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Abstract

This thesis concerns the development of a radar-based collision avoidance system for
multirotor vehicles. The first chapter is a small introduction to radar systems, to
aid in understanding the rest of this thesis. Further on an embedded radar system is
developed using the X2M200 radar system from Novelda. Data from the embedded
radar system is then tested on a object detection algorithm which looks for blobs
(connected areas with several reflections). Cylinders are fitted to the detected blobs and
used in a collision avoidance algorithm based on Null-space-based behavioral control
from [Antonelli, Arrichiello, and Chiaverini 2008b]. The software is verified with a point
mass simulator and also tested on a quadrotor simulator.

Unfortunately did not time allow for the entire system to be tested together, but each
part of the system is tested separately and verified to work.
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Sammendrag

(Norwegian translation of the Abstract)

Denne masteroppgaven omhandler utviklingen av et radarbasert kollisjonsunngåelsessys-
tem for multirotorfartøyer. Det første kapittelet gir en kort introduksjon til radarsys-
temer som et hjelpemiddel i å forstå resten av oppgaven. Videre blir et innvevd
radarsystem utviklet ved bruk av X2M200 radaren fra Novelda. Data fra det innvevde
radarsystemet blir så testet på en objektoppdagelsesalgoritme som ser etter klumper
(sammenkoblede områder med flere refleksjoner). Sylindere blir tilpasset de oppdagede
klumpene og brukt i en kollisjonsunngåelsesalgoritme basert på nullrombasert oppførsel-
skontroll fra [Antonelli, Arrichiello, and Chiaverini 2008b]. Programvaren er verifisert
med en punktmassesimulator og også testet på en quadrotorsimulator.

Uheldigvis var det ikke nok tid til å teste hele systemet sammen, men hver del av
systemet har blitt testet hver for seg og verifisert at fungerer.
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1 | Introduction

1.1 Background and Motivation

This thesis lays the foundation for a radar-based collision avoidance system for multi-
rotors. Such a system could be an integral part of a completely autonomous system.
Autonomous multirotors could be used for inspection in hazardous environments, or in
places which are hard to reach by other means. It can also be useful during search and
rescue operations, helping rescue personnel locate a missing person faster and without
themselves getting in danger.

The system could also be a part of a semi-autonomous multirotor, overriding the pilot
input if the multirotor is on a collision course with an obstacle. This is particularly
useful if the operation is performed beyond line of sight of the pilot. It is also imaginable
that the system can be locked to a certain obstacle, in order to keep a set distance
from e.g. a wall. A camera could then be pointed at the wall in order to create a high
resolution panorama that could be used for inspection.

The results of this thesis will be used by the startup company SCOUT, which is funded
by the Research Council of Norway. The startup aims to build a multirotor solution for
industrial inspection. The inspection might be held in locations which are difficult or
hazardous for humans, and such a multicopter solution would greatly reduce cost and
efficiency.

1.2 Previous Work

With the advent of multirotor Unmanned Aerial Vehicles (UAVs) and increase in
processing power of embedded devices, there has been done a lot of work on making
multirotors autonomous, where collision avoidance plays a big role. In order to map
obstacles both [Yoo, Won, and Tahk 2011] and [Nolan et al. 2013] utilize a camera and
optical flow algorithms with a monocular camera. In [Yoo, Won, and Tahk 2011] the
camera view is split into a left and right side and the multirotor turns towards the
side with the least optical flow. [Nolan et al. 2013] is instead using the optical flow
data to create a probabilistic 3D occupancy grid, which contain the likelihood of a grid
being occupied. This is further built upon by [Nieuwenhuisen and Behnke 2015], where
an optimal path to a point is updated as frequently as the occupancy grid is updated.
The optimal path is calculated in three steps; first a coarse path through the grid is

1



2 Chapter 1. Introduction

calculated with the A* algorithm, then approximations of the missing dimensions (e.g.
velocities) are calculated before the trajectory is smoothed out by optimizing w.r.t.
input.

An alternative collision avoidance scheme is detailed in [Bareiss, Bourne, and Leang
2017]. Using a lidar the immediate area around the multirotor is mapped. The presented
algorithm predicts the multirotor trajectory using the pilots current input over a time
horizon. If the probability of a collision is higher than a certain threshold, a change in
input is calculated by finding the smallest change in input that will reduce the chance
of a collision through an optimization algorithm.

