}

}
if (foundAt != -1) {

if (ctx ->verbose)
printf("Signature hit...");

int derLength;
if ((derLength = parse_der(buffer , foundAt))) {

ctx ->count ++;
output_der(buffer , foundAt , derLength , &(ctx ->count));
//Skip the bytes containing the key
i += derLength;

} else {
if (ctx ->verbose)

printf("not a key.\n");
}

}
}

}

A.2. INTERROGATE.C 157

void aes_search(interrogate_context *ctx , unsigned char *buffer) {
int i;

/* Set key schedule sizes */
int kssize = 176;
if (ctx ->keysize == 192) {

kssize = 208;
} else if (ctx ->keysize == 256) {

kssize = 240;
}

unsigned char *ks = malloc(kssize * sizeof(unsigned char));

for (i = ctx ->from; i < ctx ->filelen - kssize; i++) {
/* Copy a chunk of data from buffer , expand it using AES key
* schedule routines */

ks = memcpy(ks, &buffer[i], kssize);
if ((ctx ->keysize == 128))

expand_key(ks);
else if ((ctx ->keysize == 192))

expand_key_192(ks);
else

expand_key_256(ks);
/* Compare expanded key schedule to the data proceeding the chunk */
if (memcmp(ks, &buffer[i], kssize) == 0) {

ctx ->count ++;
printf("Found (probable) AES key at offset %.8x:\n", i);
print_hex_array(ks , ctx ->keysize / 8, 16);
printf("Expanded key:\n");
print_hex_array(ks , kssize , 16);

}
}

}

void serpent_search(interrogate_context *ctx , unsigned char *buffer) {
int i;
/* Key schedule size for SERPENT is always 560 bytes*/
int kssize = 560;

unsigned char *ks = calloc(kssize , sizeof(unsigned char));

/* Iterate byte by byte through memory */
for (i = ctx ->from; i < ctx ->filelen - kssize; i++) {

/* Copy chunk of data from buffer , and expand with SERPENT key
* schedule expansion */

ks = memcpy(ks, &buffer[i], kssize);
serpent_set_key(ks, ctx ->keysize , ks);
/* Compare result to the original buffer data */
if (memcmp(ks, &buffer[i], kssize) == 0) {

ctx ->count ++;
printf("Found (probable) SERPENT key at offset %.8x:\n", i);
print_hex_array(ks , ctx ->keysize / 8, ctx ->keysize / 8);
printf("Expanded key:\n");
print_hex_array(ks , kssize , 16);

}
}

}

void twofish_search(interrogate_context *ctx , unsigned char *buffer) {
int i, firstrun , lastrun;
/* Override user selected window size */
ctx ->wsize = 4096;

/* Check that the input file can actually hold a full key schedule */
size_t tfi_size = sizeof(twofish_tc); // Largest key schedule
if (ctx ->filelen < tfi_size) {

fprintf(stderr , "Filesize too small to hold a TwoFish key.\n");
return;

}

int run[TF_RUNS];
firstrun = lastrun = 0;

158 A.2. INTERROGATE.C

/* Check first window and initialize */
i = ctx ->from;
runs(ctx , &buffer[i], run , TF_RUNS , &firstrun , &lastrun);
if (is_mk_tab(run)) {

validate_tf_ks(ctx , buffer , i);
}

/* Check each sequential window */
for (; i < ctx ->filelen; i++) {

runs_opt(ctx , &buffer[i], run , TF_RUNS , &firstrun , &lastrun);
if (is_mk_tab(run)) {

validate_tf_ks(ctx , buffer , i);
}

}

}

/*
* Deprecated. Old twofish key search method. Use twofish_search () instead.
* This method will only work for truecrypt -like implementations.
*/

void twofish_search_old(interrogate_context *ctx , unsigned char *buffer) {
twofish_tc *instance = malloc(sizeof(twofish_tc));
int i;
float entropy;

/* Check that the input file can actually hold a full key schedule */
size_t tfi_size = sizeof(twofish_tc);
if (ctx ->filelen < tfi_size) {

fprintf(stderr , "Filesize too small to hold a TwoFish key.\n");
return;

}

/* For each byte in memory , interpret it as the start of a
* twofish_nstance struct , and check whether it has 2, 3 or 4 as the
* twofish key_len. If so, perform structural and statistical tests to
* verify that it is a valid TWOFISH key schedule */

for (i = ctx ->from; i < ctx ->filelen - tfi_size; i++) {
instance = (twofish_tc *)&buffer[i];
switch (instance ->k_len) {
case 2:

/* Potential 128-bit key.
* If key_len is 2, only the two leftmost s_keys are non -zero */

if ((instance ->s_key [2] == 0) && (instance ->s_key [3] == 0)
&& (instance ->l_key [0] != 0)) {

entropy = ent(ctx , (unsigned char *)instance ->mk_tab ,
sizeof(instance ->mk_tab));

/* The entropy of mk_tab is awlways maximum (8) */
if (entropy == 8) {

/* Calculate entropy of the l_keys */
entropy = ent(ctx , (unsigned char *)instance ->l_key ,

sizeof(instance ->l_key));
if ((entropy > 6) && (entropy < 7.2)) {

ctx ->count ++;
printf("Found (probable) TwoFish key at "

"offset %.8x:\n", i);
printf("Expanded key:\n");
print_hex_words ((unsigned int *)instance ,

tfi_size / 4, 4);
}

}
}
break;

case 3:
/* Potential 198-bit key.
* If key_len is 3, only the leftmost s_key is non -zero */

if ((instance ->s_key [3] == 0) && (instance ->l_key [0] != 0)) {
entropy = ent(ctx , (unsigned char *)instance ->mk_tab ,

sizeof(instance ->mk_tab));
/* The entropy of mk_tab is awlways maximum (8) */
if (entropy == 8) {

/* Calculate entropy of the l_keys */
entropy = ent(ctx , (unsigned char *)instance ->l_key ,

sizeof(instance ->l_key));

A.2. INTERROGATE.C 159

if ((entropy > 4)) {
ctx ->count ++;
printf("Found (probable) TwoFish key at "

"offset %.8x:\n", i);
printf("Expanded key:\n");
print_hex_words ((unsigned int *)instance ,

tfi_size / 4, 4);
}

}
}
break;

case 4:
/* Potential 256-bit key */
entropy = ent(ctx , (unsigned char *)instance ->mk_tab ,

sizeof(instance ->mk_tab));
if ((entropy == 8)) {

/* Calculate entropy of the l_keys */
entropy = ent(ctx , (unsigned char *)instance ->l_key ,

sizeof(instance ->l_key));
if ((entropy > 6) && (entropy < 7.2)) {

/* Calculate entropy of the l_keys */
entropy = ent(ctx , (unsigned char *)instance ->s_key ,

sizeof(instance ->s_key));
ctx ->count ++;
printf("Found (probable) TwoFish key at "

"offset %.8x:\n", i);
printf("Expanded key:\n");
print_hex_words ((unsigned int *)instance ,

tfi_size / 4, 4);
}

}
break;

}
}

}

/* --
* Search functions for entropy -based search.
* --
*/

void search(interrogate_context *ctx , unsigned char *buffer) {
int i, found , start , end;
float entropy , cent;
found = FALSE;
entropy = cent = 0.0;
start = ctx ->from;

//TODO: Change from continous sections to only windows of entropy
for (i = ctx ->from; i < ctx ->filelen - ctx ->wsize; i++) {

/* Calculate entropy (if naivemode) or simply count unique bytes */
entropy = (ctx ->naivemode) ? ent(ctx , &buffer[i], ctx ->wsize)

: countbytes(ctx , &buffer[i]);
/* Print value to file if the -p switch is set */
if (ctx ->output_fp != NULL)

print_to_file(ctx ->output_fp , entropy);

if (entropy >= ctx ->threshold) {
if (!found) {

start = i;
ctx ->count ++;
found = TRUE;

}
cent += entropy;

} else {
if (found) {

end = i + ctx ->wsize - 1; /* Ended at previous round */
int bytes = end - start;
float numblocks = (float) bytes / ctx ->wsize;
printblobinfo(start , end , bytes , numblocks , cent / (bytes

- ctx ->wsize + 1));
cent = 0;
found = FALSE;

}

160 A.2. INTERROGATE.C

}
}

/* If found is true here , we found something in the last round , print
* it */

if (found) {
end = i + ctx ->wsize;
int bytes = end - start;
float numblocks = (float) bytes / ctx ->wsize;
printblobinfo(start , end , bytes , numblocks ,

cent / (bytes - ctx ->wsize));
}

}

void quicksearch(interrogate_context *ctx , unsigned char *buffer) {
/* Move window over file and calculate entropy for each window
* position */

int i;
float entropy = 0.0;
int eof= FALSE;
int found= FALSE;
float cent = 0; /* Cumulative entropy */
int start , end;
start = i = ctx ->from;
int oldwsize = ctx ->wsize;

while (!eof) { /* Last round , make sure the window fits */
if ((i >= ctx ->filelen - ctx ->wsize)) {

eof = TRUE;
ctx ->wsize = ctx ->filelen - i;

}
/* The end of the current search window */
end = i + ctx ->wsize;

/* Calculate entropy (if naivemode) or simply count unique bytes */
entropy = (ctx ->naivemode) ? ent(ctx , &buffer[i], ctx ->wsize)

: countbytes(ctx , &buffer[i]);
/* Print value to file if the -p switch is set */
if (ctx ->output_fp != NULL)

print_to_file(ctx ->output_fp , entropy);

if (entropy >= ctx ->threshold) {
/* If found is false , the last block did not contain high
* entropy. In that case , mark the start of a new block ,
* increment block counter and set fount to true */

if (!found) {
start = i;
ctx ->count ++;
found = TRUE;

}

/* Accumulate total entropy */
cent += entropy;

if (eof) { // If this is the last round , print it right away
int bytes = end - start;
float numblocks = (float) bytes / oldwsize;
printblobinfo(start , end , bytes , numblocks ,

cent / numblocks);
}

} else {
/* If found is true , the last block examined contained high
* entropy , but the current block did not. In that case
* the entropy blob has reached its end after the previous
* block , and we’ll print its data. */

if (found) {
int prevend = end - ctx ->wsize;
int bytes = prevend - start;
float numblocks = (float) bytes / oldwsize;
printblobinfo(start , prevend , bytes , numblocks , cent

/ numblocks);
cent = 0;
found = FALSE;

A.2. INTERROGATE.C 161

}
}
i += ctx ->wsize; // Increment counter , move wsize bytes each round

}
ctx ->wsize = oldwsize; // Restore window size

}

/* -----------------------
* Main program functions.
* -----------------------
*/

/*
* Prints usage and help info
*/

void help() {
printf("Usage: interrogate [OPTION]... [FILE]...\n"
"Search for cryptographic keys in the FILEs (memory dumps).\n"
"\n"
" -a algorithm search for keys of a certain type (algorithm).\n"
" Valid parameters are aes , rsa , serpent or\n"
" [tc -] twofish. Use the -k switch to specify AES "
" key lengths (128, 198, or 256 bits). RSA keys are\n"
" found independent of their length , while SERPENT\n"
" and TWOFISH keys are required to be 256 bits.\n"
" -h prints usage and help information (this message).\n"
" -i interval only search within interval. Format of interval is\n"
" from_offset:to_offset where the offset values\n"
" are interpreted as hexadecimal values. Omitting\n"
" one of the offsets will indicate the start or\n"
" the end of the FILEs , respectively. Used with\n"
" the -r switch , the interval will be interpreted\n"
" as the virtual address space that are to be\n"
" reconstructed .\n"
" -k keylength length of key to be searched for (NB: in BITS)\n"
" -n naive mode , calculates true entropy instead of\n"
" counting unique bytes (which is the normal\n"
" mode). This may be useful if you get bad quality\n"
" results , but may yield some performance\n"
" degradation .\n"
" -p filename print entropy values for each window separated\n"
" by newlines to file specified by filename. This\n"
" may be used as input to plotting tools (gnuplot)\n"
" WARNING: Slow and generates large files , one\n"
" input byte maps to potentially six output bytes .\n"
" -q quick mode , does not use overlapping windows. The\n"
" larger the window size , the quicker. Use -w to\n"
" specify window size.\n"
" -r CR3 reconstructs the virtual address space for the\n"
" process at offset PDB. The PDB is the location of\n"
" the page directory base , and can be found by\n"
" scanning for EPROCESSes using PTfinder ,\n"
" Volatility or other similar tools. The\n"
" regonstructed memory is written to file\n"
" ’pages ’, and are searched subsequently for\n"
" keys. The -i option may be used to specify a\n"
" virtual address space interval .\n"
" -t threshold sets the entropy threshold (default = 7.0).\n"
" -w windowsize sets the window size. Not compatible with the -a\n"
" option .\n");

}

/*
* Initializes the context of Interrogate.
*/

void initialize(interrogate_context *ctx) {
ctx ->keytype = NO_KEYTYPE; /* No keytype by default */
ctx ->keysize = 0; /* Size of key to (in bits) */
ctx ->wsize = WINDOWSIZE; /* Size of search window */
ctx ->nofs = NOFSYMBOLS; /* Size of our alphabet */
ctx ->threshold = THRESHOLD; /* Default entropy threshold */
ctx ->bitmode = FALSE; /* Bit -mode is false by default */
ctx ->naivemode = FALSE; /* Naive mode is false by default */
ctx ->quickmode = FALSE; /* Quickmode turned off by default */

