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SUMMARY

Gas turbines and diesel engines have generally been used in the Oil & Gas
industry. As the amount of energy required for the operation is large, the ef-
ficiency of power plant operation has been subject to many works conducted
recently. Moreover, the interest of integrating alternative sources of energy
is increasing as the alternative energy sources do not cause any undesirable
consequences to the environment. This paper proposes a method for oper-
ating the power and energy plant in an optimal manner. The main focus
is achieving cost efficient operation of the plant. As the power plant on a
petroleum site will require large volumes of fuel, reducing a small fraction
of the fuel usage will have a huge impact on the environment in terms of
reducing the greenhouse gas emissions as well as the total operating cost.
The current practice of using the generating machines is based on the prin-
ciple of ”equal share”. The main idea of ”equal share” is to share the total
load equally between the generating machines. However, this practice is not
optimal considering the efficiency of the fuel usage. To perform load sharing
in a more cost optimal manner, energy management system algorithm based
on mixed integer non-linear programming is proposed. The future power de-
mand is predicted using a machine learning method. The predicted power
demands are given as a set of the parameters that are used by the energy
management system algorithm. The optimal load distribution is scheduled
based on the predicted future power demand, in a predictive control man-
ner. An important performance parameter in order to obtain the optimal
load sharing will be Brake Specific Fuel Consumption. The optimal load
computation system proposed in this work is integrating gas turbines, grid
electricity, and energy storage system. The possibility of integrating other
energy sources, e.g., windmills and solar panels is of future consideration.
Energy management system algorithm is implemented using the proposed
model to perform simulation and the result will be compared and discussed.
The findings from the simulations yield total cost saving of 2-2.48 %.
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CHAPTER 1

INTRODUCTION

1.1 Background and motivation

The operations in the petroleum industry such as exploration, extraction,
refining and transporting require a high amount of energy. The current prac-
tice of generating energy for the operation is based on the burning of fossil
fuels. In another word, the power generating machines in the petroleum in-
dustry are mainly fueled by gas and diesel. The process of producing energy
based on fossil fuels leads to greenhouse gas emissions, which is believed to
be the main cause of the current global warming. Hence, it is worth looking
into the ways of reducing fuel consumption.

Figure 1.1.1: Greenhouse gas emissions from the petroleum sector in Norway
[4]

.
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The interest of saving not only the operational cost but reducing green-
house gas emission is increasing. As the importance of minimizing emission
of greenhouse gases increases to prevent the global climate changes. Figure
1.1.1 from [4] shows greenhouse gas emissions from the petroleum sectors
in Norway. The numbers exceed multiple millions of tonnes. Therefore, re-
ducing a small fraction of the total emission will have a huge impact on the
environment.

The potential of cost-saving and reduction of greenhouse gas emission is sig-
nificant by operating a petroleum site in a fuel/cost/energy optimal manner.
The current practice of using the generating machines is based on the prin-
ciple ”equal share”. The main idea of ”equal share” is to share the total
load equally between the generating machines. However, this practice is not
optimal considering the efficiency of the fuel usage. The idea of optimal
operation is based on exploiting the instantaneous energy efficiency of gen-
erating units. The optimal load sharing among the diesel/gas turbines can
be achieved by managing load distribution using optimization algorithms
with, e.g., the total fuel consumption as the objective to be minimized. As
the total fuel usage is minimized, the emission of greenhouse gases will be
reduced. Minimized fuel usage is also correlated with the cost-efficient op-
eration.

This thesis is motivated by an interest of cost efficient operation of the Oil
& Gas industry. Experimental studies will be performed using data from
power generating units and simulation will be performed by employing ma-
chine learning approaches such as Artificial Neural Network (ANN) for fore-
casting the future power demand and power/energy management applica-
tions such as Mixed-Integer Linear Programming (MILP) and Mixed-Integer
Non-Linear Programming (MINLP) for optimal load sharing. Moreover, to
achieve realistic operational scenarios of the power generating units at a site
in the process industry, different operational constraints will be added to
the model. It is well known that Energy Storage System (ESS) will help
increasing robustness of the system. If the grid or power generating units
trip, ESS can kick in immediately and work as an alternative power source.
In addition to obtaining robustness of the system, it will be experimented
how ESS can help facilitating optimal power generation in terms of optimal
load sharing of power generating units.

1.2 Goal and method

The goal of this thesis is to investigate the improvement potential of fu-
el/cost/energy savings using optimization methods. An important perfor-
mance parameter is Brake Specific Fuel Consumption (BSFC) that describes
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how much fuel is consumed generating one energy unit (MWh). BSFC will
vary significantly between different diesel/gas turbines. BSFC curves using
curve-fitting method as well as the methods presented in [2] will be used for
this work. Offline BSFC estimation is covered in [2]. The further improve-
ments embedding online methods updating BSFC is covered in [3]. The
main objective of this thesis is designing and integrating machine learning
approaches with energy management system (EMS) for optimal load share
scheduling purpose. The detailed procedure of finding the BSFC parameters
will not be covered in this work.

Figure 1.2.1: Sub-problems of the work

Figure 1.2.1 shows the sub-problems to be solved in this work. The main
focus of this work will be employing a machine learning method for pre-
dictive planning and optimization problem modeling based on the studies
about diesel/gas turbines, electrical grid and ESS. BSFC graphs will be es-
timated using curve-fitting method. The optimization model will be used
to perform experiments that include soundness test of the algorithm when
run in realistic industrial problems. The result of the simulations using the
developed algorithm based on real site data will be discussed.

Literature studies about how machine learning and optimization approaches
can be exploited in the Oil & Gas industry will be necessary and previous
case and feasibility studies at ABB will also be used to ensure the non-
overlapping outcome of the project. Different types ANN models and the
solvers of optimization needs to be studied to find the most suitable one
that can be adopted to the problem introduced.

The results of this study are based on 3-month data recorded from a site.
The sampling rate of the data is 10 seconds. However, the EMS will only
be used to find the optimal set-point with 100 seconds of the interval, which
needs to be reached by a low-level power control system [5] that considers
the dynamic of the power generating units.
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1.3 Outline of report

The first part of this thesis will cover the relevant background information as
well as some of the fundamental theoretical field necessary for understand-
ing the outcome (Chapter 2). Chapter 3 will give a brief overview of the
previous studies related to the optimization and machine learning. The ma-
chine learning approach for power demand forecast (time-series forecast) for
predictive planning will be covered in Chapter 4. The optimization problem
model will be presented in Chapter 5, which is divided into different parts
with the detailed explanation about each part of the model.

The non-commercial tools adequate for solving optimization problem will be
presented in Chapter 6. Some high-level explanation about implementations
using different tools will be given. Moreover, Chapter 6 presents the overall
structure of the algorithm developed in this work.

The result will be presented in Chapter 7. Different scenarios will be cov-
ered for the comparison and discussion that will show how the different
choices can impact the result. Chapter 8 provides the conclusion and the
potential cost saving will be stated. Finally, suggestions about the further
improvements of this work will be discussed in Chapter 9.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Butterworth filter

Data pre-processing is considered as one of the most important phases of a
machine learning task. If there is much irrelevant and redundant information
present from noisy and unreliable data, then obtaining the reliable result
becomes significantly more difficult. One of the most common data pre-
processing methods is filtering noise from a raw data obtained directly from
the real world. For example, in a time series sensor data, high-frequency
part of the data can be considered as noise and in order to increase the
performance of a machine learning task such as forecasting future sensor
values, an adequate low-pass filter can be used to process the raw data in
order to filter out the high-frequency signals.

Butterworth filter is one of the most commonly used low-pass filters because
it is designed to have a frequency response as flat as possible in the passband
without ripples. It is also referred to as a maximally flat magnitude filter.
The first order version of this filter rolls-off down to zero after the cut-off
frequency at the rate of 20 dB per decade. As the order of the filter increases,
the roll-off rate increases. For example, 2nd order filter rolls-off at a rate of
40 dB per decade and 3rd order filter at a rate of 80 dB per decade and so
forth.
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Figure 2.1.1: The gain of low-pass Butterworth filter with increasing order

As shown in Figure 2.1.1 the passband of the filter has a flat frequency
response without ripples. This property allows the high-frequency noise sig-
nals to be filtered completely without having unwanted side-effects. Ripples
can amplify the amplitude of signals at a certain frequency and can lead to
different types of undesirable behaviors. E.g., if the ripples are considerably
big and a sound wave is passed through the filter, the unwanted sound might
be included in the filtered sound wave.

2.2 Artificial neural network

Artificial neural network is designed inspired by the biological neural net-
works and solve problems in the same way that a human brain would. ANN
is designed based on connected units called artificial neurons.
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Figure 2.2.1: An example of artificial neural network

Figure 2.2.1 shows an ANN and interconnection between the group of nodes.
The connection of the neurons makes it possible to transmit signals to each
other and receive signals from each other. The output signal of each neuron
is computed by a non-linear function using the sum of its inputs. Moreover,
each connection has a weight, which can be adjusted depending on the learn-
ing task. ANN does not require any task-specific configuration and is able
to learn tasks by considering training samples. E.g., ANN can be trained
to identify a specific figure from an image. The input signals are processed
through the hidden layers to the output layer. The output signals of the
output layer contain the useful information. E.g., in an image recognition
task, the output signal will tell if an image contain the target figure or not.

2.3 Recurrent neural network

Recurrent Neural Network (RNN) is a class of ANN. RNN has shown promis-
ing results in different tasks such as time series prediction, classification, and
natural language processing. The common characteristic of these problems
is that historical data plays a crucial role. For example, humans do not start
their thinking from scratch every time they want to start talking. In a con-
versation, context needs to be understood to share ideas and their thinking
to each other. RNN is able to address the issue of understanding the context
by using feedback input to individual neurons.
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Figure 2.3.1: A simple feedback connection of RNN

As shown in Figure 2.3.1, input xt results output ht that is also dependent
on the previous result ht−1. The loopback connection can be unrolled to
a normal neural network with t connections. The neurons are sequentially
connected to each other. The final output ht will depend on all the sequen-
tial data.

There are some drawbacks using RNN. If RNN is used for generating data
that requires long-term dependency, which means that t is a big number,
several problems can be introduced. In the training process of such network,
the gradient that is used for back-propagation will suffer from the vanishing
gradient problem. In another word, ht will not be able to generate the result
based on the long-term history. E.g., if the outcome of an event at the end of
a movie is needed to be predicted, and the most important information was
given at the beginning of the movie, RNN is required to ”clearly” remember
the accident from several hours ago, which will be hard. It is also expensive
to maintain all the state. Let’s again think about the movie example, it
requires a lot of memory for the computer to remember all the states and
the events from the beginning of the movie to the end of the movie.

2.3.1 Long short-term memory

Long Short-Term Memory (LSTM) is an RNN architecture that solves the
problems introduced to the standard RNN network, e.g., vanishing gradient.
LSTM is designed to be able to have long-term memory. All the figures used
in this section are from [23]
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Figure 2.3.2: LSTM network [23]

An LSTM network contains multiple LSTM units. Each LSTM unit has
the ability to remember states for long or short time periods. An LSTM
unit contains several units. As illustrated in Figure 2.3.2 there are several
activation units and math operation units such as point-wise multiplication
and addition. There are two values that flow between LSTM units; state,
and output. The output h is concatenated with the input x and the cell
state C is the information flowing through the ”top” line within an LSTM
unit. Each line from the diagram carries an entire vector. There are three
different gates presented within an LSTM unit: input, forget and output
gates.

The forget gate layer controls what information to be thrown away from
the cell state passed from the previous LSTM unit.

Figure 2.3.3: LSTM forget gate [23]

The output ht−1 from the previous LSTM unit is concatenated with the
input xt and is sent through a sigmoid function, which will output a number
between 0 and 1. Cell state Ct−1 is element wisely multiplied with the
output from this gate. Depending on the output of the gate, cell state can
be kept or removed (1 or 0).
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The input gate layer will decide how the cell state will be updated.

Figure 2.3.4: LSTM input gate [23]

ht−1 and xt will be sent through the sigmoid and hyperbolic tangent ac-
tivation functions. The outputs will be combined together by point-wise
multiplication to create an update to the state. In the end, the update cell
state will be combined with the old cell state;

Ct = ft ∗Ct−1 + it ∗ C̃t.

The output gate layer is the last gate, which will decide the output of
LSTM units. The output will be based on the new cell state Ct, output
from the previous LSTM unit ht−1 and the input xt.

Figure 2.3.5: LSTM output gate [23]

The vector [ht−1 xt] will be sent through the last sigmoid function and
combined with the output of the hyperbolic tangent function, which takes
in the new cell state Ct.
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2.3.2 Echo state network

Echo State Network (ESN) [32] provides an architecture and supervised
learning principle for RNN. ESN is mainly divided into three different parts.
Input layer, reservoir layer, and output layer. A significant difference of
ESN from another type of NN is that the weights of the input layer and the
reservoir layer are generated randomly at the initial state of the algorithm
and is kept unchanged. The only trainable weights are the output weights.
Given that the ESN will have K input units, N internal network units and
L output units the dimension of the weight matrices will be as follows:
W in ∈ RN×K , W reservoir ∈ RN×N and W out ∈ RL×(1+K+N). The recurrent
property of RNNs is provided by the reservoir layer. This layer will also
provide the non-linear dynamic between the input signals and the output
signals.

Figure 2.3.6: Illustration of the standard Echo State Network architecture

As it can be seen from Figure 2.3.6 the K dimensional input unit u(n)
is provided to the ESN model. The input u(n) is then multiplied with
randomly generated W in. The reservoir units also called state units x(n)
are computed based on the output from the input layer, randomly generated
W reservoir and the previous state units x(n− 1). b represents a bias term.

x(n) = f state [W inu(n) + W reservoirx(n− 1) + b] . (2.3.1)

The activation function f state ∈ RN is task-dependent. One of the most
commonly used activation function is sigmoid. A sigmoid function is a math-
ematical function having a characteristic ”S”-shaped curve. An example of
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a sigmoid function is the logistic function,

f =
1

1 + e−x
.

The size of state unit x can be chosen freely and should be bigger than the
number of input units. The reservoir serves as a memory and provides tem-
poral context. In general, the bigger the reservoir, the better the obtainable
performance. However, this will also increase computational complexity and
memory. Moreover, a higher risk for over-fitting. The size of the reservoir
should not be bigger than the size of the samples that can be used for train-
ing.

A disadvantage of using the standard sigmoid network for updating state
units is that they do not contain a time constant. Their dynamic cannot be
slowed down like the dynamics of the differential equations. In order to add
this property to the model, the state update term can be modified to use
leaky integrator [32]. This modifies (2.3.1) into

x(n) = (I −A)x(n− 1) + f state [W inu(n) + W reservoirx(n− 1) + b] ,
(2.3.2)

where A is the leaky matrix. The value of the leaky coefficient can be
chosen between 0 and 1. A value close to 1 means that the state units
do not retain any information about its previous state. A value close to 0
means that the state units retain most of its previous state. Practically, a
number close to 0 means that the dynamic is slowed down significantly com-
pared to the standard sigmoid network. As mentioned, the feedback term
W reservoirx(n−1) provides the recurrent property. b represents a bias term.

The output is computed according to

y(n) = fout(W out [1;u(n);x(n)]) (2.3.3)

The output activation function fout ∈ RL is task-dependent. E.g., for the
time series forecast, this function is typically a linear function. The bias
term is included by adding an extra vector containing ones. As illustrated
in Figure 2.3.6, the output y(n) is compared with the ground truth vector
ytarget(n) to compute the output weights. To recall, in ESN algorithm the
input weights and the reservoir weights are kept unchanged.

The connectivity between state units within the reservoir layer needs to be
chosen when designing an ESN model. The less connectivity leads to high
degree of sparsity of the state units. High sparsity means that the computa-
tional effort decreases, however, this can also lead to dynamical decoupling.
In general, the sparsity of the reservoir does not affect the performance much.
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Choosing the appropriate reservoir weight matrix, W reservoir, is crucial con-
sidering echo state property. In order to secure echo state property, the spec-
tral radius of the reservoir connection needs to be less than one in most of
the cases. The spectral radius of a matrix is the eigenvalue with the biggest
amplitude. This means that the input history and the state will have an
impact on the future state, and gradually tend to disappear. The reservoir
layer will gradually forget the information from the initial condition and
reach an asymptotically stable state. However, the spectral radius being
less than one does not provide a sufficient condition for the echo state, as
this spectral radius being bigger than one is only a sufficient condition for
the non-existence of echo states [32]. One additional parameter that needs
to be checked is the largest singular value. This value needs to be less than
one in order to prove the existence of echo states [32]. However, in most
of the practical cases, it is enough to check the spectral radius in order to
secure the echo state property. Scaling of the reservoir weights can be used
to keep the spectral radius less than one.

The only trainable output weights can be found using regression method
that minimizes the squared error between ytarget(n) and y(n).

Minimize
[
ytarget(n)− y(n)

]
, ∀n ∈ [1, ..., N ].

Given that the number of training samples N exceeds the summation of
the number of inputs and the reservoir size, the system becomes over-
determined. An over-determined system is almost always inconsistent, in
another word, it has no solution. Hence, a solution of W out needs to be
approximated using the least-square method, which yields

minimize
W out

∣∣∣∣ytarget −W outX
∣∣∣∣ ,

where
X = [1; u; x] .

The solution of which can be presented by the following equation [40],

W out = ytargetX
>
(
XX>

)−1
. (2.3.4)

In [41], an alternative way of finding W out is presented, so called Tikhonov
regularization method. Using a regularization coefficient, the solution from
(2.3.4) is transformed to

W out = ytargetX
>
(
XX> + βI

)−1
. (2.3.5)

Equation (2.3.5) is a solution of

minimize
W out

∣∣∣∣W outX − ytarget
∣∣∣∣+ β ||W out||
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βI is a regularization term, which limits the W out to become large. Large
weights indicate that the system amplifies tiny differences among the dimen-
sions of x, and can be very sensitive to deviations from the exact conditions
in which the network has been trained. The regularization coefficient β,
penalizes W out and prevents W out from becoming too large. This regular-
ization term is used to prevent over-fitting as well as instability.

A simple and intuitive method of finding W out is using pseudo-inverse, which
yields

W out = ytargetX
+.

X+ is a pseudo-inverse matrix of X. The direct pseudo-inverse computing
method is highly stable, however, it requires large memory for the compu-
tation.

If a recurrence dynamic between the reservoir and the trained readout is
required, (2.3.1) can be modified to include a feedback term

x(n) = f [W inu(n) + W reservoirx(n− 1) + W backy(n− 1)] (2.3.6)

The feedback term enables reservoirs to achieve universal computational ca-
pabilities [37].

Instead of feeding back the readouts y(n), the desired output ytarget(n) can
be used

x(n) = f
[
W inu(n) + W reservoirx(n− 1) + W backytarget(n− 1)

]
This method is called teacher forcing, which speeds up convergence or even
may be necessary to achieve convergence at all [28].

