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Abstract

Salmon lice is one of the biggest challenges in the salmon industry today, causing great
economic losses and threatening the animal welfare. None of the existing methods to
reduce the infection rate caused by salmon lice is good enough, as they are not able to
overcome the problem while preserving the animal welfare of the salmon.

This thesis is a part of the interdisciplinary project Profylax. Profylax aims to develop
a method to reduce the infection rate of salmon lice by using light exposure. As a part
of this project, there has been conducted two experiments, a pilot experiment and a main
experiment, to investigate the phototactic response of salmon lice. A light source make up
the independent factors in these experiments. The independent factors are colour, optical
density and pulsation.

The main contribution of this thesis has been to illustrate how such experiments can
be designed to provide informative and valid data, and various analysis methods to extract
objective and valid results. Typically designs used are split-plot design and incomplete
block design, the statistical models corresponding to these designs and evaluation of the
regression parameters as well as the goodness of fit for the models.

Sammendrag

Lakselus er en av de største utfordringene i lakseindustrien i dag ved at de forårsaker
store økonomiske tap og truer dyrevelferden. Ingen av de eksisterende metodene for å
redusere infeksjonsraten forårsaket av lakselus er gode nok, da de ikke er klarer å bekjempe
problemet samtidig som de bevarer dyrevelferden av laksen.

Denne masteroppgaven er en del av det tverrfaglige prosjektet Profylax. Profylax har
som mål å utvikle en metode for å redusere infeksjonsraten av lakselus ved bruk av ly-
seksponering. Som en del av dette prosjektet har det blitt gjennomført to eksperiment, et
pilotforsøk og et hovedforsøk, for å undersøke fototaktisk respons av lakselus. En lyskilde
utgjør de uavhengige faktorene i disse eksperimentene, bestående av farge, lysintensitet
og pulsering.

Hovedbidraget fra denne oppgaven har vært å illustrere hvordan slike eksperiment kan
designes for å sikre informativ og gyldig data, og ulike analysemetoder for å trekke ut ob-
jektive og gyldige resultater. Eksperimentene baserer seg på typiske design som split plot
design og ufullstendig blokkdesign, i tillegg til de statistiske modellene som korrespon-
derer til disse designene og evaluering av regresjonsparametrene, samt hvor godt de ulike
modellene beskriver dataene.
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Chapter 1
Introduction

1.1 Background and Motivation

The Atlantic salmon industry has major challenges in facing the parasitic copepod Lep-
eophtheirus salmonis, referred to as salmon louse. Each year the salmon industry suffer
major economic losses due to the salmon lice, and the salmon lice are also linked to a
decrease in wild salmon populations (Glover et al., 2011).

The salmon lice feeds on the salmons skin components such as mucus and blood. As
a consequence of this, the immune system of the salmon is decreased, which makes the
salmon vulnerable to other infections. It is also shown that the infections of salmon lice
leads to reduced growth rate of the salmon. Several methods have been developed and
adapted to reduce the number of infections caused by the salmon lice. Among them,
chemical treatments have been applied in the salmon industry. The use of chemical treat-
ment have lead to adverse side effects such as stress on the salmon and the resistance to
chemical treatments of the salmon lice. Due to this, the need for new methods to control
the infections of salmon lice are required (Flamarique et al., 2009).

Researchers have investigated the phototactic response of salmon lice, and it has been
shown that salmon lice are attracted towards light stimuli. A study done by Bron et al.
(1993) have shown significant differences in the response of the salmon lice to different
wavelengths of visible light. The study revealed that salmon lice had the highest response
at 550 nm and lowest response at 400 nm. Fields et al. (2017) conducted a study on the
response of salmon lice to flickering light, to simulate the reflection of light that arises
from the salmons skin. All levels of pulsation showed to have a significant effect on the
response variable. The level with shortest ON:OFF cycle (1.8:0.9 s) attracted 24 percent
of the salmon lice. The level with cycle (3.5:0.9 s) attracted 37 percent of the salmon lice
and the level with cycle (3.5:5.5 s) attracted 80 percent of the salmon lice. The level with
cycle (3.5:16.5) did not show a significant increase in the amount of lice that was attracted
towards the light source. Fields et al. (2017) also investigated the phototactic response of
salmon lice to different levels of light intensity. The levels of light intensity were bright
light, medium light and dim light. Their study showed that bright and medium light had a
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significant effect on the response, where bright light had the highest effect. Dim light did
not have a significant effect on the response.

These findings motivates to further investigate how different light sources affect the
salmon lice, and to maybe find the light source which gives the best response from the
salmon lice. By finding a light source with a significant effect on the salmon lice, it may
be possible to develop an effective method to attract the salmon lice away from the salmon.
This is one of the research ideas behind the Profylax project in which my thesis work is a
part of.

1.2 The Profylax Project
Profylax is a collaborative project between different disciplines at the Norwegian Univer-
sity of Science and Technology (NTNU) and the Norwegian University of Life Science
(NMBU). The project is initiated by Jørgen Andreas Åm Vatn, master student at NMBU.
Other participants in the project are Anna Båtnes (researcher at NTNU), Cecilie Miljeteig
(researcher at NTNU), Live Forfang Bjørnstad (Engineering and ICT, NTNU) and Maria
Arild Solstad (Marine Technology, NTNU).

The main goal of this project is to develop a method to reduce the infection rate of
salmon lice in the salmon industry. The aim of the experiments conducted so far is to
investigate which light source gives the best response of the salmon lice, and it is of in-
terest to look at the effect of interaction between different colours, optical densities and
pulsations.

The experimental setup and execution of the experiments are provided by J.Å. Vatn,
A. Båtnes and C. Miljeteig. Analysis of the videos and extraction of the centroids of the
detected salmon lice are done by L.F Bjørnstad and M.A. Solstad. I was responsible for
the experimental designs and the analysis of the results.

1.3 Outline of the Thesis Work
The aim of the thesis is to investigate the phototactic response of salmon lice and design
and analyze the experiments in order to obtain valid and objective results. Two experi-
ments have been executed to investigate the phototactic response of the salmon lice, one
pilot experiment and one main experiment. In the planning of these experiments, it has
been important to get an overview of the available equipment, resources and limitations
which set the guidelines for conducting the experiments. These are factors that affect the
choice of experimental design. The first step was to select a response variable which pro-
vided useful information about the phototactic response of salmon lice. After obtaining
data from the experiments, a statistical analysis according to the experimental design was
conducted.

Chapter 2 provides theory on experimental designs and methods to analyze the data
obtained from these experiments. Chapter 3 presents the conduction of the experiments,
the data obtained and the analysis of these. In Chapter 4, a summary of the statistical
results and recommendations for further work are presented.
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Chapter 2
Experimental Designs and
Statistical Models

This chapter provides theory on experimental designs and methods to analyze the effect of
independent factors on a response variable. The concepts of analysis of variance, different
regression models and the truncated normal distribution are presented.

2.1 Analysis of Variance
Analysis of variance is a method for comparing the effect of treatments in an experiment
(Montgomery, 2009). An important model used in this thesis is the fixed effects model.

2.1.1 The Effects Model
Imagine an experiment where we have a treatments and n observations within each treat-
ment. Then the total number of observations becomes an = N .

We use a model to describe the data from the experiment. In this case we use the
effects model, given as

yij = µ+ τi + εij

{
i = 1, 2, .., a

j = 1, 2, .., n
(2.1)

where yij is the ijth observation, µ is the overall mean, τi is the effect of the ith treatment
and εij is a random error that contains variability from other sources in the experiment.
In this model the response variable yij is a linear function of the model components. In
the effects model the overall mean is constant and the ith treatment effects are deviations
from the overall mean. That makes the effects model practical to use when testing the
treatments means, which will be discussed later on.

The model errors are assumed to be normal and independently distributed with mean
zero and variance σ2. For all levels of the treatments, we assume the variance σ2 of the

3



errors to be the same. Then we have that the observations yij are normal and independently
distributed as

yij
i.i.d∼ N(µ+ τi, σ

2)

In situations where testing only treatment means from treatments selected by the ex-
perimenter, the conclusion will lay only on the treatments in that particular experiment.
Then we have a fixed effects model (Montgomery, 2009).

2.1.2 Analysis of the Fixed Effects Model
When analyzing the equality of the treatment means, it is convenient to separate the overall
mean µ into µi = µ + τi. As considering the effect of the ith treatment τi as deviation
from the overall mean, we have by definition

a∑
i=1

τi = 0

The suitable hypothesis are

H0 : µ1 = µ2 = ... = µa

H1 : µi 6= µj for at least one pair(i, j)
(2.2)

in the effects model. Or equally

H0 : τ1 = τ2 = ... = τa = 0

H1 : τi 6= τj for at least one pair(i, j)
(2.3)

(2.3) is another way of looking at the test, where we test if the treatment effects τi are 0
for all i.

The fundamental idea behind analysis of variance is that we compare the differences
between the treatments with the differences within each treatment. If the differences be-
tween the treatments and the differences within each treatment are very similar, there is no
reason to conclude that there are differences in the treatment means (Montgomery, 2009).

2.1.3 Sum of Squares
Let yi. denote the total of the observations of the ith treatment and y.. denote the total of
all observations in the experiment. We write the average of the observations under the ith
treatment as ȳi. and the average of all the observations as ȳ..

yi. =

n∑
j=1

yij

ȳi. = yi./n

y.. =

a∑
i=1

n∑
j=1

yij

ȳ.. = y../N

4



A measure of the variability over the whole data set is called the total corrected sum of
squares, and is denoted as SST =

∑a
i=1

∑n
j=1(yij − ȳ..)2.

The total variability in the data set can be split into a sum of squares of the differences
between the treatment averages and the overall average of all observations, plus a sum of
squares of the differences of observations within treatments and the treatment average

SST =

a∑
i=1

n∑
j=1

(yij − ȳ..)2 = n

a∑
i=1

(ȳi. − ȳ..)2 +

a∑
i=1

n∑
j=1

(yij − ȳi.)2 (2.4)

We can also write (2.4) as SST = SSTr + SSE , where

SSE =

a∑
i=1

n∑
j=1

(yij − ȳi.)2

SSTr = n

a∑
i=1

(ȳi. − ȳ..)2

SSTr is the sum of squares of the differences between treatments and SSE is the sum of
squares of the differences within treatments.
A pooled estimation of the variance within each treatment (σ2) is

MSE =
SSE
N − a

and if the treatment effects are zero, we have that

MSTr =
SSTr
a− 1

is also an estimate of σ2. MSE and MSTr is called mean squares. The mean squares are
as shown calculated by taking the SS divided by its associated degrees of freedom. The
expected values of the mean squares are

E[MSE ] = σ2

E[MSTr] = σ2 +
n
∑a
i=1 τ

2
i

a− 1

By comparing MSTr and MSE we can test if the treatment means are equal.
The test-statistics

F0 =
MSTr
MSE

(2.5)

is F distributed with a − 1 and N − a degrees of freedom. If the null-hypothesis is false,
we have that MSTr is bigger than MSE , and we reject H0 for values of F0 bigger than
Fα,a−1,N−a (Montgomery, 2009).
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The analysis of variance table for the Single-Factor, Fixed Effects Model is given in Table
2.1 (Montgomery, 2009, p. 70).

Table 2.1: The Analysis of Variance Table for the Single-Factor, Fixed Effects Model

Source of variation Sum of Squares df Mean Square F0

Between treatments SSTr = n
∑a
i=1(ȳi. − ȳ..)2 a-1 MSTr F0 = MSTr

MSE
Error within treatments SSE = SST − SSTr N-a MSE
Total SST =

∑a
i=1

∑n
i=1(yij − ȳ..)2 N-1

2.2 The Randomized Complete Block Design

Complete randomization of the runs in an experiment is the best tool we have to avoid
that nuisance factors are influencing the analysis of the experiment too much. Nuisance
factors are factors that might have a large effect on the response variable, but which we are
not interested in and perhaps not able to control. When we know that nuisance factors are
present and may influence the response variable, a design technique called blocking can
be used to eliminate the effect of the nuisance factors.

In a general randomized complete block design (RCBD), we may assume we have a
treatments that we want to compare the effect of and b blocks. Within each block, we apply
each of the a treatments at random. Since we only have randomization within each block,
we have a restriction on randomization. In this case we would have variability between
each block and variability within each block (Montgomery, 2009).

