
Hover Control of Thrust Vectoring VTOL
Flying Wing
Modeling, Control and Development of Test

Platform with Experimental Results

Erlend Magnus Lervik Coates

Master of Science in Cybernetics and Robotics

Supervisor: Jan Tommy Gravdahl, ITK
Co-supervisor: Jostein Furseth, Sevendof AS

Department of Engineering Cybernetics

Submission date: August 2017

Norwegian University of Science and Technology

Acknowledgements

I would like to offer a special thanks to my supervisor Professor Jan Tommy

Gravdahl for making this project possible and for good advise throughout the

project period. A big thank you goes to the Sevendof team, for introducing

me to the wondrous world of unmanned aircraft and providing a fantastic

UAV prototype test platform. I would especially like to thank Johannes

Hatle Lundgaard for video editing, help with SolidWorks for chapter 3, for

making a fantastic test rig for chapter 9 and for great company throughout

countless hours of testing. In addition, I would like to thank The Department

of Engineering Cybernetics for providing such great test facilities, enabling

rapid test cycles in a safe and quiet environment.

I am grateful for valuable discussions with, among others, Jostein Furseth,

Glenn Bitar, Kjetil Kjeka, Emil Scott Bale, Per Magnus Veierland and Haavard

Holta. I would also like to thank Nasser Ukla for help with practical issues

related to radio equipment, batteries and piloting.

Finally, I would like to thank all my friends and family. Thanks to my

classmates for two of the best years of my life. Thanks to my parents, Else-

Marie and Robert for love and support, and last but not least, a big thank

you to my girlfriend Amalie for being so patient and supporting me during

long days and busy periods of work.

i

Abstract

This work consists of theoretical and practical advances in the development

of a fully thrust-vectoring hybrid vertical take-off and landing (VTOL) un-

manned aerial vehicle (UAV). A high-fidelity dynamic simulation model is

successfully implemented in Matlab and Simulink based on a 10 DOF Euler-

Lagrange approach, including actuator dynamics and external aerodynamic

forces. A reformulation of a previously proposed control allocation scheme is

presented based on quadratic programming (QP). The proposed model and

control allocation method is verified through simulation. Simulation results

show that the vehicle is able to track attitude and velocity commands. The

inertial properties and propeller parameters used in simulation are based

on CAD-models and propeller tests of an actual prototype UAV developed

by Sevendof AS. Further, a test platform for autopilot implementation, in-

cluding software-in-the-loop simulation (SITL), is developed based on the

open-source software frameworks PX4 and Gazebo. The implemented au-

topilot successfully stabilizes the vehicle in SITL simulation, and is further

verified through flight tests in an indoor test rig. The flight experiments

show that the proposed autopilot solution succesfully stabilizes the attitude

and velocity of the prototype vehicle.

iii

Sammendrag

Dette arbeidet tar for seg teoretiske og praktiske fremskritt p̊a veien til å

utvikle et vertikal take-off og landing (VTOL) ubemannet luftfartøy (UAV)

som er kapabelt til å rette kraftvektoren produsert av propellene i alle ret-

ninger (thrust vectoring). En dynamisk simuleringsmodell er implementert i

Matlab og Simulink basert p̊a Euler-Lagrange-metoden med 10 frihetsgrader.

Modellen inkluderer aktuatordynamikk og vingeaerodynamikk. En reformu-

lering av en tidligere utviklet metode for kontrollallokering er foresl̊att basert

p̊a kvadratisk programmering (QP). Simuleringsmodellen med kontrollallok-

ering er verifisert gjennom simuleringer, og resultatene viser at fartøyet følger

orienterings- og hastighetskommandoer. Masser, treghetsmomenter og pro-

pellparametre brukt i simuleringene er basert p̊a 3D-modeller og propelltester

av en prototype utviklet av Sevendof AS. En testplatform for implementasjon

av autopiloter, inkludert software-in-the-loop (SITL) simulering, er uviklet

basert p̊a åpen kildekode-prosjektene PX4 og Gazebo. Den implementerte

autopiloten stabiliserer fartøyets orienting og hastighet i SITL simuleringer,

og er videre verifisert gjennom testflyginger i en innendørs testrigg. Eksper-

imentene viser at den foresl̊atte autopilotløsningen stabiliserer orienteringen

og hastigheten til prototypen p̊a en tilfredstillende måte.

v

vi

Nomenclature

α Angle of attack [rad]

c̄ Mean aerodynamic chord [m]

β Sideslip angle [rad]

ωbb/n Angular velocity of body frame with respect to NED frame expressed

in body [rad/s]

γd Commanded twist angle [rad]

γl Left twist angle [rad]

γr Right twist angle [rad]

λd Commanded tilt angle [rad]

λl Left tilt angle [rad]

λr Right tilt angle [rad]

Ib Main body inertia tensor about main body CG, aligned with {b}
[kg ·m2]

It Total body inertia tensor about idealized body CG, aligned with {b}
[kg ·m2]

vii

Itl Left tilt inertia tensor about left tilt CG, aligned with {tl} [kg ·m2]

Itr Right tilt inertia tensor about right tilt CG, aligned with {tr} [kg ·m2]

Itwl Left twist inertia tensor about left twist CG, aligned with {twl} [kg ·m2]

Itwr Right twist inertia tensor about right twist CG, aligned with {twr}
[kg ·m2]

KpQ Attitude proportional gains

q Generalized coordinates

rb NED position of main body center of mass [m]

Rn
b Rotation matrix from NED frame to body frame

Rb
tl

Rotation matrix from body frame to left tilt frame

Rb
tr Rotation matrix from body frame to right tilt frame

Rb
twl

Rotation matrix from body to left twist frame

Rtl
twl

Rotation matrix from left tilt frame to left twist frame

Rb
twr Rotation matrix from body to right twist frame

Rtr
twr Rotation matrix from right tilt frame to right twist frame

Ωi Rotational speed of propeller i [rad/s]

Ωid Commanded rotational speed of propeller i [rad/s]

φ Roll angle [rad]

ψ Yaw angle [rad]

ρa Density of air [kg/m3]

θ Pitch angle [rad]

Θnb Vector of Euler angles [rad]

viii

{b} Body reference frame

{n} NED reference frame (inertial)

{tl} Left tilt frame

{tr} Right tilt frame

{twl} Left twist frame

{twr} Right twist frame

b Wingspan [m]

c Propeller torque constant

CD Aerodynamic drag coefficient

d Propeller torque coefficient

Ft Total force [N]

Fx Force along body x-axis (surge force) [N]

Fy Force along body y-axis (sway force) [N]

Fz Force along body z-axis (heave force) [N]

Fxz Force in xz-plane [N]

k Propeller thrust coefficient

lc Distance between wing leading edge and tilt rotation axis [m]

lt Distance between body x-axis and propellers rotation axis (roll mo-

ment arm) [m]

ltw Half-length of tilt arm (idealized pitch moment arm) [m]

mb Mass of main body link [kg]

mt Total mass [kg]

ix

Mx Moment about body x-axis (roll moment) [Nm]

My Moment about body y-axis (pitch moment) [Nm]

Mz Moment about body z-axis (yaw moment) [Nm]

mtl Mass of left tilt link [kg]

mtr Mass of right tilt link [kg]

mtwl Mass of left twist link [kg]

mtwr Mass of right twist link [kg]

S Planform area of the wing [m2]

Va Airspeed [m/s]

x

Contents

Introduction 3

1 Introduction 3

1.1 Motivation and Background 3

1.1.1 Hybrid VTOL UAVs 5

1.1.2 The StormPetrel Airframe 5

1.1.3 Previous Work . 7

1.2 Contributions . 9

1.3 Overview . 10

I Modeling, Identification and Control 11

2 Modeling 13

2.1 Kinematics . 15

xi

2.1.1 Coordinate Frames . 15

2.1.2 Rotation Matrices . 16

2.1.3 Coordinate Vectors . 16

2.1.4 Angular Velocity . 17

2.1.5 Linear Velocity . 20

2.2 Dynamics . 22

2.2.1 Kinetic Energy . 22

2.2.2 Potential Energy . 23

2.2.3 Euler-Lagrange Equations of Motion 23

2.3 Actuator Dynamics . 24

2.3.1 Servo Motors . 24

2.3.2 Thruster Model . 25

2.4 External Forces . 27

2.4.1 Propulsion Forces and Moments 29

2.4.2 Aerodynamics . 34

2.5 Total Vehicle Model . 38

2.6 Comments on the Equations of Motion 38

3 Parameter Identification 41

3.1 Mass Properties . 41

3.2 Thruster Parameters . 43

xii

3.2.1 Comparison With Supplier Test Data 49

4 Control System Design 51

4.1 Attitude Control . 51

4.2 Velocity Control . 52

4.3 Control Allocation . 53

4.3.1 Main Algorithm . 53

4.3.2 Constraints . 56

4.3.3 Optimization Based Formulation 58

5 Simulation Results 61

5.1 Simulator Implementation . 61

5.2 Velocity Response . 62

5.3 Attitude Response . 70

II Development of Test Platform 79

6 Implementation in the PX4 Flight Stack 81

7 Software-in-the-Loop Simulation 85

7.1 Gazebo . 85

8 Flight Tests 91

xiii

8.1 Test Setup . 91

8.2 Experimental Data . 93

8.2.1 Typical Test Flight . 94

8.2.2 Roll Response . 105

8.2.3 Yaw Rate Response . 108

Concluding Remarks 113

9 Conclusion 113

9.1 Summary and Conclusion . 113

9.2 Future Work . 116

Bibliography 121

List of Figures 126

List of Tables 128

List of Code Listings A1

Appendix A Parameter List A1

Appendix B SITL Plots A9

xiv

Introduction

1

1
Introduction

This introductary chapter gives the motivation and background for this the-

sis, and provides an overview of the report.

1.1 Motivation and Background

During the last decades, developments in unmanned aerial vehicles (UAVs)

have been tremendous, and areas of application are steadily increasing. Sev-

endof AS, a Trondheim based startup company, is developing a novel multi-

purpose UAV capable of vertical take-off and landing (VTOL) in tight spaces,

operating in harsh weather conditions, and long distance flight. The vehi-

cle concept is called StormPetrel. StormPetrel’s first application will be for

powerline inspections, and a cooperation is in place with TrønderEnergi Nett

and norwegian IT company Powel AS. Future possible applications include

search and rescue (SAR) and offshore wind turbine inspection. Figure 1.1

shows some concept illustrations.

3

Figure 1.1: Concept illustrations, courtesy of Sevendof AS

4

1.1.1 Hybrid VTOL UAVs

Several types of UAVs exists today. These can be broadly characterized

into multirotors and fixed wing. For multirotors, propellers create the thrust

force needed to hold the vehicle aloft and maneuver through the air. Fixed

wings utilize a wing for lift and aerodynamic control surfaces to stabilize and

maneuver the vehicle, while usually a main propeller provides thrust needed

for forward motion. Unmanned vehicles that combine the characteristics

of multirotors and fixed wing aircraft are usually called VTOL or hybrid

VTOL UAVs. In this text, the latter will be preferred, as the term VTOL

is sometimes also used for regular multirotors, such as quadcopters, which

can also take-off and land vertically. Hybrid VTOLs utilize some sort of

transition, or conversion mechanism to convert between the two modes, hover

and forward flight respectively. Several types of hybrid VTOLs exist today,

and these are characterized according to how the transition is carried out.

These include tilt-rotors, tilt-wings and tail-sitters. A comprehensive review

of hybrid VTOL platform designs, dynamic modeling and control is given

in [27].

1.1.2 The StormPetrel Airframe

The StormPetrel can be characterized as a quad tilt-rotor convertiplane, or

more generally, a hybrid VTOL flying wing. A tilting mechanism rotates

the thrusters relative to the aircraft body when transitioning from hover to

forward flight. The lift responsibility of the thrusters is gradually taken over

by the wing as the vehicle gains speed. This is illustrated in figures 1.2a

- 1.2c.

Two core properties that distinguish the StormPetrel concept from other

designs are:

• There are no aerodynamic control surfaces such as ailerons, elevators

and rudders. The vehicle attitude is stabilized by thrust differencing

5

(a) Hover
(b) Forward flight

(c) Transition/Tilt

(d) Twist

Figure 1.2: The StormPetrel VTOL Concept

between propellers only.

• The vehicle is capable of full thrust vectoring, i.e. the resulting com-

bined thrust vector from the four propellers can be directed in any rel-

ative direction (inside operating constraints of the tilting mechanisms).

This is achieved by tilting the propellers, not only in the longitudinal

direction, but also sideways as shown in figure 1.2d. The former will

be referred to as tilt, and the latter as twist.

• An onboard hybrid power (HPP) plant to provide long range and en-

durance.

The tilt and twist mechanisms are implemented using powerful servo motors

inside the nacelles (seperate housings) at each side of wing, as can be seen in

figure 1.3. The twist mechanism can be used to suppress side winds during

forward-flight [21], and the full thrust-vectoring capabilites can be utilized

during hover for translational control without tilting the vehicle, thus poten-

6

tially reducing the vehicle surface area being affected by horizontal winds.

In [21], it is also shown how the thrust vectoring system enables the vehicle to

attain an arbitrary attitude while still being able to realize force commands

in any direction.

One potential downside to the design is the increased mechanical complexity

and cost due to the tilting mechanisms. Another is the lack of control sur-

faces during transition and forward flight. As the airspeed increases, fixed

pitch propellers loose efficiency, and as the vehicle relies on the propellers to

produce moments for stabilization, this might cause a problem. This may

be solved by the use of variable pitch propellers, but that would further in-

crease the mechanical complexity. The design might change in the future,

but further analysis and testing is needed.

As a development platform, to test autpilot designs, thrust vectoring me-

chanics and transition performance, Sevendof AS has developed a prototype

vehicle, the MiniPetrel. Some images of the MiniPetrel prototype is shown in

figure 1.3. It has the full functionality of the current StormPetrel design, but

is significantly smaller than the intended final version of the UAV, is battery

powered and not designed to carry payloads. It has a wingspan of 1.1 meters

and a mass of roughly 5 kilograms.

This thesis continues the work on dynamic modeling, simulator implemen-

tation and control system development. In addition, the first ever thrust

vectoring hover flight tests are performed using the MiniPetrel prototype

aircraft.

1.1.3 Previous Work

A lot of previous work have been carried out on the development of the

StormPetrel platform, including several master’s theses. Of particular inter-

est to this thesis are:

• In [21], limitations of existing designs are discussed and a mathematical

7

(a) Hover configuration

(b) Tilt

(c) Twist

Figure 1.3: The MiniPetrel prototype

8

model and flight control system, including a nonlinear 6 DOF model

for the wing aerodynamics, is implemented in Matlab/Simulink. The

dynamic performance is investigated and verified through simulations.

• In [24], the mechanical thrust vectoring system is developed.

• In [15], suitable actuators and sensors are chosen for the MiniPetrel pro-

totype, and a preliminary investigation into choice of autopilot platform

is carried out.