2.4 Particle swarm optimization

Particle Swarm Optimization (PSO) [9] is a computational method used for
optimization trying to improve the candidate solution with regard to qual-
ity. The quality is represented by a numerical value, which is comparable.
Denoted as the fitness value (FV). The algorithm explores the search space
Rn of a given problem using spread particles. The dimension of the search
space is defined by the number of free parameters that can be tuned by
the algorithm. The search space is therefore often called as the parameter
space and feasible region in optimization. Each unique combination of the
parameters gives a FV and this value is compared to find the optimal pa-
rameter set that minimizes or maximizes the FV. The function that is used
to generate the FV given a candidate solution is different depending on the
problems to be solved. However, this function is often not directly known.
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Therefore, a black box approach that takes a candidate solution and gives
a FV can be used.

PSO algorithm starts by placing particles within a random Rn high di-
mensional search space. The particles are being moved iteratively and the
candidate solution of each particle is evaluated using either an objective
function or a black box approach. Each particle maintains its position, ve-
locity, evaluated FV and the candidate solution. The evaluated FV of the
particles is compared at each iteration and the particle with the best FV is
referred as the individual best FV and is remembered by the algorithm. The
individual best FV is then compared with the global best FV, which refers
to the best FV found during the execution of the algorithm. The position
of the particles are updated simply by using the following equation:

vi(t+ 1) = w · vi(t) + c1 · r1 · (x̂i(t)− xi(t)) + c2 · r2 · (g(t)− xi(t)). (2.4.1)

The particle number is denoted by i. The parameters w, c1 and c2 are
user defined coefficients. They affects how the particles are updated. The
parameters r1 and r2 are a value between 0 and 1, randomly chosen by
the algorithm. These random parameters prevent the algorithm from con-
verging to the particle with the first found individual best FV. x̂ represents
the particle position with the individual best FV and g is the particle posi-
tion with the global best FV. The terms w · vi(t), c1 · r1 · (x̂i(t)− xi(t)) and
c2 · r2 · (g(t)− xi(t)) are called inertia component, cognitive component and
social component, respectively [9].

The position is updated according to the equation:

xi(t+ 1) = xi + vi(t+ 1) (2.4.2)

In order to prevent the particles from moving outside of the search space
X ∈ Rn, a technique called velocity clamping is used [10].

2.5 MILP

Mixed-integer linear programming is an extension of Linear Programming
(LP) [47]. LP is a method used for the optimization of a linear objective
function subject to linear constraints on the free variables. The constraints
may include both equalities and inequalities. Linear programs are usually
stated and analyzed in the following standard form

maximize
x

c>x

subject to Ax ≤ b.
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In MILP some of the variables are restricted to be integers. MILP is in-
troduced with the following standard form; given the constraints and the
objective function, the integer variable xI and the continuous variable xC
should be found, which maximizes the objective function

maximize
x

c>x

subject to Ax ≤ b

x = (xC ,xI)

xI ∈ Zn

xC ∈ Rn.

(2.5.1)

Where Zn denotes set of integers. The decision variables are a mix of con-
tinuous variables and integer variables. MILP is a non-convex and NP-hard
problem. There exists, however, algorithms that can be used to solve MILP
such as Branch and Bound and Cutting plane. Today’s MILP/MIQP solvers
typically use a combination of those two.

The integer term will help to describe the physical process in a convenient
way. For example, in the manufacturing and production industry, the num-
ber of units produced needs to be an integer. The integer variables are also
often restricted to be binary. The binary variables can be used to describe
yes/no or on/off situations. For examples, a binary variable can be used to
define if a machine is on or off.

2.5.1 Branch and bound

The Branch and Bound (BnB) is one of the most widely used methods
to solve MILP. Conceptually, BnB is a divide and conquer strategy for
MILP. The problem P is divided into sub-problems and the solutions of
the sub-problems are used to obtain the optimal solution of P. The divi-
sion is performed iteratively, such that the sub-problems are easier to solve.
The sub-problems are discarded as long as it can be proved that it cannot
produce the optimal solution.

Explicit enumeration is a method used to divide the main problem P
into sub-problems by dividing the search space S into different regions, such
that

S0 = {x ∈ S : x1 = 0}
S1 = {x ∈ S : x1 = 1}
S = S0 ∪ S1.

S0 and S1 can be divided further into the smaller regions. However, it is
not always feasible for practical problems because explicit enumeration will
result in infinitely many sub-regions.
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Implicit enumeration is a method decomposing the search-space S into
K different subsets

S = S1 ∪ ... ∪ Sk.

Given a subset k of the spaces, an upper bound and a lower bound for the
solution is found. The subsets are discarded iteratively using the upper and
the lower bounds of the other subsets. If the lower bound of the subset k
is bigger than the upper bound of the subset k+1, the subset k+1 is dis-
carded, since it is found that the subset k+1 does not contain the optimal
solution. The subsets with in-feasible solutions are also discarded from the
full search-space. This continues until the optimal solution is found.

Equation (2.5.2) shows an example of how the full search-space can be di-
vided into two subsets.

S0 = {x ∈ S : x1 ≤ 2}
S1 = {x ∈ S : x1 ≥ 3}
S = S0 ∪ S1

(2.5.2)

2.5.2 Cutting plane

The cutting plane algorithm is the other widely used method for solving the
MILP problems. The main idea of the algorithm is assuming the integer
variables as continuous and adding valid inequalities until the integer solu-
tion is obtained. The feasible sets or the objective function will be refined
iteratively by means of linear inequalities.

The feasible sets X ∈ P ∩ Zn+ can be updated to include new inequalities
that cuts the feasible plane P t ∈ P ∩ {x : π>i x ≤ πi0, i = 1, 2, ..., t} and
P t will be a tighter formulation than the initial formulation P , resulting
X ∈ P t ∩ Rn+.

The ILP problem
max{c>x : Ax ≤ b, x ∈ Zn+} (2.5.3)

can be reformulated as LP, introducing new additional valid inequalities

max{c>x : Âx ≤ b̂, x ∈ Rn+}, (2.5.4)

where Â and b̂ includes A and B from (2.5.3) and some additional con-
straints.

Notice that the solution of LP from (2.5.4) will be the solution of ILP from
(2.5.3), if the additional constraints covers convex hull of (2.5.3). The main
issue of the problem is choosing the useful inequalities. Finding the most
useful inequalities requires convex hull analysis. However, there are efficient
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ways of finding such inequalities and one of the most used methods for
cutting is called Chvátal-Gomory Cutting [14].

2.6 MINLP

Mixed integer non-linear programming is an extension of MILP where some
of the constraints or the objective function are non-linear. MINLP is an
NP-hard problem and there is no algorithm that guarantees the problem to
be solved in a polynomial time. Fortunately, there are some approximation
techniques that can be used such as McCormick Envelops and piece-wise
linearization for simplification of MINLP.

2.6.1 McCormick envelops

McCormick Envelops is a convex relaxation method used to convert bilinear
terms to linear terms so that the non-linear problem only containing bilinear
terms becomes a linear problem.

Considering the general class of MINLP where the non-linear term is bilinear

w = xy

with the constraints

xL ≤ x ≤ xU

yL ≤ y ≤ yU

Introducing the new constraints

x − xL ≥ 0

xU − x ≥ 0

y − yL ≥ 0

yU − y ≥ 0

gives

(x − xL)(y − yL) ≥ 0

⇒
w ≥ xyL + yxL − xLyL.

All the terms become linear so that the MINLP problem becomes MILP.
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2.6.2 Piecewise linear approximation

MINLP is an NP-hard problem and solving MINLP can be very hard, which
can takes hours, days or forever to solve. However, MINLP can be trans-
formed to MILP by using piece-wise linear approximation techniques. Spe-
cially Ordered Sets of type 2 (SOS2) is one of the most used piece-wise
linearization methods.

SOS2 picewise-linear model is using an ordered set of variables, {λ0, ..., λn},
which represent special ordered set of variables type 2. The characteristic is
that at most two variables are bigger than zero. In addition, if two variables
are bigger than zero, then they are consecutive in the ordered set: λi and
λi+1. The model based on SOS2 variables require several additional con-
straints. Given {(x0, f(x0)), (x1, f(x1)), ..., (xn, f(xn))} and {λi} is SOS2.

x =

n∑
i=0

λixi

y =

n∑
i=0

λif(xi)

1 =

n∑
i=0

λi

λi ≥ 0, i = 0, ..., n

(2.6.1)

The non-linear f(x) can be swapped with the linear y presented in (2.6.1).

Some of the alternative models that can be used for the linearizations are:

1. Convex combination

2. Incremental

3. Disaggregated Convex Combination

4. Logarithmic Convex Combination

5. Disaggregated Logarithmic Convex Combination

2.7 Big-M

The Big-M method can be used to relax constraints and can be combined
with binary variables to formulate the conditional constraints by adding a
large positive penalty constant M to the inequality constraints. For instance,
an inequality can be ensured if a binary variable takes on a value, and the
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inequality can be relaxed if this binary variable takes on its opposite value.
For example, given two conditional constraints,

if u = 1 ⇒ a>1 x ≤ b1
if u = 0 ⇒ a>2 x ≤ b2.

Using a big positive constant M, the conditional constraints can be trans-
formed to

a>1 x ≤ b1 +M · (1− u)

a>2 x ≤ b2 +M ·u
u ∈ {0, 1}

which ensures a>1 x ≤ b1 if and only if u = 1 and a>2 x ≤ b2 if and only if u
= 0.

M needs to be chosen carefully, such that it is ”large enough”. However, too
large M can also affect the convergence rate of the algorithm to the optimal
solution [46].
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CHAPTER 3

LITERATURE REVIEW

3.1 ESN for wireless communication

In [29], ESN has been used for prediction of the Mackey-Glass system, which
is a benchmark system for time series prediction. An ESN model with 1000
reservoir units and one output unit with output feedback to the reservoir
has been designed. The designed ESN model is then trained using 3000-
step teach sequence. The output connection weight wout is computed using
the last 2000 steps of the stored reservoir states. The first 1000 steps have
been removed since these steps introduce the transient error. 84-step ahead
prediction has been performed for testing. 100 independent trials have been
used to find a normalized root mean square error and the result yields 10−4.2.
Another ESN model has been designed for the equalization task for wire-
less communication. A noise possessed signal needs to be filtered using an
equalizing filter when it is received. The intention of using a filter is to
recover the original signal, which is converted into a symbol sequence. Per-
formance of the ESN with 46 reservoir units has been compared with the
standard equalization methods such as linear decision feedback equalizer,
Volterra decision feedback equalizer, and bilinear decision feedback equal-
izer. The prediction result yields an improvement of two magnitudes for
high signal-to-noise ratios.

3.2 ESN with EA for identification of highly non-
linear motion

In the work presented in [36], ESN has been combined with the Evolutionary
Algorithm (EA). The ESN model has been used for estimation of the motion
of an underwater robot, which is highly non-linear. The limit cycle test,
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which turns the robot to the right until the yawing rate exceeds the limit
velocity has been performed and the resulting data is used as the training set
of ESN. The input of the ESN model is yawing rate and torque. The output
is yawing acceleration. The coupling relationship between those variables is
highly non-linear and hard to find an analytic model. EA is used to find the
most appropriate global ESN parameters such as the number of reservoir
units, global contraction and the average density of interconnection. The
EA use MSE as the error measurement and the fitness criterion is defined
as lowering the MSE error. After finding the best combination of the global
parameters, EA has been applied again for adjusting the internal reservoir
weights. Two different approaches have been tested for tuning the weights.
One of them yields using EA on the entire reservoir weight matrix and
the other method yields applying a mask matrix to keep all the zeros of
the sparse reservoir weight matrix. In another word, only the non-zero
elements of the reservoir weight matrix have been adjusted using EA. The
most promising result has been obtained using the full mask version, which
yields tuning the global ESN parameters and the full reservoir weight matrix
using EA. The next best approach found is using EA on the masked sparse
reservoir matrix. The error difference between the best and the next best
approach is not that significant and those two approaches showed better
performance compared to the brute force method and the method only using
EA for tuning the global ESN parameters. Conclusively, the approaches
including the EA outperformed the brute force method.

3.3 Electrical load forecasting using ESN with PSO
optimization

ESN for electrical load forecasting and optimization using PSO is discussed
in [43]. The global parameters of designing ESN such as reservoir size,
connectivity of the reservoir units, spectral radius of the reservoir weight
matrix and input scaling factor have been optimized using PSO. Prediction
error of ESN has been used for the fitness measurement and the objective is
to minimize this fitness value. The algorithm continues until the termination
condition of the PSO algorithm is reached. After the termination of the
PSO algorithm, the output of the PSO algorithm, which is the optimal
combination of the global ESN parameters has been applied for making an
ESN model. 24000 sets of data for electrical load has been used for training
ESN and the result has been compared with Support Vector Machine, Back
Propagation and ESN with manually tuned parameters. The comparison
result yields better performance using ESN-based approaches compared to
Support Vector Machine and Back Propagation. The lowest prediction error
was achieved using the ESN model with PSO optimization.
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3.4 Time series classification using ESN for speech
recognition

Employing ESN for automatic speech recognition using isolated utterance
of the English digits ”zero” through ”nine” has been discussed in [38]. 26
utterances of each digit from 4 male and 4 female speakers were collected.
Frame-based speech features, using human factor cepstral coefficients were
extracted from the utterances and used as the training set. The test set con-
sisted of 26 utterances from the 8 different speakers. Each digit was trained
using multi-filter readout, meaning that a portion of the speech signal for
each digit was segmented, which reduces non-stationarity. Practically, for
each digit, the input to the ESN classifier is a given size of the batch of the
training samples and K number of Wout were trained by segmenting reser-
voir states into K equal-length sections along with the desired signals. The
readout weight was trained using a dynamic programming similar to the
Viterbi algorithm presented in [39]. A different number of readout filters
and reservoir size was tested and the classification accuracy was compared
with each other. Conclusively, the classification result obtained using a hid-
den Markov model was compared with the classification result for the ESN
classifier.

3.5 Online readout weight update of ESN using
an adaptive algorithm

The adaptive algorithm can be conjoined with a classic ESN to catch the
non-stationary dynamic. Finding the optimal readout weight is a linear task,
a standard recursive least square algorithm for Mean Squared Error (MSE)
minimization can, therefore, be applied to online ESN estimation. In [31]
the author is applying recursive least square algorithm together with ESN
for prediction of a 10th-order system. ESN is slightly modified by using a
squared version of the input and the network state. Originally, the readout
weight is computed based on a vector; [u(n), x1(n), ..., xN (n)], but in order
to increase the modeling power of ESN, the readout weight is computed
using a augmented vector;

[
u(n), x1(n), ..., xN (n), u2(n), x2

1(n), ..., x2
N (n)

]
.

Hence, the length of the readout weight is increased from N + 1 to 2N +
2. In the case study conducted in [31], the squared version of the readout
weight is updated with a forgetting factor = 0.95 and 202 network states
were used. The goal was to estimate a 10th order system with randomly
varying parameters. The 10th order system was assigned to new parameters
every 2000 steps. A 10 000 sequence training data is used to test the perfor-
mance of online ESN. The result yields lower NMSE using online ESN after
convergence compared with offline trained ESN. The readout weight size
of a standard offline training of ESN depends on the amplitude size of the
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noise inserted into the network during training [32], similarly, the readout
weight size using online ESN was affected by the size of the noise inserted to
the network. The readout weight entered a region of numerical instability
without noise insertion. Thus, the noise term is crucial here for numerical
stability.

3.6 EMS based on MILP and logic algorithm

In [13], MILP-based and logic-based algorithms are applied to control power
distribution in diesel-electric marine vessels such as ferry, platform supply
vessel and seismic survey vessel. The objective regards fuel efficiency and
maintenance of the gensets. MILP considers fixed speed genset, variable
speed genset, and ESS. Leading to three different types of the configurations.
The objective function includes power capability for the gensets, number of
running hours as well as the number of starts/stops of the gensets. Service
and maintenance of the diesel engines are required after 1000 running hours,
by including the running hour term to the objective function, running hours
of all the gensets can be synchronized, which can save maintenance cost
and downtime. The decision variables are genset on/off decisions, which is
binary, power loading of the variable speed genset and the power flow of ESS.
The performance of MILP-based EMS and logic-based EMS are compared
for each type of the vessel.

3.7 EMS based on ILP

In [15], The Specific Fuel Oil Consumption (SFOC) is estimated using a
recursive estimation method. The objective regards fuel efficiency. The ob-
jective function includes the fuel consumption of each diesel generator. The
decision variables of the objective function represent the discrete operat-
ing points of the diesel generators. Meaning that the power of each diesel
generator is divided into a finite number of operating points. The decision
variables are binary. Each generator is only allowed to operate at one spe-
cific operating point, and the binary variable representing this operating
point is set to one, meanwhile, the rest are set to zero, in another word,
the binary variables are Specially Ordered Sets of type 1. Leading to op-
timization problem model only consisting of the binary decision variables.
The number of decision variables will increase or decrease depending on
the number of operating points of the diesel generators. The performance
of ILP-based EMS is tested by comparing the optimized fuel consumption
with the original fuel consumption.
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3.8 EMS based on MILP and prediction method

The MILP model presented in [16] is using power output of the diesel gen-
erators as the decision variables. Moreover, the on/off decision variables of
the diesel generators are embedded into the model. The objective function
regards the optimal load sharing in terms of the optimal fuel saving. The
model is expanded further to include a certain window of time. The on/off
decision variables in the model are transformed to the number of start-ups
given a window of time, which are integers. However, embedding the time
into the model introduces an additional requirement. The power demand
for a given time t needs to be considered, which means that the power de-
mand needs to be predicted for the certain window of time used for the
model. Therefore, the algorithm introduced in this paper combines MILP
with some prediction methods. The performance of such model depends on
the accuracy of the prediction. Embedding the future decision variables in
the model will potentially increase the fuel-saving since the model also con-
siders the future operating points. Furthermore, energy storage technology
is investigated to achieve higher efficiency. The idea is to control the total
load using ESS in the most beneficial way with regard to engine efficiency.