2.2.1 Statistical Analysis of the RCBD

The analysis of variance from Section 2.1 can easily be applied to RCBD. In this case the
effects model would look like:

yij = µ+ τi + βj + εij

{
i = 1, 2, .., a

j = 1, 2, .., b
(2.6)

We have that yij is the (ij)th observation, µ is the overall mean, τi is the effect of the ith
treatment, βj is the effect of the jth block and εij is the random error term. εij is normal
distributed with mean zero and variance σ2. The treatment and block effects are deviations
from the overall mean, so we have

a∑
i=1

τi = 0

b∑
j=1

βj = 0

6



As in Section 2.1 we are testing the equality of the treatment means. The hypothesis then
becomes

H0 : µ1 = µ2 = ... = µa

H1 : µi 6= µj for at least one pair(i, j)
(2.7)

in the effects model. Or equivalent

H0 : τ1 = τ2 = ... = τa = 0

H1 : τi 6= τj for at least one pair(i, j)
(2.8)

(2.8) comes from the fact that µi =
∑b
j=1(µ+τi+βj)

b = µ+ τi
Modifying the single-factor analysis of variance to RCBD we have that yi. is the total of
the observations of the ith treatment, yj . is the total of observations under block j, y.. is the
total of all observations in the experiment and N = ab is the total number of observations.
We write the average of the observations under the ith treatment as ȳi., the average of the
observations in block j as ȳ.j , and the average over all the observations as ȳ..

yi. =

b∑
j=1

yij

ȳi. = yi./b

y.j =

a∑
i=1

yij

ȳ.j = yj./a

y.. =

a∑
i=1

b∑
j=1

yij

ȳ.. = y../N

(2.9)

The total corrected sum of squares (SST ) can then be expressed as

SST =

a∑
i=1

b∑
j=1

(yij−ȳ..)2 = b

a∑
i=1

(ȳi.−ȳ..)2+a

b∑
j=1

(ȳ.j−ȳ..)2+

a∑
i=1

b∑
j=1

(yij−ȳ.j−ȳi.+ȳ..)2

(2.10)
where we have that

SSE =

a∑
i=1

b∑
j=1

(yij − ȳ.j − ȳi. + ȳ..)
2

SSTr = b

a∑
i=1

(ȳi. − ȳ..)2

SSBlocks = a

b∑
j=1

(ȳ.j − ȳ..)2
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In this case we have that SSTr is the sum of squares of differences between treatments,
SSBlocks is the sum of squares of differences between blocks and SSE is the sum of
squares between cells minus the sum of squares for treatments and blocks. The mean
squares are then

E[MSE ] = σ2

E[MSTr] = σ2 +
b
∑a
i=1 τ

2
i

a− 1

E[MSBlocks] = σ2 +
a
∑b
j=1 β

2
j

b− 1

An analysis to check the equality of treatment means are then performed by using the
test-statistics

F0 =
MSTr
MSE

If there is no differences between the treatment means (i.e. if the null hypothesis is true),
the test statistics is Fa−1,(a−1)(b−1) distributed. We reject the null hypothesis if F0 >
Fa−1,(a−1)(b−1) (Montgomery, 2009).

The analysis of variance table for a Randomized Complete Block Design is given in
Table 2.2 (Montgomery, 2009, p. 126)

Table 2.2: The Analysis of Variance Table for a Randomized Complete Block Design

Source of variation Sum of Squares df Mean Square F0

Treatments SSTr a− 1 MSTr F0 = MSTr
MSE

Blocks SSBlocks b− 1 MSBlocks
Error SSE (a− 1)(b− 1) MSE
Total SST N-1

2.2.2 Comparing Block Means

In a randomized complete blocks design there is only randomization of treatments within
blocks. This means that there is a restriction of the randomization, since the blocks are not
randomized. Montgomery (2009) states that considering F0 = MSBlocks

MSE
as an exact F test

on the equality of block means, is not a good method. This is due to that the normality
assumption is questionable. To get an idea of the block effects, it could be reasonable to
look at the ratio MSBlocks

MSE
. If this ratio is big, it implies that the blocking factor has an

effect.
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2.3 Incomplete Block Design

The theory in this section is taken from Toutenburg and Shalabh (2009), rewritten to fit the
interest of this thesis.

In some cases, when the number of treatments in an experiment is large, it is not always
possible to perform a complete randomized block design because it may increase the time,
cost etc. to execute all treatments within one block. In these situations an incomplete block
design is suitable. In an incomplete block design only some of the treatments are applied
within each block, and the block sizes are then smaller than the number of treatments.

To analyze experiments performed as incomplete block designs, two methods are used
- intrablock analysis and interblock analysis. Intrablock analysis is performed by eliminat-
ing the block effects, which are assumed fixed, and then estimating the treatment effects
and testing the significance of these. However, since the design is incomplete, one may
expect that the block totals also provide some information on the treatments. This is taken
care of by an interblock analysis, where the block effects are considered as random effects.
When both analysis are carried out, two estimates of the treatment effects are available
from each of them. It is possible to pool these estimates together to obtain a better esti-
mator of the treatment effects. The interblock analysis demands that the number of blocks
are larger than the number of treatments, and is therefore not presented here.

2.3.1 Notations and Symbols

In this thesis, it is of interest to look at an incomplete block design where each treatment
occurs one or zero times in each block. In addition we assume that the number of treat-
ments in each block is the same for all blocks. Then let
v be the number of treatments to be compared
b be the number of blocks in the design
k be the number of treatments applied in each block
r be the number of times each treatment occurs in the design
n= vr = bk be the total number of observations in the design
yi. =

∑
j yij be the block total of the ith block

B = (y1., y2..., yb.)
T

y.j =
∑
i yij be the treatment total due to the jth treatment

V = (y.1, y.2, ., y.v)
T

y.. =
∑
i

∑
j yij be the total of all observations in the design

nij = 1 if treatment j occurs in block i, and nij = 0 otherwise
and the incidence matrix denoted by

N =


n11 n12 . . . n1v

n21 n22 . . . n2v

...
...

. . .
...

nb1 . . . . . . nbv


9



2.3.2 Intrablock Analysis of Incomplete Block Design
Assume yij is the jth response in the ith block in the model

yij = µ+ βi + τj + εij

{
i = 1, 2, .., b

j = 1, 2, .., v
(2.11)

where µ is the general mean effect, βi is the effect of the ith block, τj is the effect of the
jth treatment and εij is the i.i.d. random error with εij ∼ N(0, σ2).

We find the intrablock estimators µ̂ and τ̂j by minimizing the least square function

L =
∑
i

∑
j

(yij − µ− βi − τj)2 (2.12)

The corresponding normal equations are then

µ : y.. = nµ̂+ r
∑
j

τ̂j + k
∑
i

β̂i

βi : yi. = kµ̂+ kβ̂i +
∑
j

nij τ̂j

τj : y.j = rµ̂+
∑
i

nij β̂i + rτ̂j

(2.13)

Having
∑
j τ̂j =

∑
i βj = 0, the estimator of µ is found to be

µ̂ = ȳ.. (2.14)

The normal equations in (2.13) can be written in matrix form as n 1Tb K 1Tv R
K1b K N
R1v NT R

 µ̂β̂
τ̂

 =

y..B
V

 (2.15)

where B = (y1., y2., .., yb.)
T with Bi = yi. as the block total of the ith block and V =

(y.1, y.2, .., y.v)
T with Vj = y.j as the treatment total due to the jth treatment.

Next we multiply both sides of (2.15) by1 0 0
0 Ib −NR−1

0 −NTK−1 Iv

 (2.16)

to remove the block effect from the normal equations.
The reduced normal equations are then

nµ̂+ 1Tb Kβ̂ + 1vRτ̂ = y.. (2.17)(
K −NR−1NT

)
β̂ = B −NR−1V (2.18)
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(
R−NTK−1N

)
τ̂ = V −NTK−1B (2.19)

where K−1 =diag
(

1
k ,

1
k , ..,

1
k

)
and R−1 =diag

(
1
r ,

1
r , ..,

1
r

)
. (2.19) can be written as

Q = Cτ̂ (2.20)

where Q = (Q1, .., Qv)
T = V − NTK−1B and C = R − NTK−1N . The (v × 1)

vector Q is the vector of adjusted treatment totals, where Qj is the adjusted total for the
jth treatment computed as

Qj = y.j −
b∑
i=1

nijyi.
k

, j = 1, 2, .., v

(2.21)

So Qj is found by subtracting the sum of the average contributions of b blocks from the
jth treatment. The intrablock estimate of τ is then

τ̂ = C−1Q (2.22)

Sum of Squares and Analysis of Variance

The total variability in the data is expressed by the total sum of squares as

SST =
∑
i

∑
j

y2
ij −

y2
..

n
(2.23)

We can divide the total variability into

SST = SSTr(adj) + SSblocks(unadj) + SSE

The sum of squares for treatments is adjusted to dissociate the treatment and the block
effects. The unadjusted block sum of squares is

SSblocks(unadj) =

b∑
i=1

y2
i.

k
− y2

..

n
(2.24)

with b-1 degrees of freedom. The adjusted treatment sum of squares is

SSTr(adj) =

v∑
j=1

Qj τ̂j (2.25)

where τ̂j is the least square estimator of τj . SSTr(adj) has v-1 degrees of freedom.
The error sum of squares is found by

SSE = SST − SSTr(adj) − SSblocks(unadj)
with n-b-v+1 degrees of freedom.

The null-hypothesis for testing equality in the treatment effect is then based on the
statistics

F0 =
SSTr(adj)/(v − 1)

SSE/(n− b− v + 1)
(2.26)
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Table 2.3 shows the intrablock analysis of variance (Toutenburg and Shalabh, 2009,
p. 191)

Table 2.3: Intrablock Analysis of Variance Table for an Incomplete Block Design

Source of variation Sum of Squares df Mean Square F0

Between treatments(adj) SSTr(adj) v − 1 MSTr(adj) F0 =
MSTr(adj)
MSE

Between blocks(unadj) SSBlocks(unadj) b− 1 MSBlocks(unadj)
Intrablock error SSE n− b− v + 1 MSE
Total SST n-1

2.4 Split-Plot Design with two factors
Split-plot design is often used when one or more factors in an experiment are hard to
change (Montgomery, 2009). As an example, when we are interested in how four different
colours and six different optical densities affects the movement of salmon lice, we may
conduct the experiment as a split plot design. Due to the experimental setup, it takes a lot
of work and time to change between the different colours. It is then convenient to run all
six levels of optical density in random order within one colour, before changing to another
colour. The four colours are randomized within each replicate.

In a split-plot design with two factors we have one or more replicates which we call
blocks. Each replicate is then divided into whole plots. The hard to change factor is called
the whole plot factor, and in the example described above this is colour. Each whole plot
consists of several parts called subplots. We call the factors that are easy to change the
subplot treatment. All levels of the subplot treatment are then applied to each whole plot.
In the example, optical density is the subplot treatment.

If there are other nuisance factors present, their effect on the data will confound with
the whole plot factors. So the subplot error is usually smaller than the whole plot error
in split-plot designs. Due to that, it is best to have the factors we are most interested in
testing as the subplots (Montgomery, 2009).

2.4.1 Linear Model for the Split-Plot Design
The linear model for the split-plot design is

yijk = µ+ τi +βj + (τβ)ij + γk + (τγ)ik + (βγ)jk + (τβγ)ijk + εijk


i = 1, 2, .., r

j = 1, 2, .., a

k = 1, 2, .., b
(2.27)

In (2.27) µ is the overall average of all observations, and εijk is the random error variable.
To simplify, let the whole plot factor be denoted as A and the subplot factor be denoted

as B. yijk is the response of the ith block, jth factor A and kth factor B. τi, i = 1, 2, .., r
are the block effects, βj is the effect of the jth level of factor A and (τβ)ij is the whole
plot error. These three terms represent the whole plot.

γk is the effect of the kth level of factor B, (τγ)ik is the effect of the ith block times
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the kth level of factor B, (βγ)jk is the interaction effect between the jth level of factor A
and the kth level of factor B and (τβγ)ijk is the subplot error.

In a split-plot design the whole plot factor (A) is tested against the whole plot error
and the subplot treatment (B) is tested against the interaction between blocks and subplot
treatment (B). The interaction between whole plot factor (A) and subplot treatment (B) is
tested against the subplot error.

Assuming that the interaction between blocks and B and the interaction between blocks
and AB are very small, it is practical to pool these errors with εijk to make up the subplot
error. Let σ2

ε be the variance of εijk. Then the linear model can be written as

yijk = µ+ τi + βj + (τβ)ij + γk + (βγ)jk + εijk


i = 1, 2, .., r

j = 1, 2, .., a

k = 1, 2, .., b

(2.28)

Having a levels of the whole plot factor (A), b levels of subplot factor (B) and r blocks, the
expected mean squares are

E(MSBlocks) = σ2
ε + abσ2

τ

E(MSA) = σ2
ε + bσ2

τβ +
rb
∑a
j=1 β

2
j

a− 1

E(MSB) = σ2
ε +

ra
∑a
j=1 γ

2
k

ab− 1

E(MSW ) = σ2
ε + bσ2

τβ (whole plot error)

E(MSE) = σ2
ε (subplot error)

E(MSAB) = σ2
ε +

r
∑a
j=1

∑b
k=1(βγ)2

jk

(a− 1)(b− 1)

The analysis of variance table for a Split Plot Design with two factors is given in Table
2.4.

Table 2.4: The Analysis of Variance Table for a Split Plot Design
Source of variation Sum of Squares df Mean Square F0

Blocks SSBlocks r − 1 MSBlocks F0 = MSBlocks
MSE

Whole plot factor (A) SSA a− 1 MSA F0 = MSA
MSW

Whole plot error SSW (r − 1)(a− 1) MSW F0 = MSW
MSE

Subplot treatment (B) SSB b− 1 MSB F0 = MSB
MSE

AB SSAB (a-1)(b-1) MSAB F0 = MSAB
MSE

Subplot error SSE (r − 1)(b− 1)[1 + (a− 1)] MSE
Total SST rab− 1

Now both the subplot treatment (B) and the AB interaction are tested against the sub-
plot error mean square. In order to estimate the individual effects, one may assume the
usual restrictions

∑r
i=1 τi = 0,

∑a
j=1 βj = 0,

∑b
k=1 γk = 0,

∑r
i=1(τβ)ij = 0, j =

13



1, .., a,
∑a
j=1(τβ)ij = 0, i = 1, .., r,

∑a
j=1(βγ)jk = 0, k = 1, .., b, and

∑b
k=1(βγ)jk =

0, j = 1, .., a.