1.2 Contributions

The main contributions of this work are:

• As an alternative to the model proposed in [21], a high-fidelity sim-

ulation model including actuator dynamics is developed based on the

Euler-Lagrange formalism.

• Inertial properties and propeller parameters are identified for the MiniPetrel

prototype.

• The control allocation scheme is reformulated as an optimization prob-

lem and together with the Euler-Lagrange equations of motion verified

through simulation.

• A test platform for thrust vectoring autopilot implementation is devel-

oped based on the open-source PX4 flight stack, and verified through

flight tests in a laboratory environment.

• A Gazebo model for the StormPetrel UAV is developed for software-

in-the-loop (SITL) simulation and interfaced to the PX4 test platform.

9

1.3 Overview

This work consists parts of both theoretical and practical elements. There-

fore, this thesis has been divided into two main parts. Part 1, which is the

more theoretical, consists of chapters 2-5 and addresses modeling, parameter

identification and control, while part 2, consisting of chapters 6-8, presents

the more practical aspects of developing a test platform for implementation

of control algorithms for testing on the aircraft prototype.

In chapter 2, a mathematical model for the UAV is developed based on a

10 DOF Euler-Lagrange approach. In chapter 3, some of the parameters

arising in this model is estimated based on CAD-models and propeller test-

ing. Chapter 4 addresses the issue of control system design, while part 1 is

concluded by simulation results in chapter 5.

Chapter 6 shows how the open-source PX4 flight stack can be modified and

customized to run custom autopilot code, including control allocation for the

StormPetrel UAV. In chapter 7, a StormPetrel model is implemented in the

Gazebo open-source robot simulator for SITL simulation. Chapter 8 docu-

ments flight tests of the MiniPetrel prototype using the system mentioned

above.

Finally, a summary and conclusion, as well as recommendations for future

work are given in chapter 9.

In addition, a video documenting propeller tests, flight experiments and SITL

simulations is attached in the digital appendix.

10

Part I

Modeling, Identification and

Control

11

2
Modeling

In this chapter, mathematical models describing the motion of the Storm-

Petrel UAV will be derived. The Euler-Lagrange equations of motion are

developed for the vehicle, including actuator dynamics and external forces

due to aerodynamic effects.

The following assumptions will be used when developing the model:

Assumptions

• The UAV consists of five links that rotate relative to each other, which

are rigid bodies, i.e. deformation is neglected.

• The propellers are rigid.

• The main forces and moments acting on the UAV are due to aerody-

namics, propulsion and gravity.

• Ground effects are not modeled, i.e. model is not valid for take-off and

landing.

• Interference between propeller wakes and wing is assumed negligible

due to the relatively wide placement of the thrusters in the longitudinal

direction.

13

Figure 2.1: Coordinate frames

Flat Earth Navigation

We will consider motion of the UAV in a local area, with approximately

constant longitude and latitude. This justifies the use of flat earth naviga-

tion [17]. A body-fixed frame {b} is rigidly attached to the main body link

(consisting of wing, fuselage and landing gear), with the origin at the cen-

ter of mass. The position and orientation in space of {b} will be described

relative to an earth-fixed coordinate system with the x-axis pointing north,

y-axis pointing east and z-axis toward the center of the earth. This is often

referred to as a north-east-down (NED) frame, and will be denoted {n}. It

is assumed inertial so that Newton’s laws apply. These two frames are il-

lustrated in figure 2.1. The position of the origin of {b} relative to {n} will

be denoted rb =
[
x y z

]T
. The orientation (attitude) of the aircraft is

uniquely defined by a rotation matrix Rn
b ∈ SO(3). The attitude can also

be represented by a set of three Euler angles Θnb =
[
φ θ ψ

]T
, also called

roll, pitch and yaw angles.

14

Generalized Coordinates

Introductions to the Euler-Lagrange equations can be found in [30] and [16].

The method requires a choice of generalized coordinates that also are a min-

imal representation of the configuration of the vehicle. Here, the following

choice of generalized coordinates will be used:

q =
[
x y z φ θ ψ λr λl γr γl

]T
(2.1)

λr and λl are the right and left tilt angles, while γr and γl are the right and

left twist angles respectively.

The angular velocity of {b} relative to {n} expressed in {b} will be denoted

ωbb/n =
[
p q r

]T
and can be related to the Euler angles as follows [17]:

ωbb/n =

1 0 − sin(θ)

0 cos(φ) cos(θ) sin(φ)

0 − sin(φ) cos(θ) cos(φ)


︸ ︷︷ ︸

T−1
Θ (Θnb)

φ̇θ̇
ψ̇

 (2.2)

In the following sections, expressions for the linear and angular velocity for

each link (main body, right tilt, left tilt, right twist and left twist) will be

derived in terms of the generalized coordinates in the following form:

vi = Jviq̇ ωii/n = Jωiq̇ (2.3)

The Jacobian matrices Jvi and Jωi will then be used to derive the Euler-

Lagrange equations based on total kinetic and potential energy.

2.1 Kinematics

2.1.1 Coordinate Frames

In addition to the body frame {b}, a coordinate frame will be rigidly attached

in the center of mass of the other four links. These will be denoted {tr},

15

{tl}, {twr} and {twl}. In hover configuration, λj = γj = 0, and these frames

are parallel to the body frame. The tilt angle is defined positive when tilting

forward (negative rotation about body y-axis), while the twist angle is defined

positive to the right (positive rotation about tilt x-axis). The propeller thrust

is then directed along the z-axis of the twist frame in the negative direction.

2.1.2 Rotation Matrices

The rotation matrix Rn
b can be expressed with respect to the Euler angles

as follows:

Rn
b (Θnb) = Rz,ψRy,θRx,φ

=

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ

−sθ cθsφ cθcφ

 (2.4)

where s(·) and c(·) is short-hand notation for sin(·) and cos(·) respectively.

The rotation matrices relating the tilt and twist frame to the body frame

are:

Rb
tj

(λj) = Ry,−λj =

cos(λj) 0 − sin(λj)

0 1 0

sin(λj) 0 cos(λj)

 j = r, l (2.5)

R
tj
twj(γj) = Rx,γj =

1 0 0

0 cos(γj) − sin(γj)

0 sin(γj) cos(γj)

 j = r, l (2.6)

Rb
twj

(λj, γj) = Rb
tj

(λj)R
tj
twj(γj) j = r, l (2.7)

2.1.3 Coordinate Vectors

The coordinate vectors of each center of mass can be expressed as:

16

rb =

xy
z

 (2.8)

rtr = rb + Rn
b

(
rr + Rb

trrtr
)

(2.9)

rtl = rb + Rn
b

(
rl + Rb

tl
rtl
)

(2.10)

rtwr = rb + Rn
b

(
rr + Rb

twrrtwr
)

(2.11)

rtwl = rb + Rn
b

(
rl + Rb

twl
rtwl
)

(2.12)

Here, rl and rl are vectors from the main body center of mass to end-of-wing

datums that lie on the tilt axis and are used to express the tilt and twist

centers of mass relative to. These datums are also discussed in chapter 3.

2.1.4 Angular Velocity

Derivatives of the rotation matrix between NED and body can be formulated

as [16]:
d

dt
Rn
b = Rn

bS(ωbb/n) (2.13)

Similarily, using the same formula:

d

dt
Rb
tj

= Rb
tj
S(ω

tj
tj/b

) j = r, l (2.14)

d

dt
R
tj
twj = R

tj
twjS(ω

twj
twj/tj

) j = r, l (2.15)

d

dt
Rb
twj

= Rb
twj

S
(
ω
twj
twj/b

)
j = r, l (2.16)

17

where the angular velocites are:

ω
tj
tj/b

=

 0

−λ̇j
0

 j = r, l (2.17)

ω
twj
twj/tj

=

γ̇j0
0

 j = r, l (2.18)

ω
twj
twj/b

= ω
twj
twj/tj

+ ω
twj
tj/b

= ω
twj
twj/tj

+
(
R
tj
twj

)T
ω
tj
tj/b

j = r, l (2.19)

The angular velocites relative to NED of each link, expressed in their re-

spective frames, can now be derived with respect to the derivatives of the

generalized coordinates:

ωbb/n =

03×3 T−1
Θ 03×4


︸ ︷︷ ︸

Jωb

q̇ (2.20)

ωtrtr/n = ωtrtr/b +
(
Rb
tr

)T
ωbb/n

=

 0

−λ̇r
0

+
(
Rb
tr

)T
T−1

Θ

φθ
ψ


=

 03×3 (Rb
tr)

T
T−1

Θ


0

−1

0

 03×3


︸ ︷︷ ︸

Jωtr

q̇

(2.21)

18

ωtltl/n = ωtltl/b +
(
Rb
tl

)T
ωbb/n

=

 0

−λ̇l
0

+
(
Rb
tl

)T
T−1

Θ

φθ
ψ


=

 03×3 (Rb
tl
)
T

T−1
Θ 03×1


0

−1

0

 03×2


︸ ︷︷ ︸

Jωtl

q̇

(2.22)

ωtwrtwr/n
= ωtwrtwr/b

+
(
Rb
twr

)T
ωbb/n

= ωtwrtwr/tr
+
(
Rtr
twr

)T
ωtrtr/b +

(
Rb
twr

)T
ωbb/n

=

γ̇r0
0

+
(
Rtr
twr

)T  0

−λ̇r
0

+
(
Rb
twr

)T
T−1

Θ

φθ
ψ


=

 03×3 (Rb
twr)

T
T−1

Θ (Rtr
twr)

T


0

−1

0



0 1 0

0 0 0

0 0 0




︸ ︷︷ ︸
Jωtwr

q̇

(2.23)

ωtwltwl/n
= ωtwltwl/b

+
(
Rb
twl

)T
ωbb/n

= ωtwltwl/tl
+
(
Rtl
twl

)T
ωtltl/b +

(
Rb
twl

)T
ωbb/n

=

γ̇l0
0

+
(
Rtl
twl

)T  0

−λ̇l
0

+
(
Rb
twl

)T
T−1

Θ

φθ
ψ


=

 03×3 (Rb
twl

)
T

T−1
Θ


0

0

0

 (R
tl
twl

)
T


0

−1

0



0 1

0 0

0 0




︸ ︷︷ ︸
Jωtwl

q̇

(2.24)

19

2.1.5 Linear Velocity

In the same manner, expressions for the linear velocities can be found by

differentiating the coordinate vectors of each link:

vb =
d

dt
rb =

ẋẏ
ż

 =

1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0


︸ ︷︷ ︸

Jvb

q̇ (2.25)

vtr =
d

dt
rtr

= vb + Ṙn
b rr +��

��*0
Rn
b ṙr + Ṙn

bR
b
trrtr + Rn

b Ṙ
b
trrtr +���

���:0
Rn
bR

b
tr ṙtr

= vb + Rn
bS(ωbb/n)rr + Rn

bS(ωbb/n)Rb
trrtr + Rn

bR
b
trS(ωtrtr/b)rtr

= vb −Rn
bS(rr)ω

b
b/n −Rn

bS(Rb
trrtr)ω

b
b/n −Rn

bR
b
trS(rtr)ω

tr
tr/b

= vb −Rn
bS
(
rr + Rb

trrtr
)
ωbb/n −Rn

bR
b
trS(rtr)ω

tr
tr/b

=

ẋẏ
ż

−Rn
bS
(
rr + Rb

trrtr
)
]T−1

Θ

φ̇θ̇
ψ̇

−Rn
bR

b
trS(rtr)

 0

−λ̇r
0



=

 13×3 −Rn
b S(rr+Rb

tr
rtr)T−1

Θ Rn
bRb

tr
S(rtr)


0

1

0

 03×3


︸ ︷︷ ︸

Jvtr

q̇

(2.26)

20

vtl =
d

dt
rtl

=

ẋẏ
ż

−Rn
bS
(
rl + Rb

tl
rtl
)
T−1

Θ

φ̇θ̇
ψ̇

−Rn
bR

b
tl
S(rtl)

 0

−λ̇l
0



=

 13×3 −Rn
b S(rl+Rb

tl
rtl)T−1

Θ 03×1 Rn
bRb

tl
S(rtl)


0

1

0

 03×2


︸ ︷︷ ︸

Jvtl

q̇

(2.27)

vtwr =
d

dt
rtr

=

ẋẏ
ż

−Rn
b

[
S(rr) + S(Rb

twrrtwr)
]
T−1

Θ

φ̇θ̇
ψ̇


+ Rn

bR
b
trS(Rb

twrrtr)

 0

λ̇r

0

−Rn
bR

b
twrS(rtwr)

γ̇r0
0


=

 13×3 −Rn
b S(rr+Rb

twr
rtwr)T−1

Θ Rn
bRb

tr
S(Rtr

twr
rtwr)


0

1

0

 03×1 −Rn
bRb

twr
S(rtwr)


1

0

0

 03×1


︸ ︷︷ ︸

Jvtwr

q̇

(2.28)

21

vtwl =
d

dt
rtl

=

ẋẏ
ż

−Rn
b

[
S(rl) + S(Rb

twl
rtwl)

]
T−1

Θ

φ̇θ̇
ψ̇


+ Rn

bR
b
tl
S(Rb

twl
rtl)

 0

λ̇l

0

−Rn
bR

b
twl

S(rtwl
)

γ̇l0
0



=

 13×3 −Rn
b S(rl+Rb

twl
rtwl)T−1

Θ 03×1 Rn
bRb

tl
S(R

tl
twl

rtwl)


0

1

0

 03×1 −Rn
bRb

twl
S(rtwl

)


1

0

0




︸ ︷︷ ︸

Jvtwl

q̇

(2.29)

2.2 Dynamics

2.2.1 Kinetic Energy

The kinetic energy of each rigid body is:

Ki =
1

2
miv

T
i vi +

1

2
ωTi/nIiωi/n (2.30)

mi is the mass of link i in kg, and Ii ∈ R3×3 is the symmetric and positive

definite inertia tensor of link iabout its center of mass and aligned with the

axes of its coordinate frame.

I ,

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 , [kg ·m2] (2.31)

22

The total kinetic energy for the entire vehicle is then [30]:

K =
n∑
i=1

Ki =
1

2
q̇TD(q)q̇ (2.32)

where

D(q) =

[∑
V

miJ
T
vi

(q)Jvi(q) + JTwi(q)IiJwi(q)

]
(2.33)

2.2.2 Potential Energy

The potential energy of each link is

Pi = −mig
T ri (2.34)

where g =
[
0 0 g

]T
and g = 9.81 m/s is the acceleration of gravity.