3.9 MILP with renewable energy resources

The MILP model presented in [17] includes different renewable resources as
well as gas turbines and fuel cells. The model is designed to find the optimal
combination of distributed generation units. The objective regards annual
total cost including investment cost and running cost. The integer decision
variables represent the on-off status of the energy resources and the exis-
tence of energy storage devices. The continuous decision variables express
the power flow from the system components. The model considers energy
balance, supply-demand and performance characteristics of the system com-
ponents such as photovoltaic system, wind turbine, and energy storage etc.
The algorithm is simulated for every hour in a whole year. The output is
the optimal combination of on-site generation and heat recovery, the capac-
ity of each technology to be installed and an alternative power generation
schedule of the system components. Since the model is used for scheduling,
the algorithm needs to take account of variations of the load demand and
fuel price over the simulation period. The assumption made for this work
is that all the varying parameters are known with complete certainty, i.e.,
energy load demands and fuel prices for the duration of the test year are
assumed to be given.
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3.10 MILP for solving STHTC

The optimal Short Term Hydro-Thermal Coordination (STHTC) is dis-
cussed in [18]. In this work, MILP has been applied for solving STHTC
problem. The non-linear behavior of the power generating units is trans-
formed to piece-wise linear equations and used for designing a MILP model.
The objective function regards cost-efficient hourly power generation sched-
ule for a given time horizon. The objective function includes thermal cost,
thermal unit start-up cost, and future cost. The future cost is related to
the water volume stored in the reservoir and is estimated using stochastic
dynamic programming recursion. The constraints of the MILP model con-
sists of hydro constraints, thermal constraints, and system constraints. The
hydro constraints related to water turbine regards water balance equation,
irrigation, limits on storage, power production as a function of water dis-
charge, constant and variable head operation and spill characteristics. The
constant/variable operating head behaviors and the spill characteristic of
the water turbines are piece-wisely linearized and embedded to the MILP
model as a part of the constraints. The thermal constraints regard to power
production of each thermal unit, minimum downtime, and uptime, ramping
in power, the maximum number of start-ups, etc. The system constraints
regard power demand, import/export of power and spinning reserve. The
decision variables are power from the thermal units, thermal unit on-off bi-
nary variables, turbine water flow, which is coupled with the power produced
by the water turbines and on-off binary variables of the hydro units.

3.11 MINLP for solving ED and UC combined
problem

In [19], MINLP is applied for solving the Unit Commitment (UC) problem
and the Economic Dispatch (ED) problem as a one combined problem. UC
is the problem of determining the number of committed units in the system
in advance. ED is the problem of scheduling the output power levels of
the committed generating units in a power system to meet the demand at
minimum cost. The MINLP model presented in this work includes a gener-
ator index and a time index. The objective function regards fuel consump-
tion and start-up cost. The start-up cost considers cold start-ups and hot
start-ups. This cost is modeled as an exponential function. However, this
non-linear term is linearized by discretization. The fuel consumption is mod-
eled as a quadratic function, which induces non-linearity. The constraints
presented in this work is power generation, ramping rates, power balance,
minimum up, down-times and spinning reserve. The decision variables are
UC decision variables, generator state variables for minimum down-time and
up-time, scheduled output power level and scheduled ramp up or down-level.
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The generator state variables are used for designing discrete-time dynamic
model with UC decision variables as an input control. The power level is
considered as a state variable with ramp variables as an input control. The
final model that solves the UC and ED combined problem is formulated as
MINLP. Quadratic term of the fuel consumption makes the problem MINLP.
This term is simplified using a piece-wise linear approximation, which trans-
forms the problem to MILP. The results obtained by solving MINLP and
MILP are compared.

3.12 MPC for solving UC problem for wind farms

In [20], a UC problem for the wind farm is introduced, which is solved using
the Model Predictive Control (MPC) method. The UC problem is designed
using an objective function that regards production costs, start-up costs,
shut-down costs and maintaining costs. The constraints, which is included
in the model is the maximum available power of the wind farm, the minimum
wind farm capability, the coupling of the state and input variables. The state
variables represent the on-off transition of each wind turbine, e.g., off→ on,
off → off, on → off and on → on. The input variables represent the on-off
status of the wind turbines. The UC problem is then transformed into a
standard MPC problem. ED problem is not included in the model and the
power from the operating wind turbines are fixed to the maximum available
power. The short-term available wind power is obtained from a wind power
forecasting center.

3.13 MPC to overcome constraint violation and
robustness under certain uncertainties

The work [21] presents two different formulations for solving an ED problem.
Namely, the Optimal Control Dynamic Dispatch (OCDD) and the Dynamic
Economic Dispatch (DED). OCDD formulation is using a simplified power
dynamic model. The future power is recursively estimated based on the
initial power and ramp rate. The power output works as the state variables.
The optimization result will highly depend on the initial power. The ramp
rate is controlled by using a separate constraint. DED does not include
any power dynamic model, however, the ramp rate is controlled by using
a ramp rate constraint on the power output between each time step. The
power output is denoted as the states. The difference is that DED ignores
the ramp limit between the initial power and the first optimized power and
unlike OCDD, the optimization result does not depend on the initial power.
The ramp rate violation will most likely occur for both of the formulations.
In this paper, MPC is used to prevent ramp constraint violation. MPC
increases robustness and prevents the ramp violation, however, the cost
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determined by the optimization solution using MPC is proven to always
be greater than or equal to that of the classical OCDD/DED. Using MPC
is similar to employing extra constraints to the OCDD/DED models that
secure feasibility of the solution. Increased number of constraints will lead
to increased cost of optimization result compared to the original model.
Convergence and feasibility of MPC are proven in this paper. The MPC
algorithm is tested on a six-unit system and shows the convergence and
robustness of the MPC solutions. The electricity demand is assumed to
be periodic and therefore does not require any prediction method. This
assumption comes from the fact that the demand is periodic due to cyclic
consumption behavior and seasonal changes.

3.14 An MPC approach for solving ED involving
intermittent energy resources

An MPC approach for solving the ED problem in electric power systems
involving intermittent resources is presented in [22]. The MPC algorithm
is designed to minimize both environmental cost and operating cost. The
look-ahead optimal dispatch algorithm includes constraints such as power
demand, minimum/maximum power of all the generating units and ramp
rate of generators for dynamically scheduling all available resources. The
time-varying parameters such as power demand and available power of in-
termittent energy generators are predicted using a dynamic model for a time
horizon N. The dynamic of the varying parameters such as minimum/max-
imum power of intermittent resources and the total demand is included to
the MPC algorithm as a part of constraints. This paper does not cover how
these dynamic models are designed. The optimization algorithm is executed
using a moving horizon N, which equals to the forecast horizon and the
output yields the power output of all the available generators for the time
horizon N. However, only the first control signal is implemented [49]. After
retrieving a new measurement, the designed algorithm is solved again using
this new measurement and the first control signal is implemented. The al-
gorithm is simulated on a 12-bus system and about 7 % cost reduction is
achieved.
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CHAPTER 4

ESN AND POWER DEMAND FORECAST

4.1 Introduction

Figure 4.1.1 shows example pattern of required power to operate a site.
The goal is to catch this pattern and forecast the required power or power
demand and use the predicted values for implementing optimal predictive
planning algorithm. By integrating the predictive method to the optimal
planning algorithm, the power distribution scheduler will be able to catch
the dynamic of the power system and find a reliable cost-efficient way to
distribute the load throughout the power system.

Figure 4.1.1: Required power to operate a site
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In order to implement a predictive planning algorithm, forecast of the time-
varying parameters such as power demand, the maximum power level of the
gas turbines and the electricity price is required to use them as model con-
straints. The electricity price and the maximum power can be considered
constant or known if the time of window to be included in the model is ap-
proximately chosen. However, the power demand constraint is fast changing
and can’t assumed to be fixed. Therefore, prediction of power demand using
a machine learning method is considered. power demand changes over time,
and is dependent on the multiple factors such as the grid loading, weather,
tide, etc.. However, availability of the such tags is often limited and for gen-
erality of the algorithm, only historical data will be used to train a neural
network model that will forecast the future power demand.

power demand oscillation includes load shifting in order to keep the stability
of the grid frequency. The frequency of the grid is the nominal frequency of
the oscillations of Alternating Current (AC) in an electric power grid trans-
mitted from a power station to the end-user. Depending on the location,
the frequency of the grid can vary. In Europe, this frequency is 50 Hz. If
the consumption exceeds the generation, the frequency of the alternating
current will fall to a value below 50 Hz. In this case, either more electricity
needs to be produced by the producers or load reduction can be requested
to the major energy users. If the generation of electricity exceeds the con-
sumption, the frequency will rise to a value above 50 Hz. The grid operator
then needs to ensure that the electricity producers reduce the generation of
electricity.

ANN explain in Section 2.2 is chosen as the method to forecast power de-
mand. ANN is a good candidate for the prediction task because of its ability
to find implicit dependencies and relationship in data without having any
prior knowledge about all the relevant influencing factors. It is also possible
to adopt changed conditions without having any significant complications.

RNN is a class of ANN where connections between units form a directed
graph along a sequence. This allows it to exhibit dynamic temporal behav-
ior for a time sequence data. Basic ideas of RNN is explained in Section 2.3.

ESN is a class of RNN. The basic idea of ESN is explained in Section 2.3.2.
Shortly explained, the random reservoir layer is used to influence the input
signals u(t) and creates a high-dimensional collection of non-linearly trans-
formed versions x(t). Moreover, x(t) works as a memory of input signals.
x(t) is then combined with readout weights to map the output signals with
the desired signals. The reservoir states, being an input-driven dynamical
system, should provide a rich and relevant enough signal space in x(t), such
that the desired signals can be obtained by a linear combination from it.
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ESN is proved to be a highly practical approach to RNN training. It is con-
ceptually simple and computationally inexpensive, therefore reinvigorating
interest among the researchers and yielded excellent performance. In [29],
the performance of ESN has been tested for prediction of a chaotic system
called the Mackey-Glass system and use of the equalization of a wireless
communication channel. ESN has been used for prediction of 84-step ahead
signal. A normalized root mean square error over 100 independent trials is
found to be 10−4.2. For equalization of wireless communication task, ESN
showed improvement of signal error rate by two orders of magnitude com-
pared to standard techniques. For training the output weights, an online
learning method has been applied. In [36], the motion of an underwater
robot is estimated using ESN combined with an Evolutionary Algorithm
(EA) to tune the global ESN parameters such as the number of reservoir
units, global contraction and the average density of interconnection. More-
over, using the tuned number of reservoir units, the connectivity matrix has
been adjusted using an EA. The work presented in [43] is applying PSO
together with ESN for electrical load forecasting. The global parameters of
ESN model such as reservoir size, connectivity, spectral radius and input
scaling factor are tuned using PSO. The prediction error value is used as
the FV for PSO. After finishing tuning the global parameters using PSO, an
ESN model is made based on the result obtained using PSO. Error evaluation
showed PSO-ESN improved the prediction accuracy significantly. Speech
recognition using isolated utterances of the English digits ”zero” through
”nine” in a classification experiment was performed using ESN in [38] and
the classification result was compared with a hidden Markov model. [31]
describes how recursive least squares algorithm can be used together with
ESN to provide online adaptation to the trainable readout weights. The
readout weights were updated online by minimizing the error between the
prediction and the desired outputs. The algorithm presented in [31] is used
to track a 10th order non-linear system.

The work presented in [29] shows the potential of using ESNs for tasks such
as time-series prediction. However, the Mackey-Glass system has a clear
pattern with a clear dynamic, which simplifies the task. As shown in Fig-
ure 4.7.1, power demand does not contain a clear dynamic nor the pattern.
The performance proved in [29] is not expected to be achievable for power
demand forecast. The motion of an underwater robot represents a highly
non-linear dynamic and [36] shows the potential of using ESNs for captur-
ing the highly non-linear dynamic. This is an essential property of the RNN
that will be used in this work since the non-observable dynamic of power
demand might consist of a highly non-linear dynamic. The work presented
in [43] shows the possibility of integrating an optimization algorithm with
ESNs to optimize the global parameters of ESNs. This will simplify the pa-
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rameter tuning process to obtain the best forecast accuracy possible. Also,
[31] shows how non-stationary dynamic can be captured by ESNs by inte-
grating an adaptive method to update the readout weights. power demand
might contain a non-stationary dynamic, hence adding an adaptive method
for updating the readout weight can be considered.

In this work, the raw power demand data will be pre-processed using the
Butterworth low-pass filter and standardized according to the formula (4.7.1).
Moreover, ESN will be designed to forecast power demand and the global
parameters of ESN will be optimized using PSO.

4.2 ESN vs. LSTM

There are advantages and disadvantages of ESNs over LSTMs. The most
important advantage of using ESNs is the time it takes to train a model.
ESNs are especially good at learning fast and online. ESNs can, therefore,
be adapted to dynamics that change over time (online training). The fast
learning property gives room to integrate ESNs with a genetic algorithm,
which can be used to optimize the global parameters to design task-specific
ESNs. However, ESNs will require a large amount of memory compared to
LSTMs. LSTMs are smaller and more efficient once trained, although the
training process will require significantly more time than ESNs.

It is hard to decide the most task suitable model when designing RNN us-
ing LSTMs, it requires experience in designing ANN and high degree of
knowledge about the task related domain. Moverover, unlike ESNs, LSTMs
cannot be integrated with PSO for the optimization of the model, since it
does not allow fast and online learning.

For the regression, the reservoir layer of ESNs has more hidden units than
inputs so it represents many random independent transformations of the
input. The probability that this transformation will contain useful repre-
sentations of the dynamics that will let the regression perform better than
directly on the input itself is high. Hence, depending on the size of the reser-
voir, ESNs can be a suitable choice when coping with time-series data that
contain multiple numbers of dynamics. LSTMs will not be able to catch
different types of dynamics at the same time and will, therefore, run into
trouble if time-series data contains multiple dynamics.

4.3 Global parameters of ESN

The behavior of ESN is defined by different global parameters such as the
size of the reservoir, connectivity of the reservoir states, size of noise added
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to the reservoir states and spectral radius of the reservoir weights. These
parameters can be chosen differently for different learning tasks. Tuning
these parameters require knowledge about how they affect the behavior of
ESN.

4.3.1 Size of the reservoir

Reservoir acts as non-linear expansion and a memory of the input signals.
Meaning that for highly complex learning tasks a big reservoir is required. In
general, the bigger the reservoir, the better obtainable performance. How-
ever, without any generalization of training of ESN, the over-fitting problem
can be introduced. Since over-fitting can be overcome as explained in Sec-
tion 4.3.4, it is desired to have a reservoir size as big as possible. The only
limitation is the amount of training data available and computational power.
The reservoir size should be kept such that the total number of inputs and
reservoirs is always less than the total number of training samples. More-
over, a big number of reservoir requires big memory, therefore computational
trade-off needs to be considered choosing the reservoir size.

4.3.2 Connectivity of the reservoir

Connectivity of the reservoir can be controlled at the initialization step.
Among the randomly generated reservoir weights, all the weight below a
specific number can be set to zero. In this way, the sparsity of the reser-
voir connection can be obtained. The sparsity of the reservoir matrix can
speed up the training process. Distribution of the non-zero elements can be
controlled by using different types of distributions when generating random
reservoir weights.

4.3.3 Spectral radius of the reservoir weights

Spectral radius of the reservoir weight is an important parameter considering
the stability of ESN. This parameter has to be carefully chosen to secure that
the echo state property is not violated [25]. Spectral radius of the reservoir
matrix can be computed by finding the maximal absolute eigenvalue of the
matrix. This eigenvalue describes the width of the distribution of the non-
zero elements, which is governed by the connectivity parameter and the
distribution method. In another word, the spectral radius can be easily
controlled by using a scale factor. Firstly, the matrix can be divided by
its spectral radius to obtain a matrix with a unit spectral radius. This
matrix is then multiplied by a scale factor, which becomes the new spectral
radius. This scale factor needs to be less than 1 to secure the echo state
property in most of the cases. It is theoretically possible that the echo state
property can be violated even though this scale factor is chosen to be less
than 1. However, this is unlikely to happen in practice. Spectral radius

35



of the reservoir matrix needs to be selected to maximize the performance.
Intuitively, this parameter determines how fast the influence of an input dies
out in a reservoir with time. With small spectral radius, the influence of the
historical inputs will die out faster compared to the reservoir weight matrix
with greater spectral radius. This indicates that the spectral radius should
be chosen greater in tasks requiring longer memory. The spectral radius also
defines how stable the reservoir activations are. ESN becomes more stable
with smaller spectral radius [26].

4.3.4 Noise on the reservoir neurons

Scaled white noise is used to increase stability and reduce the chance for
over-fitting. This scaled white noise is added directly to the reservoir states
from (2.3.1).

x(n) = f [W inu(n) + W reservoirx(n− 1) + b] + wwhite

In [32] it is shown that the standard offline training of ESNs yields output
weights whose absolute size depends on the noise inserted into the network
during training, the larger the noise, the smaller the mean output weights.
Extremely large readout weight values may be an indication of a very sensi-
tive and unstable solution. So by increasing the amplitude of noise, ESN can
become more robust for different types of feature inputs as well as reducing
the chance for over-fitting. A readout training method referred as Tikhonov
regularization [27] can be used to obtain a similar regularization effect.

4.3.5 Leaky parameter

Different kind of activation functions is applicable designing ESN, not only
the standard sigmoid network. The echo state property can be maintained
using any kind of dynamical system. A weakness of sigmoid network is that
it does not have any time constant. In another word, the network using
sigmoid will not be able to catch the dynamic that is very slow. For instance,
it will be very hard for a standard ESN to track a very slow sine-waves
using sigmoid. An alternative method is using a continuous time neuron
model, leaky integrator neurons [30]. Leaky neurons can be described by a
differential equation with a time constant [30].

ẋ =
1

τ
[−Ax + f(W inu + W reservoirx)] . (4.3.1)

The time constant τ can be chosen freely, and a large time constant should
be used for dynamics that are slow and vice versa. A is a decay potential
of the neuron. The larger A, the faster the decay of the previous state.
In another word, the input signals will have more influence on the reservoir
neurons. The update scheme from (4.3.1) can be transformed into a discrete
time domain [28]. The transformed equation is shown in (2.3.2).

36



4.3.6 Input weight scale factor

The input matrix connecting the input signals with reservoir layer can be
scaled and is a global parameter of ESN. Less scaling value indicates that
the input signals have less influence on the reservoir neurons. It is advised
in [28] that this scaling factor should be big for non-linear tasks and for the
linear tasks, this scaling factor should be small.

4.4 Optimizing the global parameters of ESN us-
ing PSO

The forecast performance of ESN depends highly on the global parameters
presented in Section 4.3. Moreover, these global parameters are task-specific,
so they need to be tuned differently depending on the learning task. Tuning
the parameters optimally requires excellent knowledge about the learning
task and experience in using ESN.

An alternative approach instead of tuning the global parameters manually
is using an evolutionary search algorithm that does not require gradient
based calculation. ESN provides a black box method, mapping the inputs
to the outputs using a black box, it is therefore not possible to use gradient
based optimization. This lack of principles of the design can be overcome
by using PSO. PSO does not require the use of the gradient, in another
word, the optimization problem does not need to be differentiable. Con-
ceptually, PSO works in a way that a given number of candidate solutions
are randomly generated. These candidate solutions are also referred to as
particles. Those particles are moving around in the search-space according
to a simple mathematical formula as explained in Section 2.4 either until
the optimal solution is found or a defined number of iteration is reached.
The movement of the particles is influenced by the best-positioned particles.