The work in this thesis is built on an entirely different framework of collision avoidance,
Null-space-based behavioral control (NSB). NSB was originally introduced in [Antonelli,
Arrichiello, and Chiaverini 2005] and divides behavior into several small tasks represented
by a task function. The aim of each task is to keep the task function at the same value,
which is achieved by each task removing the component from the input that will cause
a task violation and adding a component to the input that increase fulfillment of a task.
The approach was proven to be stable in [Antonelli, Arrichiello, and Chiaverini 2008a].
In addition to collision avoidance, NSB has also been used for formation control as in
[Rosales, Leica, and Scaglia 2016]. An extension to NSB, which aimed to allow the
value of the task function to be within a certain set, was presented in [Moe et al. 2016].

Radar systems have been used extensively for autonomous operation of cars, such as for
the cars produced by Tesla [The Tesla Team 2016]. Tesla utilize fleet wide learning so
that all cars cooperate on mapping the environment and over time reduce false positives.
In [Engels et al. 2017] it was concluded that radar systems are a key component in
autonomous cars.

As radar systems have become smaller over the past few years, coupled with an
enormous increase in computing power, it is becoming feasible to create radar systems
for multicopters as well. This was done in [Weixian et al. 2016], where a radar system
mounted to a quadrotor was used to obtain high resolution images using Synthetic
Aperture Radar techniques. The main breakthrough of this paper is removing the
effects the minute movements of the quadrotor has on the data.

A radar system for multicopter collision avoidance was developed in [Moses et al.
2014], where the system could detect other aerial vehicles. The system could only
measure distances along one axis and collision avoidance itself was only quantitatively
discussed. More recently a radar-based collision avoidance system for multirotors has
been announced, the Aerotenna µSharp [Aerotenna 2016], which consists of several
antennas in order to survey a 360° perimeter.

1.3 Contribution and Scope of this Thesis

The goal for this thesis is to develop a radar-based collision avoidance system for
multirotors, which can be used as a subsystem in an either semi or fully autonomous
multirotor system. Primarily this can be thought of as two separate tasks, obstacle
detection and obstacle avoidance, and is treated as such. The obstacle detection is
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implemented separately from the obstacle avoidance and both can be exchanged without
affecting the other. The embedded radar system developed in this thesis builds upon a
prototype developed in [Koren 2016].

An embedded radar system, which is responsible for the obstacle detection, covers a
360° degree perimeter around the multicopter. The data from the embedded radar
system is then searched for possible obstacles.

The collision avoidance system will detect when it is about to collide with an obstacle
and adjust the input as to avoid a collision. The software is developed so that it can
easily be extended for any kind of obstacle detection system.

During development, some assumptions were made in order to limit the scope of the
thesis:

• The multirotor is level at all times, so that the pitch and roll does not have to be
taken into account when processing the radar data.

• All detectable obstacles can be encapsulated by a vertical cylinder.

Unfortunately time did not allow for the different systems to be integrated properly
with each other. At the end of this thesis we are left with an embedded radar system,
a obstacle detection algorithm for data from the radar system, and a robust collision
avoidance system.

1.4 Organization of this thesis

An introduction to radars, which is necessary for understanding the system, is given in
Chapter 2. The radar equation, antenna design and pulse-doppler radar processing are
among the topics that are covered. Additionally there is a short segment comparing
radar to other possible obstacle detection sensors.

Chapter 3 concerns the development of the hardware and software for the embedded
radar system. The design process behind the circuit board, as well as the embedded
software is discussed. At last there is a section discussing how the system was tested.

In Chapter 4 we discuss two approaches to object detection for radars, one which is
concluded to be not usable for the developed radar system. The other approach is a
novel approach which is based around locating connected regions (blobs) in the data
output from the radar. The blob detection algorithm is then tested against data from
the embedded radar system and proven to be able to detect obstacles.

The next chapter, Chapter 5, details the development of the collision avoidance system.
The system is then developed with the aim of being extendable should there be any need
for additional behaviors in the future. The software itself is verified on a simple point
mass simulator, and then tested to its limits on a quadrotor simulator. Additionally
two subsets of the collision avoidance algorithm are implemented and tested against
each other.

Chapter 6 provides a summary of the results, as well as a closing discussion.
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A user manual for the system is provided as an appendix, and all software along with
schematics and blueprints for the hardware are provided as digital appendices.



