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Abstract The three-dimensional revolving flow of a particle-fluid suspension above a plane surface

is considered. The flow represents an extension of the classical Bödewadt flow to a two-fluid prob-

lem. The governing equations for the two phases are coupled through an interaction force with the

particle relaxation time s as a free parameter. By means of a similarity transformation, the coupled

set of non-linear ODEs becomes a two-point boundary value problem. The numerical results show

that the radial inward particle velocity increases whereas the circumferential velocity decreases by

shortening s, thereby strengthening the spiralling particle motion. These predictions are consistent

with the so-called tea-cup effect, i.e. accumulation of tea leaves at the centre of the cup. On the con-

trary, the revolving fluid motion is reduced as a result of the particle-fluid interactions.
� 2017 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The steadily revolving flow of a viscous fluid above a planar
surface is commonly known as Bödewadt flow; see Bödewadt

[1]. The fluid motion well above the surface is characterised
by a uniform angular velocity, which is reduced through a vis-
cous boundary layer in order for the fluid to adhere to the no-

slip condition at the solid surface. The reduction of the circum-
ferential velocity component in the vicinity of the surface
reduces the radially directed centripetal acceleration (or cen-

trifugal force) such that the prevailing radial pressure gradient
induces an inward fluid motion. In order to assure mass con-
servation, this inward fluid motion gives in turn rise to an axial
upward flow. Such a spiralling flow exists near the planar sur-
face, although more complex variations of the velocity field
have been reported further away, but yet before the uniformly

rotating flow conditions are reached. The oscillatory nature of
the three velocity components reported by Bödewadt [1] has
been subject to criticism, but this criticism was deem unjusti-

fied by Zandbergen and Dijkstra [2]. It is interesting to notice
that these oscillations are damped and even suppressed in pres-
ence of a magnetic field (King and Lewellen [3]), partial slip
(Sahoo, Abbasbandy and Poncet [4]), stretching surface

(Turkyilmazolgu [5]) or suction (Nath and Venkatachala [6]).
With a sufficiently high suction velocity through the planar
surface, the axial flow is directed in the downward direction

rather than upward, as is the case in the classical Bödewadt
flow. In view of its fundamental importance as a prototype
swirling flow the Bödewadt flow has received renewed focus

in recent years. The inviscid instability of the Bödewadt
boundary layer was examined by MacKerrell [7] whereas
Sahoo [8,9] and Sahoo and Poncet [10] demonstrated that also
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such revolving flows of a non-Newtonian Reiner-Rivlin fluid
admit exact similarity solutions.

The swirling flow induced by a steadily rotating disk was

first described by von Kármán [11]. The von Kármán flow is
essentially a reversed Bödewadt flow, albeit without the oscil-
latory features that characterize the latter. Zung [12] studied a

von Kármán flow of a fluid-particle suspension and his analy-
sis was subsequently extended by Sankara and Sarma [13] to
include surface suction and further explored by Allaham and

Peddieson [14].
Studies of suspensions of small particles in a continuous

medium (either gas or liquid) are of fundamental interest in
fluid mechanics and yet with numerous applications like, for

instance, aerosol clouds and erosion protection. Additional
applications were recently pointed out by Turkyilmazolgu
[15]. A daily life example is the characteristic flow-induced sed-

imentation of tea leaves in a flat-bottomed cup of tea, as dis-
cussed by Einstein [16] and illustrated in Fig. 1.

The aim of the present study is to adopt a similar approach

as that advocated by Zung [12] to Bödewadt flow of a fluid-
particle suspension. After first having shown that the govern-
ing two-phase flow equations admit similarity solutions,

numerical solutions of the coupled set of non-linear ordinary
differential equations will show how the particle phase is
revolving along with the fluid and also how the presence of
particles will affect the swirling motion of the fluid phase.
2. Mathematical model equations

