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Problem Description
CEAS (Cross Entropy Ant System) is a distributed, robust and adaptive
swarm intelligence system for path management in communication
networks. The CEAS is performing adaptive multi-path load sharing and
stochastic routing with
fast restoration on link failures. Previous work have shown that CEAS
is robust and efficient in solving complex optimisation problems
like finding primary and backup paths and p-cycles in networks, and
also finding paths in network with changes in topology and traffic
load and patterns.

In CEAS there is a trade-off between management overhead (number of
management packets) and path recovery times. In previous work the
overhead is partly reduced by introduction of elitism, and self-
tuning of the ant rate and conducting ant replication in the nodes.
It has also been shown that the convergence rate will be reduced when
different ants cooperate when they have (partly) overlapping targets.
The cooperation through pheromones is the main focus in this assignment.
1. Investigate and propose pheromone sharing strategies (continuation
of project)
2. Propose network test scenario and implement in simulator (ns2, DEMOS)
3. Identify relevant performance metrics for quantification of
pheromone sharing
4. Setup and conduct series of simulations of at least one scenario
5. Evaluate pheromone sharing strategies (pro et contra)
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Supervisor: Poul Einar Heegaard, ITEM





Abstract

Traditional routing protocols build routing tables that are optimized on one

parameter only, this parameter is typically hop counts. With the introduction of

new requirements, brought forth by a wide range of communication intensive,

real-time multimedia applications, more sophisticated routing techniques are

required. However, computing routes subject to different requirements and in

environments with changing traffic patterns and network topologies, is often

computationally excessive and the problems are frequently NP hard.

Swarm based algorithms, inspired by the foraging behavior of ants are candi-

dates to solve such routing problems. To ensure system robustness and scala-

bility, routing should be truly distributed and adaptive. The Cross Entropy Ants

System (CEAS) is an adaptive, robust and distributed routing and management

system based on swarm intelligence. CEAS is performing stochastic routing

with fast restoration on link failures. Previous work has shown that CEAS is

robust and efficient in solving complex optimization problems such as finding

primary and backup paths or simple cyclic paths (p-cycles) in networks.

In all swarm systems there is a tradeoff between performance and manage-

ment overhead (number of management packets). The focus in this work is

on reducing the overhead in terms of management packets generated in CEAS.

To achieve this, a new algorithm is proposed that applies pheromone sharing

between sources going to identical destinations. Performance results from sim-

ulations show that the new CEAS system presented in this report outperforms

the original CEAS in most scenarios.
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CHAPTER1
INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

With the introduction of new routing requirements, brought forth by a wide

range of communication intensive, real-time multimedia applications, more so-

phisticated routing techniques are required in todays communication networks.

Performance requirements, Quality of Service (QoS), load balancing and scala-

bility are thus becoming increasingly important factors concerning modern net-

work routing. All paths between sources and destinations in a network should

be chosen such that low latency, low loss and high throughput are achieved

even in dynamic environments. Simultaneously an overall good utilization of

network resources should be ensured. However, computing such routes is often

computationally excessive and the problems are frequently NP hard. Several

stochastic optimization techniques to path management have been proposed.

Common to these is the assumption of a centralized overview of the problem

and that the problem does not change until a solution is found. System robust-

ness would increase if path management and routing are truly distributed. For

an example of this, we need to look no further than the Internet.

Algorithms inspired by the native behavior of ants have been proposed to solve

combinatorial optimization problems, see [Dorigo and Caro, 1999] and refer-

ences therein. These systems are referred to as swarm intelligence systems,

and have been applied to many types of problems, ranging from the traveling

salesman problem, sequential ordering, graph coloring, routing in telecommu-

nications networks and so on. Swarm intelligence systems are candidates to

meet the requirements of complex path and fault management problems in to-

days networks.
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1.2. RELATED WORKS

In previous work, an adaptive, robust and distributed routing and management

system has been developed [Helvik and Wittner, 2001]. The system is based

on swarm intelligence and combines the behavior of foraging ants with an opti-

mization technique from rare event theory called the cross entropy method. The

system, from now denoted Cross Entropy Ants System (CEAS), carry out path

management in communication networks in an asynchronous and distributed

manner. The overall idea is to have a number of ant-like mobile agents search-

ing for paths in a network. When a path is found the ant backtracks and leaves

markings called pheromones in each node. The pheromone values are used by

other ants in the search for optimal paths.

In all swarm systems there is a tradeoff between performance and manage-

ment overhead (number of ant packets). This project focuses on reducing the

overhead in terms of ant packets generated in CEAS. The new CEAS, from

now on denoted subpath CEAS, applies pheromone sharing between ants from

different sources going to identical destinations. The numbers of ants as well

as the pheromone tables are reduced by letting different sources cooperate in

their path search. Pheromone sharing is achieved by making the pheromones

destination specific by splitting the main path into several subpaths that are

maintained individually.

A description of the original CEAS is given in Chapter 2, followed by a presen-

tation of the new subpath CEAS in Chapter 3. The results from a comparative

study of the two systems are given in Chapter 5.

1.2 RELATED WORKS

In this section related works regarding the topics in this project are presented.

Note that the selected publications do not represent an exhaustive list, and

some works, which are considered significant by others, may not be included

here.

[Dorigo and Caro, 1999] gives an overview of basic biological findings on real

ants and their artificial counterparts in the swarm algorithms. It describes com-

binatorial optimization and routing in communications networks where ant al-

2



CHAPTER 1. INTRODUCTION

gorithms may be applied.

The Cross Entropy Ants System [Helvik and Wittner, 2001], is an adaptive,

robust and distributed routing and management system, which forms the foun-

dation of the work presented in this report. The algorithm is based on Rubin-

stein’s method for stochastic optimization [Rubinstein, 1999]. Previous works

have shown that CEAS are robust and efficient in solving complex optimization

problems. Dependable routing in terms of finding primary paths with backup

paths or simple cyclic paths (p-cycles) is investigated in [Wittner and Helvik,

2002, Wittner et al., 2005]. CEAS used in network management are examined

in [Heegaard et al., 2005] and a demonstrator that visualizes the ant based

routing and monitoring on small routers was implemented in [Heegaard and

Fuglem, 2006].

The overhead of CEAS is measured in the number of ant packets, size of rout-

ing tables, path evaluations and pheromone updates. Several approaches to

reduce the overhead in CEAS have been studied. [Wittner et al., 2003b,a]

uses CEAS to find resources in networks introducing cooperation between ants

with partly overlapping QoS profiles, however the approach is different from

the cooperation strategy suggested in this report. Another approach to reduce

management overhead in CEAS is introduced in [Heegaard and Wittner, 2006].

The overhead is reduced by self-tuned packet rate control. Self-tuned rate con-

trol can be used to increase the ant rate when failures occur, or when a path

search converge. A self-tuned rate control is likely to be effective in different

CEAS applications. A third approach to limit managements overhead is de-

scribed in [Heegaard et al., 2004]. It uses the concept of elite selection in which

only ants following paths with cost values among the best so far are triggering

a pheromone update. The elite selection are further examined and included in

the new CEAS system presented in this report.

3



1.3. RESEARCH METHODS

1.3 RESEARCH METHODS

The research performed in this work uses common research methods in order

to ensure sound and reproducible results. As illustrated in Figure 1.1 it starts

with a research hypothesis that is evaluated by simulations. The following steps

outline the general research process:

Hypothesis

The work is based on a research hypothesis. The hypothesis typically poses a

question such as ”Will the new algorithm perform better than the original one?”

The main goal with the rest of the process is to try to answer the question.

The main hypotheses in this project are given below:

1. Will the new CEAS perform better than the original one?
2. Is elite selection equally efficient in the new system as in the original one?
3. Will cyclic paths have influence on the new CEAS?
4. Is it possible to achieve an efficient cooperation between different sources?
5. Is it possible to reduce the amount of management packets with the new

algorithm?

For more about the hypothesis tested in this work see Section 3.4, where the

expected performance of the new system is addressed.

Figure 1.1: Research process
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CHAPTER 1. INTRODUCTION

Investigation method

Simulations may incorporate a lot of details of a system, although an analytical

model would possibly give better understanding of underlying factors. With

an analytical model a wide range of parameters can be examined using signif-

icantly less time compared to simulations, however most of the issues consid-

ered in this work are too complex to be fully captured in an analytical model.

Therefore, in order to evaluate the hypothesis given in this report, simulations

have been employed.

Simulations

For all the simulations, Network Simulator 2 (NS2)1 has been utilized. NS2 is

a discrete event simulator with software packets to simulate a communication

network from the link layer and up, for both wired and wireless networks. NS2

routing modules, that was first developed in [Helvik and Wittner, 2001], have

been used as a foundation for the new simulator. The modules are written

in C++ and have been modified and expanded to implement the new subpath

system. 20 independent replications have been run for each simulation, and the

resulting 95 percent confidence intervals have been calculated. The simulation

model is described in detail in Chapter 4.

Results

The results obtained from the simulations are used for both model validation

and evaluation of the hypothesis. The results are first compared to the expected

logical behavior of the simulation model. If the simulation shows unexpected

behavior the initial studies are reevaluated to find a logical explanation. If no

logical explanation is found, further testing of the simulator code is carried

out to discover possible flaws. Eventually the results are used to evaluate the

hypothesis. An evaluation of the hypothesis can best be done after a variation

of input parameters and exploration of the parameter space.

1For more information about NS2 see http://www.isi.edu/nsnam/ns/
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CHAPTER2
CROSS ENTROPY ANTS SYSTEM

The Cross Entropy Ants System (CEAS), first introduced in [Helvik and Wit-

tner, 2001], forms the foundation for the work presented in this report. The

CEAS uses a cross entropy based method to guide mobile agents finding paths

in a network. It is a distributed algorithm based on Rubinstein’s method for

stochastic optimization [Rubinstein, 1999]. The overall idea is to have a num-

ber of ant-like mobile agents searching for paths in a network. When a path

is found the ant backtracks and leaves markings, called pheromones, in each

node. The pheromone values are used by other ants in the search for optimal

paths. In this Chapter the functionalities of the original Cross Entropy Ants

System are described.

