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Abstract 

 
Dispersal is an ecologically important trait that shows phenotypic variation in many populations, 

and which may play an increasingly important role in population dynamics as the climate 

changes. Dispersal and traits associated with dispersal, have been shown to be highly heritable 

in many species, including some bird species. For these reasons, dispersal is a suitable and 

interesting trait for investigating genetic architecture. 

 

Knowledge of the underlying genetic architecture is required to understand the mechanisms 

driving phenotypic change in dispersal and to interpret their involvement in eco-evolutionary 

cycles. Previous studies have revealed several genes which may influence dispersal, but 

studies on dispersal as a phenotypic trait in itself, rather than traits associated with dispersal, 

are few, and the number of causal loci and their locations in the genome is largely unknown.  

 

In this study, phenotypic, pedigree and genome wide SNP data, from an insular house sparrow 

metapopulation off the coast of northern Norway, was used to explore the genetic basis of 

dispersal. Rather than investigating specific traits that may be associated with dispersal in the 

house sparrow, the dispersal phenotype was defined as an individual that left their natal island, 

and successfully established on a new island. Heritability for dispersal was estimated using 

animal models in MCMCglmm, and dispersal was found to be a highly heritable trait. Genome 

partitioning analyses did not find a significant, positive relationship between chromosome size 

and proportion of variance explained. In addition, chromosome 12 explained a disproportionate 

amount of the variance in dispersal. GWA analysis was used to search for causal loci and 

revealed one locus of significant effect. No genes that have been associated with dispersal were 

found near significant or suggestive loci.  

 

This work illustrates both the difficulties and advantages of performing association studies in 

natural populations and investigates the genetic architecture of dispersal in house sparrows. 
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1. Introduction 

  

The genetic architecture of ecologically important traits 

 

The genetic architecture of a trait generally describes the genetic effects that make up and 

influence a phenotypic trait (Hansen 2006). This includes the number of genes affecting a trait 

and the magnitude of their effect, but also the form of variance in genes and the way this 

variation is passed on i.e. through additive, dominance or epistatic effects (Hansen 2006, 

Johnston et al. 2013). Understanding the link between genotype and phenotype is a key goal of 

evolutionary genetics (Johnston et al. 2013, Charmantier et al. 2014). The rise of genomics has 

given us a much greater ability to understand the genetic architecture behind phenotypic 

variation in important ecological traits (Rodrigues-Verdugo et al. 2017), and the relative 

importance of genes in the variation of traits, within the mix of genetic and environmental causes 

(Charmantier et al. 2014). 

 

Adaptive evolutionary change in a population requires there to be heritable genetic variation in 

the underlying traits, and selection on those traits (Falconer and Mackay 1996, Lynch and Walsh 

1998, Ronce 2007, Danchin et al. 2011). The speed of evolution also depends on the form of the 

genetic basis for the trait, and possible covariance with other traits. Hence, examining the 

genetic architecture is essential for understanding the mechanisms for variation in the phenotype 

and for predicting the potential for trait evolution (Orr 2005, Richards et al. 2010, Mackay et al. 

2012). As a supplement to studies into life history parameters, ecological dynamics, and 

selection pressures, information on the genetic architecture also gives insight into the eco-

evolutionary dynamics of a trait (Clutton-Brock and Sheldon 2010, Johnston et al. 2013, Hendry 

et al. 2017). An understanding of the genetic architecture of a trait does not, of course, provide a 

conclusion on the importance of a trait for the fitness of individuals or the potential for adaptation, 

this requires further experimentation (Barrett and Hoekstra 2011). However, additive genetic 

variance is a crucial element, in that it provides variation on which selection might act, so this 

element of the genetic architecture of a trait is a critical piece of the puzzle. 

 

In the past decade, quantitative genetic studies on populations in their natural environment have 

increased considerably. This is due partly to the inclination of evolutionary biologists to answer 

their questions in a realistic setting and made possible by advances in molecular genetics and 

statistical methods, as well as better availability of suitable data sets (Charmantier et al. 2014). 
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Although many key questions in the field of quantitative genetics can be investigated without the 

use of natural populations, some questions are more precisely answered through the study of 

populations in their natural environment (Charmantier et al. 2014). These include questions 

about the effect of climate change on evolutionary dynamics, and predictions of evolutionary 

responses to selection pressures. Placing a study within the relevant environmental conditions 

allows genetic variation to be assessed relative to these other causes of variation, something 

that has increasingly been seen as important as we understand more about how environmental 

conditions can affect both the selection processes, and the expression of genetic variance 

(Charmantier and Garant 2005). 

 

Dispersal 

 

Dispersal is a complex trait made up of, and influenced by, many different factors, such as the 

propensity to disperse, distance and direction of movement ability, and settlement choice. In 

addition, many physiological, morphological and behavioural traits have been found to determine 

the possibility for dispersal (Clobert et al. 2012, Saastamoinen et al. 2018). Dispersal is often 

very sensitive to environmental cues and consequently, ecological factors like competition, 

population structure and resource abundance play an important role in creating the conditions for 

dispersal (Bowler and Benton 2005, Matthysen 2005, Pärn et al. 2012). Dispersal is an 

ecologically important trait in part because it has significant influence on the genetic variation in 

populations, because it is a crucial mechanism for gene flow and allele frequency changes within 

and between populations (Johnson and Gaines 1990, Tufto et al. 2005). This can be particularly 

important in small populations, because one or a few individuals dispersing in can change the 

gene pool more dramatically (Lenormand 2002). It also contributes to the distribution of genetic 

diversity, by increasing the proportion of total diversity that is contained within, rather than 

between, populations. This distribution of diversity is particularly central to the dynamics and 

evolution of spatially structured populations. Species can maintain genetic cohesion across 

space and maintain global persistence even in the presence of local extinction (Ronce 2007, 

Kahilainen et al. 2018).  

 

Due to the effects of environmental change and increasing fragmentation of habitats, dispersal 

can be considered increasingly crucial, particularly for the survival of small populations (Hanski & 

Gaggiotti 2004, Legrand et al. 2017, Ronce 2007, Travis et al. 2010).  Therefore, the ability of 

populations to disperse is a critical aspect to consider for the future of populations in the face of 



9 
 

changing environmental condtitions that may lead to population decrease and reduced genetic 

diversity. If populations can adapt towards greater dispersal capacity, this might be a way for 

species to thrive in a rapidly changing world. Whether dispersal will increase or decrease in 

response to habitat fragmentation will depend on factors such as the proportion of empty habitats 

to colonize, the degree of environmental heterogeneity, and importantly, the amount of genetic 

variation in dispersal traits (Cheptou et al. 2017, Cote et al. 2017). Additionally, the speed of 

evolutionary change involves a combination of standing genetic variation, new mutations and 

genetic covariances among traits (Reznick and Ghalambor 2001, Etterson 2004, Becks et al. 

2010, Hendry 2013). Once we understand these parameters, we can then begin to determine 

whether dispersal as an adaptive mechanism will be sufficient for the evolutionary rescue of 

populations in fragmented habitats. Understanding dispersal and its evolution is therefore crucial 

to improve the management of natural populations (Ronce 2007, Dyck and Baguette 2005). 

 

Many studies have looked at varying dispersal related traits, such as flight metabolism and wing 

length, particularly in birds and insects (Niitepõld et a. 2009, Saastamoinen et al. 2018). In the 

Pea aphid (Acyrthosiphon pisum) it was found that male wing polymorphisms are determined by 

a single locus on the X chromosome (Roff 1986, Caillaud et al. 2002,) Whereas in Drosophila 

melanogastar studies of variation affecting locomotion behaviour have given a list of candidate 

genes for dispersal, which could be potential regulators of dispersal in other organisms as well 

(Jordan et al. 2007, 2012). The foraging gene was one of the first Drosophila genes shown to 

influence locomotion behaviour, causing adults with the dominant ‘rover’ allele (𝑓𝑜𝑟𝑅) to have a 

higher dispersal distance (Edelsparre et al. 2014). The Pgi gene in the Glanville fritillary butterfly 

(Melitaea cinxia) has also shown allelic variation associated with dispersal rate. Individuals with a 

specific allele of this gene, that is responsible for a metabolic enzyme associated with cellular 

energetics (Mattila & Hanski, 2014), have a higher flight metabolic rate and a higher dispersal 

propensity in the field (Haag et al. 2005; Niitepõld et al. 2009, 2011).  

 

The genetic architecture of dispersal traits needs far more investigation for us to understand the 

eco-evolutionary dynamics of dispersal (Rodriquez-Verdugo et al. 2017). In many bird species, 

heritability estimates greater than zero have been found for propensity to leave the natal site 

(Saastamoinen et al. 2018), with some very high estimates such as 0.95 for western bluebirds, 

Sialia mexicana, based on animal model analysis (Duckworth and Kruuk 2009). However, 

estimates for traits involved in the entire process of dispersal, including departure, transfer and 

settlement are rare (Saastamoinen et al. 2018), and this study is unique in that it takes dispersal 
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as a trait in itself and investigates whether the propensity of house sparrows to leave their natal 

island and reach a new island has a genetic basis.  