Let us consider the steadily revolving flow of a fluid-particle

suspension above a planar surface. In cylindrical polar coordi-
nates ðr; h; zÞ the governing mass conservation and momentum
equations for the fluid and particle phases become:
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Fig. 1 Sketch of the secondary fluid motion in the vertical plane

through the symmetry axis of a flat-bottomed cup of tea. The

secondary motion arises due to a revolving fluid motion in the

horizontal plane, caused for instance by stirring by a spoon, and

sweeps the tea leaves towards the center of the cup.
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where (u; v;w) and (up; vp;wp) are the velocity components of

the fluid and particle phases in the radial, circumferential

and axial directions, respectively. Here, we have assumed rota-
tional symmetry about the vertical z-axis, i.e. @=@h ¼ 0. The
kinematic viscosity of the fluid is m and the densities of the fluid

and particle phases are q and qp. The above set of governing

equations is the same as that considered by Zung [12] and San-
kara and Sarma [13] for swirling von Kármán flow of a fluid-

particle suspension above a steadily rotating disk, except that
the a priori unknown pressure p was assigned only to the fluid
phase. In the present study, however, the pressure gradients

are shared between the two phases in proportion to their den-
sity ratio. This alternative formulation was suggested by Alla-
ham and Peddeison [14] but not adopted in their subsequent

calculations. In the present problem, however, it is essential
to include pressure gradient terms also in the particle-phase
equations of motion. Indeed, a radial pressure gradient is

required to balance the centripetal acceleration in the far field
in Eq. (6).

Particle-fluid interactions are accounted for by means of the
following force components

Fr ¼ qpðup � uÞ=s; ð9Þ

Fh ¼ qpðvp � vÞ=s; ð10Þ

Fz ¼ qpðwp � wÞ=s; ð11Þ

included in the fluid phase equations and their negative coun-
terparts in the particle phase equations. These expressions rep-
resent force per volume and are based on the assumption of a

linear drag law, i.e. Stokes drag, where s

s ¼ m=6pla; ð12Þ

is the relaxation time of a single spherical particle with mass
mand radius a immersed in a fluid with dynamic viscosity

l ¼ qm. The viscous fluid phase sticks to the permeable planar
surface at z ¼ 0 and attains a state of solid body rotation with
angular velocity X high above the surface:

u ¼ 0; v ¼ 0; w ¼ � ffiffiffiffiffiffi
mX

p
A at z ¼ 0

u ¼ 0; v ¼ rX; p ¼ 1
2
qr2X2 as z ! 1

)
; ð13Þ

where A P 0 is a dimensionless suction velocity. The inviscid
particle phase can be assumed to follow the motion of the fluid
phase far above the solid surface, i.e.
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up ¼ u ¼ 0; vp ¼ v ¼ rX;

wp ¼ w; qp ¼ q; for z ! 1:
ð14Þ
3. Similarity transformation and resulting ODEs

The two-phase flow that arises above the planar surface can be

characterized by the length scale
ffiffiffiffiffiffiffiffi
m=X

p
, the time scale X�1 and

the velocity scale
ffiffiffiffiffiffi
mX

p
. We can therefore introduce the same

dimensionless similarity variables used already by von Kármán
[11] and Bödewadt [1]:

g ¼ z
ffiffiffiffiffiffiffiffi
X=m

p
: ð15Þ

The same similarity transformations are used for the fluid

phase velocities and pressure:

uðr; zÞ ¼ rXFðgÞ;
vðr; zÞ ¼ rXGðgÞ;
wðr; zÞ ¼ ffiffiffiffiffiffi

mX
p

HðgÞ;
pðr; zÞ ¼ q �mXPðgÞ þ 1

2
r2X2

� �
:

ð16Þ

The latter pressure transformation was not required in Böde-

wadt’s original approach which was based on the boundary
layer approximations which imply that the pressure is constant
all across the boundary layer. The variables characterizing the

particle phase can be recast into dimensionless forms by means
of the transformation used for von Kármán flow by Sankara
and Sarma [13]:

upðr; zÞ ¼ rXFpðgÞ;
vpðr; zÞ ¼ rXGpðgÞ;
wpðr; zÞ ¼

ffiffiffiffiffiffi
mX

p
HpðgÞ;

qpðr; zÞ ¼ qQðgÞ;

ð17Þ

where Q is the ratio between the densities of the two phases.