2.1 CROSS ENTROPY

A cross-entropy method [de Boer et al., 2002] involves an iterative procedure

where each iteration can be broken down into two phases:

1. Generate a random data sample according to a specified mechanism.

2. Applying Cross Entropy and the sampled data, update the parameters of

the random mechanism such that the probability of producing a ”better”

sample in the next iteration is increased.

Cross-entropy is a very useful tool for solving many difficult and often NP-hard
problems. It defines a precise mathematical way of deriving fast learning rules,
these can for example be used in rare event simulations in reliability and perfor-
mance analysis of telecommunication systems.[de Boer et al., 2002]

7



2.2. THE CEAS ALGORITHM

2.2 THE CEAS ALGORITHM

Real ant colonies have a foraging behavior finding shortest paths between a

food source and the nest. Ants deposit on the ground a substance called pheromones.

Ants can smell the pheromones and tend to probabilistically follow paths with

strong pheromones. Ants tend to travel approximately with the same speed

while depositing pheromones at approximately the same rate. The ants that

follow short paths will pass obstacles faster, hence seen from the other side of

the obstacle there will be more ants from the shortest path. When ants then

approach the obstacle from that other side they smell stronger pheromones on

the shortest path, hence when ants are traveling back and forth the shortest

path will be chosen more frequently from both sides. For details see [Dorigo

and Caro, 1999] and references therein.

The artificial ants applied in CEAS are, unlike their biological counterparts,

not leaving any pheromones when they move forth. When they arrive at the

target the path they followed are evaluated and weighted relative to historical

paths. Then they are returned the same way back leaving pheromones relative

to the performance of their path. The CEAS algorithm basically consists of

three functionalities, forward search, path evaluation and pheromone updates.
The functionalities are described in detail in the following.

2.2.1 Forward search

A sequence of mobile agents, from now on called forward ants, is sent out

from a source to a destination. There are two different types of forward ants,

exploration ants and maintenance ants. A maintenance ant, also called normal

ant, chooses the next hop probabilities, pt,ij, based on the pheromone values

in the node according to Equation 2.1, where Tt,ij is the pheromone value at

time t over interface j in node i for ant species of a specific source destination

pair. Exploration ants use no information in the nodes but choose the next hop

randomly.

8



CHAPTER 2. Cross Entropy Ants System

pt,ij =
Tt,ij∑

∀k

Tt,ik

(2.1)

2.2.2 Path Evaluation

When an ant reaches its destination, a cost value, L(π), for the path is calcu-

lated. Based on this cost value, the Boltzmann function is applied as a perfor-

mance function, Equation 2.2. Historical performance values are weighted de-

creasingly as time goes by, giving a geometrical weighted average performance.

Equation 2.3 shows the autoregressive version of the averaging function. In the

applied Boltzmann function, L(π) is the potential function and γ is the control

parameter, from now on called temperature. Figure 2.1 shows the Boltzmann

function and we see that a decreasing temperature, γ, puts an increasing weight

on the smaller path costs relative to larger cost values. The temperature can be

found from Equation 2.4. It is calculated through a first order Taylor expansion

to avoid storing all previous cost values (see [Helvik and Wittner, 2001] for de-

tails). The temperature will decrease and stabilize when more ants arrive and

the empirical routing tables (pheromone tables) converge.

H(γ, π) = e−
L(π)

γ (2.2)

ht = βht−dt + (1− β)e
−L(πt)

γt (2.3)

9



2.2. THE CEAS ALGORITHM

γt =
B+L(πt)·exp

„
− L(πt)

γt+∆t

«
„

1+
L(πt)
γt+∆t

«
·exp

„
− L(πt)

γt+∆t

«
+A−ρ 1−βM+1

1−β

where :

A← β(A + (1 + L(πt)
γt

) exp(−L(πt)

γt

))

B ← β(B + (1 + L(πt) exp(−L(πt)

γt

))

γt −∆t← γt

M ←M + 1

The initial values are A = B = M = 0 and γ0 = −L(π0)
ln(ρ)

β ∈ [0, 1] is the autoregressive memory factor, typically close to one.

ρ ∈ [10−6, 10−2] is a search focus parameter.

(2.4)

Figure 2.1: Illustration of the Boltzmann function (Equation 2.2) Decreasing tem-
perature, γ, puts an increasing weight on the smaller path costs.
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CHAPTER 2. Cross Entropy Ants System

2.2.3 Backward updates

A backward ant is returned to update pheromone values in each intermediate

node based on the path evaluation. The pheromone value can be calculated

by equation 2.5, where M is the number of previously arrived backward ants

and Tj is the pheromone value of outgoing link j. γ0 is the temperature of the

last arriving ant, γ−1 is the temperature of the ant that arrived just before that

and so on. The equation is unsuited for solving in a network node since it is

transcendental1 and the storage of a potentially infinite number of path costs

is required. Equation 2.6 that is a first order Taylor expansion of each term

in Equation 2.5 is therefore used as well as auto regression, see [Helvik and

Wittner, 2001] for further details.

Tj =
0∑

i=−M

I({j} ∈ π0)β
−i exp(

L(πi)

γ0

) (2.5)

Tj = I({j} ∈ π0)e
−L(π0)

γ0 + Aj +

 −
Bj

γ0
+

Cj

γ2
0
, 1

γ0
〈 Bj

2Cj

−B2
j

4Cj
, otherwise

where :

Aj ← β(Aj + I({j} ∈ π0)e
−L(π0)

γ0 (1 + L(π0)
γ0

(1 + L(π0)
2γ0

)))

Bj ← β(Bj + I({j} ∈ π0)e
−L(π0)

γ0 (L(π0) + L(π0)2

γ0
))

Cj ← β(Cj + I({j} ∈ π0)e
−L(π0)

γ0 · L(π0)2

2
)

(2.6)

1A transcendental number is a (possibly complex) number that is not the root of
any integer polynomial, meaning that it is not an algebraic number of any degree.
[Weisstein, Eric W. "Transcendental Number." From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/TranscendentalNumber.html]
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CHAPTER3
PHEROMONE SHARING

The performance of CEAS, described in Chapter 2 depends much on the ant

rate. A high ant rate combined with a high beta value (long memory) en-

ables CEAS to solve even NP complete problems efficiently [Helvik and Wittner,

2001]. This means that there is a tradeoff between performance and overhead

in terms of ant packets. To reduce overhead and increase scalability additional

features have been proposed. The elite selection functionality proposed in [Hee-

gaard et al., 2004] ensures that only paths with relatively low cost, compared

to historical costs, are sent back to update the pheromone tables. The elite selec-
tion has shown improved performances both in the speed of convergence and

the quality of the path found.

The focus of the work presented in this report is to reduce the size of pheromone

tables (routing tables) and, like in [Heegaard et al., 2004], to reduce overhead

in terms of ant packets. The strategy suggests cooperation between ants from

different sources going to identical destinations. The general idea is to make

the pheromone values to be destination specific instead of maintaining distinct

pheromone values for each source-destination pair. This is achieved by splitting

the mainpath into subpaths that are maintained individually. The new Cross

Entropy Ants System, denoted subpath CEAS, is described in the following.

3.1 SUBPATH CEAS

The objective of pheromone sharing is to reduce the size of routing tables and

by this make CEAS more scalable. Hopefully another benefit from these meth-

ods is faster convergence of pheromone tables, and less overhead in terms of

ant packets as well. In current implementations of CEAS , the routing tables

13



3.1. SUBPATH CEAS

Figure 3.1: In the figure three subpaths and pertaining pheromones are shared be-
tween red and blue ant species. The subpaths are {5,6,7,R}, {6,7,R} and {7,R}

consist of separate pheromone values for each active source-destination pair.

Frequently a node is the requested resource of several users and becomes the

destination of many different sources, the situation is illustrated in Figure 3.1.

According to Bellman’s principle of optimality1 this causes ants from different

source nodes to follow identical paths when they approach the destination. If

the different sources cooperate when searching for the best path to a given

destination, the search will converge faster and lead to less overhead in the

network due to number of ants necessary. A pheromone value in intermedi-

ate nodes will no longer be specific for one ant-specie i.e. a pair of source

and destination, but indicate the best path from the current node to a specific

destination.

In the following the required extensions and changes to the basic functionalities

in CEAS to enable cooperation between ants are described. A subpath strategy

is introduced that considers cost from each intermediate node toward the desti-

nation. For example if the mainpath is {1 2 3 4}, it will consist of the following

three subpaths; {3 4}, {2 3 4} and {1 2 3 4}. In the following a path, πsd,

between the source and destination will be denoted a mainpath and a path πid

1Bellman’s principle of optimality says that if we have found an optimal path from A to B
through C, we have also found an optimal path from A to C and from C to B
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CHAPTER 3. PHEROMONE SHARING

from one of the nodes to the destination will be denoted a subpath.

3.1.1 Forward search and path evaluation

The cost from each node along the mainpath must be collected during forward

search. This will increase the size of ant packets to some extent. At the desti-

nation a temperature, γid, needs to be calculated for each of the subpaths, πid,

by Equation 3.1 which is a subpath indexed version of Equation 2.4. This will

result in increased computational overhead per ant in the destination node.