162 A.2. INTERROGATE.C

ctx ->interval = FALSE; /* Interval turned off by default */
ctx ->verbose = FALSE; /* Verbose mode is per def false */
ctx ->from = ctx ->to = 0; /* Interval is zero by default */
ctx ->cr3 = 0; /* Don’t reconstruct (default) */
ctx ->filelen = 0; /* Zero file length */
ctx ->count = 0; /* Set key counter to zero */

}

/*
* Main program , parse parameters and set context
*/

int main(int argc , char **argv) {
int c; /* Stores argument options */
int i; /* Counter */
FILE *fp; /* Pointer to input file */
interrogate_context *ctx =

malloc(sizeof(interrogate_context)); /* Program context */

printf(
"Interrogate Copyright (C) 2008 Carsten Maartmann -Moe "
"<carmaa@gmail.com >\n"
"This program comes with ABSOLUTELY NO WARRANTY; for details use ‘-h ’.\n"
"This is free software , and you are welcome to redistribute it\n"
"under certain conditions; see bundled file licence.txt for details .\n\n"

);

initialize(ctx);

/* Parse arguments and set options , see help() method for explaination */
while ((c = getopt(argc , argv , "a:hi:k:np:qr:t:vw:")) != -1) {

switch (c) {
case ’a’:

if (strncmp(optarg , "aes", 3) == 0) {
ctx ->keytype = AES;

} else if (strncmp(optarg , "rsa", 3) == 0) {
ctx ->keytype = RSA;

} else if (strncmp(optarg , "serpent", 7) == 0) {
ctx ->keytype = SERPENT;
/* We only have support for 256-bit SERPENT keys */
ctx ->keysize = 256;

} else if (strncmp(optarg , "twofish", 7) == 0) {
ctx ->keytype = TWOFISH;
/* We only have support for 256-bit TWOFISH keys */
ctx ->keysize = 256;

} else if (strncmp(optarg , "tc -twofish", 10) == 0) {
ctx ->keytype = TWOFISH_TC;
/* We only have support for 256-bit Truecrypt TWOFISH keys */
ctx ->keysize = 256;

} else {
fprintf(stderr , "Invalid keytype .\n");
help();
exit(-1);

}
break;

case ’h’:
help();
exit (0);

case ’i’:
ctx ->interval = TRUE;
/* Do ugly parsing of argument :-/ */
char *to_ptr = strstr(optarg , ":"); // Find ’:’
*to_ptr = ’\0’; // Replace with string terminator
to_ptr ++;
/* Convert from hexadecimal ASCII */
ctx ->from = (int)strtol(optarg , (char **)NULL , 16);
ctx ->to = (int)strtol(to_ptr , (char **)NULL , 16);
if (ctx ->to < ctx ->from && ctx ->to != 0) {

fprintf(stderr , "Error in interval , the start offset "
"is bigger than the end offset .\n");

exit(-1);
}
break;

case ’k’:
ctx ->keysize = atoi(optarg);

A.2. INTERROGATE.C 163

printf("Using key size: %i bits.\n", ctx ->keysize);
break;

case ’n’:
ctx ->naivemode = TRUE;
printf("Using naive mode , searching for true entropy .\n");
break;

case ’p’:
ctx ->output_fp = open_file(ctx , optarg , "w");
break;

case ’q’:
ctx ->quickmode = TRUE;
printf("Using quickmode .\n");
break;

case ’r’:
ctx ->cr3 = (int)strtol(optarg , (char **)NULL , 16);
break;

case ’t’:
ctx ->threshold = atof(optarg);
printf("Using entropy threshold: %f bits per symbol .\n",

ctx ->threshold);
break;

case ’v’:
ctx ->verbose = TRUE;
printf("Verbose mode.\n");
break;

case ’w’:
ctx ->wsize = atoi(optarg);
printf("Using window size: %i bytes .\n", ctx ->wsize);
break;

case ’?’:
if (optopt == ’c’ || optopt == ’w’) {

fprintf(stderr , "Option -%c requires an "
"argument .\n", optopt);

} else if (isprint(optopt)) {
fprintf(stderr , "Unknown option ‘-%c ’.\n",
optopt);

} else {
fprintf(stderr , "Unknown option character "
" ‘\\x%x ’.\n", optopt);

}
return 1;

default:
exit(-1);

}
}
/* Check that the windowsize is reasonable */
if (ctx ->naivemode && (ctx ->wsize < (ctx ->nofs / 2))) {

printf("WARNING: You’re using a windowsize smaller than half of the "
"number of symbols together with naive mode , this might not "
"yield a good result. Try dropping -n.\n");

}
/* Check that keytypes match supported key lengths */
switch (ctx ->keytype) {
case AES:

if (!(ctx ->keysize == 128 ||
ctx ->keysize == 192 ||
ctx ->keysize == 256)) {

fprintf(stderr , "A key size of 128, 192 or 256 bits are "
"required for AES search .\n");
exit(-1);

}
break;

case SERPENT:
if (!(ctx ->keysize == 256)) {

fprintf(stderr , "A key size of 256 bits are required for "
"SERPENT search .\n");
exit(-1);

}
break;

case TWOFISH:
if (!(ctx ->keysize == 256)) {

fprintf(stderr , "A key size of 256 bits are required for "
"TWOFISH search .\n");
exit(-1);

164 A.2. INTERROGATE.C

}
break;

}

if ((!ctx ->naivemode)
&& (ctx ->keytype == NO_KEYTYPE && ctx ->threshold == 7)) {

/* Set relaxed byte count threshold since the user didn’t
* specify one*/

ctx ->threshold = floor((ctx ->wsize / NOFSYMBOLS) * ctx ->threshold
* BCMOD);

printf("WARNING: No -t option specified , bytecount threshold was "
"set to %f. This may yield inaccurate results .\n",
ctx ->threshold);

}

/* The rest of the args are treated as files */
if (optind < argc) {

for (i = optind; i < argc; i++) {
/* Check and open file for reading */
fp = open_file(ctx , argv[i], "rb");
printf("Using input file: %s.\n", argv[i]);
if (ctx ->interval) {

/* Check if intervals are out of bounds */
if (ctx ->from < 0) {

ctx ->from = 0;
printf("WARNING: Interval out of bounds , changed it "

"for you:\n");
}
/* If the upper bound is too big , set it to filelenght */
if (ctx ->to > ctx ->filelen) {

ctx ->to = ctx ->filelen;
/* If the lower bound is too low , set it to zero */
if (ctx ->to < ctx ->from)

ctx ->from = 0;
printf("WARNING: Interval out of bounds , changed it "

"for you:\n");
}
/* If no upper bound is given , set it to filelength */
if (ctx ->to == 0) {

ctx ->to = ctx ->filelen;
}
printf("Searching in interval 0x%08X - 0x%08X.\n",

ctx ->from , ctx ->to);
}

unsigned char *buffer =
malloc(ctx ->filelen * sizeof(unsigned char));

buffer = read_file(ctx , fp);

/* Reconstruct memory if the -r switch is on */
if(ctx ->cr3 != 0) {

printf("Reconstructing virtual memory for process with PDB "
"at %08x, please stand by...\n", ctx ->cr3);

reconstruct(ctx , buffer);
printf("Using recontructed virtual memory file "

"’pages’ for search .\n");
fp = open_file(ctx , "pages", "rb");
buffer =

realloc(buffer , ctx ->filelen * sizeof(unsigned char));
buffer = read_file(ctx , fp);

}

/* Perform search */
keysearch(ctx , buffer);

/* Clean up */
if (ctx ->output_fp != NULL) {

fclose(ctx ->output_fp);
}
fclose(fp);

}
printf("\nA total of %li %s found.\n", ctx ->count , (ctx ->keytype

== NO_KEYTYPE) ? "entropy blobs" : "keys");
printf("Spent %li seconds of your day looking for the key.\n",

A.2. INTERROGATE.C 165

clock() / CLOCKS_PER_SEC);
} else {

fprintf(stderr , "Missing input file.\n");
help();

}
free(ctx);
return 0;

}

166 A.3. STAT.C

A.3 stat.c

Listing A.3: stat.c
/* ==
* stat.c
*
* Statistcal functions used in Interrogate
*
* Author: Carsten Maartmann -Moe <carmaa@gmail.com >
* ==
*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

#include "interrogate.h"

#define LOG2OF10 3.32192809488736234787

int r[6] = {0, 0, 0, 0, 0, 0};

/*
* Calculate log2
*/

double approxlog2(double x) {
return LOG2OF10 * log10(x);

}

/*
* Calculates entropy of char array , with length window size and ’nofs’
* symbols.
*/

float ent(interrogate_context *ctx , unsigned char *buffer , int length) {
int i, count = 0; /* Counters */
float entropy = 0.0; /* The entropy */
unsigned char c; /* Char read from file buffer */
int *ccount; /* Bins for counting chars */
float *p; /* Bins for char probabilities */

/* Reserve space. ccount is zeroed out , p is not (we’re iterating through
* p later anyways).*/

ccount = (int *) calloc(ctx ->nofs , sizeof(int));
p = (float *) malloc(ctx ->nofs * sizeof(float));

/* Count occurrences of each char and the total count within window */
while (count < length) {

c = (unsigned char) *buffer ++;
ccount[c]++;
count ++;

}

/* Calculate probabilitiy of each char , and update entropy */
for (i = 0; i < ctx ->nofs; i++) {

p[i] = ((float) ccount[i]) / length;
if (p[i] > 0.0)

entropy -= (float) p[i] * approxlog2(p[i]);
}
free(ccount);
free(p);
return entropy;

}

/*
* Returns the minimum value of two ints
*/

int min(int a, int b) {
return (a < b)? a : b;

}

/*

A.3. STAT.C 167

* Checks if a byte in an array is set. The unsigned char is simply
* the index in the array that has to be checked.
*/

int checkbyte(unsigned char index , int *array) {
return array[index];

}

/*
* Counts number of unique bytes within a non -overlapping window.
*/

int countbytes(interrogate_context *ctx , unsigned char *buffer) {
int count = 0; /* Window counter */
int bytecount = 0; /* The unique byte counter */
int *ccount; /* Bins for already discovered bytes */
unsigned char c; /* Char read from file buffer */

ccount = (int *) calloc(ctx ->nofs , sizeof(int));

while (count < ctx ->wsize) {
c = (unsigned char) *buffer ++;
if (ccount[c] == 0) {

ccount[c]++;
bytecount ++;

}
count ++;

}
free(ccount);
return bytecount;

}

/*
* Count byte runs. A one -byte run is defined as two sequential bytes of
* equal value. Thus , a six -byte run of 0x41 is actually seven sequential
* 0x41s. All runs longer than ’run_length ’ are counted in the last bin , e.g.
* as a ’run_length ’-byte run. A call to this method is required to
* initialize the optimized runs method ’runs_opt ’.
*/

void runs(interrogate_context *ctx , unsigned char *buffer , int *runs_count ,
int run_length , int *firstrun , int *lastrun) {

int i;
int overflow = 0;
unsigned char last = 0;
int current_run = 0;
memset(runs_count , 0, run_length * sizeof(int));
for (i = 0; i < ctx ->wsize; i++) {

unsigned char c = buffer[i];
/* Don’t count the first char as a run */
if (i != 0) {

if (c == last) {
if (current_run < run_length) {

/* Only decrement counter if such a bin exists */
if (current_run != 0)

runs_count[current_run - 1]--;
runs_count[current_run]++;
current_run ++;

} else {
overflow ++;

}
} else {

/* Check if the run went on from the start; if so save */
if (i == current_run + overflow + 1) {

*firstrun = current_run;
}
/* Reset runs counters */
current_run = overflow = 0;

}
}
last = c;

}
/* Save if the last char was a part of a run */
*lastrun = current_run;

}

/*

168 A.3. STAT.C

* Optimized ’runs’ method. See runs(). Needs to be initialized by a call
* to runs() before excecution; to count runs in the initial window , and
* set lastrun and firstrun counters. The algorithm basically keeps track of
* the runs in the ends of the buffer , and increments and decrements run
* counts as needed. It is intended to work on a unsigned char buffer , and be
* fed sub -buffers of this buffer in a sequential fashion. For example , a
* call procedure like this will work:
*
* int *runs_count = {0, 0, 0, 0, 0, 0}; // Initalize array for storage
* lastrun = firstrun = 0; // Initialize counters
* runs (...); // Initialize by calling ’runs()’ function
* for (i = 0; i < buffersize; i++) {
* runs_opt(context , &buffer[i], runs_count , ...);
* }
*
* This method has a significant performance gain compared to calling runs
* sequentially , typically linear vs. exponential time complexity. For some
* reason , this method is known to not work with gcc optimization e.g., no
* -Ox options.
*/

void runs_opt(interrogate_context *ctx , unsigned char *buffer ,
int *runs_count , int run_length , int *firstrun , int *lastrun) {

unsigned char *buf_ptr = buffer;
int new_firstrun = 0;
/* Count the new first run */
while ((* buf_ptr == *++ buf_ptr) && new_firstrun < run_length) {

new_firstrun ++;
}
if (ctx ->wsize < 2 * run_length) {

fprintf(stderr , "A window size of at least two times the run "
"length is required for this function to work.\n");

exit(-1);
}
/* Since C indexes runs from 0 we need to subtract one from every
* count to form indices in the runs_count table. If the new firs run

* is its maximum , it implies that the counts should not be
* decremented

*/
if (* firstrun > 0 && !(new_firstrun == 6)) {

/* Decrement bin count for the byte that "fell out" */
runs_count [* firstrun - 1]--;
/* Subract the byte that "fell out" of the buffer */
(* firstrun)--;
/* If there exists a bin for a smaller run , increment it */
if (* firstrun != 0)

runs_count [* firstrun - 1]++;
} else {

/* Count an eventual new run */
*firstrun = new_firstrun;