The governing set of partial differential Eqs. (1)–(8) transforms
into a set of ordinary differential equations:

2FþH0 ¼ 0; ð18Þ

Q0Hp þQH0
p þ 2QFp ¼ 0; ð19Þ

F00 �HF0 � F2 þ G2 þ bQðFp � FÞ ¼ 1; ð20Þ

G00 �HG0 � 2FGþ bQðGp � GÞ ¼ 0; ð21Þ

P0 ¼ �2FHþ 2F0 � bQðHp �HÞ; ð22Þ

F0
pHp þ F2

p � G2
p þ bðFp � FÞ ¼ �1=Q; ð23Þ

G0
pHp þ 2FpGp þ bðGp � GÞ ¼ 0; ð24Þ

QH0
pHp þ bQðHp �HÞ ¼ P0 ð25Þ

where the prime denotes differentiation with respect to the sim-

ilarity variable g. The accompanying boundary conditions (13)
and (14) transform into:

FðgÞ ¼ 0; GðgÞ ¼ 0; HðgÞ ¼ �A; at g ¼ 0;
FðgÞ ¼ 0; GðgÞ ¼ 1; PðgÞ ¼ 1;

FpðgÞ ¼ 0; GpðgÞ ¼ 1; HpðgÞ ¼ HðgÞ;
QðgÞ ¼ 1:

9>=
>;as g ! 1: ð26Þ
The resulting two-fluid flow problem now depends only on two

dimensionless parameters, namely the suction parameter A
and the interaction parameter b ¼ 1=Xs where s was intro-
duced in Eq. (12). The ratio between a particle time scale

and a fluid time scale, e.g. s=X�1, is often referred to as a
Stokes number. The single-phase Bödewadt flow with suction

is recovered in the particular case when the interaction param-
eter b ¼ 0.
4. Numerical integration technique

Our primary interest is in the flow field. The pressure gradient

P0 can therefore be eliminated from the axial components of
the fluid and particle equations to give

H0
p ¼ 2F0 � 2bQðHp �HÞ � 2FH

� �
=HpQ: ð27Þ

We have used the bvp4c MATLAB solver, which gives very
good results for the non-linear ODEs with multipoint BVPs.

This finite-difference code utilizes the 3-stage Lobatto IIIa for-
mula, that is a collocation formula and the collocation polyno-
mial provides a C1-continuous solution that is fourth-order

accurate uniformly in [a,b]. For multipoint BVPs, the solution
is C1-continuous within each region, but continuity is not
automatically imposed at the interfaces. Mesh selection and
error control are based on the residual of the continuous solu-

tion. Analytical condensation is used when the system of alge-
braic equations is formed; see Shampine et al. [17]. The
coupled set of non-linear ODEs are integrated for A ¼ 2:0
and some different values of b.

For the particular parameter value b ¼ 0, the two-point
boundary value problem defined in Section 3 simplifies since

the particle phase decouples from the fluid phase. In our recent
paper [18], results for this single-phase flow compared excel-
lently with earlier results provided by Nath and Venkatachala

[6] for some different values of the dimensionless suction veloc-
ity A ¼ 0; 1, and 2.

For non-zero values of the interaction parameter b, the
fluid phase momentum equations are coupled to the particle

phase momentum equations through interaction force terms.
Although our numerical integration approach worked per-
fectly well for b ¼ 0, we were unable to obtain converged

numerical solutions for b > 0 in absence of suction ðA ¼ 0Þ.
We first computed some sample solutions for A ¼ 3 (Rahman
and Andersson [19]). In the present paper we instead consider

A ¼ 2 after first having validated the computational accuracy
by comparisons with the results obtained by Nath and Venkat-
achala [6].