2.5 Single-Sample Repeated Measures ANOVA

Hedeker and Gibbons (2006) describes the single-sample repeated measures ANOVA as
a special case of a split plot design where there is only one replication. There is then
no blocking effect, but the model is used to describe rates of change over time. With N
subjects and n measurements occasions, we have the linear model

yij = µ+ πi + τj + εij

{
i = 1, 2, .., N

j = 1, 2, .., n
(2.29)

where yij is the observation for subject i at occasion j, µ is the overall mean, πi is the
individual difference component for subject i, τj is the effect of time, assumed to be the
same for all subjects, and εij is the error for subject i at occasion j. In addition we assume
the random components distributed as πi ∼ N(0, σ2

π), having σ2
π as the between-subject

variance, and εij ∼ N(0, σ2
ε ), where σ2

ε is the within-subject variance. Referring to the
example described in Section 2.4, the different subjects are analogue to the different levels
of colour, and the different measurement occasions are analogue to the different levels of
optical density. In this case the linear model is extended to

yij = µ+ βi + πi + τj + εij

{
i = 1, 2, .., N

j = 1, 2, .., n
(2.30)

where βi is the effect of colour i. βi and πi are completely confounded, so we have that
(βi + πi) ∼ N(βi, σ

2
π). As βi and τi are deviations from the overall mean, we have that∑

i βi =
∑
j τj = 0.

Let ȳ.. be the grand mean and ȳi. the colour mean (i = 1, .., N). ε̄.. is the grand mean
of errors and ε̄i. is the mean of errors of colour i.

ȳ.. =
1

Nn

N∑
i=1

n∑
j=1

yij = µ+ π̄. + ε̄..

ȳi. =
1

n

n∑
j=1

yij = µ+ βi + πi + ε̄i.

(2.31)
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The sum of squares for colour is thus

SSc

=

N∑
i=1

n∑
j=1

(ȳi. − ȳ..)2

=

N∑
i=1

n∑
j=1

(πi − π̄. + βi + ε̄i. − ε̄..)2

=

N∑
i=1

n∑
j=1

(πi − π̄. + βi)
2 +

N∑
i=1

n∑
j=1

(ε̄i. − ε̄..)2 +R

(2.32)

where R consists of cross terms with expectation equal zero. The expectation of SSc is
then

E[SSc]

= E

 N∑
i=1

n∑
j=1

(ȳi. − ȳ..)2


= n

N∑
i=1

E
[
(πi − π̄.)2

]
+ n

N∑
i=1

β2
i + n

N∑
i=1

E
[
(ε̄i. − ε̄..)2

]
(2.33)

So the expectation of the mean square of colour becomes

E[MSc]

=
n
∑N
i=1E

[
(πi − π̄.)2

]
+ n

∑N
i=1 β

2
i + n

∑N
i=1E

[
(ε̄i. − ε̄..)2

]
N − 1

= nσ2
π +

n

N − 1

N∑
i=1

β2
i + σ2

ε

(2.34)

2.6 Regression Models

2.6.1 Linear Regression Models
In a completely randomized design, linear regression models can be used to calculate the
effects of the predictors on the response variable. Suppose in an experiment having the
data (yi, xi1, .., xik), i = 1, .., n with n observations of the response y and the predictors
(x1, .., xk). The aim is to understand the effect of the predictors on the response variable
y. In this case, where we have more than one predictor, we a use multiple regression to
model the relationship between the response variable and the predictors.

The response variable y is random and its distribution relay on the predictors. When
the response variable y is continuous and shows an approximately normal distribution
conditional on the predictors, we use the classical linear regression model given by

yi = β0 + β1xi1 + ..+ βkxik + εi, i = 1, .., n (2.35)
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and the conditional mean of y is

ηi = E[y|xi1, .., xik] = β0 + β1xi1 + ..+ βkxik = xTi β (2.36)

i.e. the conditional mean of y is a linear combination of the k predictors. ηi = xTi β is also
called the linear predictor of the random variable yi. Here xTi = (1, xi1, .., xik), where xij
is the value of the jth covariate, j = 1, ..k for the ith observation. β = (β0, .., βk)T are
the unknown parameters and εi is the random deviation from the expected value of obser-
vation yi, also called random error. We assume the errors to be independent and normally
distributed with mean zero and variance σ2. This means that the errors are independent of
the predictors (Fahrmeir et al., 2013).

2.6.2 Estimation of the Regression Coefficients
The goal of estimating the unknown coefficients in (2.36) is to minimize the sum of the
squared deviations

LS(β) =

n∑
i=1

(yi − xTi β)2 (2.37)

with respect to β ∈ Rp.
Finding the estimators that minimizes (2.37) is the same as setting the vector of the

first derivatives to zero, solving for β and show that the matrix of the second derivatives is
positive definite.

∂LS(β)

∂β
= −2XT y + 2XTXβ (2.38)

Then the equation
XTXβ̂ = XT y (2.39)

have a unique solution given by the least square estimator

β̂ = (XTX)−1XT y (2.40)

assuming the matrix XTX is invertible. The second derivatives of (2.37) are

∂2LS(β)

∂2β
= 2XTX (2.41)

Assuming normally distributed errors like in (2.35), we can find the maximum likelihood
estimators. Assuming equal variances for all observations we have:

y ∼ N(Xβ, σ2I)

The likelihood is then given by

L(β, σ2) =
1

(2πσ2)n/2
exp

(
− 1

2σ2
(y− Xβ)T (y− Xβ)

)
(2.42)

and the log-likelihood given by

l(β, σ2) = −n
2
log(2π)− n

2
log(σ2)− 1

2σ2
(y− Xβ)T (y− Xβ) (2.43)
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We maximize the log-likelihood by finding the vector of first derivatives of (2.43) and
setting it to zero. The first two terms are then zero. Maximizing− 1

2σ2 (y−Xβ)T (y−Xβ)
is the same as minimizing (y−Xβ)T (y−Xβ), and we have that the maximum likelihood
estimator is the same as the least square estimator in (2.40) (Fahrmeir et al., 2013).

2.6.3 Linear Mixed Models
In experiments where we have repeated measurements on the same subject, the assumption
of independent observations does not hold. The observations within each subject may
be correlated. Linear mixed models is a method for taking into account the correlations
caused by this when estimating the model parameters. By expanding the linear predictor
in (2.35) with random effects in addition to the fixed effects β, we obtain a mixed effects
model.

The random intercept model is used when the estimated regression lines for each sub-
ject reveals different intercepts, but the slopes are the same across subjects. Imagine hav-
ing m subjects, ni observations within each subject and one predictor. Then the random
intercept model becomes

yij = β0 + β1xij + γ0i + εij

{
i = 1, ..,m

j = 1, .., ni
(2.44)

In this model the fixed effects are β0, which is the common fixed intercept for all subjects,
and β1, which is the fixed slope parameter of predictor x and the same across all subjects.
The random effects are εij , which are the independent normally distributed errors with
mean zero and variance σ2, and γ0i, which is the random deviation for each subject from
the common fixed intercept.

Each subject is a random sample from a larger data set, so the parameters γ0i are
assumed to be independent and random with

γ0i
i.i.d∼ N(0, τ2

0 )

and the τ0is and εijs are assumed to be mutually independent. We then have that

yij ∼ N(β0 + β1xij , τ
2
0i + σ2) (2.45)

Repeated measurements yij for subject i are correlated within each subject with covariance

Cov(yij , yil)

= E[(yij − µij)(yil − µil)]
= E[(β0 + β1xij + γ0i + εij

− (β0 + β1xij))(β0 + β1xil + γ0i + εil − (β0 + β1xil))]

= E(γ2
0i) + E(εij)E(γ0i) + E(γ0i)E(εil) + E(εij)E(εil)

= τ2
0 , (j 6= l)

(2.46)
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which gives the correlation coefficient

Corr(yij , yil) =
Cov(yij , yil)√

var(yij)
√
var(yil)

=
τ2
0

τ2
0 + σ2

, (j 6= l)

(Fahrmeir et al., 2013).

2.7 The Truncated Normal Distribution
In cases when a random variable X is normally distributed, but there are lower and/or
upper bounds for the values that X can take, we have a truncated normal distribution. If
only a lower bound exists, the distribution is left truncated, and when there is only a upper
bound, the distribution is right truncated. In cases of both bounds, the distribution is double
truncated (Ryan, 2011).

A truncated distribution is often used in experiments when the underlying variate x
cannot be observed in its whole range, and we would like to predict the behavior of the
random variable for the whole range. An example of this is the experiment where we
investigate the relation between movement of salmon lice and different sources of light.
The salmon lice can only move within the aquarium that is used in the experiment, but
without this limitation, some of the salmon lice in the experiment would most likely move
beyond the range of the aquarium.

2.7.1 The Double Truncated Normal Distribution
Wiik (2013) presents the cumulative density function of a random variable X which is
truncated by X ∈ (a, b] as

P (X ≤ x|a < X ≤ b) = F (x|a < X ≤ b) =


0 for x ≤ a
F (x)−F (a)
F (b)−F (a) for a < x ≤ b
1 for x > b

(2.47)

By differentiating (2.47) we get the corresponding probability function for values a <
X ≤ b

f(x|a < X ≤ b) =
g(x)

F (b)− F (a)
(2.48)

where g(x)=F’(x) for values within the interval (a, b] and g(x) = 0 otherwise.
Assume X ∼ N(µ, σ2) truncated by X ∈ (a, b). Then the distribution of X is given

by

f(x|a < X < b)

=
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)[
1√

2πσ2

∫ b

a

exp

(
− 1

2σ2
(x− µ)2

)
dx

]−1

=
1

σ
φ

(
x− µ
σ

)[
Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)]−1

(2.49)
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where Φ(.) is the cumulative distribution function of a standardized normally distributed
random variable and φ(.) is the corresponding probability density function.

2.7.2 The Right Truncated Normal Distribution

In this thesis it is of interest to investigate the distribution of a random normally distributed
variable Xw with mean µ and variance σ2 which is truncated by (Xw ≥ b). The cumula-
tive density function is then given by

F (xw|Xw ≥ b) =
F (xw)− F (b)

F (∞)− F (b)
=
F (xw)− F (b)

1− F (b)
for xw ≥ b (2.50)

and the corresponding distribution function is obtained by differentiating (2.50)

f(xw|Xw ≥ b) =
f(xw)

1− F (b)
=

1

σ
φ

(
xw − µ
σ

)[
1− Φ

(
b− µ
σ

)]−1

for xw ≥ b

(2.51)
where φ(.) and Φ(.) is defined as in Section 2.7.1.

The mean of this truncated value is then

E[Xw|Xw ≥ b]

=

∫ ∞
b

xwf(xw|Xw ≥ b)dxw

=

[
1− Φ

(
b− µ
σ

)]−1 ∫ ∞
b

xw
1

σ
φ

(
xw − µ
σ

)
dxw

=

[
1− Φ

(
b− µ
σ

)]−1
[∫ ∞

b−µ
σ

σzexp

(
−z

2

2

)
dz + µ

∫ ∞
b−µ
σ

exp

(
−z

2

2

)
dz

]

=
σφ
(
b−µ
σ

)
1− Φ

(
b−µ
σ

) + µ

= µ+ σλ(α)

(2.52)

where α = b−µ
σ and λ(α) =

φ( b−µσ )
1−Φ( b−µσ )

.

To derive the corresponding variance, we first calculate E[X2
w|Xw ≥ b]. Let k =
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[
1− Φ

(
b−µ
σ

)]−1

. Then

1

k
E[X2

w|Xw ≥ b]
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x2
w

1√
2π

1

σ
exp

(
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2
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)2
)
dxw

= σ
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x2
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σ2
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)
1√
2π
exp
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2
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)2
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dxw

+ σ
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σ2
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2π
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dxw

= σ
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2
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)
dxw

+ 2µE [Xw|Xw ≥ b]
[
1− Φ

(
b− µ
σ

)]
− µ2

[
1− Φ

(
b− µ
σ

)]

Let z = xw−µ
σ . Then dxw = σdz and hence

1

k
E
[
X2
w|Xw ≥ b

]
= 2µE [Xw|Xw ≥ b]

[
1− Φ

(
b− µ
σ

)]
− µ2

[
1− Φ

(
b− µ
σ

)]
+ σ

∫ ∞
b−µ
σ

z2 1√
2π
exp

(
−1

2
z2

)
σdz

Next we integrate by parts with u = zσ2 1√
2π

and dv = zexp
(
− 1

2z
2
)
dz. Then

1

k
E
[
X2
w|Xw ≥ b

]
= 2µE [Xw|Xw ≥ b]

[
1− Φ

(
b− µ
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[
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⇒ E
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σ

) φ
(
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σ

)
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(
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) + σ2
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Using var[Y ] = E[Y 2]− (E[Y ])2 gives

var [Xw|Xw ≥ b]

= σ2

1 +

(
b−µ
σ

)
φ
(
b−µ
σ

)
1− Φ

(
b−µ
σ

) −

 φ
(
b−µ
σ

)
1− Φ

(
b−µ
σ

)
2


= σ2
[
1 + αλ(α)− (λ(α))

2
]

(2.53)

Assume now a random normally distributed variable Xnw with mean µ and variance σ2,
truncated by Xnw < b. The distribution function of this random variable is then

f(xnw|Xnw < b) =
f(xnw)

F (b)
=

1

σ
φ

(
xnw − µ

σ

)[
Φ

(
b− µ
σ

)]−1

for xnw < b

(2.54)
By similar calculations as in (2.52), the corresponding mean of this variable is found to be

E[Xnw|Xnw < b] = µ− σ
φ
(
b−µ
σ

)
Φ
(
b−µ
σ

) (2.55)

and the corresponding variance, found by similar calculations as in (2.53), is

var[Xnw|Xnw < b] = σ2

1−
(
b− µ
σ

) φ
(
b−µ
σ

)
Φ
(
b−µ
σ

) −
 φ

(
b−µ
σ

)
Φ
(
b−µ
σ

)
2
 (2.56)

In the salmon lice experiment described in Section 2.7, imagine the wall of the aquar-
ium where the light source is positioned to be the limit b. Let us consider an observed
value x̄nw for the mean distance the salmon lice which have responded towards the light
source, but not into the wall, have moved. Let X̄nw be the random variable in (2.54). The
observed value x̄nw is then an estimate of E[X̄nw|x̄nw < b].

