
Saliency based methods for camera
orientation in aquaculture

Magnus Conrad Harr

Master of Science in Cybernetics and Robotics

Supervisor: Annette Stahl, ITK
Co-supervisor: Christian Schellewald, SINTEF Ocean

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology

Problem description

Today, cameras in sea-cages are controlled manually by an operator. From

a computer-vision perspective this raises a few challenges, including how

the camera orientation and position are unsupervised at night and when-

ever the operator is performing other tasks. For this reason, there is no

guarantee that a camera system running computer-vision algorithms will

be oriented optimally with respect to its desired target. As such, an algo-

rithm able to automatically orient the camera such that interesting regions

are always captured is desired.

This thesis aims to provide insight into a saliency based approach for such

algorithms. Existing algorithms for this purpose are not suitable for sep-

arating interesting and non-interesting objects in a sea-cage. Therefore,

modifications/additions to these algorithms will be tested. For the per-

formance comparison, several saliency estimation techniques will be used,

combined with different additions aiming to rectify the mentioned prob-

lems. The results will be based on footage from an underwater camera

system developed by Sealab.

This project will lay the foundations for future 24/7 surveillance in sea-

cages using computer-vision algorithms. Such algorithms will also provide

an image quality guarantee to operators with remote system access, even

when the site in unmanned.

In cooperation with Sealab AS, Trondheim. Contact: Oscar Markovic,

CEO, oscar@sealab.no, +47 46912421

Preface

This report, written from January 4th 2018 to June 4th 2018, forms my

masters thesis in engineering cybernetics at the Norwegian University of

Science and Technology. Thank you to Annette Stahl and Christian Schelle-

wald for agreeing to counsel me.

The work was done in collaboration with Sealab Ocean Group, who pro-

vided all necessary video material as well as an office space to work from.

They have also, both during work on the masters thesis and the pre-project,

provided knowledge on the aquaculture industry that has proven extremely

useful for my work. I would like to thank the employees and my fellow stu-

dents at Sealab for their input, making me consider things I may not have

thought of otherwise.

Magnus Conrad Harr
June 4, 2018

Abstract

This thesis looks into the applicability of visual saliency as a basis for au-

tonomous camera orientation. Autonomous re-orientation is expected to

be a key component in future computer vision-based monitoring systems:

a fish-cage is a highly dynamic environment, and even a well-placed camera

may no longer be optimally oriented for data gathering if left static over

time. The underwater performance of visual saliency algorithms are tested

and discussed. A few different attempts at addressing a major concern

related to the cage net itself are made. Most notable is a filtering scheme

based on an optical flow algorithm by Gunnar Farnebäck, the use of which

successfully solves the presented challenge but also introduces a new prob-

lem. In conclusion, visual saliency can provide a viable basis for camera

orientation, but only under certain conditions.

Sammendrag

Denne oppgaven studerer anvendbarheten av visuell saliency for bruk til

autonom kameraorientering. Automatisk re-orientering av kameraer antas

å spille en viktig rolle i fremtidens datasyn-baserte overv̊akningssystemer

for oppdrettsmerder: fordi omgivelsene i en merd er svært dynamiske

vil selv et velplassert kamera måtte justeres over tid for å gi optimal

datafangst. Resultat av analyse av fremtredende objekter under vann

testes og diskuteres. Det avdekkes en utfordring relatert til notveggen

som forsøkes utbedret p̊a flere ulike måter. Den viktigste er et filter basert

p̊a en optical flow algoritme utviklet av Gunnar Farnebäck. Bruk av dette

filteret løser problemet relatert til notveggen, men innfører ogs̊a et nytt.

Det konkluderes med at automatisk kameraorientering vil kunne gjøres

basert p̊a visuell saliency, men kun under gitte betingelser.

Contents

1 Introduction 1

2 Visual saliency 3

2.1 Fine grained saliency . 4

2.2 Motion saliency . 5

2.3 Comparison and applicability 7

2.3.1 Share of fish considered salient 8

2.3.2 Resolution and accuracy 10

2.3.3 Dynamic range . 12

2.4 Challenges . 13

3 Saliency map filtering 15

3.1 Thresholding . 15

3.2 Masking based on frame logs 19

3.3 Optical flow . 22

3.3.1 Motivation . 22

3.3.2 Farnebäck . 22

3.3.3 Applying Farnebäck 24

3.3.4 Threshold estimation using Otsu’s method 26

3.3.5 Adaptive threshold 30

4 Discussion 33

4.1 Frame log filter . 33

4.2 Optical flow with Otsu filter 33

v

4.2.1 Fine grained saliency 34

4.2.2 Unprocessed video 37

4.3 Optical flow with adaptive filter 38

4.4 Optical flow filter comparison 40

5 Conclusion 43

Appendices

A Unprocessed images i

B Farnebäck motion magnitudes iii

C Actual vs. perceived speed v

List of Figures

2.1.1 Illustration of fine grained saliency maps. In c) the fine

grained saliency map is shown. Image by Montabone and

Soto[17]. 5

2.1.2 Examples of underwater fine grained saliency maps, with

differing camera angles. Unprocessed images are shown in

appendix A. 6

2.2.1 Examples of underwater saliency maps using motion saliency,

with differing camera angles. Computed from the same

frames used in 2.1.2. Unprocessed images in appendix A. . 7

2.2.2 Illustration of motion saliency maps. Image by Wang and

Dudek[3]. 8

2.3.1 Video frames (left), and their corresponding saliency maps

(right). 11

2.3.2 Fine grained saliency of the cage net. 12

2.3.3 Two images from a sea-cage taken only a few seconds apart. 13

3.1.1 Side-by-side comparison of original saliency maps (left), and

the results of applying a global threshold (right). 16

3.1.2 Original saliency map related to figure 3.1.3 17

3.1.3 Comparison of adaptive threshold with mean and gaussian

kernels. k = 31. 18

3.2.1 Result of a frame log filter with n = 2. 20

3.2.2 Result of a frame log filter with n = 5. 21

3.2.3 Binary saliency map corresponding to figures 3.2.1 and 3.2.2. 21

vii

3.3.1 Flow magnitudes estimated by Farnebäcks algorithm. Orig-

inal frame in figure 3.3.4. 24

3.3.2 Example of a bimodal histogram. 26

3.3.3 Histogram (blue) showing the optical flow magnitude distri-

bution from the image in figure 3.3.4. The red line marks

the Otsu threshold. 28

3.3.4 Image from which the optical flow illustrated in figure 3.3.3

is estimated. 28

3.3.5 A fine grained saliency map (left), and a mask created by

Otsu from the flow magnitudes (right). 29

3.3.6 A motion saliency map (left), and a mask created by Otsu

from the flow magnitudes (right). 29

3.3.7 Mask created by adaptive threshold on flow magnitudes

from figure 3.3.1. k = 501, C = 10. 31

4.2.1 Example frames for each case to be examined. 34

4.2.2 A fine grained saliency map from within a shoal of salmon

(left), and a mask generated by the optical flow method

(right). 35

4.2.3 Flow magnitudes related to the case with only fish. 35

4.2.4 A fine grained saliency map of a net (left), and a mask gen-

erated by the optical flow method (right). 36

4.2.5 Saliency map containing fish and a camera system (left),

and its corresponding optical flow-based mask (right). . . . 37

4.2.6 Optical flow from original images with applied Otsu threshold. 38

4.3.1 Results of optical flow with adaptive threshold. Frame con-

tains only fish. 39

4.3.2 Results of optical flow with adaptive threshold. Frame con-

tains only net. 39

4.3.3 Results of optical flow with adaptive threshold. Frame con-

tains fish, net, and a camera system. 40

A.0.1Frame corresponding to the saliency maps in figures 2.1.2b

and 2.2.1b. Time of day: 09:30 i

A.0.2Frame corresponding to the saliency maps in figures 2.1.2a

and 2.2.1a. Time of day: 09:30 ii

A.0.3Frame corresponding to the saliency maps in figures 2.1.2c

and 2.2.1c. Time of day: 15:30 ii

B.0.1Histogram of motion magnitudes related to figure 4.2.1a.