PSO is used in this work for finding the important parameters designing
ESN. A benefit of using PSO is that the optimal combination of the param-
eters can be found without having deep knowledge about the learning task
and being expert in using ESN. ESN does not require a large amount of
time for the training process, which gives possibility for tuning parameters
using a search algorithm based on the prediction result.

There are six global parameters that will be tuned using PSO. Size of
the reservoir, connectivity of the reservoir, spectral radius of the reservoir
weights, the amplitude of white noise to be added when updating the reser-
voir states, leaky parameter, and the input weight scale factor. For each
particle that contains a candidate combination of these six parameters will
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be used to design ESN and the prediction result (MSE) will be used as the
FV and different combinations will be tested and compared using this FV.
The algorithm will be terminated after a given number of iterations. A
similar procedure using PSO together with ESN is explained in [43]. The
total number of iterations and the number of particles to be used to search
the optimal solution is depending on the number of the parameters to be
optimized. As the number of the parameters to be optimized increases, the
number of the particles to be used for search should also increase.

4.4.1 Optimal parameter tuning process

PSO algorithm is used to optimize the global parameters of ESN. The opti-
mization process will contribute increasing the prediction accuracy as well
as the robustness of the algorithm. The process is as follows:

1. A given number of particles are initialized and randomly distributed
in X ∈ R6. In this case, there are six parameters to be optimized,
therefore the search space will be X ∈ R6. Moreover, each particle’s
velocity is initialized randomly. The velocity of the particles will be
used to find the optimal direction and speed of movement of the par-
ticles. The randomly generated position and velocity are constrained
by upper and lower bounds of the parameters.

2. After the initialization step, each particle is tested using a fitness func-
tion. The FV in this work will be the MSE error of prediction. Each
set of the parameters stored in a particle is used to train an ESN model
and the MSE error of prediction is stored as the FV of the particle.
The FV of the particles is compared with each other and the particle
with the best FV survives and is stored. This particle is referred as
the particle with the best individual FV.

3. This individual best FV is compared with the global best FV and the
maximum/minimum (depending on the criteria) FV is stored as the
new global best FV.

4. According to the formulae (2.4.1), particles’s position and velocity is
updated.

5. This continues for a given number of iterations or until the global best
FV converges.

PSO can be used to optimize the global parameters of ESN since the train-
ing process of an ESN does not require a large amount of time. Given that
training an ESN model requires a given time T (n), the time PSO will spend
optimizing the parameters in the worst case will be subjected to the number
of iterations to perform and the number of particles. In another word, the
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time that will be spent for optimization using PSO can be calculated simply
by: T (n∗ iterations∗number of particles) ∈ O(n). Using PSO would not
be very practical if the training process requires a large amount of time.

Figure 4.4.1: Flow chart of the PSO algorithm

Figure 4.4.1 shows flow chart of the PSO algorithm. After termination of
the algorithm, the optimized parameters are used to make an ESN model.
The ESN model designed using the optimized parameters are used for the
prediction of the power demand time-series data.
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4.5 Readout weight training of ESN

The readout weight can be trained in several different ways. Since the
output signal is computed simply by multiplying the readout weights with
the concentrated matrix X, it is a linear and feed-forward process,

y = W outX.

The concentrated matrix X is presented using input, reservoir state, and
bias column vectors,

X = [1; u; x] (4.5.1)

1 presents the bias term, u presented the input and x presents the reser-
voir states. Therefore, the dimensions of the matrices presented in Section
4.5 becomes y ∈ RNy×T , W out ∈ RNy×(1+Nu+Nx) and X ∈ R(1+Nu+Nx)×T ,
where T is the number of the training samples.

In this work, (2.3.5) is used with a very small regularization factor β. The
training process requires using a large data-set. However, as it can be ob-
served from (2.3.5),

ytargetX
> ∈ RNy×(1+Nu+Nx)

and
XX> ∈ R(1+Nu+Nx)×(1+Nu+Nx),

these terms do not depend on the size of the training data-set. Neither mem-
ory usage, nor the time of the training procedure depends on the length of
data-set. Moreover, pseudo-inverse requires high memory usage and cal-
culation is memory-wise expensive. Thereby limiting the size of training
samples. Therefore, the method presented in (2.3.5) is of the first choice.

4.6 Forecast strategies

RNN can use different types of features as the input, which in this case will
be the time series historical data. The RNN model can take D number of
the historical power demand and forecast power demand at the sequence
number D + 1. The time interval to be predicted can be defined as a win-
dow W. Let’s say W is defined to be 10. The algorithm will be shifted 10
times starting from predicting the data at D + 1. The algorithm will con-
tinue by using the predicted data as one of the inputs for the next prediction
sequence. Another method will be forecasting the power demand at D + t
(t ∈ [1,W ]) directly by using W number of outputs. Multiple RNN models
can be trained to make it less complex to catch the temporal dynamic of
the time sequential data. Let’s say N number of models will be used to fore-
cast W number of future values, the forecasting domain W can be divided
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into N number of sub-domains and each model will then be mapped to each
time sequential domain having W

N outputs. The accuracy of prediction will
depend on W. The accuracy is expected to be reduced as W increases.

The direct approach using multiple dimensional outputs is chosen in this
work since the recurrent method with shifting window iteratively will be
affected by the prediction error that is being accumulated. This accumu-
lated error will be propagated and the prediction performance can quickly
degrade as the prediction horizon increases. As the long-term optimization
requires the prediction horizon to be reasonably long, the most adequate
method for the problem at hand will be using the direct approach including
a model with multiple dimensional outputs.

Improvement of the prediction result is expected to be achieved if multiple
features are used as the input to the algorithm, not only the historical data.
However, considering generality and simplicity of the algorithm as well as
minimizing the data size and feature dimension, the only feature that will
be used for the prediction is the historical data. It is desired to minimize the
feature dimension in order to reduce the dependency of the algorithm from
the different types of features. The symbol denoted as u(t) will represent
the historical power demand in this Chapter.

4.7 Data pre-processing

Increased performance of prediction can be achieved by applying common
data pre-processing methods. For the raw time-series data, using a low-pass
filter can be considered in order to remove the high-frequency measurement
noise as well as the other type of noise such as sensor readout noise, quan-
tization noise, and photon noise.

41



(a) Power demand for the entire interval

(b) Power demand for part of the interval

Figure 4.7.1: Raw power demand vs. filtered power demand

4.7.1 Low-pass filtering

The raw power demand data is filtered using a low-pass Butterworth filter.
The basic idea of Butterworth filter is briefly explained in Section 2.1. As
it can be observed from Figure 4.7.1, high peaks of the measurements are
removed, this is achieved without polluting the original data too much.
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Figure 4.7.2: Frequency response of 4th order low-pass Butterworth digital
filter

The signals after the cut-off frequency can be filtered more smoothly by
increasing the order of the filter. However, as the order increases so does
its size and complexity, also its accuracy declines, therefore, depending on
the application of the filter, the number of the order needs to be chosen
carefully. In this work, 4th order Butterworth filter has been used, which
gives 160 dB per decade. The response of the filter is shown in Figure 4.7.2.

4.7.2 Feature standardization

To improve the quality of the forecasting result, feature standardization can
be considered. The procedure makes the values of each feature in the data
have zero-mean and unit-variance. In another word, all the features will be
within the range [−1 1]. The simplest way to achieve this is using mean
value and standard deviation of the feature vector. The formula yields,

d́ =
d− d̄ ·1

σ
. (4.7.1)

d́ is the normalized feature vector, d is the original feature vector, d̄ is the
mean of the feature vector and σ is used to denote the standard deviation
of the feature vector.
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In general, feature standardization helps the machine learning algorithm
to improve the result. This is due to the fact that the range of raw feature
values vary widely. Given that a time-series data has a broad range of values
for a specific period of time, the training will be affected by this interval
and generality of the algorithm might be downgraded. Moreover, the most
commonly used activation functions such as sigmoid has a range between
[−1 1], which means that the output using non-normalized data will most
likely be very close to the boundary of the activation functions. To avoid
this phenomenon, feature standardization is considered and frequently used.
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CHAPTER 5

OPTIMIZATION PROBLEM MODEL

5.1 Introduction

The UC problem is an optimization problem to schedule the number of
commitment of power generating units at the least possible cost. The ED
problem is another type of optimization problem to find the power level of
the committed units to meet power demand at the least possible cost. The
cost term is task dependent and can include different terms such as emission,
price, fuel usage etc.

The ED and UC problems including different types of power generating
units such as gas turbines, electrical grid, and intermittent resources can be
solved using an optimization problem model by means of state equations.
The state variables will represent the power output of each power generating
unit and the input variables will be denoted as the unit commitment.

A recent study covering the UC and ED problems for optimizing fuel con-
sumption of vessels [13] has shown the fuel saving of 4-6 %. In [13], SFOC is
estimated using an online estimation method and the optimal power distri-
bution is proposed using integer programming considering on/off decisions of
diesel generators with different power outputs. In [15], operational data from
the ferry, platform supply vessel and seismic survey vessel is used to observe
fuel savings using MILP algorithm and logic-based algorithm. Furthermore,
usage of ESS is experimented. In [16], MILP is combined with prediction
methods and the MILP model includes scheduling the future power produc-
tion and the future UC of the generators. In [17], different types of renewable
energy sources are included in a MILP model as well as gas turbines. The
algorithm is used for energy distribution scheduling in terms of cost-efficient
operation. In [18], a MILP model is designed using dynamics of hydro and
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thermal units. The non-linear behaviors are transformed using piece-wise
linear approximation and included as a part of the constraints. The future
condition of hydro units is estimated using stochastic dynamic programming.

The ED and UC problems were solved in [19] as a one combined problem.
The dynamics of power generating units are considered for designing con-
straints. A piece-wise linear approximation is applied to transform MINLP
to MILP and the results obtained solving MINLP and MILP are compared.
The MINLP problem includes a quadratic objective function and the com-
putational time increases exponentially with the size of the problem. With
the proposed linearization method, the complexity of the problem was re-
duced and prevented the computational time from increasing drastically.
MPC model is presented in [20] using dynamic model for the UC problem
for wind farms. The UC problem is solved by combining MPC method with
short-term wind power forecasting. An MPC approach is presented in [22]
for solving ED of an electrical power system. Prediction of load demand
and available power of intermittent resources is used together with MPC for
solving ED. Robustness and feasibility of the MPC solutions for solving ED
of an electrical power system are proven in [21]. Moreover, [21] recommends
using MPC by demonstrating drawbacks of solving the OCDD and DED of-
fline including the UC and ED problems and showing how the violation on
the constraint regarding ramp rate can be prevented using the MPC method.

ILP has been applied in [13] to successfully solve the ED and UC combined
problem. However, this approach is quite limited since the problem size
shows quadratic grows as the number of generating unit increases. Since
ILP approach requires the power interval to be divided into a finite number
of power domains. To overcome this problem, using MILP can be consid-
ered. The model presented in [15] requires many conditional constraints,
which increases the complexity of the implementation. The conditional con-
straints can be avoided by representing the constraints in a more compact
way. The work presented in [16] shows the possibility of combining a predic-
tive method with an optimization algorithm. [18] has proved that renewable
energy sources can be modeled using MILP. [18] and [19] shows how a piece-
wise linear approximation can be applied to simplify the MINLP model to
MILP. In general, MILP can be solved much faster compared to the MINLP
models. The work in [20], [21] and [22] shows how the robustness can be
increased using an MPC approach based on a MILP/MINLP model for solv-
ing the ED and UC problems. MPC can also be considered in this work to
increase the robustness of the algorithm since an open-loop approach can
easily violate the model constraints.

The static optimization method presented in [1] will not consider dynamic
of the power system. Hence, the static optimization solution from [1] lack
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robustness of adapting the fast changes in the power system. Moreover, it
is not able to fully capture the saving potential due to the lack of the infor-
mation about the forthcoming events. In addition, the static optimization
method is very sensitive to ramp rate violation and is hard to prevent this
violation. By introducing a dynamic approach by integrating a predictive
method for implementing EMS, such drawbacks can be overcome.

In this work, an MINLP model is proposed and will be used for solving the
UC and ED combined problem. The predictive method presented in Chap-
ter 4 will provide the future power demand and an EMS will be designed
using a MINLP model. The MINLP model will not consider the dynamics
of the gas turbines since the algorithm will only be used to find the opti-
mal power set-points of the gas turbines. Meaning that the algorithm will
only run with a low frequency (0.01 Hz) to find the set-points to be reached
by low-level controllers. Furthermore, the appropriate constraints will be
added to the model considering soundness and feasibility of the algorithm
when run in realistic industrial environments.

The model will include both binary and continuous decision variables, in-
troducing a MINLP model. The MINLP model will be non-convex and NP-
hard. However, the adequate solvers presented in Chapter 6.1 will manage
to solve the problem effectively.

5.2 BSFC estimation

The BSFC curve for each gas turbine is found using an offline curve-fitting
method provided by MATLAB, the further improvement of the offline BSFC
estimation approach is presented in [2]. As the BSFC will vary depending
on the load [13], BSFC curve will be a function of the load

BSFC(load),

which has unit
[

Kg
MWh

]
. The BSFC parameters are the key parameters of

the optimization algorithm.

5.3 Fuel optimization

5.3.1 Objective function

There exists N-number of gas turbines that needs to be controlled. Given
that the fuel consumption per sampling time for the ith machine fi can be
found by the product between BSFC for a given load bi(loadi(pi)) and power
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pi, the objective function can be formulated as follows

f(p) =
I∑
i=1

bi(loadi(pi)) · pi =
I∑
i=1

fi(loadi(pi), pi),

where BSFC with the unit
[

Kg
MWh

]
, has been scaled by a constant factor

such that the unit becomes
[

Kg
MW∆t

]
, where ∆t denotes the sampling inter-

val. The total fuel consumption for a given time horizon T (the prediction
horizon), can be found by a summation as follows, where each t denotes a
sample time

T∑
t=1

f(p(t)) =
T∑
t=1

I∑
i=1

bi(loadi(pi(t), t)) · pi(t) =
T∑
t=1

I∑
i=1

fi(loadi(pi(t), t), pi(t)).

Since the maximum power output of the gas turbines varies with time, the
variable load will vary with time. However, in this work, for the simplicity
of designing the cost function of the optimization model, the maximum
power of the gas turbines will be assumed to be fixed for the given time
horizon T. This assumption is valid as long as T is chosen reasonably short.
The maximum power is calculated in a special way using different types of
parameters such as temperature, hours of operation etc. that does not vary
drastically on a short period of time. Therefore the total fuel consumption
can be calculated as follows

T∑
t=1

f(p(t)) =
T∑
t=1

I∑
i=1

bi(loadi(pi(t))) · pi(t) =
T∑
t=1

I∑
i=1

fi(loadi(pi(t)), pi(t)).

(5.3.1)
The BSFC curves are non-linear, therefore, the objective function that in-
clude BSFC curves becomes non-linear. The optimal p can be found by
minimizing the objective function presented in (5.3.1).

minimize
p

T∑
t=1

f(p(t))

5.3.2 Start-up cost

An additional aspect, which can be taken into account is the cost of turning
on the gas turbines. The cost can be calculated using the fuel consump-
tion on different power levels. It should be cheaper to increase power from
an already operating gas turbine instead of turning on a new gas turbine.
However, adding an additional term to the cost function is considered un-
necessary since the algorithm will always find it more energy efficient to
increase the power level of the already operating gas turbines, considering
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BSFC. The turned off gas turbines will, therefore, stay turned off until it is
absolutely necessary to turn them on to meet the power demand constraint
(5.3.2).

5.3.3 Power demand balance

The amount of power produced has to match power demand,

I∑
i=1

pi(t) = pd(t), ∀t ∈ [1, ..., T ]. (5.3.2)

power demand changes over time and is dependent on the multiple factors
such as the grid loading, weather, tide and how much power is required to
operate the site. power demand also includes power change in order to keep
the stability of the grid frequency. The frequency of the grid is the nominal
frequency of the oscillations of AC in an electric power grid transmitted from
a power station to the end-user. Depending on the location, the frequency
of the grid can vary. In Europe, this frequency is 50 Hz. If the consumption
exceeds the generation, the frequency of the AC will fall to a value below
50 Hz. In this case, either more power needs to be produced by the pro-
ducers or load reduction can be requested to the major energy users. If the
generation of power exceeds the consumption, the frequency will rise to a
value above 50 Hz. The grid operator then needs to ensure that the power
producers reduce the generation of power.

Power demand will be predicted using the method presented in Chapter
4, which allows the optimization algorithm to consider the future power
demand. This will help the EMS algorithm to catch the dynamic of the
power system and find a more reliable cost-efficient way to distribute the
load throughout the system.

5.3.4 Ramp rate constraint

The ramp rate limit of the gas turbines needs to taken into account since
the dynamic of the gas turbines only allows to change its power between
each time sample within a defined limit

L∆t ≤ p(t)− p(t− 1) ≤ H∆t, ∀t ∈ [1, ..., T ]. (5.3.3)

where p(0) is the initial power generated from the gas turbines. The ramp
rate limits H∆t and L∆t needs to be chosen considering the operational
condition and the model of the gas turbines. In this work, the ramp rate
limit is chosen to be Hs: 0.35 MW

s and Ls: -0.35 MW
s . The lower limit is

chosen to be ‖0.35‖MW
s considering the advice from the operators at the

site and inspection of the data retrieved from the site. The gas turbines can
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only be turned off when it is operating at the power of 3.5 MW given that
the sampling frequency is 10 seconds, because of the ramp limit constraint.
However, it is often desirable to turn off the gas turbines without decreasing
the power output of the gas turbines all the way to 3.5 MW. This char-
acteristic can be obtained by using Big-M relaxation on (5.3.3). The new
constraint yields

L∆t −Mrp,∆t · (1− u(t)) ≤ p(t)− p(t− 1) ≤ H∆t, ∀t ∈ [1, ..., T ].

The relaxation term Mrp,∆t · (1−u(t)) gives the algorithm freedom to turn
off the gas turbines without decreasing the power output of the gas turbines
to L∆t. Mrp,∆t can be chosen based on the model of the gas turbines. In
this work, Mrp,s is set to be 0.5 MW

s . Mrp,10s becomes 5 MW given that the
sampling frequency is 10 seconds.

5.3.5 Power capacity constraint

The constraint

pmin(t)� u(t) ≤ p(t) ≤ pmax(t)� u(t), ∀t ∈ [1, ..., T ]

is used to make sure that all the gas turbines are operating in the feasible
power region. The symbol � denotes element-wise multiplication.

Hence,

pmin(t) =
[
p1,min(t) , . . . , pN,min(t)

]
,

pmax(t) =
[
p1,max(t) , . . . , pN,max(t)

]
.

pmin(t) is in most of the cases set to 0. Meanwhile, pmax(t) is found by the
site operators and is provided to the algorithm. In this work, pmax(t) will
be assumed to be known with complete certainty for ∀t ∈ [1, ..., T ].