γid,t =
B+L(πid,t)·exp

„
−

L(πid,t)

γid,t+∆t

«
„

1+
L(πid,t)

γid,t+∆t

«
·exp

„
−

L(πid,t)

γidt+∆t

«
+A−ρ 1−βM+1

1−β

where :

A← β(A + (1 +
L(πid,t)

γid,t
) exp(−L(πid,t)

γid,t

))

B ← β(B + (1 + L(πid,t) exp(−L(πid,t)

γid,t

))

γid,t −∆t← γid,t

M ←M + 1

(3.1)

3.1.2 Backward updates

In the original Cross Entropy Ants System, described in Chapter 2, all pheromones

were updated from the temperature of the mainpath. By introducing subpaths

and pheromone sharing, each subpath will have its own temperature and the

pheromones in a node are updated by Equation 2.6 on the basis of the cor-

responding subpath and its temperature. The backward ants need to carry

temperatures and cost values for each subpath. This will increase the size of

backward ants to some extent, although no extra computations during back-

ward updates are introduced.
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3.2 ELITE SELECTION

In the original CEAS, paths from all incoming forward ants are returned to up-

date pheromone values. This result in the temperature being calculated and a

backward ant returned even if it the path cost is very poor. In [Heegaard et al.,

2004] the concept of elite selection is introduced in order to reduce the over-

head of backward ants carrying insignificant updates. Only path costs within

a certain bound relative to the best path costs found will trigger pheromone

updates. The elite selection criterion is given by Equation 3.2. (for details see

[Heegaard et al., 2004]). CEAS with elite selection has shown improved per-

formances both in the speed of convergence and the quality of the path found.

When elite selection is implemented with subpath CEAS, elite selection must be

performed on each subpath. If one of the subpaths satisfies its elite criterion, a

backward ant is returned, however pheromone updates will only be performed

in nodes approved by elite selection. Since all subpaths need to be disapproved

by elite selection to reduce overhead in terms of backward ants, this reduces

the benefits of elite selection. However, elite selection’s focus on good paths

will still potentially increase the speed of convergence.

L(π) 〈 − γ · ln(ρ) (3.2)

Explorer ants

As mentioned in Chapter 2 there are two different types of ants, normal ants
and explorer ants. [Heegaard et al., 2004] does not address explorer ants al-

though there is a question if elite selection should be performed on all ant types

or only on normal ants. Three different elite selection strategies are examined

in this work, namely, 1) No elite selection, 2) Elite selection on all ant types and

3) Elite selection only on normal ants, e.i. explorer ants are not included in

calculations of the elite criterion and they are always returned as backward

ants. Note that with elite selection two temperatures are maintained, one to
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CHAPTER 3. PHEROMONE SHARING

calculate the elite criterion and another to calculate pheromone updates. The

elite selection strategies differ in how those two temperatures are updated. If

elite selection is performed on all ant types, the first temperature, controlling

the elite criterion, is updated by all incoming ants, while the second tempera-

ture, controlling pheromone updates, is only updated by ants approved by elite

selection. However if elite selection is only performed on normal ants, the tem-

perature controlling the elite criterion is only updated by normal ants, while

the temperature controlling pheromone updates is updated by all explorer ants

and the normal ants approved by the elite criterion. The effects of different

elite selection strategies are investigated in Chapter 5.2 for both the subpath

CEAS and the original CEAS.

3.3 CYCLIC PATHS

In the original CEAS cycles in a path are not considered a problem. Cyclic paths

will probably under perform and soon be discarded by elite selection if elite

selection is implemented. One of the drawbacks of the subpath approach is the

increased number of temperature calculations in the destination node, one for

each hop. Cyclic paths can be very long and result in an excessive amount of

unnecessary computations in the destination node. Another issue with cycles

and the subpath CEAS, is that cycles will create several different subpaths from

each intermediate node and by this trigger several pheromone updates in each

node caused by one single backward ant. This will probably disturb the algo-

rithm and make it less effective. Some modifications to the algorithm should

therefore be included to handle cyclic paths in the subpath CEAS. There are

several options on how to treat cycles in a path, they differ in how much in-

formation from the traversed path they preserve and how much computational

overhead they add. One should note that increased computational overhead

introduced by cycle treatment will result in fewer calculations in terms of path

evaluations and pheromone updates, and decreased network load because of

shorter backward paths.

Three different approaches on how to treat cycles are proposed in Table 3.1.

No cycle treatment may result in long mainpaths and a lot of subpaths, and for
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Cycle treatment method Cons Pros

No cycle treatment Possible long paths resulting in increased
temperature calculations and pheromone
updates. Increased network load be-
cause of long backward paths. Several
pheromone updates in each node reduc-
ing focus on the best path.

No need for functionalities to detect or
remove cycles.

Prevent cycles during forward
search

Loss of information. Increased first
through time.

Easy to detect cycles, no extra computa-
tions in destination node. Limited path
length reduces network load.

Remove cycles in destination
node

Increased computations in destination.
Some loss of information in destination.

Less temperature calculations and
shorter backward paths than no cycle
treatment.

Table 3.1: Comparison of the three cycle treatment methods

each subpath a temperature needs to be calculated. During backward updates

this will lead to several pheromone updates in each node, possibly disturbing

the algorithm. Preventing cycles during forward search, means to simply drop all

ants going in cycles, this may result in a long first through time. Removing all

cycles in a path before doing path evaluations is relatively easy, although when

this is done in a straight forward manner, the remaining path may not be the

best path indicated by the cyclic path, hence some information is lost. A way

to maintain all information from a cyclic path is to find all possible non-cyclic

subpaths within the mainpath. This is a costly operation and not suited to be ap-

plied for each ant. To implement a sophisticated cycle removing algorithm will

most likely not improve the performance very much relative to the increased

computational burden. The three cycle treatment methods suggested here will

be examined in Chapter 5.2 for the new subpath CEAS and the original CEAS

as well.

3.4 PERFORMANCE

With the subpath algorithm, the following aspects are expected to increase per-

formances:

• The pheromone updates in intermediate nodes are updated on what costs

the node sees toward the destination, not what the source node sees.

• The pheromone updates will not be affected by poor path choices preceding

the node.
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CHAPTER 3. PHEROMONE SHARING

• The above aspects will probably result in faster convergence of pheromones

near the destination, which will shrink the search space for subsequent ants.

• Possibility of cooperation between ants from different sources going to iden-

tical destination. A successful cooperation will increase performances.

• A new connection may benefit from pheromones placed by mature connec-

tions.

A fast convergence in nodes closer to the destination may have both positive

and negative effects on the convergence in preceding nodes dependent of net-

work topology. For example in a topology such as Figure 5.1, where an ant

in the source has two options, going to node four or node five. In this topol-

ogy a fast convergence in node six will not necessary have any impact on the

forwarding in the source node, because both interfaces are equally influenced.

However, if the interfaces resulted in two disjoint paths toward the destination,

an early convergence in nodes close to the destination on one of the interfaces

could result in better cost values on this interface even though the best path

between source and destination is on the other interface.

Overhead

The memory consumption in the intermediate nodes are decreased with the

subpath CEAS. In a network with N nodes the maximum number of source-

destination pairs is N · (N − 1) = O(N2), using the original source-destination

specific pheromones. In the subpath CEAS a routing entry is destination spe-

cific, and the maximum routing table will be reduced to N − 1, that is O(N).

In a network with 100 nodes the worst case routing table size will be reduced

from 9900 to 99.

Although an increased performance is expected with subpath CEAS compared

to the original CEAS it does not come for free. Subpath CEAS puts an increased

computational load on the destination node for each arriving ant. The Path

from each node visited by an ant needs to be evaluated individually. The worst

case number of temperature calculations is limited by the TTL field. In the
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original CEAS only one temperature calculation is necessary per ant, two with

elite selection. It is possible to let each intermediate node maintain their own

temperature and do their own path evaluations, but it is a not straight forward

how such a strategy can be integrated with elite selection.

With an efficient cooperation between sources in their path search the ant rate

per source can be reduced. If a faster convergence is obtained, the ant rate can

be reduced and still perform adequately. With a method to detect convergence

the ant rate could be reduced at the time of convergence. When comparing

overhead of different systems in Chapter 5 the overhead is measured at the

time of convergence, hence a fast convergence will reduce the overhead of the

system. One should note that the ant rate during the search is not reduced by

this, i.e. the destination must still be able to cope with the maximum ant rate.
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CHAPTER4
SIMULATION MODEL AND IMPLEMENTATION

The algorithm in the Cross Entropy Ants System (CEAS) involves a large num-

ber of stochastic processes working in parallel, hence the system is difficult to

examine analytically. CEAS is therefore studied in a series of simulation ex-

periments in Network Simulator 2 (NS2)1. NS2 is a discrete event simulator

including software packets to simulate a communication network from the link

layer and up, for both wired and wireless networks.

4.1 SIMULATOR BASICS

NS2 is a well tested simulator package that is implemented as a mix of C++

classes in a kernel performing heavy computations and OTcl2 classes which act

as the interface to users. Simple usage of NS2 does not require any source code

knowledge, however in complex simulations, modifications to the NS2 proto-

cols or even totally new protocols need to be implemented. The NS2 packet

includes different transport protocols, routing protocols, scheduling disciplines

and traffic generators.

There are basically three entity types constituting a NS2 simulator, those are

nodes, links and agents. When designing a new simulator, nodes are created

and connected by links. Agents are specified and bound to the nodes, they act

as the sources and sinks for data and management packets. Traffic generators

are also added and a simulation scenario specified. A simulation example is

shown in Figure 4.1.

1For more information about NS2, see http://www.isi.edu/nsnam/ns/
2OTcl, short for MIT Object Tcl, is an extension to Tcl/Tk for object-oriented programming.

(http://otcl-tclcl.sourceforge.net/otcl/)
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Figure 4.1: NS2 simulation example

It is essential for researchers, which are evaluating new protocols and schemes,

to be able to implement new functionalities not covered in NS2. In [Helvik and

Wittner, 2001] a new routing module was implemented that supports CEAS

functionalities. Standard routing implementations in NS2 are implemented as

routing modules. In general, every routing module consists of three function

blocks:

• Routing agent - Exchanges routing packets with neighbor nodes.

• Route logic - Uses the information gathered by routing agents to perform the

route calculations.

• Classifiers - Use the computed routing table to perform packet forwarding.