Generated by Farnebäck optical flow. iii

B.0.2Histogram of motion magnitudes related to figure 4.2.1b.

Generated by Farnebäck optical flow. iv

B.0.3Histogram of motion magnitudes related to figure 4.2.1c.

Generated by Farnebäck optical flow. iv

C.0.1Field of view of DX format NIKKOR lenses [13]. Photo by:

Lindsay Silverman . v

Chapter 1
Introduction

Today, fish farms are generally monitored by operators by means of a single,

manually controlled camera in each cage. In recent years, the aquaculture

industry has seen a huge interest in modernization: several companies of all

sizes have grown interested in joining this effort, especially related to artif-

ical intelligence (AI) and computer vision[1, 8, 11]. Interest in this field is

wide-spread, and both external companies as well as the fish-farming com-

panies themselves are working on AI within aquaculture. One example of

such a project is Aquacloud[5]. This is a joint project between several large

actors within Norwegian aquaculture, aimed at analysing and predicting

the development of salmon lice. The potential for savings is huge, as costs

connected to salmon lice were estimated to 5 billion NOK in Norway alone

in 2015[15].

The physical platform for data gathering can be realized in two ways. Ei-

ther there will be added a separate camera to each cage, or the computer

vision algorithms will be sharing a camera with the operators. Taking

into account that operators on site report that there are already too many

ropes and wires in and around the cages, it is likely that adding a separate

camera for computer vision purposes will not be well received. Because of

this, it is assumed here that any computer vision algorithms will be run on

the same camera controlled by on-site operators. This poses a new chal-

lenge; people working on the farming installations are unlikely to have a

background in computer vision or AI. They are therefore unlikely to know

1

Chapter 1: Introduction

how to position and orient a camera when they are not using it, in or-

der to maximize video quality for the computer vision systems. In this

thesis, it will be discussed whether or not a saliency-based approach for

automatically orienting cameras in a sea-cage is viable. The findings will

be an indication as to how well visual saliency would work as a basis for

an orientation algorithm.

In chapter 2, two different saliency algorithms will be presented and com-

pared. The comparison will focus on how each saliency algorithm performs

in a sea-cage environment, and how well they are expected to perform as

a basis for camera orientation. Chapter 3 introduces several operations

performed on the saliency maps in an attempt to improve the data. Most

notable of these is an optical flow-based filter based on Gunnar Farnebäcks

algorithm presented in the 2003 paper ”Two-Frame Motion Estimation

Based on Polynomial Expansion”[7]. In chapter 4 the findings will be dis-

cussed and evaluated with respect to camera orientation.

The end result of this thesis will be a ruling into the pros and cons of basing

a camera orientation scheme on existing saliency algorithms. Limitations

and pre-requisites for the approach will be taken into account.

All software used throughout the project was implemented in C++ using

OpenCV 3.3. Notable OpenCV modules that were used include libraries

for visual saliency estimation, optical flow, background segmentation, and

CUDA image filtering.

2

Chapter 2
Visual saliency

This chapter explains the concept of visual saliency, and provides an ex-

planation of the differences between two algorithms used in this project.

Some parts of the theory and explanations in this section were covered in

the pre-project for this thesis[10]. However, they will be covered here as

well for ease of reading, and because the pre-project is not yet publicly

available.

Saliency algorithms are generally meant to estimate how interesting each

pixel in an image is. Research into such algorithms are under no means

finished, and several algorithms have been presented in recent years[3, 9,

17, 19]. The problem of detecting salient image regions is one that can be

solved in many different ways; attempts have been made using a variety

of different approaches, including background subtraction[3], and contrast

evaluation[9]. The algorithm designed by Montabone and Soto in 2010 is

based on convolution of differing filter-sizes, a center-surround computa-

tion, and spatial evaluations to compute pixel saliency[17].

In this project, two algorithms will be used: Montabone and Sotos fine

grained saliency presented in 2010[17], and a motion saliency algorithm

by Wang and Dudek from 2014[3]. As these are presented, note how the

example photos provided by the algorithms developers are taken in air.

Because this project is concerned with underwater images from fish-cages,

the image material is very different and it is expected that the saliency

3

Chapter 2: Visual saliency 2.1. Fine grained saliency

algorithms will perform differently. As a result, the algorithms must be

evaluated based on images from a sea-cage.

2.1 Fine grained saliency

The fine grained algorithm by Montabone & Soto, also referred to as fine

grained saliency, is really an improvement on VOCUS[16, 17]. As explained

in the pre-project [10]:

”In VOCUS, given the original frame i0, a 3x3 Gaussian filter

is applied and the image is scaled down to half the size on each

axis to create i1. This is repeated 4 times to create images

i0, i1, i2, i3, i4. From these images, 12 intensity submaps are

generated in 6 filter windows and then summed up”.

In VOCUS, computation over a filter of size n-by-n is O(n2)[16, 17]. The

improvement made in fine grained saliency is that integral images are used

for feature evaluation, meaning the same computation can be performed

in O(1)[17]. This allows to avoid reducing image resolution by instead

increasing the filter sizes. The end result is that fine grained saliency

creates a higher resolution saliency map than VOCUS, as can be seen in

figure 2.1.1. The fact that this algorithm can provide such high-resolution

saliency maps means more potentially important image information is re-

tained.

The algorithms performance in air is illustrated in figure 2.1.1, while the

underwater performance can be seen in figure 2.1.2. There is a clear differ-

ence between these two examples: In the example image of a camel a large

portion of the animal is considered highly salient, whereas in a sea-cage the

fish are considered significantly less salient. From this, the algorithm has

its pros and cons: On the positive side, the high resolution displayed in air

is retained in an underwater sea-cage environment. This implies that the

fine grained saliency map will be well suited for any further processing[10].

A negative effect arises from the fact that pixel saliency varies greatly over

a given salmon: In figures 2.1.2a and 2.1.2c it is mostly the fins and dot

4

Chapter 2: Visual saliency 2.2. Motion saliency

Figure 2.1.1: Illustration of fine grained saliency maps. In c) the fine

grained saliency map is shown. Image by Montabone and Soto[17].

pattern on the backs of fish that is considered salient, meaning the average

saliency over a given fish is low. The total saliency of a fish is significantly

lower than optimal, which may prove a challenge for camera orientation.

In an ideal case, every pixel representing part of a salmon would have max

intensity in the saliency map.

2.2 Motion saliency

The algorithm by Wang & Dudek referred to as a motion saliency algo-

rithm is really based on a background subtractor. As explained in the

pre-project[10]:

”Wang and Dudeks background subtraction algorithm ”follows

the general scheme of a pixel-based background detector”[3].

It uses a set of adaptive templates for the background model,

and selects which to discard based on an efficiency measure.

This approach means less computation is required compared

to algorithms using larger sets of values, and therefore makes

it suitable for use on video feeds and in systems with limited

computational power”.

The underwater performance of motion saliency is shown in figure 2.2.1.