2 | Introduction to Radar Systems

An understanding of the purpose of radars can be done by looking at the meaning of
the word; RAdio Detection And Ranging [Skolnik 2001, p. 2]. This describes the main
purpose of a radar — to locate and obtain information about a target. A radar system
achieves this goal by reflecting radio waves of a target, picking up the reflections and
reading information off the returned wave. Through a variety of techniques, such as
utilizing the Doppler shift to measure the radial velocity of a target, to modulating
the radar signal for higher radial resolution, radar systems can be tailor-made for a
specific application. Nonetheless the key principle of reflecting radio waves remain, and
understanding the construction of a radar system, as well as a rudimentary understanding
propagation and reflection of electromagnetic waves are vital for utilizing a radar system
to its fullest.

Contents
2.1 Radar Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 The Building Blocks of a Radar . . . . . . . . . . . . . . . . . 6
2.1.2 The Radar Equation . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Ultra-wideband Pulse-Doppler Radar . . . . . . . . . . . . 10
2.2.1 Velocity Measurement . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Pulse Repetition Frequency and Range-gating . . . . . . . . . 12
2.2.3 Ultra Wide Band . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Radar vs. Other Technologies . . . . . . . . . . . . . . . . . 13
2.3.1 Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Lidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Ultrasonic Sensors . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 RGB-D Cameras . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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6 Chapter 2. Introduction to Radar Systems

2.1 Radar Systems

Since the beginning of radars in the early 20th century, through a rapid evolution and
deployment of radar systems in the second world war, we have arrived at the age of
modern embedded radar systems. However, common across all radar systems is that
they can be divided into three parts, a transmitter, a receiver and an antenna system
[Skolnik 2008, p.1.1]. This section will discuss these three parts in more detail, as well
as cover some of the basics of how a radar sees a target. At the end there will be a short
introduction to the particular radar system used in this thesis, the Novelda X2M200.

2.1.1 The Building Blocks of a Radar

As mentioned earlier, a radar can be divided into three, the receiver, the transmitter
and the antenna system. The transmitter is responsible for generating the signal, the
signal is then transmitted by the antenna system, before an eventual reflection is picked
up by the antenna system and transmitted to the receiver. Customization of these
three stages alter the characteristics of the radar so it can be used to obtain the desired
information about a target.

Transmitter

The transmitter is responsible for generating waveform that will be transmitted by the
radar, usually with a frequency in the range of 300 MHz to 300 GHz. The transmitter
may vary in complexity, from generating a simple Continuous Wave (CW) signal or
pulsing the signal on and off with a specific Pulse Repetition Frequency (PRF), to more
complex modulation patterns. The signal is usually generated with a Local Oscillator
(LO) that is shared between the transmitter and receiver. [Kinzie 2011, pp. 2–8]

Receiver

The receiver is responsible for detecting the reflected signal, which is often done by
correlating the received signal with the LO reference signal. The receiver can usually
measure the amplitude, phase and travel time of a reflection. Moreover, the received
signal might be integrated over several periods to remove random background noise.
The ability of the receiver to pick up a reflected signal is defined by the ability to
differentiate the signal from the background noise, also referred to as the minimum
Signal to Noise Ratio (SNR). [Kinzie 2011, pp. 11–12]

Antenna system

There are different kinds of antenna systems, but in general they can be categorized
into three types according to [Kinzie 2011, p. 10], such as:

1. Monostatic — the same antenna is used for receiving and transmitting.
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2. Bistatic — separate antennas for receiving and transmitting

3. Multistatic — several antennas used for transmitting and receiving.

On top of this, the antenna might be directional or omnidirectional. Whereas a
directional antenna will be more effective in one direction, an omnidirectional will
transmit and receive from all directions. The topic of antennas are covered to a greater
extent in section 2.1.2.

2.1.2 The Radar Equation

As with most things, we are able to describe the behavior of a radar system through
mathematics. Of special interest is the equation known as "The Radar Equation",
which can be used to calculate the received signal strength of a radar target. There
are different versions of the radar equation depending on the use case of the radar. A
general version, found in [Skolnik 2008], is:

Pr = PtGtGrλ
2σF 4

(4π)3R4 (2.1)

where

• Pr and Pt is received and transmitted power respectively.

• Gr and Gt is the receiver and transmitter antenna gain respectively.

• λ is the transmitted wavelength.

• σ is the radar cross section, also called the scattering coefficient.

• F is the pattern propagation factor, i.e. a loss factor due to multipath loss, antenna
pattern loss etc.

• R is the distance between the radar and the target (assuming that the transmitter
and receiver are located at the same location).

All of these terms are mostly self-explanatory, except for the radar cross section σ and
the antenna gain, which we will look a bit further upon.