5.3.6 Process required constraint

The maximum power that can be generated by each gas turbine is dependent
on the weather, temperature, humidity, etc. This must be taken into account
and be used as a constraint. One additional constraint that needs to be
added is that at least nmin number of turbines needs to be active at a time
and lmin number of turbines needs to produce power at the minimum of
preq. nmin and lmin must be chosen such that nmin ≥ lmin. The minimum
power constraint is not required for the rest of the turbines. This comes from
a process requirement from the site. This type of constraint is in general
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defined by the users. This can be modelled as follows

I∑
i=1

ui(t) ≥ nmin,

I∑
i=1

pi,min(t) = preq ·

[
I∑
i=1

ui(t)− lmin

]
,

0 ≤ preq ·u(t)− pmin(t),

p ≥ preq ·u(t)− pmin(t),

pi,min(t) ∈ {0, preq},
∀t ∈ [1, ..., T ].

(5.3.4)

Equation (5.3.4) ensures that only n given number of the turbines will be
restricted to generate the minimum power required. The other turbines are
free to operate at any power above 0 MW.

5.3.7 Start-up time constraint

A gas turbine spends about 2 hours to get ready to be operated [50]. This
constraint needs to be included in the optimization problem. This can be
obtained by adding a summation term on the unit commitment u of the
power generating units combining with Big-M relaxations as follows,

t−1∑
τ=t−2h

ui(τ) ≤ 2h · (1− ui(t)) +Mst ·ui(t− 1), ∀t ∈ [1, ..., T ]. (5.3.5)

The size of Mst can be chosen based on the time it takes to turn on a gas
turbine, which will be 2 hours in this work. Given that the ith gas turbine
has been operating for last two hours,

∑t−1
τ=t−2h ui(τ) will be 2h and ui(t−1)

will be one, which allows ui(t) to be either zero or one. Let’s say the gas
turbine has been turned off for last two hours, the summation term on the
left hand size will be zero as well as ui(t− 1), hence ui(t) can be set to one
or stay at zero. If the summation term is in between 0 and 2h and ui(t− 1)
is one, which indicates that the ith gas turbine has been turned on recently,
ui(t) can still be freely chosen. However, if ui(t− 1) is zero, which indicates
that the given gas turbine need more time to get ready to be operated, ui(t)
is restricted to be zero. which secures the gas turbines to be turned off for
2 hours before it can start operating.

The constraint presented in (5.3.5) will ensure that only the operation-able
gas turbines are used to produce power. However, this approach with T < 2
hours will be sub-optimal since it only secures the gas turbines to be turned
off for 2 hours and will not provide the optimal point for start preparing the

51



gas turbines. In order to make the optimization algorithm to catch the time
to start preparing a gas turbine to be operated, T needs to be bigger than 2
hours. This requires the prediction method to extend its prediction horizon
considerably, which will introduce a bigger prediction error.

5.3.8 The fuel consumption optimization problem model

The optimization problem can be formulated as follows with p and u as the
decision variables

minimize
p,u

T∑
t=1

f(p(t))

subject to

I∑
i=1

pi(t) = pd(t)

L∆t −Mrp,∆t · (1− u(t)) ≤ p(t)− p(t− 1) ≤ H∆t

p(t) ≤ pmax(t)� u(t)

I∑
i=1

ui(t) ≥ nmin,

I∑
i=1

pi,min(t) = preq ·

[
I∑
i=1

ui(t)− lmin

]
0 ≤ preq ·u(t)− pmin(t)

p ≥ preq ·u(t)− pmin(t)

pi,min(t) ∈ {0, preq}
t−1∑

τ=t−2h

ui(τ) ≤ 2h · (1− ui(t)) +Mst ·ui(t− 1)

ui(t) ∈ {0, 1}
∀i ∈ [1, ..., I], ∀t ∈ [1, ..., T ].

(5.3.6)
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5.4 Cost optimization

5.4.1 Grid power

Import/export of power from an electrical grid can be controlled based on
the price of electricity. In order to add this term to the current model, the
objective function needs to be changed to include the price of producing the
energy required. Fuel consumption itself cannot be used as the cost since the
optimization algorithm will always choose to import, which does not require
consuming fuel. The price can simply be added to the objective function by
using the price of fuel. The gas price is fixed to be 350 NOK

MWh . The unit NOK
MWh

is transformed to NOK
kg and is multiplied by the total fuel consumption. To

find the price of electricity from the grid, Nord pool electricity price is used.
Figure 5.4.1 shows the electricity price [6]. The electricity price varies on
an hourly basis, hence as long as T ≤ 1 hour, the electricity price can be
assumed to be fixed for the optimal power distribution scheduling horizon
T.
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Figure 5.4.1: Grid electricity price vs. gas price

An EMS with different power sources supported by the public grid can be
defined as a Hybrid Power System (HPS) [7]. HPS can be modelled as
MINLP by modifying the model presented in (5.3.6).

The objective to be minimized will be the cost.

C(p, pg) =
T∑
t=1

f(p(t)) ·Cfuel +
T∑
t=1

(pg(t) ·Cel(t)) (5.4.1)

pg denotes power from the grid. The unit of C(p, pg) is NOK and the unit
of Cel is NOK

MW∆t .
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5.4.2 Grid power change penalty

Cost of the power difference between each time step can be introduced. This
power difference term can be used to achieve the smooth set-point transition
of the grid power.

To obtain moderate behavior of power from the grid, a power change penalty
term can be added to the objective function. The weight of this cost term is
chosen by trial and error. Based on the result of the simulation, if the grid
power is changed too excessively, the weight was increased and vice versa.

wΦ ·
T∑
t=1

|pg(t)− pg(t− 1)|,

pg(0) is the initial power from the grid. The absolute value term introduces
non-linearity to the model. However, this term can be removed by intro-
ducing a new variable that will be used as the minimum and the maximum
boundary of the difference.

−Φ(t) ≤ (pg(t)− pg(t− 1)) ≤ Φ(t)

Φ(t) ≥ 0, ∀t ∈ [1, ..., T ].

The grid power change penalty that will be added to the objective function
becomes

wΦ ·
T∑
t=1

Φ(t).

5.4.3 Grid power set-point penalty

Transmission of power from the power generating stations require high volt-
age transmission line. However, the transmission lines are not perfectly
reliable. Moreover, an entire grid runs at the same frequency and the gen-
erators providing power to the grid needs to run at the same frequency and
stay nearly in phase with each other and the grid. This requires a control
mechanism, such that if the grid is heavily loaded, the frequency slows and
the generators need to produce more power. If the grid is lightly loaded,
the frequency will increase, and the generators will reduce their power out-
put. Sometimes, operators of transmission of the grid request load reduction
from the major energy users such as industrial plants for the grid frequency
regulation. Meaning that the grid should not be loaded too heavily or too
lightly in order to maintain the stability of the grid.

The grid power can be controlled by adding a set-point penalty to the ob-
jective function,

T∑
t=1

(pg(t)− pg,sp)2 .
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To balance the set-point term to the cost objective function, a reasonable
size of weight needs to be chosen. This grid set-point penalty weight can
be chosen using Cel, which is again multiplied with a constant scalar wΦ,g,
such that

wΦ,g ·Cel ·
T∑
t=1

(pg(t)− pg,sp)2 (5.4.2)

is the set-point penalty term to be added to the objective function, where,

wΦ,g = 0.02. (5.4.3)

After some trials and analysis, the penalty factor was chosen to be 0.02.
The bigger penalty with pg,sp set to zero will result in less grid power de-
pendency. Grid dependency is an important aspect that needs to be taken
into consideration when operating power system of a site. Due to the fact
that it can influence the reliability of the system.

There are different ways to include the set-point penalty term in the model.
For instance, a similar approach presented in Section 5.4.2 can be used by
introducing a new variable that finds the difference between the set-point
defined and the grid power, which is used in [1]. This term will penalize
all the range of grid power that deviates from the set-point proportionally.
Meanwhile, the model presented in this section will allow the small deviation
of the grid power from the set-point to be penalized less than the grid power
that deviates much from the set-point defined. The term (5.4.2) will be used
to reduce the overall dependency of the grid power as well as to reduce the
loss when the grid-failure occurs. The loss will be bigger as more power is
imported instantly from the grid, which is prevented to a certain degree using
a second order term. The loss can be minimized if alternative energy sources
can cover the amount of energy, which was planned to be imported from the
grid. Depending on the desired behavior, the model can be modified.

5.4.4 Grid power capacity constraint

The constraint
−pg,lim ≤ pg ≤ pg,lim

secures the algorithm to choose a feasible amount of grid power that is
exported/imported instantly. Based on the information from the site, pg,lim
is set to be 115 MW.

5.4.5 Grid failure

The grid providing power to the site can fail. In another word, a power
blackout that leads to a short-term or a long-term loss of the electric power
to a particular area. There are many causes of power failures in an electrical
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network. In terms of reliability, this is a crucial part that needs further
investigation. The optimization algorithm needs to be designed such that
grid failures can be controlled in order to secure robustness of the algorithm
when applied in realistic industrial environments. However, in order to
include the grid failures to the algorithm, it requires prediction of the grid
failure points. Considering the scope of this study and lack of available data,
handling the grid failure will not be covered in this work.

5.4.6 The cost optimization problem model

The optimization problem can be formulated as follows with p, pg and u as
the decision variables

minimize
p,pg ,u

C(p, pg) + wΦ ·
T∑
t=1

Φ(t) + wΦ,g ·Cel ·
T∑
t=1

(pg(t)− pg,sp)2

subject to
I∑
i=1

pi(t) + pg(t) = pd(t)

L∆t −Mrp,∆t · (1− u(t)) ≤ p(t)− p(t− 1) ≤ H∆t

p(t) ≤ pmax(t)� u(t)

−pg,lim ≤ pg ≤ pg,lim
I∑
i=1

ui(t) ≥ nmin,

I∑
i=1

pi,min(t) = preq ·

[
I∑
i=1

ui(t)− lmin

]
0 ≤ preq ·u(t)− pmin(t)

p ≥ preq ·u(t)− pmin(t)

pi,min(t) ∈ {0, preq}
t−1∑

τ=t−2h

ui(τ) ≤ 2h · (1− ui(t)) +Mst ·ui(t− 1)

−Φ(t) ≤ pg(t)− pg(t− 1) ≤ Φ(t)

Φ(t) ≥ 0

ui(t) ∈ {0, 1}
∀i ∈ [1, ..., I], ∀t ∈ [1, ..., T ].

(5.4.4)
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5.5 Cost optimization integrating ESS

5.5.1 ESS modeling

The already existing HPS from (5.4.4) can be expanded further to include
ESS to analyze how ESS can improve the cost-efficiency. ESS can give
a cost-effective solution in a way that the new hybrid system uses excess
power from the gas turbines to charge the battery while keeping BSFC at
its optimum. Moreover, the battery responds quickly to the high-frequency
changes in power demand and allows the gas turbine to operate without the
need of aggressive power output changes, in another word, ESS can be used
for the grid frequency regulation. ESS can also help the system to exploit
the grid power better in a way that ESS saves power when the grid elec-
tricity is at its low cost. If either the grid or the turbines fail, ESS can kick
in immediately, which will increase the reliability of the system. In [15], a
MILP model including ESS is proposed and the result shows that ESS will
increase the effectiveness of the power distribution significantly.

Batteries assembled from lithium-ion cells will be coupled with the power
system. The ESS is assumed to have a capacity of CC MWh and can
provide power up to ±C MW. The ESS capacities and the battery-type is
chosen based on the Tehachapi Wind Energy Storage Project [51]. Fur-
thermore, the ESS is assumed to have an operating range between 70% and
100% of the capacity. The start capacity of the ESS is set to be 70%. The
ESS is allowed to be discharged to the capacity below 70% if one of the gas
turbines or the grid fails.

The ESS can be in two different states, charging and discharging modes. In
discharging mode, the power output pj,E from jth ESS will be positive and
in charging mode, pj,E will be negative. Moreover, an ESS in charging mode
will have its corresponding u equals zero. In discharging mode, u will be
one. The objective function includes the cost of charging ESS at each time
step t,

r ·Cfuel,MW∆t ·p>E(t)(1− uE(t)), ∀t ∈ [1, ..., T ], (5.5.1)

where uE denotes the unit commitment of an ESS and r is the recovery ratio
and can be found in Table 5.1.

The cost of excess fuel that is used to charge the ESSs will be compensated
by the negative cost of charging the ESSs. The term presented in (5.5.1)
will be negative since pE < 0 in charging mode.

The following term will present the cost of using power from the ESSs at
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each time step t

p>E(t)uE(t) ·Cfuel,MW∆t, ∀t ∈ [1, ..., T ].

The price of fuel

Cfuel,MW∆t

[
NOK

MW∆t

]
,

is used to calculate the price of charging and discharging the ESSs in [NOK].
This will make the ESSs to be charged and discharged depending on the price
of electricity. ESSs are assumed to react to the price of electricity. Moreover,
operational point of the gas turbines in which, the price of power depends
on the BSFC will impact the state of ESSs.

The dimension of uE and pE will be RJ×1, where J is the number of the
operative ESSs.

A new constraint can be introduced that limits charging/discharging rate of
the ESSs,

−pE,min ·1� uE(t) + pE,min ·1 ≤ pE(t) ≤ pE,max ·1� uE(t)

∀t ∈ [1, ..., T ].

pE,min ·1 limits the charging rate of the ESSs, hence pE,min ·1 < 0 and
pE,max ·1 limits the discharging rate of the ESSs, hence pE,max ·1 > 0. In
this work, pE,min and pE,max are set to be -8 MW and 8 MW respectively
[51].

The energy stored in the ESSs can be calculated as follows,

E(t) = E(t− 1)

− [pE(t− 1)� uE(t− 1) + r ·pE(t− 1)� (1− uE(t− 1))] · ∆t

3600
,

∀t ∈ [2, ..., T + 1]

where E(1) denotes the initial energy stored in the ESSs. r ∈ [0, 1] rep-
resents the recovery ratio of the power conversion. Note that E(T + 1) is
included in the model. E(T + 1) will be used as the initial stored energy of
ESSs for the next sequential time horizon: ∀t ∈ [T + 1, ..., 2T + 1].

The states of the ESSs are decided relative to the capacity of the ESSs. If
the total capacity of the ESSs is about to be exceeded, the ESSs is con-
strained to operate in discharging mode and vice versa. This statement can
be transformed into two conditional constraints as follows

Ej(t)− pE,max ·
∆t

3600
≤ Emin =⇒ uj,E(t− 1) = 0 (5.5.2)

∀t ∈ [2, ..., T + 1]
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and

Ej(t)− pE,min ·
∆t

3600
≥ Emax =⇒ uj,E(t− 1) = 1 (5.5.3)

∀t ∈ [2, ..., T + 1]

where j is the ESS index. The ESS conditional constraint (5.5.2) needs
to be considered only when the corresponding ESS with the index j is in
discharging state, uj,E(t) = 1. Moreover, (5.5.3) has to be considered only
when the jth ESS is in charging state, uj,E(t) = 0. Therefore, (5.5.2) and
(5.5.3) can be transformed to

uj,E(t− 1) = 1 =⇒ Emin ≤ Ej(t)− pE,max ·
∆t

3600
(5.5.4)

∀t ∈ [2, ..., T + 1]

and

uj,E(t− 1) = 0 =⇒ Ej(t)− pE,min ·
∆t

3600
≤ Emax (5.5.5)

∀t ∈ [2, ..., T + 1]

The constraints (5.5.4) and (5.5.5) can be again transformed using Big-M
notation such that

Emin ≤ Ej(t)− pE,max ·
∆t

3600
+ME · (1− uj,E(t− 1))

Ej(t)− pE,min ·
∆t

3600
≤ Emax +ME ·uj,E(t− 1)

∀t ∈ [2, ..., T + 1].

The Big-M constant ME also prevents the ESS capacity constraints from
being violated in a failure state of the power system. If one of the gas
turbines or the grid trips, the failure state is entered and the ESSs are
allowed to be discharged further to the capacity below 70 % by reducing the
minimum capacity Emin. If the tripped gas turbine/grid has been recovered
(Emin is changed back to 22.4 MWh) and meanwhile the energy of the
ESSs are being charged back to the normal state, the minimum ESS energy
constraint is violated, however, this violation can be relaxed by having the
Big-M constant ME .

Table 5.1: ESS parameters

Parameter Value

Recovery ratio, r 80 - 90 %
ESS max. capacity, Emax 32 MWh (100 %)
ESS min. capacity, Emin 22.4 MWh (70 %)
ESS discharging rate, pE,max 8 MW
ESS charging rate, pE,min -8 MW
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Table 5.1 shows all the necessary parameters needed for lithium-ion ESS.
The numbers are from the Southern California Edison / Tehachapi Wind
Energy Storage Project presented in [51].

The approximated recovery ratio r is used to define how much power will
be lost when charging the ESSs. Power loss can occur due to the power
conversion, heating energy, during the electricity transfer to the Li-Ion cells,
cooling, etc.

5.5.2 GT power change penalty

One additional cost term that can be added is the cost of changing set-points
of the operating gas turbines. Similar to the cost term presented in Section
5.4.2,

wΦ ·
I∑
i=1

T∑
t=1

Φi,gt(t),

with the constraint

−Φgt(t) ≤ (p(t)− p(t− 1)) ≤ Φgt(t)

Φgt(t) ≥ 0, ∀t ∈ [1, ..., T ].

By adding this term, power from the gas turbines can be stabilized [1]. The
ESSs are used to shift the total load and used for frequency regulation. The
varying power demand can also cause wear and tear of the gas turbines
since it requires the gas turbines to change its power output aggressively,
however, this can be controlled by using the ESSs and the maintenance cost
can be reduced. It might also be hard for the low-level power controller
to control the power of the gas turbines for the grid stabilization. In some
cases, the dynamic of the gas turbines would not let power demand to be
met, however, with the ESSs adjusting the total load, this problem can be
overcome.
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5.5.3 The cost optimization problem model integrating ESS

The optimization problem can be formulated as follows with p, pg, pE , u
and uE as the decision variables

minimize
p,pg ,pE ,u,uE

C(p, pg) + wΦ ·
T∑
t=1

Φ(t) + wΦ,g ·Cel ·
T∑
t=1

(pg(t)− pg,sp)2

+r ·Cfuel,MW∆t ·
T∑
t=1

p>E(t)(1− uE(t))

+Cfuel,MW∆t ·
T∑
t=1

p>E(t)uE(t)

+wΦ ·
I∑
i=1

T∑
t=1

Φi,gt(t)
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subject to
I∑
i=1

pi(t) + pg(t) +
J∑
j=1

pj,E(t) = pd(t)

L∆t −Mrp,∆t · (1− u(t)) ≤ p(t)− p(t− 1) ≤ H∆t

pmin(t)� u(t) ≤ p(t) ≤ pmax(t)� u(t)

−pg,lim ≤ pg ≤ pg,lim
I∑
i=1

ui(t) ≥ nmin,

I∑
i=1

pi,min(t) = preq ·

[
I∑
i=1

ui(t)− lmin

]
0 ≤ preq ·u(t)− pmin(t)

p ≥ preq ·u(t)− pmin(t)

pi,min(t) ∈ {0, preq}
t−1∑

τ=t−2h

ui(τ) ≤ 2h · (1− ui(t)) +Mst ·ui(t− 1)

−pE,min ·1� uE(t) + pE,min ·1 ≤ pE(t)

pE(t) ≤ pE,max ·1� uE(t)

−Φ(t) ≤ pg(t)− pg(t− 1) ≤ Φ(t)

Φ(t) ≥ 0

−Φgt(t) ≤ p(t)− p(t− 1) ≤ Φgt(t)

Φgt(t) ≥ 0

u(t) ∈ {0, 1}
∀i ∈ [1, ..., I], ∀j ∈ [1, ..., J ], ∀t ∈ [1, ..., T ]

Emin ≤ Ej(t)− pE,max ·
∆t

3600
+ME · (1− uj,E(t− 1))

Ej(t)− pE,min ·
∆t

3600
≤ Emax +ME ·uj,E(t− 1)

E(t) = E(t− 1)...