Compared to the authors examples in figure 2.2.2, this shows that saliency

5

Chapter 2: Visual saliency 2.2. Motion saliency

(a) Facing down 45◦ (b) Facing up 45◦

(c) Facing horizontal

Figure 2.1.2: Examples of underwater fine grained saliency maps, with

differing camera angles. Unprocessed images are shown in appendix A.

maps produced by this algorithm in a fish-cage is significantly less accurate

than in air, and contain more noise. This additional noise originates from

the fact that this algorithm is essentially a background subtractor. All the

example images in figure 2.2.2 have clear, textured, perfectly static back-

grounds, whereas in a sea-cage, as can be seen from the unprocessed images

in appendix A, determining what is background and foreground is not as

straight forward. First of all, the true background in a fish cage is a body

of water and has very little texture, if any. Second, as the fish appear at

varying distances from the camera there is intuitively some distance limit

where fish should be considered background instead of foreground. This is

because studying fish far from the camera is not productive, as too little

detail is available (assuming a resolution of 1920x1080 pixels). Finally,

as the distance between the camera and the fish increases, the increasing

amount of water between camera and fish means the fish will gradually

appear less clear because of particles suspended in the water[20]. These

three phenomenon make accurately detecting salient image regions a diffi-

6

Chapter 2: Visual saliency 2.3. Comparison and applicability

(a) Facing down 45◦ (b) Facing up 45◦

(c) Facing horizontal

Figure 2.2.1: Examples of underwater saliency maps using motion saliency,

with differing camera angles. Computed from the same frames used in

2.1.2. Unprocessed images in appendix A.

cult task for a background subtraction algorithm, which in turn introduces

significant noise in the resulting saliency map.

2.3 Comparison and applicability

There are three main topics to consider in this section: 1) The share of

”fish-pixels” considered salient, 2) saliency map resolution, and 3) the dy-

namic range of the total amount of salient pixels in a given image. The

comparison in this section will provide a preliminary indication as to which

saliency algorithm is better suited as a basis for camera orientation.

7

Chapter 2: Visual saliency 2.3. Comparison and applicability

Figure 2.2.2: Illustration of motion saliency maps. Image by Wang and

Dudek[3].

2.3.1 Share of fish considered salient

Naturally, the share of fish considered salient in an image is one of the

main performance factors for a saliency algorithm to be used for camera

orientation. For an automatic orientation scheme to successfully orient to-

ward fish, the saliency algorithm it is built on must reliably classify fish as

salient regions. It can however be claimed that this parameter is not actu-

ally critical: If the saliency estimator only determines the salmons head as

8

Chapter 2: Visual saliency 2.3. Comparison and applicability

salient, an orientation algorithm focused on wherever the saliency density

is highest would still orient the camera toward max fish density. From this

perspective it can be argued that this parameter in itself is not important,

and as long as only salmon are considered salient there is no problem. How-

ever, as will be discussed in detail later, saliency estimators in a sea-cage

also define other objects as salient regions. Additionally, the case where

only a given body-part is salient could prove challenging because from the

cameras two-dimensional point of view the fish appear in layers. This can

be seen from the unprocessed images in appendix A, where parts of fish

are covered behind other fish. For maximum reliability, a saliency-based

orientation scheme should therefore be based on a saliency algorithm that

considers every part of a fish salient.

Secondly, this parameter affects another factor for a reorientation algo-

rithm. Assume there exists a ”perfect” saliency algorithm which accurately

classifies every pixel on every fish as salient. This will have some major

implications for total saliency in a given frame, based on how the fish is

positioned relative to the camera: when fish appear as larger objects it

means more image pixels will be salient. Any fish that is rotated 90◦ rel-

ative to the camera, with the camera pointing at its side, will appear as

larger objects and represent a much larger total saliency compared to a fish

swimming toward or away from the camera. Likewise, a fish that is closer

to the camera will cover a larger image region than one that is further

away. These will also represent a greater total saliency. The implications

of this is that an orientation algorithm will prefer to orient such that the

fish are close, and swimming perpendicular to the camera.

Is this desired functionality? The short answer: Yes. Recall from section

1, that the main purpose of a camera orientation system in a sea-cage

will be to improve the data gathered for other computer vision algorithms.

Examples of such algorithms can be lice detection, gill motion frequency

estimation, or recognition of individuals. All these example cases are solved

more easily given footage where the fish are close to the camera, as more

detail is visible in the video. Also, because salmon lice tend to attach to

9

Chapter 2: Visual saliency 2.3. Comparison and applicability

the dorsal and pectoral fins of the fish[4, 12], this behaviour in a saliency

estimator is expected to provide better videos with respect to salmon lice

detection as well.

By comparing figures 2.1.2 and 2.2.1, it is clear to see that this demand

is best satisfied by motion saliency, as motion saliency classifies a signif-

icantly larger portion of the fish salient. Figure 2.2.1c exemplifies how

much total saliency the motion saliency algorithm can attribute to a frame

from within a shoal. It is worth noting that this saliency map is taken just

10 frames after a fish passed in front of the camera, close enough that it

covered the entire frame. The center region of the image where there are

no fish is still considered salient because it was salient a few frames ear-

lier. This trailing effect originates from the fact that the motion saliency

algorithm is based on a background subtractor. On the other hand, from

figure 2.2.1a it becomes clear that neither this algorithm is perfect, as it

indicates that motion saliency defines the backs of fish to be non-salient.

Finally, note how the fine grained saliency algorithm is better at detecting

fish that are far from the camera, even though the attributed saliency is

low. For some purposes this may be interesting, but for camera orienta-

tion it is less likely to be relevant. As mentioned previously, it is desired

to orient the camera such that fish are as close to the camera as possible.

With this in mind, it is intuitively less important to detect fish far away. In

conclusion, the superior performance of Wang and Dudeks motion saliency

algorithm when fish are close to the camera outweighs the fact that fine

grained saliency is better at range.

2.3.2 Resolution and accuracy

The resolution of the saliency map may not intuitively seem like an im-

portant factor for this type of application. However, it was shown in the

pre-project that in specific cases a high-resolution saliency map allows post-

processing to make major improvements on the data for an orientation al-

10

Chapter 2: Visual saliency 2.3. Comparison and applicability

gorithm[10]. One such case; whenever there are objects in the image that

are not fish. Such objects includes the net itself, ropes going into the cage,

and any additional pieces of technology submerged in the cage. As can

be seen from figures 2.3.1 and 2.3.2, these objects are evaluated as salient.

This fact will prove to be a challenge.

(a) Fine grained saliency

(b) Motion saliency

Figure 2.3.1: Video frames (left), and their corresponding saliency maps

(right).

A high resolution is expected to ease the process of addressing the problem

illustrated in figure 2.3.2. When this image is compared to any other fine

grained saliency map of fish, it is clear that Montabone & Soto’s algorithm

will generate saliency maps such that more salient features exist in an image

of a net than a shoal of salmon. Ultimately, this could lead an orientation

algorithm to orient the camera such that the video never contains anything

but the cage net. Different approaches have been attempted to address this

issue, which will be explained in detail in chapter 3. It will become clear

that a high-resolution saliency map facilitates more methods of filtering out

11

Chapter 2: Visual saliency 2.3. Comparison and applicability

these unwanted regions, making an orientation algorithm ignore them. The

fact that this point was made clear in the pre-project, is one of the reasons

why the work on this thesis focused on the algorithms by Montabone &

Soto, and Wang & Dudek: they both produce saliency maps of the same

resolution as the original images.

Figure 2.3.2: Fine grained saliency of the cage net.

Another point to be made is the accuracy of the saliency map. In other

words, the probability that a salient pixel is on an object intended for

study. This parameter must be considered because some post-processing

methods, including the local binary pattern texture operator used in the

pre-project[10] and the optical flow method described in chapter 3.3, anal-

yse every salient pixel. Inaccuracies and noisy saliency maps may result in

unwanted behaviour in these filters. By looking at figure 2.1.2c, it is clear

that the fine grained algorithm is far superior in this regard. Figure 2.1.2c

contains far less ”misses” than figure 2.2.1c.