In this example, Φ
(
b−µ
σ

)
= r corresponds to that a portion (1 − r) of the total

amount of salmon lice in the experiment have moved into the wall. In general, we have
Φ
(
b−µ
σ

)
= r ↔ b−µ

σ = ‘Φ−1(r) = Φr. We can now calculate φ
(
b−µ
σ

)
= φ (Φr).

This gives the following equations

µ̂− σ̂φ (Φr)

r
= x̄nw (2.57)

b− µ̂
σ̂

= Φr (2.58)

We are now able to find an estimate for µ and σ, and thus calculate the estimated mean and
variance of the random normally variable distributed variable X̄w truncated by X̄w ≥ b.
This random variable corresponds to the mean distance the salmon lice which have moved
into the wall possibly could have moved.
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A second alternative is to estimate a value for the mean distance the salmon lice which
have moved into the wall, could have moved without the restriction of the wall, with x̄w,
by assuming the random variables X̄nw and X̄w to be independent. We then have

Z = (X̄w − X̄nw) ∼ N
(

0, σ2

(
1

mw
+

1

mnw

))
(2.59)

where mw is the number of salmon lice which have moved into the wall and mnw is the
number of salmon lice which have not. We get the truncated distribution of Z by condition
on the values x̄nw and x̄w ≥ b such that

P (Z ≤ z|Xw ≥ b ∩ X̄nw = x̄nw)

= P (Z ≤ z|X̄w − X̄nw ≥ b− x̄nw)
(2.60)

The expected value of Z is then obtained by inserting the mean and variance into (2.52),
and we get

E[Z|Z ≥ b− x̄nw] =

√
1
mw

+ 1
mnw

σφ

(
b−x̄nw√
1
mw

+ 1
mnw

σ

)

1− Φ

(
b−x̄nw√
1
mw

+ 1
mnw

σ

) (2.61)

Let E[Z|Z ≥ b − x̄nw] = γ. We then have x̄w = x̄nw + γ. This equation requires
that we have an estimate for σ2. The estimate can be found by calculating the variance
of the distance the salmon lice which have not moved into the wall have moved from the
data, which then will be an estimate of the variance in (2.56). Further we can use (2.56)
to calculate an estimate for σ2. The estimated mean for the distance of movement for the
total amount of salmon lice can now be calculated as

E[x̄t] = x̄nw × r + x̄w × (1− r) (2.62)

2.8 Checking Model Assumptions
Before doing analysis on the data in an experiment, we have to investigate the data. This
includes checking the relationship of the response variable and the predictors, the distribu-
tion of the errors and other assumptions the model we use rely on (Fahrmeir et al., 2013).

One of the assumptions of the linear model, is that the errors are normally distributed
and independent of the predictors. As for the model in (2.1), we have that

εij
i.i.d∼ N(0, σ2)

The estimated errors are called residuals and are defined as

ε̂ij = yij − ŷij (2.63)

where ŷij is an estimation of the observation yij . As the ε̂ij are predictions of the errors,
they are not identical to the errors.
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When the variance of εij do not systematically vary across different predictors, that is
the variance do not increase or decrease by one or more predictors, we have homoscedastic
error variances. In the opposite case, we talk about heteroscedastic variances. A method
for detecting heteroscedastic variances, i.e. errors that are dependent, is to plot the resid-
uals against the predicted values of yij . By plotting the fitted values of the model on the
x-axis and the residuals on the y-axis, we are able to see if the residuals are independent
of the predictors. If the residuals are spread around a horizontal line without any distinct
structure, it is an indication of independence (Fahrmeir et al., 2013).

Q-Q plots (quantile-quantile plots) are graphical tools used for evaluating the distri-
bution of a sample, and can thus be used to check if the errors are normal distributed. A
Q-Q plot is constructed by plotting the quantiles of two samples, X and Y, against each
other. If the two samples are identically distributed, the plot will be a straight line with
slope 1 and intercept 0. In cases where the sample Y is a linear function of X, the Q-Q
plot will be a straight line, but there may be changes of the slope and intercept (Wilk and
Gnanadesikan, 1968). Loy et al. (2016) describes this with an example of plotting a nor-
mal distributed sample (x1, x2, .., xn)

i.i.d∼ N(µ, σ2), against the quantiles of a standard
normal distributed sample (z1, z2, .., zn)

i.i.d∼ N(0, 1). The corresponding Q-Q plot will
then be a line where the slope is an estimate of σ−1, and the intercept an estimate of −µσ .

For the linear model, we assume the response to be a linear function of the predictors.
A scatter plot is a simple graphical device for checking the relationship between the re-
sponse variable and the predictors (Ryan, 2011). In cases of categorical predictors it is
useful to compare the mean and standard deviation of the response variable against each
level of the predictors (Fahrmeir et al., 2013)

23



24



Chapter 3
Experiments and Analysis

The purpose of this chapter is to describe the design of the experiments conducted to
investigate the phototactic response of salmon lice, present the data and the analysis of
these using the models and methods described in Chapter 2.

First, the experimental setup is described and the different sources of light which make
up the independent factors in the experiments. Second, the conduction of the pilot experi-
ment and analysis of the results are presented. Then the design of the main experiment is
presented and the data obtained from the main experiment are analyzed. Model fitting and
analysis of the experiments are done using the statistical programming software R.

3.1 Experimental Setup
The experimental setup is provided by Cecilie Miljeteig, Anna Båtnes and Jørgen Vatn.
To track the swimming behavior of the salmon lice, we recorded the salmon lice in a tank
exposed to different sources of light. The tank was placed in a dark room with about 8-12
degrees Celcius. In these experiments, we have used the same setup as in Miljeteig et al.
(2014), but with a different tank. A schematic overview of the setup is shown in Figure
3.1.
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Figure 3.1: A schematic overview of the experimental setup used to detect the swimming behavior
of salmon lice when exposed to different sources of light. (A) is an overview from above, (B) is
an overview from the side and (C) is a picture of the setup from the side. The experimental setup
consists of a camera (1) and an aquarium (2) with a raceway in the middle (shaded area) fitted to
the width of the light source (3). The light source (3) was connected to a computer controlled filter
wheel. The table legs where attached to two infrared lamps (4) (Miljeteig et al., 2014).

The raceway has measures equal 40 cm × 12.8 cm × 10 cm. The tank was placed
on the top of a table. To make the objects detectable in the recorded videos, near-infrared
(IR) light was directed towards the tank through a hole in the table. The water depth was
4 cm, and the camera was placed 60 cm above the bottom of the tank. The light source
was placed on the short side of the raceway. A light source was connected to a computer,
so the switch between different optical densities and pulsations could be done without
interruption of the environment. Switching between different colours on the other hand,
had to be done manually. The experimental setup was covered in black fabric during the
experiments to avoid possible external light and to minimize the effect of air currents on
the aquarium. A detailed description of the experimental setup can be found in (Vatn,
2019).

3.1.1 Independent Factors

In this project, light is defined as irradiance at 400–700 nm. The different sources of
light make up the independent factors in the experiments. To adjust the irradiance, a light
emitting diode was attached to a filter wheel. The filter wheel contained neutral optical
density (OD) filters with increasing OD. OD is logarithmic, decreasing the irradiance to
10% of the previous level for each increasing OD number. OD from 1 to 7 were used in
the experiments, called OD1 up to OD7, respectively. OD1 corresponds to letting 10% of
all the light through. So OD2 is then letting 1% of all of the light through and so on.

In addition to OD, the factors colour (wavelength) and pulsation make up the inde-
pendent factors in the experiments. Colour consists of the four levels white, blue with an
emission peak at 455 nm, green with peak at 525 nm and red with peak at 640 nm. The first
level of pulsation, pulsation1, corresponds to light being 0.1 seconds on and 0.1 seconds
off, pulsation2 corresponds to light being 2 seconds on and 3 seconds off and pulsation3
corresponds to light being 5 seconds on and 5 seconds off. Pulsation0 corresponds to no
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pulsation, that is the light is constantly on.

The independent factors with levels are summed up in Table 3.1.

Table 3.1: Independent Factors with Levels
Colour OD Pulsation

blue OD7 pulsation0
green OD6 pulsation1
white OD5 pulsation2
red OD4 pulsation3

OD3
OD2
OD1

3.2 The Pilot Experiment

3.2.1 Design of the Pilot Experiment

The purpose of the pilot experiment was to get an understanding of the effects of colour
and OD on the response, and thus possibly reduce the number of levels before the main
experiment if any shows to be non-significant. All levels of colour and OD7 to OD2 were
used in the pilot experiment.

Due to that the switching between levels of colour had to be done manually, the pilot
experiment was conducted as a split-plot design with colour as the whole plot factor and
OD as the subplot factor as described in Section 2.4. This leads to a restriction on the
randomization, and the influence of possible nuisance factors will confound with colour.
To be able to estimate the whole plot error, the experiment was carried out with three
replicates, corresponding to blocks in the split-plot design. The whole plot factor, colour,
was randomized within each replicate. To reduce the experimental error, each level of OD
was applied within one run of colour. Each level of colour was run for 63 minutes. The
first 15 minutes was conducted in darkness, before switching to OD7, which was run for 8
minutes. The OD was then increased every 8. minute until OD2.

Since we have multiple measurements of OD within the same colour, with increasing
levels over a time period, this is in fact a repeated measurement experiment. If we assume
the correlation between each level of OD to be the same within each colour, analyzing the
data as a split plot experiment will still apply when using analysis of variance.

3.2.2 Response Variable

Detection and extraction of the centroids of the detected salmon lice are provided by Maria
Arild Solstad and Live Forfang Bjørnstad. In Bjørnstad and Solstad (2018) they describe
how the detection and extraction was executed. The responses obtained with different
types of light was recorded with a camera of 1920 × 1080 pixels, obtaining 25 frames
per second. The number of salmon lice detected was reduced when a phototactic response
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towards the light source occurred. We assume that the salmon lice became invisible in the
video when moving into light reflections close to the aquarium wall.

The mean position of the salmon lice before the light was turned on is used as a base-
line. The response variable used in this analysis is the mean position of the salmon lice
(distance from baseline in cm), where positive values corresponds to salmon lice moving
towards the light source starting from the baseline. For each of the OD-levels, only the sin-
gle last minute of recording was used to calculate the mean position. Due to the decreasing
number of salmon lice detected as the response of salmon lice towards the light occurred,
and the assumption that these ”disappeared” into the light, these salmon lice were assumed
to have full response. The number of salmon lice which obtained full response influenced
the result in a large extent. To be able to compare the differences in the treatment means,
the mean position of the salmon lice were calculated by excluding the 5 percent highest
and 5 percent lowest positions of the salmon lice. A summary of the data from the pilot
experiment is shown in Table 4.1 in the Appendix.

3.2.3 Execution of the Pilot Experiment
Each replicate was carried out in three separate days, so all levels of colour were executed
each day. The day before each experiment, the aquarium was washed and filled up with
filtrated seawater to prevent bubbles on the glass of the aquarium. Then about 200 salmon
lice were transferred into the aquarium and left undisturbed in the dark over night. The next
day the salmon lice were stirred carefully to make sure that the salmon lice were evenly
spread out. This was done in the dark to make sure of dark acclimation of the salmon lice.
The tank was then left undisturbed for 15 minutes to ensure further dark acclimation and
for the currents to die out. After 15 minutes the camera was turned on and the experiment
started. Between each whole-plot run, a new colour was set and the salmon lice were again
stirred. Then another 15 minutes with dark followed before the next run started. After one
replicate, the aquarium was emptied, washed and filled up with new filtrated seawater.
New salmon lice were counted and put into the tank over night. Then the same procedure
was repeated the next day. In replicate I, salmon lice from earlier experiments were used.
In replicate II fresh salmon lice were used, and for replicate III salmon lice from replicate
II were used again.

3.2.4 Analysis of the Pilot Experiment
Analysis of all three Replicates

Assuming the correlation between each level of OD to be the same within each level of
colour, we apply the split-plot analysis in Section 2.4. Using the function aov in the
package stats, we test if there are any differences in the treatment means. Colour was
tested against the whole plot error, while OD and the interaction between OD and colour
were tested against the subplot error. The corresponding model is

yijk = µ+ τi + βj + (τβ)ij + γk + (βγ)jk + εijk


i = 1, 2, 3

j = 1, .., 4

k = 1, .., 6

(3.1)
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where yijk is the response from the ith replicate, jth colour and kth level of OD. µ is the
average response of all observations, τi is the main effect of the ith replicate, βj is the
main effect of the jth colour, (τβ)ij is the whole plot error, γk is the main effect of the kth
level of OD and (βγ)jk is the effect of the interaction between the jth colour and the kth
level of OD. εijk is the subplot error. Descriptive statistics of the data used for analysis is
shown in Table 4.1 in the Appendix.