−[pE(t− 1)� uE(t− 1)...

+r ·pE(t− 1)� (1− uE(t− 1))] · ∆t

3600
∀j ∈ [1, ..., J ], ∀t ∈ [2, ..., T + 1].

(5.5.6)
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5.6 Initial states

All the model formulations (5.3.6), (5.4.4) and (5.5.6) presented in this
Chapter schedules an optimal output of the generating units given the ini-
tial power outputs. The ramp limit constraints and the start-up constraints
makes sure that the result is always feasible given the initial states of the
generating units.

5.7 Static modeling vs. dynamic modeling

The static model presented in [1] does not take the dynamic of the power
system into the consideration and finding the optimal power set-points of
the gas turbines at the present time without considering the feasibility of
the power that needs to be generated in the future. In another word, the
static model does not have the possibility to control the ramp rate of the
gas turbines in a way that a feasible optimal solution is always secured. The
ramp rate can easily be violated when using the static model since the gas
turbines does not allow to be turned on immediately from the off state. It
needs 2 hours to get ready to be functional again. The optimal algorithm
can suggest to turn off one of the gas turbines only considering the current
operational condition, however, after a while, the turned off gas turbine can
have to generate power in order to match the power demand constraint.
The dynamic model presented in this work will be able to control the gas
turbines in an optimal way and secure feasibility of the optimal solutions
without violating the ramp rate and power demand constraints if T is chosen
reasonably big.

5.8 Time varying parameters

The parameters pmax(t), Cel(t) and pd(t) are time varying. They are con-
stant for 10 seconds, which is the sampling rate. The parameter pd(t) is
predicted using the method presented in Chapter 4 for a given time hori-
zon T. Cel(t) is assumed to be constant for the time horizon T. pmax(t) is
assumed to be known with complete certainty for the time horizon T.

5.9 The actual cost vs. the objective cost

The actual total cost of operating the site is calculated using (5.4.1). Mean-
ing that the objective costs from the MINLP models presented in this Chap-
ter are not used to calculate the actual total cost. The objective cost is only
an artificial cost used to balance the objective function to the model. The
cost of operating the ESSs is neglected since the ESS is operating at the
expense of the energy from the gas turbines and the grid.
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5.10 The overall system architecture

The overall system consists of gas turbines, electrical grid, and ESS. They
are connected together to always provide the power required for the site.
The cost-efficient distribution of the load is controlled by the EMS based on
the models presented in this Chapter.
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CHAPTER 6

TOOLS AND ALGORITHM

6.1 Tools

Choosing the suitable programming tools is a critical issue to accomplish
tasks and obtaining valuable results. Finding the adequate tools will make
it easier to complete some particular tasks. There are many different tools
adequate for solving the tasks that are of the same type. Therefore, it can
be hard to find a specific one that will perform the best. It requires many
trials and time. Due to the limitation of time, the best approach will be
trying to find the adequate tools based on the experience and feedback from
communities.

6.1.1 TensorFlow

TensorFlow is an open-source software library for data flow programming
across a range of tasks. It is a symbolic math library and can be used for
machine learning applications. TensorFlow was developed by the Google
Brain team primarily for internal Google use. However, it was released as
an open-source on November 9, 2015. TensorFlow can run on multiple CPUs
and GPUs using Nvidia CUDA and SYCL as the backend.

TensorFlow is an adequate tool for machine learning implementation since it
is capable to perform operations on multidimensional data arrays efficiently.
The multidimensional arrays are referred as tensors.

TensorFlow framework

TensorFlow library provides Python API, which simplifies the use of Ten-
sorFlow. Any TensorFlow program is executable in the same way as Python
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programs.

A simple layer neural network can be designed as follows:

X = tf.placeholder(tf.float32, [None, inputLen])
W = tf.Variable(tf.zeros([inputLen, outputLen]))
b = tf.Variable(tf.zeros([outputLen]))
Y = tf.nn.sigmoid(tf.matmul(X, W) + b)
optimizer = tf.train.GradientDescentOptimizer(step)
Y_gt = tf.placeholder(tf.float32, [None, outputLen])
crossEntropy = -tf.reduce_sum(Y_gt * tf.log(Y))
trainStep = optimizer.minimize(crossEntropy)

The example script presented above makes a single layer neural network
graph, which can be executed with the appropriate inputs. Placeholders are
the access point of the inputs to the graph. The prepared data for training
will be the input of the placeholder called X in this case. The size of the
input data can be chosen freely using parameter inputLen. W and b are
the trainable variables: weight and bias. Y is the output of the single layer
neural network. The dimension of the output is controlled by the param-
eter outputLen. The sigmoid function is chosen as the output activation
function for this particular case. Gradient decent optimization algorithm is
chosen as the training method. The input step represents the learning rate.
The output of the graph is then compared with the ground truth values
using cross-entropy cost function. This cost function is used to determine
the accuracy of the trained graph.

As a single layer neural network is designed, the only thing that needs to be
done is to feed the input data to the graph and start training.

sess = tf.Session()
sess.run(tf.global_variables_initializer())
train_data = {X: bacth_X, Y_gt: batch_Y}
sess.run(train_step, feed_dict=train_data)

The first step is to make a session object. A Session object encapsulates the
environment in which operation objects are executed, and Tensor objects
are evaluated. The session object acts as the main function. Next step is to
initialize all the parameters needed for the neural network. This can be done
using tf.global variables initializer() function provided by the TensorFlow
library. The final step is to prepare the training data and feed into the graph
together with the designed graph.
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6.1.2 MILP/MINLP solvers and framework

Selection of the suitable solvers will be a crucial point considering the prac-
tical computational time and securing soundness and completeness of the
results. Fortunately, there exists a large number of free and commercial
solvers adequate for solving MILP and MINLP. The solvers support differ-
ent frameworks such as MATLAB, C/C++, FORTRAN, JAVA, PYTHON,
GAMS, AMPL etc.

MILP

Most of the MILP solvers implement a combination of the cutting-plane
and the branch-and-bound algorithm in conjunction with many adjustable
heuristics, allowing quite large problems to be solved in a practical compu-
tational time.

MILP solvers free for academia:

• CPLEX

• XPRESS

• GUROBI

• MOSEK

• INTLINPROG

Free MILP solvers:

• CBC

• GLPK

• LPSOLVE

• SCIP

All of the solvers listed above can be used with YALMIP and MATLAB.
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MINLP

MINLP solvers implement linearization method and provide practical com-
putational time to solve a large range of complex non-linear problems.

MINLP solvers:

• IPOPT

• SCIP

• SNOPT

• KNITRO

Framework

YALMIP is a toolbox used for optimization modeling in MATLAB. Mathe-
matical optimization models can be converted to a high-level algebraic rep-
resentation using YALMIP in MATLAB. However, YALMIP relies on exter-
nal solvers for the low-level numerical solution of the optimization problems.

The MILP model from (2.5.1) can be presented in MATLAB using YALMIP
as follows:

x_c = sdpvar(2,1);
x_I = intvar(2,1);
x = [x_c; x_I];
F = [A*x<=b, x_c >= 0];
h = c’*x;
optimize(F,-h);

F presents all the constraints and h is the objective to be maximized. intvar
restricts the variables to be an integer. By default, optimize function will
try to minimize the objective, which is the second argument of the function
so the negative sign is used to convert the problem to maximization.
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6.2 Algorithm structure

Figure 6.2.1: Structure diagram of algorithm

As shown in Figure 6.2.1, the complete algorithm is divided into three dif-
ferent sub-modules. BSFC modeling, PSO-ESN, and Optimization. The
measurements obtained from the site is sent to all of the sub-modules. For
the further work, the system modeling module, which is the work conducted
in parallel with this work can provide BSFC modeling algorithm and will
use the measurements to perform the online update of the BSFC parameters
of the gas turbines [3]. However, in this work, only the offline curve-fitting
method is used, which means that BSFC modeling will only provide the
parameters of the BSFC curves found using the available data-set for the
simulation period once and is not updated further. The PSO-ESN module
will use the raw data from the measurements to forecast the future power
demand. The power demand forecast is then forwarded to the optimization
module. In this work, the forecast horizon is chosen to be 30 minutes and
as soon as the new power demand measurements corresponding to 30 min-
utes is ready, PSO-ESN will provide new power demand forecast. In this
way, the optimization module will always have the power demand forecast
corresponding 30 minutes available. The optimization module will use the
measurements, BSFC parameters and the power demand forecast to sched-
ule the optimal load distribution of the generating units. The optimization
result is forwarded to the site and is further used as the initial states for
optimal scheduling of load distribution for the further computation. This
procedure is repeated every 30 minutes (forecast horizon).
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CHAPTER 7

RESULTS

7.1 Power demand forecast

The time-series data power demand collected from 7 month of operation
from January of 2017 to August of 2017 is partitioned such that 90 % of
the data is used to train ESN and 5 % of the data that is used to train
is again used as validation data for PSO optimization to find the FV. The
rest 10 % of the data is used as test data. The trained ESN models will
be used for power demand forecast using the sub-sequential data collected
from 3 month of operation starting from August of 2017. The forecast data
will be used for the optimization, and the result will be presented in Section
7.2. As explained in Section 4.6, the direct approach has been applied for
forecast. The input dimension and the output dimension is chosen after
some trials and errors. The recent studies show that long-term forecasts
can be quite inaccurate, which was also for this case. If the forecast hori-
zon was increased further to cover a longer period time, the result degraded
significantly. Ideally, T should be chosen as big as possible, however, due to
the degraded accuracy of the forecast, which will impact soundness of the
algorithm when run in realistic industrial environments, the size of T had
to be limited. Therefore, 30 minutes is chosen considering the accuracy of
forecast and choosing T reasonably big.

Three ESN models are trained to use the same set of 180 sequential his-
torical data as its input to forecast the subsequent 180 data points, which
corresponds to the forecast horizon of 30 minutes. Each model is used to
forecast a sub-domain corresponding to 10 minutes of data. The first model
is used to forecast the first 60 points, which corresponds to first 10 minutes
of the forecast horizon of 30 minutes. The second model is used to forecast
the subsequent 60 data points and the last model is used to forecast the last
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60 data points.

The initial transient response of the ESNs is filtered out by discarding the
first 30 % of reservoir states when calculating the readout weights.

For each ESN model, PSO is used for optimizing the global ESN parame-
ters. The PSO particle positions and velocities are updated according to the
formula (2.4.1) and (2.4.2). The PSO optimization algorithm is terminated
neither after 50 iterations or if the convergence of FV is observed. In total,
70 PSO particles are used. The number of the iterations to be executed and
the number of the PSO particles are chosen considering the required time
to perform the optimization. However, in order to secure the optimality of
the ESN global parameters, further investigation of choosing the number of
PSO particles and the number of iterations is required, which is not covered
in this work.

Table 7.1: PSO parameters

Inertial coefficient : w 0.8

Cognitive component : c1 1.8

Social component : c2 1.8

Table 7.1 shows the key PSO parameters, which is presented in (2.4.1). Ac-
cording to [9], the PSO parameters should be chosen such that 0 ≤ w ≤ 1.2,
0 ≤ c1 ≤ 2 and 0 ≤ c2 ≤ 2. w affects convergence of the swarm to optimal
and is typically between 0.8 and 1.2 and in general, lower values speed up
the convergence. Therefore, 0.8 is chosen as the inertial coefficient. The
cognitive component, c1 decides how big step it takes toward its individual
best candidate solution. c1 is usually close to 2. In this work, 1.8 is chosen
as its value. The social component, c2 is used to define how fast the particles
move toward the global best solution and is in general close to 2. For this
work, 1.8 is chosen as its value.

The upper and the lower bounds of the parameters to be optimized are as
follows:

Connectivity ∈ [0.01, 0.5]

Spectral Radius ∈ [0.01, 0.95]

Input Weight Scale ∈ [0.01, 3]

Noise Amplitude ∈ [0, 0.5]

Leaky ∈ [0, 1]

Reservoir Size ∈ [180, 2500].

The bounds are chosen in order to give the PSO algorithm sufficient room
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to search for the optimal solution. Moreover, they are chosen based on the
previous case studies presented in many ESN related papers. E.g., the spec-
tral radius needs to be less than 1 in order to secure the echo state property
of ESN. Considering the upper and lower limit of the sigmoid functions,
which is 1 and -1 respectively, the maximum noise amplitude is chosen to
be 0.5. The leaky parameter value of 1 transforms the activation function
to a classic sigmoid function, hence, the bound is chosen to be between 0
and 1. The upper bound of the connectivity that refers to the sparsity of
the reservoir weight matrix is chosen to be 0.5. The minimum reservoir size
is chosen based on the input dimension and the maximum is chosen after
some trials and errors. The reservoir size bigger than 2500 slowed down the
computational performance significantly since it required large memory to
be processed.

In addition to defining lower and upper bounds of the global ESN parame-
ters, a constraint is used when searching for the optimal combination using
PSO, which yields restricting the leaky parameter from becoming bigger
than the spectral radius parameter. This needs to be fulfilled in order to
ensure the stability of ESN [30].

The readout weight is trained using (2.3.5) with a very small regularization
parameter β : 1e− 3. This will prevent the readout weights from becoming
unstable when XX> is close to zero. The boundaries of the regularization
factor for PSO optimization could not be chosen intuitively, hence, instead
of tuning β directly to find the best suitable regularization factor, in this
work, a white noise term when updating the reservoir states is added and
tuned by the PSO algorithm. The amplitude of this white noise is optimized
using PSO. According to [32], the noise size affects the size of the readout
weights, hence a similar effect using a regularization term when training the
readout weight can be obtained.

The PSO optimization is performed using a computer with the hardware
specification:

OS Ubuntu 16.04 64 bit
CPU Intel(R) Core(TM) i7-5820K CPU 3.30 GHz
GPU NVIDIA GeForce GTS 980 Ti, 6144 MB
RAM 16 GB

Table 7.2: Hardware specification

The key performance measurements of the prediction will be Mean Squared
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Error (MSE) and Maximum Forecast Error (MFE).

MSE =
1

T

T∑
t=1

(yt − ŷt)2

MFE = max(|yt − ŷt|), ∀t ∈ [1, ..., T ].

where T is the prediction horizon. MSE is one of the most used quality
measurement parameters of a time-series estimator. The quality measure-
ment size is intuitively interpreted and gives a direct insight into the overall
precision of the prediction. MFE will be a crucial measurement for this
work, since if the prediction deviates too much from the real value, it will be
hard to fill the gap of power demand. It requires ramping the power from
the gas turbines instantly, which might be infeasible considering ramp rate
of the gas turbines. To fill the power demand gap, the power from the grid
can also be used and it has more flexibility considering the ramp rate. MFE
is sensitive to the outliers hence it does not provide information about the
overall performance of the prediction. MSE will, therefore, be used together
with MFE to find the model with the best performance.

7.1.1 Power demand forecast using normalized data

The normalized power demand is used to train ESN. The test data is used
to evaluate the performance of the trained models and compute the forecast
accuracy. The normalization of power demand is performed according to
the method presented in Section 4.7.2.
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Figure 7.1.1: Power demand forecast using normalized test data

Figure 7.1.1 shows 180-step ahead forecast result using the optimized ESN
global parameters presented in Table 7.3. The forecast using normalized
power demand gave values between -1 and 1. They are converted back to
the original range using the mean value and the standard deviation from
the original data. As explained earlier, each set containing 180 data points
is used to predict the subsequent 180 data points using three different ESN
models. After forecasting a set, the ground truth values of this set and
the current reservoir states are used to adjust the next time-step reservoir
states as well as forecasting the next set according to (2.3.2) and (2.3.3). This
continues until the last test data is predicted. This moving window approach
will always make the sub-sequential future power demand corresponding to
30 minutes available. This forecasting strategy will be crucial obtaining the
optimization result that will be presented in Section 7.2.
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Figure 7.1.2: Power demand forecast covering sample sequence from 21000
to 27000 using the normalized test data

Observing the Figure 7.1.2, it can be seen that the ground truth data is
very noisy and the amplitude of this noise is roughly 1 MW. The trained
ESN model did not completely follow this noise signal while catching the
slow varying trend of the original power demand. There are some jumps
observed from the predicted power demand, which is illustrated using red
line on Figure 7.1.2, it occurs after each prediction. As the time index of the
predicted data-point reaches the end of the prediction horizon of 30 minutes,
the accuracy degrades significantly. The jumps are due to the correction of
the deviation every-time a new set of power demand is provided to the ESNs
and connection between the forecast sets are established.

Table 7.3: Optimized global parameters for three ESN models using the
normalized data

Model number 1 2 3

Connectivity 0.01 0.28 0.01

Spectral Radius 0.01 0.01 0.01

Input Weight Scale 1.66 3.0 0.01

Noise Amplitude 0.03 0.02 0

Leaky 1 1 1

Reservoir Size 534 180 180

Table 7.3 shows the optimized global ESN parameters for each model. As
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explained earlier, PSO is used for the optimization of the global ESN pa-
rameters. The first model is used to forecast the first 10 minutes, the second
model is used to forecast the subsequent 10 minutes and the last 10 minutes
is forecast by using the last model. It took about 13 hours to finish the PSO
optimization utilizing the CPU and the GPU listed in Table 7.2. The PSO
optimization only needs to be performed once for each ESN model. Once
the ESN global parameters er optimized, the ESN models can be trained
within few seconds using those optimized parameters.

The optimized connectivity for the first and the third ESN model yields the
lower bound defined. The connectivity parameter refers to the sparsity of
the reservoir layer. Sparsity affects the computational effort. The required
time to train a model is decreasing as the sparsity reduces. However, the
PSO algorithm designed in this work does not take the computational effort
into the consideration. Hence, the computational time does not affect the
optimization of the sparsity of the reservoir layer. Moreover, the sparsity
parameter does not affect the performance of the forecast significantly [34].
It is therefore unclear how the sparsity parameters are optimized by PSO.