2.3.3 Dynamic range

In photography, dynamic range refers to the range of light intensities that

are captured in an image[2]. For saliency maps however, we will use it

describe the ratio between the lowest and highest amount of salient pixels

12

Chapter 2: Visual saliency 2.4. Challenges

in a saliency map. In the context of a sea-cage, it becomes a measure for

how much the total saliency in a frame increases as fish cover larger portions

of the image. While this parameter can be viewed as a subset of the share

of fish considered salient from section 2.3.1, it is important to consider for

one specific reason: The environment is highly dynamic, and the position of

the camera relative to the shoal varies over time. Especially if the camera

is moved by an operator. An example of how large the differences can be,

even without moving the camera, can be made by comparing the images

in figure 2.3.3. It is clear that in figure 2.3.3a, where the fish are closer to

the camera and cover a larger portion of the image, the number of salient

pixels should be comparatively higher than for figure 2.3.3b. Based on

figures 2.1.2c and 2.2.1c, Wang & Dudeks motion saliency better fulfils

this requirement.

(a) (b)

Figure 2.3.3: Two images from a sea-cage taken only a few seconds apart.

2.4 Challenges

Consider figures 2.3.1 and 2.3.2, illustrating how saliency algorithms tend

to consider ropes and net highly salient. This is a problem because of

scenarios where the saliency estimators evaluate the net as more salient

than the fish. A camera orientation algorithm based on this data would

likely turn the camera such that the video contains only net. This must

be avoided. During the pre-project for this thesis, an attempt at rectify-

ing this was made by filtering contours based on the local binary pattern

texture operator[10]. It was shown that this worked to some extent, but

13

Chapter 2: Visual saliency 2.4. Challenges

not well enough to be viable for actual use. In chapter 3, a few other ap-

proaches to solving this problem will be presented.

It is expected that the output of an orientation estimator based on visual

saliency will return a desired orientation that changes constantly. Again,

this originates from the fact that the environment is highly dynamic. It

can be assumed that the distribution of salient pixels in the image will

vary greatly, especially when fish are close to the camera. Figure 2.3.3

contains two frames showing how much this can change over the scope

of just a few seconds. A camera that is constantly oriented toward some

measure of ”max saliency”, is likely to rotate in such a way that it appears

unstable. Intuitively, for the purposes of optimizing the data gathering for

other computer vision algorithms, it is desired that the camera be as stable

as possible and move only when necessary.

14

Chapter 3
Saliency map filtering

This section describes the the attempts made at creating filters that would

address the challenge described in section 2.4 related to salient cage nets.

3.1 Thresholding

Image thresholding is the operation of transforming an image into a bi-

nary one. This section describes how the fine grained saliency maps with

a depth of 8 bits, is transformed to a binary map. While this operation is

not needed to evaluate the saliency itself, it facilitates further processing

of the saliency maps.

An intuitive method for binarizing an image is by applying a global thresh-

old. This operation can be described by (3.1), where maxValue is the

maximum possible pixel intensity in I.

I(x, y) =

maxV alue, src(x, y) > T

0, otherwise
(3.1)

Results of this global threshold can be seen in figure 3.1.1. Consider first

figure 3.1.1b: Most of the fish in the image are included to some de-

gree. Also a considerable area around some fish are included in the binary

saliency map. When increasing the threshold T, as illustrated in figures

3.1.1c and 3.1.1d, less unwanted area around the fish is included, at the

15

Chapter 3: Saliency map filtering 3.1. Thresholding

cost of also including less of the fish themselves. It is also noticeable how

the fish in the upper half are considered more salient than those in the

bottom half: these images are taken at only a few meters depth, which

means the background color is lighter in the upper half of the image. The

fish in the bottom of the image are therefore considered less salient, mostly

because they are located in front of a darker background than those in the

top of the image, and there is therefore less contrast.

Because significant areas of the fish must be excluded in order to avoid

including unwanted regions, a global threshold is not suited for binarizing

underwater saliency maps as it fails to uphold the primary requirement

from section 2.3.1. Ideally, a method that is capable of keeping as many

fish contours as possible while excluding any area around the fish should

be employed.

(a) Original saliency map. (b) Threshold T = 30.

(c) Threshold T = 50. (d) Threshold T = 80.

Figure 3.1.1: Side-by-side comparison of original saliency maps (left), and

the results of applying a global threshold (right).

To address this problem an adaptive thresholding scheme was applied. This

16

Chapter 3: Saliency map filtering 3.1. Thresholding

can be described by (3.2).

I(x, y) =

maxV alue, src(x, y) > T (x, y)− C
0, otherwise

, (3.2)

where T (x, y) can be calculated either as 1) the average pixel intensity in

a k-by-k neighbourhood around (x,y), or 2) a weighted sum of the pixel

intensities in a k-by-k neighbourhood using a Gaussian kernel as in (3.3).

The standard deviation of the Gaussian kernel is computed using (3.4)[6].

Gi = α ∗ e−(i−(k−1)/2)2/(2∗σ2) (3.3)

σ = 0.3 ∗ ((k − 1) ∗ 0.5− 1) + 0.8. (3.4)

In (3.3), i = {0, 1, ..., (k − 1)} and α is a constant such that
∑

iGi = 1.

Figure 3.1.2: Original saliency map related to figure 3.1.3

.

This method was applied with both mean and Gaussian kernels. Intu-

itively, from comparing (3.1) to (3.2), the adaptive threshold will generate

a very different binary image if the original image has varying average in-

tensity. Based on the saliency map generated by the fine grained saliency

algorithm in figure 3.1.2, where the average pixel intensities on fish and

17

Chapter 3: Saliency map filtering 3.1. Thresholding

(a) Gaussian kernel, C = 10. (b) Mean kernel, C = 10.

(c) Gaussian kernel, C = 15. (d) Mean kernel, C = 15.

Figure 3.1.3: Comparison of adaptive threshold with mean and gaussian

kernels. k = 31.

background varies depending on image region, it is expected that an adap-

tive threshold will include a greater fraction of the fish than the previously

discussed global threshold[18].

Figure 3.1.3 demonstrates the result of applying an adaptive threshold on

the same images as in figure 3.1.1. Not only are a larger fraction of the fish

included after binarization, but there are very few regions included in the

binary map that do not represent fish. The binary maps include multiple

small white regions in the bottom quarter of the image; however, these also

map to contours of salmon that are barely visible in the original saliency

map. It is clear that an adaptive threshold is better suited than a global

one.

18

Chapter 3: Saliency map filtering 3.2. Masking based on frame logs

3.2 Masking based on frame logs

This section will discuss the applicability of a filtering solution based on

masking out static contours. This type of filter depends on the binary

saliency maps generated by the threshold operations from section 3.1. As-

sume, initially, that the images are made up of two classes of contours:

static and moving. Also assume that fish are always swimming, and that

static contours mainly represent ropes, nets, or other objects that should

not be considered by an orientation algorithm. From these assumptions it

can be reasoned that an algorithm for computing optimal camera orien-

tation should include moving contours while ignoring any static ones. An

intuitive approach for removing static contours was attempted by perform-

ing the following operations:

Given the images {i1, i2, ..., in}, that make up a log of inverted binary

saliency maps from the n previous frames in the video feed, and frame i

representing the binary saliency map of the current frame.

1. Create an inverse of i and call it iinv.

2. Push the frame log such that ik → ik+1 ∀ k ε {1, n − 1}, and set

i1 = iinv.

3. Let imask = fully black frame.

4. imask = bitwise or(imask, ik) ∀k ε {1, n}.

5. ifiltered = bitwise and(imask, i).

This 5-step algorithm creates a mask imask such that any pixel that is white

in any of the inverted frames {i1, ..., in} is also white in imask. Or, more

intuitively, imask is a mask where a given pixel is white only if the same

pixel has been black in any of the last n binary saliency maps. When

imask is used to mask the binary saliency map i in step 5, it removes any

pixels in i that have been white for n or more consecutive frames. Ideally,

this means any contours that have not moved in the last n frames will be

19

Chapter 3: Saliency map filtering 3.2. Masking based on frame logs

removed from the binary saliency map.