 

Estimating heritability  

 

One of the major methods of understanding the evolutionary potential of a trait, is to estimate the 

heritability of the trait in a population. Additive genetic variance is the component of genetic 

variance that is independent of interactions with other genes, and with the environment, and is 

considered the major basis of evolutionary responses to selection (Lande 1979). Additive genetic 

variance can be used to yield an estimate of heritability; called narrow sense heritability (Wilson 

et al. 2010). Heritability is measured as the proportion of the phenotypic variation (𝑉𝑝) in a trait 

that is due to additive variance in genetic factors (𝑉𝑎)  (i.e. 𝑉𝑎/𝑉𝑝) (Visscher et al. 2008, Wilson 

2008), and is one way of quantifying the relative importance of 𝑉𝑎 on phenotypic variance.  

 

Models that are used to estimate additive genetic variance are based on the assumption in 

quantitative genetics that complex traits are controlled by many genes spread over the genome 

(the infinitesimal model). In this case individuals that are closely related, and therefore share 

more genes, will be more phenotypically similar as well (Wilson et al. 2010, Charmantier et al. 

2014). So, using population pedigrees and phenotypic covariance between individuals, 

researchers can estimate the additive genetic variance, or the relative importance of genes for 

the phenotypic variation in a population (de Villemereuil et al. 2013, Charmantier et al. 2014). 

Heritability was traditionally measured using parent-offspring regressions, and full-sib or half-sib 

designs, but these can be difficult to execute in natural populations due to the required 

experimental design and can be sensitive to dominance and environmental effects, or common 

environments between parents and offspring (de Villemereuil 2012, de Villemereuil et al. 2013).  

 

In recent times the use of mixed models, particularly the animal model, has increased for 

estimating variance components in wild populations (Lynch and Walsh 1998, de Villemereuil et 

al. 2013). Animal models are generalised linear mixed models (GLMM) that incorporate 

information from detailed pedigrees in a way that simpler techniques cannot, considering the 

covariance between as many pairs as possible rather than only sibling relationships or parent-

offspring relationships (Charmantier et al. 2014, Wilson et al. 2010). The animal model is in fact 

particularly suited to wild populations in many ways, because it can deal with the complexity that 

we expect to see in nature (Wilson et al. 2010), including unbalanced designs, missing trait data 
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and pedigree links, and varying environmental conditions (Lynch and Walsh 1998, Charmantier 

et al. 2014, Wilson et al. 2010, de Villemereuil et al. 2013). It also allows better exploration of 

non-genetic influences on phenotype such as the effects of sex or age (Wilson et al. 2010). The 

use of the animal model has created lower estimates of heritability in general, probably partly 

due to removing some environmental sources of covariance between individuals (Charmantier et 

al. 2014). Animal models have also been found to yield more accurate heritability estimates than 

parent-offspring regressions and sibling designs, particularly with small data sets or for binary 

traits (de Villemereuil et al. 2013). The animal model is also effective for incorporating repeated 

measures of individuals over their lifetime and including random effects (Kruuk 2004). This 

allows the utilisation of all available measurements, and it also allows the quantification of 

permanent between-individual differences apart from those due to additive genetic variance 

(Kruuk 2004). Many common statistical tools in quantitative genetics assume Gaussian 

distribution of traits and residuals, and hence can have problems with phenotypic traits that do 

not follow these assumptions of normality, such as binary traits like dispersal (de Villemereuil 

2018). However, GLMMs include the core assumptions of the infinitesimal model but can also 

handle a wider range of characteristics of the phenotypic trait of interest (Bolker et al. 2009, de 

Villemereuil 2018).  

 

Recent advances, especially in genotyping on SNP panels, have also allowed more widespread 

use of genome wide scanning methods of investigating genetic architecture, such as genome 

partitioning, and genome-wide association studies (GWAS) (Stapley et al. 2010, Ellegren 2014), 

in which the underlying causal loci of heritable traits can be mapped. In genome partitioning, the 

phenotypic variance explained by each chromosome is regressed on the size of the 

chromosome (Kemppainen and Husby 2018b). Studies showing that large chromosomes explain 

more variation in traits than small chromosomes (Yang et al. 2011) are one way in which the 

theory of quantitative genetics have been supported, because they indicate that many loci of 

small effect distributed across the genome influence a quantitative trait (Kemppainen and Husby 

2018b). This is because larger chromosomes generally contain more genes, so they are 

expected to explain a larger proportion of the variation in the trait. Divergence from this pattern 

can indicate the presence of genes or loci of large effect (Kemppainen and Husby 2018b, 

Robinson et al. 2013). Genome wide association (GWA) analyses use genotype information on a 

dense set of genetic markers across a genome, to capture a significant proportion of the 

variation. Using data on thousands of single nucleotide polymorphism (SNP) genotypes, and 

phenotype variation data on the genotyped individuals, multiple association analyses are 
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undertaken to detect associations between genetic variants and trait variations (McCarthy et al. 

2008). This allows researchers to better understand the nature of the genetic variation in a trait 

and find candidate genes for further investigation. 

 

Evidence suggests that there is genetic variation for dispersal in natural populations and, based 

on evidence from other complex life history traits, it seems most likely that this variation would be 

caused by many genes of small effect (Tiffin and Ross-Ibarra 2014, Saastamoinen et al. 2018). 

Genome wide association studies are necessary to confirm this (Saastamoinen et al. 2018). 

Knowing the number and location of genes that contribute to dispersal variation helps us to 

understand more about the evolution of traits in natural populations. Traits that are controlled by 

only one gene or are oligogenic may provide greater evolutionary potential if selection acts on 

them and can be more likely to become fixed in a population. Polygenic traits are far more 

complex, because they may involve genes that influence several different fitness traits, and they 

can be more influenced by environment. This can allow more variants to be maintained in a 

population and complicate the evolutionary trajectory (Remington 2015). Conversely polygenicity 

could also make adaptation to unpredictable environments easier if there are many genetic 

possibilities by which a specific beneficial change in phenotype could be accomplished 

(Remington 2015). GWA approaches have been successfully utilised in many recent studies on 

a wide range of traits in natural populations (Johnston et al. 2011, Johnston et al. 2013, Husby et 

al. 2015, Santure et al. 2015, Barson et al. 2015). For example, Husby et al. 2015 found 

evidence for association between a genome region and phenotypic variance in clutch size in the 

collared flycatcher (Ficedula albicollis). 

 

The house sparrow study system 

 

The house sparrow (Passer domesticus) is an extensively studied model species, and the 

natural metapopulation off the Helgeland coast in Northern Norway is a uniquely suited 

population through which to study evolutionary changes and the genetic basis for phenotypic 

traits such as dispersal (Figure 1). House sparrow metapopulation consists of 18 subpopulations 

which cover an area more than 16𝑘𝑚2 (Pärn et al. 2012, Baalsrud et al. 2014) and have been 

monitored since 1993. This study system has provided a large data set, including genetic, 

morphological and life history data (Jensen et al. 2003, Jensen et al. 2004, Pärn et al. 2009). 

One of the major benefits of such a long-term study is the thorough understanding of the ecology 

of the house sparrow metapopulation. A large data set is important for detecting associations 
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between genetic variants and phenotypic covariance, but it is also essential to understand the 

potential environmental effects, mating systems and behavioural ecology in order to anticipate 

the factors that may be important in quantitative genetic models (Charmantier et al. 2014).  

 

House sparrows are sexually dimorphic, passerine birds, with a lifespan of up to 9 years in 

Northern Norway (Jensen et al. 2004). The clear population boundaries, and the high resighting 

rate of individuals (mean of 74%) allows high accuracy in estimating population sizes, individual 

survival, and inter-island dispersal (Tufto et al. 2005, Pärn et al. 2012, Holand et al. 2016). 

House sparrows are often associated with human settlements (Anderson 2006) and are 

predominantly found at agricultural or residential sites in the study system. This improves 

sampling efficiency and allows individuals to be monitored from hatching over consecutive years 

until they die (Jensen et al. 2004, Jensen et al. 2008, Pärn et al. 2009, Billing et al. 2012). The 

area of the site used in this study is also greater than the dispersal distance of most individuals 

(Pärn et al. 2009). Establishing the heritability of dispersal in natural populations can be very 

difficult, because individuals can often leave the study area without being detected. It can also be 

difficult to detect all individuals in the population in general. However, the large size of the study 

system, the ease of access to individuals, and the ability to track birds over many years, means 

that almost all dispersers can be detected, and we can obtain accurate information about kinship 

relationships within the populations.  

 

Dispersal rate in the house sparrow metapopulation has been estimated at 22.5% (Saatoglu et 

al. 2019 in prep). Dispersers of both sexes in this system have been shown to have higher 

survival rates than residents (Altwegg et al. 2000), and dispersal probability was related to some 

environmental variables. Inbreeding is also quite high in the system, and shows negative fitness 

effects (Jensen et al. 2007, Niskanen et al. 2019 submitted). These details indicate that possible 

reasons for dispersal in the population include avoidance of environmental disadvantages, and 

the costs of inbreeding (Pärn et al. 2009). Dispersal rates among the house sparrows in this 

system also differ between islands and years (Pärn et al. 2012), so there are important 

environmental factors to consider that influence the phenotypic variation between individuals. In 

addition, differences in dispersal patterns between the sexes have been found in the Helgeland 

house sparrow population (Altwegg et al. 2000, Skjelseth et al. 2007), suggesting that to 

understand the evolution of dispersal rates, we must consider differences in selection pressures 

between the sexes. 
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Overview of the study 

 

Here I present the investigation into the heritability and genetic architecture of dispersal in the 

Helgeland metapopulation of house sparrows, using a custom 200K Affymetrix Axiom SNP array. 