Optimization result using PSO yields the smallest possible spectral radius
for all of the ESN models. Low spectral radius will result fast die out of
the past inputs. In another word, the past inputs will not have too much
influence on the forecast. Hence, the interpretation of the choice can be
that the ESN models do not need to remember the past inputs and do not
depend so much on the historical data, which is not a part of the input.

Large input weight scale size indicates that the dynamic is highly influenced
by the input data. For the second ESN model, the maximum size is chosen.
Meanwhile, the minimum size is chosen for the third ESN model. This can
be interpreted as a lack of correlation between the input (historical data)
and the output (forecast) for the third ESN model, which is as expected.
Since, the output of the third ESN model corresponds to the power demand
in a distant future.

Generalization and stability of ESN are the two factors that can primarily
be controlled by injecting an artificial noise into the reservoir states. The
PSO optimization yields, a small size of noise for the ESN models. A pos-
sible interpretation of this observation can be that since power demand is
not low-pass filtered, the data is highly affected by different types of noise.
Generalization might not be an issue when using noisy data.

The PSO optimized leaking rates indicate that power demand does not con-
tain any slow dynamic hence no need for leaky integrator neurons. Using
1 as the leaky coefficient is same as using a simple sigmoid network, which
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can be observed from (2.3.2).

The reservoir size represents the complexity of ESN. Highly non-linear dy-
namic requires a large number of reservoir neurons. The reservoir size in-
dicates that the highest order of complexity is required for the first ESN
model. The minimum reservoir size is chosen for the second and the third
model. This is unexpected since the third model is considered to perform a
relatively harder task, which requires a more complex model. This can be
an indication that the number of iteration of the PSO algorithm needs to be
increased to ensure convergence of the FV. The algorithm can be terminated
before a sufficient convergence was achieved.

Table 7.4: Mean Squared Error of the forecast using the normalized data

Model number 1 2 3

MSE 0.404 0.845 1.493

Table 7.4 shows MSE of the forecasts. Catching the dynamic of the power
demand in the nearest future is easier compared to catching the dynamic of
the data in the distant future. Hence, the forecast error obtained using the
first ESN model is smallest compared to the second and the third model.
The forecast result yields the average MSE of 1 and MFE of 9.63.
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7.1.2 Power demand forecast using low-pass filtered and nor-
malized data

The normalized power demand is filtered using 4th order Butterworth filter.
The frequency response of the filter is shown in Figure 4.7.2. The filtered
power demand can be found in Figure 4.7.1.
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Figure 7.1.3: Power demand forecast using the low-pass filtered and normal-
ized test data

Figure 7.1.3 shows forecast results using the optimized global ESN parame-
ters from Table 7.5 for three ESN models designed for 180-step ahead fore-
cast. The difference from the forecast procedure presented in Section 7.1.1
is that the data is pre-processed using a 4th order Butterworth filter. Over-
all, the difference between the forecast power demand and the ground truth
power demand is significantly small compared to the result from Section
7.1.1.
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Figure 7.1.4: Power demand forecast covering sample sequence from 21000
to 27000 using the low-pass filtered and normalized test data

The accuracy of forecast can be more closely observed from Figure 7.1.4.
As it is shown, the time-series estimation models are not able to follow
the ground truth values completely, however, the squared error between the
forecast values and the ground truth values are very small. There are some
sudden jumps observed from the forecast, this is observed at the end of the
forecast horizon of a set. The big jumps indicate a relatively large forecast
error of the last forecast interval. Overall, the forecast do not deviate too
much from the ground truth values.

Table 7.5: Optimized global parameters of the ESN models using the low-
pass filtered and normalized data

Model number 1 2 3

Connectivity 0.16 0.44 0.50

Spectral Radius 0.01 0.28 0.23

Input Weight Scale 3 3 3

Noise Amplitude 0 0.5 0

Leaky 0.60 1 1

Reservoir Size 180 2500 647

Table 7.5 shows the optimized global parameters of the ESN models. It took
about 13 hours to finish the PSO optimization utilizing the CPU and the
GPU listed in Table 7.2.
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The sparsity of the reservoir reduces with the model number. High sparsity
benefits in a way that less computational effort is required for network state
update. However, as mentioned, the PSO algorithm designed in this work
does not take this into account, so the connectivity will be chosen randomly
respect to the computational effort. It is also unclear how the connectivity
can affect the forecast result. Many ESN authors claimed that sparsity will
lead decomposition of reservoir dynamics into loosely coupled subsystems,
which lead to large variation among the reservoir signals. However, the fully
connected reservoirs have also been proved to work as well as the sparsely
connected reservoirs.

Optimization result using PSO yields a smallest possible spectral radius of
the first model. This indicates that the past inputs will not have too much
influence on the prediction. As it can be observed, the spectral radius in-
creases to 0.28 for the second ESN model. This indicates that forecasting a
more distant future is more dependent on the past inputs.

The maximum value of the input weight scale is chosen for all of the ESN
models using the PSO optimization. Considering the update stage of ESN
shown in (2.3.2), the reservoir states are highly influenced by the input data.
Intuitively, this can be an indication that the best ”qualified” information
that can be used for prediction is the most recent historical data.

The PSO optimization yields, zero noise on the first and the third ESN
models, meanwhile, noise with the biggest amplitude is used for the second
model. A possible explanation of this choice can be that the second model is
very easily over-fitted. The stability of the model is most likely not an issue
in this case since output feedback (2.3.6) is not used updating the reservoir
states.

The PSO optimized leaking rates indicate that power demand does not con-
tain any slow dynamic for the second and the first ESN models, hence no
need for leaky integrator neurons. However, the first ESN model is using
0.6 as its leaking rate. This can be an indication of the existence of a slow
dynamic for the first 10 minutes of forecast. Information from the past
reservoir states is retained using leaky integration. In this way, capturing
slow dynamics.

The PSO optimization yields smallest possible reservoir size for the first
model, larger number of reservoir neurons for the second and third models,
which is as expected since forecasting a more distant future is a harder task.
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Table 7.6: Mean Squared Error of the forecast using the low-pass filtered
and normalized data

Model number 1 2 3

MSE 0.16 0.443 0.748

Table 7.6 shows MSE of the forecasts. Catching the dynamic of power
demand in the nearest future is easier compared to the dynamic in the
distant future. Therefore, forecast using the first model has the smallest
MSE and increases with the model number, which is as expected. The
forecast result yields the average MSE of 0.489 and MFE of 7.4.

7.1.3 Increasing complexity by concatenating element-wise
squared input vector to the original input vector

The input vector is expanded to include the squared version input. Such
that the input vector becomes

usquared = [u;u� u],

where � is used to denote element-wise multiplication. The dimension of
the input vector is then doubled. It leads to the changed dimension of the
input weight matrix and the readout matrix along with the input vector.
Moreover, (4.5.1) is using the squared version of input vector, so (4.5.1)
becomes.

X = [1;usquared;x],

Forecasting the future power demand is performed using the low-pass filtered
normalized data. The filtered data is obtained using 4th order Butterworth
filter with the frequency response as shown in Figure 4.7.2.
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Figure 7.1.5: Power demand forecast using the squared version of input
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Figure 7.1.6: Power demand forecast covering sample sequence from 21000
to 27000 using the squared version of input vector

Figure 7.1.5 shows 180-step ahead forecast result using the optimized ESN
global parameters presented in Table 7.7. Observing from Figure 7.1.6, there
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are some jumps observed from the forecast time-series data similar to the
results presented in Section 7.1.1 and Section 7.1.2. The jumps occur at the
end of the forecast interval, in another word, right before preceding to the
next forecast sample containing the subsequent forecasts. Except for the
few jumps, in overall, the forecast is quite accurate and the forecast error
is very small. The forecast did not catch the high-frequency changes of the
ground truth data. Depending on the application, this might be the desired
behavior. However, in this work, catching the high-frequency changes are
not desired. Since the high-frequency changes are considered as noise.

Table 7.7: Optimized global parameters of the ESN models using the squared
input vector

Model number 1 2 3

Connectivity 0.01 0.01 0.42

Spectral Radius 0.01 0.01 0.73

Input Weight Scale 2.57 0.01 1.22

Noise Amplitude 0 0 0

Leaky 1 1 0.84

Reservoir Size 180 180 180

Table 7.7 shows the optimized ESN global parameters. Each ESN model
forecasting different non-overlapping time intervals. It took about 13 hours
to finish the PSO optimization utilizing the CPU and the GPU listed in
Table 7.2.

Connectivity remains at the lowest number for the first and the second model
and increases to 0.42 for the last model. As explained in Section 7.1.1 and
in Section 7.1.2, how the connectivity parameters are chosen cannot be ex-
plained intuitively. However, this is not a required task, since PSO will make
it possible to optimize the global ESN parameters without having knowledge
about how they affect the forecast accuracy.

The smallest number of the spectral radius is chosen by PSO for the first
two models. Spectral radius increases to 0.72 for the last model. The fore-
cast task of the last model is more demanding compared to the first and the
second since it needs to forecast power demand in a more distant future,
therefore it requires to remember a longer period of time.

The optimized input weight scale factor is quite randomly chosen and does
not show any trend between the three models. The first model clearly em-
phases the input signals, which is the most recent historical power demand.
In another word, prediction of the first interval depends relatively highly on
the input signals.
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Injecting artificial noise was not required for this case. The best guess
based on the intuition is that the squared version of input vector prevents
over-fitting and therefore using artificial noise was not required and did not
increase the forecast performance.

Optimized leaking rate indicates non-existence of slow dynamic for the first
and the second ESN models, hence no need for leaky integrator neurons.
However, based on the PSO optimization, it can be guessed that there are
some slow dynamics observed for the last ESN model, hence requires the
leaky parameter to be less than one.

The PSO optimization yields the smallest possible reservoir size. Com-
pared to the previous sections, the reservoir size is considerably small. The
complexity is increased by expanding the input vector and some part of
the non-linear dynamic is added by the squared input vector, resulting in
a smaller reservoir size. This can benefit from the reduced computational
expense.

Table 7.8: Mean Squared Error of the forecast using the squared input vector

Model number 1 2 3

MSE 0.178 0.458 0.917

Table 7.8 shows MSE of the forecasts. Using the forecast result, the aver-
age MSE is found to be 0.56 and MFE is found to be 9.16. Compared to
the results discussed in Section 7.1.2, the performance has been decreased
significantly.

7.1.4 Increasing model complexity by using the squared read-
out weight

The readout weight is modified by concatenating the squared version of the
input data and the reservoir states when training the readout weight. Such
that (4.5.1) is modified to

X = [1;u;u� u;x;x� x],

where� denotes element-wise multiplication. This is a cheap way to increase
complexity instead of increasing the size of reservoir states such that the
input and the reservoir states can more easily map to the outputs.
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Figure 7.1.7: Power demand forecast using the squared version of trained
readout weight

The normalized power demand is filtered using 4th order Butterworth filter.
The filtered power demand is shown in Figure 4.7.1. The forecast result is
shown in Figure 7.1.7. The forecast result is obtained using the optimized
ESN global parameters presented in Table 7.9.
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Figure 7.1.8: Power demand forecast covering sample sequence from 21000
to 27000 using the squared version of trained readout weight

Similar to the forecast results presented in Section 7.1.2 and 7.1.3. There
are still some jumps observed from the forecast time-series data. Moreover,
forecast does not catch the high-frequency changes completely.

Table 7.9: Optimized global parameters of the ESN models using the squared
readout weight

Model number 1 2 3

Connectivity 0.5 0.01 0.01

Spectral Radius 0.01 0.01 0.01

Input Weight Scale 1.15 0.01 0.01

Noise Amplitude 0.07 0 0

Leaky 1 1 1

Reservoir Size 180 180 180

Table 7.9 shows the optimized global parameters for the ESN models using
PSO. It took about 14 hours to finish the PSO optimization utilizing the
CPU and the GPU listed in Table 7.2.

The smallest number is chosen as the connectivity for the second the third
model. However, for the first model, the biggest number is used as the con-
nectivity parameter. 0.01 indicates high sparsity of the matrix.
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An interesting observation is that PSO chose the smallest possible spectral
radius for all of the ESN models. To recall, this indicates that the past input
data will not have too much of impact on the predictions.

The input weight scale indicates that the model used for forecasting the
first 60 sequential data points is highly influenced by the input data, which
makes sense since they are the ”nearest” points considering how the data
is partitioned. The first ESN model is using 180 data-points to predict the
sub-sequential 60 data-points with t ∈ [0, ..., 60]. However, the second ESN
model which maps the same input to the data with t ∈ [61, ..., 120] is much
less influenced by the input data. Same goes for the third ESN model fore-
casting power demand with t ∈ [121, ..., 180].

The intuitive explanation of the choice PSO made is that the first model
forecasting the first interval is more sensitive to over-fitting since a very
small forecast error from the training data can be obtained. The size of the
white noise injected into the reservoir states is, therefore, larger compared
to the second and the third model.

The values of the leaky parameter indicate that power demand does not
contain any slow dynamic, hence no need for leaky integrator neurons.

As the complexity of ESN is increased using a squared variant of the readout
weight, the reservoir size does not need to be large. PSO chose the smallest
possible reservoir size, which is as expected.

Table 7.10: Mean Squared Error of the forecast using the squared readout
weight

Model number 1 2 3

MSE 0.11 0.27 0.83

Table 7.10 shows MSE of the forecasts for each ESN model. The forecast
result yields the average MSE of 0.506 and MFE of 7.067.
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7.2 Optimization

The MINLP models presented in Chapter 5 is implemented and the simula-
tion is performed using:

1. the data extracted from the five different gas turbines operating on a
site

2. the import/export history of the grid power

3. price history of the grid electricity

The optimal power set-points are found using the EMS algorithm every
30 minutes. Each execution of the EMS algorithm results in 18 optimal
set-points, which means that the EMS algorithm gives optimal set-points
every 100 seconds. The EMS algorithm is implemented in MATLAB using
YALMIP as its framework. SCIP is chosen as the MINLP solver.

The approach presented in Section 7.1.2 is used to forecast the future power
demand. Meaning that the raw power demand data is normalized and low-
pass filtered using 4th order Butterworth filter. No modification has been
performed on (4.5.1) for designing the ESN models. The predicted power
demand is used as a set of parameters for the optimization algorithm to
schedule the optimal power output from the generating units.

Table 7.11: Mean Squared forecast Error and Maximum Forecast Error for
the prediction approaches presented in Section 7.1

Sections 7.1.1 7.1.2 7.1.3 7.1.4

MSE 1 0.489 0.56 0.506

Max error amplitude 9.63 7.41 9.16 7.067

Table 7.11 presents the error size using different approaches. The approach
from Section 7.1.2 has the lowest MSE and the lowest MFE is achieved by
using the approach from Section 7.1.4. However, the method presented in
Section 7.1.4 requires larger memory and extra calculation compared to the
method from Section 7.1.2. Moreover, the error difference seems to be minor,
hence the result will not be affected so much due to the model choice. MFE
of the ESN model presented in Section 7.1.2 is small enough to be corrected
by the operating gas turbines. Hence, it is expected that the power demand
gap due to the forecast error can always be filled by changing the power
output of the gas turbines instantly.

7.2.1 Uncertainties

The results are affected by some uncertainties. The price of the gas is as-
sumed to be fixed, however, this will vary depending on the season and gas
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quality. The result will also depend on the accuracy of the data achieved
from the site. The data will include uncertainties due to the measurement
noise in addition to some other noise factors.

The uncertainty due to the power demand forecast error is minor considering
MSE. In normal circumstances, the magnitude of power demand will be
around 200 MW and an MSE value of 0.489 will indicate that the power
demand forecast will give approximately 10 MW of summed deviation for
the time horizon T, which can be calculated using

T∑
t=1

yt − ŷt =
√
MSE ·T .

Given that the site requires approximately 200 MW for each time instance,
it will give the total power demand of 36000 MW for the given time horizon
T (200 MW ·T ). 10 MW is a very small number (36000 MW >> 10 MW)
compared to the power level that is required by the site. Hence, the optimal
power set-points scheduled by the EMS algorithm using the forecast power
demand will be valid. Considering MFE, the power demand prediction error
can in most of the cases be controlled by adjusting the total power produc-
tion by ramping the gas turbines instantly.

The maximum power the gas turbines can generate varies with time. In
this work, the maximum power of the gas turbines will be assumed to be
known for the given time horizon T with complete certainty. This assump-
tion is valid as long as T is chosen reasonably short. The maximum power
is calculated in a special way using different types of parameters such as
temperature, hours of operation etc. that does not vary drastically on a
short period of time.

The electricity price is assumed to be fixed for T. The electricity price data
is achieved from Nord Pool AS. The price varies on an hourly basis. Since
the forecast horizon T is chosen to be less than 1 hour in this work (30
minutes), the electricity price can be assumed to be fixed without leading
to any significant uncertainty in the result.
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7.2.2 Simulation results

Cfuel 1.926 NOK
kg

wΦ 120

wΦ,g 0.02

nmin 4

lmin 4

preq 35 MW

L∆t -3.5 MW
∆t

H∆t 3.5 MW
∆t

pg,lim 115 MW

pg,sp 0 MW

Mrp,∆t 5 MW
∆t

Mst 2 hours

Table 7.12: Constant parameters

The non-changing parameters listed in Table 7.12 are used for the imple-
mentation. The parameters such as pmax(t), Cel(t) and pd(t) are not listed
in the table since they are time-varying.

The simulation is performed using computers with the following hardware
specification:

OS Windows 64 bit
CPU Intel(R) Core(TM) i7-5820K CPU 3.30 GHz
GPU NVIDIA GeForce GTS 980 Ti, 6144 MB
RAM 16 GB

Table 7.13: Hardware specification of the 1st computer

OS Windows 64 bit
CPU Intel(R) Core(TM) i5-6300U CPU 2.40GHz
RAM 8 GB

Table 7.14: Hardware specification of the 2nd computer

Power demand forecast

The approach presented in Section 7.1.2 has been applied to forecast the
power demand for the simulation period starting from August of 2017.
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Figure 7.2.1: Power demand forecast between the period August of 2017
and November of 2017

Figure 7.2.1 shows the forecast result for the simulation period. The ESN
models used for the forecast is trained again after each month of simulation
using the training data as well as the test data corresponding to the passed
simulation period. This benefits in terms of increasing the accuracy of fore-
cast and is practical, since the training process only takes few seconds to
finish. The average MSE from the 3 months of simulation is found to be
0.4 and MFE is found to be 21.4. MFE is higher than expected. 21.4 MW
corresponds to approximately 50 % of the max power level a gas turbine can
produce. Fortunately, there are five gas turbines, which can be used to fill
the power demand gap. 21.4 MW can be shared between the operating gas
turbines and given that all the gas turbines are operable, each gas turbine
only needs to increase their power level by 4 MW.
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Figure 7.2.2: Brake Specific Fuel Consumption of the gas turbines normal-
ized relative to the per unit loading

The BSFC of the gas turbines are assumed to follow the curves in Figure
7.2.2. They are found using curve-fitting on the data recorded from the gas
turbines for the simulation period from August of 2017 to November of 2017.
They are not updated continuously and is assumed to be fixed. The further
improvement of BSFC offline modeling can be found in [2].