When implementing a new routing protocol it is not necessary to implement all

of these three blocks. In the CEAS routing module, illustrated in Figure 4.2, all

alterations of routing data are performed by the routing agent, and there is no

separate route logic block. Classifiers provide a way to match a packet against

some logical criteria and retrieve a reference to another simulation object based

on the results. The swarm classifiers identify swarm packets and map them to

the swarm module where they are put into a swarm packet queue. Forwarding

based on pheromone tables are performed by the swarm rtagent. The swarm

packets are fetched from the queue by swarm rtagents (routing agents) and the

CEAS data are read. Rtagents are reinitialized when a new swarm packet is
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Figure 4.2: Structure of a CEAS node

ready to be processed. Rtagents are implemented as state machines that exe-

cute CEAS functionalities like forward search, path evaluation and pheromone
updates. The swarm rtagents maintain temperature auto regression parameters

if the current node is a destination node. During forward search rtagents look

up pheromone values in the pheromone tables, and during backward updates

they alter those pheromone tables.

To summarize, the states of the system are saved both in nodes, in terms of

pheromone tables and temperatures, and in data packets, in terms of ant behav-

ior type (forward/backward). Only the packet references are passed between

nodes. The nodes contain their own logic, and they may have different func-

tionalities such as generator, router or destination. The red arrows in Figure

4.2 indicate how ant packets are handled in a CEAS node. Classes modified to

implement the subpath system are colored blue in the figure.

In this work the CEAS rtagent has been rewritten in order to implement the

new subpath CEAS presented in Chapter 3. Each node has its own rtagent and

it includes all the functionalities in the CEAS algorithm performed on a per

packet basis. The pheromones have been changed to allow destination specific

pheromones. The temperature auto regression parameters have been changed

to be subpath specific, and pheromone IDs, unique for each connection, are in
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the new implementation merely used in statistics. Since all the logic is located

in the rtagent the payload in swarm packets only contains swarm data. This

includes ant type, path cost, temperature and route record. The swarm packets

have been expanded such that link costs and temperatures are implemented

as lists indexed by the route record. Functionality for different elite selection

strategies and cycle treatment methods have been implemented in the new rta-
gent, and new parameters for elite selection and cycle treatment are added to

the TCL interface in the generator class. This allows parameter passing be-

tween TCL user scripts and NS2 C++ classes. Some modifications and new

functions in the trace class were also implemented to meet requirements of the

case studies presented in this work. For access to the source code of the new

NS2 modules see Appendix A

4.2 PRODUCTION

All simulations in this report are run with 20 replications with different seeds

for the random generator. To decrease the processing time, simulations have

been carried out on a server cluster at the Department of Telematics at the Nor-

wegian University of Science and Technology (NTNU). The simulation output

from all the replications are synchronized and post processed with the AWK3

programming language. Explorer ants are tagged during sampling and ex-

cluded in all calculations except in the forward ant and backward ant coun-

ters. The plots from the simulation results have been generated with gnuplot4.

Figure 4.3 illustrates the simulation process.

3AWK is a general purpose programming language designed for processing text-based data
4Gnuplot is a versatile command-line driven program that can generate plots of functions

and data.
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Figure 4.3: Simulation process.
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4.3 PARAMETERS

The input parameters to the simulator are given in the TCL user script. Default

values are listed below.

Seed: 171175 + simid (A different simid is given for each replication)

Simulation time: 30 000 seconds (simulated)

Ant-rate normal: 1.0 per second

Ant-rate explorer: 0.1 per second

(Ratio between explorer ants and normal ants is 1:10)

Init phase: 10 / ant-rate

(All ants are explorers in the init phase)

TTL: 130 hops (Time To Live)

Processing delay: 0

(The total delay is specified for each link in the topology)

Beta: 0.998

(Evaporation, for details see [Helvik and Wittner, 2001])

Rho: 0.01

(Search focus, for details see [Helvik and Wittner, 2001])

Elite selection: Elite selection only on normal ants

(For details see Chapter 3.2)

Cycle treatment: Remove cycles in destination

(For details see Chapter 3.3)

4.4 TOPOLOGIES

Two different topologies are used in the case studies, a ten node network and

a 216 node nationwide communication network. The Ten node network, de-

picted in Figure 5.1 was chosen because it has a regular structure that should

be well suited for cooperation and easy to examine. The 216 node network,

depicted in Figure 5.12 is the former backbone topology of a major Internet

provider in Norway. It consists of 10 core routers in a partly meshed topology,

a ring based edge network with a total of 46 routers, and a dual homing access
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network with 160 access routers. The relative transmission capacities are 1,

1/4 and 1/16 for core, edge and access links respectively. The average number

of hops between the access routers is 6.37. This topology was chosen to provide

a realistic setting for the new subpath CEAS with cooperation.

Dynamic environments

NS2 has functionalities to simulate network dynamics such as link failures. In

this work the systems are studied in three phases, first, the initial phase where

sources start their path search, second, the failure phase where one or more

network links fail, and third, the restoration phase where links are restored.

The cost values are defined as the link delay. The delays of each link are spec-

ified in the topology and are constant. Since CEAS ants are not influenced by

traffic load in the case studies carried out here, no transient time is necessary.

However, the performance in the failure phase and restoration phase are de-

pendent on how the system performed during previous phases. The different

systems are therefore easiest compared in the initial phase when the condi-

tions are known and equal for all systems, i.e. no existent pheromones in the

network.
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CHAPTER5
CASE STUDIES

This chapter presents simulation studies of the subpath Cross Entropy Ants

System (CEAS). The different case studies are divided into the following three

sections:

Section 5.2, Elite selection and cycle treatment:

Different elite selection strategies and cycle treatment methods are exam-

ined. Both the original CEAS and the new subpath CEAS, described in Chap-

ter 3, are studied with different elite selection strategies and cycle treatment

strategies.

Section 5.3, Subpath CEAS versus original CEAS:

The performance of the subpath CEAS is compared to the original CEAS in

detail. Reduced ant rate is examined to disclose a possible overhead reduction

in the subpath CEAS.

Section 5.4, Pheromone sharing:

Cooperation between sources through pheromone sharing is studied. The

cooperative systems are based on the subpath CEAS and are compared to the

original CEAS and the subpath CEAS without cooperation as well.
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5.1 PERFORMANCE METRICS

The following performance metrics are applied when comparing the systems in

the different case studies:

Average cost - Average cost between source and destination. The average

costs are plotted with 95 percent confidence intervals.

Most popular path - Most popular path the last 100 seconds for the majority

of the simulation replications.

Path convergence - The share of normal ants following the most popular path.

The path convergence is plotted with 95 percent confidence intervals.

No of forward ants - Number of forward ants generated.

No of backward ants - Number of backward ants returned.

No of tours - Total number of forward ants and backward ants.

No of temperature calculations - Total number of temperature calculations in

the destination node.

Time to best theoretical path found - Point in time when the best theoretical

path is first followed by a normal ant. The best path is not considered

detected when only explorer ants have followed the path, because an

explorer ant following the best path is only a coincidence. When the

simulation starts, all ants are explorers for a small amount of time, hence

the shortest time to best theoretical path found is when the first normal

ant is generated.

Time to best path found - Point in time when the best path within a given

time interval was first discovered by a normal ant. When the simulation

starts, all ants are explorers for a small amount of time, hence the shortest

time to best path found is when the first normal ant is generated.

Best path found - Best path found by a normal ant within a given time inter-

val.
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Convergence time - Point in time when 80 percent of the normal ants follow

identical paths with respect to path cost. The percentage is calculated for

each 100 second, hence the shortest convergence time is 100 seconds.

Converged value - Cost of converged path. The converged path may not be

the theoretical best path, however the theoretical best path may be found

at a later point of time. The best converged value among all replications

shows if the theoretical best path was ever found. The worst converged

value shows the worst miss among the replications, i.e. the highest path

cost one of the replications converged to.

5.2 ELITE SELECTION AND CYCLE TREATMENT

Elite selection[Heegaard et al., 2004] showed improved performance applied

to the original CEAS because elite selection increases the focus on the best paths

and reduces overhead by not returning unnecessary backward ants. Increased

performance of elite selection is expected for the subpath CEAS as well, how-

ever backward ants will be returned as long as one of the subpaths is approved

by elite selection, hence more ants are returned as backward ants. The stud-

ies in this section are carried out in order to see how different elite selection

strategies and cycle treatment methods affect the Cross Entropy Ants System.

The different strategies are applied to both the original system and the subpath

system, in order to see if there are differences between the two systems with

respect to various strategies, e.i. are one cycle treatment preferable in both the

subpath CEAS and the original CEAS?

Some questions concerning elite selection and explorer ants are not addressed

in [Heegaard et al., 2004], namely if exploration ants should be included in

the elite selection functionalities. If exploration ants are discarded by elite

selection it is possible that backup paths will not be marked during a stable

phase. This may cause the system to react slower to network dynamics. It is

also possible that elite selection will narrow the search too much leading to

increased convergence times or a premature convergence. A possible solution

to these problems is to exclude explorer ants from elite selection functionalities,

31



5.2. ELITE SELECTION AND CYCLE TREATMENT

hence explorer ants will always be returned to update pheromones. Recalling

from Section 3.2 and 3.3, three different elite selection strategies and three

different cycle treatment methods are suggested in this report.

The elite selection strategies are:

1. No elite selection

2. Elite selection on all ant types

3. Elite selection only on normal ants, e.i. explorer ants are not used to cal-

culate the elite criterion and are always returned as backward ants.

The cycle treatment methods are:

1. No cycle treatment.

2. Prevent cycles during forward search.

3. Remove cycles in destination before performing path evaluations.

Figure 5.1: Ten node topology, one source

Scenario:

To compare the different elite selection strategies and cycle treatment meth-

ods in both the original CEAS and the subpath CEAS, a series of simulation

experiments have been carried out applying the ten node topology depicted in

Figure 5.1. The single path search from a source node to a destination node is

studied. The best path between those two nodes is [0, 4, 6, 9], with a cost of

3.8 ms. Network dynamics are added by implementing a link failure between

nodes six and nine after 10 000 seconds and a restoration of the link 7000 sec-

onds later. The failure results in two equally good paths, [0, 4, 6, 7, 9] and

[0, 4, 6, 8, 9], both with a cost of 4.0 ms. The systems are compared with
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respect to the average cost between source and destination. Nine different sim-

ulations are carried out for each system (combinations of three different elite

selection strategies and three different cycle treatment strategies). The differ-

ent strategies are studied in Section 5.2.1 and 5.2.2 for the original CEAS and

the subpath CEAS respectively.