Allaham and Peddieson [14] mentioned that numerical

solutions of particulate von Kármán flow driven by an imper-
meable disk did not exist for some parameter combinations,
but also that no such restrictions were found when suction

was imposed. It is well known that Bödewadt flow over an
impermeable surface, i.e. A ¼ 0, is more complex than the cor-
responding Kármán flow. The three velocity components exhi-

bit an oscillatory behaviour and the Bödewadt boundary layer
is substantially thicker than the von Kármán boundary layer.
In presence of suction, however, the Bödewadt boundary layer

becomes substantially thinner and the oscillatory behaviour
vanishes. For these reasons, numerical solutions are more
readily obtained.
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5. Results and discussions

We are primarily interested in particle-fluid interactions in the
three-dimensional flow field. We therefore considered five dif-

ferent values of the particle-fluid interaction parameter b in the
range from 0.2 to 2.0. The suction parameter A was kept con-
stant and equal to 2.0. This particular parameter value was

chosen since Nath and Venkatachala [6] considered the same
albeit without a particle phase.

We can see from Fig. 2 that the radial inward flow is
reduced in the presence of particles and this reduction

increases with b. This is caused by the interaction force Fr

which is positive since up > u everywhere except in the near

vicinity of the surface. It is noteworthy that also the particle
phase flows towards the symmetry axis. Contrary to u, how-

ever, up does not obey no-slip at the surface. This gives rise

to a change-of-sign of the slip velocity up � u next to the sur-

face and thereby a reversal of Fr. The thickness of the thin

near-wall layer with Fr < 0 increases from about 0.2 to

0:4
ffiffiffiffiffiffiffiffi
m=X

p
as b increases from 0.2 to 2.0.

The particle velocity up in Fig. 3 is radially inward and

increases in magnitude all the way towards the surface. This
Fig. 2 Radial fluid velocity component F ¼ u=rX for some

different values of the interaction parameter b.

Fig. 3 Radial particle velocity component Fp ¼ up=rX for some

different values of the interaction parameter b.
inward motion strengthens monotonically with increasing
interaction parameter b, primarily due to a reduction of the
circumferential particle velocity vp. The gradual reduction of

the magnitude of the centripetal acceleration in Eq. (6) is

partly compensated by an increasing magnitude of the convec-

tion up@up=@r ¼ 1=2@u2p=@r < 0.

The interaction parameter b has an almost negligible effect

on the circumferential fluid velocity v in Fig. 4 which reduces
monotonically from that of solid body rotation v ¼ rX to
no-slip v ¼ 0 at the surface. The circumferential slip velocity

vp � v becomes inevitably positive in the viscous boundary

layer since the particle velocity vp is neither affected by viscous

forces nor obeys no-slip. The circumferential interaction force

Fh on the fluid phase is thus positive and slightly increases v
with increasing b, whereas the corresponding reaction force
on the particle phase �Fh < 0 and therefore tends to enhance

the deceleration of the particle motion with increasing b, as
one can observe in Fig. 5.

The fluid phase flows axially towards the surface, i.e. w < 0,

as can be seen in Fig. 6. This opposite flow direction compared
Fig. 4 Circumferential fluid velocity component G ¼ v=rX for

some different values of the interaction parameter b.

Fig. 5 Circumferential particle velocity component Gp ¼ vp=rX
for some different values of the interaction parameter b.



Fig. 6 Axial fluid velocity component H ¼ w=
ffiffiffiffiffiffi
mX

p
for some

different values of the interaction parameter b.
Fig. 8 Pressure P for some different values of the interaction

parameter b.

Fig. 9 Ratio of particle and fluid densities Q ¼ qp=q for some

different values of the interaction parameter b.
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to that in classical Bödewadt flow ðw > 0Þ is due the surface
suction. The magnitude of the downward flow can be seen to

increase from that beyond g ¼ z
ffiffiffiffiffiffiffiffi
X=m

p � 2 where solid-body

rotation prevails through the viscous boundary layer until

w=
ffiffiffiffiffiffi
mX

p ¼ �2:0 at the surface z ¼ 0. The interaction force Fz

is generally positive since the slip velocity wp � w > 0 (compare

Figs. 6 and 7). The axial convection is wp@wp=@z ¼ 1=2@w2
p=@z

is partially balanced by the negative reaction force �Fz in the
particle Eq. (8). However, the dimensionless pressure P

decreases monotonically upwards, i.e. P0 < 0 , as seen in
Fig. 8. This variation gives rise to a positive pressure gradient

@p=@z in the axial direction, i.e. a pressure force that acts
towards the surface and thus tends to support the axial motion
towards the surface.