Cost optimization

The simulation is performed using the model (5.4.4) and the data from
3 months of operation starting from August of 2017. The simulation is
performed utilizing the CPU listed Table 7.14 and it took about 5 days
to finish the simulation. The optimized fuel consumption was calculated
from the optimized gas turbine utilization. The result of the simulation
indicates the cost saving of 2,883,237 NOK compared to the original cost,
which corresponds to 1.9 % reduction.

Table 7.15: Saving results

Fuel consumption (Kg) Electricity cost (NOK)

Original 73,997,000 10,111,700
Optimal 72,339,000 10,421,000

Table 7.15 shows the total fuel consumption and the total electricity cost.
The difference of the fuel consumption and the electricity cost between the
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original data and the simulation data is found to be 2.24 % and -3.06 %
respectively. By tuning the parameter explained in (5.4.3) (wΦ,g = 0.02), and
having the grid set-point parameter equal 0 (pg,sp = 0), the amount of the
grid power that is imported could be controlled to match the original level.
The result presented in [1] indicates that it could be beneficial to import
more power from the grid in order to reduce the total expense and will be
one of the easiest ways to save fuel and cost of operation. By raising the
grid import/export set-point (pg,sp), more power is allowed to be imported
from the grid and a significant amount of operational cost can be reduced.
However, it also increases the risk in case the grid fails. In another word, high
grid dependency will decrease the robustness of the power system installed at
the site. Therefore, the import level of the grid power needs to be controlled
carefully in order to secure the soundness of the optimized operation when
running in realistic industrial environments.
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Figure 7.2.3: Optimal vs. original grid power

Figure 7.2.3 shows power from the grid. For the period where a relatively
low amount of power is imported in the original case, the EMS decides to
import considerably more power from the grid. However, during the period
where a large amount of power is imported from the grid, the EMS decides
to import relatively less power. Overall, the total amount of power that is
imported is almost same as the original case.
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Figure 7.2.4: Optimal vs. original power distribution

Figure 7.2.4 shows the power distribution between the gas turbines. The
optimal power distribution shows the set-points to be followed by the low-
level controller (constant for 100 seconds), meanwhile, the original power is
recorded directly from the low-level controller. It is observed that the EMS
controls the gas turbines differently than in the original case considering set-
point regulation. GT1 and GT2 are turned on and off more often between
the period 14th of August and 11th of September. The power pattern of
GT3 resembles the original case. GT4 provides the maximum power it can
to the site for most of the time, which differs from the original case. The
power level of GT5 changes more drastically compared to the original case.
Considering the BSFC curves, it is as expected since GT5 has a higher
efficiency when operating with a relatively low loading.

Cost optimization with 5 MW as the grid power set-point (pg,sp)

The simulation is performed using the model (5.4.4) and the data from
3 months of operation starting from August of 2017. The simulation is
performed utilizing the CPU and the GPU listed Table 7.13 and it took
about 4 days to finish the simulation. The grid power set-point was increased
from 0 MW to 5 MW to observe the impact of changing the grid power set-
point. The result of the simulation indicates the cost saving of 3,804,169
NOK compared to the original cost, which corresponds to 2.47 % reduction.
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Table 7.16: Saving results with pg,sp: 5 MW

Fuel consumption (Kg) Electricity cost (NOK)

Original 73,997,000 10,111,700
Optimal 71,398,000 11,495,000

Table 7.17 shows the total fuel consumption and the total electricity cost
using 5 MW as the grid power set-point (pg,sp = 5). The difference of the
fuel consumption and the electricity cost between the original data and the
simulation data is found to be 3.5 % and -13 % respectively. By increasing
the grid power set-point parameter from 0 MW to 5 MW, more power was
imported from the grid. As expected, by allowing more power to be imported
from the grid, the total expense of operating the site could be reduced
further. By spending 1,074,000 extra NOK on the grid power and burning
less fuel, the total expense could be reduced by 920,939 NOK. However, as
mentioned in Section 7.2.2, more grid power increases the risk in case the
grid fails. It is therefore desired to see how ESSs can be embedded to the
optimization model, which can be used to reduce the risk of operating the
site.
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Figure 7.2.5: Optimal vs. original grid power with 5 MW as the grid power
set-point

Figure 7.2.5 shows power from the grid. Similar to the behavior of the grid
observed from Section 7.2.2, for the period where a relatively low amount
of power is imported in the original case, the EMS decides to import con-
siderably more power from the grid. However, during the period where a
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large amount of power is imported from the grid, the EMS decides to import
relatively less power.

Figure 7.2.6: Optimal vs. original power distribution with 5 MW as the grid
power set-point

Figure 7.2.6 shows the power distribution between the gas turbines. GT1
and GT2 are turned on and off more often between the period 14th of Au-
gust and 25th of September. Moreover, GT1 and GT2 tend to provide the
maximum power it can to the site, which is optimal considering the effi-
ciency curves. The power pattern of GT3 resembles the original case. GT4
provides the maximum power it can to the site for most of the time, which
differs from the original case. The power level of GT5 changes more dras-
tically compared to the original case. Observing Figure 7.2.2, GT5 has
relatively high efficiency operating at the minimum load compared to the
other GTs, therefore, GT5 is used to match power demand by reducing the
power output to the non-optimal points considering the efficiency curves.

96



Cost optimization integrating ESS with 5 MW as the grid power
set-point (pg,sp)

The parameter wΦ presented in Section 5.4.2 is increased to

wΦ = 540,

in order to make use of ESSs to regulate the small and high-frequency
changes of power demand. wΦ is tuned using trial and error method. The
amplitude of this parameter was increased if the power output of the gas
turbines and the grid tends to shift aggressively. Moreover, the recovery
ratio of the ESS is chosen to be 90 %.

Simulation is performed using the model presented in (5.5.6). The ESS
parameters from Table 5.1 is used for the simulation. The start capacity of
the ESS is chosen to be 32 MWh, which is the max capacity of the ESS. The
simulation is performed using the data from 3 months of operation starting
from August of 2017. The simulation is performed utilizing the CPU listed
Table 7.14 and it took about 7 days to finish the simulation. The optimized
fuel consumption was calculated from the optimized gas turbine utilization.
The result of the simulation indicates the cost saving of 3,783,058 NOK
compared to the original cost, which corresponds to 2.48 % reduction.

Table 7.17: Saving results integrating ESS with pg,sp: 5 MW

Fuel consumption (Kg) Electricity cost (NOK)

Original 73,997,000 10,111,700
Optimal 71,137,000 11,837,000

The operational cost is reduced further slightly compared to the result pre-
sented in Section 7.2.2, which is obtained by using a model that does not
include ESS. The difference yields 0.01 %, which corresponds to 37,830 NOK.
It can also be observed that the model with ESS allowed more grid power to
be imported meanwhile reducing the fuel consumption during the simulation
period.
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Figure 7.2.7: Optimal vs. original grid power when ESS is used

Figure 7.2.7 shows imported/exported power from the grid.
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Figure 7.2.8: Charge/discharge rate and stored energy of ESS

Figure 7.2.8 shows how ESS is controlled by the EMS algorithm. ESS is
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changing its state frequently. The stored energy of ESS stays at its minimum
(22.4 MWh) most of the periods. If fewer than four gas turbines are operable,
ESS is allowed to be discharged to an energy level below the minimum energy
level defined, which is observed several times during the simulation period.
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(a) ESS power and ESS energy
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Figure 7.2.9: Correlation between power from the ESS and power from the
grid
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Figure 7.2.9 shows that the ESS is used to match the high-frequency change
of power demand, which comes from stabilization of the grid frequency. The
ESS can both be charged or discharged, meaning that power from the ESS
can be positive and negative. This property of the ESS will let the grid to
operate more smoothly. In another word, the ESS can be used to shift the
total load and used for frequency regulation so that power from the grid
can be stabilized as shown in Figure 7.2.9 b). The import/export level of
power from the grid does not oscillate and is stabilized. Power from the
ESS and the grid is correlated in a way that ESS is charged by importing
more power from the grid and when ESS is being discharged, less power is
imported from the grid.

Figure 7.2.10: Optimal vs. original power distribution when ESS is used

Figure 7.2.10 shows the power distribution between the gas turbines. GT1,
GT2, and GT3 are controlled very similarly to the original case. GT4 is
operating with its maximum capacity most of the time, which is different
from the original case. GT5 does not resemble the original case at all and
is controlled in a special way. The EMS is trying to keep GT5 turned off
and makes GT5 produce the minimum power to match power demand. This
pattern of operation is observed between the period 14th of August and 25th

of September. This is as expected considering BSFC graphs presented in
Figure 7.2.2. GT5 requires minimum fuel considering the efficiency when
generating relatively low power.
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Figure 7.2.11: ESS behaviour when less than four GT turbines are operable

Based on the data from the site, each trip of the grid/turbine will result in
the loss of production of approximately 41 MNOK. Installation of an ESS
can minimize this loss by providing the necessary power during the recovery
time. It is unclear how much the loss can be reduced by using an ESS.
However, it can be assumed that ESS can reduce the number of the trip by
one per year, which will give the saving of 41 MNOK per year.

Figure 7.2.11 illustrates how ESS is discharged to an energy level below the
pre-defined minimum energy of ESS, which is 22.4 MWh. ESS is allowed to
be discharged further when fewer than four gas turbines are operable. From
the simulation data, it can be observed that ESS compensates one of the
non-operable GT between the time 03:00 and 04:00 in 14th of September.
For this period, ESS is providing the maximum power it can to the site.
ESS is charged back to the normal state with charging rate of 4 MW as
soon as four gas turbines become operable, which can be observed between
the time 04:30 and 06:30.
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CHAPTER 8

CONCLUSIONS

This work presented a MINLP model for a hybrid power system embedding
n-number of gas turbines, grid as well as ESS. The model includes a perfor-
mance parameter BSFC, which is estimated based on the data from a site
using curve-fitting method provided by MATLAB. The works presented in
[2] and [3], which are conducted in parallel to this work describes how BSFC
curves can be modeled by pre-processing the data and how BSFC curves can
be updated online. Moreover, a predictive method was integrated into the
system to estimate the future power demand in order to schedule the load
distribution for an interval of 30 minutes between the existing generating
units. The designed EMS using the MINLP model helped to achieve the
optimal loading.

The simulation is performed using the data from a site during three months
of operation starting from August 2017. The outcome of the simulation
is compared with the original data. The simulation shows that the load
distribution using the EMS based on MINLP will benefit in terms of the
cost-efficient operation as well as the fuel saving.

The result yields that allowing more grid power to be imported increases the
total cost saving. However, it will also increase grid dependency. Therefore,
it is desired to keep the import level of the grid power at the same level as
the original case. The commitment of the ESS will benefit in terms of the
cost-efficient operation and the fuel saving. More grid power can be allowed
to be imported by using ESS as an alternative source of energy in case the
grid trips. ESS will contribute to the increased robustness of the system. In
addition, the grid frequency stabilization can be achieved by shifting load
using ESS. Conclusively, use of the ESSs will give more flexibility in the
power production and increase the reliability of the power system.
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Despite the cost-saving obtained in this work, there are some uncertainties
that need to be taken into account. Firstly, BSFC estimation error can affect
the performance of the EMS. BSFC will be significantly different depending
on the type of the gas used as fuel as well as the quality of the gas. More-
over, the parameters of BSFC curves tends to change over time. Further
research that includes a robust online update of the BSFC curves to the
optimization algorithm will increase the soundness of the simulation result.
The price of gas is assumed to be fixed, which is not realistic. The price of
gas will vary depending on many factors and the cost-saving achieved in this
work will be slightly different from the actually achievable cost-saving. The
algorithm is exposed to the forecast error, which will affect the robustness
of the algorithm. However, the forecast error is minor and can be corrected
by the site operators. Due to this lack of the robustness of the algorithm,
human interference is essentially required. The electricity price is assumed
to be fixed for a time horizon of 30 minutes. Since the Nordpool electricity
price change on an hourly basis, this assumption is valid. Moreover, the
maximum power output from the gas turbines is assumed to be known with
complete certainty. This will not be a realistic case. In a realistic case, the
future maximum power output is unknown and needs to be predicted or
assumed to be fixed. This assumption might affect the soundness of the op-
timization outcome and make the result achieved in this work slightly differ
from the actually achievable cost-saving. However, the optimization result
will not be affected too much by this since the maximum power output is
not a fast-changing parameter. Furthermore, the influence of the parameters
presented through this work needs to be investigated further. Most of the
parameters are found using trial and error method. Thus, in order to obtain
the full potential saving and the correctness of the algorithm presented in
this work, systematic tuning of the parameters needs to be conducted.

The soundness of the algorithm is considered when designing the optimiza-
tion problem model. For instance, operational constraint specific to the site
where the data is recorded is added to the model. Moreover, the minimum
time it takes to start a gas turbine is considered. By integrating a predic-
tive method for scheduling the load distribution, the algorithm was able to
consider the start-up time to some degree. However, this could not be em-
bedded into the model completely since it requires start-up dynamic of the
gas turbines. Furthermore, the reasonable energy storage capacity of the
ESS is also considered and integrated into the model.

Conclusively, the result yields that the optimal load sharing can help reduce
the cost of the operation substantially up to 2.48 %.
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CHAPTER 9

FUTURE WORK

9.1 Robustness of the algorithm

The optimization algorithm presented in this work does not provide any
feedback control of the power from the gas turbines. Meaning that if the
power demand forecast error is considerably large, the power system re-
quires human interference for correction of the generated power to match
the actual power demand. An MPC approach implementation similar to
the algorithm presented in [21] can be considered to overcome the uncer-
tainties due to the forecast error. Increased robustness is expected to be
achievable by introducing a feedback control using MPC. Moreover, MPC
will contribute preventing ramp constraint violation and always provide the
feasible solutions. MPC only implements the first solution that uses the real
measurements, hence, the feasibility of the solution is secured.

9.2 Grid failure safety

The model presented in this work does not consider the grid failure safety.
Grid failure that leads to a power blackout resulting a short-term or a long-
term loss of the electric power to a particular area is not considered to
exist. However, in a realistic industrial environment, the grid can fail quite
frequently, up to two times on yearly basis. In terms of reliability, this is
a crucial part that needs further investigation. One way of including safety
of the grid in a certain degree is implementing an algorithm to predict the
grid failure points. The optimization algorithm will use this information to
control the gas turbines to minimize the possible loss due to the grid failure.
A machine learning algorithm can be considered to detect the future grid
failure points.

105



9.3 Renewable energy resources

The model (5.5.6) can be extended further to include renewable energy re-
sources such as wind turbine and solar panels. This work requires knowledge
about the renewable energy equipment dynamics that need to be presented
as a set of equations. Moreover, local weather needs to be taken into ac-
count such as wind speed and heat from the Sun. Wind speed and heat
can be measured using different types of sensors. For power distribution
scheduling purpose, local weather needs to be predicted and the uncertainty
of the prediction needs to be taken into account. For this, weather forecast
from reliable sources can be used. A useful weather forecast source can be
YR. Similar work of including renewable energy sources as a part of MILP
model is conducted in [17] and [18].

9.4 Start-up dynamic of gas turbines

The model presented in this thesis is not able to find the optimal point to
turn on the gas turbines. The model can suggest when to turn on the not-
operating gas turbines, however, it does not consider the time it takes before
the gas turbines can actually start to produce power. In another word, the
algorithm developed in this work does not consider the turning-on dynamic
of the gas turbines. Ideally, in order to find the optimal point to start
preparing a gas turbine to be operated, the optimization algorithm needs
a dynamic model for the off-state gas turbines. A considerable amount of
work will be required to come up with an off-state dynamic model for the
gas turbines. Another approach can be increasing the forecast horizon T
significantly large. The optimal turning on point of the gas turbines, which
needs to be provided to the site operators at-least 2 hours prior to the current
time can be used as a signal to start preparing off-state gas turbines. The
work presented here will use 30 minutes as the forecast horizon, which is
not enough to fully catch the optimal point of turning on the gas turbines.
However, having T bigger than 2 hours will still be sub-optimal without
considering the off-state dynamic of the gas turbines.

9.5 Systematic tuning of the important model pa-
rameters

The influence of the model parameters presented through this work needs
to be investigated further. Most of the parameters are found using trial and
error method. Thus, in order to obtain the full potential saving and the
correctness of the algorithm presented in this work, systematic tuning of
the parameters needs to be conducted.
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LIST OF SYMBOLS

fi Fuel consumption of ith gas turbine Kg
∆t

bi BSFC measurement Kg
MWh

pi Power from ith gas turbine MW

loadi Load on ith gas turbine pu

pd Power demand from the site MW

L∆t Lower ramp rate limit of the gas turbines MW
∆t

H∆t Upper ramp rate limit of the gas turbines MW
∆t

pi,min Minimum power from ith gas turbine MW

pi,max Maximum power from ith gas turbine MW

preq Minimum power requirement of the gas turbines MW

pg Import/export power from the grid MW

pg,lim Instantaneous power limit from the grid MW

pg,sp Grid set-point power MW

pj,E Power flow of jth ESS MW

pE,min Maximum charging rate of jth ESS MW

pE,max Maximum discharging rate of jth ESS MW

Ej Energy stored in jth ESS MWh

Emin Minimum capacity of jth ESS MWh

Emax Maximum capacity of jth ESS MWh

Cfuel Gas price NOK
kg

Cfuel,MW∆t Gas price NOK
MW∆t

Cel Grid electricity price NOK
MW∆t

C The total operational cost NOK

Mrp,∆t Ramp rate Big-M MW
∆t

Mst Gas turbine start-up Big-M t

ME ESS capacity Big-M MWh
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W in ESN input weights

W reservoir ESN reservoir weights

W out ESN output weights

W back ESN feed back weights

b ESN bias vector

W noise Scaled white noise added to ESN reservoir states

fstate ESN reservoir activation function

β Tikhonov regulation parameter

ui On/off decision variable of ith gas turbine

uj,E Discharge/charge decision variable of jth ESS

nmin Minimum number of the gas turbines to be active

lmin Minimum number of the gas turbines with minimum power
preq

wΦ Weight of the power change penalty

wΦ,g Weight of the grid set-point penalty

Φ Absolute value of the grid power difference between each
EMS time interval

Φgt Absolute value of the gas turbine power difference between
each EMS time interval

r Recovery ratio of ESS

T Prediction Horizon
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