First, an animal model containing the metapopulation pedigree was used to estimate 𝑉𝑎 and ℎ2 of 

dispersal. This was followed by genome partitioning to examine the phenotypic variance 

explained by each chromosome. Finally, a GWA analysis of the whole dataset was undertaken to 

determine whether the genome-wide approach would detect regions and candidate genes 

associated with dispersal for future functional studies.  
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2. Methods 

 

2.1 Data collection 

 

Data collection was held each year in the summer (breeding season), from May to August 

(Husby et al. 2006) and in autumn between September and October. During fieldwork, when 

chicks reached 8-13 days old, they were taken from their nest and ringed with one unique 

identity number and three colour combination bands. Un-ringed fledglings and adults were 

captured with mist-nets and ringed in the same way as the chicks (Ringsby et al. 2002). Natal 

island for the chicks is recorded at this time. Each individual’s hatch year is considered as either; 

the first year recorded for nestlings or fledged juveniles captured in summer or autumn, or the 

year prior to first year recorded for birds first ringed as adults (Jensen et al. 2008). The identity 

numbers and colour combination bands allow dispersal and survival of birds over the breeding 

season to be recorded ecologically, based on recapture or resighting in subsequent years. A 

range of phenotypic traits are also measured for all captured birds, such as bill morphology, wing 

length and body mass, and small blood samples (ca. 25 μl) are collected from under the wing 

(Ringsby et al. 2002, Jensen et al. 2004, 2008; Pärn et al. 2009, 2012, Holand et al. 2016, 

Kvalnes et al. 2018). My participation in sampling to date was in May 2017. 
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Figure 1. Islands included in the house sparrow metapopulation study system, Northern Norway (66°N, 13°E). Islands 

shaded black have been continuously followed since monitoring began. The eight populations used in this study are 

labeled with the island name. (Image adapted from Lundregan et al. 2018). 

 

In this study I used dispersal data that includes only adult birds recorded on 8 of the study 

islands (Aldra, Gjerøy, Hestmannøy, Indre Kvarøy, Myken, Nesøy, Selvær and Træna), as these 

are the 8 islands that have been SNP-genotyped (Table 1, see chapter 2.2). Information about 

dispersal was available for 2745 SNP-genotyped individuals. Dispersal data was obtained by 

combining accurate ecological natal island information (where the information was obtained from 

nestlings and fledglings captured during the summer season) and also genetic assignment that 

detects natal island for those individuals that do not have this information (fledglings captured 

during the autumn season and/or un-ringed adults) (Kuismin et al. 2019 submitted, Saatoglu et 

al. 2019 in prep.).  
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Table 1: Period for which all recorded adult individuals on each island were genotyped on the 200K SNP microarray 

(Years), and number of individuals per island (Ni) after quality control for dispersal. Island refers to the birth (natal) 

island of the individuals. 

Island Years Ni 

Aldra (38) 1998 – 2013 179 

Gjerøy (26) 1998 – 2013 524 

Hestmannøy (27) 1998 – 2013 940 

Indre Kvarøy (28) 1998 – 2013 331 

Myken (22) 2004 – 2013 67 

Nesøy  (20) 1998 – 2013 126 

Selvær (24) 2003 – 2013 275 

Træna (23) 2003 – 2013 274 

TOTAL  16 2716 

 

 

2.2 Genotyping and Quality Control of the Dispersal Dataset 

 

Blood samples from 3253 adult house sparrows were genotyped using a custom Affymetrix 

Axiom 200k SNP array (Lundregan et al. 2018). The array was developed based on the 

reference genome for house sparrow (Elgvin et al. 2017). Almost all house sparrows present on 

8 islands during the years 1998/2003/2004-2013 were included. Approximately 90% of the adult 

population on each island were sampled each year, meaning that sample sizes are highly 

correlated with actual population sizes (Niskanen et al. 2019 submitted).  

 

Successful genotypes were obtained for 3219 individuals from the Helgeland metapopulation. 

Quality control on this data set has previously been completed, to remove individuals with 

incorrect sex coding, too high identity by state (IBS>0.9), low call rate (<0.95%) and low minor 

allele frequency (<0.01),  and the final data set consisted of 3116 house sparrow individuals 

(1580 females and 1536 males) (Niskanen et al. 2019 submitted).  
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Of these 3116 individuals, the natal islands of 2745 adults were revealed by using genetic 

assignment method and correction with a SNP-based pedigree, which gives more power in order 

to perform further analysis (Kuisman et al. 2019 submitted, Saatoglu et al. 2019 in prep). 

 

A small group of birds (n = 29) from the 2745 data set were removed completely. These birds 

were born on a group of three islands (Træna, Selvær and Myken) denoted ‘island 88’ before 

2004, but their adult island was also either Træna, Selvær or Myken, so determining whether 

they were dispersers was impossible. This created the final data set of 2716 birds (Table 1).  

 

Some individuals (n=120) that were born outside the 8 SNP-genotyped islands (but dispersed 

into them as adults) were given a ‘natal island’ from inside the 8 islands i.e. their adult island was 

used as their natal island. Although it is possible some bias could be introduced in this way, the 

expectation is that this will not cause significant bias and it increases the power by including 

many extra dispersers.  

 

Of the 200,000 SNP markers on the array the 184 804 markers ranked as PolyHigh resolution by 

CIGENE were used in further analysis, and quality control for individuals with dispersal was 

performed in the GenABEL R package (Aulchenko et al. 2007).  

 

In total 183 088 markers and 2716 individuals (1325 female, 1391 male) passed the quality 

check.  

 

2.3 Estimating Heritability of Dispersal 

 

I estimated the genetic component of the phenotypic variation in dispersal using univariate 

animal models in the R package MCMCglmm, which fits generalised linear mixed models using 

Markov chain Monte Carlo techniques (Hadfield 2010). Using the R package sequoia, a 

metapopulation level pedigree has been constructed for the 3116 adult house sparrows in the 

study system, using a set of 605 highly informative SNPs (Niskanen et al. 2019). This pedigree 

was used in MCMCglmm for estimating variance components. 

 

Bayesian methods, such as the Markov chain Monte Carlo (MCMC) method, are more easily 

adapted to non-Gaussian distributions, than frequentist methods such as restricted maximum 

likelihood (REML) or penalised quasi-likelihood (PQL), and are considered to provide more 
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accurate approximations of variance components, particularly for binary traits, as they mitigate 

downward bias of estimates (Hadfield 2010, de Villemereuil et al. 2013, de Villemereuil 2018).  

Bayesian estimates are known to have high sensitivity to prior distribution when sample size and 

variance are low (de Villemereuil et al. 2013). However highly complex models, for example 

those with many random effects, may only converge at all when using MCMC-based methods 

(de Villemereuil 2018).  

 

The priors for the MCMCglmm model were specified by using a prior recommended for binary 

data (de Villemereuil 2012). The 𝑋2 with 1 degree of freedom prior does put more weight in 0 

than in 1, and for this reason may not be the perfect prior. However, the probabilistic weight of 

the 𝑋2 with 1 degree of freedom prior is more spread between 0 and 1 than other priors, such as 

Inverse Gamma. 

 

The effect of natal island and year of birth were estimated by adding these parameters to the 

model as random factors, because these are factors known to influence rates of dispersal among 

the Helgeland metapopulation of house sparrows (Pärn et al. 2012). To define a prior in 

MCMCglmm a list is used, where the R argument stands for the prior on the residual variance, 

and the G argument is for the random effect variance. When there are 3 random effects in a 

model (in this case, animal, island and year), 3 priors are required to be defined in G (de 

Villemereuil 2012). The prior was therefore adjusted to include 3 priors in the G argument list 

(Appendix III; Figure IV). 

 

The posterior distributions of the estimates of the additive genetic (animal), year, island and 

residual (units) effects for dispersal were fitted with the default parameters (120,000 iterations, 

thinning interval of 100, and burn-in period of 10,000), and the plots showed some 

autocorrelation (see Appendix III; Figure I). Therefore, models were re-run with longer iterations 

(de Villemereuil 2012). The final model was run with 1e+06 iterations, a burn-in period of 10000, 

and a thinning interval of 100. 

 

Heritability of dispersal was estimated using the posterior mode of each variance component 

(Table 2). The mode is used because the posterior distribution is not symmetrical. Heritability on 

the latent (model) scale (ℎ𝑙𝑎𝑡𝑒𝑛𝑡
2 ) was estimated as an intra-class correlation coefficient, using the 

formula ℎ𝑙𝑎𝑡𝑒𝑛𝑡
2  = 𝑉𝑎/( 𝑉𝑎 + 𝑉𝑖𝑠𝑙𝑎𝑛𝑑 +𝑉𝑦𝑒𝑎𝑟  + 𝑉𝑟  + 𝜋2/3) and the parameter estimates are shown in 

Table 2. When random effects are added to the model they must be considered in the calculation 
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for total phenotypic variance, which is achieved by adding them to the denominator of the 

heritability formula (de Villemereuil 2012). The parameter 𝜋2/3 is included in the formula 

denominator because the categorical model used has a logit link function, so we need to include 

the ‘variance’ of the link transformation in the total variance (Nakagawa and Schielzeth 2010). In 

addition, because we are using binary data (with 0 denoting non-dispersers and 1 denoting 

dispersers), the residual variance cannot be calculated and is set to an arbitrary value of 1 in 

MCMCglmm (Nakagawa and Schielzeth 2010). The heritability estimate was also made on the 

data scale, using the formula  ℎ𝑜𝑏𝑠
2 = 𝑉𝑎/ 𝑉𝑝 because heritability on the expected data scale cannot 

be computed as an intra-class correlation coefficient in the same way that it can on the latent 

scale (Appendix I: Addendum III). The function “QGparams ” from the package “QGglmm” was 

used to obtain variance component estimates on the data scale and to estimate ℎ2𝑜𝑏𝑠 (de 

Villemereuil et al. 2016).  