Data from the initial phase (0-10000 seconds) from all the simulations are

summarized in Table 5.1. The initial phase is the most applicable to compare

the different systems since they all have identical initial conditions, i.e. no

pheromones in the network. In general the table shows a better first through

time and convergence time for the subpath CEAS for all elite selection strategies

and cycle treatment methods. The amount of temperature calculation (gamma

calculations) are doubled with elite selection and additionally increased around

three times with the subpath algorithm. In the following the simulation results,

summarized in Table 5.1, are presented in different plots, which forms a better

basis for further discussion.

5.2.1 Original CEAS

The three plots in Figure 5.2 show the average cost of normal ants between

source and destination for the original CEAS. The three different plots show

different cycle treatment methods and the curves show different elite selection

strategies. The costs are averaged for each hundred sample, then averaged over

20 simulation replications. The time axis can be separated into three different

phases; initial phase (0-10000 seconds), failure phase (10000-17000 seconds)

and restoration phase (17000-30000 seconds).

A general observation is that the differences between elite selection strategies

are more obvious than the differences between cycle treatment strategies, al-

though with elite selection on all ant types differences between cycle treatments

are significant. Elite selection only on normal ants shows faster convergence in

the initial phase and returns faster to the 3.8ms path when link 6-9 is restored,

this applies for all cycle treatments. Increased performance with elite selection

was found by earlier work [Heegaard et al., 2004], but the results presented
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3.86 (3.8 / 4.2)

R
em

ove
22 001 (0)

35 630 (48)
25.3 (7.2)

875 (157)
3.80 (3.8 / 3.8)

O
n all ant 
types

Ignore
22 001 (0)

69 009 (189)
151.0 (62.5)

425 (139)
4.02 (3.8 / 4.8)

P
revent

21 540 (3)
63 342 (143)

140.9 (37.8)
130 (25)

4.25 (3.8 / 5.2)

R
em

ove
22 001 (0)

65 047 (1425)
87.1 (34.1)

270 (108)
4.00 (3.8 / 5.0)

O
nly on 

norm
al 

ants

Ignore
21 988 (18)

66 547 (38)
14.5 (2.0)

320 (56)
3.80 (3.8 / 3.8)

P
revent

21 547 (23)
62 641 (201)

38.3 (13.7)
255 (63)

3.81 (3.8 / 4.0)

R
em

ove
21 985 (3)

64 420 (31)
14.9 (1.4)

205 (15) 
3.82 (3.8 / 4.2)

Table
5.1:

Sim
ulation

output
ofdifferent

elite
selection

and
cycle

treatm
ent

strategies.
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Figure 5.2: Comparison of different elite selection strategies and cycle treatments for the
original CEAS. Costs between source and destination plotted with 95 % confidence intervals.
Ignore cycles is shown in the top plot, prevent cycles in the middle plot, and remove cycles
in the bottom plot.
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here also imply that it is a good idea to exclude explorer ants from the elite se-

lection evaluation. The reason is mainly because elite selection only on normal
ants has the ability to gain from elite selection’s focus on good paths although

simultaneously keeps a wider search space since explorer ants are never dis-

carded by elite selection.

A small cost peak is observed for elite selection only on normal ants right after

the link failure. This is because the elite criterion is stricter with this elite selec-

tion strategy since the temperature controlling the elite criterion is calculated

only from normal ants, thus right after the failure, elite selection will discard

incoming normal ants until the elite criterion adapts to the changes. The elite

criterion is plotted with dotted lines in Figure 5.2.

The elite criterion respond a little quicker for elite selection on all ants, since it

is affected directly by explorer ants. It is also observed that the elite criterion

calculated from Elite selection on all ants are higher than the average normal

ant costs since it is calculated from both normal ants and explorer ants, see the

red dotted line in the plots. When explorer ants are included in calculating the

elite criterion, different cycle treatments will have a larger influence on the elite

criterion, thus elite selection on all is more affected by cycle treatment strategies,

this was observed in Figure 5.2.

5.2.2 Subpath CEAS

Cost plots comparing elite selection strategies similar to the ones for the original

CEAS in Figure 5.2 are shown for the subpath CEAS in Figure 5.3. In addition,

the path convergence with different elite selection strategies for both the original

CEAS and the subpath CEAS are compared in Figure 5.4.

A general observation when comparing Figures 5.2 and 5.3 are a faster conver-

gence of the subpath CEAS in all phases. Comparisons of the two systems are

further discussed in Section 5.3.

The subpath system shows similar results as the original system with respect to

different elite selection strategies, although the differences between strategies
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Figure 5.3: Comparison of different elite selection strategies and cycle treatments for the
subpath CEAS. Costs between source and destination plotted with 95 % confidence intervals.
Ignore cycles is shown in the top plot, prevent cycles in the middle plot, and remove cycles
in the bottom plot.
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Figure 5.4: Path convergence for different elite selection strategies. A link failure
occurs after 10 000 second resulting in two equally good paths, the link is restored
7000 seconds later. The values are sampled for each 100 second and are plotted with
95% confidence intervals. Original CEAS is shown in the top plot and subpath CEAS
in the bottom plot.
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are less apparent than in the original system. An interesting observation is

the high cost peak for elite selection on all right after the link failure. This is

probably caused by this strategy not leaving many pheromones on alternative

paths after convergence. Unlike elite selection on all it was observed in the

simulation output data that with elite selection only on normal ants or no elite
selection, small pheromone values were left on alternative next best interfaces.

It was assumed that cycles could disturb the subpath algorithm, however differ-

ent cycle treatment strategies seem not to affect the subpath system more than

the original system. Still, since ignoring cycles may result in a lot of tempera-

ture calculations in the destination and because preventing cycles may possibly

discard a lot of explorer ants, the third cycle treatment, remove cycles in the
destination is used throughout this chapter if not stated otherwise.

Figure 5.4 shows the share of ants who followed identical paths sampled for

each 100 second. It clearly shows how the new subpath CEAS more quickly

chooses a path in the initial phase and more quickly adapts to network changes

compared to the original CEAS. Notice where the systems reach 80 percent

convergence, the subpath systems with elite selection seem to reach 80 percent

convergence almost instantly. After the link failure (10000 seconds) there are

two equally good paths and around 50 percent of the normal ants follow each.

Elite selection on all ants indicates a much slower adaptation to this load sharing

than no elite selection and elite selection only on normal ants. This is because the

elite selection on all ants system first converges against one of the two best paths,

hence discards most of the explorer ants that are following alternative paths.

The increased focus on the first good path causes the system to overlook that

there are actually two equally good paths after the failure.
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5.3 SUBPATH CEAS VERSUS ORIGINAL CEAS

Based on the results in Section 5.2 the following three systems are compared:

• Original CEAS with elite selection on all ants

• Original CEAS with elite selection only on normal ants

• Subpath CEAS with elite selection only on normal ants

Cycles are removed in the destination for all systems.

The systems are compared with respect to a) average cost, b) preferred path,

c) pheromone updates and d) convergence.

Figure 5.5: Comparison of subpath CEAS and original CEAS. Average costs between
source and destination plotted with 95% confidence intervals, and cost of most pop-
ular path among the majority of the simulation replications.

Figure 5.5 shows the average cost between source and destination. The cost of

the most popular path is also plotted, it is the preferred path among the majority

of the simulation replications. Notice how the subpath ants more quickly choose

the best path both in the initial phase and after the link restoration.

To give a better understanding of the observations, the pheromone values in

the initial phase are plotted in Figure 5.6. The pheromone plots show the
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Figure 5.6: Pheromone values on the best path interface in the nodes that constitute
the best path. Plotted with 95% confidence intervals.
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pheromone value on the best interface in each node constituting the best path.

It can be seen by the pheromone plots that the systems differ more in nodes

close to the destination. Remember that the temperature and the pheromones

in the original CEAS is source-destination specific, while in the subpath CEAS the

temperatures are node-destination specific and the pheromones are destination
specific. So said, in the original CEAS the pheromones in node six, that is close

to the destination, are calculated with a temperature determined from paths

between the source and the destination, while in the subpath CEAS they are

calculated with a temperature determined from different paths between node

six and the destination, hence node six sees a bigger difference between alter-

native paths.

To explain the difference in pheromone updates in intermediate nodes, the

scenario described in Section 5.2 is used. The best path in this scenario is [0 4 6

9], with a cost of 3.8 ms. Following a next best interface in node six will result in

a 0.2 ms higher cost. This is a change of 5 percent for the path between source

and destination while it is a change of 11 percent for the subpath between

nodes six and nine, hence node six sees a two times higher difference between

the best and the next best paths with the subpath algorithm. One can say that

the subpath CEAS results in a scaling of cost values that is more correct for

what an intermediate node sees toward the destination. Similar when the link

is restored, it represent a considerable improvement of the subpath from node

six, and a smaller improvement of the main path measured from the source.

One could expect the fast convergence in nodes close to the destination to

increase the convergence in preceding nodes, since the search space is de-

creased. However, in this topology the interfaces in preceding nodes benefit

almost equally from the fast convergence in nodes closer to the destination,

hence the pheromone convergence is not increased in preceding nodes. If the

interfaces did represent very diverse paths, early convergence in nodes closer

to the destination on one of the interfaces could increase convergence time for

this interface, even though it might not be the best interface.
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Reduced ant rate

The main goal of subpaths is to introduce destination specific pheromone val-

ues. This will reduce the pheromone tables and allow sharing of pheromones

between ants from different sources going to identical destinations. The ma-

jor drawback of the subpath CEAS is the increased amount of path evaluations

and temperature calculations. However, results obtained so far show that the

subpath CEAS performs better than the original CEAS, hence the ant rate can

be reduced. Fewer ants will reduce the computational burden in both interme-

diate nodes and destinations, in addition to reduce the network load in terms

of management packets. Figure 5.7 is identical to Figure 5.5 except that the

ant rate in subpath CEAS, green curve, is reduced by 50 percent. The Figure

shows that the subpath CEAS with reduced ant rate still converges faster than

the original system. A higher average cost in the failure phase is also observed,

possibly because there are two best paths at this stadium resulting in more ants

following alternative paths.