Figure 3.2.1: Result of a frame log filter with n = 2.

As can be seen in figure 3.2.1 the results achieved in a sea-cage are far

from perfect. This originates from the fact that in a sea-cage the objects

previously assumed to be static are not perfectly static from the cameras

point of view. Because of the physical setup the camera is always in motion

due to forces from waves, sea currents, collisions with fish, etc. This means

that, from the cameras point of view, any objects not moving perfectly syn-

chronized with the camera, are non-static. Perfectly synchronized motion

is highly unlikely, so it is realistic to say that for a camera in a sea-cage

there are no perfectly static contours. In figure 3.2.1 it is shown how this

manifests as regions without fish still being included in the filtered im-

age. Notice how even though n is set as low as 2 frames, neither the other

camera system or the net in the bottom right corner is properly filtered out.

This approach proves to be even less applicable when a comparison is made

between the contours of salmon in the filtered image and the unfiltered im-

age in figure 3.2.3. Notice how the attempt to remove the static objects

also removes significant regions of the fish. This is because the frame log

length n is so small that even the moving contour of a fish holds the same

pixels white for more than n consecutive frames. A way to address this

20

Chapter 3: Saliency map filtering 3.2. Masking based on frame logs

issue would be to increase n, which would improve upon the problem of

filtering out part of the fish but also introduce a drawback. As n increases,

imask becomes a more liberal filter because the maximum allowed move-

ment for an object to be considered stationary is proportional to n. This

is illustrated in figure 3.2.2, where the camera system is much more visible

compared to figure 3.2.1.

Figure 3.2.2: Result of a frame log filter with n = 5.

Figure 3.2.3: Binary saliency map corresponding to figures 3.2.1 and 3.2.2.

21

Chapter 3: Saliency map filtering 3.3. Optical flow

3.3 Optical flow

This section explains the motivation for using optical flow in this project,

the theory behind the chosen algorithm, why this specific algorithm was

chosen, and how it was implemented. It will also detail the implementa-

tion of two optical flow-based filters for addressing the issue of removing

unwanted objects from saliency maps.

3.3.1 Motivation

Optical flow was used in this project in an attempt to address a challenge

mentioned in section 2.4, where it is described how an orientation algo-

rithm based on raw saliency maps is likely to prioritize nets over fish. The

idea behind using optical flow for this purpose is based on the assumption

that the fish will always move, and that salmon close to each other in a

shoal is likely to display similar motion. The goal for using optical flow

was to be separate salmon from any non-fish objects in the cage. The hope

was that an optical flow-based filtering scheme would perform better than

the masking approach from section 3.2.

Because the purpose of optical flow in this project is to separate fish from

other objects, the algorithms accuracy is not critical. The core parameter

is the resolution of the optical flow estimator, and with that, its ability to

estimate flow in every pixel. Because of this, a polynomial-based algorithm

by Gunnar Farnebäck was used.

3.3.2 Farnebäck

This algorithm was proposed by Gunnar Farnebäck in 2003 in the paper

”Two-Frame Motion Estimation Based on Polynomial Expansion”[7]. As

explained in the abstract of the conference paper:

”The first step is to approximate each neighborhood of both

frames by quadratic polynomials, which can be done efficiently

using the polynomial expansion transform. From observing how

22

Chapter 3: Saliency map filtering 3.3. Optical flow

an exact polynomial transforms under translation a method

to estimate displacement fields from the polynomial expansion

coefficients is derived and after a series of refinements leads to

a robust algorithm.”

The quadratic polynomial in question is represented on the form

f(x) ∼ xTAx + bTx + c (3.5)

where f(x) is a polynomial approximation to a neighbourhood around a

given pixel. The optical flow approach is based on the idea that motion

is estimated by comparing the difference between two subsequent frames.

By defining the frames such that

f1(x) = xTA1x + bT1 x + c

f2(x) = f1(x− d)
(3.6)

it is shown by Farnebäck[7] that solving the equation with respect to the

displacement d, gives

d = −1

2
A−11 (b2 − b1) (3.7)

b2 = (b1 − 2A1d)T . (3.8)

However, this solution is based on an assumption that the signal in an entire

image can be described as a single polynomial. According to Farnebäck,

this is an unrealistic assumption. In his paper, he goes on to detail how

to get around this issue by introducing approximations of A, estimating

A over local neighbourhoods, and presenting parametrized equations for

the displacement fields. This will not be detailed here. From the results

presented in Farnebäcks paper it is clear that with respect to accuracy,

this algorithm is inferior to other alternatives. For this project however,

as explained in section 3.3.1, this is not critical.

Farnebäcks dense optical flow algorithm creates a matrix A with the same

dimensions as the source image, where each cell holds the optical flow

23

Chapter 3: Saliency map filtering 3.3. Optical flow

Figure 3.3.1: Flow magnitudes estimated by Farnebäcks algorithm. Origi-

nal frame in figure 3.3.4.

information of the corresponding pixel as a set of two values, (x, y). With

this, both angle and magnitude information is available. For the purposes

of this thesis it was deemed that the angle information is of little value as it

is difficult to know what types of objects are moving in different directions.

This is also outside the scope of this project. Hence, only the magnitude

of the optical flow vector is considered. The flow magnitude image IFM

illustrated in figure 3.3.1 is created by

IFM(i, k) =

rows(A)∑
i=0

columns(A)∑
k=0

√
Ax(i, k)2 + Ay(i, k)2, (3.9)

where A is the optical flow result matrix.

3.3.3 Applying Farnebäck

Applying Farnebäck to saliency maps in this project includes two separate

cases, as there are two saliency algorithms this may be based on. Consider

the two saliency maps in figure 2.3.1, which will now be used as a basis for

this discussion. The fine grained saliency maps are of depth 8 bits, mean-

ing pixel intensities are anywhere between 0 and 255. This, combined with

the high-resolution nature of the saliency map, suggests that optical flow

24

Chapter 3: Saliency map filtering 3.3. Optical flow

should perform well on these. This is because fine grained saliency maps

contain enough texture in local neighbourhoods for optical flow algorithms

to reliably detect and track features. While Farnebäcks algorithm, as de-

scribed in section 3.3.2, is not based on feature-tracking in and of itself,

textured neighbourhoods are necessary for the polynomials describing local

neighbourhoods to contain useful information: a polynomial describing a

uniform region, will simply be a constant. As such, a textured saliency

map is important.

Running Farnebäck on a stream of motion saliency maps yields vastly

different results. As mentioned previously, the ability to estimate the mo-

tion of a neighbourhood of pixels requires the intensity distribution in said

neighbourhood to be non-uniform. The saliency maps generated by Wangs

& Dudeks motion saliency algorithm are binary[3], as illustrated in figure

2.2.1. Clearly, the only pixel-neighbourhoods in a binary saliency map with

a non-uniform intensity distribution are along the edges of salient contours.

This means Farnebäck will return a flow matrix where the estimated mo-

tion of any pixel is 0, except along the edges of contours. So for motion

saliency, another approach was attempted to work around this problem.

Instead of running optical flow on the saliency maps, the optical flow is

instead run separately on the unprocessed images and applied as a mask

to the saliency map. This way, an optical flow algorithm should provide a

more accurate result.

The hope was that the magnitude of the optical flow can be used to de-

termine which parts of the image should be included or not, based on

similar logic as in section 3.2. However, with the optical flow approach one

faces the same challenge as with the simple bitwise comparison method:

Because nothing is ever stationary from the cameras point of view, and

the perceived motion of the fish will vary, a static threshold for the mo-

tion magnitude cannot be defined. Instead a self-adjusting threshold needs

to be implemented to include the faster objects while ignoring the slower

ones. For this task, self-adjusting methods for intensity thresholding were

applied on the flow magnitude images such as in figure 3.3.1.