}
/* Check if the last two chars in the buffer match */
if (buffer[ctx ->wsize - 2] == buffer[ctx ->wsize - 1]) {

/* Decrement the count for the previous run */
if (* lastrun > 0)

runs_count [* lastrun - 1]--;
/* Increment lastrun if its less than max run length */
if (* lastrun < run_length)

(* lastrun)++;
/* Increment bin for current count */
runs_count [* lastrun - 1]++;

} else {
/* Reset lastrun if the two last chars doesn’t match */
*lastrun = 0;

}
}

A.4. UTIL.C 169

A.4 util.c

Listing A.4: util.c
/* ==
* util.c
*
* Utility toolbox for Interrogate
*
* Author: Carsten Maartmann -Moe <carmaa@gmail.com >
* ==
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>

#include "interrogate.h"

/*
* Open file , return pointer
*/

FILE *open_file(interrogate_context *ctx , char *filename , char *mode) {
struct stat st; /* Stat struct for input file */
FILE *fp; /* Pointer to input file */
if (stat(filename , &st) == -1) {

perror("stat()");
fprintf(stderr , "Failed to stat %s.\n", filename);
exit(-1);

} else {
ctx ->filelen = st.st_size;

}

fp = fopen(filename , mode);
if (fp == NULL) {

perror("fopen ()");
fprintf(stderr , "Failed to open %s.\n", filename);
exit(-1);

}
return fp;

}

/*
* Reads entire file into memory and returns buffer
*/

unsigned char *read_file(interrogate_context *ctx , FILE *fp) {
unsigned char *buffer; /* Buffer (entire file) */

/* Get the length of the file and rewind */
fseek(fp, 0L, SEEK_END);
ctx ->filelen = ftell(fp);
rewind(fp);

/* Try to allocate enough memory for entire file. Should work for
* large files if the system uses virtual memory. calloc ()
* initializes all bytes to 0, so we don’t have to worry about
* setting the NULL -terminator. */

buffer = calloc(ctx ->filelen + 1, sizeof(unsigned char));
if (buffer == NULL) {

fprintf(stderr , "Not enough memory to read entire file.\n");
exit (1);

}

/* Read file into buffer */
printf("Attempting to load entire file into memory , please stand "

"by...\n");
size_t res = fread(buffer , 1, ctx ->filelen , fp);
if (res != ctx ->filelen) {

fprintf(stderr , "Reading error.\n");
exit (3);

}

170 A.4. UTIL.C

return buffer;
}

/*
* Prints info about entropy blobs
*/

void printblobinfo(int start , int end , int bytes , float wins , float ent) {
printf(" %.8x - %.8x | %8i | %7.2f | %f \n",

start , end , bytes , wins , ent);
}

/*
* Prints raw data in hexadecimal form to stdout. Bytes are separated wiht
* spaces , and linefeeds are inserted after ’column ’ bytes
*/

void print_hex_array(unsigned char *buffer , int length , int columns) {
int i;
for (i = 0; i < length; i++) {

if ((i % columns) == 0)
printf("\n");

printf("%02x ", buffer[i]);
}
printf("\n\n");

}

/*
* Prints raw data in hexadecimal , 32-bit word , little -endian form to stdout.
* Words are separated with spaces , and linefeeds are inserted after
* ’columns ’ words
*/

void print_hex_words(unsigned int *buffer , int length , int columns) {
int i;
for (i = 0; i < length; i++) {

if ((i % columns) == 0)
printf("\n");

printf("%08x ", buffer[i]);
}
printf("\n\n");

}

/*
* Windows getopt () :-/
*/

#ifdef _WIN32
static int optind = 1;

static int getopt(int argc , char *argv[], char *opts) {
static char *opp = NULL;
int o;

while (opp == NULL) {
if ((optind >= argc) || (*argv[optind] != ’-’)) {

return -1;
}
opp = argv[optind] + 1;
optind ++;
if (*opp == 0) {

opp = NULL;
}

}
o = *opp++;
if (*opp == 0) {

opp = NULL;
}
return strchr(opts , o) == NULL ? ’?’ : o;

}
#endif

void print_to_file(FILE *fp , float value) {
char str [30];
snprintf(str , 30, "%.4g", value);
strncat(str , "\n", 1);
fputs(str , fp);

}

A.4. UTIL.C 171

unsigned getbits(unsigned x, int p, int n) {
return (x >> (p + 1 - n)) & ~(~0 << n);

}

/*
* Truncates of the nPrecision last digits of a float
*/

double format(double Value , int nPrecision) {
char *buffer = malloc (128* sizeof(char));
snprintf(buffer ,127,"%0.*f",nPrecision ,Value);
double d = atof(buffer);
free(buffer);
return d;

}

/*
* Checks if the runs lies within a relaxed set of heuristic values.
*/

int is_mk_tab(int *run) {
return (run[0] < 520 &&

run [0] > 485 &&
run [1] == 0 &&
run [2] <= 12 &&
run [2] >= 1 &&
run [3] == 0 &&
run [4] == 0 &&
run [5] <= 1 &&
run [5] >= 0);

}

/*
* Heuristic check for Twofish sub - and whitening keys
*/

int is_l_key(interrogate_context *ctx , unsigned int *l_key) {
float entropy = ent(ctx , (unsigned char *)l_key , 160);
return (entropy < 7.2 && entropy > 6.3);

}

/*
* Heuristic check for Twofish S-box keys
*/

int is_s_key(interrogate_context *ctx , unsigned int *s_key) {
float entropy = format(ent(ctx , (unsigned char *)s_key , 16), 4);
return (entropy == 4.0000 ||

entropy == 3.8750 ||
entropy == 3.7500 ||
entropy == 3.7028 ||
entropy == 3.6250 ||
entropy == 3.5778 ||
entropy == 3.5000 ||
entropy == 3.4528 ||
entropy == 3.4056 ||
entropy == 3.3750 ||
entropy == 3.3278 ||
entropy == 3.2806 ||
entropy == 3.2744 ||
entropy == 3.2500 ||
entropy == 3.2028 ||
entropy == 3.1556 ||
entropy == 3.1494 ||
entropy == 3.1250 ||
entropy == 3.0778 ||
entropy == 3.0306 ||
entropy == 3.0244 ||
((entropy <= 3.0000) &&
(entropy >= 2.0000)));

}

/*
* Validates a Twofish key schedule by structural checkups. Prints info.
*/

void validate_tf_ks(interrogate_context *ctx , unsigned char *buffer ,
int offset) {

172 A.4. UTIL.C

float entropy;
/* Try each of the different structs , and return the first match */

/* Truecrypt */
int tc_offs = offset - (44 * sizeof(unsigned int));
if (tc_offs >= 0) {

twofish_tc *tc = (twofish_tc *) (buffer + tc_offs);
entropy = ent(ctx , (unsigned char *)tc->mk_tab ,

sizeof(tc->mk_tab));
if (entropy == 8 && tc ->k_len == 4) {

if (is_l_key(ctx , tc->l_key)) {
if(is_s_key(ctx , tc ->s_key)) {

printf("Truecrypt Twofish key found at %08x. "
"Expanded key:\n", tc_offs);

printf("Key words:");
print_hex_words ((unsigned int *)tc ->l_key ,

(sizeof(tc->l_key)) / 4, 4);
printf("S-box keys:");
print_hex_words ((unsigned int *)tc ->s_key ,

sizeof(tc->s_key) / 4, 4);
printf("S-box array:");
print_hex_words ((unsigned int *)tc ->mk_tab ,

sizeof(tc->mk_tab) / 4, 4);
printf("Key length:");
print_hex_words (&tc ->k_len ,

sizeof(tc->k_len) / 4, 4);
ctx ->count ++;

}
}

}
}

/* Optimized */
int opt_offs = offset - (41 * sizeof(unsigned int));
if (opt_offs >= 0) {

twofish_opt *tc4 = (twofish_opt *) (buffer + opt_offs);
entropy = ent(ctx , (unsigned char *)tc4 ->QF,

sizeof(tc4 ->QF));
if (entropy == 8 && (tc4 ->k_len == 0 || tc4 ->k_len == 1)) {

if (is_l_key(ctx , tc4 ->K)) {
printf("Twofish key found at %08x. Expanded key:\n\n",

opt_offs);
printf("Key words:");
print_hex_words ((unsigned int *)tc4 ->K,

(sizeof(tc4 ->K)) / 4, 4);
printf("S-box array:");
print_hex_words ((unsigned int *)tc4 ->QF ,

(sizeof(tc4 ->QF)) / 4, 4);
ctx ->count ++;

}
}

}

/* GPG/Linux and SSH */
twofish_gpg *tc2 = (twofish_gpg *) (buffer + offset);
entropy = ent(ctx , (unsigned char *)tc2 ->s,

sizeof(tc2 ->s));
if (entropy == 8) {

if (is_l_key(ctx , tc2 ->w)) {
printf("GPG or SSH Twofish key found at %08x. Expanded key:\n",

offset);
printf("Key words:");
print_hex_words ((unsigned int *)tc2 ->w,

(sizeof(tc2 ->w) + sizeof(tc2 ->k)) / 4, 4);
printf("S-box array:");
print_hex_words ((unsigned int *)tc2 ->s,

(sizeof(tc2 ->s)) / 4, 4);
ctx ->count ++;

}
}

/* Nettle */
int nettle_offs = offset - (40 * sizeof(unsigned int));
if (nettle_offs >= 0) {

A.4. UTIL.C 173

twofish_nettle *tc3 = (twofish_nettle *) (buffer + nettle_offs);
entropy = ent(ctx , (unsigned char *)tc3 ->s,

sizeof(tc3 ->s));
if (entropy == 8) {

if (is_l_key(ctx , tc3 ->k)) {
printf("Nettle Twofish key found at %08x. Expanded key:\n\n",

nettle_offs);
printf("Key words:");
print_hex_words ((unsigned int *)tc3 ->k,

(sizeof(tc3 ->k)) / 4, 4);
printf("S-box array:");
print_hex_words ((unsigned int *)tc3 ->s,

(sizeof(tc3 ->s)) / 4, 4);
ctx ->count ++;

}
}

}

}

174 A.5. VIRTMEM.C

A.5 virtmem.c

Listing A.5: virtmem.c
/* ===
* virtmem.c
*
* Utility to reconstruct virtual memory from the Nonpaged Pool of a
* process. Part of Interrogate
*
* Author: Carsten Maartmann -Moe <carmaa@gmail.com >
* ===
*/

#include <stdio.h>
#include <stdlib.h>

#include "interrogate.h"

/* Iterate through the virtual addresses in the Nonpaged Pool virtual
* address space and fetch pages from the physical memory , using the
* CR3 address as Page Directory base.
*/

void reconstruct(interrogate_context *ctx , unsigned char *buffer) {
pte *pd, *pt; /* Page directory and table pointers */
pte pd_entry , pt_entry; /* Page directory and table entries */
virtual_address *addr; /* Virtual address */
FILE *fp = fopen("pages", "wb"); /* Output file */
unsigned int *frames; /* Fetched page frame numbers */
unsigned long this_pagesize; /* The current pagesize (large page) */
unsigned char *page; /* Current page */
unsigned int i, last_i , l_pc , pc; /* (Page) counters */
unsigned int lim_low; /* Lower virtual address space bound */
unsigned int lim_high; /* Upper virtual address space bound */

pd = malloc(sizeof(pte) * 1024);
pt = malloc(sizeof(pte) * 1024);
addr = malloc(sizeof(virtual_address));
long memorysize = ctx ->filelen;
l_pc = pc = last_i = 0;

/* Assume standard pagesize */
int pagesize = 4096;

/* Allocate and zero out memory for already fetched pages db */
frames = calloc(memorysize / pagesize , sizeof(unsigned int));

/* The page directory is located at the offset pointed to by CR3 */
pd = (pte *)&buffer[ctx ->cr3];

if (ctx ->interval) {
lim_low = ctx ->from;
lim_high = ctx ->to;
ctx ->interval = FALSE; // To prevent interval -search in main

} else {
/* A bit more dirty; use the whole virtual address space :-/ */
lim_low = 0x00000000;
lim_high = 0xffffffff;

}
printf("Reconstructing virtual memory from %08x to %08x. To change "

"this , use the -i switch .\n", lim_low , lim_high);

/* Large pages are only available with physical memory size > 255 MB */
int large_pages = (memorysize > (255 * 1024));
if (large_pages) {

page = malloc(pagesize * 1024 * sizeof(unsigned char)); // 4 MB pages
} else {

page = malloc(pagesize * sizeof(unsigned char)); // 4 KB pages
}

for (i = lim_low; i < lim_high; i += pagesize) {
/* Break if ’i’ wraps around e.g. integer overflow */
if (i < last_i)

break;

A.5. VIRTMEM.C 175

addr = (virtual_address *)&i;
pd_entry = pd[addr ->pd_index];
/* Skip NULL entries */
if (!*(unsigned int *)&pd_entry)

continue;