Figure 5.7: Original CEAS compared to subpath CEAS with reduced ant rate. Av-
erage cost between nodes 0 and 9 plotted with 95% confidence intervals, and most
popular paths among the majority of the simulation replications.
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5.4 PHEROMONE SHARING

The subpath CEAS makes pheromone sharing between ants with identical des-

tinations possible. Results in Section 5.3 show improved performance with the

new subpath CEAS using only one single source. In this section more sources

are added to study the effects of pheromone sharing. It is expected that co-

operation between sources will result in better performances, however possi-

bilities are that the different sources will disturb each other and increase con-

vergence times. Hopefully the performance will increase for each cooperating

source, such that the ant rate and overhead can be reduced. In Section 5.4.1

pheromone sharing is examined in a small ten node topology. In Section 5.4.2

two cases in a nationwide 216 node topology are presented.

5.4.1 Ten node topology

Scenario:

Three more sources are added to the ten node topology, see Figure 5.8, all with

node nine as their destination. After 10 000 seconds the link between nodes

six and nine fails and 7000 seconds later it is restored. The outputs from the

following three systems are compared:

• Original CEAS
· Normal ant rate: 1.0
· Explorer ant rate: 0.1
· Init phase (all ants are normal): 10

• Subpath CEAS without pheromone sharing
· Normal ant rate: 1.0
· Explorer ant rate: 0.1
· Init phase (all ants are normal): 10

• Subpath CEAS with pheromone sharing
· Normal ant rate: 0.5
· Explorer ant rate: 0.05
· Init phase (all ants are normal): 20
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All systems have elite selection only on normal ants and cycles removed in the
destination. Notice that the ant rate is reduced by 50 percent when pheromone
sharing is applied. (Reduced ant rate in the subpath CEAS was also investigated
in Section 5.3).

Results:

Figure 5.9 shows the average cost and the cost of the most popular path be-

tween nodes zero and nine. The differences between pheromone sharing ants

and original ants are most apparent in the restoration phase. Notice how the

4.0 ms path is used for a long time after the restoration by original ants, while

the pheromone sharing ants quickly return to the 3.8 ms path. This is because

all sources are cooperating in finding the new restored path, operating with

a higher total ant rate through node six than a non-cooperating source alone.

The quick detection of the restored path is also caused by a softer convergence

during the failure phase. The plot in Figure 5.10 shows the path convergence
between nodes zero and nine. The plot indicates an almost 50 percent load

sharing and a quick response to link restoration with pheromone sharing. The

original system has a slower convergence in the initial phase and almost 70

percent of the ants are following identical paths during the failure phase, al-

though two paths are equally good at this stage. Thus when there is one best

path, e.i. in the initial path search and in the restoration phase, the original

algorithm tend to send a slightly larger share of ants on the best path, resulting

in decreased focus on alternative paths.

Figure 5.8: Ten node topology, four sources
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Figure 5.9: Original CEAS compared to subpath CEAS with and without pheromone
sharing. Average costs between nodes 0 and 9 plotted with 95% confidence intervals,
and preferred path among the majority of the simulation replications.

Figure 5.10: Path convergence for subpath CEAS with and without pheromone shar-
ing compared to the original CEAS. A link failure occurs after 10 000 second result-
ing in two equally good paths, the link is restored 7000 seconds later. The values are
sampled for each 100 second and are plotted with 95% confidence intervals.
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(a) Init phase

(b) Restoration phase

Figure 5.11: Path detection time for each of the four sources, plotted with max/min
values over 20 simulation replications. Top plot shows the initial path search and
bottom plot shows the path detection time after a link restoration.
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Convergence 
time [sec] 
(min/max)

Converged value 
[ms]

(min/max)

Forward ants 
(min/max)

Backward ants 
(min/max)

Temperature calculations
(min/max)

Original CEAS 805 (100/3900) 3,82 (3,8/4,2) 887 
(111/4291)

686 (98/3096) 1481 (187/6986)

Subpath CEAS
without cooperation 

254 (100/700) 3,81 (3,8/4,2) 281 (111/771) 272 (103/764) 1586 (606/4250)

Subpath CEAS
with cooperation

331 (200/900) 3,8 (3,8/3,8) 152 (111/276) 152 (103/276) 751 (588/1524)

Table 5.2: Initial path convergence times. Values are averaged between all the four
sources. Min/max values show the best case and worst case among all replications
and all sources.

Figure 5.11 a) and b) show the path detection time for the initial phase and

the restoration phase respectively. Fast path detection is especially important

when that path is the only one suitable. When the link failure occurred, all

systems did find the new best path within the ant interarrival time, this phase is

therefore omitted in this comparison. A general observation in Figures 5.11 a)

and b) is the high path detection times in the original CEAS worst cases, both

for the initial path search and for the restoration phase. The results indicate

that the subpath CEAS is twice as quick in finding the best path as the original

CEAS in average. Notice that when the sources cooperate, the worst case times

are better and more evenly distributed between the sources, indicating a more

predictable system.

The next performance metric to be studied is the convergence time, here it is

defined as the point in time when 80 percent of the normal ants follow paths

with identical costs. The convergence time indicates when the system stabilizes,

although it may not always converge against the best path, hence the system

may converge to another and better value later. Table 5.2 shows convergence
time, and corresponding overhead for the initial path search. The values are av-

eraged over all four sources, worst case and best case values for all simulation

replications are given in brackets. The number of ants and temperature cal-

culations are measured at the time of convergence. The table shows an almost

three times better convergence time for the subpath CEAS compared to the origi-

nal system. Because the subpath CEAS converges three times faster, the number

of temperature calculations performed when reaching 80 percent convergence

is almost identical for the two systems. When four sources are cooperating with

reduced ant rate, 80 percent convergence is reached a little later than without
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Convergemce 
time [sec] 
(min/max)

Converged value 
[ms]

Forward ants 
(min/max)

Backward ants 
(min/max)

Temperature calculations
(min/max)

Original CEAS 526 (100/1000) 4.0 579 (110/1100) 126 (10/362) 653 (110/1329)

Subpath CEAS
without cooperation 

100 (100/100) 4.0 110 (110/110) 110 (110/110) 558 (548/567)

Subpath CEAS
with cooperation

103 (100(200) 4.0 57 (55/110) 57 (55/110) 286 (270/555)

Table 5.3: Convergence times after a failure. Values are averaged between all the
four sources. Min/max values show the best case and worst case among all replica-
tions and all sources.

cooperation, still more than two times faster than the original CEAS. The over-

head is considerably reduced with the cooperating subpath CEAS. Compared to

the original CEAS it only needs 1/5 of the ant packets and 1/2 of the tempera-

ture calculations. Notice that in its worst case the original CEAS need 13 times

as many ant packets to reach 80 percent convergence than the subpath CEAS

with pheromone sharing, and that the latter system never misses the best path.

One should also notice that almost all packets are returned as backward ants in

the subpath system, i.e. elite selection does not reduce the overhead in terms

of backward ants during the convergence time.

Table 5.3 shows convergence time and corresponding overhead after the link

failure. The convergence times are now redefined as the point in time where

80 percent of the ants follow one of the theoretical best paths after the fail-

ure in link 6-9, e.i. the converged value will always be 4.0 ms. A five times

faster convergence is observed for the subpath systems compared to the origi-

nal system. With pheromone sharing the subpath system only need 1/6 of the

ant packets and less than 1/2 the temperature calculations to reach 80 percent

convergence compared to the original CEAS. Notice how elite selection discards

backward ants in the original system, and not at all in the subpath systems. In

extreme cases all normal ants are discarded. If elite selection were performed

on explorer ants as well, no ants would have been returned and to some ex-

tent explains the reduced performance of elite selection on all ants, studied in

Section 5.2.

Table 5.4 shows convergence time and corresponding overhead after the link is

restored. The convergence time is now defined as the time to 80 percent of

the normal ants follow the restored best path after the restoration, e.i. the con-
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Convergence 
time [sec] 
(min/max)

Converged value 
[ms]

Forward ants 
(min/max)

Backward ants 
(min/max)

Temperature calculations
(min/max)

Original CEAS 3635 
(2500/5400)

3.8 3999 
(2750/5940)

2883 
(1530/4862)

6518 (4030/10262)

Subpath CEAS
without cooperation 

1956 
(1600/2300)

3.8 2152 
(1760/2530)

2152 
(1760/2530)

12750 (10405/14342)

Subpath CEAS
with cooperation

1085 
(800/1300)

3.8 597 (440/715) 597 (440/715) 3612 (2634/4412)

Table 5.4: Time to convergence of a restored best path. Values are averaged between
all the four sources. Min/max values show the best case and worst case among all
replications and all sources.

verged value will always be 3.8 ms. A more than three times faster convergence

is observed for the pheromone sharing ants compared to the original CEAS, and

only 1/5 of the ant packets and 1/2 of the temperature calculations are needed

to reach 80 percent convergence. This is mainly because the restored path

represents a more significant improvement for nodes six and four than in the

original system. This is a property of the subpath algorithm and was explained

in Section 5.3. The results from this phase are also explained by the benefit of

pheromone sharing. The cooperating sources operate with a higher total ant

rate than each source alone. The third aspect explaining the fast return to the

restored path is a softer convergence in the preceding phase.

Conclusion: To summarize, the subpath CEAS with pheromone sharing outper-

forms the original CEAS both with respect to performance and overhead. The

convergence times are in average reduced by 60-80 percent for all three phases.