25

Chapter 3: Saliency map filtering 3.3. Optical flow

3.3.4 Threshold estimation using Otsu’s method

Figure 3.3.2: Example of a bimodal histogram.

Otsu’s method was implemented for processing the results of optical flow

estimation, based on the idea that there are only two classes to be consid-

ered in this scenario: Moving and semi-stationary. Otsu’s method is origi-

nally a method for optimal threshold estimation for global thresholding of

bimodal images[14]. That is, where the image contains two distinct classes.

In this context, a class is the set of pixels with intensity above/below the

the threshold value. An example of a bimodal histogram is illustrated in

figure 3.3.2, in which case Otsu’s method would place the threshold inten-

sity at the lowest point between the two peaks. This is done by searching

for a threshold t that minimizes the sum of within-class variances of the

two classes. This can be expressed mathematically as minimizing (3.10).

σ2ω(t) = ω0(t)σ
2
0(t) + ω1(t)σ

2
1(t), (3.10)

26

Chapter 3: Saliency map filtering 3.3. Optical flow

where

ω0(t) =
t−1∑
i=0

p(i)

ω1(t) =
t−1∑
i=0

p(i)

(3.11)

The weights ω0(t) and ω1(t) represent the probability that a given pixel in

the image belongs to class 0 and 1, respectively, when threshold t is applied.

As proven by Otsu[14], minimizing the intra-class variance in (3.10) also

maximizes the between-class variance σb as shown in (3.12) where σT is

the total variance. µ0 and µ1 represent the mean values of their respective

classes, while µT represents the mean of all values. Otsu’s method for

threshold estimation is therefore to maximize σ2b (t) by equation (3.12).

σ2b (t) = σ2T (t)− σ2ω(t)

= ω0(µ0 − µT)2 + ω1(µ1 − µT)2

= ω0ω1 [(µ0(t)− µ1(t))]2
(3.12)

The performance of this method will now be discussed. First, consider

whether the assumption that a given video frame will contain relatively

bimodal motion holds true. This can be tested by plotting the optical flow

magnitude of every pixel into a histogram and assessing the histograms

shape. If the histogram shape is similar to the example in figure 3.3.2, the

assumption can be said to hold.

The histogram in figure 3.3.3 clearly does not conform to the the assump-

tion made earlier. As such, this method of using an Otsu threshold on the

optical flow magnitudes is expected to provide non-optimal results. Even

though it is not perfect, the method was tested anyway in order to deter-

mine whether it is still viable. The entire process can be summarized as

doing the following for every frame:

• Generate the saliency map.

• Run Farnebäck optical flow.

27

Chapter 3: Saliency map filtering 3.3. Optical flow

Figure 3.3.3: Histogram (blue) showing the optical flow magnitude dis-

tribution from the image in figure 3.3.4. The red line marks the Otsu

threshold.

Figure 3.3.4: Image from which the optical flow illustrated in figure 3.3.3

is estimated.

• Apply Otsu’s threshold estimator on the flow magnitude matrix.

28

Chapter 3: Saliency map filtering 3.3. Optical flow

• Create a binary image from the result.

Figures containing the original saliency map from each saliency algorithm,

and the corresponding saliency maps processed by the suggested optical

flow filter are presented to demonstrate performance. The results on a fine

grained saliency map is illustrated in figure 3.3.5. Figure 3.3.6 demon-

strates the correlation between the motion saliency map, and the mask

generated by running Farnebäck on the original images. The reason for

running optical flow on the original image instead of the motion saliency

map was explained in section 3.3.3.

Figure 3.3.5: A fine grained saliency map (left), and a mask created by

Otsu from the flow magnitudes (right).

Figure 3.3.6: A motion saliency map (left), and a mask created by Otsu

from the flow magnitudes (right).

29

Chapter 3: Saliency map filtering 3.3. Optical flow

3.3.5 Adaptive threshold

The same adaptive threshold scheme as described in section 3.1 was also

attempted to filter the optical flow results. The overall work-flow is similar

to that with Otsu’s threshold; the main difference is that Otsu’s threshold

has been swapped with an adaptive threshold. Similar to what was done

with Otsu’s method, the adaptive threshold is applied on the optical flow

magnitude matrices. The goal is also the same: keeping regions with in-

teresting fish white, and everything else black.

An adaptive threshold scheme for this purpose must be run with a large

value for k, meaning the subimages in which the thresholds are computed

and applied are larger. If k is too small for a pixel in the middle of a

fish-contour, the entire k-by-k area around that pixel could be inside the

same contour. If this happens, the adaptive threshold would be such that

only sub-regions of the fish body, with notably higher motion estimates

would be included as white. The resulting filtered image could resemble

a fine grained saliency map, as in figure 2.1.2c. Given an ideal motion

estimator that attributes the same speed to all pixels on the same object,

an adaptive threshold with a small k -value would only include edges of the

fish contours as the optical flow magnitude over a the contour of a single

fish would be uniform. In order to guarantee this did not happen, k was

set to 501 pixels. An example result is demonstrated in figure 3.3.7.

30

Chapter 3: Saliency map filtering 3.3. Optical flow

Figure 3.3.7: Mask created by adaptive threshold on flow magnitudes from

figure 3.3.1. k = 501, C = 10.

31

Chapter 3: Saliency map filtering 3.3. Optical flow

32

Chapter 4
Discussion

4.1 Frame log filter

The results gathered in section 3.2 clearly indicate that this approach is

not suited for filtering saliency maps in a sea-cage. From what was learned

through this project, there seems to be no way to meet the required as-

sumptions for this method. This applies even in a calm setting with weak

currents and low winds, as was the case when the material represented in

figures 3.2.1-3.2.2 was recorded. Additionally, even if there was some way

to determine the length n of the frame log such that it perfectly separates

fish from other objects, this choice of n will likely be sub-optimal after a

minor change in the environment. In a dynamic environment such as a

sea-cage, this approach is simply not viable.

4.2 Optical flow with Otsu filter

This section will consider the applicability of the optical flow filter in three

cases where the images contain 1) only fish, 2) only net/ropes, and 3) both

fish and net/ropes. In each case a figure illustrating the results will be

presented and discussed. Also, the corresponding raw image is presented

in figure 4.2.1, and histograms showing relevant motion magnitude distri-

butions can be found in appendix B.

33

Chapter 4: Discussion 4.2. Optical flow with Otsu filter

(a) A typical image containing only fish. (b) A typical image containing only net.

(c) An example image containing both fish

and static objects.

Figure 4.2.1: Example frames for each case to be examined.

4.2.1 Fine grained saliency

First, consider case 1, when there are only fish in the image. The perfor-

mance of the optical flow approach in this case is shown in figure 4.2.2.

It is clear that some fish are excluded. This is because of the way Otsu’s

method calculates the threshold value: the threshold estimator is based on

the assumption that there are two distinct classes in the image[14]. When

there is not, such as in this case where there are only fish, the thresh-

old must necessarily divide the single class into two. The result is that

the fish with less motion are excluded from the mask, while the fish with

faster motion are included. Note that the unit of perceived speed here is

pixels/frame, and as there is no depth information available this can not re-

flect true speed. Instead, it is a measure for a combination of actual speed

and distance from the camera. Proof of this can be found in appendix

C. As a result, when the video contains only fish, this attempt at using

optical flow for filtering is likely to provide data such that any orientation

34

Chapter 4: Discussion 4.2. Optical flow with Otsu filter

algorithm based on it will focus on the fish that are closest to the camera.

Figure 4.2.2: A fine grained saliency map from within a shoal of salmon

(left), and a mask generated by the optical flow method (right).

Figure 4.2.3: Flow magnitudes related to the case with only fish.