 

2.4 Genome Partitioning 

 

The proportion of variance explained by each chromosome was estimated using a command line 

software tool, called GCTA (Yang et al. 2011). GCTA was first used to create relationship 

matrices (GRMs) for each chromosome. Average information Restricted Maximum Likelihood (AI 

REML) models with multiple GRMs fitted as random effects (GCTA option-mgrm) were used for 

chromosome partitioning (Yang et al. 2011). The -mgrm option in GCTA allows you to fit the 

GRM for each chromosome in a single model, and hence find the genetic variance due to each 

chromosome. Rather than testing the association of a particular SNP with a phenotypic trait, the 

GCTA analysis estimates the variance explained by all the SNPs on each chromosome (Yang et 

al. 2011). 

 

Initially there were some problems with model non convergence, where more than half of the 

model components were constrained, which would cause the results to be unreliable. This was 

addressed by successively excluding the smallest chromosomes (Kemppainen and Husby 

2018b). Chromosome length (Mbp) was taken from the house sparrow reference genome 

assembly, INSDC accession number MBAE00000000.1 (Elgvin et al. 2017). Five chromosomes 

(21 (5.71 Mb), 22 (3.67 Mb), 25 (0.48Mb), 27 (3.74 Mb) and 28 (3.53 Mb)) were excluded. 

 

A corrected p-value was obtained through ‘HC-resampling’ to address the p-value inflation that 

can occur due to heteroscedasticity and censoring. If not accounted for, this can result in a 
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roughly 30% false positive rate for chromosome partitioning in bird genomes (Kemppainen and 

Husby 2018). Finally, the proportion of variance explained by each chromosome was plotted 

against chromosome size (Mbp). 

 

2.5 GWAS 

 

GWAS for dispersal was implemented using the R packages GenABEL (Aulchenko et al. 2007) 

and RepeatABEL (Rönnegård et al. 2016). The RepeatABEL package is a relatively new 

development that allows more effective use of GenABEL for natural populations.  

 

GWA analysis is carried out by fitting a linear regression at every marker position on the genome 

(Rönnegård et al. 2016). RepeatABEL allows variables such as year and birth island to be 

included as random effects, along with the polygenic ID effects. Association analysis in 

RepeatABEL fits fixed SNP effects in a linear mixed model that can include random polygenic 

effects and permanent environmental effects, in order to correct for repeated measures and 

population structure (Rönnegård et al 2016). The model in this study included natal island and 

hatch year as random factors, in order to account for the fact that individuals may have common 

environmental effects as well as a common genetic background (Flint and Eskin 2012). The 

genomic relatedness matrix (GRM) also included as a polygenic random factor to account for 

relatedness between individuals.   

 

GWAS in RepeatABEL generally assumes a Gaussian distribution, so it is important to consider 

whether this method is effective for binary data. Rönnegård et al. (2016) tested the package for 

its applicability to binary data and found that it is suitable, however as the proportion of 

successes for the trait (i.e. number of dispersers) decreases, so does the power to detect causal 

SNPs. If a trait has extreme binary proportions (i.e. <5% or >95%) it is recommended to treat the 

results with caution, but as the proportion of dispersers to non-dispersers in this study is 29% the 

method is a suitable one for this study.  

 

The X chromosome tends to lack reported associations with traits, partly because of the design 

of genotyping arrays and other technical issues causing it to be removed from analyses. It is also 

less well understood how the X chromosome might need to be handled during quality control and 

analysis (Wise et al. 2013). For GWA analysis in the current study, autosomal SNPs only were 

used.  
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Multiple testing correction was carried out using a Bonferroni correction (Haynes 2013). 

Correction for multiple testing is necessary in GWAS, and the Bonferroni method is a simple 

approach that uses all single nucleotide polymorphisms across the genome. This is a highly 

conservative approach however and can limit the number of SNPs that are found to be genome 

wide significant (Duggal et al. 2008). 

 

The top significant SNP in the GWAS was investigated for its proximity to gene coding regions in 

the house sparrow genome, and genes associated with dispersal or dispersal related traits. the 

top 3 SNPs on chromosome 12 were also investigated. The annotated house sparrow genome 

(Elgvin et al. 2017) was used to determine whether these SNPs were in intronic parts of the 

genome, or which genes of known function were flanking the SNP.  

 

Unless otherwise stated, all statistical analyses were performed using R version 3.5.1 (R Core 

Team, 2018).   
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3. Results 

 

3.1 Heritability Estimation 

 

Additive genetic variance (𝑉𝑎) estimated from analysis with MCMCglmm was 6.46 (95% C.I = 

4.23-9.74). The heritability estimate indicates that dispersal is a highly heritable trait in house 

sparrow (ℎ𝑙𝑎𝑡𝑒𝑛𝑡
2 = 0.53, HPD interval = 0.41-0.63, ℎ𝑜𝑏𝑠

2 = 0.34) (Table 2). 

 

Examining the posterior distribution of models using different priors found that the Inverse 

Gamma prior and the Parameter expanded F distribution prior did not fit the data correctly 

(Appendix III; Figures II and III), and the 𝑋2 with 1 degree of freedom gave the best fit (Appendix 

III; Figure IV).  Heritability estimates (on the latent scale) for models using each prior indicated 

that the heritability estimate was not particularly prior sensitive (Appendix II; Table II), so the 

choice of prior may not have been critical here, however the posterior distribution indicates that 

the 𝑋2 with 1 degree of freedom prior was the best choice.  

 

 

Table 2. Estimates of the variance components of dispersal on the latent model and expected data scales. Trait 

heritability on the latent scale was calculated using these variance components and the formula 𝑉𝑎/ 𝑉𝑎+ 𝑉𝑝𝑒  + 𝑉𝑟 +

  𝜋2/3 where 𝑉𝑎 is additive genetic variance, 𝑉𝑝𝑒  is permanent environmental variance (included by the use of natal 

island and birth year as random factors), and 𝑉𝑟  is residual variance. Trait heritability on the expected data scale was 

calculated using the variance components and the formula 𝑉𝑎/ 𝑉𝑝 . 

 

Scale 𝑉𝑎 [95% CI] 𝑉𝑝𝑒 𝑉𝑟 ∗ ℎ2 

Latent 6.46 [4.23-9.74] 0.99 (year) 

0.44 (island) 

1 0.53 

Expected data 0.083 0.246 -  0.34 

 

*residual variance cannot be calculated for binary data; so is fixed at 1(de Villemereuil et al. 2012).  
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3.2 Genome Partitioning 

 

In genome partitioning analysis using GCTA, the regression between chromosome size and 

proportion of variance in dispersal explained was not significant after HC-correction (p=0.27). 

This may be partly because many chromosomes appear to explain no variation in dispersal 

despite being large (Table 3). 

 

Chromosome 12 (coloured red in Figure 2) appeared to explain a higher proportion of the 

variation for dispersal than expected from the general relationship between variance explained 

and size, and chromosome 5 also appears to explain a larger proportion of variance in dispersal 

than other chromosomes (Figure 2).  

 

 

 

Figure 2. Relationship between explained variation in dispersal (+-SE) and chromosome size (number of SNPs). The 

green shaded area shows 95% C.I. for regression between number of SNPs and the proportion of variance explained 

by each chromosome (ℎ𝑐
2), with black bars indicating 95% C.I. for each ℎ𝑐

2 estimate. Grey shaded area indicates 95% 

quantiles formed by HC-resampling forming the null distribution for HC-corrected p-value. 
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Table 3. Genome partitioning output. Shown are the chromosome size (bp), the effect size and the standard error. 

High ℎ2 for chromosome 12 indicates that this is the significant (coloured red) chromosome in Figure 2.  

 

Chromosome Size 𝒉𝟐 SE p_out 

1 112670000  0.029210   0.016508  0.865353698 

2 147840000  0.018851 0.017782 0.999799035 

3 110990000  0.000001  0.013635  0.999799035 

4 70350000  0.000001  0.013661  0.999799035 

5 61080000  0.039725  0.019221  0.195136656 

6 35010000  0.001079 0.011836  0.999799035 

7 36520000  0.000001  0.012772 0.999799035 

8 49690000  0.026366 0.016857 0.837419614 

9 25220000  0.000001 0.012271  0.999799035 

10 21080000  0.000001 0.012133  0.999799035 

11 20430000  0.012800 0.009752 0.999799035 

12 19790000  0.066468 0.020233 0.001607717 

13 18020000  0.000767 0.009399 0.999799035 

14 16470000  0.022259 0.013597 0.930667203 

15 14040000  0.010231 0.012829 0.999799035 

17 11240000  0.000001  0.009881  0.999799035 

18 11530000  0.010138 0.011531 0.999799035 

19 11120000  0.000001 0.007983 0.999799035 

20 1478000  0.012595 0.012596  0.999799035 

23 7030000  0.018849 0.011080 0.986736334 

24 7080000  0.000001 0.007213  0.999799035 

26 6900000  0.003097 0.007512  0.999799035 

29 69870000  0.005278  0.012778  0.999799035 
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3.3 GWAS 

  

GWA analyses in RepeatABEL revealed a single genome-wide significant SNP, SNPa105045 

on chromosome 15 (p= 1.25e-07, position = 2695766, effect size = 0.10± 0.02) (Table 4).  Other 

suggestive ‘peaks’ can be seen in the GWA analysis (Figure 4) where areas more influential in 

dispersal could be found, one of which (on chromosome 12) corresponds to the results shown in 

genome partitioning.  