/* The target page table is found via the pfn of the pde */
unsigned long pde_offset = pd_entry.pfn * pagesize;
/* Check that the page is in memory , and that it is within bounds */
if ((pde_offset < memorysize) &&

pd_entry.valid) {
pt = (pte *)&buffer[pde_offset];
if (!pt)

continue; // Null pointer
pt_entry = pt[addr ->pt_index];
/* Skip NULL entries */
if (!*(unsigned int *)&pt_entry)

continue;
}

unsigned long pte_offset = pt_entry.pfn * pagesize;
/* Check that the page is in memory , and that it is within bounds */
if ((pte_offset < memorysize) &&

pt_entry.valid) {
if (! frames[pt_entry.pfn]) { // If the page (frame) is new

/* Mark page as found , and fetch from buffer */
frames[pt_entry.pfn] = 1;
page = &buffer[pte_offset];

if (ctx ->verbose) {
print_pte(addr , pd , &pd_entry , pt , &pt_entry , page);

}

/* Set proper pagesize for current page */
if (pt_entry.large_page && large_pages) {

l_pc ++;
this_pagesize = pagesize * 1024;

} else {
pc++;
this_pagesize = pagesize;

}

/* Place each page fetched sequentially in a new file */
fwrite(page , sizeof(unsigned char), this_pagesize , fp);

}
}
last_i = i; // Update the last value of ’i’

}
printf("Wrote %i pages to disk , %i normal and %i large , a total of "

"%.2f MB.\n", l_pc + pc, pc, l_pc ,
((double)ftell(fp) / (1024*1024)));

fclose(fp);
}

void print_pte(virtual_address *addr , pte *pd, pte *pde , pte *pt , pte *pte ,
unsigned char *page) {

printf("Vitual address: %08x\n"
"PD index: %08x -> Byte offset: %08x\n"
"PDE value: %08x -> Page frame number: %08x\n"
"PT index: %08x -> Byte offset: %08x\n"
"PTE value: %08x -> Page frame number: %08x\n"
"Flags: %c%c%c%c%c%c%c%c%c%c\n"
"First 16 bytes of page: ",
*(unsigned int *)addr , addr ->pd_index , addr ->pd_index * 4,
*(unsigned int *)&pde , pde ->pfn ,
addr ->pt_index , addr ->pt_index * 4,
(unsigned int)&pte , pte ->pfn ,
(pte ->copy_on_write)?’C’:’-’, (pte ->global)?’G’:’-’,
(pte ->large_page)?’L’:’-’, (pte ->dirty)?’D’:’-’,
(pte ->accessed)?’A’:’-’, (pte ->cache_disabled)?’N’:’-’,
(pte ->write_through)?’T’:’-’, (pte ->owner)?’U’:’K’,
(pte ->write)?’W’:’R’, (pte ->valid)?’V’:’-’

);

176 A.5. VIRTMEM.C

/* Print first 16 bytes of page */
print_hex_array(page , 16, 16);

}

A.6. RSA.C 177

A.6 rsa.c

Listing A.6: rsa.c
/* ==
* rsa.c
*
* RSA -specific methods for Interrogate. Parses DER -encoded blobs and ouputs
* to file in the format privkey -00x.der
*
* Author: Carsten Maartmann -Moe <carmaa@gmail.com >
* ==
*/

#include <stdio.h>
#include <stdlib.h>

#include "interrogate.h"

/* Perform basic structural check on possible DER -encoded private key.
* Returns 0 if invalid , and the length of the DER blob if it is valid. Also
* prints some info about the key.
*/

int parse_der(unsigned char *buffer , int offset) {
if (buffer[offset + 4] == 0x02 &&

buffer[offset + 5] == 0x01 &&
buffer[offset + 6] == 0x00 &&
buffer[offset + 7] == 0x02) {

int length = (buffer[offset +2] << 8) |
(unsigned char) buffer[offset +3];

int end = 4 + length;
int pub_exp_field_length = 0;
int modlength , asn1length = (unsigned char) buffer[offset + 8];
if ((asn1length & 0x80) == 0) {

modlength = asn1length;
pub_exp_field_length = 1;

} else {
int numbytes = asn1length & 0x7F;
if (numbytes <= 8) {

int i;
pub_exp_field_length = 1 + numbytes;
modlength = (unsigned char) buffer[offset + 9];
for (i = 1; i < numbytes; i++) {

modlength = (modlength << 8) |
(unsigned char) buffer[offset + 9 + i];

}
} else {

printf("Found modulus length > 64 bits , this is not "
"supported.");

return 0;
}

}
int pub_exp_offset = offset + 8 + pub_exp_field_length + modlength;
int pub_exp = 0;
if (buffer[pub_exp_offset] == 0x02) {

if (buffer[pub_exp_offset + 1] == 0x01 &&
buffer[pub_exp_offset + 2] == 0x01) {

pub_exp = 1;
} else if (buffer[pub_exp_offset + 1] == 0x03 &&

buffer[pub_exp_offset + 2] == 0x01 &&
buffer[pub_exp_offset + 3] == 0x00 &&
buffer[pub_exp_offset + 4] == 0x01) {

pub_exp = 65537;
} else {

printf("Could not find public exponent , not a valid "
"key.\n");

return 0;
}

}
if (pub_exp != 0) {

printf("%08x: Key: %i bits , public exponent %i.\n", offset ,
(modlength - 1) * 8, pub_exp);

return end;

178 A.6. RSA.C

} else {
return 0;

}
} else {

#if DEGUG
printf("Invalid key found.");

#endif

return 0;
}

}
/*
* Output DER information at offset ’offs ’.
*/

void output_der(unsigned char *buffer , int offs , size_t size , long *count) {
char filename [15];
sprintf(filename , "privkey -%02li.der", *count);
FILE *fp = fopen(filename , "wb");
if (fp == NULL) {

perror("fopen ()");
fprintf(stderr , "Failed to open %s.\n", filename);
exit(-1);

} else {
fwrite (& buffer[offs], 1, size , fp);
printf("Wrote key to file %s.\n", filename);

}

fclose(fp);
}

A.7. AES.C 179

A.7 aes.c

Listing A.7: aes.c
/* ==
* aes.c
*
* AES key schedule implementation for Interrogate
*
* Code by Sam Trenholme (http ://www.samiam.org/rijndael.html)
*
* Errors corrected and code modified for use in Interrogate by
* Carsten Maartmann -Moe <carmaa@gmail.com >
* ==
*/

#include <stdio.h>

#include "interrogate.h"

/* Log table using 0xe5 (229) as the generator */
unsigned char ltable [256] = {

0x00 , 0xff , 0xc8 , 0x08 , 0x91 , 0x10 , 0xd0 , 0x36 ,
0x5a , 0x3e , 0xd8 , 0x43 , 0x99 , 0x77 , 0xfe , 0x18 ,
0x23 , 0x20 , 0x07 , 0x70 , 0xa1 , 0x6c , 0x0c , 0x7f ,
0x62 , 0x8b , 0x40 , 0x46 , 0xc7 , 0x4b , 0xe0 , 0x0e ,
0xeb , 0x16 , 0xe8 , 0xad , 0xcf , 0xcd , 0x39 , 0x53 ,
0x6a , 0x27 , 0x35 , 0x93 , 0xd4 , 0x4e , 0x48 , 0xc3 ,
0x2b , 0x79 , 0x54 , 0x28 , 0x09 , 0x78 , 0x0f , 0x21 ,
0x90 , 0x87 , 0x14 , 0x2a , 0xa9 , 0x9c , 0xd6 , 0x74 ,
0xb4 , 0x7c , 0xde , 0xed , 0xb1 , 0x86 , 0x76 , 0xa4 ,
0x98 , 0xe2 , 0x96 , 0x8f , 0x02 , 0x32 , 0x1c , 0xc1 ,
0x33 , 0xee , 0xef , 0x81 , 0xfd , 0x30 , 0x5c , 0x13 ,
0x9d , 0x29 , 0x17 , 0xc4 , 0x11 , 0x44 , 0x8c , 0x80 ,
0xf3 , 0x73 , 0x42 , 0x1e , 0x1d , 0xb5 , 0xf0 , 0x12 ,
0xd1 , 0x5b , 0x41 , 0xa2 , 0xd7 , 0x2c , 0xe9 , 0xd5 ,
0x59 , 0xcb , 0x50 , 0xa8 , 0xdc , 0xfc , 0xf2 , 0x56 ,
0x72 , 0xa6 , 0x65 , 0x2f , 0x9f , 0x9b , 0x3d , 0xba ,
0x7d , 0xc2 , 0x45 , 0x82 , 0xa7 , 0x57 , 0xb6 , 0xa3 ,
0x7a , 0x75 , 0x4f , 0xae , 0x3f , 0x37 , 0x6d , 0x47 ,
0x61 , 0xbe , 0xab , 0xd3 , 0x5f , 0xb0 , 0x58 , 0xaf ,
0xca , 0x5e , 0xfa , 0x85 , 0xe4 , 0x4d , 0x8a , 0x05 ,
0xfb , 0x60 , 0xb7 , 0x7b , 0xb8 , 0x26 , 0x4a , 0x67 ,
0xc6 , 0x1a , 0xf8 , 0x69 , 0x25 , 0xb3 , 0xdb , 0xbd ,
0x66 , 0xdd , 0xf1 , 0xd2 , 0xdf , 0x03 , 0x8d , 0x34 ,
0xd9 , 0x92 , 0x0d , 0x63 , 0x55 , 0xaa , 0x49 , 0xec ,
0xbc , 0x95 , 0x3c , 0x84 , 0x0b , 0xf5 , 0xe6 , 0xe7 ,
0xe5 , 0xac , 0x7e , 0x6e , 0xb9 , 0xf9 , 0xda , 0x8e ,
0x9a , 0xc9 , 0x24 , 0xe1 , 0x0a , 0x15 , 0x6b , 0x3a ,
0xa0 , 0x51 , 0xf4 , 0xea , 0xb2 , 0x97 , 0x9e , 0x5d ,
0x22 , 0x88 , 0x94 , 0xce , 0x19 , 0x01 , 0x71 , 0x4c ,
0xa5 , 0xe3 , 0xc5 , 0x31 , 0xbb , 0xcc , 0x1f , 0x2d ,
0x3b , 0x52 , 0x6f , 0xf6 , 0x2e , 0x89 , 0xf7 , 0xc0 ,
0x68 , 0x1b , 0x64 , 0x04 , 0x06 , 0xbf , 0x83 , 0x38 };

/* Anti -log table: */
unsigned char atable [256] = {

0x01 , 0xe5 , 0x4c , 0xb5 , 0xfb , 0x9f , 0xfc , 0x12 ,
0x03 , 0x34 , 0xd4 , 0xc4 , 0x16 , 0xba , 0x1f , 0x36 ,
0x05 , 0x5c , 0x67 , 0x57 , 0x3a , 0xd5 , 0x21 , 0x5a ,
0x0f , 0xe4 , 0xa9 , 0xf9 , 0x4e , 0x64 , 0x63 , 0xee ,
0x11 , 0x37 , 0xe0 , 0x10 , 0xd2 , 0xac , 0xa5 , 0x29 ,
0x33 , 0x59 , 0x3b , 0x30 , 0x6d , 0xef , 0xf4 , 0x7b ,
0x55 , 0xeb , 0x4d , 0x50 , 0xb7 , 0x2a , 0x07 , 0x8d ,
0xff , 0x26 , 0xd7 , 0xf0 , 0xc2 , 0x7e , 0x09 , 0x8c ,
0x1a , 0x6a , 0x62 , 0x0b , 0x5d , 0x82 , 0x1b , 0x8f ,
0x2e , 0xbe , 0xa6 , 0x1d , 0xe7 , 0x9d , 0x2d , 0x8a ,
0x72 , 0xd9 , 0xf1 , 0x27 , 0x32 , 0xbc , 0x77 , 0x85 ,
0x96 , 0x70 , 0x08 , 0x69 , 0x56 , 0xdf , 0x99 , 0x94 ,
0xa1 , 0x90 , 0x18 , 0xbb , 0xfa , 0x7a , 0xb0 , 0xa7 ,
0xf8 , 0xab , 0x28 , 0xd6 , 0x15 , 0x8e , 0xcb , 0xf2 ,
0x13 , 0xe6 , 0x78 , 0x61 , 0x3f , 0x89 , 0x46 , 0x0d ,
0x35 , 0x31 , 0x88 , 0xa3 , 0x41 , 0x80 , 0xca , 0x17 ,

180 A.7. AES.C

0x5f , 0x53 , 0x83 , 0xfe , 0xc3 , 0x9b , 0x45 , 0x39 ,
0xe1 , 0xf5 , 0x9e , 0x19 , 0x5e , 0xb6 , 0xcf , 0x4b ,
0x38 , 0x04 , 0xb9 , 0x2b , 0xe2 , 0xc1 , 0x4a , 0xdd ,
0x48 , 0x0c , 0xd0 , 0x7d , 0x3d , 0x58 , 0xde , 0x7c ,
0xd8 , 0x14 , 0x6b , 0x87 , 0x47 , 0xe8 , 0x79 , 0x84 ,
0x73 , 0x3c , 0xbd , 0x92 , 0xc9 , 0x23 , 0x8b , 0x97 ,
0x95 , 0x44 , 0xdc , 0xad , 0x40 , 0x65 , 0x86 , 0xa2 ,
0xa4 , 0xcc , 0x7f , 0xec , 0xc0 , 0xaf , 0x91 , 0xfd ,
0xf7 , 0x4f , 0x81 , 0x2f , 0x5b , 0xea , 0xa8 , 0x1c ,
0x02 , 0xd1 , 0x98 , 0x71 , 0xed , 0x25 , 0xe3 , 0x24 ,
0x06 , 0x68 , 0xb3 , 0x93 , 0x2c , 0x6f , 0x3e , 0x6c ,
0x0a , 0xb8 , 0xce , 0xae , 0x74 , 0xb1 , 0x42 , 0xb4 ,
0x1e , 0xd3 , 0x49 , 0xe9 , 0x9c , 0xc8 , 0xc6 , 0xc7 ,
0x22 , 0x6e , 0xdb , 0x20 , 0xbf , 0x43 , 0x51 , 0x52 ,
0x66 , 0xb2 , 0x76 , 0x60 , 0xda , 0xc5 , 0xf3 , 0xf6 ,
0xaa , 0xcd , 0x9a , 0xa0 , 0x75 , 0x54 , 0x0e , 0x01 };