The relative density Q, i.e. the ratio between the particle
and fluid densities qp=q, is a variable quantity that has been

obtained as an integral part of the numerical solution of the
present two-fluid flow problem. The Q-profiles in Fig. 9 show
that the particle density qp is some 10% lower than the fluid

density near the surface but increases to match q outside of
the viscous boundary layer.
Fig. 7 Axial particle velocity componentHp ¼ wp=
ffiffiffiffiffiffi
mX

p
for some

different values of the interaction parameter b.
Let us finally look at the motion of the particle phase in the
limit as b ! 0 if qp ¼ q. The horizontal velocity components

become up ¼ 0 and vp ¼ rX, i.e. the radial component vanishes

and the linearly increasing circumferential velocity makes the
centripetal acceleration exactly balance the radial pressure
force in Eq. (6).

The boundary layer characteristics obtained from the
numerical solutions are given in Table 1. For the fluid phase:

�F0ð0Þ;G0ð0Þ;�Hð1Þ. For the particle phase: �Fpð0Þ;Gpð0Þ;
�Hpð0Þ.

We learned from Table 1 that:

� The magnitude of the slope of the radial velocity F 0ð0Þ
decreases with increasing fluid-particle interactions.

� The slope of the circumferential fluid velocity G0ð0Þ
increases with increasing b (not clearly visible in Fig. 4).

� The magnitude of the downward fluid velocity �Hð1Þ is
slightly increased from 1.73 to 1.84 with increasing b.

� The circumferential particle velocity Gpð0Þ decreases from

0.98 to 0.77 as b increases from 0.2 to 2.0.

� The inward radial particle velocity �F pð0Þ more than dou-

bles from about 0.05 to 0.11 as b is increased.



Table 1 Flow characteristics for suction parameter A ¼ 2:0.

b �F0ð0Þ �Fpð0Þ Gpð0Þ G0ð0Þ �Hpð0Þ �Hð1Þ
0.2 0.6136 0.0492 0.9815 2.2165 2.0443 1.7301

0.5 0.5770 0.0685 0.9373 2.3038 2.0559 1.7622

1.0 0.5396 0.0889 0.8716 2.4342 2.0599 1.7983

1.5 0.5192 0.1008 0.8149 2.5453 2.0585 1.8213

2.0 0.5082 0.1078 0.7661 2.6402 2.0559 1.8370
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6. Concluding remarks

In this study we adopted the mathematical model of mass and

momentum transport in two-fluid systems used earlier for von
Kármán flow by Zung [12] and Sankara and Sarma [13]. In the
Bödewadt flow, however, it was essential to include pressure

force terms in the particle phase momentum equations in order
to balance the centripetal acceleration in Eq. (6) in the far field.

� The governing equations of the three-dimensional two-fluid

problem have been transformed into a coupled set of ordi-
nary differential equations by means of an exact similarity
transformation.

� The resulting set of ODEs is a two parameter problem in
terms of the dimensionless suction velocity A and the
fluid-particle interaction parameter b.

� b is the ratio between the rotation time scale X�1 and the
particle relaxation time s. b is therefore a reciprocal Stokes

number.
� The particles are spiralling inwards in the vicinity of the sur-

face. The radial inward velocity up
		 		 increases and the cir-

cumferential velocity vp decreases with increasing

interaction parameter b, i.e. the spiralling increases with
b. This phenomenon is commonly known as the tea cup

effect: when the tea is stirred, tea leaves near the bottom
move towards the centre of the cup and heap up.

� Contrary to the particle phase, the inward spiralling of the

fluid phase is gradually reduced as the fluid-particle interac-
tion parameter is increased. The circumferential flow is only
modestly affected, but the surface shear stress is neverthe-

less increased.
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