 

Table 4: Summary statistics for the top ten SNPs associated with dispersal in the RepeatABEL GWAS. Top SNP is 

significant at the genome-wide local significance level of 2.7 x 10^-7. For each SNP the table shows its name, 

chromosome, position (bp), the reference allele A1, effect allele A2, estimated effect size of A2 with standard error, 

and p-value.  

 

         SNP                        Chr.         Position           A1      A2             Effect ± SE                  p-value 

SNPa105045 15  2695766  G  A  0.104 ± 0.020 1.25e-07 

SNPa16999 12  14555542  T G -0.052 ± 0.012 1.53e-05   

SNPa14838  12 10813153 G A -0.061 ± 0.014 1.64e-05 

SNPa344637  2  22728732  C T 0.051 ± 0.012 1.74e-05 

SNPa235914  1  23895981  C T 0.063 ± 0.015 1.97e-05 

SNPa480081 11 2315811 G A 0.051 ± 0.012 2.24e-05 

SNPa397538 23 4055552 G A 0.135 ± 0.032 3.23e-05 

SNPa89783 11 7242384 C A 0.069 ± 0.017 3.41e-05 

SNPa14833 12 10808310 T C -0.063 ± 0.015 3.76e-05 

SNPa17197 12 14885979 T C -0.052 ± 0.013 4.03e-05 

 

Lamda = 1.01 (SE = 2.75e-05), so it was not necessary to correct the estimate for inflation 

(Figure 3).  
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Figure 3. 𝑋2-𝑋2 plot for GWA scan. Black line of slope 1: expected under no inflation; Red line: fitted slope.  

 

The significant locus is near two gene coding regions in the annotated house sparrow genome 

(Appendix II; Table I). The closest gene of known function downstream of SNPa105045 is 

IV00_00043860 (11 Kbp away), and upstream is IV00_00043864 (15 Kbp away). 

 

Gene IV00_00043860 is analogous to UPB1 that is associated with amino acid biosynthesis in 

Sumatran orangutan (Pongo abelii). Gene IV00_00043864 is analogous to ADORA2A, that is 

associated with G protein-coupled receptor activity in Homo sapiens.  

 

Genes surrounding the top 3 SNPs on chromosome 12 were also investigated. The SNP closest 

to genome-wide significance on chromosome 12 was SNPa16999. The closest gene of known 

function downstream is IV00_00039264 (205 Kbp away). Gene IV00_00039264 is analogous to 

SUCLG2, that is associated with carbon metabolism and the citric acid cycle in the common 

pigeon (Columbia Livia). The closest gene of known function upstream is IV00_00039280 (214 

Kbp away). Gene IV00_00039280 is analogous to FAM19A4, which modulates injury-induced 

and chemical pain hypersensitivity in the crab-eating macaque (Macaca fascicularis). 

 

 No genes were found that have been associated with dispersal or dispersal related traits  

(Appendix II: Table I). 
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Figure 4. Manhatten plot of RepeatABEL GWA scan for dispersal (N=2716 measurements) on 183 088 SNPs. 

Position of markers on the X axis corresponds to their bp position on their chromosome. Genome-wide local 

significance level after correction is 2.7e-7 (dotted line). 
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4. Discussion 
 

This study has provided evidence to support the genetic basis for dispersal in the Helgeland 

house sparrow metapopulation. The animal model implemented in MCMCglmm indicated that 

dispersal has substantial additive genetic variance (𝑉𝑎 = 6.46, C. I =  4.23 − 9.74 ), with some 

variance also attributable to year (0.99, [0.91 − 1.08]) and island (0.44, [0.07 − 1.99]) 

(corresponding values on the data scale can be found in Table 2). It also indicated that dispersal 

is highly heritable in the study population ( hlatent
2 = 0.53), which is in concordance with other 

studies showing that dispersal and dispersal traits can be highly heritable in wild populations.  

 

The heritable basis for dispersal 

 

The most common studies that have found evidence for heritability of dispersal traits are in 

plants and insects, usually on seed or pollen dispersal structures or wing morphology (Roff and 

Fairbairn 2001, Ronce 2007). In vertebrates, indirect evidence is accumulating in the form of 

within-family (sibling and parent–offspring) resemblance in dispersal behavior (Massot and 

Clobert 2000, Massot et al. 2003, Doligez and Pärt 2008, Sharp et al. 2008). Some studies in 

vertebrates have also shown high heritability estimates for personality traits that could be 

related to dispersal, such as exploratory behaviour in great tits, Parus major, which have ranged 

between 0.1 and 0.78 (Dingemanse et al. 2002, Drent et al. 2003), and boldness in dumpling 

squid, Euprymna tasmanica, where ℎ2 estimates range from 0.2–0.8 (Sinn et al.2006). In 

zebrafish estimates of heritability of boldness were found to be quite high (h2 = 0.76) (Ariyomo 

et al. 2013). This trait was described as the propensity of an individual to take risks and can be 

conceivably linked to a higher dispersal propensity. They also found a high heritability for 

aggressiveness (h2 = 0.36).   

 

Most previous studies have focused on the heritability of dispersal related traits (Saastamoinen 

et al. 2018), such as boldness (Ariyomo et al. 2013) and flight metabolic rate (Niitepõld et al. 

2009, Mattila and Hanski 2014,), but this study looks at the propensity to disperse from the natal 

patch as a trait in its own right. When behavioural or morphological traits are used as proxies for 

dispersal, it is often assumed that the trait has a direct functional link to dispersal propensity, for 

example that bolder individuals will move further due to curiosity and lack of fear (Duckworth et 

al. 2015). However, it is also likely that such traits may affect the dynamics within a population, 
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and that these dynamics cause variation in dispersal tendencies (Bowler and Benton 2005). 

Therefore, the correlation between dispersal and a particular trait may be tangled up with the 

environmental drivers, rather than there being a causal link between them (Duckworth et al. 

2015). This could mean that an estimate of the heritability of a trait associated with dispersal 

provides less clear information about the evolutionary potential of dispersal itself. Considering 

dispersal as a trait also has the benefit of including all the stages of dispersal, because 

individuals are evaluated as dispersers when they are captured or sighted on an island that is 

not the island they were born on. Consequently ‘dispersal’ as a trait accounts for emigration 

from the natal island, inter-island movement, and immigration into a new island, as well as 

successful establishment. Hence, rather than providing information about a specific trait that 

may be useful in one or all of these stages of dispersal, this study has effectively investigated 

the heritability of successful dispersal into a new local population and this has not been 

considered a lot in previous literature (Saastamoinen et al. 2018). This study does not take into 

account all measures of ‘success’ as it is not limited only to dispersers that manage to 

reproduce or provide recruits. Although there is some evidence that at least male dispersers 

have a lower lifetime production of recruits in this population (Pärn et al. 2009), there is also 

some evidence that survival of dispersers is higher than among the residents of the new adult 

island, and also higher than the adults who remained on their natal island (Altwegg et al. 2000). 

More investigation is required to determine whether dispersers have an advantage or 

disadvantage in fitness in the Helgeland metapopulation, however higher survival is often linked 

to higher fitness due to the availability of more seasons in which to breed, and so it is likely that 

increased survival of dispersers could have knock-on effects on fitness. 

 

There are cases where heritability of dispersal as a trait in its own right have been estimated, for 

example in Doligez et al. (2009) where dispersal for the collared flycatcher was defined as an 

observed change of patch between the years of birth and first breeding, or between breeding 

years. Rather than using a continuous variable such as dispersal distance, they chose the 

binary definition with the expectation that it would minimise methodological problems. In a 

patchy population such as the one used in that study, and the current study population, 

dispersal distance can easily be constrained by the site layout, and so individual dispersal 

distance and settlement decisions will be highly influenced by environmental constraint (Doligez 

et al. 2004, Doligez and Pärt 2008, Doligez et al. 2009). Previous studies on the collared 

flycatcher population have also shown the binary variable of dispersal to respond to many social 

and environmental factors (Doligez et al. 2002, 2004, Doncaster et al. 1997). High heritability 
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estimates have also been found in western bluebirds, Sialia mexicana, for propensity to leave 

the natal site (h2 = 0.95) based on animal model analysis. Dispersal as a binary trait can create 

difficulties in the data as well. Assigning a dispersal status to individuals usually requires two 

successive observations, because they must be detected on their birth island and on an adult 

island. This means that dispersal status for those that are not recaptured or captured for the first 

time as adults can be uncertain or incorrectly assigned (Doligez et al. 2011). One of the ways 

that this problem has been mitigated in the current study is through genetically assigning 

individuals to birth islands (Saatoglu et al. in prep), so any individuals captured as adults have 

an accurate dispersal status.  