The analysis of variance table is given in Table 3.2.

Table 3.2: Pilot Experiment: Analysis of Variance Table for a Split-Plot Design
Df Sum Sq Mean Sq F value Pr(>F)

Replicates 2 434.16 217.08
Colour 3 146.49 48.83 1.15 0.4024
Whole Plot Error 6 254.63 42.44
OD 5 82.61 16.52 4.37 0.0029
colour:OD 15 83.56 5.57 1.47 0.1623
Subplot Error 40 151.27 3.78

The analysis shows that only OD is statistically significant at a 5% significance level
with a p-value equal 0.0029, while colour and the interaction between OD and colour are
not statistically significant at a 5% significance level.

By continuing the analysis with a linear mixed effects model as in Section 2.6.3 we
were able to compare the main effects of each level of OD. Assuming dependence between
the observations both within groups of colours and within groups of replicates, we consider
colours and replicates as random effects in our model. The random intercept model is then

yijk = β0 + βk + γ0i + γ0j + εijk


i = 1, 2, 3

j = 1, .., 4

k = 1, .., 6

(3.2)

where β0 is the common fixed intercept for both replicates and colours, βk is the fixed
main effect of the kth level of OD and is the same across all colours and replicates. γ0i

is the random deviation for each replicate from the fixed intercept, and γ0j is the random
deviation from each colour from the fixed intercept. εijk is the random error variable.

The estimated main fixed effects are found by the method of maximum likelihood
as described in Section 2.6.2 and the summary of the mixed effects analysis is given in
Section 4.5.1 in the Appendix.
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An extract from the summary in Section 4.5.1, showing only the fixed effects, is given in
Table 3.3.

Table 3.3: Pilot Experiment: Estimated Fixed Effects of the Linear Mixed Effects Model in (3.2)
Estimate Std. Error t value

(Intercept) 0.56 1.82 0.31
OD2 2.65 0.84 3.14
OD3 2.20 0.84 2.61
OD4 2.55 0.84 3.03
OD5 1.64 0.84 1.94
OD6 0.20 0.84 0.23

The model in (3.2) is fitted using dummy coding with the function lmer in the package
stats. OD7 is used as the reference level. The intercept, β0, is thus the estimated mean of
the response variable at OD7. The estimated main effect of each of the other levels of OD
are the deviation from the mean of the response variable at OD7.

Comparing each level of OD against the estimated mean effect at OD7 is performed
by a t-test. The critical value in the t-distribution at 5 degrees of freedom and at a 5%
significance level is 2.571. The estimated main effects of OD4 up to OD2 have t-values
greater than the critical value, and are thus statistically significant at a 5% significance
level. OD2 has the largest estimated main effect equal 2.65. OD4 has the second largest
estimated main effect equal 2.55. Due to the design of the experiment being a repeated
measurement experiment, time will be a factor influencing the result. At OD2 the salmon
lice have been exposed to light for 48 minutes, while at OD7 the salmon lice have only
been exposed to light for 8 minutes. In addition, the distance of which the salmon lice can
move will decrease as they approach the light source.

By looking at the summary of the fixed effects model in Section 4.5.1 in the Appendix,
we see that colour has an estimated variance equal 6.72, which is relatively high. This
indicates that the effect of colour do vary between the levels of colour. Visualization of the
data with the box-plot in Figure 3.2 reveals that blue, green and white seems to affect the
response variable more than red. The median of the response variable for all four levels of
colour are close to zero, but the distribution shows that blue, green and white have a higher
percent of salmon lice that have moved towards the light source. The box-plots in Figure
3.3 shows that the median of the response variable of all levels of OD are close to zero,
but we can still observe an increase in percentage of salmon lice that have moved towards
the light source from OD7 up to OD2.

The summary of the fixed effects model in Section 4.5.1 in the Appendix shows that
replicate has an estimated variance equal 7.19, which is relatively high. This indicates that
the effect of the different replicates varies. The plot in Figure 3.4 shows that replicate I
has low impact on the response variable. Replicate III has low impact with some outliers
in both direction, which may indicate experimental error. Replicate II differs from the two
other replicates with a higher influence on the response variable. As described in Section
3.2.3, the salmon lice used in replicate I and III were used in earlier experiments, while
for replicate II fresh salmon lice were used. This might be a factor influencing the results.
Based on these results, we continue the analysis by considering only replicate II.
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Figure 3.2: Pilot experiment: Box-plot of the response as a function of colour.
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Figure 3.3: Pilot experiment: Box-plot of the response as a function of OD.
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Figure 3.4: Pilot experiment: Box-plot of the response as a function of replicates.

Analysis of Replicate II

By analyzing only replicate II we consider the experiment as a special case of the split-
plot design with only one replicate. With colours as subjects and the levels of OD applied
within each subject, we have a single-sample repeated measurement as in Section 2.5. The
linear model describing the relationship between the response variable and the factors is
then given by

yij = µ+ βi + πi + τj + εij

{
i = 1, .., 4

j = 1, .., 6
(3.3)

where in this case βi is the effect of colour i, πi is the individual difference component
for colour i, τj is the effect of OD level j and εij is the error for colour i at OD level j.
In addition we assume the random components distributed as πi ∼ N(0, σ2

π) and εij ∼
N(0, σ2

ε ), where σ2
ε is the subplot error. The effect of colour is then confounded with the

differences between colours, so we have (βi + πi) ∼ N(βi, σ
2
π) with σ2

π as the whole plot
error.

By using the function aov in the package stats we performed an analysis of variance on
the data set, where OD was tested against the subplot error, σ2

ε . The analysis of variance
table is given in Table 3.4.
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Table 3.4: Pilot Experiment: Analysis of Variance Table for the Full Model in (3.3)

Df Sum Sq Mean Sq F value Pr(>F)
Colour 3 295.96 98.65
OD 5 140.32 28.06 7.91 0.0008
Subplot error 15 53.22 3.55

We see that OD has a significant effect on the response variable with p-value = 0.0008.
Due to the restriction in randomization of colours, we meet some challenges in the analysis
of the treatment effects of colour. Montgomery (2009) claims that by comparing the mean
square of colour against the subplot error we can still get an idea of the effects of colour.
MSColour
MSE

= 98.65
3.55 ≈ 27.79 is a high value which indicates that colour do have an effect

on the response variable.
Looking at the plot in Figure 3.6 we see that red differs from the three other colours

with low effect on the response variable. This leads to a high variability between the
colours, which then make the whole plot error big due to that the effect of colours confound
with the error between the colours. By performing an analysis of variance on the data
without red included, we get a much lower mean square of colour which is reduced from
98.65 to 16.73. By excluding red, we have the reduced model given by

yij = µ+ βi + πi + τj + εij

{
i = 1, .., 3

j = 1, .., 6
(3.4)

where there is only three levels of colour. The analysis of variance table on the data set
without red included, is shown in Table 3.5.

Table 3.5: Pilot Experiment: Analysis of Variance Table for the Reduced Model in (3.4)

Df Sum Sq Mean Sq
Colour 2 33.45 16.73
OD 5 178.81 35.76
Subplot error 10 14.16 1.42

An upper limit of the whole plot error, σ2
π , can now be found using (2.34). We get

16.73 = 6σ2
π +

6

3

4∑
i=1

β2
i + 1.42

16.73− 1.42

6
= σ2

π +
1

3

4∑
i=1

β2
i

⇔ σ2
π = 2.55− 1

3

4∑
i=1

β2
i ≤ 2.55

(3.5)

showing that the whole plot error is relatively small. We can now perform an approximate
analysis of the factor effects using a multiple linear regression model, assuming indepen-
dence between all observations.
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Using the classical linear regression model in (2.35), we formulate the following linear
model

yij = µ+ βi + τj + εij

{
i = 1, .., 4

j = 1, .., 6
(3.6)

where µ is the grand mean effect of all levels, βi is the main effect of colour i, τj is
the main effect of OD level j and εij is the random deviation from the expected value of
observation yij . In addition we have the constraints

∑4
i=1 βi = 0 and

∑6
j=1 τi = 0. The

estimated main effects are found by the method of maximum likelihood as described in
Section 2.6.2. Summary of the linear model is given in Table 3.6.

Table 3.6: Pilot Experiment: Summary of the Linear Model in (3.6)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.5580 0.3845 14.45 0.0000

OD7 -3.9079 0.8598 -4.55 0.0004
OD6 -2.3541 0.8598 -2.74 0.0153
OD5 -0.1452 0.8598 -0.17 0.8681
OD4 1.5258 0.8598 1.77 0.0963
OD3 2.3993 0.8598 2.79 0.0137

colourR -5.7283 0.6660 -8.60 0.0000
colourB 2.2447 0.6660 3.37 0.0042
colourG 3.3860 0.6660 5.08 0.0001

The model in (3.6) was fitted by using the function lm in the package stats with effect
coding. The estimated main effects of the levels sum to zero as specified in (3.6). From
the summary in Table 3.6, we see that the grand mean effect of all levels is equal 5.56.
We find the estimated response at each level combination by using the model in (3.6). The
estimated response at different level combinations is summed up in Table 3.7.

The summary in Table 3.6 reveals that red has a significant estimated main effect equal
-5.73. That is, for a given level of OD, the estimated response decreases by -5.73 for
red. The estimated main effect of both blue and green shows to be significant at a 5%
significance level. The estimated main effect of green is highest with the value 3.39. The
estimated main effect of blue is equal 2.24 and the estimated main effect of white is found
to be 0.10 using the constraint

∑4
i=1 βi = 0.

Analyzing the levels of OD, we see that OD3 has a significant estimated main effect,
which is equal 2.40. That corresponds to the estimated response increasing by 2.40 for
OD3 at a given level of colour. The estimated main effect of OD2 is found using the
constraint

∑6
j=1 τi = 0, and is equal 2.48. The estimated main effect of OD2 is thus the

highest among the levels of OD. Since the response variable is the mean position of the
salmon lice (distance from baseline in cm), the response variable at each level of OD is
affected by the position of the salmon lice at the previous level of OD.

The fact that this is a repeated measurement experiment, as in Section 2.5, the effect
of colours is accumulated with the effect of OD, where OD can be seen as rates of change
over time. By looking at the profile plot in Figure 3.5, we see that OD6 has relatively small
effect on the response variable for white compared to green. In contrast, OD4 for white
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has high effect on the response variable compared to both green and blue. The Profile plot
in Figure 3.5 also show that the responses for green, blue and white are increasing up to
OD4, and then tends to flatten out. This matches the results we see in Table 3.6, where
the difference in estimated main effects between OD4, OD3 and OD2 are relatively small.
Since the range of which the salmon lice can move is limited by the length of the raceway,
this is a factor which will influence the result. The salmon lice which have moved towards
the light and into the wall, have obtained maximum response. These salmon lice are then
not able to respond further, but it is possible that the salmon lice move away from the light,
so increasing the OD-levels will not show a higher effect for these salmon lice.

The estimated responses in Table 3.7 shows that green at OD2 has the overall highest
estimated response. Comparing these results with the profile plot in Figure 3.5 we see that
green at OD3 gives the overall highest response, and that the response decreases from OD3
to OD2 for green. This strengthens our assumption of that the salmon lice might be limited
by the wall, and that the response variable may be right truncated normal distributed.

As discussed in Section 3.2.2, we assume that the decreasing number of detected
salmon lice is due to that they disappear into the light, and we assume full response for
these salmon lice. This assumption reduces the validity of the results, since there may be
other reasons that they can not be detected. It is possible that the response in reality is
lower than these results show.
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Table 3.7: Estimated Response at Different Level Combinations

Colour OD Estimated Response
red OD7 -0.0782
red OD6 -2.5244
red OD5 -0.3155
red OD4 1.3555
red OD3 2.2290
red OD2 2.3118
blue OD7 3.8948
blue OD6 5.4486
blue OD5 7.6575
blue OD4 9.3285
blue OD3 10.2020
blue OD2 10.2848
green OD7 5.0361
green OD6 6.5899
green OD5 8.7988
green OD4 10.4698
green OD3 11.3433
green OD2 11.4261
white OD7 1.7477
white OD6 3.3015
white OD5 5.5104
white OD4 7.1814
white OD3 8.0549
white OD2 8.1377
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Figure 3.5: Pilot experiment: Profile plot of the response as a function of OD in replicate II for the
green level (green), the blue level (blue), the white level (white) and the red level (red).

38



Figure 3.6: Pilot experiment: Box-plot of the response as a function of colour for replicate II.
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Figure 3.7: Pilot experiment: Box-plot of the response as a function of OD for replicate II.

Checking model assumptions

To investigate if the full model in (3.6) is a good fit to the data, we check if the model
assumptions hold. By making a residual plot as described in Section 2.8, we are able to
investigate if the residuals behave as independent variables with constant variance. The
residual plot in Figure 3.8 indicates some correlations in the residuals. For fitted values
between minus five to zero and five to ten, the residuals are positive. For fitted values
between zero and five, the residuals are negative. This is an indication of that the model
is not a good fit to the data. In multiple linear regression we assume all observations to be
independent, so we have a violation of the model assumptions. In addition, the response
variable in this experiment is in fact right truncated normal distributed. By using a multiple
linear regression model, we have assumed the response variable to be normally distributed.
The residual plot in Figure 3.9 of the reduced model in (3.4) where we exclude red, we
see that the residuals are more evenly spread around a horizontal line. This indicates that
a multiple linear regression model without red included is a better fit to the data than the
full model. This may be due to that the effect of red deviates largely from the other levels
of colour, which leads to a big variability between the colours.