The overhead in terms of ant packets is reduced by 80 percent, and the tem-

perature calculations are reduced by almost 50 percent. Note that values in the

tables are average convergence times of all the sources and the overhead is per

source.

In the scenario presented in this section the subpath CEAS with pheromone

sharing turned out to be a win-win alternative compared to the original CEAS,

i.e. better performance and reduced overhead. However, one should remember

that this scenario and topology was nearly ideal for the cooperation approach.

In the next section a more realistic network with sources located in different

areas are examined.
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5.4.2 Nationwide network
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Figure 5.12: Nationwide communication network with 216 nodes. (Figure adapted
from [Heegaard and Fuglem, 2006])

In this section case studies are carried out based on a 216 node network topol-

ogy extracted from a major Norwegian Internet provider. It consists of 10 core

routers in a partly meshed topology, a ring based edge network with a total of

46 routers, and a dual homing access network with 160 access routers. The

relative transmission capacities are 1, 1/4 and 1/16 for core, edge and access

links respectively. The average number of hops between the access routers is

6.37. This topology was chosen to provide a realistic setting for the new sub-

path CEAS with pheromone sharing.

Two different cases are examined, those are:

• CASE I: 2+1 sources - Two nodes start their path search simultaneously. A

third node starts its search at a later point in time.

• CASE II: Eight sources - Eight sources start their search simultaneously
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CASE I: 2+1 sources

Scenario:

The following three systems are compared in this case:

• Original CEAS elite selection on all ants
· Normal ant rate: 1.0
· Explorer ant rate: 0.1
· Elite selection: On all ants
· Cycle treatment: Ignore cycles

• Original CEAS elite selection only on normal ants
· Normal ant rate: 1.0
· Explorer ant rate: 0.1
· Elite selection: Only on normal ants
· Cycle treatment: Remove cycles in destination

• Subpath CEAS with pheromone sharing (Cooperation between sources)
· Normal ant rate: 0.5
· Explorer ant rate: 0.05
· Elite selection: Only on normal ants
· Cycle treatment: Remove cycles in destination

Notice that two versions of the original CEAS system are included to see if results
regarding elite selection strategies are similar to the results obtained for the ten
node topology.

In this first case two access routers, nodes 75 and 84, start searching for the

best path to node 74 simultaneously. After 20 000 seconds a new access router,

node 110, starts its search for node 74. There are now pheromones in the

network, left by ants from nodes 75 and 84, which can be utilized by node

110. The scenario is created to see how sources in different access networks

with different entries in the core network, although located relatively close, can

benefit from cooperation. Examinations on how a new connection can benefit

from the pheromones already placed by other sources are also included. It is

expected from observations so far that the subpath algorithm with pheromone

sharing will perform better than the original algorithm. However, this is not

obvious since there are only two sources cooperating with a total ant rate equal

to each non-cooperating source.
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Figure 5.13: Average costs from the three sources plotted with 95% confidence
intervals. In the subpath CEAS with pheromone sharing the ant rate is reduced by 50
percent. Notice that the search from node 110 (bottom plot) starts 20 000 seconds
later than the other two sources.
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Results:

Figure 5.13 shows the average cost from each of the three sources to the desti-

nation. The original CEAS with elite selection on all ants clearly under performs

compared to the other two systems, strengthening the theories from Section 5.2

regarding elite selection strategies. The cooperative sources have the benefit

of pheromone sharing, however operate with 50 percent reduced ant rate. De-

spite fewer ants from each source it performs almost equally well as the original

CEAS with elite selection only on normal ants. Observations of node 110 show

that it really benefits from the pheromones already left by sources in nodes 75

and 84.

CASE II: Eight sources

In case I it was observed that the original CEAS performed better with elite se-

lection only on normal ants than with elite selection on all ants. This strengthen

the observations in Section 5.2 and only this elite selection strategy is applied

in the following.

The following four systems are compared in case II:

• Original CEAS
· Normal ant rate: 1.0
· Explorer ant rate: 0.1

• Subpath CEAS without pheromone sharing
· Normal ant rate: 1.0
· Explorer ant rate: 0.1

• Subpath CEAS with pheromone sharing
· Normal ant rate: 1.0
· Explorer ant rate: 0.1

• Subpath CEAS with pheromone sharing, reduced ant rate
· Normal ant rate: 0.5
· Explorer ant rate: 0.05

All systems use elite selection only on normal ants and cycles are removed in the
destination.
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Scenario:

Eight sources located in access routers evenly distributed in the network are

simultaneously searching for the best path to destination node 74. Two link

failures in the core network occur after 10 000 seconds and is restored 7000

seconds later, the failing links are 4-8 and 1-3. There is a question how nodes

with very different locations will benefit from pheromone sharing. Some of the

nodes, mostly core nodes, will experience increased ant rates probably resulting

in a faster convergence of pheromones. It is however possible that the differ-

ent sources will disturb each other and some sources may experience reduced

performances.

Results:

The average costs are plotted in Figure 5.14, one diagram for each of the eight

sources. In general the original system seems to under perform for all the eight

sources compared to the subpath systems. The cooperation through pheromone

sharing seems to perform better for six of the eight sources. The two nodes clos-

est to the destination, nodes 91 and 125, converge faster without pheromone

sharing in the initial phase, and are probably disturbed by the other sources.

When the links fail, the original CEAS has a higher cost peak than the subpath

CEAS. This was also observed in Figure 5.2 for this system, and explained by

this system’s strict elite criterion discarding more ants at the point of failures.

For a better visualization, without too many close or overlapping curves, the

results of the fourth system, subpath CEAS with reduced rate, was omitted in

Figure 5.14, however it will be included in the following performance compar-

isons.

The initial phase (0-10 000 seconds) is investigated in detail with respect to

path detection time, convergence time and converged value. The path detection
time is redefined as the time when the best path was found, although not nec-

essarily the theoretical best path. The path detection time for each of the four

sources are plotted in Figure 5.15. The performance of the different systems

vary, however the original CEAS clearly shows a longer path detection time for

almost all sources both in average and in its worst case. The average path de-
tection time over all sources is given in Table 5.5. The table shows a twice as

fast path detection for the subpath CEAS with pheromone sharing compared to

the original CEAS. The values in Table 5.5 are colored to indicate the systems
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Figure 5.14: Average cost for each of the eight sources, plotted with 95% confidence
intervals.
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Figure 5.15: Path detection time for each of the eight sources. Average values plotted
with max/min over 20 simulation replications.

performance relative to the three other systems. The brackets are the min/max

values over all simulation replications and all sources.

The convergence times and the converged values for each of the eight sources are

depicted in Figure 5.16 a) and b) respectively. In general a longer convergence
time is observed for the original CEAS compared to the three subpath systems.

The differences between the subpath systems with and without pheromone

sharing are not that obvious in the figure, however the average convergence
time given in Table 5.5 is more than two times shorter with pheromone shar-

ing, even with 50 percent reduced ant rate. Looking at both Figures 5.16 a)

and b), a fast convergence time and a poor converged value is observed for nodes

75 and 137 in the subpath CEAS without pheromone sharing. This implies that

the sources have a very fast convergence, although the convergence misses the

good paths. The plots only show the first converged value, and hopefully the

sources converge to a better value at a later point in time. To examine this,

the path convergence is plotted for each of the eight sources in Figure 5.17.

Investigating the plots it is seen how 80 percent convergence is reached several

times for nodes 75 and 137 before they finally stabilize.
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(a)

(b)

Figure 5.16: Convergence time and converged value for each of the eight sources.
Average values plotted with max/min over 20 simulation replications.
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Figure 5.17: Path convergence for each of the eight sources, plotted with 95% con-
fidence intervals.
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The overhead in terms of temperature calculations, forward ants and backward
ants given in Table 5.5 are measured at the time of convergence. The tempera-

ture calculations are significantly reduced by applying pheromone sharing and

are only slightly higher than for the original CEAS. With pheromone sharing

and a reduced rate, overhead in terms of ant packets are reduced by more than

70 percent. Studying the path detection time and the convergence time it is seen

that the systems in average converge before the best path is found. This implies

a premature convergence and the final convergence may be of a better path.

Conclusions:

In this scenario, regarding the performance metrics path detection time and

convergence time, the benefits of introducing pheromone sharing in the subpath

system are greater than going from the original system to the subpath sys-

tem. It was also observed that the subpath CEAS without pheromone sharing

did sometimes converge against poor cost values and the temperature calcu-

lations for this system were very high. However the poor convergence values
were eliminated by introducing pheromone sharing and the temperature cal-

culations were significantly reduced. In Case II the convergence was observed

to be less smooth than in earlier observations, see Figure 5.17, thus the con-

vergence times in Table 5.5 are likely of a premature convergence. Despite a

much shorter convergence time of systems with pheromone sharing a better

converged value was achieved. For a brief summary of all results presented in

this chapter, see Chapter 6.
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CHAPTER6
CONCLUDING REMARKS AND FUTURE WORK

6.1 CONCLUDING REMARKS

With the introduction of new routing requirements, brought forth by a wide

range of communication intensive, real-time multimedia applications, more so-

phisticated routing techniques are required in todays communication networks.

The Cross Entropy Ants System (CEAS) is an adaptive, robust and distributed

routing and management system based on swarm intelligence. The CEAS is per-

forming stochastic routing with fast restoration on link failures. In this project a

new version of CEAS is presented. The new system, denoted subpath CEAS, ap-

plies pheromone sharing between sources with identical destinations, in order

to reduce overhead and increase scalability.

Elite selection, first introduced in [Heegaard et al., 2004], are further examined

both for the new subpath system and the original system. By ensuring that

insignificant paths are not processed, elite selection reduces overhead and in-

creases the focus on good paths. Results from the investigations carried out in

this work clearly indicate a better performance for elite selection only on nor-
mal ants compared to elite selection on all ant types. This is explained by the

strategy’s benefit of elite selection’s focus on good paths while it simultaneously

keeps a wider search space by always processing explorer ants. An observation,

that was anticipated, is that elite selection does not discard many backward

ants in the subpath system, however elite selection is still efficient because of

improved performance.