/* Circular rotate */
void rotate(unsigned char *in) {

unsigned char a,c;
a = in[0];
for(c=0;c<3;c++)

in[c] = in[c + 1];
in[3] = a;
return;

}

/* Calculate the rcon used in key expansion */
unsigned char rcon(unsigned char in) {

unsigned char c=1;
if(in == 0)

return 0;
while(in != 1) {

c = gmul(c,2);
in --;

}
return c;

}

/* Galois field multiplication */
unsigned char gmul(unsigned char a, unsigned char b) {

int s;
int q;
int z = 0;
s = ltable[a] + ltable[b];
s %= 255;
/* Get the antilog */
s = atable[s];
/* Now , we have some fancy code that returns 0 if either
a or b are zero; we write the code this way so that the
code will (hopefully) run at a constant speed in order to
minimize the risk of timing attacks */

q = s;
if(a == 0) {

s = z;
} else {

s = q;
}
if(b == 0) {

s = z;
} else {

q = z;
}
return s;

}

/* Inverse Galois field multiplication */
unsigned char gmul_inverse(unsigned char in) {

/* 0 is self inverting */
if(in == 0)

return 0;
else

return atable [(255 - ltable[in])];
}

A.7. AES.C 181

/* Calculate the s-box for a given number */
unsigned char sbox(unsigned char in) {

unsigned char c, s, x;
s = x = gmul_inverse(in);
for(c = 0; c < 4; c++) {

/* One bit circular rotate to the left */
s = (s << 1) | (s >> 7);
/* xor with x */
x ^= s;

}
x ^= 99; /* 0x63 */
return x;

}

/* This is the core key expansion , which , given a 4-byte value ,
* does some scrambling */

void schedule_core(unsigned char *in, unsigned char i) {
unsigned char a;
/* Rotate the input 8 bits to the left */
rotate(in);
/* Apply Rijndael ’s s-box on all 4 bytes */
for(a = 0; a < 4; a++)

in[a] = sbox(in[a]);
/* On just the first byte , add 2^i to the byte */
in[0] ^= rcon(i);

}

/* Key expansion function for 128-bit keys */
void expand_key(unsigned char *in) {

unsigned char t[4];
/* c is 16 because the first sub -key is the user -supplied key */
unsigned char c = 16;
unsigned char i = 1;
unsigned char a;

/* We need 11 sets of sixteen bytes each for 128-bit mode */
while(c < 176) {

/* Copy the temporary variable over from the last 4-byte
* block */

for(a = 0; a < 4; a++)
t[a] = in[a + c - 4];

/* Every four blocks (of four bytes),
* do a complex calculation */

if(c % 16 == 0) {
schedule_core(t,i);
i++;

}
for(a = 0; a < 4; a++) {

in[c] = in[c - 16] ^ t[a];
c++;

}
}

}

/* Key expansion function for 192-bit keys */
void expand_key_192(unsigned char *in) {

unsigned char t[4];
unsigned char c = 24;
unsigned char i = 1;
unsigned char a;
while(c < 208) {

/* Copy the temporary variable over */
for(a = 0; a < 4; a++)

t[a] = in[a + c - 4];
/* Every six sets , do a complex calculation */
if(c % 24 == 0) {

schedule_core(t,i);
i++;

}
for(a = 0; a < 4; a++) {

in[c] = in[c - 24] ^ t[a];
c++;

}

182 A.7. AES.C

}
}

/* Key expansion function for 256-bit keys */
void expand_key_256(unsigned char *in) {

unsigned char t[4];
unsigned char c = 32;
unsigned char i = 1;
unsigned char a;
while(c < 240) {

/* Copy the temporary variable over */
for(a = 0; a < 4; a++)

t[a] = in[a + c - 4];
/* Every eight sets , do a complex calculation */
if(c % 32 == 0) {

schedule_core(t,i);
i++;

}
/* For 256-bit keys , we add an extra sbox to the
* calculation */

if(c % 32 == 16) {
for(a = 0; a < 4; a++)

t[a] = sbox(t[a]);
}
for(a = 0; a < 4; a++) {

in[c] = in[c - 32] ^ t[a];
c++;

}
}

}

A.8. SERPENT.C 183

A.8 serpent.c

Listing A.8: serpent.c
/* ==
* serpent.c
*
* Serpent key schedule implementation for Interrogate
*
* Adapted from serpent.cpp -- written and placed in the public domain by Wei
* Dai. Interrogate version by Carsten Maartmann -Moe <carmaa@gmail.com >
* ==
*/

#include <stdio.h>
#include <stdlib.h>
#include "interrogate.h"

/* -------
* S-boxes
* -------
*/

static void S0f (unsigned int *r0 , unsigned int *r1 , unsigned int *r2,
unsigned int *r3 , unsigned int *r4) {

*r3 ^= *r0;
*r4 = *r1;
*r1 &= *r3;
*r4 ^= *r2;
*r1 ^= *r0;
*r0 |= *r3;
*r0 ^= *r4;
*r4 ^= *r3;
*r3 ^= *r2;
*r2 |= *r1;
*r2 ^= *r4;
*r4 = ~*r4;
*r4 |= *r1;
*r1 ^= *r3;
*r1 ^= *r4;
*r3 |= *r0;
*r1 ^= *r3;
*r4 ^= *r3;

}

static void S1f (unsigned int *r0 , unsigned int *r1 , unsigned int *r2,
unsigned int *r3 , unsigned int *r4) {

*r0 = ~*r0;
*r2 = ~*r2;
*r4 = *r0;
*r0 &= *r1;
*r2 ^= *r0;
*r0 |= *r3;
*r3 ^= *r2;
*r1 ^= *r0;
*r0 ^= *r4;
*r4 |= *r1;
*r1 ^= *r3;
*r2 |= *r0;
*r2 &= *r4;
*r0 ^= *r1;
*r1 &= *r2;
*r1 ^= *r0;
*r0 &= *r2;
*r0 ^= *r4;

}

static void S2f (unsigned int *r0 , unsigned int *r1 , unsigned int *r2,
unsigned int *r3 , unsigned int *r4) {

*r4 = *r0;
*r0 &= *r2;
*r0 ^= *r3;
*r2 ^= *r1;
*r2 ^= *r0;

184 A.8. SERPENT.C

*r3 |= *r4;
*r3 ^= *r1;
*r4 ^= *r2;
*r1 = *r3;
*r3 |= *r4;
*r3 ^= *r0;
*r0 &= *r1;
*r4 ^= *r0;
*r1 ^= *r3;
*r1 ^= *r4;
*r4 = ~*r4;

}

static void S3f (unsigned int *r0 , unsigned int *r1 , unsigned int *r2,
unsigned int *r3 , unsigned int *r4) {

*r4 = *r0;
*r0 |= *r3;
*r3 ^= *r1;
*r1 &= *r4;
*r4 ^= *r2;
*r2 ^= *r3;
*r3 &= *r0;
*r4 |= *r1;
*r3 ^= *r4;
*r0 ^= *r1;
*r4 &= *r0;
*r1 ^= *r3;
*r4 ^= *r2;
*r1 |= *r0;
*r1 ^= *r2;
*r0 ^= *r3;
*r2 = *r1;
*r1 |= *r3;
*r1 ^= *r0;

}

static void S4f (unsigned int *r0 , unsigned int *r1 , unsigned int *r2,
unsigned int *r3 , unsigned int *r4) {

*r1 ^= *r3;
*r3 = ~*r3;
*r2 ^= *r3;
*r3 ^= *r0;
*r4 = *r1;
*r1 &= *r3;
*r1 ^= *r2;
*r4 ^= *r3;
*r0 ^= *r4;
*r2 &= *r4;
*r2 ^= *r0;
*r0 &= *r1;
*r3 ^= *r0;
*r4 |= *r1;
*r4 ^= *r0;
*r0 |= *r3;
*r0 ^= *r2;
*r2 &= *r3;
*r0 = ~*r0;
*r4 ^= *r2;

}

static void S5f (unsigned int *r0 , unsigned int *r1 , unsigned int *r2,
unsigned int *r3 , unsigned int *r4) {

*r0 ^= *r1;
*r1 ^= *r3;
*r3 = ~*r3;
*r4 = *r1;
*r1 &= *r0;
*r2 ^= *r3;
*r1 ^= *r2;
*r2 |= *r4;
*r4 ^= *r3;
*r3 &= *r1;
*r3 ^= *r0;
*r4 ^= *r1;

A.8. SERPENT.C 185

*r4 ^= *r2;
*r2 ^= *r0;
*r0 &= *r3;
*r2 = ~*r2;
*r0 ^= *r4;
*r4 |= *r3;
*r2 ^= *r4;

}

static void S6f (unsigned int *r0 , unsigned int *r1 , unsigned int *r2,
unsigned int *r3 , unsigned int *r4) {

*r2 = ~*r2;
*r4 = *r3;
*r3 &= *r0;
*r0 ^= *r4;
*r3 ^= *r2;
*r2 |= *r4;
*r1 ^= *r3;
*r2 ^= *r0;
*r0 |= *r1;
*r2 ^= *r1;
*r4 ^= *r0;
*r0 |= *r3;
*r0 ^= *r2;
*r4 ^= *r3;
*r4 ^= *r0;
*r3 = ~*r3;
*r2 &= *r4;
*r2 ^= *r3;

}

static void S7f (unsigned int *r0 , unsigned int *r1 , unsigned int *r2,
unsigned int *r3 , unsigned int *r4) {

*r4 = *r2;
*r2 &= *r1;
*r2 ^= *r3;
*r3 &= *r1;
*r4 ^= *r2;
*r2 ^= *r1;
*r1 ^= *r0;
*r0 |= *r4;
*r0 ^= *r2;
*r3 ^= *r1;
*r2 ^= *r3;
*r3 &= *r0;
*r3 ^= *r4;
*r4 ^= *r2;
*r2 &= *r0;
*r4 = ~*r4;
*r2 ^= *r4;
*r4 &= *r0;
*r1 ^= *r3;
*r4 ^= *r1;

}

static void LKf (unsigned int *k, unsigned int r, unsigned int *a,
unsigned int *b, unsigned int *c, unsigned int *d) {

*a = k[r];
*b = k[r + 1];
*c = k[r + 2];
*d = k[r + 3];

}

static void SKf (unsigned int *k, unsigned int r, unsigned int *a,
unsigned int *b, unsigned int *c, unsigned int *d) {

k[r + 4] = *a;
k[r + 5] = *b;
k[r + 6] = *c;
k[r + 7] = *d;

}

unsigned int LE32 (unsigned int x) {
unsigned int n = (unsigned char) x;
n <<= 8;

186 A.8. SERPENT.C

n |= (unsigned char) (x >> 8);
n <<= 8;
n |= (unsigned char) (x >> 16);
return (n << 8) | (unsigned char) (x >> 24);

}

/*
* Sets the Serpent key schedule. Input: User supplied key , keysize in bytes ,
* pointer to the key schedule storage.
*/

void serpent_set_key(const unsigned char userKey[], int keylen ,
unsigned char *ks) {

unsigned int a,b,c,d,e;
unsigned int *k = (unsigned int *)ks;
unsigned int t;
int i;

for (i = 0; i < keylen / (int)sizeof(int); i++)
k[i] = ((unsigned int*) userKey)[i];

if (keylen < 32)
k[keylen /4] |= (unsigned int)1 << ((keylen %4)*8);

k += 8;
t = k[-1];
for (i = 0; i < 132; ++i)

k[i] = t = rotlFixed(k[i-8] ^ k[i-5] ^ k[i-3] ^ t ^ 0x9e3779b9 ^ i,
11);

k -= 20;

for (i=0; i<4; i++) {
LKf (k, 20, &a, &e, &b, &d);
S3f (&a, &e, &b, &d, &c);
SKf (k, 16, &e, &b, &d, &c);

LKf (k, 24, &c, &b, &a, &e);
S2f (&c, &b, &a, &e, &d);
SKf (k, 20, &a, &e, &b, &d);

LKf (k, 28, &b, &e, &c, &a);
S1f (&b, &e, &c, &a, &d);
SKf (k, 24, &c, &b, &a, &e);

LKf (k, 32, &a, &b, &c, &d);
S0f (&a, &b, &c, &d, &e);
SKf (k, 28, &b, &e, &c, &a);

k += 8*4;

LKf (k, 4, &a, &c, &d, &b);
S7f (&a, &c, &d, &b, &e);
SKf (k, 0, &d, &e, &b, &a);

LKf (k, 8, &a, &c, &b, &e);
S6f (&a, &c, &b, &e, &d);
SKf (k, 4, &a, &c, &d, &b);

LKf (k, 12, &b, &a, &e, &c);
S5f (&b, &a, &e, &c, &d);
SKf (k, 8, &a, &c, &b, &e);

LKf (k, 16, &e, &b, &d, &c);
S4f (&e, &b, &d, &c, &a);
SKf (k, 12, &b, &a, &e, &c);

}
LKf (k, 20, &a, &e, &b, &d);
S3f (&a, &e, &b, &d, &c);
SKf (k, 16, &e, &b, &d, &c);

}

A.9. TWOFISH.C 187

A.9 twofish.c

Listing A.9: twofish.c
/* ==
* twofish.c
*
* Twofish key schedule implementation for Interrogate
*
* Adapted for Interrogate use by Carsten Maartmann -Moe
* <maartman@stud.ntnu.no >, see full licencing details for original code
* below.
* ==
*/

/*

Copyright (c) 1999, Dr Brian Gladman , Worcester , UK. All rights reserved.