 

An important issue to consider in the models is that effects of common environment, such as 

that shared by chicks in the same nest, can make up a significant proportion of variance (Kruuk 

2004). In collared flycatcher chicks, 49% of variance in body condition is accounted for by 

differences between nest-boxes (Merilä et al. 2001), and similar results have been found in long-

tailed tits (MacColl & Hatchwell 2003), and blue tits (Charmantier et al. 2004). Although my 

study included effects of natal island and birth year, nest or mother identity could have been 

included as random effects in the model, in order to estimate the component of variance due to 

differences in the trait between offspring of different mothers that is additional to additive genetic 

effects. These are factors that could influence the condition of individuals and therefore their 

dispersal propensity. Future work could include genetic correlation analysis of fitness indications 

(size, etc.) and dispersal, through bi-variate or multi-variate animal models, to see if dispersal is 

related to any of these conditions that might be influenced by mother care, and nest quality. 

 

Estimating heritability 

 

Heritability as a parameter can be very useful and informative, because it provides a simple 

measure of the importance of heritable genetic variation (additive genetic variance) for individual 

differences, and it allows this information on trait variation to be compared within and across 

populations (Visscher et al. 2008). It also allows predictions about the response to selection 

(Visscher et al. 2008). To obtain very accurate estimates of heritability however, hundreds or 

thousands of observations are needed, because the accuracy of a heritability estimate is 

affected by bias based on technical issues such as sampling error (Visscher et al. 2008). 

Therefore, it is important to have a large sample size and high-quality pedigree structure, as 
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well as to account for confounding effects (Visscher et al. 2008). One of the main challenges of 

heritability estimation is its basis on the assumption that there are infinite unlinked loci which 

have a small impact on the phenotypic variance (de Villemereuil et al. 2013). This assumption 

ignores other genetic effects and constraints such as linkage (de Villemereuil et al. 2013), and it 

is worth considering whether a heritability estimate with these genetic factors unaccounted for is 

truly accurate, or even informative. Another important problem is that wild populations usually 

have imperfect individual detection rate, and this can bias the estimate of heritability (de 

Villemereuil et al. 2013). The detection error rate in the Helgeland metapopulation has been 

estimated at 4.5% (Saatoglu et al. 2019 in prep), which indicates that the accuracy of estimates 

from this system should not be greatly affected by this issue. Future work into the genetic basis 

for dispersal could benefit from investigating non-additive genetic effects, such as dominance 

genetic variance and epistatic variance, and how these might change estimates of heritability. 

 

This study has been done on a very large sample size, particularly compared to many other 

studies of wild populations (Saastamoinen et al. 2018, Doligez et al. 2011), so its ability to 

estimate heritability accurately should be quite high. However, problems associated with each 

method of estimating heritability are also important to consider in order to determine if the 

heritability estimate in this study is reliable. The use of generalized linear mixed models 

(GLMMs) to analyze non-Gaussian traits has been increasing (Wilson et al. 2011, Morrissey et 

al. 2012, de Villemereuil et al. 2013) because they provide many benefits over traditional 

methods, such as parent-offspring regressions and sibling designs. GLMMs are often more 

effective for non-Gaussian traits and are also particularly useful for considering the various 

environmental variables in natural environments. Within GLMMs however there are also a 

variety of ways to estimate variance components of quantitative traits. Frequentist mixed models 

(REML, PQ), and Bayesian mixed model methods (MCMC) contain many differences that can 

affect their suitability for estimating the heritability of a certain trait. Bayesian method have been 

referenced as the better option for non-Gaussian traits, although there are various 

considerations to be taken into account (Appendix I: Addendum IV). Doligez et al. (2011) used 

MCMCglmm to fit an animal model on dispersal for the Collared Flycatcher and estimated the 

heritability of natal dispersal to be 0.39 (0.31-0.47), a similar result to the one found in this 

study, using the same method. Whilst we should be cautious about drawing conclusions from it, 

heritability can be a very useful measure of trait variation, and it provides many new 

opportunities that assist with understanding phenotypic variation and the relationship between 

genes and the environment (Visscher et al. 2008).  
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An important aspect of MCMCglmm that can influence the accuracy of heritability estimates is 

the issues of autocorrelation and convergence. Testing of various model lengths, and thinning 

intervals allowed the model with the highest effective sample size, and acceptable levels of 

autocorrelation to be chosen (Appendix I: Addendum II), and this should allow confidence in the 

heritability estimate.  

 

Heritability estimates were done on both the latent scale and the data scale. Heritability 

estimates on the expected data scale are expected to be significantly lower than the latent trait 

scale (Villemereuil et al. 2018, Appendix I: Addendum III). Due to the noise in GLMMs, 

generated by the error processes and over-dispersion variance in the latent scale, phenotypic 

variances on the expected data scale can be very large (Villemereuil et al. 2018). Consequently, 

heritability estimates are often quite small. However, heritability estimates in this study were still 

very high even on the data scale (ℎ2𝑜𝑏𝑠= 0.34), and so considering the reliability of these 

estimates, particularly knowing the prior sensitivity in MCMC models is important (de 

Villemereuil et al. 2013) (Appendix, Addendum I).  

 

Genome partitioning and genome-wide association studies 

 

From genome partitioning analysis, it is not possible to conclude that dispersal is a polygenic 

trait, because the slope of the regression was not significantly positive (p=0.27). With a 

polygenic trait, you would expect to see a significant positive relationship between chromosome 

effect size and the number of SNPs on a chromosome. It is unlikely that dispersal is a trait 

regulated by only one or a few genes however, and the slope of the regression does show a 

general positive trend. This trend however is quite weak, and multiple chromosomes with 

differing sizes explain the same amount of variance. However, if you consider the mean 

estimates per chromosome (Table 3), many large chromosomes don’t explain any variation at 

all. It may be possible then that there are multiple genes that affect dispersal as we might 

expect, but they are not distributed evenly across the genome and thus do not follow the pattern 

of correlation between chromosome size and amount of variance explained (Kemppainen and 

Husby 2018). One of the reasons that there was no significant positive relationship indicated, 

may be the binary nature of the trait of interest. Binary traits tend to have a large error, and this 

could influence the significance of the positive association (Kemppainen and Husby 2018b). 
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The genes found around the significant SNP (SNPa105045) on chromosome 15 have not been 

shown to have any association with dispersal or dispersal related traits. However, other 

suggestive peak regions in the GWAS indicated that there may be alternative areas of the 

house sparrow genome which explain some dispersal variation. In particular, a number of SNPs 

in chromosome 12 reach closest to genome wide significance in addition to SNPa105045. 

Probably caused by these SNPs, chromosome 12 was also shown to have a disproportionate 

effect on dispersal variance for its size. GWAS results are indicative of dispersal as a complex 

polygenic trait that is influenced by many genes spread across the genome that each have a 

small effect on variation in the trait (Slate et al. 2005, Slate et al. 2010 Stapley et al. 2010. In 

fact, studies have indicated that most complex traits in wild populations might have this kind of 

genetic architecture (Santure et al. 2015). Based on GWA studies of diverse populations, in fact 

there has not been a great amount of evidence for any large effect QTL. In Husby et al. (2015), 

only one genome-wide SNP for clutch size was detected, and it explained only 3.9% of the 

variance.  

 

Although the power of this study is high for a study on a wild animal population, it is still quite 

low in comparison to GWA studies in humans, so it is possible the sample size is still too low to 

detect the small effects genes are having on trait variance. As it is unlikely that dispersal is 

regulated by a few genes of large effect, the power may need to be significantly higher to detect 

causal genes in this case. The significance threshold used is also very strict, as it is not based 

on sample size but is divided by the number of tests (183033). 

 

SNP array and sample sizes 

 

The 200K SNP array used in this study has a high marker density, and sample size in 

comparison to many association studies in wild populations (Santure et al. 2015, Chaves et al. 

2016, Johnston et al. 2011, Schielzeth and Husby 2014). For this reason, overestimation of 

effect sizes should be minimal (Slate 2013), and the power to detect important genetic variants 

high. However, variants may still be missed when marker density and sample size are high, 

especially if we are looking for rare variants with low minor allele frequency MAF (<0.05), and 

small effect (Wilkening et al. 2009). Since it is likely that the genes involved in dispersal are of 

small effect, this is something to consider in the case of my study. Large effect genes that have 

been identified through GWA studies in wild populations tend to relate to near Mendelian traits 

under strong selection, or those involved in adaptation to trophic niches such as bill morphology 
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in Darwin’s finches (Johnston et al. 2011, Johnston et al. 2013, Lamichhaney et al. 2015, 

Chaves et al. 2016, Lamichhaney et al. 2016). In addition, you can find so-called ‘missing 

heritability’ problems, such as the case with human height. This is a highly polygenic trait, for 

which hundreds of variants across the genome have been identified, and yet these explain only 

around 20% of the variation in human height (Marouli et al., 2017).  

 

One of the issues with current quantitative genetic models, because they were developed for 

captive populations, is that they assume that phenotypic variance is consistent among all 

individuals, because detection of individuals is perfect (Cam 2009). This is obviously unlikely in 

natural populations (Cam 2009,), and can cause biased estimates based on the type of 

individuals that are more often captured, and a flawed understanding of the demographic 

parameters of interest (Doligez et al. 2011). One major benefit of this study system therefore is 

the unique coverage of the population, in which we can be fairly sure that a large percentage of 

the population is covered. Although not foolproof, this is a good way of minimising these 

problems. Although success rate can be low for detecting outlier loci of quantitative traits, and 

those detected often have a small effect, genome wide studies are still important for examining 

the genetic basis of ecologically important traits in natural populations (Slate et al. 2010, Stapley 

et al. 2010). Examination of such traits in their natural context can help to untangle complicated 

environment-phenotype-genotype interactions, and to understand the mechanisms behind 

adaptive evolution.  