Note how this explanation is contradicted by figure 4.2.2. This is because,

as indicated by the corresponding flow magnitude image in figure 4.2.3 and

histogram in figure B.0.1, the optical flow magnitudes of the two fish in the

foreground is lower than the rest of the frame. In reality, this is not true

as the two salmon in question moved faster in the video than those further

away. This phenomenon is consistent across different videos, and indicates

a weakness in Farnebäcks optical flow algorithm when the camera is close

to the fish. As mentioned earlier, the optical flow approach was expected

to prioritize fish that are close to the lens, under the assumption that they

are swimming at a certain speed. As proven here, this assumption is not

35

Chapter 4: Discussion 4.2. Optical flow with Otsu filter

always true, indicating that the Farnebäck optical flow + Otsu approach

is not a perfect one.

In the second case, the core problem is the same as for case 1, namely that

there is only one class to consider: the net. However, compared to case

1 there is a big difference. In case 1 there are multiple fish swimming at

slightly different speeds at varying distance from the camera lens, which

means that to a camera they present as regions with different motion. In

the case of a net however, where there is just a single object, the mo-

tion magnitude in each pixel will be much more similar (see figure B.0.2).

Based on this similar motion and how Otsu binarization is implemented, it

is expected that Otsu binarization will return a mask where roughly 50%

is included. The results for this case are illustrated in figure 4.2.4. Notice

how the results fully match the presented theory. The included region cov-

ers about 50% of the frame, and represents the part of the net closest to

the camera.

Figure 4.2.4: A fine grained saliency map of a net (left), and a mask

generated by the optical flow method (right).

The third case is when there are both fish and other objects in the image.

Figure 4.2.5 shows how most of the fish are included in the optical flow

mask, while the camera system is ignored. The improved performance

relative to the first case in figure 4.2.2, comes from the fact that in this

case there are large regions with very little motion. This can be seen from

figure B.0.3. Otsu’s threshold estimator therefore sets the threshold lower

than if the entire frame was full of moving fish. The result is that there

36

Chapter 4: Discussion 4.2. Optical flow with Otsu filter

are no major regions where fish are excluded from the mask. The camera

system, on the other hand, is correctly excluded. Note the improvement

from the frame log approach from section 3.2.

Figure 4.2.5: Saliency map containing fish and a camera system (left), and

its corresponding optical flow-based mask (right).

4.2.2 Unprocessed video

As explained in section 3.3.3, optical flow on motion saliency maps yields

little information. Instead, an optical flow-based filter must be run on the

original images. The results from the same three cases used in the previous

section are shown in figure 4.2.6.

For all three cases, the results are very similar to the results for fine grained

saliency. This has three implications: First, similar results mean that the

discussion around the fine grained saliency results (section 4.2.1) applies

to this case as well. Second, it backs up the initial claim that the fine

grained saliency map retains much of the information from the original

image. If not, it would be expected that the optical flow returned different

results. Finally, it implies that when using optical flow for this type of

filtering there is no need to run it off the saliency map, as similar results

are achieved from the unprocessed video. This opens up the possibility of

generating the motion estimates and saliency maps in parallel to increase

efficiency.

37

Chapter 4: Discussion 4.3. Optical flow with adaptive filter

(a) Case 1. (b) Case 2.

(c) Case 3.

Figure 4.2.6: Optical flow from original images with applied Otsu thresh-

old.

4.3 Optical flow with adaptive filter

The discussion in this section will be based on the same three images

as the Otsu filter (figure 4.2.1). For the first case, with only fish in the

image, the results are demonstrated in figure 4.3.1. There are notable

similarities between these and the results with an Otsu threshold. The

main difference is that with an adaptive threshold, spots on the body of

two salmon in the foreground are included. It is however clear that neither

an adaptive threshold filters this data well. The reason is the same as for

Otsu binarization: motion estimates for the two foreground salmon are

incorrect.

For the case in figure 4.2.1b where a net covers the entire frame, the results

can be found in figure 4.3.2. The filtering performance with an adaptive

threshold is far superior to that of an Otsu threshold from figure 4.2.4,

where most of the image is black. The frames illustrated here also indicate

38

Chapter 4: Discussion 4.3. Optical flow with adaptive filter

(a) From fine grained saliency maps. (b) From unprocessed video.

Figure 4.3.1: Results of optical flow with adaptive threshold. Frame con-

tains only fish.

that the adaptive threshold performs best when based on the fine grained

saliency maps. While that is true in this specific case, the comparative

results of this approach based on saliency maps or unprocessed video varies

with every frame. In the case where the video frame contains only nets,

the optical flow approach with an adaptive threshold successfully excludes

most the net from evaluation when based on either data type.

(a) From fine grained saliency maps. (b) From unprocessed video.

Figure 4.3.2: Results of optical flow with adaptive threshold. Frame con-

tains only net.

When there are both fish and stationary objects in the frame the results are

typically as illustrated in figure 4.3.3. Again, the results are similar to those

when using an Otsu threshold as in figure 4.2.5. However, upon further

inspection and comparison to the original frame in figure 4.2.1c, Otsu’s

method appears to provide slightly more accurate results. This claim is

39

Chapter 4: Discussion 4.4. Optical flow filter comparison

based mainly on the differences in the top-left and top-right corners of the

result images.

(a) From fine grained saliency maps. (b) From unprocessed video.

Figure 4.3.3: Results of optical flow with adaptive threshold. Frame con-

tains fish, net, and a camera system.

The observation made in section 4.2.2 holds true also when using an adap-

tive threshold to filter the results: because the results based on fine grained

saliency maps and unprocessed video frames are so similar, there is no in-

dication that optical flow should be run on the saliency maps. If imple-

mented, this type of system may run optical flow and saliency algorithms

in parallel to decrease computation time.

4.4 Optical flow filter comparison

Comparing the over-all performance of the optical flow-based filter with

Otsu and adaptive thresholds, the adaptive threshold is superior. It is ex-

pected that using this approach with an Otsu threshold near a cage net

will not properly address the challenge discussed in section 2.4, where the

net is likely to be considered the most salient object. Ultimately, an orien-

tation algorithm based on this is expected to orient towards any cage net

in the vicinity. Using the adaptive threshold however, the net was almost

fully removed. The fact that the frame in figure 4.3.2 represents only a

re-orientation from figure 4.3.31, implies that as long as the total saliency

1I was there when the footage in question was recorded.

40

Chapter 4: Discussion 4.4. Optical flow filter comparison

in figure 4.3.3 is higher than 4.3.2 the camera would be oriented away from

the net. This re-orientation would occur when using the adaptive thresh-

old, but not with Otsu. Ultimately, using an adaptive threshold to create

a filter from the magnitude of optical flow successfully removes the cage

net from consideration for an orientation algorithm.

In the case where the frame contains only fish, the optical flow filter fails to

perform adequately. The flow magnitude illustration in figure 4.2.3 shows

how the fish close to the camera are estimated to move slower than those

behind them when using Farnebäcks algorithm to estimate motion. This

happens even though in reality the foreground fish moved faster through

the frame. Because of this behaviour in the optical flow algorithm, the best

option is to base a camera orientation system on the unprocessed saliency

maps as there is no need to perform filtering when there are only fish in the

frame. Optimal results would be achieved if an algorithm can determine

when the camera is too close to unwanted objects, and only then enable

the optical flow filter.

41

Chapter 4: Discussion 4.4. Optical flow filter comparison

42

Chapter 5
Conclusion

In chapter 2, two algorithms for estimating visual saliency were presented:

The fine grained saliency by Montabone & Soto[17], and motion saliency

by Wang & Dudek[3]. These algorithms were compared with respect to

their ability to facilitate an orientation algorithm in a fish-cage.

Further, in chapter 3, an attempt was made to rectify the challenge related

to the net being evaluated as a salient region by both saliency algorithms.