Again, summing the potential energy for all links gives:

P =
∑
V

Pi = −gT
∑
V

miri (2.35)

2.2.3 Euler-Lagrange Equations of Motion

For a system of rigid bodies with kinetic energy in the form (2.32) and po-

tential energy independent of q̇, which also holds here, the Euler-Lagrange

equations can be written [30]:

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ̄ (2.36)

where g(q) is the gravity vector

g(q) =
[
g1(q) . . . gn(q)

]T
(2.37)

gk =
∂P
∂qi

(2.38)

23

C(q, q̇) is called the coriolis and centrifugal matrix, and can be calculated

from D(q). The (k, j)th element of C(q, q̇) can be calculated in the following

way:

ckj =
n∑
i=1

1

2

(
∂dkj
∂qi

+
∂dki
∂qj
− ∂dij
∂qk

)
q̇i (2.39)

where dij denotes the (i, j)th element of D(q).

Next, actuator dynamics will be added to the model, as well as external

generalized forces τ̄ .

2.3 Actuator Dynamics

In total, the vehicle has eight actuators. There are four propellers, and the

thrust vectoring system is controlled by four servo motors. This section

covers actuator dynamics and presents equations that govern the dynamics

of servo motors and thrusters.

2.3.1 Servo Motors

A servo motor can be modelled as a DC motor in series with a gear train

with gear ratio r : 1, and an integrated position feedback controller [21]. The

tilt servos carry heavier loads and are thus larger and capable of producing

more torque than the twist servos. For tilt, the equations are:

λj =
1

rλ
θλj (2.40)

Jλθ̈λj +Bλθ̇λj = uλj −
1

rλ
τ totλ j = r, l (2.41)

uλj = sat

(
kpλeλj + kdλ ėλj + kiλ

∫ t

0

eλj(τ)dτ

)
(2.42)

eλj = sat(λdj)− λj (2.43)

where Jλ[kg ·m2] is the sum of motor and gear moment of inertia, Bλ is

a coefficient of friction, θλj [rad] is the motor angle, while λj is the output

24

angle after gearing. λdj is the desired tilt angle commanded by the control

system, and kpλ , kiλ and kdλ are proportional, integral and derivative gains

respectively. τ totλ is the load torque, which will be defined later in section 2.5.

The saturation function sat(·) represent limits on torque and angles produced

by the servo motor, and is defined as follows:

sat(x) =


xmax if x ≥ xmax

xmin if x ≤ xmin

x otherwise

(2.44)

For twist, the equivalent expressions can be obtained by replacing λ with γ

in the equations above.

2.3.2 Thruster Model

Thruster Dynamics

The thrusters are composed of fixed-pitch carbon fiber blade propellers driven

by brushless permanent magnet AC motors controlled by electronic speed

controllers (ESCs). [23].

In [21], the thruster dynamics are modelled similarly to the servo motor

model (2.40) - (2.43):

JpΩ̇i = ui −Qpi (2.45)

ui = sat

(
kpesciei + kiesci

∫ t

0

ei(τ)dτ

)
i = 1, . . . , 4 (2.46)

ei = sat(Ωdi)− Ωi (2.47)

Qmi = −sat(ui) (2.48)

Jp is the total moment of inertia of one propeller and motor, Ωi is the signed

rotational speed of propeller i, Qpi is the load torque that the propeller

excerts on the motor, given by equation 2.53, sat(ui) is the limited motor

25

Figure 2.2: Propeller numbering and direction of rotation

torque, while Qmi is the equal and opposite reaction torque excerted by the

motor on the vehicle, adhering to Newton’s third law. Ωdi is the desired

rotational speed commanded by the control system.

All propellers rotate in a fixed direction. The direction of rotation for each

propeller as well as propeller numbering is shown in figure 2.2. The sign

of Ωi is determined using the right-hand rule about the twist frame z-axis,

which is parallel to the rotation axis of the propeller. The rotational speed

of clockwise (CW) rotating propellers are positive, while the opposite holds

for counterclockwise (CCW) rotating propellers.

The velocity of propeller i expressed in the twist frame is given by:

ω
twj
pi/twj

=

 0

0

Ωi

 (2.49)

Propeller Aerodynamics

For hovering and low airspeed flight, the thrust and drag torque generated

by one propeller can be modelled by [21]

Tp = ρaD
4CTΩ2 (2.50)

Qp = ρaD
5CQΩ|Ω| (2.51)

26

D[m] is the propeller diameter, and CT and CQ are nondimensional thrust

and drag torque coefficients. To simplify, we will assume that the density of

air is constant and equal to sea level density at 15◦C, which implies

ρa = 1.225[kg/m3] (International Standard Atmosphere) [12], and write:

Tp = kΩ2 (2.52)

Qp = dΩ|Ω| (2.53)

Dividing Qp by Tp gives

Qp

Tp
=
dΩ|Ω|
kΩ2

=
d

k
sgn(Ω) , c (2.54)

which will be used in the control allocation scheme presented in chapter 5.

The parameters k and d will be determined experimentally in chapter 3.

2.4 External Forces

As previously stated, it is assumed that the main forces and moments acting

on the UAV are due to aerodynamics, propulsion and gravity. Gravity is

accounted for in the Euler-Lagrange equations through the potential energy

term. In addition, the reaction torques and gyroscopic terms that arise when

the vehicle links accelerate and rotate relative to each other are accounted

for. We need however, to explicitly add the effects of rotating and thrust

generating propellers, as well as the aerodynamic effects generated by the

airflow generated by vehicle motion.

First we will combine the servo model (2.40) - (2.43) with the Euler-Lagrange

equations given by (2.36) in a similar way as in [30]. By multiplying (2.41)

with rλ and inserting (2.40) we get:

r2
λJλλ̈tj + r2

λBλλ̇tj = rλuλj − τ totλj
(2.55)

We continue by dividing the load torque τ totλj
into two components, one given

by the relevant term from τ̄ in equation (2.36), and one representing added

27

terms due to propulsion moments:

τ totλj
= τλELj + τλj (2.56)

If we repeat this for all tilt and twist angles and define

J =

[
06×6 06×4

04×6 Γ

]
(2.57)

Γ = diag
(
r2
λJλ, r

2
λJλ, r

2
γJγ, r

2
γJγ
)

(2.58)

B =

[
06×6 06×4

04×6 Λ

]
(2.59)

Λ = diag
(
r2
λBλ, r

2
λBλ, r

2
γBγ, r

2
γBγ

)
(2.60)

we get by combining (2.36) and (2.55) - (2.60):

M (q) q̈ + C(q, q̇)q̇ + Bq̇ + g(q) = τ (2.61)

where M (q) = D (q) + J and

τ =



fn

mb

rλuλr − τλr
rλuλl − τλl
rγuγr − τγr
rγuγl − τγl


(2.62)

fn ∈ R3 is a vector of forces acting on the vehicle, expressed in {n}, while

m =
[
Mx My Mz

]T
∈ R3 are the moments acting on the vehicle, expressed

in {b}.

In the following, forces and moments generated by propulsion and aerody-

namics will be covered, and the elements of (2.62) will be defined. The ele-

ments of the force vector fn and the moment vector mb will be derived in {b}

28

and split up into propulsion and aerodynamic components in the following

way:

fn = Rn
b f
b = Rn

b

(
f bprop + f baero

)
(2.63)

mb = mb
prop + mb

aero (2.64)

The elements of f b will be denoted f b =
[
Fx Fy Fz

]T

2.4.1 Propulsion Forces and Moments

Propeller Force

The combined thrust of all four propellers produce a total force acting on the

vehicle, where the direction is governed by the tilt and twist servo angles:

f twjpi
=

 0

0

−Tpi

 (2.65)

f bprop =
4∑
i=1

f bpi =
4∑
i=1

Rb
twj

f twjpi
(2.66)

Moment Arms

To get expressions for the moments generated by thrust differencing, the

moment arms are needed:

29

rbp1
= −rbc +

−lc + ltw cos(λr)

lt

ltw sin(λr)

 rbp2
= −rbc +

−lc − ltw cos(λr)

lt

−ltw sin(λr)


rbp3

= −rbc +

−lc + ltw cos(λl)

−lt
ltw sin(λl)

 rbp4
= −rbc +

−lc − ltw cos(λl)

−lt
−ltw sin(λl)


(2.67)

rpi is vector pointing from the main body center of mass to propeller i, rbc
is the main body center of mass relative to the middle of the wing leading

edge, lt is the length between the body x-axis and the propellers, ltw is half

the length of the tilt arms, and lc is the distance between the leading edge

and the tilt rotation axis along the body x-axis.

Thrust Differencing

The moments acting on the body due to thrust differencing are:

mb
T =

4∑
i=1

rbpi × f bpi =
4∑
i=1

S
(
rbpi
)

f bpi (2.68)

Reaction Torque

The reaction torque from thruster motor i expressed in the appropriate twist

frame is:

mtwj
mi

=

 0

0

Qmi

 (2.69)

where Qmi is given by (2.48).

30

Torque Differencing

Differences in reaction torques wil generate a net moment on the vehicle

defined by:

mb
m =

4∑
i=1

Rb
twj

mtwj
mi

(2.70)

Gyroscopic Moment

Due to the rotating masses of the propellers, the aircraft body will experience

a gyroscopic moment when rotating [23]. Decomposed in the body frame,

this is given by:

mb
gyro =

4∑
i=1

Rb
twj

(
ω
twj
twj/n

× htwjpi

)
= −

4∑
i=1

Rb
twj

(
S(htwjpi

)ω
twj
twj/n

)
(2.71)

where

htwjpi
= Ipω

twj
pi/twj

(2.72)

is the angular momentum vector of propeller i in frame {twj}. Assuming Ip

is diagonal (negligible products of inertia), we get:

htwjpi
=

 0

0

JpΩi

 (2.73)

where Jp is the total moment of inertia of the propeller and motor rotating

masses about their rotation axis. ωtwwtwj/n
can be calculated according to

ω
twj
twj/n

= ω
twj
twj/b

+ ω
twj
b/n

= ω
twj
twj/b

+ (Rb
twj

)Tωbb/n
(2.74)

Without thrust-vectoring (fixed quad-mode), Rb
twj

= 13×3, ω
twj
twj/b

= 0 and

equation (2.71) reduces to the special case

mb
gyro =

4∑
i=1

ωbb/n × hbpi = Jp

4∑
i=1

 qΩi

−pΩi

0

 (2.75)

31

which has a similar form to the gyroscoping moment presented in [18] and

[23]. Due to pairs of counter-rotating propellers, the gyroscoping moment

vanishes when operating with equal tilt and twist on both sides, and when

all propeller speeds are equal.

Total Propulsion Forces and Moments

Summing up the effects of thrust differencing, torque differencing and gyro-

scopic effects gives the total propulsion moment acting on the body:

mb
prop = mb

T + mb
m + mb

gyro (2.76)

In addition, the tilt and twist servo motors will feel a load torque given by:

τγr =
[
−1 0 0

] 2∑
i=1

−S(htwrpi
)ωtwrtwr/n

(2.77)

τγl =
[
−1 0 0

] 4∑
i=3

−S(htwlpi
)ωtwltwl/n

(2.78)

τλr =
[
0 −1 0

] 2∑
i=1

−Rtr
twrS(htwrpi

)ωtwrtwr/n
+ S


(−1)i+1ltw

0

0


Rtr

twrf
twr
pi

+ Rtr
twrm

twr
mi


(2.79)

τλl =
[
0 −1 0

] 4∑
i=3

−Rtl
twl

S(htwlpi
)ωtwltwl/n

+ S


(−1)i+1ltw

0

0


Rtl

twl
f twlpi

+ Rtl
twl

mtwl
mi


(2.80)

Some illustrations of how moments are generated in hover configuration are

given in figures 2.3 - 2.5.

32

Figure 2.3: Generation of roll moment

Figure 2.4: Generation of pitch moment

Figure 2.5: Generation of yaw moment

33

2.4.2 Aerodynamics

Brief introductions to aerodynamics in the context of aircraft control can be

found in [14] and [18]. Comprehensive treatments of the subject can be

found in [12] and [13]. For simplicity, we will in this section not consider the

effects of tilt and twist on the aerodynamic forces and moments, and mainly

consider the wing structure of the main body.

Basic Quantities

When an aircraft moves through the air, a pressure distribution is generated

around the body. This can be modelled as a resultant force and a moment

about a suitable point. The resultant force is commonly decomposed in

elements parallel and perpendicular to the airflow:

f saero =

−FDFY

−FL

 (2.81)

FL is the lift force and FD is the drag force. The lift force is referenced

upwards, while the drag force always acts opposing the longitudinal relative

airflow. The relative velocity of the aircraft through the air, decomposed in

the body frame, can be calculated as

vbr = vb − vbw =

urvr
wr

 (2.82)

where vbw is the velocity of the wind. This will not be covered here, but

several models exist, including Gauss-Markov models and the von Karmen

turbulence spectrum [14]. From this we can calculate

Va =
√
u2
r + v2

r + w2
r (2.83)

α = tan−1

(
wr
ur

)
(2.84)

β = sin−1

(
vr
Va

)
(2.85)

34

Va is the total airspeed, α is the angle of attack, while β is the sideslip angle.

The lift and drag forces of (2.81) is defined in a coordinate frame with its axes

following the longitudinal relative airflow, called the stability frame. f saero can

be rotated to the body frame by the angle of attack:

f baero = Rx,−αf
s
aero (2.86)

Rx,−α =

cos(α) 0 − sin(α)

0 1 0

sin(α) 0 cos(α)

 , Rb
s(α) (2.87)

In this context, the aerodynamic forces and moments are mainly dependent

on vehicle geometry, α, β, total airspeed and the angular velocity ωbb/n [14].

The forces and moments are commonly expressed as:

FL =
1

2
ρaV

2
a SCL(α, q) (2.88)

FD =
1

2
ρaV

2
a SCD(α, q) (2.89)

FY =
1

2
ρaV

2
a SCY (β, p, r) (2.90)

l =
1

2
ρaV

2
a SbCl(β, p, r) (2.91)

m =
1

2
ρaV

2
a Sc̄Cm(α, q) (2.92)

n =
1

2
ρaV

2
a SbCn(β, p, r) (2.93)

mb
aero =

[
l m n

]T
(2.94)

S is the planform area of the wing, c̄ is the mean chord length, while b

is the wingspan of the UAV. CL, CY , CD, Cl, Cm and Cn are nondimen-

sional aerodynamic coefficients for lift force, lateral force, drag force, roll

moment, pitch moment, and yaw moment respectively. These coefficients

are commonly expressed as linear functions based on a first order Tayler se-

ries approximation. See [14] for details. In [21], a 6-DOF nonlinear model is

developed using Newtonian flow theory on a flat plate, in combination with

35

blending and interpolation to be valid for a large range of angles of attack

and sideslip, as well as account for nonlinear effects such as stall.

We will group the aerodynamical coefficients into longitudinal and lateral

coefficients, and in the following state the nonlinear versions.