The Q-Q plot for the full model in (3.6) in Figure 3.10 shows an approximately straight
line, which is consistent with the assumption of normally distributed errors in (3.6). The
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Q-Q plot in Figure 3.11 of the reduced model where red is excluded shows some deviations
from the straight line. This indicates that the errors might not be normal distributed for
the reduced model in (3.4). The reason for this may be that more lice move into the light
reflections for blue, green and white making the respective distribution truncated.

Figure 3.8: Pilot experiment: Residual plot of the full model in (3.6)
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Figure 3.9: Pilot experiment: Residual plot of the reduced model in (3.4) (red is taken out)
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Figure 3.10: Pilot experiment: Q-Q plot of the full model in (3.3)
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Figure 3.11: Pilot experiment: Q-Q plot of the reduced model in (3.4) (red is taken out)

3.2.5 Estimation of the Theoretical Response

The plot in Figure 3.5 indicates that the salmon lice might be limited by the wall of the
aquarium for blue, green and white, and hence we assume that the response variable is
right truncated normal distributed.

By using the method described in Section 2.7.2, we are able to estimate the distance
the salmon lice could have moved in 48 minutes without this limitation. The estimation
is done for blue, green and white at OD2. The limit b in this case, will be the distance
between the baseline and the wall where the light source is positioned. Let X̄nw denote
the response for these salmon lice which have not moved into the wall after 48 minutes.
We have the random variable X̄nw distributed as the random variable in (2.54). In this
case, we have found the variance of X̄nw from the data, and then used (2.56) to find an
estimate of σ2. From this we obtained the expected value of Z from (2.61). Finally, the
total estimated distance for all salmon lice, E[x̄t], was found using (2.62). All calculations
are done using an implemented algorithm in R. The algorithm is shown in Section 4.5.2 in
the Appendix.

Since we in the pilot experiment have assumed that the decrease in detected amount of
salmon lice were due to that they disappeared into the light, and thus assumed full response
for these, we obtain a large amount of salmon lice which moved into the wall. Comparing
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the response of the salmon lice which had not moved into the wall, against the limit b, we
see that this distance are quite big. As an example, for blue the limit b is equal 24.70 cm,
the distance of salmon lice which have not moved into the wall, x̄nw, is equal 9.12 cm
and the proportion of salmon lice which have moved into the wall is equal 0.41. Since the
difference between b and x̄nw is this big, it is unlikely that the proportion of salmon lice
which have moved into the wall is that high. Not only does this assumption weaken the
results from the pilot experiment, it also makes it difficult to estimate a realistic distance
of the salmon lice without the limitation of the wall. In order to demonstrate the method
described in Section 3.12, we subtract 9 cm from the limit b.

Table 3.12 shows the estimated distances the salmon lice could have moved without the
limitation of the wall and the actual distances the salmon lice moved within the aquarium.
White has the biggest difference between the estimated- and actual distance. This might
be due to that a greater amount of salmon lice had moved into the wall for white compared
to blue and green.

Table 3.8: Pilot Experiment: Estimated- and Actual Distances

Colour Estimated Distance Actual Distance
blue 11.89 10.80
green 13.16 11.11
white 13.12 9.85
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Figure 3.12: Pilot experiment: Plot of the estimated distances (B.e, G.e and W.e) and the actual
distances (B.a, G.a and W.a) for blue, green and white.

3.3 The Main Experiment

3.3.1 Factors and Levels
The aim of the main experiment was to investigate the phototactic response of the salmon
lice, and compare the effect of the different sources of light on the response variable. Based
on the results from the pilot experiment, we were able to reduce the number of levels in
our main experiment. The analysis in Section 3.2.4 shows that red has low effect on the
response variable, and is thus excluded from the main experiment. From the analysis in
Section 3.2.4, we see that OD3 and OD2 have significant estimated main effects. To inves-
tigate if there is a significant difference between distinct levels of OD without time being
a confounding factor, we decided to include OD5, OD3 and OD1 in the main experiment.
OD5 corresponds to the level at which some salmon lice responded in the pilot experiment,
but not all. OD3 is included in the main experiment because it showed to have a significant
main effect on the response variable in the pilot experiment and OD1 is included to maybe
provoke an even stronger response. In addition, all four levels of pulsation were included
in the main experiment.

As a supplement to the different sources of light, we decided to look at how time influ-
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ence the response variable. Time has levels time1 up to time7, where time1 corresponds
to the first minute with light exposure, time2 corresponds to the second minute of light
exposure and so on.

3.3.2 Response Variable

Detection and extraction of the centroids of the detected salmon lice were provided by
Maria Arild Solstad and Live Forfang Bjørnstad as described in Bjørnstad and Solstad
(Pre-print). The salmon lice were recorded with a camera of 815× 2448 pixles, obtaining
16 frames per second. In the main experiment, there was no problem with salmon lice
disappearing into the light when responding towards the light. The mean position of the
salmon lice (distance from light source in cm) before the light was turned on is used as
baseline in the experiment. The response variable used in the main experiment is the
mean position of the salmon lice (distance from baseline in cm) for each minute. The
response variable was calculated by taking the mean position for each minute, and then
subtracting each position from the baseline. Positive values corresponds to salmon lice
moving towards the light source. A summary of the data from the main experiment is
shown in Table 4.2 in the Appendix.

3.3.3 Design of the Main Experiment

To eliminate the effect of nuisance factors on the response variable, we designed the main
experiment with three replicates. Within each replicate, each combination of the levels of
factors were run in a randomized order. Each combination of the levels was run for 10
minutes. The first three minutes was conducted with no light at all, and then the seven last
minutes were conducted with light.

Three levels of colour, three levels of OD and four levels of pulsation make up a total
of 36 runs within each replicate. Due to practical reasons, each replicate was conducted
over two days, with eighteen runs each day. This is an incomplete block design, where the
days corresponds to blocks in our experiment.

3.3.4 Execution of the Main Experiment

The day before each experiment, the aquarium was washed and filled up with filtrated
seawater to prevent bubbles on the glass of the aquarium, and 150-200 salmon lice were
counted and transferred to the raceway. The salmon lice were then left undisturbed in
the dark over night. The morning after the water and air temperature was measured, the
near-infrared light turned on and the light source set to the right combination of treatments.
After the experimental setup was ready, the salmon lice were stirred carefully to make sure
the salmon lice were evenly spread out and then dark acclimatized for five minutes before
the first run started. Between each run, the salmon lice were stirred and the light source
set to a new combination of treatments. Then the salmon lice were dark acclimatized for
five minutes, before the next run started.

For each day with experiments, different salmon lice were used. The first day we used
salmon lice at 8 days past moulting, the second day salmon lice at 9 days past moulting,

47



the third day salmon lice at 12 days past moulting, the fourth and fifth days salmon lice at
1 day past moulting and the sixth day salmon lice at 2 days past moulting.

As described in Section 3.1, near-infrared (IR) light was used in the experiment to
make the salmon lice detectable in the videos. To investigate if the IR light had any ef-
fect on the response variable, three runs with IR light were executed in the same way as
described above. The light source was replaced with one of the IR lamps used in the ex-
periment. The first run was conducted the first day of experiments, the second run was
conducted the second day of experiments and the third run was conducted the fifth day
of experiments. Summary of the data including IR light is shown in Table 4.3 in the Ap-
pendix.

3.3.5 Analysis of the Main Experiment
Comparing Factor Means

The main experiment is analyzed with intrablock analysis as described in Section 2.3.2.
To investigate if there is any difference in the factor means with intrablock analysis of
variance, we consider the block effects as fixed. We analyze the effect of time, colour, OD,
pulsation and the interactions of these. To analyze the effect of IR light on the response
variable, we include IR light as a factor in our model. The corresponding model is

yrijkm = µ+ βr + τi + γj + αk + δm + λ

+ (τγ)ij + (τα)ik + (τδ)im

+ (γα)jk + (γδ)jm + (αδ)km

+ (τγα)ijk + (τγδ)ijm + (ταδ)ikm

+ (γαδ)jkm + (τγαδ)ijkm + εrijkm

r = 1, .., 6

i = 1, .., 3

j = 1, .., 3

k = 1, .., 4

m = 1, .., 7

(3.7)

where µ is the mean effect of all observations, βr is the main effect of the rth block, τi is
the main effect of the ith colour, γj is the main effect of the jth level of OD, αk is the main
effect of the kth pulsation and δm is the main effect of the mth time. λ is the main effect
of the IR light. εrijkm is the i.i.d random error with εrijkm ∼ N(0, σ2). In addition we
have the two-way interactions, where (τγ)ij is the effect of the interaction between the ith
colour and the jth level of OD. The rest of the two-way coupled coefficients are interpreted
in the same way.

For the three-way interactions we have (τγα)ijk which is the effect of the interac-
tion between the ith colour, the jth level of OD and the kth pulsation. The rest of the
three-way coupled coefficients are interpreted in the same way. The four-way interaction,
(τγαδ)ijkm, is the effect of the interaction between the ith colour, the jth level of OD, the
kth pulsation and the mth time.
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The model was fitted using the function aov in the package stats. Summary of the
intrablock analysis of variance of the model in (3.7) is shown in Table 3.9.

Table 3.9: Main Experiment: Intrablock Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)
IR 1 1.44 1.44 0.64 0.4230
time 6 113.54 18.92 8.46 0.0000
colour 2 13.16 6.58 2.94 0.0536
OD 2 45.75 22.87 10.23 0.0000
pulsation 3 20.32 6.77 3.03 0.0291
block 5 337.79 67.56 30.22 0.0000
time:colour 18 17.58 0.98 0.44 0.9797
time:OD 12 9.42 0.79 0.35 0.9787
colour:OD 4 22.44 5.61 2.51 0.0411
time:pulsation 18 16.98 0.94 0.42 0.9833
colour:pulsation 6 31.41 5.24 2.34 0.0306
OD:pulsation 6 95.33 15.89 7.11 0.0000
time:colour:OD 24 9.66 0.40 0.18 1.0000
time:colour:pulsation 36 20.72 0.58 0.26 1.0000
time:OD:pulsation 36 22.87 0.64 0.28 1.0000
colour:OD:pulsation 12 117.86 9.82 4.39 0.0000
time:colour:OD:pulsation 72 36.08 0.50 0.22 1.0000
Residuals 513 1146.90 2.24

The intrablock analysis of variance shows that time, OD and pulsation have a signifi-
cant effect on the response variable at a 5% significance level. Colour has a p-value equal
0.054, and is thus significant at a 10% significance level. We see that colour and pulsation
contributes less to the variation in the data, compared to time and OD. Block has a very
high mean square compared to the other main effects, which indicates that there is differ-
ence in the response due to block. Evaluating the interactions, the summary shows that all
interactions are significant, except those who include time. The summary also shows that
IR light do not have a significant effect on the response variable, with a p-value equal 0.42.

Comparing Level Means

Due to complete randomization of the treatments within each replicate, we use the multiple
linear regression models in Section 2.6.1 to compare the effects of each level of the factors.
We still consider the block effects as fixed when estimating the effects of the levels. Since
the interactions including time showed to be non-significant, we exclude these from our
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model. The reduced model is then

yrijkm = µ+ βr + τi + γj + αk + δm

+ (τγ)ij + (τα)ik + (γα)jk + (τγα)ijk + εrijkm



r = 1, .., 6

i = 1, .., 3

j = 1, .., 3

k = 1, .., 4

m = 1, .., 7

(3.8)

where we have µ as the grand mean effect of all levels. βr is the main effect of the
rth block, τi is the main effect of the ith colour, γj is the main effect of the jth level of
OD, αk is the main effect of the kth pulsation and δm is the main effect of the mth time.
εrijkm is the i.i.d random error with εrijkm ∼ N(0, σ2). In addition we have the two-way
interactions, where (τγ)ij is the effect of the interaction between the ith colour and the
jth level of OD, (τα)ik is the effect of the interaction between the ith colour and the kth
pulsation and (γα)jk is the effect of the interaction between the jth level of OD and the
kth pulsation. For the three-way interaction we have (τγα)ijk which is the effect of the
interaction between the ith colour, the jth level of OD and the kth pulsation.
In addition we have the constraints∑6
r=1 βr = 0∑3
i=1 τi = 0∑3
j=1 γj = 0∑4
k=1 αk = 0∑7
m=1 δm = 0

For the two-way interactions we have the constraints∑3
j=1(τγ)ij = 0, i = 1, .., 3∑3
i=1(τγ)ij = 0, j = 1, .., 3∑4
k=1(τα)ik = 0, i = 1, .., 3∑3
i=1(τα)ik = 0, k = 1, .., 4∑4
k=1(γα)jk = 0, j = 1, .., 3∑3
j=1(γα)jk = 0, k = 1, .., 4

For the three-way interactions we have the constraints∑3
i=1(τγα)ijk = 0, j = 1, .., 3, k = 1, .., 4∑3
j=1(τγα)ijk = 0, i = 1, .., 3, k = 1, .., 4∑4
k=1(τγα)ijk = 0, i = 1, .., 3, j = 1, .., 3