No method was found that will address this problem in a general case. The

only method found that will successfully separate fish from non-interesting

objects was using an optical flow-based filter mask, which does not pro-

duce viable results whenever there are only fish in the image. As this is

the most common case, this performance is unacceptable. In conclusion,

a camera orientation scheme for use in aquaculture cages based on visual

saliency will have to be used in such a way that this problem is avoided.

Either, the system must recognize and control when the filter should be

enabled, or it must be designed such that an orientation algorithm is never

run while the camera is positioned near the cage net.

Based on the results from section 2.3 and the fact that the optical flow fil-

ter performs equally well when used with either saliency algorithm, Wang

& Dudeks motion saliency is deemed as best suited to be used as a basis

for camera orientation.

43

Chapter 5: Conclusion

The results presented in this thesis indicate that performing general camera

orientation based on visual saliency in a sea-cage is a difficult problem. It

is expected that for a saliency-based orientation algorithm to function it

will have to either be operated only when the camera is sufficiently far

from the cage net, or be used in tandem with a cage-net detector. On the

other hand, if a cage-net detector is required one could implement a fish

detector instead and use that as the basis for orientation. In conclusion,

visual saliency can provide a basis for camera orientation. However, it is

likely that other approaches would perform better.

44

Bibliography

[1] Berge A. IBM bruker kunstig intelligens til å løse luseproblemet.

iLaks.no. url: https://ilaks.no/ibm-bruker-kunstig-intelligens-

til-a-lose-luseproblemet.

[2] Petersen B. Dynamic Range Explained. B&H Photo. url: https:

//www.bhphotovideo.com/explora/photography/tips- and-

solutions/dynamic-range-explained.

[3] Wang B. and Dudek P. “A Fast Self-tuning Background Subtraction

Algorithm”. In: 2014 IEEE Conference on Computer Vision and Pat-

tern Recognition (2014).

[4] Hayward C. J., Andrews M., and Nowak B. F. “Introduction: Lep-

eophtheirus salmonis—A Remarkable Success Story”. In: Salmon Lice:

An Integrated Approach to Understanding Parasite Abundance and

Distribution. Ed. by S. Jones and R. Beamish. John Wiley & Sons,

2011.

[5] The Seafood Innovation Cluster. AquaCloud- The use of artificial

intelligence in sea lice management. NCE Seafood. url: http://

www.seafoodinnovation.no/article/213/AquaCloudThe_use_

of_artificial_intelligence_in_sea_lice_management.

[6] OpenCV Documentation. Image filtering - getGaussianKernel. url:

https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.

html#getgaussiankernel.

45

BIBLIOGRAPHY BIBLIOGRAPHY

[7] Farnebäck G. “Two-Frame Motion Estimation Based on Polynomial

Expansion”. In: Image Analysis. Ed. by Bigun J. and Gustavsson

T. Vol. 2749. Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 2003, pp. 363–370.

[8] Bakken J. B. Tar opp kampen mot lakselus med kunstig intelligens.

Dagens Nærignsliv. url: https://www.dn.no/nyheter/2017/06/

21/1446/Havbruk/tar-opp-kampen-mot-lakselus-med-kunstig-

intelligens.

[9] Cheng M., Mitra N. J., Huang X., Torr P. H. S., and Hu S. “Global

Contrast Based Salient Region Detection”. In: IEEE Transactions

on pattern analysis and machine intelligence 37 (2015).

[10] Harr M. C. “Intelligent camera orientation in aquaculture sea-cages”.

Specialization project. Norwegian University of Science and Technol-

ogy, 2017.

[11] Jenssen M. M. AquaCloud - kunstig intelligens skal hjelpe mot lak-

selus. url: http:// www.fiskerioghavbruk.no/teknologisk-

utvikling/aquacloud-kunstig-intelligens-skal-hjelpe-mot-

lakselus.

[12] Marine Institute (Foras na Mara), Ireland. Life cycle of the Salmon

Louse. url: https://www.marine.ie/Home/site-area/areas-

activity/aquaculture/sea-lice/life-cycle-salmon-louse.

[13] Nikon. Understanding Focal Length. url: https://www.nikonusa.

com/en/learn-and-explore/a/tips-and-techniques/understanding-

focal-length.html.

[14] N. Otsu. “A Threshold Selection Method from Gray-Level Histograms”.

In: IEEE Transactions on Systems, Man, and Cybernetics 9 (1 1979),

pp. 62–66.

[15] Jensen P. M. Mer enn fem milliarder kroner i lusekost i fjor. kyst.no.

url: https://kyst.no/nyheter/mer- enn- fem- milliarder-

kroner-i-lusekost-i-fjor.

46

BIBLIOGRAPHY BIBLIOGRAPHY

[16] Frintrop S. VOCUS: A Visual Attention System for Object Detection

and Goal-Directed Search. 2006.

[17] Montabone S. and Soto A. “Human detection using a mobile platform

and novel features derived from a visual saliency mechanism”. In:

Image and Vision Computing 28 (2010), pp. 391–402.

[18] P.K Sahoo, S Soltani, and A.K.C Wong. “A survey of thresholding

techniques”. In: Computer Vision, Graphics, and Image Processing

41.2 (1988), pp. 233 –260.

[19] Cui X., Liu Q., and Metaxas D. “Temporal Spectral Residual: Fast

Motion Saliency Detection”. In: 17th ACM international conference

on Multimedia (2009), pp. 617–620.

[20] Schechner Y. Y. and Karpel N. “Clear Underwater Vision”. In: Com-

puter Vision and Patter Recognition (2004).

47

BIBLIOGRAPHY BIBLIOGRAPHY

48

Appendices

Appendix A
Unprocessed images

Figure A.0.1: Frame corresponding to the saliency maps in figures 2.1.2b

and 2.2.1b. Time of day: 09:30

i

Chapter A: Unprocessed images

Figure A.0.2: Frame corresponding to the saliency maps in figures 2.1.2a

and 2.2.1a. Time of day: 09:30

Figure A.0.3: Frame corresponding to the saliency maps in figures 2.1.2c

and 2.2.1c. Time of day: 15:30

ii

Appendix B
Farnebäck motion magnitudes

Figure B.0.1: Histogram of motion magni-

tudes related to figure 4.2.1a. Generated by

Farnebäck optical flow.

iii

Chapter B: Farnebäck motion magnitudes

Figure B.0.2: Histogram of motion magni-

tudes related to figure 4.2.1b. Generated by

Farnebäck optical flow.

Figure B.0.3: Histogram of motion magni-

tudes related to figure 4.2.1c. Generated by

Farnebäck optical flow.

iv

Appendix C
Actual vs. perceived speed

Figure C.0.1: Field of view of DX format NIKKOR lenses [13]. Photo by:

Lindsay Silverman

This appendix aims to prove that a camera will perceive two objects moving

at the same speed and different distances from the camera, to be moving a

different speeds. Generally, a cameras field of view is the shape of a cone

as illustrated in figure C.0.1. The angle of this cone varies between differ-

ent cameras and lenses[13]. For the purposes of this discussion, assume an

image resolution of 1920x1080 pixels.

v

Chapter C: Actual vs. perceived speed

A cone with angle θ and length x, has a width y at its end given by

y = 2x tan(θ). (C.1)

Notice how the width of the field of view is proportional to the distance

x. At any given distance, the entire width y must be represented by 1920

pixels. Because y ∝ x, this means the real-life area covered by a single pixel

is also proportional to x. For the conversion of speed from unit m/s to

pixels/frame, this dictates the same proportionality: For any two objects

moving with the same speed in m/s, the one closer to the camera lens

will appear to move faster in a video. The difference in perceived speed

depends on the ratio x1
x2

. In conclusion, the relative perceived speed vp,r of

two objects in a video is

vp,r =
v1
v2

x1
x2
, (C.2)

where v1, v2 are the objects real-world speeds and x1, x2 are the distances

from the camera to the objects.

vi