Longitudinal coefficients

The longitudinal aerodynamic coefficients are defined as

CL = Γlong(β)
[
(1− σ(α)) [CL0 + CLαα] + σ(α)

[
CLNLsign(α) sin2(α) cos(α)

]]
+ CLq

c̄

2Va
q

(2.95)

CD = Γlong(β)
[
CD0 + (1− σ(α))κ [CL0 + CLαα]2 + σ(α)

[
CDNLsign(α) sin3(α)

]]
+ CDq

c̄

2Va
q

(2.96)

Cm = Γlong(β)
[
(1− σ(α)) [Cm0 + Cmαα] + σ(α)

[
CmNLsign(α) sin2(α)

]]
+ Cmq

c̄

2Va
q

(2.97)

Lateral coefficients

The lateral aerodynamic coefficients are given by

CY = CY0 + (1− σ(β))CYββ + σ(β)sign(β)ΓY (β)

+ CYp
b

2Va
p+ CYr

b

2Va
r

(2.98)

36

Cl = Cl0 + (1− σ(β))Clββ + σ(β)sign(β)Γl(β)

+ Clp
b

2Va
p+ Clr

b

2Va
r

(2.99)

Cn = Cn0 + (1− σ(β))Cnββ + σ(β)sign(β)Γn(β)

+ Cnp
b

2Va
p+ Cnr

b

2Va
r

(2.100)

σ(u) is a sigmoid function used to blend between the linear and nonlinear do-

mains, Γlong(β) represents a Catmul-Rom cubic spline interpolation between

one and zero used to compensate for the reduction in longitudinal forces and

moment as β increases. For the lateral coefficients, Γ(·)(β) is used similarly to

interpolate between the linear region and a constant defining the coefficient

at ninety degrees sideslip. For details, see [21].

Total Aerodynamic Forces and Moments

A suitable point to define the moments about is the aerodynamic center.

About this point, the pitch moment do not vary with angle of attack [13].

For an airfoil, this is approximately located at the quarter-chord point, and

we will here use this as an approximation for the aerodynamic center for the

entire vehicle. We then need to add the moments resulting from the moment

arm between this point and the center of mass given by the cross-product

rule m = r× f .

The total aerodynamic forces and moments acting upon the vehicle can be

37

summarized as:

f baero =
1

2
ρaV

2
a SRb

s(α)

−CDCY

−CL

 (2.101)

mb
aero =

1

2
ρaV

2
a S

 bClc̄Cm

bCn

+ rbAC × f baero (2.102)

where rbAC is the location of the aerodynamic center relative to center of

mass, and the aerodynamic coefficients are given by (2.95) - (2.100).

2.5 Total Vehicle Model

The total vehicle model can be summarized as

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ̄ (2.103)

τ =



fn

mb

rλuλr − τλr
rλuλl − τλl
rγuγr − τγr
rγuγl − τγl


(2.104)

2.6 Comments on the Equations of Motion

The choice of Euler angles as generalized coordinates indroduce a singularity

in the model. More specifically, the derivatives of the Euler angles, given

by (2.2) are not defined at θ = ±π
2
. This singularity is discussed in detail

in [17]. In [16], it is shown how the Euler-Lagrange equations for a single

38

rotating body are equivalent to the rotational part of the Newton-Euler equa-

tions, which is singularity-free and independent of kinematic terms, and can

be transformed to the latter after a lot of algebraic substitutions. This will

not be attempted here, as the equations include large 10× 10 matrices with

lots of complicated trigonometric terms involving Θnb. Of the exact same

reason, the elements of these matrices are not shown here, but rather calcu-

lated using the Matlab Symbolic Math Toolbox and used for code generation

of Matlab functions used in Simulink.

It would be nice however, to get explicit expressions, in closed form, free of

singularities for a multi-body problem such as this. In [16], methods based

on the calculus of variations are presented, including the Euler-PoincarÃ c©
equation that do not require generalized coordinates. In [19], singularity-free

dynamic equations are developed for spacecraft-manipulator systems using

quasi-coordinates and Lie theory. Spacecraft-manipulator systems are not

unlike the StormPetrel UAV if one considers the main body as the vehicle,

and each tilt-twist pair as a two-link manipulator with thrusters as end-

effectors. These possibilities should be investigated further.

39

3
Parameter Identification

The models derived in chapter 2 contain a lot of physical parameters. For

simulation and control design purposes, these should reflect reality as close

as possible. In addition, several of these are used in the control allocation

method described in chapter 5. This chapter presents an effort to identify

some of these, and serves as a basis for the simulation and flight tests parts

in this thesis. First the mass properties of the vehicle is estimated based on

CAD models. Second a thrust stand and dynamometer is used to estimate

propeller aerodynamic parameters.

3.1 Mass Properties

SolidWorks [9] is a 3D computer-aided design (CAD) and engineering pro-

gram for Microsoft Windows. Sevendof has used this to develop 3D design

models of the MiniPetrel prototype. In addition to 3D geometry of parts,

materials and assembly definitions, SolidWorks also enables the user to cal-

culate mass properties from models. Based on known density of standard

materials as well as user-provided mass and moments of inertia, the software

can numerically calculate total mass, moments of inertia and center of mass

for each model.

41

If we, for now, ignore the rotating masses of propellers and motors, the

MiniPetrel UAV consists of five main bodies that rotate with respect to the

inertial frame and with respect to each other. These are the main body (wing,

fuselage and landing gear), right tilt, left tilt, right twist and left twist. We

consider them rigid bodies and all have some reference frame rigidly attached,

namely the body frame and the respective tilt and twist frames. Modeling,

including descriptions of the reference frames involved is covered in chapter

2.

If we attach a frame {0} rigidly to any rigid body, and calculate the inertia

tensor I0 about some point with respect to this frame, then I0 is invariant

under any motion of this body [30]. If R is the rotation matrix that trans-

forms coordinates from frame {0} to another rigidly attached frame {1}, i.e.

p1 = Rp0, then the inertia tensor with respect to the new frame will be:

I1 = RI0R
T (3.1)

Equation (3.1) is very useful when the reference frames used in our dynamic

model does not match the coordinate systems defined in the SolidWorks de-

sign model. The mass properties tool by default outputs the inertia matrices

in three forms:

• About the center of mass aligned with the principle axes of inertia.

• About the center of mass aligned with the output coordinate system.

• About the origin of and aligned with the output coordinate system.

For simplicity, the second form above was used. This enables us to use an

output coordinate system placed at properly defined datums that do not

move as the model is tweaked. As new parts are added the center of mass

might change. Then we just calculate the center of masses again relative

to these datums. The calculated inertia tensors were then transformed to

the relevant coordinate frames using equation (3.1). For the main body, this

datum is located at the leading edge of the wing, in the center of the lateral

42

axis. For tilt and twist, it is located at the end of the wing in the tilt rotation

axis, on the right and left sides respectively.

The procedure used involves isolating the parts of each rigid body and then

invoking the mass properties tool for each. To save time, some symmetry

considerations were applied, more specifically symmetry about the xz-plane.

Since the left and right tilt frames are parallel (the same applies to twist), the

mass distribution is mirrored about the xz-plane going through the center of

mass of each body. By inspecting the definition of the inertia tensor given

by equation (3.2) [16], it is easy to see that this only leads to a sign flip

of the products of inertia (off-diagonal terms) containing y. Similarly, the

sign of the y-coordinate of the center of mass changes. Because of this, the

procedure could be carried out for tilt and twist on the left side only and

then flipping the signs of the relevant components to get properties of the

right side.

Ib =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 =

∫
b

y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 dm (3.2)

Tables 3.1-3.3 lists the parameters gathered. Just to be clear, the inertia

tensors are taken about each center of mass and aligned with the respective

coordinate frames defined in chapter 2, while the coordinates of the centers

of mass are relative to the listed reference points along the axes of the same

mentioned frames.

3.2 Thruster Parameters

To measure key variables of the thruster system, a thrust stand and dy-

namometer from RCbenchmark [7] was used. Figure 3.1 shows the Series 1580

Thrust Stand and Dynamometer with propeller, motor and ESC mounted

on a table for testing. The thrust stand measures thrust, torque, voltage,

current, vibration and rotational speed. It provides a USB interface and soft-

ware for calibration, data-logging and script automation. Load cells measures

43

Body Symbol Mass [kg]

Main body mb 2.5

Tilt right mtr 0.477

Tilt left mtl 0.477

Twist right mtwr 0.914

Twist left mtwl 0.914

Total mt 5.2820

Table 3.1: Mass of each rigid body

Body Center of mass [m] Reference point

Main body
[
−0.086 0.000 0.029

]T
Middle of leading edge

Tilt right
[

0.003 0.040 0.011
]T

Tilt axis at right end of wing

Tilt left
[

0.003 −0.040 0.011
]T

Tilt axis at left end of wing

Twist right
[

0.000 0.030 −0.035
]T

Tilt axis at right end of wing

Twist left
[

0.000 −0.030 −0.035
]T

Tilt axis at left end of wing

Table 3.2: Center of mass for each rigid body

44

Body Ixx Iyy Izz Ixy Ixz Iyz

Main body Ib 0.080000 0.022370 0.090500 0.000000 0.000000 0.000000

Tilt right Itr 0.000893 0.000861 0.000321 -0.000008 0.000009 -0.000045

Tilt left Itl 0.000893 0.000861 0.000321 0.000008 0.000009 0.000045

Twist right Itwr 0.001047 0.057189 0.056479 0.000000 0.000000 0.000094

Twist left Itwl 0.001047 0.057189 0.056479 0.000000 0.000000 -0.000094

Total It 1.084700 0.154300 1.211800 0.000000 -0.001300 0.000000

Table 3.3: Inertia tensor for each rigid body [kg ·m2]

Figure 3.1: Thrust stand and dynamometer

45

Manufacturer Model Price

Motor T-Motor U5 KV400 $125.9

Propeller T-Motor P15x5 $55.9/pair

ESC T-Motor AIR 40A $39.99

Table 3.4: Components used in tests

thrust and torque, while rotational speed is measured electrically with a RPM

probe soldered to one of the three phases output from the ESC. Table 3.4

lists the components used in the tests.

The RCbenchmark software stores logged data as CSV files which was im-

ported to MATLAB for curve fitting. Figures 3.2 - 3.5 shows the resulting

fitted curves plotted against measured data of propeller speed, torque, thrust,

voltage and throttle. The measured data is fitted against the models (2.53)

- (2.54). The current MiniPetrel prototype does not have ESCs with RPM

control. Therefore a mapping from throttle and battery voltage to propeller

speed is sought after, in the following form:

Ω = f(δt, V) (3.3)

δt =
PWM − PWMmin

PWMmax − PWMmin

(3.4)

A good fit was achieved for the model

Ω = f(δt, V) = a(δtV)2 + b(δtV) (3.5)

Equation (3.5) is inverted in the control allocation implementation to convert

speed commands to PWM outputs. All estimated parameters are summa-

rized in table 3.5.

When running the propeller, an issue was noticed with the speed measure-

ments at around 400 - 500 rad/s. These measurements were treated as out-

liers during curve fitting, and are quite evident in the presented figures.

46

0 100 200 300 400 500 600 700 800

 [rad/s]

0

5

10

15

20

25

30

35

T
p
 [N

]

Thrust vs Speed

Measured
Fitted

Figure 3.2: Thrust as a function of speed

0 100 200 300 400 500 600 700 800

 [rad/s]

0

0.1

0.2

0.3

0.4

0.5

0.6

Q
p
 [N

m
]

Torque vs Speed

Measured
Fitted

Figure 3.3: Torque as a function of speed

47

0 5 10 15 20 25 30

T
p
 [N]

0

0.1

0.2

0.3

0.4

0.5

0.6

Q
p
 [N

m
]

Torque vs Thrust

Measured
Fitted

Figure 3.4: Torque as a function of thrust

0

200

26

400

600

800

1

1000

 [r
ad

/s
]

1200

1400

Speed vs Throttle and Voltage

0.824 0.6

V
t

0.422 0.2020

Figure 3.5: Speed as a function of throttle and voltage

48

Parameter Description Value Unit

k Thrust constant 4.91e− 5 kg · m

d Torque constant 8.94e− 7 kg · m2

c Torque to thrust ratio 0.01821 m

a Quadratic speed gain −0.3321 N/A

b Linear speed gain 40.6 N/A

Table 3.5: Thrust parameters

Throttle Speed [rad/s] Thrust [N] Voltage [V]

0.50 439.82 9.797 22.2

0.65 544.54 14.61 22.2

0.75 596.90 18.63 22.2

0.85 649.26 21.77 22.2

1.00 680.68 24.32 22.2

Table 3.6: Supplier test data

3.2.1 Comparison With Supplier Test Data

Table 3.6 shows test data provided by the supplier [11] for the same com-

bination of motor, ESC and propeller. This data is useful to verify the ex-

perimental results, and is plotted against the fitted data in figure 3.6, which

shows a relatively good match. No torque data was available on the T-motor

website for the components tested.

49

400 450 500 550 600 650 700

 [rad/s]

6

8

10

12

14

16

18

20

22

24

26

T
p
 [N

]

Thrust vs Speed

Test data
Fitted

Figure 3.6: Comparison with supplier test data

50

4
Control System Design

A basic overview of the StormPetrel control system is shown in figure 4.1.

Velocity and attitude setpoints are generated by either manual control or

a guidance system for e.g. waypoint and path following. Based on these

setpoints, and navigation data, velocity and attitude controllers generate

force and moment commands that are converted into actuator commands in

the control allocation module.

A control system for the StormPetrel UAV has been developed in detail

in [21], including detailed simulation studies and performance analysis. This

chapter presents the main parts of the StormPetrel control system relevant

for hover control, including controllers for attitude and velocity, as well as

methods for control allocation. Control allocation is given the most attention,

and some modifications are proposed.

4.1 Attitude Control

The following quaternion attitude controller is from [17] with an added inte-

gral term. It is used in the Matlab simulations discussed in chapter 5.

51

Figure 4.1: Block diagram of StormPetrel control system

mb = −KpQ ε̃−KdQω −KiQ

∫ t

0

ε̃(τ)dτ (4.1)

ε̃ =
[
ε̃1 ε̃2 ε̃3

]T
(4.2)

Q̃ = Q⊗Q∗d =
[
η̃ ε̃1 ε̃2 ε̃3

]T
(4.3)

⊗ and ∗ denotes quaternion multiplication and conjugate respectively.

4.2 Velocity Control

The velocity controller used is a PI controller with gravity compensation

formulated in {n}:

fn = −
[

0
0
mtg

]
−Kpve

n
v −Kiv

∫ t

0

env (τ)dτ (4.4)

env = vnb − vnd (4.5)

The resulting control forces can be rotated to the body frame using the

following transformation.

52

f b = (Rn
b)T fn (4.6)

This controller is applied in both the simulations presented in chapter 5, and

the flight tests discussed in chapter 8.

4.3 Control Allocation

Figure 4.2 shows a block diagram of the control allocation module. The

commanded forces and moments output from the controllers are converted

into actuator outputs, which include desired propeller speeds, tilt and twist

angles. The diagram also shows how saturation statuses can be fed back to

the controllers for use in e.g. anti wind-up schemes. The battery status is also

shown as an input. With the battery voltage available, (3.5) can be inverted

to calculate PWM outputs. This is applied in the flight tests of chapter 8.