The model was fitted using the function lm in the package stats. A summary of the model
in (3.8) is shown in Table 3.10.
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Table 3.10: Main Experiment: Summary of the Multiple Linear Model in (3.8)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.5400 0.0482 11.20 0.0000

time1 -0.5685 0.1181 -4.81 0.0000
time2 -0.3119 0.1181 -2.64 0.0085
time3 -0.1868 0.1181 -1.58 0.1142
time4 0.0076 0.1181 0.06 0.9489
time5 0.0453 0.1181 0.38 0.7017
time6 0.2790 0.1181 2.36 0.0184

colourB -0.2278 0.0704 -3.23 0.0013
colourG 0.1727 0.0690 2.50 0.0125

OD1 0.2504 0.0684 3.66 0.0003
OD3 0.0996 0.0686 1.45 0.1473

pulsation0 -0.0840 0.0852 -0.99 0.3244
pulsation1 -0.0578 0.0853 -0.68 0.4979
pulsation2 0.2194 0.0904 2.43 0.0155

block1 -0.1565 0.1231 -1.27 0.2040
block2 1.0533 0.1243 8.47 0.0000
block3 0.4427 0.1243 3.56 0.0004
block4 -0.9955 0.1242 -8.02 0.0000
block5 -0.5446 0.1242 -4.39 0.0000

colourB:OD1 0.1803 0.0976 1.85 0.0651
colourG:OD1 -0.1008 0.0982 -1.03 0.3049
colourB:OD3 -0.3117 0.0981 -3.18 0.0015
colourG:OD3 0.3074 0.0986 3.12 0.0019

colourB:pulsation0 -0.1500 0.1205 -1.24 0.2136
colourG:pulsation0 0.2612 0.1247 2.09 0.0366
colourB:pulsation1 0.1844 0.1205 1.53 0.1264
colourG:pulsation1 -0.0738 0.1184 -0.62 0.5333
colourB:pulsation2 0.2674 0.1207 2.22 0.0270
colourG:pulsation2 -0.2261 0.1277 -1.77 0.0771

OD1:pulsation0 0.0266 0.1194 0.22 0.8237
OD3:pulsation0 0.3840 0.1209 3.18 0.0016
OD1:pulsation1 -0.7090 0.1181 -6.00 0.0000
OD3:pulsation1 0.2798 0.1216 2.30 0.0217
OD1:pulsation2 0.2732 0.1190 2.30 0.0220
OD3:pulsation2 -0.3744 0.1206 -3.10 0.0020

colourB:OD1:pulsation0 0.5011 0.1738 2.88 0.0041
colourG:OD1:pulsation0 -0.2102 0.1717 -1.22 0.2214
colourB:OD3:pulsation0 0.2551 0.1679 1.52 0.1290
colourG:OD3:pulsation0 -0.2992 0.1698 -1.76 0.0784
colourB:OD1:pulsation1 -0.5061 0.1716 -2.95 0.0033
colourG:OD1:pulsation1 0.1431 0.1823 0.79 0.4327
colourB:OD3:pulsation1 0.3152 0.1695 1.86 0.0634
colourG:OD3:pulsation1 -0.0711 0.1681 -0.42 0.6723
colourB:OD1:pulsation2 -0.4386 0.1683 -2.61 0.0093
colourG:OD1:pulsation2 0.2967 0.1675 1.77 0.0769
colourB:OD3:pulsation2 0.4925 0.1729 2.85 0.0045
colourG:OD3:pulsation2 0.0043 0.1707 0.03 0.9799
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To analyze the effect of the levels, we have used effect coding in R. The estimated
main effects of the levels sum to zero as specified in the model in (3.8). The estimated
main effects are thus the deviation from the overall mean effect of all levels. Looking at
the summary in Table 3.10 we see that the grand mean effect of all levels is equal 0.54.

Evaluating the main effect of blocks in our model, we see that the estimated main
effect of block1 is not significant. Block1 corresponds to the first day of experiments, with
salmon lice at 8 days past moulting. Block2, which corresponds to the second day with
salmon lice at 9 days past moulting, has a significant estimated main effect equal 1.05.
Block3 with salmon lice at 12 days moulting, has a significant estimated main effect equal
0.44. Block4 and block5, both with salmon lice at 1 one day past moulting have significant
negative estimated effects. Using

∑6
r=1 βr = 0, we find the estimated main effect of

block6 to be 0.20. Block6 corresponds to the sixth day of experiments, with salmon lice
at 2 days past moulting. Since blocks are confounded with the days past moulting of the
salmon lice used that particular day (block), it is hard to tell if the estimated main effects
are due to blocks or the days past moulting of the salmon lice.

The main effect of time is increasing as the levels of time increases. The summary
shows that the first minute has a significant negative estimated main effect. The sixth
minute has a significant main effect equal 0.28. The estimated main effect of the seventh
minute is found to be 0.74. This corresponds to the plot in Figure 3.13, where we see that
the means of the response variable are close to zero for all levels of time, but there is a
slight increase as the levels of time increases, showing an approximately linear relationship
between the levels of time and the response variable. We also observe that as the time
increases, spread in the data increases. This indicates that the salmon lice swim both
towards and away from the light source when exposed to light.

Analyzing the levels of colour, the summary shows that blue has a significant estimated
main effect equal -0.23 and green has a significant estimated main effect equal 0.17. White
has an estimated main effect equal 0.06. The plot in Figure 3.14 shows that the medians
of the response for each of the levels are small, so there is no strong relationship between
colours and the response variable. This indicates that the colours do not have a high
influence on the response variable.

OD1 has a significant estimated main effect equal 0.25 and the estimated main effect
of OD5 is found to be -0.35. The estimated main effect of OD3 is equal 0.10 and is not
significant. The plot in Figure 3.15 shows that the medians of the response variable are
close to zero for all levels of OD, but there are outliers in both direction for OD1. This
might be an indication of that the salmon lice moves towards and away from the light
source for OD1.

Evaluating the effects of pulsation, we see that pulsation2 has a significant estimated
main effect equal 0.22. The estimated main effects of Pulsation0 and pulsation1 are not
significant, equal -0.08 and -0.06 respectively. The estimated main effect of pulsation3 is
found to be -0.08.

Analyzing the two-way interactions, we first find the estimated parameters of the omit-
ted interactions. These are found by using the constraints in (3.8). As an example, we have
the constraint

colourB : OD1 + colourB : OD3 + colourB : OD5 = 0 (3.9)
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From (3.9) we find the estimated parameter of the interaction, colourB:OD5, to be 0.13.
Summary of the omitted estimated parameters of the two-way interactions are shown in
Table 3.11.

The interaction between green and OD3 has a significant estimated parameter equal
0.3074, which is the highest of the interactions between colour and OD. Evaluating the
estimated parameters between colour and pulsation, we see that the interactions between
green and pulsation0, blue and pulsation2 and white and pulsation3 have the highest esti-
mated parameters equal 0.26, 0.27 and 0.26 respectively. Among the interactions between
OD and pulsation there are several significant estimated parameters. The interaction be-
tween OD5 and pulsation1 has the highest estimated parameter equal 0.43, followed by
the interaction between OD1 and pulsation3 with estimated parameter equal 0.41.

The estimated parameters of the omitted three-way interactions are found by using the
constraints in (3.8). Finding the estimated parameter of the interaction colourB:OD1:pulsation3,
we have the constraint

colourB : OD1 : pulsation0 + colourB : OD1 : pulsation1

+ colourB : OD1 : pulsation2 + colourB : OD1 : pulsation3

= 0

(3.10)

Using (3.10), we find the estimated parameter of colourB:OD1:pulsation3 to be 0.44. Sum-
mary of the omitted estimated parameters for the three-way interactions is found in Table
3.12.

The estimated contributions on the response variable can be found by summing es-
timated main effects and estimated interaction parameters. As an example, consider the
level combination blue, OD1 and pulsation0. The estimated contribution on the response
variable is then found as

τ̂colourB + γ̂OD1 + α̂pulsation0 + ˆ(τγ)colourB:OD1

+ ˆ(τα)colourB:pulsation0 + ˆ(γα)OD1:pulsation0

+ ˆ(τγα)colourB:OD1:pulsation0

= −0.2278 + 0.2504− 0.0840 + 0.1803− 0.1500 + 0.0266 + 0.5011

= 0.4966

(3.11)

Summary of the estimated contributions from all level combinations are shown in Table
3.13.

The summary in Table 3.13 shows that the level combination green, OD1 and pulsa-
tion2 has the highest estimated contribution on the response variable equal 0.89, followed
by the level combination green, OD3 and pulsation0 and white, OD1 and pulsation2 with
estimated contributions equal 0.84 and 0.82 respectively. To find the total estimated re-
sponse at a given level combination, we need to sum the estimated contribution from that
level combination and intercept at a given level of time and block. We find the highest
estimated response with the level combination green, OD1 and pulsation2 at time7 and
block2 to be 3.22.
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Table 3.11: Main Experiment: Omitted Estimated Parameters of the Two-Way Interactions

Estimate
colourB:OD5 0.1314
colourG:OD5 -0.4082
colourW:OD1 -0.0795
colourW:OD3 0.0043
colourW:OD5 0.0752

colourB:pulsation3 -0.3018
colourG:pulsation3 0.0387
colourW:pulsation0 -0.1112
colourW:pulsation1 -0.1106
colourW:pulsation2 -0.0413
colourW:pulsation3 0.2631

OD1:pulsation3 0.4092
OD3:pulsation3 -0.2894
OD5:pulsation0 -0.4106
OD5:pulsation1 0.4292
OD5:pulsation2 0.1012
OD5:pulsation3 -0.1198

54



Table 3.12: Main Experiment: Omitted Estimated Parameters of the Three-Way Interactions

Estimate
colourB:OD1:pulsation3 0.4436
colourB:OD3:pulsation3 -1.0628
colourG:OD1:pulsation3 -0.2296
colourG:OD3:pulsation3 0.3660
colourB:OD5:pulsation0 -0.7562
colourB:OD5:pulsation1 0.1909
colourB:OD5:pulsation2 -0.0536
colourB:OD5:pulsation3 0.6192
colourG:OD5:pulsation0 0.5094
colourG:OD5:pulsation1 -0.0720
colourG:OD5:pulsation2 -0.3010
colourG:OD5:pulsation3 -0.1364
colourW:OD1:pulsation0 -0.2909
colourW:OD1:pulsation1 0.3630
colourW:OD1:pulsation2 0.1419
colourW:OD1:pulsation3 -0.2140
colourW:OD3:pulsation0 0.0441
colourW:OD3:pulsation1 -0.2441
colourW:OD3:pulsation2 -0.4968
colourW:OD3:pulsation3 0.6968
colourW:OD5:pulsation0 0.2468
colourW:OD5:pulsation1 -0.1189
colourW:OD5:pulsation2 0.3546
colourW:OD5:pulsation3 -0.4825
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Table 3.13: Main Experiment: Estimated Contributions on the Response Variable

Estimate
colourB:OD1:pulsation0 0.4966
colourG:OD1:pulsation0 0.3159
colourB:OD3:pulsation0 -0.0348
colourG:OD3:pulsation0 0.8417
colourB:OD1:pulsation1 -0.8856
colourG:OD1:pulsation1 -0.3752
colourB:OD3:pulsation1 0.2817
colourG:OD3:pulsation1 0.6568
colourB:OD1:pulsation2 0.5243
colourG:OD1:pulsation2 0.8855
colourB:OD3:pulsation2 0.1650
colourG:OD3:pulsation2 0.2029
colourB:OD1:pulsation3 0.6763
colourB:OD3:pulsation3 -2.1715
colourG:OD1:pulsation3 0.4630
colourG:OD3:pulsation3 0.6174
colourB:OD5:pulsation0 -1.8472
colourB:OD5:pulsation1 0.3003
colourB:OD5:pulsation2 0.0880
colourB:OD5:pulsation3 -0.3264
colourG:OD5:pulsation0 -0.3095
colourG:OD5:pulsation1 -0.3599
colourG:OD5:pulsation2 -0.7920
colourG:OD5:pulsation3 -0.8806
colourW:OD1:pulsation0 -0.2335
colourW:OD1:pulsation1 -0.2884
colourW:OD1:pulsation2 0.8192
colourW:OD1:pulsation3 0.6067
colourW:OD3:pulsation0 0.3919
colourW:OD3:pulsation1 0.0263
colourW:OD3:pulsation2 -0.5341
colourW:OD3:pulsation3 0.7519
colourW:OD5:pulsation0 -0.5787
colourW:OD5:pulsation1 -0.0778
colourW:OD5:pulsation2 0.4142
colourW:OD5:pulsation3 -0.6365
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Figure 3.13: Main experiment: Box-plot of the response as a function of time
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Figure 3.14: Main experiment: Box-plot of the response as a function of colour
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Figure 3.15: Main experiment: Box-plot of the response as a function of OD
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Figure 3.16: Main experiment: Box-plot of the response as a function of pulsation

Checking Model Assumptions

For the linear regression model in (3.8), we assume the residuals to be normal distributed
and independent of the factors. The residual plot in Figure 3.17 of the model shows that
for fitted values between -2 and 2, there is no distinct pattern of the residuals. For fitted
values smaller than -2 and greater than 2, the residuals shows a tendency to be positive.
The Q-Q plot in Figure 3.18 shows that the residuals are approximately normal distributed.
For values lower than -2 and greater than 2, we see that the Q-Q plot deviates some from
the straight line. From these two plots, it seems like the model in (3.8) fits data between
-2 and 2 best.
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Figure 3.17: Main experiment: Residual plot of the model in (3.8)
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Figure 3.18: Main experiment: Q-Q plot of the model in (3.8)
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Chapter 4
Summary and Conclusion

The aim of this thesis was to design and analyze experiments in order to obtain valid and
objective findings about the phototactic response of salmon lice. The response variable in
these experiments is defined as the distance at which the salmon lice have moved when
exposed to the different treatments of light. The independent factors in these experiments
are colour, optical density (OD) and pulsation. Colour consists of the levels white, blue
with emission peak at 455 nm, green with emission peak at 525 nm and red with emission
peak at 640 nm. Optical density consists of the levels OD1 to OD7, where OD1 corre-
sponds to letting 0.1 of all the light through. Optical density is logaritmic, decreasing the
irradiance by 10% of the previous level for each increasing OD number. Pulsation consists
of the levels pulsation0 to pulsation3. Pulsation0 corresponds to the light being constantly
on, pulsation1 corresponds to light being 0.1 seconds on and 0.1 seconds off, pulsation2
corresponds to light being 2 seconds on and 3 seconds off and pulsation3 corresponds to
light being 5 seconds on and 5 seconds off.