Performance wise the new subpath system shows good results compared to

the original system, both in a small network with ten nodes and in a more

realistic communication network with 216 nodes. Simulation results from the
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ten node network indicate at least a two times faster convergence compared to

the original CEAS in all phases, e.i. initial path search, when a link fails and

when a link is restored. In the 216 node network only 15 percent improved

convergence time was observed, however when applying pheromone sharing

and cooperation between the sources, the subpath CEAS converged more than

twice as fast compared to the original system. The better performance of the

subpath system is mainly explained by the better scaling of pheromone updates

in intermediate nodes. This is because the subpath CEAS maintains individual

path costs and temperatures toward a destination for each intermediate node.

In all swarm systems there is a tradeoff between performance and management

overhead (number of ant packets). In the subpath system the packet rate can

be reduced mainly because of two reasons; 1) Improved performance and 2) Co-
operation between sources with identical destinations. Since the subpath system

converges faster the packet rate can be reduced and still keep an adequate per-

formance. When sources cooperate, the total ant rate through many junctions

are increased, hence the ant rate per source can be reduced. When measuring

overhead in terms of management packets at the time of convergence, the sub-

path CEAS indicates 60 percent reduction of management packets during the

convergence time in the 216 node topology. When applying pheromone sharing

and reducing the ant rate from each source by 50 percent, almost 80 percent

reduction in management packets is achieved. A better converged value was

also achieved by pheromone sharing.

The major drawback of the subpath system is the increased number of temper-

ature calculations. In the ten node topology, because of fast convergence, the

subpath system with pheromone sharing actually showed a reduction in tem-

perature calculations at the time of convergence by almost 50 percent. In the

216 node topology the subpath CEAS with pheromone sharing and the original

CEAS needed an approximately equal amount of temperature calculations to

reach 80 percent convergence. This is still a satisfying result for the subpath

CEAS because other overhead metrics such as pheromone tables and manage-

ment packets are significantly reduced. Ongoing work addresses new path eval-

uations and performance functions in CEAS which potentially will reduce the

computational overhead in destination nodes.
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6.2 FUTURE WORKS

Increased scalability because of reduced routing tables is achieved by the sub-

path CEAS. Future works include testing the subpath CEAS in larger scenarios

with many connections. Traffic load should be included to see if cooperation

increases the possibility of congestions. It might be interesting to study the

subpath CEAS in a topology with very diverse paths. By this the effects of de-

creased search space can be investigated, because nodes close to the destination

tend to converge faster. An increased convergence i expected in such a topol-

ogy, however possibilities are for a premature convergence in nodes close to the

destination.

Future works also include applying the subpath algorithm to other CEAS re-

lated works. Self-tuned rate control is introduced in [Heegaard and Wittner,

2006]. Self-tuned rate control can be used to increase the ant rate when fail-

ures occur, or reduce it when path searches converge. A self-tuned rate control

is likely to be efficient in different CEAS applications and should be included in

the subpath system. By such a strategy the overhead can be reduced by decreas-

ing the ant rate when connections converge. The use of CEAS to find virtual

connections realized by Multiprotocol Label Switching (MPLS) was examined

in [Hesby et al., 2004]. If pheromone sharing is applied a new connection can

utilize from pheromones placed by mature connections, and by this establish

new vertical connections very fast.

In this work the subpath system did find routes that were optimized on only

one additive constraint. This is not adequate for many emerging Internet ap-

plications which need support for diverse traffic. Finding paths that satisfies

several constraints introduce challenging problems. Many multi-constrained

path selection problems are NP-complete and cannot be resolved in polynomial

time [Wang, 1999]. The complexity and deployment of QoS-routing still need

to be solved with respect to complexity and scalability. CEAS is a candidate to

solve such complex routing problems and the subpath system should be applied

in finding routes that are subject to multiple constraints. In addition to select

routes that can meet certain Quality of Service (QoS) requirements, utilization

of different network resources should be considered. In [Wittner et al., 2003b]
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CEAS is applied in finding resource paths conforming to a set of different search

profiles. The subpath system should be investigated on such composite routing

problems, applying constraints that may be both path-constrained (additive or

multiplicative) or link-constrained (concave).

66



Bibliography

Pieter-Tjerk de Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein.
A tutorial on the cross-entropy method. Annals of operations research, 134,
2002. URL http://web.mit.edu/6.454/www/www_fall_2003/gew/CEtutorial.pdf.

Marco Dorigo and Gianni Di Caro. Ant colony optimization: A new meta-
heuristic. In Peter J. Angeline, Zbyszek Michalewicz, Marc Schoenauer, Xin
Yao, and Ali Zalzala, editors, Proceedings of the Congress on Evolutionary
Computation, volume 2, pages 1470–1477, Mayflower Hotel, Washington
D.C., USA, 6-9 1999. IEEE Press. ISBN 0-7803-5537-7 (Microfiche). URL
citeseer.ist.psu.edu/article/dorigo99ant.html.

Poul Heegaard and Ingebrigt Fuglem. Ant-based monitoring on software ip
routers. Technical Report D14, Universita di Bologna (Italy), 03 2006.

Poul E. Heegaard, Otto Wittner, Victor F. Nicola, and Bjarne E. Helvik.
Distributed asynchronous algorithm for cross-entropy-based combinatorial
optimization. In Rare Event Simulation & Combinatorial Optimization
(RESIM2004), Budapest, Hungary, September 2004.

Poul E. Heegaard, Otto Wittner, and Bjarne Helvik. Self-managed virtual path
management in dynamic networks. In Ozalp Babaoglu, Márk Jelasity, Alberto
Montresor, Christof Fetzer, Stefano Leonardi, Aad van Moorsel, and Maarten
van Steen, editors, Self-Star Properties in Complex Information Systems, vol-
ume 3460 of Lecture Notes in Computer Science. Springer-Verlag, 2005.

Poul Einar Heegaard and Otto J. Wittner. Self-tuned refresh rate in a swarm
intelligence path management system. In In Proceedings of The International
EuroNGI Workshop on Self-Organizing Systems (IWSOS 2006). Springer Pas-
sau Germany, Sep 2006.

Bjarne E. Helvik and Otto Wittner. Using the cross entropy method to guide/-
govern mobile agent’s path finding in networks. In Proceedings of 3rd Interna-
tional Workshop on Mobile Agents for Telecommunication Applications, pages
255–268. Springer Verlag, August 14-16 2001. URL citeseer.ist.psu.edu/

helvik01using.html.

67



BIBLIOGRAPHY

Nina Hesby, Poul E. Heegaard, and Otto Wittner. Robust connections in ip
networks using primary and backup paths. In Proceedings of the 17th Nordic
Teletraffic Seminar, Fornebu, Norway, August 2004.

R. Rubinstein. The cross-entropy method for combinatorial and continuous
optimization. Methodology and Computing in Applied Probability, 1:127–190,
1999. URL citeseer.ist.psu.edu/rubinstein99crossentropy.html.

Zheng Wang. On the complexity of quality of service routing. Inf. Process. Lett.,
69(3):111–114, 1999. ISSN 0020-0190. doi: http://dx.doi.org/10.1016/
S0020-0190(98)00206-3.

O. Wittner and B. Helvik. Cross entropy guided ant-like agents finding depend-
able primary/backup path patterns in networks, 2002. URL citeseer.ist.psu.

edu/article/wittner02cross.html.

O. Wittner, P. Heegaard, and B. Helvik. Swarm based distributed search in the
amigos environment, 2003a. URL citeseer.ist.psu.edu/wittner02swarm.html.

O. Wittner, B. E. Helvik, and V. Nicolat. Internet failure protection using hamil-
tonian p-cycles found by ant-like agents. In Design of Reliable Communica-
tion Networks, 2005. (DRCN 2005). Proceedings.5th International Workshop
on, pages 437–444, 2005. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=1563904.

Otto Wittner, Poul E. Heegaard, and Bjarne E. Helvik. Scalable distributed
discovery of resource paths in telecomunication networks using cooperative
ant-like agents. In Proceedings of the International Congress on Evolutionary
Computation, Canberra, Australia, December 2003b.

68



APPENDIXA
SOURCE CODE

The following three Network Simulator 2 (NS2) routing modules have been

used in this project:

1. VebCEantNoSubpath - Implementation of the original CEAS with addi-

tional features for cycle treatment and elite selection.

2. VebCEantNoSharing - Implementation of the subpath CEAS with individ-

ual pheromone values for each connection.

3. VebCEantSharing - Implementation of the subpath CEAS with destination

specific pheromones and pheromone sharing between sources.

The modules can be accessed through CVS at Centre for Quantifiable Quality

of Service in Communication Systems (Q2S)1 or merged into NS2 from the

enclosed patch file.

Q2S’s CVS

CEAS code base including the new modules is available from Q2S’s CVS on

request. The locations of the new modules in the CVS directory tree are shown

in Listing A.1.

Listing A.1: CVS directory three
|-CEants_ns -allinone -2.30

|----ns -2.30

|-------swarm

|----------common

|-------------VebCEantNoSharing

|-------------VebCEantNoSubpath

|-------------VebCEantSharing

1Q2S - the Centre for Quantifiable Quality of Service in Communication Systems is a Norwe-
gian Centre of Excellence at the Norwegian University of Science and Technology in Trondheim
(www.q2s.ntnu.no)
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Patch for NS2 version 2.30

The CEAS code base including the new modules can be merged from a patch

to NS2 version 2.30. The patch file ant-like_agents_for_ns2-2.30_2007-06-

22.patch was submitted as an attachment to this thesis on the DAIM thesis sys-

tem at the Norwegian University of Science and Technology (NTNU) (daim.idi.ntnu.no).

The patch can be merged into the NS2 sources by the following command:

patch -p[n] < ant-like_agents_for_ns2-2.30_2007-06-22.patch

where n is the number of leading components to strip from the path.
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