The simulation model used for chapter 5 however, uses the speed-regulated

thruster models presented in chapter 2.

A comprehensive survey on control allocation methods, including optimization-

based and fault-tolerant methods, is given in [22]. Adaptive methods are

discussed in [31].

4.3.1 Main Algorithm

The main algorithm, first presented in [21] is given below. To simplify, tilt

and twist angles are kept equal on both sides. Originally, the tilt coordinate

frame was defined such that λ = 0 during forward flight, with λ increasing

when tilting backwards (positive rotation about body y-axis). To reflect the

changes in coordinate frames, introduced in chapter 2, the control allocation

equations have been updated accordingly.

53

Figure 4.2: Control allocation block diagram

The propeller forces, decomposed in the body frame is given by:

f b = Rb
tw (λ, γ)

 0

0

−1

 4∑
i=1

Tpi (4.7)

The magnitudes of the force in the xz-plane and the total force vector can

be calculated as follows.

Fxz =
√
F 2
x + F 2

z (4.8)

Ft =
√
F 2
x + F 2

y + F 2
z =

√
F 2
xz + F 2

y =
4∑
i=1

Tpi (4.9)

Expanding (4.7) gives: FxFy
Fz

 =

 cos(γ) sin(λ)

sin(γ)

− cos(λ) cos(γ)

Ft (4.10)

Dividing Fx by Fz gives:

Fx
Fz

=
cos(γ) sin(λ)Ft
− cos(λ) cos(γ)Ft

=
sin(λ)

− cos(λ)
=⇒ λd = atan2 (Fx,−Fz) (4.11)

54

Substituting (4.10) into (4.8) gives

Fxz =
√
F 2
x + F 2

z =
√

cos2(γ) sin2(λ)F 2
t + cos2(λ) cos2(γ)F 2

t (4.12)

=
√

cos2(γ)
(
sin2(λ) + cos2(λ)

)
F 2
t =

√
cos2(γ)F 2

t = cos(γ)Ft (4.13)

Furthermore:

Fy
Fxz

=
sin(γ)Ft
cos(γ)Ft

= tan(γ) =⇒ γd = atan2 (Fy, Fxz) (4.14)

The calculation of desired tilt and twist angles based on force commands can

be summarized as:

λd = atan2 (Fx,−Fz) (4.15)

γd = atan2 (Fy, Fxz) (4.16)

The moment commands due to propeller thrust and torque differencing are:

mb =
4∑
i=1

[
rbpi(λ)×Rb

tw (λ, γ) f twpi + Rb
tw (λ, γ) mtw

mi

]
(4.17)

=
4∑
i=1

[
rbpi(λ)×Rb

tw (λ, γ) f twpi + Rb
tw (λ, γ) cif

tw
pi

]

=
4∑
i=1

Tpi
rbpi(λ)×Rb

tw (λ, γ)

 0

0

−1

+ Rb
tw (λ, γ) ci

 0

0

−1




︸ ︷︷ ︸
ai(λ,γ)


=

4∑
i=1

[Tpiai (λ, γ)]

with

ai (λ, γ) =

axiayi
azi

 (4.18)

55

and

ci = −c i = 1, 4 (4.19)

ci = c i = 2, 3 (4.20)

Combining the previous equations for total force and moments, we get:
Ft

Mx

My

Mz

 =


1 1 1 1

ax1 ax2 ax3 ax4

ay1 ay2 ay3 ay4

az1 az2 az3 az4


︸ ︷︷ ︸

A


Tp1

Tp2

Tp3

Tp4

 =⇒


Tp1

Tp2

Tp3

Tp4

 = A−1


Ft

Mx

My

Mz

 (4.21)

From this the desired propeller speeds can be calculated according to:

Ωi = −
√
Tpi
k

i = 1, 4 (4.22)

Ωi =

√
Tpi
k

i = 2, 3 (4.23)

4.3.2 Constraints

To provide sane input and output values, as well as avoiding a negative

number under the square root when calculating propeller speed, the following

constraints are used:

Fx =

sgn(Fxd)FxLIM if |Fxd | > FxLIM

Fxd otherwise
(4.24)

Fy =

sgn(Fyd)FyLIM if |Fyd | > FyLIM

Fyd otherwise
(4.25)

Fz =


0 if Fzd > 0

−FzLIM if Fzd < −FzLIM
Fzd otherwise

(4.26)

56

Mx =

sgn(Mxd)MxLIM if |Mxd | > MxLIM

Mxd otherwise
(4.27)

My =

sgn(Myd)MyLIM if |Myd | > MyLIM

Myd otherwise
(4.28)

Mz =

sgn(Mzd)MzLIM if |Mzd | > MzLIM

Mzd otherwise
(4.29)

Fxz =

FxzMIN
if Fxzd < FxzMIN

Fxzd otherwise
(4.30)

λ =


λMAX if λd > λMAX

λMIN if λd < λMIN

λd otherwise

(4.31)

γ =


γMAX if γd > γMAX

γMIN if γd < γMIN

γd otherwise

(4.32)

TpMAX
= kΩ2

MAX (4.33)

Ft =

FtMAX
if Ftd > FtMAX

Ftd otherwise
(4.34)

FtMAX
= 4TpMAX

(4.35)

Tp =

0 if Tpd < 0

Tpd otherwise
(4.36)

57

4.3.3 Optimization Based Formulation

An alternative to the simple method above is to formulate an optimization

problem. The advantage of this is that constraints on propeller speeds can

be incorporated into the problem formulation, and balanced moments can be

achieved. This is not always the case if some of the propellers reaches their

minimum or maximum speed. To solve this, slack variables are introduced,

that allow to boost, or reduce the total thrust a little bit to ensure that com-

manded moments are realized. Inequality constraints on the slack variables

can be introduced to limit the allowed thrust boost/reduction.

To simplify the problem, pre-calculated tilt and twist angles are used, as

calculated above, while the propeller speeds are calculated from propeller

thrust as before. The following quadratic program (QP) is proposed:

min
x

f(x) =
1

2
xTQxx + cTxx +

1

2
sTQss + cTs s

s.t. Ax = a + s

c ≥ x ≥ b ≥ 0

e ≥ s ≥ d

(4.37)

s are slack variables for realized forces and moments. Qs can be used to

prioritize roll and pitch over yaw and total thrust, as this is important to

stabilize the vehicle.

x =
[
Tp1 Tp2 Tp3 Tp4

]T
(4.38)

a =
[
Ft Mx My Mz

]T
(4.39)

b =
[
TpMIN

TpMIN
TpMIN

TpMIN

]T
(4.40)

58

c =
[
TpMAX

TpMAX
TpMAX

TpMAX

]T
(4.41)

d =
[
−max reduction −∞ −∞ −∞

]T
(4.42)

e =
[
max increase ∞ ∞ ∞

]T
(4.43)

This method is used in the simulator implementation and simulation results

shown in chapter 5. Details on how to convert this to standard form ready

for solving using the Matlab function quadprog, can be seen in the file ”con-

trolalloc.m” in the digital appendix. The first step is to gather the propeller

thrusts and slack variables in a common vector:

z =
[
xT sT

]T
=
[
TP1 TP2 TP3 TP4 sFT sMx sMy sMz

]T
(4.44)

and then reformulate the problem in terms of this.

A detailed treatment on numerical optimization, including quadratic pro-

gramming, can be found in [25].

59

5
Simulation Results

The simulation model developed in chapter 2 has been implemented in Mat-

lab and Simulink. As a first step to verify the derived model, and the alter-

native control allocation scheme proposed in chapter 4, this chapter briefly

presents some simulation results and discusses some aspects related to the

implementation.

5.1 Simulator Implementation

A simulator is implemented in Matlab/Simulink based on the Euler-Lagrange

equations of motion derived in chapter 2, the identified inertial and thruster

parameters from chapter 3, and the flight control system presented in chapter

4. Most of the remaining unknown parameters are reused from [21]. Matlab

function files for the Euler-Lagrange system matrices are generated from the

symbolic expressions and used in the simulator. Better performance and a

more efficient simulation should be strived for in the future. The current

implementation is very demanding due to the complicated kinematic terms

introduced by Euler angles as generalized coordinates. This is especially

true for the coriolis and centrifugal matrix C(q, q̇). Symbolic simplification,

optimized code generation and compilation were all attempted unsuccess-

fully. The slow simulation time makes it difficult to tune controllers and

61

improve performance, as well as doing dynamic exploration of the system.

However, simulation results showing attitude and velocity command track-

ing are presented in the next section, thus verifying both the proposed model

and optimization-based control allocation scheme to some extent. Further

verification of the model should be done in the future.

The implemented Simulink models, Matlab init scripts, control allocation

function, symbolic Euler-Lagrange matrices and full parameter list can be

found in the attached digital appendix. The solver used for simulation is

the ode45 variable step solver. No wind disturbances were applied during

simulation, and first order low-pass filters were used as reference filters.

5.2 Velocity Response

Figures 5.1 - 5.14 show the response to a series of steps in desired NED veloc-

ities. Figure 5.1 shows how the vehicle velocities converge to the setpoints.

Figure 5.8 shows how the vehicle attitude is stabilized during the maneuver.

Plots of other relevant variables, including force commands, tilt and twist

angles and propeller speeds are also included for reference.

62

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

[m
/s

]
NED velocities

vx
vx

d

0 2 4 6 8 10 12 14 16 18 20
0

1

2

[m
/s

] vy
vy

d

0 2 4 6 8 10 12 14 16 18 20

time [s]

-2

0

2

[m
/s

]

vz
vz

d

Figure 5.1: NED velocities

0 2 4 6 8 10 12 14 16 18 20

time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

v
b
 [m

/s
]

Body velocities

u
v
w

Figure 5.2: Body velocities

63

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

vx
 [N

]

NED velocity integral terms

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

vy
 [N

]

0 2 4 6 8 10 12 14 16 18 20

time [s]

0

0.5

1

vz
 [N

]

Figure 5.3: Integrals of NED velocity errors

0 2 4 6 8 10 12 14 16 18 20
0

1

2

F
x [N

]

Force Commands

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

F
y [N

]

0 2 4 6 8 10 12 14 16 18 20

time [s]

-54

-52

-50

F
z [N

]

Figure 5.4: Force commands

64

0 2 4 6 8 10 12 14 16 18 20

time [s]

-0.5

0

0.5

1

1.5

2

 [d
eg

]

Tilt angles vs desired

r

l

d

Figure 5.5: Tilt angle

0 2 4 6 8 10 12 14 16 18 20

time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 [d
eg

]

Twist angles vs desired

r

l

d

Figure 5.6: Twist angle

65

0 2 4 6 8 10 12 14 16 18 20
0

20

40

x n
 [m

]

NED Position

0 2 4 6 8 10 12 14 16 18 20
0

5

10

y n
 [m

]

0 2 4 6 8 10 12 14 16 18 20

time [s]

-10

0

10

z n
 [m

]

Figure 5.7: NED position

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

[d
eg

]

Attitude

d

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

[d
eg

]

d

0 2 4 6 8 10 12 14 16 18 20

time [s]

-0.5

0

0.5

[d
eg

]

d

Figure 5.8: Attitude

66

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

p
[d

eg
/s

]

Angular velocity

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

q
[d

eg
/s

]

0 2 4 6 8 10 12 14 16 18 20

time [s]

-0.2

0

0.2

r
[d

eg
/s

]

Figure 5.9: Angular velocities

0 2 4 6 8 10 12 14 16 18 20
0

10

20

1

 [N
m

]

10-3 Attitude integral terms

0 2 4 6 8 10 12 14 16 18 20
0.55

0.6

0.65

2

 [N
m

]

0 2 4 6 8 10 12 14 16 18 20

time [s]

-0.02

0

0.02

3

 [N
m

]

Figure 5.10: Integrals of attitude error

67

0 2 4 6 8 10 12 14 16 18 20
-0.02

0

0.02
M

x [N
m

]
Moment Commands

0 2 4 6 8 10 12 14 16 18 20
-1

-0.5

0

M
y [N

m
]

Moment Commands

0 2 4 6 8 10 12 14 16 18 20

time [s]

-0.05

0

0.05

M
z [N

m
]

Moment Commands

Figure 5.11: Moment commands

0 2 4 6 8 10 12 14 16 18 20

time [s]

-600

-400

-200

0

200

400

600

i [r
ad

/s
]

Propeller speed

1

2

3

4

Figure 5.12: Propeller speed

68

0 2 4 6 8 10 12 14 16 18 20
-530

-520

-510

-500

[r
ad

/s
]

Propeller speed vs desired, P1 and P2

1

1
d

0 2 4 6 8 10 12 14 16 18 20

time [s]

510

520

530

540

[r
ad

/s
]

2

2
d

Figure 5.13: Propeller speed, propellers 1 and 2

0 2 4 6 8 10 12 14 16 18 20
495

500

505

510

515

[r
ad

/s
]

Propeller speed vs desired, P3 and P4

3

3
d

0 2 4 6 8 10 12 14 16 18 20

time [s]

-550

-540

-530

-520

-510

[r
ad

/s
]

4

4
d

Figure 5.14: Propeller speed, propellers 3 and 4

69

0 5 10 15
0

5

10

[d
eg

]

Attitude

d

0 5 10 15
-10

0

10

[d
eg

]

d

0 5 10 15

time [s]

0

5

10

[d
eg

] d

Figure 5.15: Attitude

5.3 Attitude Response

Figures 5.15 - 5.28 show the response to a series of steps in desired attitude.

Figure 5.15 show that the vehicle attitude converges to the desired attitude.

Figure 5.19 shows that the vehicle velocity is stabilized during the maneuver.

Plots of other relevant variables, including force and moment commands, tilt

and twist angles and propeller speeds are included for reference.