First a pilot experiment was conducted to possibly reduce the number of levels of the
factors colour and optical density, before the main experiment was conducted with the
factors colour, optical density and pulsation. This chapter provides an overview of the
experimental designs, the main results and recommendations for further work.

4.1 The Pilot Experiment
The pilot experiment was conducted as a split-plot experiment, with increasing levels of
OD within each level of colour such that the effect of OD was confounded with time. Due
to the increasing levels of OD within each level of colour, the pilot experiment was in fact
conducted as a repeated measurement experiment.

The analysis shows that red (with emission peak at 640 nm) do not have a significant
main effect on the response variable, and was thus excluded from the main experiment.
OD2 to OD7 were included in the pilot experiment, and the analysis shows that OD3 and
OD2 have a significant effect on the response variable. In the main experiment we decided
to include OD5, OD3 and OD1. OD5 was included to have a level in the transition phase,

63



where only some of the salmon lice responded. OD3 was included in the main experiment
based on the analysis showing a significant effect on the response variable at OD3, and
OD1 was included to maybe provoke an even stronger response.

4.2 The Main Experiment

The main experiment was conducted as an incomplete block design, and the results were
analyzed with intrablock analysis of variance by considering the block effects as fixed.

The analysis shows that there is difference in the response due to block, and block2
with salmon lice at 9 days past moulting shows to have the highest estimated main effect
equal 1.05. Block4 with salmon lice at 1 day past moulting shows to have the lowest
estimated main effect equal -1.00. It is not possible to tell if the block effects are due to
blocks or days past moulting of the salmon lice, since they are confounded.

The analysis shows that phototactic response of the salmon lice increases as the inten-
sity of light increases. OD1 shows to have a significant estimated main effect equal 0.25
at a 5% significance level. OD3 with estimated main effect equal 0.10 is not significant,
while the analysis shows that OD5 has a negative estimated main effect on the response
variable compared to the mean effect of all levels of the factors. This correspond to pre-
vious studies which showed that bright light had a higher effect on the response compared
to medium and dim light (Fields et al., 2017).

Comparing the effect between blue, green and white, the analysis shows that green
(with emission peak at 525 nm) has the highest significant estimated main effect equal
0.17. The estimated main effect of white is 0.06 and the estimated main effect of blue
(with emission peak at 455 nm) is equal -0.23 compared to the mean effect of all levels
of the factors. This results are consistent with previous research, which have shown that
a wavelength at 550 nm obtained the best response and a wavelength at 400 nm obtained
the lowest response (Bron et al., 1993).

The estimated effect of pulsation2 with an ON:OFF cycle (2:3 s) shows to have a
significant estimated main effect equal 0.22, which is the highest among the levels of pul-
sation. Pulsation1 with cycle (0.1:0.1 s), pulsation0 (light constantly on) and pulsation3
with cycle (5:5 s) do not have significant main effects equal -0.06, -0.08 and -0.08 respec-
tively. The study by Fields et al. (2017) showed that all levels of pulsation in their study
had a significant estimated effect on the response variable. Pulsation with an ON:OFF
cycle (1.8:0.9) had the lowest effect on the phototactic response, and attracted 24 percent
of the salmon lice. Pulsation with cycle (3.5:5.5 s) attracted 80 percent of the salmon lice,
and an increase of the OFF time to 16.5 s did not show a significant higher effect on the
phototactic response.

Comparing the pilot experiment and the main experiment, we observe that the response
variable in the pilot experiment obtained a greater value for each of the treatments. In
the pilot experiment the salmon lice were exposed to light for 48 minutes, while in the
main experiment the salmon lice were exposed to light for seven minutes. This could be
an indication that time is a factor with high effect on the phototactic response. In the
main experiment, the last and seventh minute has the highest estimated main effect on the
response variable equal 0.74.
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The analysis shows that contribution from the level combination green, OD1 and pul-
sation2 gives the highest estimated phototactic response of salmon lice. The estimated
contribution to the response from this level combination is equal 0.89. The highest esti-
mated response is obtained with this level combination at time7 and block2, and is equal
3.22. The level combination blue, OD3 and pulsation3 has an estimated contribution on
the response variable equal -2.17, which is the lowest of all the level combinations. The
estimated response at time7 and block2 with this level combination is equal 0.16.

4.3 Recommendations for Further Work
This study have showed that the level combination green, OD1 and pulsation2 make up
the light source with the highest estimated contribution on the response variable. If light is
to be used as a method to reduce the infection rate of salmon lice, it would be interesting
to investigate if this light source have an effect on salmon lice which are already attached
to a host salmon.

In these experiments, a raceway with length 40 cm was used, which leads to a limita-
tion for the salmon lice. That is, salmon lice which moved into the wall where the light
source was positioned, were not able to respond any further. By using an aquarium with a
longer raceway, it would be possible to observe the range the salmon lice potential could
have moved. The range of the phototactic response would be important findings in the
research on whether light can used as a method to reduce the infection rate of salmon lice.

The analysis shows that time influenced the length of which the salmon lice moved.
By carrying out experimental runs for a longer time period, one can investigate further the
effect of time on the phototactic response of salmon lice. It could be interesting to look
at when the effect of time decreases, and do not longer show a significant effect on the
response variable.
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Appendix

4.4 Data

Table 4.1: Summary of the Data from the Pilot Experiment

replicate colour OD response3
1 I :24 B:18 2:12 Min. :-5.4727
2 II :24 G:18 3:12 1st Qu.:-0.2337
3 III:24 R:18 4:12 Median : 0.5656
4 W:18 5:12 Mean : 2.1042
5 6:12 3rd Qu.: 3.1193
6 7:12 Max. :12.2426

Table 4.2: Summary of the Data from the Main Experiment

replicate block time colour OD pulsation response
1 I :252 1:126 1:108 B:252 1:252 0:189 Min. :-5.4045
2 II :252 2:126 2:108 G:252 3:252 1:189 1st Qu.:-0.3541
3 III:252 3:126 3:108 W:252 5:252 2:189 Median : 0.4009
4 4:126 4:108 3:189 Mean : 0.5400
5 5:126 5:108 3rd Qu.: 1.3042
6 6:126 6:108 Max. : 8.3361
7 7:108

Table 4.3: Summary of the Data including IR Light from the Main Experiment

replicate block time colour IR OD pulsation response
1 I :259 1:133 1:111 0: 21 off:756 0: 21 0:210 Min. :-5.4045
2 II :259 2:133 2:111 B:252 on : 21 1:252 1:189 1st Qu.:-0.3532
3 III:259 3:126 3:111 G:252 3:252 2:189 Median : 0.4059
4 4:126 4:111 W:252 5:252 3:189 Mean : 0.5328
5 5:133 5:111 3rd Qu.: 1.2919
6 6:126 6:111 Max. : 8.3361
7 7:111
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4.5 Results Pilot Experiment

4.5.1 Linear Mixed Effects Model for data.pilot
Formula: response3 ~ OD + (1 | replicate/colour)

Data: data.pilot

REML criterion at convergence: 327

Scaled residuals:
Min 1Q Median 3Q Max

-2.38565 -0.46965 0.02598 0.56559 1.78009

Random effects:
Groups Name Variance Std.Dev.
colour:replicate (Intercept) 6.716 2.592
replicate (Intercept) 7.188 2.681
Residual 4.270 2.066

Number of obs: 72, groups: colour:replicate, 12; replicate, 3

Fixed effects:
Estimate Std. Error t value

(Intercept) 0.5640 1.8198 0.310
OD2 2.6506 0.8436 3.142
OD3 2.2036 0.8436 2.612
OD4 2.5537 0.8436 3.027
OD5 1.6358 0.8436 1.939
OD6 0.1976 0.8436 0.234

Correlation of Fixed Effects:
(Intr) OD2 OD3 OD4 OD5

OD2 -0.232
OD3 -0.232 0.500
OD4 -0.232 0.500 0.500
OD5 -0.232 0.500 0.500 0.500
OD6 -0.232 0.500 0.500 0.500 0.500
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4.5.2 Implemented Algorithm in R - Finding Estimated Response

#NA: Salmon l i c e t h a t we assume have gone i n t o t h e w a l l
t r u n c a t e d _ p i l o t = f u n c t i o n ( c o o r d i n a t e s ) {

coo r = c o o r d i n a t e s
# removing t h e f i r s t 14 m i n u t e s ( o f da rk )
v = coo r [−c ( 1 : 2 1 0 0 0 ) , ]
v = as . m a t r i x ( v )
v [ v >1900]= NA
# 1500 rows a r e e q u i v a l e n t t o one minu te
m = 1500
# c o n v e r t i n g from p i x l e s t o cm and f i n d i n g t h e b a s e l i n e
r a t i o = 40/1920
m a t r i x . b a s e l i n e = v [ 1 :m, ]
m a t r i x . b a s e l i n e . cm = m a t r i x ( 0 , nrow ( m a t r i x . b a s e l i n e ) , n c o l (

m a t r i x . b a s e l i n e ) )
f o r ( i i n 1 : nrow ( m a t r i x . b a s e l i n e ) ) {

f o r ( j i n 1 : n c o l ( m a t r i x . b a s e l i n e ) ) {
i f ( ! i s . na ( m a t r i x . b a s e l i n e [ i , j ] ) ) {

m a t r i x . b a s e l i n e . cm [ i , j ] = m a t r i x . b a s e l i n e [ i , j ]∗
r a t i o

}
}

}

b a s e l i n e = mean ( m a t r i x . b a s e l i n e . cm [ m a t r i x . b a s e l i n e . cm> 0 ] )
# M a t r i x t h a t c o r r e s p o n d s t o t h e l a s t minu te o f OD2
m a t r i x . od2 = v [ 7 2 0 0 0 : 7 3 5 0 0 , ]
m a t r i x . od2 . cm = m a t r i x ( 0 , nrow ( m a t r i x . od2 ) , n c o l ( m a t r i x . od2

) )

f o r ( i i n 1 : nrow ( m a t r i x . od2 ) ) {
f o r ( j i n 1 : n c o l ( m a t r i x . od2 ) ) {

i f ( ! i s . na ( m a t r i x . od2 [ i , j ] ) ) {
m a t r i x . od2 . cm [ i , j ] = m a t r i x . od2 [ i , j ]∗ r a t i o

}
}

}

# D i s t a n c e s between t h e b a s e l i n e and t h e p o s i t i o n a t OD2
d i s t a n c e = m a t r i x ( 0 , nrow ( m a t r i x . od2 . cm ) , n c o l ( m a t r i x . od2 .

cm ) )
f o r ( i i n 1 : nrow ( m a t r i x . od2 . cm ) ) {

f o r ( j i n 1 : n c o l ( m a t r i x . od2 . cm ) ) {
i f ( m a t r i x . od2 . cm [ i , j ] ! = 0 ) {

d i s t a n c e [ i , j ] = m a t r i x . od2 . cm [ i , j ]− b a s e l i n e
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}
}

}

# f i n d i n g x . nw and v a r i a n c e o f x . nw
x . nw = mean ( d i s t a n c e [ d i s t a n c e > 0 ] )
g = as . v e c t o r ( d i s t a n c e )
v a r . x . nw = v a r ( g [ d i s t a n c e > 0 ] )
# f i n d i n g m.w and m. nw
l = v [ 7 3 5 0 0 , ]

m.w = sum ( i s . na ( l ) )
m. nw = l e n g t h ( l )−m.w
# p o r p o t i o n .w = 1− r and p o r p o t i o n . nw = r
p o r p o t i o n .w = m.w / (m. nw+m.w)
p o r p o t i o n . nw = m. nw / (m.w+m. nw )
# f i n d n i n g t h e l i m i t b
b = 31 − b a s e l i n e
#The i n v e r s e c u m u l a t i v e
i c = qnorm ( p o r p o t i o n . nw )
#The p r o b a b i l i t y d e n s i t y
pd = dnorm ( i c )
#The e s t i m a t e d v a r i a n c e s2
s2 = v a r . x . nw/(1− i c ∗pd / p o r p o t i o n . nw−(pd / p o r p o t i o n . nw ) ^2 )
s= s q r t ( s2 )
#The e x p e c t e d v a l u e o f z
o = ( b−x . nw ) / ( s q r t ( ( 1 /m.w) + ( 1 /m. nw ) ) ∗ s )
dp . z = dnorm ( o )
c . z = pnorm ( o )
gamma = s q r t ( ( 1 /m.w) + ( 1 /m. nw ) ) ∗ s ∗dp . z /(1− c . z )
x .w = gamma + x . nw
x . t = x . nw∗ p o r p o t i o n . nw + x .w∗ p o r p o t i o n .w
r e t u r n ( c ( e s t i m a t e d . d i s t a n c e = x . t ) )

}
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