 

Implications of results for populations 

 

Evolutionary studies are motivated by the importance of being able to predict the effect of 

natural or sexual selection on traits, particularly whether they can create a permanent 

phenotypic change (Kruuk 2004). Estimating the genetic basis of quantitative traits is intended 

as a tool to better be able to make and understand these predictions (Kruuk 2004). With these 

indications that dispersal is a heritable trait in the Helgeland house sparrow metapopulation, and 

that there are relatively many genes of relatively small effect across the genome that influence 

the variation in this trait, a logical next step then is to consider what implications this has for the 

Helgeland metapopulation, and other populations.  

 

There are indications that dispersal strategies can evolve in the wild, in response to selective 

pressures (Kokko and López-Sepulcre 2006, Duckworth and Badyaev 2007, Thomas et al. 
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2001). In crested tits (Lens and Dhont 1994), fragmentation of important habitat was found to 

delay natal dispersal. It also increased dispersal distance in nuthatches but decreased the 

probability of natal dispersal for them (Mattysen et al. 1995). Whilst there is no evidence that 

dispersal is a recently evolved trait in the house sparrow, changes in dispersal patterns and 

frequency may be brought on by environmental change. Potential reasons for house sparrow 

dispersal include; changing environmental conditions, e.g. between 1995-2010 in Troms, 

Northern Norway, average temperature in May increased by around 2.5 °C, representing an 

increase of 0.19 °C per year (Barrett, 2011). In the Glanville fritillary butterfly (Melitaea cinxia) 

metapopulation of the Åland islands, heritable genetic variation for a metabolic enzyme 

associated with dispersal has been found, along with environmental drivers of dispersal 

between local populations within the metapopulation (Niitepõld & Saastamoinen, 2017). It has 

also been shown that changing climate is altering the metapopulation dynamics through 

increased dispersal, with potential negative effects for the survival of the metapopulation 

(Kahilainen et al. 2018), and that habitat fragmentation has changed allele frequencies in the 

population in the past (Fountain et al. 2016). Determining the relative importance of individual 

phenotype and environmental or population dynamics effects on dispersal is of course difficult 

(Duckworth et al. 2015) but knowing that there is additive genetic variance for dispersal means 

we can understand the possible evolutionary outcomes of such pressures. If one imagines there 

are only environmental causes for dispersal, and at certain times there are no environmental 

triggers for dispersal, the dispersal rates would be low. In a metapopulation, this could create 

circumstances in which the population might not be able to survive because extinct patches are 

not recolonised and sink populations are not ‘rescued’ by immigrants (Hanski and Gaggiotti 

2004). Because dispersal seems to be a heritable trait in the Helgeland metapopulation 

however, there is possibility that dispersal may also evolve in response to environmental 

changes. If dispersal propensity also corresponds with higher fitness, then dispersal frequency 

in this population is likely to increase. If it corresponds with lower fitness, the likelihood is that 

dispersal frequency would decrease. This correlation with fitness may also change over time, 

particularly when the fitness of the individual is related to environmental variables. For example, 

in a metapopulation such as this one, individuals that disperse may have higher fitness, but as 

fragmentation of habitats becomes more significant the distances between local populations 

could become larger and the costs associated with dispersing greater. Then the fitness of 

dispersers might decrease, causing the evolution of a lower dispersal propensity. Unfortunately, 

considering that habitat fragmentation is increasing, this particular outcome could cause 

difficulties for the survival of the metapopulation if local populations are not able to be 
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supplemented. Alternatively, as the climate changes many species need to adjust their home 

ranges to maintain favourable conditions. Dispersers in the house sparrow metapopulation may 

have higher fitness due to their ability to find more suitable habitat and dispersal propensity may 

increase.  
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5. Conclusion 
 

Results presented here indicate that dispersal is highly heritable, and most likely governed by 

polygenic genetic architecture. A significant locus was identified which may explain a small 

proportion of the variation in dispersal. Additionally, chromosome 12 seemed to explain a 

disproportionate amount of variation in dispersal, and this chromosome holds a number of SNPs 

that were the next closest to significance. However, none of the investigated SNPs were close 

to any genes of known association with dispersal or dispersal related traits. 

 

Uncovering loci for quantitative traits in natural populations is difficult and that fact is highlighted 

by this study. In order to detect large effect variants, it may be necessary to select traits with 

high heritability and high variability in a population, and that are under strong selection.Future 

work could aim to determine the extent to which variants identified here affect dispersal alone, 

or if environmental causes have a greater influence on dispersal variability. 

 

Despite difficulties encountered in uncovering genes for ecologically important traits in natural 

populations, animal model and GWA studies can, on occasion, provide valuable insights into 

eco-evolutionary dynamics in such populations. Consequently, association studies are likely to 

remain a valuable investigative tool in genetic and eco-evolutionary research into the future.  
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Appendix 

 
I: Addendum 

 

Prior distributions in MCMCglmm 

 

When estimating the heritability of a binary trait the residual variance (𝑉𝑟) is not able to be 

calculated from the data, and so it must be fixed. In MCMC it is fixed to 1 (Hadfield 2010). 

Because it is also necessary to add a variance component for the link variance (in this case the 

logit link variance), there is no longer symmetry in the heritability calculation.  

ℎ2 = 𝑉𝑎/ 𝑉𝑎 +𝑉𝑟 is then ℎ2 = 𝑉𝑎/ 𝑉𝑎 + 1 + 𝜋2/3.  

 

When the residual variance is fixed to 1, the variance of the additive genetic effect must remain 

small. So, using a prior distribution on 𝑉𝑎 with a long tail, such as the Inverse Gamma 

distribution (V=1, nu=0.002 in MCMCglmm), means that most probabilistic weight is placed on 

ℎ2 = 1. Various studies have recommended the use of an 𝑋2 distribution with 1 degree of 

freedom prior for binary data (Hadfield 2010, de Villemereuil et al. 2013), mostly because the 

dispersion of estimates is larger with other common priors and they result in low precision. One 

of the main issues with this prior is a downward bias of heritability estimate when using a small 

sample size e.g. n= < 1000 (de Villemereuil et al. 2013), but in general the strength of a prior 

tends to fade with increasing sample size and with a sufficient sample size the prior issue can 

become unimportant (de Villemereuil 2012). Due to the large sample size in this study it can be 

confidently assumed as the best option for prior distribution. 

 

To increase the confidence in the prior distribution In this study, a variety of prior distributions 

were tested to determine which would provide the best fit for this data (Appendix III: Figures III, 

IV and V). I also compared the heritability estimates obtained by MCMCglmm using each prior 

distribution (Appendix II: Table II). The priors tested were; 1) the Inverse Gamma distribution 

(V=1, nu=0.002), 2) Expanded F distribution (V=1, nu=1, alpha.mu=0, alpha.V=10), and 3) 𝑋2 

distribution with 1 degree of freedom (m (V=1, nu=1000, alpha.mu=0, alpha.V=1). The results 

showed little prior sensitivity in the heritability estimate, but the posterior distribution of variance 

components indicates that the 𝑋2 with 1 degree of freedom is the best fit for the data. 
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Autocorrelation in MCMCglmm 

 

It is important to check the convergence and autocorrelation when using the MCMC algorithm. 

The burn-in period in MCMCglmm allows you to avoid the influences of the starting values and 

wait for model convergence before saving the iteration values (Sorensen and Gianola 2002), but 

it is impossible to know how long this period should be before testing it (de Villemereuil 2012). 

The thinning interval is used to avoid autocorrelation, and also to lighten memory usage 

(Doligez et al. 2011). Successive iterations of MCMC tend to be correlated with each other, 

because the nature of the algorithm means that the estimation of a new value for a parameter at 

each stage is based on the current estimated value of the parameter from the previous iteration 

(de Villemereuil 2012). To get a large enough effective sample size, you must have a large 

uncorrelated sample where all iterations are independent, and an effective sample size of at 

least 1000 is recommended (de Villemereuil 2012). To ensure they are independent you can 

choose to save only one iteration value in every 10 iterations for example (de Villemereuil 

2012). The number chosen should depend on the total number of iterations in the model, to 

make sure that the sample size is large enough, and will be different for each model. 

The ideal chain length (i.e the total number of iterations) will also change depending on a variety 

of factors, and there is no simple way to determine how long it should be (Sorensen and 

Gianola 2002). If there are not enough iterations, the saved values may not be representative of 

the whole distribution, so to an extent it is desirable to run the model for as long as possible. 