70

0 5 10 15
-5

0

5

p
[d

eg
/s

]
Angular velocity

0 5 10 15
-5

0

5

q
[d

eg
/s

]

0 5 10 15

time [s]

-2

0

2

r
[d

eg
/s

]

Figure 5.16: Angular velocities

0 5 10 15
-0.1

0

0.1

1

 [N
m

]

Attitude integral terms

0 5 10 15
0.6

0.65

0.7

2

 [N
m

]

0 5 10 15

time [s]

-0.2

0

0.2

3

 [N
m

]

Figure 5.17: Integrals of attitude error

71

0 5 10 15
0

0.05

0.1
M

x [N
m

]

Moment Commands

0 5 10 15
-0.7

-0.6

-0.5

M
y [N

m
]

Moment Commands

0 5 10 15

time [s]

-0.2

0

0.2

M
z [N

m
]

Moment Commands

Figure 5.18: Moment commands

0 5 10 15
-0.01

0

0.01

[m
/s

]

NED velocities

vx
vx

d

0 5 10 15
-2

0

2

[m
/s

]

10-3

vy
vy

d

0 5 10 15

time [s]

-0.05

0

0.05

[m
/s

]

vz
vz

d

Figure 5.19: NED velocities

72

0 5 10 15

time [s]

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

v
b
 [m

/s
]

Body velocities

u
v
w

Figure 5.20: Body velocities

0 5 10 15
-0.01

0

0.01

vx
 [N

]

NED velocity integral terms

0 5 10 15
-5

0

5

vy
 [N

]

10-4

0 5 10 15

time [s]

0

0.1

0.2

vz
 [N

]

Figure 5.21: Integrals of NED velocity errors

73

0 5 10 15
-10

0

10

F
x [N

]

Force Commands

0 5 10 15
-5

0

5

F
y [N

]

0 5 10 15

time [s]

-53

-52

-51

F
z [N

]

Figure 5.22: Force commands

0 5 10 15

time [s]

-7

-6

-5

-4

-3

-2

-1

0

1

 [d
eg

]

Tilt angles vs desired

r

l

d

Figure 5.23: Tilt angle

74

0 5 10 15

time [s]

-5

-4

-3

-2

-1

0

1

 [d
eg

]
Twist angles vs desired

r

l

d

Figure 5.24: Twist angle

0 5 10 15
-0.05

0

0.05

x n
 [m

]

NED Position

0 5 10 15
-5

0

5

y n
 [m

]

10-3

0 5 10 15

time [s]

0

0.1

0.2

z n
 [m

]

Figure 5.25: NED position

75

0 5 10 15

time [s]

-600

-400

-200

0

200

400

600

i [r
ad

/s
]

Propeller speed

1

2

3

4

Figure 5.26: Propeller speed

0 5 10 15
-540

-520

-500

-480

[r
ad

/s
]

Propeller speed vs desired, P1 and P2

1

1
d

0 5 10 15

time [s]

490

500

510

520

530

[r
ad

/s
]

2

2
d

Figure 5.27: Propeller speed, propellers 1 and 2

76

0 5 10 15
460

480

500

520

[r
ad

/s
]

Propeller speed vs desired, P3 and P4

3

3
d

0 5 10 15

time [s]

-560

-540

-520

-500

[r
ad

/s
]

4

4
d

Figure 5.28: Propeller speed, propellers 3 and 4

77

Part II

Development of Test Platform

79

6
Implementation in the PX4 Flight Stack

An implementation of the flight control system presented in chapter 4 has

been developed based on the PX4 open-source flight stack [6]. PX4 provides

support for several hardware platforms, including the Pixhawk [4]. An image

of the Pixhawk 2.1 flight controller installed on the MiniPetrel prototype is

shown in figure 6.1.

The PX4 framework provides basic functionality including RC control input,

communication with ground control stations using the MAVLINK protocol,

hardware drivers, logging, a parameter system and an extended Kalman fil-

ter for state estimation. This has enabled the author to focus on software

controller implementation, instead of basic utilities as mentioned above. Fig-

ures 6.2 and 6.3 shows screenshots of the QGroundControl GUI, which is the

default ground control station for use with PX4.

The PX4 flight stack is divided into modules that runs as separate threads

in the operating system, which communicate using uORB messages, which

are implemented using a publish/subscribe pattern. The author has spent a

significant amount of time familiarizing with the framework and how to write

custom code. A lot of useful information is found in the PX4 developers

guide [5], and most of the work is based on this information, but a lot of

time had to be spent manually searching through code. Because of lack of

time, and focus on thoroughly documenting the flight experiment results,

81

Figure 6.1: Pixhawk flight controller

82

Figure 6.2: QGroundControl

Figure 6.3: QGroundControl

83

the documentation of the implementation has had to suffer. The main parts

of the custom code is attached in the digital appendix. In shortness, it

consists of two custom modules, one for velocity control (wrongly named pos

control) and one for control allocation. In addition, custom uORB message

definitions, build scripts, init scripts, logger configurations and several minor

changes to existing code has been made.

84

7
Software-in-the-Loop Simulation

To test the implemented autopilot software, a Software-in-the-loop (SITL)

simulation has been developed using the Gazebo robot simulator. In a SITL

simulation, the flight code runs on a computer, e.g. in Ubuntu Linux, in con-

trary to Hardware-in-the-Loop (HIL) where the flight code runs on the actual

autopilot hardware being used on the aircraft. Both SITL and HIL simu-

lations are useful for preflight testing when developing UAVs. This chapter

provides a brief introduction to Gazebo, and documents the procedure and

presents the main components involved in interfacing a SITL simulation with

PX4. In addition, plots of logged simulation data is included for verification

of the custom PX4 code.

Some examples of SITL and HIL related to guidance, navigation and control

of UAVs in the literature can be found in [26] and [28]. HIL is also treated

in [29]. Some examples of commercial resources, including specialized real-

time simulation hardware are [3], [2] and [10].

7.1 Gazebo

Gazebo [1] is an open-source robot simulator including a graphics engine,

ODE solver, collision detection and possibilities for sensor simulation. Models

85

are defined using an XML extension called SDF [8]. In Gazebo, plugins are

used to extend functionality, and write custom code for e.g. aerodynamic

models or communication with external applications. An excerpt of a model

definition, consisting of links, joints and plugins, is given below.

1 <sdf version=’1.5’>

2 <model name=’stormpetrel’>

3 <pose>0 0 0.23 0 0 0</pose>

4 <link name=’base_link’>

5

...

6 </link>

7 <link name=’base_link’>

8

...

9 </link>

10

...

11 <joint name=’tiltarm_left_joint’ type=’revolute’>

12

...

13 </joint>

14 <joint name=’tiltarm_left_joint’ type=’revolute’>

15

...

16 </joint>

17

...

18 <plugin name=’rotors_gazebo_imu_plugin’ filename=’←↩
librotors_gazebo_imu_plugin.so’>

19

...

20 </plugin>

21

...

22 <static>0</static>

23 </model>

24 </sdf>

Listing 7.1: SDF excerpt

A SDF model definition has been made for the StormPetrel UAV, with ge-

86

ometry from CAD-models and the parameters identified in chapter 3. The

simulation is interface to a SITL instance of PX4 for SITL simulations. Plu-

gins for thruster models and UDP communication with PX4 have been used

from the RotorS simulator [20]. The full SDF model implementation is at-

tached in the digital appendix.

Screenshots of running simulation runs, as well as detailed images of the

developed model is shown in figures 7.1 - 7.3. Video of running simulations

are shown in the video attached in the digital appendix, parameters used

are summarized in appendix A, while plots of logged data are provided in

appendix B.

The results show that the implemented custom autopilot succesfully stabilizes

the vehicle in simulations, with good maneuverability.

87

Figure 7.1: Software-in-the-loop simulation with Gazebo

88

Figure 7.2: Link frames and centers of mass

Figure 7.3: Inertia

89

8
Flight Tests

This chapter presents the results of flight tests carried out with the MiniPetrel

prototype based on the implementation discussed in chapter 6. The labora-

tory test setup is explained, and plots of log data are presented and discussed.

8.1 Test Setup

To test the PX4 implementation of the custom flight code, and to do initial

tuning of controllers in a safe way, an indoor test cell was made in cooperation

between Sevendof AS and the Department of Engineering Cybernetics. The

test cell consists of a net-enclosed area of approximately 6 x 8 x 6 meters. On

the inside, the vehicle is suspended from a rope. The other end of the rope is

attached to a crane with a counterweight on the outside. The counterweight

and the natural damping of the crane hook provides damping when shutting

off power in the air. The MiniPetrel prototype hanging in the rig is shown in

figure 8.1. To abort flight if something wrong should happen, e.g. unstable

attitude responses, a killswitch was mapped to the RC controller, effectively

shutting off power to the outputs if engaged.

There is also a rope fastened underneath the vehicle, to manually restrain

the motion if needed. A downside to these safety measures is that the ropes

91

Figure 8.1: Test Rig

Figure 8.2: Hovering

92

affect the dynamics of the UAV by forces acting on the body of the vehicle,

and the effective weight of the UAV when suspended is lower than actual.

As the vehicle ascends, approaching the ceiling, the propellers carry all of

the weight and the effects on the dynamics are small unless operating at the

borders of the cell.

Since the test cell is located indoors, and no indoor positioning system (IPS)

has been implemented, the tests are based on IMU attitude, angular rates

and velocity estimates only. This means that the position has to be stabilized

by manual velocity setpoints.

The mass of the MiniPetrel prototype including all equipment used during

testing turned out to be a little higher than what is described in chapter 3.

The total mass is approximately 6.5 kg, which is reflected in the plots in the

next section.

8.2 Experimental Data

The main challenges when performing experiments were due to three causes:

• The reduced weight of the vehicle during take-off caused by the rope.

• Ground and wall effects due to powerful propellers in a tight space.

• Drifting velocity estimates due to lack of indoor positioning system.

The velocity and attitude controllers were tuned experimentally until satis-

factory performance was achieved. In this context, that means a controlled,

stable hover with adequate translational control.

To be able to control the position of the vehicle manually in such a limited

amount of space, the velocity gains had to be quite low. In this way, aggres-

sive responses to disturbances due to ground and wall effects was avoided. In

addition, because of the reduced effective weight during take-off, the gravity

93

feedforward term of the velocity controller was reduced significantly. The

integral term then has to do the rest of the job.

Figure 8.2 shows the MiniPetrel during a stable hover. Roll and pitch was

succesfully stabilized, and the velocity and yaw rate controllers succesfully

dampened the vehicle motion in the test cell. In addition, manual yaw and

horizontal translation maneuvers were performed in a controlled way.

The lack of positioning system (GPS does not work indoors) caused the

velocity estimates used for feedback to drift over time. This can cause the

velocity estimate to have quite large magnitudes, even though the vehicle

is actually standing still. Most of time, this was not a problem, as the

position had to be controlled manually, but sometimes, the horizontal velocity

estimates drifted beyond the range of velocity setpoints mapped from the

stick. These test flights had to be aborted, with the killswitch engaged. The

velocity estimate issue also has implication on the logged data shown below,

as the plotted velocities does not necessarily represent the actual motion of

the vehicle. Overall however, the system performed well.

A video is attached in the digital appendix which includes footage of the

flight experiments.

The following sections present plots of experimental data gathered using the

PX4 logger module. A SanDisk Extreme U3 32GB microSD card was used

with the Pixhawk to provide high bandwidth logging with low write time

and few dropouts. The generated log files were converted into CSV files and

imported into Matlab to generate figures.

8.2.1 Typical Test Flight

Figures 8.3 - 8.18 show the results of a typical test flight. The most important

parameters used for all results shown in this chpater are shown in tables A.4

- A.6 in appendix A.

94

Take-Off and Hover

The commanded forces can be seen in figure 8.6. The vertical force command,

Fz starts off at approximately the value of the gravity feedforward term,

which was set to 20 N. It then ramps up to a value greater than the weight

of the vehicle (6.5 · 9.81 ≈ 64 N) when ascending, before settling at approxi-

mately this value during constant altitude hover. The mentioned ramp-up is

due to the z-velocity integral summing up as can be seen in figure 8.8. The

z velocity integral was set quite low to enable a smooth controlled take-off.

Horizontal Velocity

Figures 8.3 and 8.4 show how the horizontal velocity commands are tracked.

The velocity controller perform quite well, where the vehicle velocities follow

the mean of the command, but the excessive stick motion is dampened out

by the relatively low gains. Figure 8.7 show the commanded tilt and twist

angles, which are fluctuating about±3 deg to stabilize the horizontal velocity.

Attitude Stabilization

The roll and pitch angles are shown in figure 8.9. The roll and pitch angles

are succesfully stabilized, with the roll angle ±2.5 deg about zero. The pitch

angle is inside ±5 deg, but there seems to be a positive offset during take-off.

The author believes that this offset is due to moments caused by the string

fastened around the wing to attach to the test rig rope. Also notice the

big fluctuation at about 45-50 seconds. This can be attributed to the large

change in tilt angle seen at about 45 seconds in figure 8.7. In general, tilt

and twist accelerations cause pitch and roll moment disturbances respectively

on the main body. There is especially large nonlinear coupling between tilt

and pitch. The effects of twist are of less concern, as the vehicles moment

of inertia about the roll axis is much larger than about the pitch axis. In

addition the twist servo torques are smaller due to the fact that they lack

95

the large moment arm of the tilting motion.

Figure 8.11 shows how the vehicle accurately tracks yaw rate commands.

Figure 8.10 shows the roll and pitch rates vs setpoints, and it is apparent

that there is some room for improvement. The cascade structure of the PX4

attitude controller makes it quite difficult to tune this inner loop. The outer

loop could be disabled to tune the inner first, but this is unpractical and

risky with the current test setup. The angular velocity integrals are shown

in figure 8.13.

Control Allocation

The commanded propeller speeds and PWM outputs are shown in figures 8.14

and 8.15. The thrust boost, reduction and moment scaling applied during

the this test flight is shown in figure 8.17. When disregarding the final sec-

onds after landing, it is clear that none of these mechanisms are activated.

This might suggest that they are not needed, but further testing with more

aggressive maneuvers and wind conditions should be carried out before mak-

ing any final conclusions regarding this. It is also interesting to notice the

sample times of the control allocation module shown in figure 8.18, which is

approximately 4 ms on average.