LICENSE TERMS

The free distribution and use of this software is allowed (with or without
changes) provided that:

1. source code distributions include the above copyright notice , this
list of conditions and the following disclaimer;

2. binary distributions include the above copyright notice , this list
of conditions and the following disclaimer in their documentation;

3. the name of the copyright holder is not used to endorse products
built using this software without specific written permission.

DISCLAIMER

This software is provided ’as is’ with no explicit or implied warranties
in respect of its properties , including , but not limited to, correctness
and/or fitness for purpose.

My thanks to Doug Whiting and Niels Ferguson for comments that led
to improvements in this implementation.

Issue Date: 14th January 1999
*/

#include <stdio.h>
#include <stdlib.h>
#include "interrogate.h"

#define extract_byte(x,n) ((unsigned char)((x) >> (8 * n)))

#define G_M 0x0169

unsigned char RS [4][8] =
{

{ 0x01 , 0xA4 , 0x55 , 0x87 , 0x5A , 0x58 , 0xDB , 0x9E , },
{ 0xA4 , 0x56 , 0x82 , 0xF3 , 0x1E , 0xC6 , 0x68 , 0xE5 , },
{ 0x02 , 0xA1 , 0xFC , 0xC1 , 0x47 , 0xAE , 0x3D , 0x19 , },
{ 0xA4 , 0x55 , 0x87 , 0x5A , 0x58 , 0xDB , 0x9E , 0x03 , },

};

static unsigned char tab_5b [4] =
{ 0, G_M >> 2, G_M >> 1, (G_M >> 1) ^ (G_M >> 2) };

static unsigned char tab_ef [4] =
{ 0, (G_M >> 1) ^ (G_M >> 2), G_M >> 1, G_M >> 2 };

#define ffm_01(x) (x)
#define ffm_5b(x) ((x) ^ ((x) >> 2) ^ tab_5b [(x) & 3])
#define ffm_ef(x) ((x) ^ ((x) >> 1) ^ ((x) >> 2) ^ tab_ef [(x) & 3])

static unsigned char ror4 [16] = { 0, 8, 1, 9, 2, 10, 3, 11,
4, 12, 5, 13, 6, 14, 7, 15 };

188 A.9. TWOFISH.C

static unsigned char ashx [16] = { 0, 9, 2, 11, 4, 13, 6, 15,
8, 1, 10, 3, 12, 5, 14, 7 };

static unsigned char qt0 [2][16] =
{ { 8, 1, 7, 13, 6, 15, 3, 2, 0, 11, 5, 9, 14, 12, 10, 4 },

{ 2, 8, 11, 13, 15, 7, 6, 14, 3, 1, 9, 4, 0, 10, 12, 5 }
};

static unsigned char qt1 [2][16] =
{ { 14, 12, 11, 8, 1, 2, 3, 5, 15, 4, 10, 6, 7, 0, 9, 13 },

{ 1, 14, 2, 11, 4, 12, 3, 7, 6, 13, 10, 5, 15, 9, 0, 8 }
};

static unsigned char qt2 [2][16] =
{ { 11, 10, 5, 14, 6, 13, 9, 0, 12, 8, 15, 3, 2, 4, 7, 1 },

{ 4, 12, 7, 5, 1, 6, 9, 10, 0, 14, 13, 8, 2, 11, 3, 15 }
};

static unsigned char qt3 [2][16] =
{ { 13, 7, 15, 4, 1, 2, 6, 14, 9, 11, 3, 0, 8, 5, 12, 10 },

{ 11, 9, 5, 1, 12, 3, 13, 14, 6, 4, 7, 15, 2, 0, 8, 10 }
};

static unsigned char qp(const unsigned int n, const unsigned char x) {
unsigned char a0, a1 , a2 , a3, a4, b0, b1, b2 , b3 , b4;

a0 = x >> 4;
b0 = x & 15;
a1 = a0 ^ b0;
b1 = ror4[b0] ^ ashx[a0];
a2 = qt0[n][a1];
b2 = qt1[n][b1];
a3 = a2 ^ b2;
b3 = ror4[b2] ^ ashx[a2];
a4 = qt2[n][a3];
b4 = qt3[n][b3];
return (b4 << 4) | a4;

};

/* Q tables */

static unsigned int qt_gen = 0;
static unsigned char q_tab [2][256];

#define q(n,x) q_tab[n][x]

static void gen_qtab(void) {
unsigned int i;

for(i = 0; i < 256; ++i) {
q(0,i) = qp(0, (unsigned char)i);
q(1,i) = qp(1, (unsigned char)i);

}
};

/* M tables */
static unsigned int mt_gen = 0;
static unsigned int m_tab [4][256];

static void gen_mtab(void) {
unsigned int i, f01 , f5b , fef;

for(i = 0; i < 256; ++i) {
f01 = q(1,i);
f5b = ffm_5b(f01);
fef = ffm_ef(f01);
m_tab [0][i] = f01 + (f5b << 8) + (fef << 16) + (fef << 24);
m_tab [2][i] = f5b + (fef << 8) + (f01 << 16) + (fef << 24);

f01 = q(0,i);
f5b = ffm_5b(f01);
fef = ffm_ef(f01);
m_tab [1][i] = fef + (fef << 8) + (f5b << 16) + (f01 << 24);

A.9. TWOFISH.C 189

m_tab [3][i] = f5b + (f01 << 8) + (fef << 16) + (f5b << 24);
}

};

#define mds(n,x) m_tab[n][x]

static unsigned int h_fun(twofish_tc *instance , const unsigned int x,
const unsigned int key[]) {

unsigned int b0, b1, b2, b3;

b0 = extract_byte(x, 0);
b1 = extract_byte(x, 1);
b2 = extract_byte(x, 2);
b3 = extract_byte(x, 3);

switch(instance ->k_len) {
case 4:

b0 = q(1, (unsigned char) b0) ^ extract_byte(key[3],0);
b1 = q(0, (unsigned char) b1) ^ extract_byte(key[3],1);
b2 = q(0, (unsigned char) b2) ^ extract_byte(key[3],2);
b3 = q(1, (unsigned char) b3) ^ extract_byte(key[3],3);

case 3:
b0 = q(1, (unsigned char) b0) ^ extract_byte(key[2],0);
b1 = q(1, (unsigned char) b1) ^ extract_byte(key[2],1);
b2 = q(0, (unsigned char) b2) ^ extract_byte(key[2],2);
b3 = q(0, (unsigned char) b3) ^ extract_byte(key[2],3);

case 2:
b0 = q(0, (unsigned char) (q(0, (unsigned char) b0) ^

extract_byte(key[1] ,0))) ^
extract_byte(key[0] ,0);

b1 = q(0, (unsigned char) (q(1, (unsigned char) b1) ^
extract_byte(key[1] ,1))) ^
extract_byte(key[0] ,1);

b2 = q(1, (unsigned char) (q(0, (unsigned char) b2) ^
extract_byte(key[1] ,2))) ^
extract_byte(key[0] ,2);

b3 = q(1, (unsigned char) (q(1, (unsigned char) b3) ^
extract_byte(key[1] ,3))) ^
extract_byte(key[0] ,3);

}

return mds(0, b0) ^ mds(1, b1) ^ mds(2, b2) ^ mds(3, b3);
};

#define q20(x) q(0,q(0,x) ^ extract_byte(key[1] ,0)) ^ extract_byte(key[0],0)
#define q21(x) q(0,q(1,x) ^ extract_byte(key[1] ,1)) ^ extract_byte(key[0],1)
#define q22(x) q(1,q(0,x) ^ extract_byte(key[1] ,2)) ^ extract_byte(key[0],2)
#define q23(x) q(1,q(1,x) ^ extract_byte(key[1] ,3)) ^ extract_byte(key[0],3)

#define q30(x) q(0,q(0,q(1, x) ^ extract_byte(key[2],0)) ^ extract_byte(key
[1] ,0)) ^ extract_byte(key[0],0)

#define q31(x) q(0,q(1,q(1, x) ^ extract_byte(key[2],1)) ^ extract_byte(key
[1] ,1)) ^ extract_byte(key[0],1)

#define q32(x) q(1,q(0,q(0, x) ^ extract_byte(key[2],2)) ^ extract_byte(key
[1] ,2)) ^ extract_byte(key[0],2)

#define q33(x) q(1,q(1,q(0, x) ^ extract_byte(key[2],3)) ^ extract_byte(key
[1] ,3)) ^ extract_byte(key[0],3)

#define q40(x) q(0,q(0,q(1, q(1, x) ^ extract_byte(key [3],0)) ^ extract_byte
(key[2],0)) ^ extract_byte(key [1],0)) ^ extract_byte(key[0] ,0)

#define q41(x) q(0,q(1,q(1, q(0, x) ^ extract_byte(key [3],1)) ^ extract_byte
(key[2],1)) ^ extract_byte(key [1],1)) ^ extract_byte(key[0] ,1)

#define q42(x) q(1,q(0,q(0, q(0, x) ^ extract_byte(key [3],2)) ^ extract_byte
(key[2],2)) ^ extract_byte(key [1],2)) ^ extract_byte(key[0] ,2)

#define q43(x) q(1,q(1,q(0, q(1, x) ^ extract_byte(key [3],3)) ^ extract_byte
(key[2],3)) ^ extract_byte(key [1],3)) ^ extract_byte(key[0] ,3)

void gen_mk_tab(twofish_tc *instance , unsigned int key[]) {
unsigned int i;
unsigned char by;

unsigned int *mk_tab = instance ->mk_tab;

switch(instance ->k_len) {

190 A.9. TWOFISH.C

case 2:
for(i = 0; i < 256; ++i) {

by = (unsigned char)i;

mk_tab [0 + 4*i] = mds(0, q20(by));
mk_tab [1 + 4*i] = mds(1, q21(by));

mk_tab [2 + 4*i] = mds(2, q22(by));
mk_tab [3 + 4*i] = mds(3, q23(by));

}
break;

case 3:
for(i = 0; i < 256; ++i) {

by = (unsigned char)i;

mk_tab [0 + 4*i] = mds(0, q30(by));
mk_tab [1 + 4*i] = mds(1, q31(by));

}
break;

case 4:
for(i = 0; i < 256; ++i) {

by = (unsigned char)i;

mk_tab [0 + 4*i] = mds(0, q40(by));
mk_tab [1 + 4*i] = mds(1, q41(by));

mk_tab [2 + 4*i] = mds(2, q42(by));
mk_tab [3 + 4*i] = mds(3, q43(by));

}
}

};

define g0_fun(x) (mk_tab [0 + 4* extract_byte(x,0)] ^ mk_tab [1 + 4*
extract_byte(x,1)] \

^ mk_tab [2 + 4* extract_byte(x,2)] ^ mk_tab [3 + 4*
extract_byte(x,3)])

define g1_fun(x) (mk_tab [0 + 4* extract_byte(x,3)] ^ mk_tab [1 + 4*
extract_byte(x,0)] \

^ mk_tab [2 + 4* extract_byte(x,1)] ^ mk_tab [3 + 4*
extract_byte(x,2)])

#define G_MOD 0x0000014d

unsigned int mds_rem(unsigned int p0 , unsigned int p1) {
unsigned int i, t, u;

for(i = 0; i < 8; ++i) {
t = p1 >> 24; // get most significant coefficient
p1 = (p1 << 8) | (p0 >> 24);
p0 <<= 8; // shift others up
// multiply t by a (the primitive element - i.e. left shift)
u = (t << 1);
if(t & 0x80) // subtract modular polynomial on overflow

u ^= G_MOD;
p1 ^= t ^ (u << 16); // remove t * (a * x^2 + 1)
u ^= (t >> 1); // form u = a * t + t / a = t * (a + 1 / a);
if(t & 0x01) // add the modular polynomial on underflow

u ^= G_MOD >> 1;
p1 ^= (u << 24) | (u << 8); // remove t * (a + 1/a) * (x^3 + x)

}

return p1;
};

/* Initialise the key schedule from the user supplied key */
void twofish_set_key(twofish_tc *instance , const unsigned int in_key[], const

unsigned int key_len) {
unsigned int i, a, b, me_key [4], mo_key [4];
unsigned int *l_key , *s_key;

A.9. TWOFISH.C 191

l_key = instance ->l_key;
s_key = instance ->s_key;

if(! qt_gen) {
gen_qtab ();
qt_gen = 1;

}

if(! mt_gen) {
gen_mtab ();
mt_gen = 1;

}

instance ->k_len = key_len / 64; /* 2, 3 or 4 */

for(i = 0; i < instance ->k_len; ++i) {
a = in_key[i + i];
me_key[i] = a;
b = in_key[i + i + 1];
mo_key[i] = b;
s_key[instance ->k_len - i - 1] = mds_rem(a, b);

}

for(i = 0; i < 40; i += 2) {
a = 0x01010101 * i;
b = a + 0x01010101;
a = h_fun(instance , a, me_key);
b = rotlFixed(h_fun(instance , b, mo_key), 8);
l_key[i] = a + b;
l_key[i + 1] = rotlFixed(a + 2 * b, 9);

}
gen_mk_tab(instance , s_key);

return;
};

192 A.10. MAKEFILE

A.10 Makefile

Listing A.10: Makefile
===
Makefile
#
Makefile for Interrogate
#
Author: Carsten Maartmann -Moe <carmaa@gmail.com >
===

.SUFFIXES:

.SUFFIXES: .c .o .do
CC=gcc
CFLAGS=-Wall
LDFLAGS=
DEBUGFLAGS=-Wall -DDEBUG -g
LIBS=-lm
OBJS=interrogate.o stat.o rsa.o aes.o serpent.o twofish.o util.o virtmem.o
DBOBJS=interrogate.do stat.do rsa.do aes.do serpent.do twofish.do util.do

virtmem.do
EXECNAME=interrogate

.c.do:; $(CC) -c -o $@ $(DEBUGFLAGS) $<

all: interrogate

interrogate: $(OBJS)
$(CC) $(CFLAGS) -o $(EXECNAME) $(OBJS) $(LIBS)

debug: $(DBOBJS)
$(CC) $(DEBUGFLAGS) -o $(EXECNAME) $(DBOBJS) $(LIBS)

clean:
rm -f *.o *.do *.bak *.der interrogate

Appendix B

Data Structures Related to
Windows Memory Analysis

In this appendix, we present some of the memory-related structures in Windows
XP, as outputted from the Windows Debugging Tools. These are provided
as a convenience for developers that wish to extend the authors work in this
thesis, or in other ways contribute towards forensics procedures in the field
of memory analysis. No further explanation of these structures are given; for a
good treatment of windows memory internals, the Windows Internals [80] series
of books are a good references.