 

Various model lengths and burn-in periods were tested for this study and the chosen model, 

with 1 million iterations, using a burn-in period of 10,000 iterations, and a thinning interval of 100 

(i.e. 10,000 iterations were used in total) (Appendix III: Figure IV) was found to provide the best 

convergence and autocorrelation results. A model with 5 million iterations was tested, but 

although the autocorrelation and convergence was better the sample size was much lower, and 

the heritability estimates did not vary greatly (Appendix II: Table III). Since the time and memory 

needed for a model this much longer are significantly higher, and many models were run the 

shorter model was chosen for further analyses.  
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Heritability on the data scale and the latent scale 

 

Another interesting aspect of using GLMMs to estimate heritability is that they provide estimates 

of quantitative genetic parameters on the latent model scale. The latent scale is convenient for 

statistical analysis, but obtaining estimates on the scale upon which the traits were measured 

can also be desirable and helpful for making clear biological inferences from the estimates (de 

Villemereuil et al. 2016). Because the assumption of the infinitesimal model of quantitative 

genetics results in a normally distributed genetic component, models require that some 

component is normally distributed (de Villemereuil et al. 2018). GLMM’s create this normally 

distributed trait, called the latent trait, upon which to estimate variance components (de 

Villemereuil et al. 2018) GLMMs include ways of dealing with the difficulties that arise in 

estimating additive genetic variance in non-normal traits, such as the fact that they are 

inherently non-additive on the scale on which they are measured and they have many complex 

sources of variation (de Villemereuil et al. 2016). The latent scale in a GLMM assumes additive 

effects on trait expression, and uses a link function to relate expected values for a trait to the 

latent scale (de Villemereuil et al. 2016).  Current methods for making evolutionary predictions, 

such as the Lande equation (Lande 1979), and the breeder’s equation (Heywood 2005) rely on 

parameter estimates coming from normally distributed traits, so for traits that are non-normally 

distributed, which are traits most commonly used in GLMMs, it is necessary to make estimates 

on a latent scale. The latent scale in a GLMM meets the assumptions of these equations for 

predictions of evolution, so in general it is preferable to use these estimates when investigating 

evolutionary potential (de Villemereuil et al. 2016). However researchers also naturally seek to 

make inferences on the scale upon which the data is observed, because this is the scale on 

which we see selection acting (de Villemereuil et al. 2016). The major difference between 

estimates on the latent and data scale is that the latent scale creates a Gaussian distribution, 

where as in this case the distribution on the data scale is binomial. In addition, absolute values 

range from negative to positive, which is impossible on the data scale. Therefore both the sign 

and range of values differ on the latent scale from the observed and expected data scales (de 

Villemereuil et al. 2016). So the interpretations of heritability based on the expected phenotype 

and the observed phenotype will be different and deciding on which scale to estimate heritability 

can depend on what biological question is being asked (de Villemereuil et al. 2016).  
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Bayesian vs. Frequentist methods of estimating variance components 

 

The development of Bayesian approaches to quantitative genetic variance component 

estimation, an approach that combines prior information and observed data to draw statistical 

inference (Visscher et al. 2008), is expected to provide more efficient analysis and heritability 

estimates (Hadfield et al. 2006). Various comparisons of heritability estimates using animal 

models with frequentist and bayesian methods have indicated that MCMC is a more effective 

method when looking at binary traits (de Villemereuil et al. 2013), although it is not always 

completely clear which method is the best, and understanding their behaviour particularly for 

binary data needs more investigation (Charmantier et al. 2014). De Villemereuil et al. 2013, 

found through their comparison studies that parent-offspring regressions and frequentists 

animal models had much higher dispersion of estimates compared to the animal model using 

MCMC. With small sample sizes MCMC tends to lose its advantage and become much more 

biased, and does not estimate heritability as accurately when the heritability is low (de 

Villemereuil et al. 2013), but this was not considered a significant problem for this study as the 

sample size used here is considered large for a wild population, and heritability was consistently 

high. De Villemereuil et al. 2013 recommend MCMC as the preferred method, particularly for 

binary data, because it has limited inaccuracy and high precision.  
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II: Supplementary Tables 

 

 

Table I. Flanking genes for SNPs associated with a significance ‘peak’ on RepeatABEL GWAS. Shown are 

the markers (SNPs) and location (chromosome), the two flanking genes (if SNP is intergenic) or containing 

gene (if SNP is intronic). Functions of the genes based on UniProt are listed. Only marker SNPa105045 

was significantly associated with dispersal, but other listed SNPs are the top SNPs found on each 

observed ‘peak’ on GWAS Manhatten plot (Figure 4). 

 

SNP CHR Flanking genes Distance 
(kbp) 

Analogous Gene Function 

SNPa105045  
15 

IV00_00043860 
 
IV00_00043864  

11 
 
 

15 

UPB1 in Pongo abelii 
 
ADORA2A in homo 
sapiens 

Amino acid biosynthesis 
 

G protein-coupled receptor 
activity. 

SNPa16999 12 ID=IV00_00039264 
 
 

ID=IV00_00039280 

205 
 
 
 
 

214 

SUCLG2 in Columbia 
livia 
 

FAM19A4 in Macaca 
fascicularis 

Protein coding gene. 
Carbon metabolism and 
citric acid cycle 
 
Modulates injury-induced 
and chemical pain 
hypersensitivity 

SNPa14838  12 ID=IV00_00039019  Intronic QRICH1: Glutamine-
rich protein 1 (Bos 
taurus) 

Regulation of cell 
morphogenesis, and 
transcription of RNA 
polymerase II. 

SNPa17197 12 ID=IV00_00039291 Intronic UBA3: NEDD8-
activating enzyme E1 
catalytic subunit 
(Homo sapiens) 

Down-regulates steroid 
receptor activity. Necessary 
for cell cycle progression. 

SNPa344637 2 ID=IV00_00000830 
 
 
 

ID=IV00_00000857  

180 
 
 
 
 
 

589 

FAM92A1: Protein 
FAM92A1 (Bos taurus) 
 
Runx1t1: Protein 
CBFA2T1 (Mus 
musculus) 

Protein folding. Calcium ion 
binding 
 
 

Acts as a negative regulator 
of adipogenesis. Fat cell 
differentiation. 
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Table II. Heritability estimates obtained in MCMCglmm using three different prior distributions. Heritability 

estimates are on the latent scale. All models are run with 1e+06 iterations, a burn-in period of 10000, and 

a thinning interval of 100. 

 

Prior distribution 𝒉𝒍𝒂𝒕𝒆𝒏𝒕
𝟐  estimate 

Inverse Gamma 0.59 

Expanded F distribution 0.57 

𝑿𝟐 with 1 degree of freedom 0.53 

 

 

 

Table III. Comparison of model parameters to assess best model for use in this study. Shown are the 

parameters for each model (nitt = total number of iterations, burn = burn-in period, thin = thinning 

interval), the effective sample size and the autocorrelation for each factor. Autocorrelation values should 

be around 0.1 or lower ideally. Models are done with slightly different data than the final model used in 

the study, so they are meant to compare to each other not to the final model. 

 

Model parameters Effective sample size Autocorrelation values Analysis/ 𝒉𝒍𝒂𝒕𝒆𝒏𝒕
𝟐  estimate 

Nitt: 1e+06 
Burn: 10000 
Thin: 100  

2401 Year: 0.8928722 
Island: 0.001714489 
Units: 0.80016605  
  

ℎ𝑙𝑎𝑡𝑒𝑛𝑡
2 = 0.51 

Nitt: 1e+06 
Burn: 10000 
Thin: 5000 

198 Year: 0.108928322 
Island: 0.04650537 
Units:  -0.12995491   

ℎ𝑙𝑎𝑡𝑒𝑛𝑡
2 = 0.47 

Nitt: 5e+06 
Burn: 10000 
Thin: 5000  

990 Year: -0.02693241 
Island:  0.035357695 
Units:   0.01839180   

ℎ𝑙𝑎𝑡𝑒𝑛𝑡
2 = 0.49 
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III: Supplementary Figures 
 

 
 

 
 

Figure I. MCMCglmm model with default parameters. 
modelbinary3.1.1 <- MCMCglmm(disp ~ 1, random = ~animal + year + island, family = "categorical", prior = prior, 

pedigree = pedigree2, data = sparrow2 , nitt = 120000, burnin = 10000, thin = 100). 

 

 



55 
 

 
 
Figure II: Trace of the variances using an Inverse Gamma distribution prior 
modelbinary5.3 <- MCMCglmm(disp ~ 1, random = ~animal + year + island, family = "categorical", prior = priorInvG, 

pedigree = pedigree2, data = sparrow4 , nitt = 1e+06, burnin = 10000, thin = 100) 
Prior: priorInvG <- list(R = list(V=1, nu=0.002), G = list(G1 = list(V=1, nu=0.002), G2 = list(V=1, nu=0.002), 

G3=list(V=1, nu=0.002))) 
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Figure III: Trace of the variances using a parameter expanded F distribution prior. 
modelbinary5.4 <- MCMCglmm(disp ~ 1, random = ~animal + year + island, family = "categorical", prior = priorExpF, 

pedigree = pedigree2, data = sparrow4 , nitt = 1e+06, burnin = 10000, thin = 100) 
Prior: priorExpF <- list(G = list(G1 = list(V = 1, nu = 1, alpha.mu = 0, alpha.V = 10), G2 = list(V = 1, nu = 1, alpha.mu = 

0, alpha.V = 10), G3=list(V=1, nu=1, alpha.mu=0,alpha.V=10)), R = list(V = 1, nu = 0.002)) 
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Figure IV. Trace of the variances using X2with 1 degree of freedom prior, and data used for heritability estimate. 
modelbinary3.1.7 <- MCMCglmm(disp ~ 1, random = ~animal + year + island, family = "categorical", prior = prior, 

pedigree = pedigree2, data = sparrow4 , nitt = 1e+06, burnin = 10000, thin = 100) 
prior <- list(R = list(V = 1, fix = 1), G = list(G1 = list(V = 1, nu = 1000, alpha.mu = 0, alpha.V = 1), G2 = list(V = 1, nu = 

1000, aplha.mu = 0, alpha.v = 1), G3 = list(V = 1, nu = 1000, alpha.mu = 0, alpha.V = 1))) 