96

10 20 30 40 50 60 70 80

time [s]

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

[m
/s

]

NED x velocity vs desired

v
x
n v

xd
n

Figure 8.3: NED x velocity

10 20 30 40 50 60 70 80

time [s]

-2

-1

0

1

2

3

4

[m
/s

]

NED y velocity vs desired

v
y
n v

yd
n

Figure 8.4: NED y velocity

97

10 20 30 40 50 60 70 80

time [s]

-1

0

1

2

3

4

5

[m
/s

]

NED z velocity vs desired

v
z
n v

zd
n

Figure 8.5: NED z velocity

0 10 20 30 40 50 60 70 80 90

time [s]

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

fb
 [N

]

Force commands

F
x

F
y

F
z

Figure 8.6: Force commands

98

10 20 30 40 50 60 70 80

-5

0

5

10

T
ilt

 [d
eg

]

Tilt and twist angles

10 20 30 40 50 60 70 80

time [s]

-5

0

5

T
w

is
t [

de
g]

Figure 8.7: Tilt and twist commands

0 10 20 30 40 50 60 70 80 90

time [s]

-5

0

5

10

15

20

25

30
Integrals of NED velocity error

v
x
 int

v
y
 int

v
z
 int

Figure 8.8: Velocity integrals

99

10 20 30 40 50 60 70

-5

0

5

[d
eg

]

Roll and pitch vs desired

d

10 20 30 40 50 60 70

time [s]

-5

0

5

10

[d
eg

]

d

Figure 8.9: Roll and pitch angles

10 20 30 40 50 60 70 80

-20

0

20

[d
eg

/s
]

Angular rates vs setpoints

p p
d

10 20 30 40 50 60 70 80

time [s]

-30

-20

-10

0

10

[d
eg

/s
]

q q
d

Figure 8.10: Roll and pitch rates

100

10 20 30 40 50 60 70 80

time [s]

-10

-8

-6

-4

-2

0

2

4

[d
eg

/s
]

Yaw rate vs desired

r r
d

Figure 8.11: Yaw rate

10 20 30 40 50 60 70 80

-1.5
-1

-0.5
0

0.5

M
x [N

m
]

Moment commands

31 32 33 34 35 36 37 38 39

-2

-1

0

M
y [N

m
]

10 20 30 40 50 60 70 80

time [s]

-0.1
0

0.1
0.2
0.3

M
z [N

m
]

Figure 8.12: Moment commands

101

0 10 20 30 40 50 60 70 80 90

time [s]

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

m
b in

t [N
m

]

Integrals of angular velocity errors

p int
q int
r int

Figure 8.13: Angular velocity integrals

10 20 30 40 50 60 70 80

time [s]

300

350

400

450

500

550

600

650

id
 [r

ad
/s

]

Commanded Propeller Speed

P1
P2
P3
P4

Figure 8.14: Commanded propeller speed

102

10 20 30 40 50 60 70 80

time [s]

1400

1450

1500

1550

1600

1650

1700

1750

1800

1850

P
W

M
 [

s]

PWM Outputs

P1
P2
P3
P4

Figure 8.15: PWM outputs

0 10 20 30 40 50 60 70 80 90

time [s]

20.5

21

21.5

22

22.5

23

[V
]

Filtered Battery Voltage

Figure 8.16: Voltage

103

0 10 20 30 40 50 60 70 80

time [s]

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
Thrust Boost, Reduction and Moment Scaling

boost
thrust reduction
roll/pitch scale

Figure 8.17: Thrust boost, reduction and moment scaling

0 10 20 30 40 50 60 70 80 90

time [s]

0

0.005

0.01

0.015

0.02

0.025

0.03

dt
 [s

]

Control Allocation Sample Time

Figure 8.18: Control allocation sample time

104

10 15 20 25 30 35 40

-15

-10

-5

0

5

10

[d
eg

]
Roll vs desired

d

Figure 8.19: Roll response

8.2.2 Roll Response

Figures 8.19 - 8.22 show a zoomed in view of a series of steps in desired roll

angle. Figure 8.19 shows that the roll angle converges to the setpoint quite

quickly, but the response is underdamped with large overshoots. This should

be tuned further in future flight tests. Figure 8.21 show how the twist angle

compensates to hold zero velocity, and is approximately equal to the opposite

of the roll angle.

105

10 15 20 25 30 35 40

-50

0

50

de
g/

s

Roll rate vs desired

p p
d

10 15 20 25 30 35 40

time [s]

-2

-1

0

1

M
x [N

m
]

Roll moment command

Figure 8.20: Roll rate and moment command

10 15 20 25 30 35 40 45

time [s]

-10

-5

0

5

T
w

is
t [

de
g]

Twist angle

Figure 8.21: Commanded twist angle

106

10 15 20 25 30 35 40

time [s]

1350

1400

1450

1500

1550

1600

1650

P
W

M
 [

s]

PWM Outputs

P1
P2
P3
P4

Figure 8.22: PWM outputs

107

3 4 5 6 7 8 9 10

time [s]

0

5

10

15

20

25

30

35

[d
eg

/s
]

Yaw rate vs desired

r r
d

Figure 8.23: Yaw rate response

8.2.3 Yaw Rate Response

Figures 8.23 - 8.25 show a zoomed in view of a yaw rate response. Again,

command tracking works well, and it is especially interesting to see how the

diagonal pairs of propellers work in opposite magnitude to generate the yaw

moment, shown in figure 8.24.

108

3 4 5 6 7 8 9 10

time [s]

1100

1200

1300

1400

1500

1600

P
W

M
 [

s]

PWM Outputs

P1
P2
P3
P4

Figure 8.24: PWM outputs

3 4 5 6 7 8 9 10

-0.5

0

0.5

M
z [N

m
]

Yaw moment command

3 4 5 6 7 8 9 10

time [s]

0

0.05

0.1

r in
t [N

m
]

Yaw rate integral

Figure 8.25: Yaw moment command and yaw rate integral

109

Concluding Remarks

111

9
Conclusion

In this chapter, a summary, conclusions and suggestions for future work are

given.

9.1 Summary and Conclusion

This thesis consists of two main parts. In the first part, issues related to

modeling, identification and control of the StormPetrel UAV are covered.

The second part discusses autopilot implementation, which is verified through

SITL simulation and prototype flight tests.

First, an alternative mathematical model is presented, based on a 10 DOF

Euler-Lagrange approach. Expressions for the kinetic and potential energy of

the vehicle is derived, and the system matrices are calculated from this using

the Matlab Symbolic Math Toolbox. Actuator dynamics and aerodynamic ef-

fects are added to the model as external forces. The downside of this approach

is that the need for generalized coordinates and the choice of Euler angles as

attitude representation introduces singularities in the model. For most prac-

tical use-cases however, this is not a problem, as the singularities are outside

of the normal operating conditions of the UAV. If failure-situations need to

be simulated, other approaches has to be used. Alternatives are discussed

113

and suggested for future work. It is also shown how a simpler control design

model can be derived for hover flight, based on certain assumptions.

As a basis for simulation and control design, inertial properties of the pro-

totype are estimated based on CAD-models, and thruster parameters are

estimated based on measured RPM, force and torque using a propeller test

stand and dynamometer. A basic control system is presented, including atti-

tude controller, velocity controller and control allocation. The basic control

allocation method from [21] is modified by introducing a more convenient

choice of reference frames, and it is attempted to introduce additional ro-

bustness using two different approaches. The first approach uses a series

of heuristics, inspired by the multirotor ”mixers” used in PX4 flight stack,

while the second formulates an optimization problem, which is solved using

quadratic programming. The first approach is deployed in the flight tests,

while the second is implemented in the Matlab simulations.

A simulator is implemented in Matlab/Simulink based on the Euler-Lagrange

equations of motion mentioned above, the identified inertial and thruster pa-

rameters, and the flight control system presented in chapter 4. Most of the

remaining unknown parameters are reused from [21]. Matlab function files

for the Euler-Lagrange system matrices are generated from the symbolic ex-

pressions and used in the simulator. Better performance and a more efficient

simulation should be strived for in the future. The current implementation

is very demanding due to the complicated kinematic terms introduced by

Euler angles as generalized coordinates. This is especially true for the cori-

olis and centrifugal matrix C(q, q̇). Symbolic simplification, optimized code

generation and compilation were all attempted unsuccessfully. The slow sim-

ulation time makes it difficult to tune controllers and improve performance,

as well as doing dynamic exploration of the system. However, simulation

results showing attitude and velocity command tracking are presented, thus

verifying both the proposed model and optimization-based control allocation

scheme to some extent. Further verification of the model should be done in

the future.

In part 2, the velocity controller and heuristics-based control allocation scheme

114

is implemented using the open-source PX4 flight stack. An introduction to

PX4 is given, as well as the basics of writing custom code. To test the custom

software, a model for the MiniPetrel UAV has been developed in the Gazebo

robot simulator for SITL simulation. Plots given in appendix B, as well as

the video attached in the digital appendix show simulation runs where the

implemented autopilot system succesfully stabilizes both the attitude and

velocity of the vehicle. Further work should be done to make the simula-

tion more realistic, and the thruster dynamics, servo models and nonlinear

aerodynamics presented in chapter 2 should be implemented as plugins. In

addition, the same system could potentially be used for HIL simulation.

Finally, the implemented custom autopilot code is tested using the MiniPetrel

prototype in an indoor test rig. The flight experiment results show, not only

that the proposed solution works, but that the thrust vectoring concept in

general, as well as the current mechanical solution shows great promise. The

main challenge seems to be a tight nonlinear closed-loop coupling between

the pitch controller of the vehicle body and the tilt motion of the propellers.

This arises due to a reaction torque acting on the body about the pitch axis,

when the tilt servos accelerate. The pitch controller compensates, which

again causes a load on the tilt servo due to thrust differences between the

fore and aft propellers. When the pitch angle changes, the commanded tilt

angles will again change due to the rotation matrix used in the velocity con-

troller. This cannot be completely avoided, even if the velocity controller is

based on body-velocities instead, as the rotation matrix will then be needed

in the guidance system instead. This has to be solved by careful tuning of

attitude controllers, tilt servos, as well as limiting tilt accelerations. The

current implementation uses the default multirotor attitude controller pro-

vided by the PX4 framework, which provides the control allocation module

with moment commands. This uses as cascade structure, with an outer loop

providing angular velocity setpoints to an inner rate loop. These cascaded

loops are quite difficult to tune, and the presented flight plots show that the

angular velocity command tracking is not very good. Further work should

therefore focus on an implementation of a custom attitude controller, e.g. a

version of (4.1). The next natural steps would then be to take the flight tests

115

outdoors, with GPS and more space available, and implement a position hold

loop.

9.2 Future Work

Some recommendations for future work are summarized below:

• Further verification and dynamic exploration of the proposed Euler-

Lagrange model and alternative control allocation scheme should be

performed. To enable this, the current simulator implementation should

be made more efficient.

• An alternative singularity-free formulation should be strived for, e.g.

based on the calculus of variations or inspired by [19].

• Work on estimating the aerodynamic parameters of the vehicle should

be performed, e.g. wind-tunnel testing or CFD (computational fluid

dynamics) simulations.

• The servo motor models, thruster dynamics and nonlinear aerodynam-

ics should be implemented as Gazebo plugins.

• Implement a HIL testing framework based on the developed SITL

model.

• Implement a custom attitude controller in the PX4 flight stack.

• Implement a position controller and conduct further flight experiments

outdoors with GPS and more space.

116

Bibliography

[1] Gazebo robot simulator. http://gazebosim.org/. Accessed: Jul 23,

2017.

[2] MathWorks sil and pil simulations. https://se.mathworks.com/help/

ecoder/ug/about-sil-and-pil-simulations.html. Accessed: Jul

25, 2017.

[3] National Instruments hardware-in-the-loop (hil) simulation.

http://www.ni.com/en-no/innovations/aerospace-defense/

hardware-in-the-loop.html. Accessed: Jul 25, 2017.

[4] Pixhawk open hardware project. https://pixhawk.org/. Accessed:

Jul 25, 2017.

[5] PX4 development guide. https://dev.px4.io/en/. Accessed: Jul 23,

2017.

[6] PX4 professional autopilot. http://px4.io/. Accessed: Jul 25, 2017.

[7] RCbenchmark series 1580 thrust stand and dynamometer. https://

www.rcbenchmark.com/dynamometer-series-1580/. Accessed: Jul 18,

2017.

117

http://gazebosim.org/
https://se.mathworks.com/help/ecoder/ug/about-sil-and-pil-simulations.html
https://se.mathworks.com/help/ecoder/ug/about-sil-and-pil-simulations.html
http://www.ni.com/en-no/innovations/aerospace-defense/hardware-in-the-loop.html
http://www.ni.com/en-no/innovations/aerospace-defense/hardware-in-the-loop.html
https://pixhawk.org/
https://dev.px4.io/en/
http://px4.io/
https://www.rcbenchmark.com/dynamometer-series-1580/
https://www.rcbenchmark.com/dynamometer-series-1580/

[8] SDF describe your world. http://sdformat.org/. Accessed: Jul 25,

2017.

[9] SolidWorks 3d cad software. http://www.solidworks.com/. Accessed:

Jul 19, 2017.

[10] Speedgoat real-time simulation and testing. https://www.speedgoat.

com/. Accessed: Jul 25, 2017.

[11] T-MOTOR motor description. http://www.rctigermotor.com/html/

2013/Power-Type_0928/91.html. Accessed: Jan 12, 2017.

[12] John Anderson. Introduction to Flight. McGraw-Hill Education, 2015.

[13] John Anderson. Fundamentals of Aerodynamics. McGraw-Hill Educa-

tion, 2017.

[14] Randal W. Beard and Timothy W. McLain. Small Unmanned Aircraft.

Princeton University Press, 2012.

[15] Glenn Bitar. Development of Flight Control System for VTOL UAV

MiniPetrel. Specialization project, Department of Engineering Cyber-

netics, NTNU, 2017.

[16] Olav Egeland and Tommy Gravdahl. Modeling and Simulation for Au-

tomatic Control. Marine Cybernetics, 2002.

[17] T.I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Con-

trol. John Wiley & Sons, Ltd, 2011.

[18] T.I. Fossen. Mathematical Models for Control of Aircraft and Satellites.

Department of Engineering Cybernetics, NTNU, 2013.

[19] P̊al J. From, Kristin Ytterstad Pettersen, and Jan T. Gravdahl.

Singularity-Free Dynamic Equations of Spacecraft-Manipulator Systems.

Acta Astronautica 69, p. 1057-1065, 2011.

[20] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart.

Robot Operating System (ROS): The Complete Reference (Volume 1),

118

http://sdformat.org/
http://www.solidworks.com/
https://www.speedgoat.com/
https://www.speedgoat.com/
http://www.rctigermotor.com/html/2013/Power-Type_0928/91.html
http://www.rctigermotor.com/html/2013/Power-Type_0928/91.html

chapter RotorS—A Modular Gazebo MAV Simulator Framework, pages

595–625. Springer International Publishing, Cham, 2016.

[21] Jostein Furseth. Modeling and Control of VTOL Flying Wing with

Thrust Vectoring. Master’s thesis, Department of Engineering Cyber-

netics, NTNU, 2015.

[22] Tor A. Johansen and Thor I. Fossen. Control Allocation - A Survey.

Automatica, Volume 49, Issue 5, Pages 1087-1103, 2013.

[23] Waqas Khan and Meyer Nahon. Toward an Accurate Physics-Based

UAV Thruster Model. IEEE/ASME Transactions on Mechatronics, vol.

18, no. 4, August 2013, 2013.

[24] Johannes Hatle Lundgaard. Development of Thrust Vectoring System

for StormPetrel. Master’s thesis, Norwegian University of Science and

Technology, 2016.

[25] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.

Springer, 2006.

[26] Romulo Rodrigues, Rafael C. B. Sampaio, A. Pedro Aguiar, and

Marcelo Becker. FVMS Software-in-the-Loop Flight Simulation Experi-

ments: Guidance, Navigation and Control. IEEE/ASME Transactions

on Mechatronics, vol. 18, no. 4, August 2013, 2014.

[27] Adnan S. Saeed, Ahmad Bani Younes, Shafiqul Islam, Jorge Dias, Lak-

mal Seneviratne, and Guowei Cai. A Review on the Platform Design,

Dynamic Modeling and Control of Hybrid UAVs. 2015 International

Conference on Unmanned Aircraft Systems (ICUAS), 2015.