Listing B.1: EPROCESS data structure
ntdll!_EPROCESS

+0x000 Pcb : _KPROCESS
+0x06c ProcessLock : _EX_PUSH_LOCK
+0x070 CreateTime : _LARGE_INTEGER
+0x078 ExitTime : _LARGE_INTEGER
+0x080 RundownProtect : _EX_RUNDOWN_REF
+0x084 UniqueProcessId : Ptr32 Void
+0x088 ActiveProcessLinks : _LIST_ENTRY
+0x090 QuotaUsage : [3] Uint4B
+0x09c QuotaPeak : [3] Uint4B
+0x0a8 CommitCharge : Uint4B
+0x0ac PeakVirtualSize : Uint4B
+0x0b0 VirtualSize : Uint4B
+0x0b4 SessionProcessLinks : _LIST_ENTRY
+0x0bc DebugPort : Ptr32 Void
+0x0c0 ExceptionPort : Ptr32 Void
+0x0c4 ObjectTable : Ptr32 _HANDLE_TABLE
+0x0c8 Token : _EX_FAST_REF
+0x0cc WorkingSetLock : _FAST_MUTEX
+0x0ec WorkingSetPage : Uint4B
+0x0f0 AddressCreationLock : _FAST_MUTEX
+0x110 HyperSpaceLock : Uint4B
+0x114 ForkInProgress : Ptr32 _ETHREAD
+0x118 HardwareTrigger : Uint4B
+0x11c VadRoot : Ptr32 Void
+0x120 VadHint : Ptr32 Void
+0x124 CloneRoot : Ptr32 Void
+0x128 NumberOfPrivatePages : Uint4B
+0x12c NumberOfLockedPages : Uint4B
+0x130 Win32Process : Ptr32 Void
+0x134 Job : Ptr32 _EJOB
+0x138 SectionObject : Ptr32 Void
+0x13c SectionBaseAddress : Ptr32 Void
+0x140 QuotaBlock : Ptr32 _EPROCESS_QUOTA_BLOCK
+0x144 WorkingSetWatch : Ptr32 _PAGEFAULT_HISTORY

193

194

+0x148 Win32WindowStation : Ptr32 Void
+0x14c InheritedFromUniqueProcessId : Ptr32 Void
+0x150 LdtInformation : Ptr32 Void
+0x154 VadFreeHint : Ptr32 Void
+0x158 VdmObjects : Ptr32 Void
+0x15c DeviceMap : Ptr32 Void
+0x160 PhysicalVadList : _LIST_ENTRY
+0x168 PageDirectoryPte : _HARDWARE_PTE_X86
+0x168 Filler : Uint8B
+0x170 Session : Ptr32 Void
+0x174 ImageFileName : [16] UChar
+0x184 JobLinks : _LIST_ENTRY
+0x18c LockedPagesList : Ptr32 Void
+0x190 ThreadListHead : _LIST_ENTRY
+0x198 SecurityPort : Ptr32 Void
+0x19c PaeTop : Ptr32 Void
+0x1a0 ActiveThreads : Uint4B
+0x1a4 GrantedAccess : Uint4B
+0x1a8 DefaultHardErrorProcessing : Uint4B
+0x1ac LastThreadExitStatus : Int4B
+0x1b0 Peb : Ptr32 _PEB
+0x1b4 PrefetchTrace : _EX_FAST_REF
+0x1b8 ReadOperationCount : _LARGE_INTEGER
+0x1c0 WriteOperationCount : _LARGE_INTEGER
+0x1c8 OtherOperationCount : _LARGE_INTEGER
+0x1d0 ReadTransferCount : _LARGE_INTEGER
+0x1d8 WriteTransferCount : _LARGE_INTEGER
+0x1e0 OtherTransferCount : _LARGE_INTEGER
+0x1e8 CommitChargeLimit : Uint4B
+0x1ec CommitChargePeak : Uint4B
+0x1f0 AweInfo : Ptr32 Void
+0x1f4 SeAuditProcessCreationInfo : _SE_AUDIT_PROCESS_CREATION_INFO
+0x1f8 Vm : _MMSUPPORT
+0x238 LastFaultCount : Uint4B
+0x23c ModifiedPageCount : Uint4B
+0x240 NumberOfVads : Uint4B
+0x244 JobStatus : Uint4B
+0x248 Flags : Uint4B
+0x248 CreateReported : Pos 0, 1 Bit
+0x248 NoDebugInherit : Pos 1, 1 Bit
+0x248 ProcessExiting : Pos 2, 1 Bit
+0x248 ProcessDelete : Pos 3, 1 Bit
+0x248 Wow64SplitPages : Pos 4, 1 Bit
+0x248 VmDeleted : Pos 5, 1 Bit
+0x248 OutswapEnabled : Pos 6, 1 Bit
+0x248 Outswapped : Pos 7, 1 Bit
+0x248 ForkFailed : Pos 8, 1 Bit
+0x248 HasPhysicalVad : Pos 9, 1 Bit
+0x248 AddressSpaceInitialized : Pos 10, 2 Bits
+0x248 SetTimerResolution : Pos 12, 1 Bit
+0x248 BreakOnTermination : Pos 13, 1 Bit
+0x248 SessionCreationUnderway : Pos 14, 1 Bit
+0x248 WriteWatch : Pos 15, 1 Bit
+0x248 ProcessInSession : Pos 16, 1 Bit
+0x248 OverrideAddressSpace : Pos 17, 1 Bit
+0x248 HasAddressSpace : Pos 18, 1 Bit
+0x248 LaunchPrefetched : Pos 19, 1 Bit
+0x248 InjectInpageErrors : Pos 20, 1 Bit
+0x248 VmTopDown : Pos 21, 1 Bit
+0x248 Unused3 : Pos 22, 1 Bit
+0x248 Unused4 : Pos 23, 1 Bit
+0x248 VdmAllowed : Pos 24, 1 Bit
+0x248 Unused : Pos 25, 5 Bits
+0x248 Unused1 : Pos 30, 1 Bit
+0x248 Unused2 : Pos 31, 1 Bit
+0x24c ExitStatus : Int4B
+0x250 NextPageColor : Uint2B
+0x252 SubSystemMinorVersion : UChar
+0x253 SubSystemMajorVersion : UChar
+0x252 SubSystemVersion : Uint2B
+0x254 PriorityClass : UChar
+0x255 WorkingSetAcquiredUnsafe : UChar
+0x258 Cookie : Uint4B

195

Listing B.2: KPROCESS data structure
ntdll!_KPROCESS

+0x000 Header : _DISPATCHER_HEADER
+0x010 ProfileListHead : _LIST_ENTRY
+0x018 DirectoryTableBase : [2] Uint4B
+0x020 LdtDescriptor : _KGDTENTRY
+0x028 Int21Descriptor : _KIDTENTRY
+0x030 IopmOffset : Uint2B
+0x032 Iopl : UChar
+0x033 Unused : UChar
+0x034 ActiveProcessors : Uint4B
+0x038 KernelTime : Uint4B
+0x03c UserTime : Uint4B
+0x040 ReadyListHead : _LIST_ENTRY
+0x048 SwapListEntry : _SINGLE_LIST_ENTRY
+0x04c VdmTrapcHandler : Ptr32 Void
+0x050 ThreadListHead : _LIST_ENTRY
+0x058 ProcessLock : Uint4B
+0x05c Affinity : Uint4B
+0x060 StackCount : Uint2B
+0x062 BasePriority : Char
+0x063 ThreadQuantum : Char
+0x064 AutoAlignment : UChar
+0x065 State : UChar
+0x066 ThreadSeed : UChar
+0x067 DisableBoost : UChar
+0x068 PowerState : UChar
+0x069 DisableQuantum : UChar
+0x06a IdealNode : UChar
+0x06b Flags : _KEXECUTE_OPTIONS
+0x06b ExecuteOptions : UChar

Listing B.3: PEB data structure
ntdll!_PEB

+0x000 InheritedAddressSpace : UChar
+0x001 ReadImageFileExecOptions : UChar
+0x002 BeingDebugged : UChar
+0x003 SpareBool : UChar
+0x004 Mutant : Ptr32 Void
+0x008 ImageBaseAddress : Ptr32 Void
+0x00c Ldr : Ptr32 _PEB_LDR_DATA
+0x010 ProcessParameters : Ptr32 _RTL_USER_PROCESS_PARAMETERS
+0x014 SubSystemData : Ptr32 Void
+0x018 ProcessHeap : Ptr32 Void
+0x01c FastPebLock : Ptr32 _RTL_CRITICAL_SECTION
+0x020 FastPebLockRoutine : Ptr32 Void
+0x024 FastPebUnlockRoutine : Ptr32 Void
+0x028 EnvironmentUpdateCount : Uint4B
+0x02c KernelCallbackTable : Ptr32 Void
+0x030 SystemReserved : [1] Uint4B
+0x034 AtlThunkSListPtr32 : Uint4B
+0x038 FreeList : Ptr32 _PEB_FREE_BLOCK
+0x03c TlsExpansionCounter : Uint4B
+0x040 TlsBitmap : Ptr32 Void
+0x044 TlsBitmapBits : [2] Uint4B
+0x04c ReadOnlySharedMemoryBase : Ptr32 Void
+0x050 ReadOnlySharedMemoryHeap : Ptr32 Void
+0x054 ReadOnlyStaticServerData : Ptr32 Ptr32 Void
+0x058 AnsiCodePageData : Ptr32 Void
+0x05c OemCodePageData : Ptr32 Void
+0x060 UnicodeCaseTableData : Ptr32 Void
+0x064 NumberOfProcessors : Uint4B
+0x068 NtGlobalFlag : Uint4B
+0x070 CriticalSectionTimeout : _LARGE_INTEGER
+0x078 HeapSegmentReserve : Uint4B
+0x07c HeapSegmentCommit : Uint4B
+0x080 HeapDeCommitTotalFreeThreshold : Uint4B
+0x084 HeapDeCommitFreeBlockThreshold : Uint4B
+0x088 NumberOfHeaps : Uint4B
+0x08c MaximumNumberOfHeaps : Uint4B
+0x090 ProcessHeaps : Ptr32 Ptr32 Void
+0x094 GdiSharedHandleTable : Ptr32 Void

196

+0x098 ProcessStarterHelper : Ptr32 Void
+0x09c GdiDCAttributeList : Uint4B
+0x0a0 LoaderLock : Ptr32 Void
+0x0a4 OSMajorVersion : Uint4B
+0x0a8 OSMinorVersion : Uint4B
+0x0ac OSBuildNumber : Uint2B
+0x0ae OSCSDVersion : Uint2B
+0x0b0 OSPlatformId : Uint4B
+0x0b4 ImageSubsystem : Uint4B
+0x0b8 ImageSubsystemMajorVersion : Uint4B
+0x0bc ImageSubsystemMinorVersion : Uint4B
+0x0c0 ImageProcessAffinityMask : Uint4B
+0x0c4 GdiHandleBuffer : [34] Uint4B
+0x14c PostProcessInitRoutine : Ptr32 void
+0x150 TlsExpansionBitmap : Ptr32 Void
+0x154 TlsExpansionBitmapBits : [32] Uint4B
+0x1d4 SessionId : Uint4B
+0x1d8 AppCompatFlags : _ULARGE_INTEGER
+0x1e0 AppCompatFlagsUser : _ULARGE_INTEGER
+0x1e8 pShimData : Ptr32 Void
+0x1ec AppCompatInfo : Ptr32 Void
+0x1f0 CSDVersion : _UNICODE_STRING
+0x1f8 ActivationContextData : Ptr32 Void
+0x1fc ProcessAssemblyStorageMap : Ptr32 Void
+0x200 SystemDefaultActivationContextData : Ptr32 Void
+0x204 SystemAssemblyStorageMap : Ptr32 Void
+0x208 MinimumStackCommit : Uint4B