[28] V. M. Sineglazov and S.O. Dolgorukov. Dynamic Hardware-in-the-

loop UAV Ground Testing System. 2015 IEEE 3rd International Con-

ference Actual Problems of Unmanned Aerial Vehicles Developments

(APUAVD) Proceedings, 2015.

[29] Asgeir J. Sørensen. Marine Control Systems - Propulsion and Motion

Control of Ships and Ocean Structures, Lecture Notes. Department of

119

Marine Technology, Norwegian University of Science and Technology,

2013.

[30] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar. Robot Modeling

and Control. John Wiley & Sons, Inc., 2006.

[31] Johannes Tjønn̊as and Tor A. Johansen. Adaptive Control Allocation.

Automatica, Volume 44, Issue 11, Pages 2754-2765, 2008.

120

List of Figures

1.1 Concept illustrations, courtesy of Sevendof AS 4

1.2 The StormPetrel VTOL Concept 6

1.3 The MiniPetrel prototype . 8

2.1 Coordinate frames . 14

2.2 Propeller numbering and direction of rotation 26

2.3 Generation of roll moment . 33

2.4 Generation of pitch moment 33

2.5 Generation of yaw moment . 33

3.1 Thrust stand and dynamometer 45

3.2 Thrust as a function of speed 47

3.3 Torque as a function of speed 47

3.4 Torque as a function of thrust 48

121

3.5 Speed as a function of throttle and voltage 48

3.6 Comparison with supplier test data 50

4.1 Block diagram of StormPetrel control system 52

4.2 Control allocation block diagram 54

5.1 NED velocities . 63

5.2 Body velocities . 63

5.3 Integrals of NED velocity errors 64

5.4 Force commands . 64

5.5 Tilt angle . 65

5.6 Twist angle . 65

5.7 NED position . 66

5.8 Attitude . 66

5.9 Angular velocities . 67

5.10 Integrals of attitude error . 67

5.11 Moment commands . 68

5.12 Propeller speed . 68

5.13 Propeller speed, propellers 1 and 2 69

5.14 Propeller speed, propellers 3 and 4 69

5.15 Attitude . 70

5.16 Angular velocities . 71

122

5.17 Integrals of attitude error . 71

5.18 Moment commands . 72

5.19 NED velocities . 72

5.20 Body velocities . 73

5.21 Integrals of NED velocity errors 73

5.22 Force commands . 74

5.23 Tilt angle . 74

5.24 Twist angle . 75

5.25 NED position . 75

5.26 Propeller speed . 76

5.27 Propeller speed, propellers 1 and 2 76

5.28 Propeller speed, propellers 3 and 4 77

6.1 Pixhawk flight controller . 82

6.2 QGroundControl . 83

6.3 QGroundControl . 83

7.1 Software-in-the-loop simulation with Gazebo 88

7.2 Link frames and centers of mass 89

7.3 Inertia . 89

8.1 Test Rig . 92

123

8.2 Hovering . 92

8.3 NED x velocity . 97

8.4 NED y velocity . 97

8.5 NED z velocity . 98

8.6 Force commands . 98

8.7 Tilt and twist commands . 99

8.8 Velocity integrals . 99

8.9 Roll and pitch angles . 100

8.10 Roll and pitch rates . 100

8.11 Yaw rate . 101

8.12 Moment commands . 101

8.13 Angular velocity integrals . 102

8.14 Commanded propeller speed 102

8.15 PWM outputs . 103

8.16 Voltage . 103

8.17 Thrust boost, reduction and moment scaling 104

8.18 Control allocation sample time 104

8.19 Roll response . 105

8.20 Roll rate and moment command 106

8.21 Commanded twist angle . 106

124

8.22 PWM outputs . 107

8.23 Yaw rate response . 108

8.24 PWM outputs . 109

8.25 Yaw moment command and yaw rate integral 109

B.1 Body x velocity, SITL . A9

B.2 Body y velocity, SITL . A10

B.3 Body z velocity, SITL . A10

B.4 Force commands, SITL . A11

B.5 Tilt and twist commands, SITL A11

B.6 Velocity integrals, SITL . A12

B.7 Roll and pitch angles, SITL A12

B.8 Roll and pitch rates, SITL . A13

B.9 Yaw rate, SITL . A13

B.10 Moment commands, SITL . A14

B.11 Angular velocity integrals, SITL A14

B.12 Commanded propeller speed, SITL A15

B.13 PWM outputs, SITL . A15

B.14 Voltage, SITL . A16

B.15 Control allocation stats, SITL A16

125

List of Tables

3.1 Mass of each rigid body . 44

3.2 Center of mass for each rigid body 44

3.3 Inertia tensor for each rigid body [kg ·m2] 45

3.4 Components used in tests . 46

3.5 Thrust parameters . 49

3.6 Supplier test data . 49

A.1 Attitude controller parameters used in SITL A2

A.2 Velocity controller parameters used in SITL A3

A.3 Control allocation parameters used in SITL A4

A.4 Attitude controller parameters used in flight tests A5

A.5 Velocity controller parameters used in flight tests A6

A.6 Control allocation parameters used in flight tests A7

127

List of Code Listings

7.1 SDF excerpt . 86

129

A
Parameter List

A1

Parameter Symbol Value

MC_PITCHRATE_D 0.03

MC_PITCHRATE_I 0.5

MC_PITCHRATE_P 2.0

MC_PITCH_P 0.5

MC_PR_INT_LIM 0.3

SP_PITCH_MAX 45

MC_ROLLRATE_D 0.03

MC_ROLLRATE_I 0.7

MC_ROLLRATE_P 3.0

MC_ROLL_P 1.0

MC_RR_INT_LIM 0.3

SP_ROLL_MAX 30

MC_YAWRATE_D 0.0

MC_YAWRATE_I 0.2

MC_YAWRATE_P 0.4

MC_YAW_FF 1.0

MC_YAW_P 0.0

MC_YR_INT_LIM 0.3

SP_R_MAX 1.0

Table A.1: Attitude controller parameters used in SITL

A2

Parameter Symbol Value

SP_X_VEL_I 0.0

SP_X_VEL_P 4.0

SP_X_VEL_I_MAX 50.0

SP_X_VEL_MAX 4.0

SP_Y_VEL_I 0.0

SP_Y_VEL_P 3.0

SP_Y_VEL_I_MAX 50.0

SP_Y_VEL_MAX 2.0

SP_Z_VEL_I 10.0

SP_Z_VEL_P 20.0

SP_Z_VEL_I_MAX 50.0

SP_Z_VEL_MAX_UP 1.0

SP_Z_VEL_MAX_DWN 0.5

SP_CTRL_MODE 0 (body)

SP_THR_HOVER mg 49.05

Table A.2: Velocity controller parameters used in SITL

A3

Parameter Symbol Value

SP_THRUST_COEFF k 5.2389e-05

SP_MOMENT_CONST c 0.0204

SP_L_T lt 0.585

SP_L_TW ltw 0.343

SP_F_XZ_MIN 10.0

SP_FX_MAX 70

SP_FY_MAX 70

SP_FZ_MAX 100

SP_MX_MAX 20

SP_MY_MAX 20

SP_MZ_MAX 2

SP_TILT_MIN -60

SP_TILT_MAX 60

SP_TILT_DELTA 0 (disabled)

SP_TWIST_MAX 30

SP_TWIST_DELTA 0 (disabled)

SP_SPEED_MAX 700

SP_ESC_DELTA 0 (disabled)

PWM_MIN 1000

PWM_MAX 2000

PWM_RATE 400

Table A.3: Control allocation parameters used in SITL

A4

Parameter Symbol Value

MC_PITCHRATE_D 0.05

MC_PITCHRATE_I 0.2

MC_PITCHRATE_P 1.5

MC_PITCH_P 3.5

MC_PR_INT_LIM 4.0

SP_PITCH_MAX 45

MC_ROLLRATE_D 0.05

MC_ROLLRATE_I 0.4

MC_ROLLRATE_P 3.0

MC_ROLL_P 5.0

MC_RR_INT_LIM 8.0

SP_ROLL_MAX 30

MC_YAWRATE_D 0.005

MC_YAWRATE_I 1.0

MC_YAWRATE_P 2.0

MC_YAW_FF 1.0

MC_YAW_P 0.0

MC_YR_INT_LIM 2.0

SP_R_MAX 1.0

Table A.4: Attitude controller parameters used in flight tests

A5

Parameter Symbol Value

SP_X_VEL_I 0.2

SP_X_VEL_P 3.0

SP_X_VEL_I_MAX 50.0

SP_X_VEL_MAX 3.0

SP_Y_VEL_I 0.2

SP_Y_VEL_P 3.0

SP_Y_VEL_I_MAX 50.0

SP_Y_VEL_MAX 2.5

SP_Z_VEL_I 1.5

SP_Z_VEL_P 10.0

SP_Z_VEL_I_MAX 50.0

SP_Z_VEL_MAX_UP 1.0

SP_Z_VEL_MAX_DWN 5.0

SP_CTRL_MODE 1 (NED)

SP_THR_HOVER mg 20.0

Table A.5: Velocity controller parameters used in flight tests

A6

Parameter Symbol Value

SP_THRUST_COEFF k 5.2389e-05

SP_MOMENT_CONST c 0.0204

SP_L_T lt 0.585

SP_L_TW ltw 0.343

SP_F_XZ_MIN 30.0

SP_FX_MAX 70

SP_FY_MAX 70

SP_FZ_MAX 100

SP_MX_MAX 20

SP_MY_MAX 20

SP_MZ_MAX 2

SP_TILT_MIN -70

SP_TILT_MAX 70

SP_TILT_DELTA 30

SP_TWIST_MAX 70

SP_TWIST_DELTA 40

SP_SPEED_MAX 750

SP_ESC_DELTA 0 (disabled)

PWM_MIN 1075

PWM_MAX 1950

PWM_RATE 400

Table A.6: Control allocation parameters used in flight tests

A7

B
SITL Plots

10 20 30 40 50 60 70 80

time [s]

-3

-2

-1

0

1

2

3

[m
/s

]

Body x velocity vs desired

v
x
b v

xd
b

Figure B.1: Body x velocity, SITL

A9

10 20 30 40 50 60 70 80

time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

[m
/s

]

Body y velocity vs desired

v
y
b v

yd
b

Figure B.2: Body y velocity, SITL

10 20 30 40 50 60 70 80

time [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

[m
/s

]

Body z velocity vs desired

v
z
b v

zd
b

Figure B.3: Body z velocity, SITL

A10

0 10 20 30 40 50 60 70 80 90

time [s]

-70

-60

-50

-40

-30

-20

-10

0

10

20

fb
 [N

]

Force commands

F
x

F
y

F
z

Figure B.4: Force commands, SITL

0 10 20 30 40 50 60 70 80 90
-20

-10

0

10

20

T
ilt

 [d
eg

]

Tilt and twist angles

0 10 20 30 40 50 60 70 80 90

time [s]

-5

0

5

10

T
w

is
t [

de
g]

Figure B.5: Tilt and twist commands, SITL

A11

0 10 20 30 40 50 60 70 80 90

time [s]

-5

-4

-3

-2

-1

0

1

2

3

4

5
Integrals of body velocity error

v
x
 int

v
y
 int

v
z
 int

Figure B.6: Velocity integrals, SITL

10 20 30 40 50 60 70 80

-2

0

2

[d
eg

]

Roll and pitch vs desired

d

10 20 30 40 50 60 70 80

time [s]

-4

-2

0

2

4

[d
eg

]

d

Figure B.7: Roll and pitch angles, SITL

A12

10 20 30 40 50 60 70 80

-5

0

5

[d
eg

/s
]

Angular rates vs setpoints

p p
d

10 20 30 40 50 60 70 80

time [s]

-40

-20

0

20

[d
eg

/s
]

q q
d

Figure B.8: Roll and pitch rates, SITL

10 20 30 40 50 60 70 80

time [s]

-50

-40

-30

-20

-10

0

10

20

30

40

50

[d
eg

/s
]

Yaw rate vs desired

r r
d

Figure B.9: Yaw rate, SITL

A13

10 20 30 40 50 60 70 80

-0.2
0

0.2
0.4
0.6

M
x [N

m
]

Moment commands

10 20 30 40 50 60 70 80

-2

0

2

M
y [N

m
]

10 20 30 40 50 60 70 80

time [s]

-0.2

0

0.2

M
z [N

m
]

Figure B.10: Moment commands, SITL

0 10 20 30 40 50 60 70 80 90

time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

m
b in

t [N
m

]

Integrals of angular velocity errors

p int
q int
r int

Figure B.11: Angular velocity integrals, SITL

A14

0 10 20 30 40 50 60 70 80 90

time [s]

200

250

300

350

400

450

500

550

600

650

id
 [r

ad
/s

]

Commanded Propeller Speed

P1
P2
P3
P4

Figure B.12: Commanded propeller speed, SITL

0 10 20 30 40 50 60 70 80 90

time [s]

1000

1100

1200

1300

1400

1500

1600

1700

1800

P
W

M
 [

s]

PWM Outputs

P1
P2
P3
P4

Figure B.13: PWM outputs, SITL

A15

0 10 20 30 40 50 60 70 80 90

time [s]

20

20.5

21

21.5

22

22.5

23

23.5

24

24.5
[V

]
Filtered Battery Voltage

Figure B.14: Voltage, SITL

0 10 20 30 40 50 60 70 80

time [s]

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
Thrust Boost, Reduction and Moment Scaling

boost
thrust reduction
roll/pitch scale

0 10 20 30 40 50 60 70 80 90

time [s]

0

0.005

0.01

0.015

dt
 [s

]

Control Allocation Sample Time

Figure B.15: Control allocation stats, SITL

A16

	Introduction
	Introduction
	Motivation and Background
	Hybrid VTOL UAVs
	The StormPetrel Airframe
	Previous Work

	Contributions
	Overview

	I Modeling, Identification and Control
	Modeling
	Kinematics
	Coordinate Frames
	Rotation Matrices
	Coordinate Vectors
	Angular Velocity
	Linear Velocity

	Dynamics
	Kinetic Energy
	Potential Energy
	Euler-Lagrange Equations of Motion

	Actuator Dynamics
	Servo Motors
	Thruster Model

	External Forces
	Propulsion Forces and Moments
	Aerodynamics

	Total Vehicle Model
	Comments on the Equations of Motion

	Parameter Identification
	Mass Properties
	Thruster Parameters
	Comparison With Supplier Test Data

	Control System Design
	Attitude Control
	Velocity Control
	Control Allocation
	Main Algorithm
	Constraints
	Optimization Based Formulation

	Simulation Results
	Simulator Implementation
	Velocity Response
	Attitude Response

	II Development of Test Platform
	Implementation in the PX4 Flight Stack
	Software-in-the-Loop Simulation
	Gazebo

	Flight Tests
	Test Setup
	Experimental Data
	Typical Test Flight
	Roll Response
	Yaw Rate Response

	Concluding Remarks
	Conclusion
	Summary and Conclusion
	Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Code Listings
	Appendix Parameter List
	Appendix SITL Plots