Listing B.4: ETHREAD data structure
ntdll!_ETHREAD

+0x000 Tcb : _KTHREAD
+0x1c0 CreateTime : _LARGE_INTEGER
+0x1c0 NestedFaultCount : Pos 0, 2 Bits
+0x1c0 ApcNeeded : Pos 2, 1 Bit
+0x1c8 ExitTime : _LARGE_INTEGER
+0x1c8 LpcReplyChain : _LIST_ENTRY
+0x1c8 KeyedWaitChain : _LIST_ENTRY
+0x1d0 ExitStatus : Int4B
+0x1d0 OfsChain : Ptr32 Void
+0x1d4 PostBlockList : _LIST_ENTRY
+0x1dc TerminationPort : Ptr32 _TERMINATION_PORT
+0x1dc ReaperLink : Ptr32 _ETHREAD
+0x1dc KeyedWaitValue : Ptr32 Void
+0x1e0 ActiveTimerListLock : Uint4B
+0x1e4 ActiveTimerListHead : _LIST_ENTRY
+0x1ec Cid : _CLIENT_ID
+0x1f4 LpcReplySemaphore : _KSEMAPHORE
+0x1f4 KeyedWaitSemaphore : _KSEMAPHORE
+0x208 LpcReplyMessage : Ptr32 Void
+0x208 LpcWaitingOnPort : Ptr32 Void
+0x20c ImpersonationInfo : Ptr32 _PS_IMPERSONATION_INFORMATION
+0x210 IrpList : _LIST_ENTRY
+0x218 TopLevelIrp : Uint4B
+0x21c DeviceToVerify : Ptr32 _DEVICE_OBJECT
+0x220 ThreadsProcess : Ptr32 _EPROCESS
+0x224 StartAddress : Ptr32 Void
+0x228 Win32StartAddress : Ptr32 Void
+0x228 LpcReceivedMessageId : Uint4B
+0x22c ThreadListEntry : _LIST_ENTRY
+0x234 RundownProtect : _EX_RUNDOWN_REF
+0x238 ThreadLock : _EX_PUSH_LOCK
+0x23c LpcReplyMessageId : Uint4B
+0x240 ReadClusterSize : Uint4B
+0x244 GrantedAccess : Uint4B
+0x248 CrossThreadFlags : Uint4B
+0x248 Terminated : Pos 0, 1 Bit
+0x248 DeadThread : Pos 1, 1 Bit
+0x248 HideFromDebugger : Pos 2, 1 Bit
+0x248 ActiveImpersonationInfo : Pos 3, 1 Bit
+0x248 SystemThread : Pos 4, 1 Bit
+0x248 HardErrorsAreDisabled : Pos 5, 1 Bit
+0x248 BreakOnTermination : Pos 6, 1 Bit

197

+0x248 SkipCreationMsg : Pos 7, 1 Bit
+0x248 SkipTerminationMsg : Pos 8, 1 Bit
+0x24c SameThreadPassiveFlags : Uint4B
+0x24c ActiveExWorker : Pos 0, 1 Bit
+0x24c ExWorkerCanWaitUser : Pos 1, 1 Bit
+0x24c MemoryMaker : Pos 2, 1 Bit
+0x250 SameThreadApcFlags : Uint4B
+0x250 LpcReceivedMsgIdValid : Pos 0, 1 Bit
+0x250 LpcExitThreadCalled : Pos 1, 1 Bit
+0x250 AddressSpaceOwner : Pos 2, 1 Bit
+0x254 ForwardClusterOnly : UChar
+0x255 DisablePageFaultClustering : UChar

Listing B.5: KTHREAD data structure
ntdll!_KTHREAD

+0x000 Header : _DISPATCHER_HEADER
+0x010 MutantListHead : _LIST_ENTRY
+0x018 InitialStack : Ptr32 Void
+0x01c StackLimit : Ptr32 Void
+0x020 Teb : Ptr32 Void
+0x024 TlsArray : Ptr32 Void
+0x028 KernelStack : Ptr32 Void
+0x02c DebugActive : UChar
+0x02d State : UChar
+0x02e Alerted : [2] UChar
+0x030 Iopl : UChar
+0x031 NpxState : UChar
+0x032 Saturation : Char
+0x033 Priority : Char
+0x034 ApcState : _KAPC_STATE
+0x04c ContextSwitches : Uint4B
+0x050 IdleSwapBlock : UChar
+0x051 Spare0 : [3] UChar
+0x054 WaitStatus : Int4B
+0x058 WaitIrql : UChar
+0x059 WaitMode : Char
+0x05a WaitNext : UChar
+0x05b WaitReason : UChar
+0x05c WaitBlockList : Ptr32 _KWAIT_BLOCK
+0x060 WaitListEntry : _LIST_ENTRY
+0x060 SwapListEntry : _SINGLE_LIST_ENTRY
+0x068 WaitTime : Uint4B
+0x06c BasePriority : Char
+0x06d DecrementCount : UChar
+0x06e PriorityDecrement : Char
+0x06f Quantum : Char
+0x070 WaitBlock : [4] _KWAIT_BLOCK
+0x0d0 LegoData : Ptr32 Void
+0x0d4 KernelApcDisable : Uint4B
+0x0d8 UserAffinity : Uint4B
+0x0dc SystemAffinityActive : UChar
+0x0dd PowerState : UChar
+0x0de NpxIrql : UChar
+0x0df InitialNode : UChar
+0x0e0 ServiceTable : Ptr32 Void
+0x0e4 Queue : Ptr32 _KQUEUE
+0x0e8 ApcQueueLock : Uint4B
+0x0f0 Timer : _KTIMER
+0x118 QueueListEntry : _LIST_ENTRY
+0x120 SoftAffinity : Uint4B
+0x124 Affinity : Uint4B
+0x128 Preempted : UChar
+0x129 ProcessReadyQueue : UChar
+0x12a KernelStackResident : UChar
+0x12b NextProcessor : UChar
+0x12c CallbackStack : Ptr32 Void
+0x130 Win32Thread : Ptr32 Void
+0x134 TrapFrame : Ptr32 _KTRAP_FRAME
+0x138 ApcStatePointer : [2] Ptr32 _KAPC_STATE
+0x140 PreviousMode : Char
+0x141 EnableStackSwap : UChar
+0x142 LargeStack : UChar

198

+0x143 ResourceIndex : UChar
+0x144 KernelTime : Uint4B
+0x148 UserTime : Uint4B
+0x14c SavedApcState : _KAPC_STATE
+0x164 Alertable : UChar
+0x165 ApcStateIndex : UChar
+0x166 ApcQueueable : UChar
+0x167 AutoAlignment : UChar
+0x168 StackBase : Ptr32 Void
+0x16c SuspendApc : _KAPC
+0x19c SuspendSemaphore : _KSEMAPHORE
+0x1b0 ThreadListEntry : _LIST_ENTRY
+0x1b8 FreezeCount : Char
+0x1b9 SuspendCount : Char
+0x1ba IdealProcessor : UChar
+0x1bb DisableBoost : UChar

Listing B.6: TEB data structure
ntdll!_TEB

+0x000 NtTib : _NT_TIB
+0x01c EnvironmentPointer : Ptr32 Void
+0x020 ClientId : _CLIENT_ID
+0x028 ActiveRpcHandle : Ptr32 Void
+0x02c ThreadLocalStoragePointer : Ptr32 Void
+0x030 ProcessEnvironmentBlock : Ptr32 _PEB
+0x034 LastErrorValue : Uint4B
+0x038 CountOfOwnedCriticalSections : Uint4B
+0x03c CsrClientThread : Ptr32 Void
+0x040 Win32ThreadInfo : Ptr32 Void
+0x044 User32Reserved : [26] Uint4B
+0x0ac UserReserved : [5] Uint4B
+0x0c0 WOW32Reserved : Ptr32 Void
+0x0c4 CurrentLocale : Uint4B
+0x0c8 FpSoftwareStatusRegister : Uint4B
+0x0cc SystemReserved1 : [54] Ptr32 Void
+0x1a4 ExceptionCode : Int4B
+0x1a8 ActivationContextStack : _ACTIVATION_CONTEXT_STACK
+0x1bc SpareBytes1 : [24] UChar
+0x1d4 GdiTebBatch : _GDI_TEB_BATCH
+0x6b4 RealClientId : _CLIENT_ID
+0x6bc GdiCachedProcessHandle : Ptr32 Void
+0x6c0 GdiClientPID : Uint4B
+0x6c4 GdiClientTID : Uint4B
+0x6c8 GdiThreadLocalInfo : Ptr32 Void
+0x6cc Win32ClientInfo : [62] Uint4B
+0x7c4 glDispatchTable : [233] Ptr32 Void
+0xb68 glReserved1 : [29] Uint4B
+0xbdc glReserved2 : Ptr32 Void
+0xbe0 glSectionInfo : Ptr32 Void
+0xbe4 glSection : Ptr32 Void
+0xbe8 glTable : Ptr32 Void
+0xbec glCurrentRC : Ptr32 Void
+0xbf0 glContext : Ptr32 Void
+0xbf4 LastStatusValue : Uint4B
+0xbf8 StaticUnicodeString : _UNICODE_STRING
+0xc00 StaticUnicodeBuffer : [261] Uint2B
+0xe0c DeallocationStack : Ptr32 Void
+0xe10 TlsSlots : [64] Ptr32 Void
+0xf10 TlsLinks : _LIST_ENTRY
+0xf18 Vdm : Ptr32 Void
+0xf1c ReservedForNtRpc : Ptr32 Void
+0xf20 DbgSsReserved : [2] Ptr32 Void
+0xf28 HardErrorsAreDisabled : Uint4B
+0xf2c Instrumentation : [16] Ptr32 Void
+0xf6c WinSockData : Ptr32 Void
+0xf70 GdiBatchCount : Uint4B
+0xf74 InDbgPrint : UChar
+0xf75 FreeStackOnTermination : UChar
+0xf76 HasFiberData : UChar
+0xf77 IdealProcessor : UChar
+0xf78 Spare3 : Uint4B
+0xf7c ReservedForPerf : Ptr32 Void

199

+0xf80 ReservedForOle : Ptr32 Void
+0xf84 WaitingOnLoaderLock : Uint4B
+0xf88 Wx86Thread : _Wx86ThreadState
+0xf94 TlsExpansionSlots : Ptr32 Ptr32 Void
+0xf98 ImpersonationLocale : Uint4B
+0xf9c IsImpersonating : Uint4B
+0xfa0 NlsCache : Ptr32 Void
+0xfa4 pShimData : Ptr32 Void
+0xfa8 HeapVirtualAffinity : Uint4B
+0xfac CurrentTransactionHandle : Ptr32 Void
+0xfb0 ActiveFrame : Ptr32 _TEB_ACTIVE_FRAME
+0xfb4 SafeThunkCall : UChar
+0xfb5 BooleanSpare : [3] UChar

Listing B.7: POOL HEADER data structure
nt!_POOL_HEADER

+0x000 PreviousSize : Pos 0, 9 Bits
+0x000 PoolIndex : Pos 9, 7 Bits
+0x002 BlockSize : Pos 0, 9 Bits
+0x002 PoolType : Pos 9, 7 Bits
+0x000 Ulong1 : Uint4B
+0x004 ProcessBilled : Ptr32 _EPROCESS
+0x004 PoolTag : Uint4B
+0x004 AllocatorBackTraceIndex : Uint2B
+0x006 PoolTagHash : Uint2B

Appendix C

Copyright Information

All copyrights not owned by the author is listed in the following section.

C.1 Interrogate Source Code Licence (GPL)

For the Interrrogate GPL licence, please see http://www.gnu.org/licenses/
gpl.html.

C.2 Wikimedia Content

The following figures are taken from WikiMedia Commons (http://commons.
wikimedia.org/).

Figure 3.1 Copyright c© User:Dysprosia, all rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, and
this list of conditions;

• Redistributions in binary form must reproduce the above copyright notice,
and this list of conditions in the documentation and/or other materials
provided with the distribution;

• Neither the name of en:User:Dysprosia nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

Figure 3.4 This file is licensed under the Creative Commons Attribution
ShareAlike license versions 3.0 (http://creativecommons.org/licenses/by-sa/
3.0/), and created by WikiMedia user RokerHRO (http://commons.wikimedia.
org/wiki/User:RokerHRO).

201

202 C.3. COPYRIGHTED CONTENT

C.3 Copyrighted Content

The images on the front page and in Figure 2.3(a), The Disintegration of the
Persistence of Memory and The Persistence of Memory are both by Salvador
Daĺı, c©2008 Salvador Daĺı, Gala-Salvador Daĺı Foundation/Artist Rights Soci-
ety (ARS), New York. They are (partly) reproduced here under the Fair Use
doctrine of the U.S. Copyright Act of 1976, 17 U.S.C. § 107 and the Norwegian
Copyright Law ”Åndsverkloven” § 23 under the following reasoning:

1. The images are only used for informational, illustrative and educational
purposes only

2. The images are readily available on the Internet and in the public domain

3. Images are of low resolution and would be unlikely to impact sales of prints
or be usable as a desktop background

4. The images are used for non-profit research

5. There is no alternative, public domain or free-copyrighted replacement
available

The Persistence of Memory was taken from MoMA.org (http://www.moma.
org/collection/browse_results.php?object_id=79018), and The Disinte-
gration of the Persistence of Memory from http://www.dali-gallery.com/
html/galleries/painting19.htm.

	Title Page
	Problem Description
	masteroppgave.pdf