Radar Cross Section

The radar cross section is a measure of how much the incident radar waves are reflected
back by the target in the direction of the radar. It is given in square meters (m2) and is
the cross-sectional area of a sphere that would induce a reflection of the same strength.
The radar cross section is close to impossible to calculate explicitly, and usually is found
either through experiments or computer simulations. [Skolnik 2001, pp. 49–50] There
are three main factors that contribute to the radar cross section:
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Figure 2.1: The normalized cross section of a sphere as a function of its circumference.
The Rayleigh region is the area when the relative frequency is < 1. The Mie region,
characterized by alternating constructing and destructive interference is found in the
range [1, 10]. The remaining region is the optical region. The image is source from
[Wikipedia - Radar cross section of metal sphere from Mie theory.svg].

Size In general, the larger an object is the larger is its radar cross section. For a
sphere, the radar cross section increases linearly with the circumference, when the
circumference is approximately 10 times as long as the wavelength. This area is
called the optical region. For smaller spheres things start to get interesting, as seen
in fig. 2.1. When circumference is between [λ, 10λ], the cross section oscillates as
a function of the circumference. This is caused by alternating constructing and
destructive interference between the part of the radar wave that directly reflects
off the sphere and the creeping radar wave that travels around the circumference
of the sphere. The phenomena is called Mie Scattering, which also is responsible
for the white glow around the sun. If the sphere is even smaller it will start
resonating with the wave and return the energy in all directions, predominantly in
and opposite to the direction of the radar wave. What we observe here is known
as Rayleigh scattering, which is famously known for creating a blue sky. [Skolnik
2001, p. 51] The same principles are valid for more complex shapes than a sphere,
but the interplay between constructive and destructive interference relate to how
the wave propagates in the material

Shape The shape of an object contributes a lot to how much is reflected back in
the direction of the radar (backscattered). As shown in fig. 2.2, a corner reflector
or a perpendicular flat plate will have a very large cross section due to almost all
the incoming radiation being backscattered. A 1 m2 plate might have a radar cross
section of > 100m2. [Skolnik 2001, p. 53]. For most objects, the cross section will
vary a lot depending on the incident angle of the radar wave, which can clearly
be seen in fig. 2.3. For some of the spikes it might be a flat area that suddenly
became perpendicular to the incident wave, in other cases it might be a corner
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Figure 2.2: How some basic shapes reflect electromagnetic waves. We see that a corner
is a very good reflector, the same goes for a flat plate perpendicular to the radar waves.
The image is sourced from [Electronic Warfare and Radar Systems 2013, p.4-11.2]

reflector.

Material A general rule of thumb is that the more electrically conductive a
material is, the more likely it is to be a good reflector. This is why targets made of
metal have a larger cross section than a similar object made of a non-conductive
material such as plastic.

Clever utilization of shape and material can allow a designer to choose the cross section
of a target. In the case of a fiberglass sailboat, which is almost invisible to radars, it is
common to fix radar reflectors to the mast to increase visibility. On the other hand,
fighter planes such as the F-117 Nighthawk utilize dissipative paint and large flat plates
with few joints in order to reduce the radar cross section to 0.025 m2. [Richardson 2003].

Antenna

The purpose of an antenna is to affect the radar waves so that they predominantly
radiate in one direction. The reference antenna is the isotropic antenna [Stutzman and
Thiele 2013, pp. 36–37], which spreads the energy uniformly in all directions, as well
as receives equally well from all directions. The ideal antenna has a unity gain in all
directions, as shown in fig. 2.4a. Such an antenna is impossible to create, so fortunately
it is rather useless for most radar purposes. For a radar we want to be able to direct
the beam towards a specific direction as to light up a target, as well as receive from
that direction. There are several ways to increase the directivity of an antenna, one of
the simplest and most known is to attach a parabolic reflector to an isotropic antenna.
An example radiation pattern is shown in fig. 2.4b. Relative to the isotropic antenna
we see that radar waves from the back are attenuated while strengthened in the front.
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Figure 2.3: The radar cross section of a Douglas A-26 Invader, showing off how the
radar cross section varies as a function of angle. It can also be seen that the radar cross
section of a complex target is wildly varying. The image is fetched from [Wikipedia -
Sigma_invader_RCS.png].

Different radar systems utilize different antennas. An automotive radar system might
require a wide aperture compared to e.g. an airport or a weather radar. As such there
exists a wide variety of antenna styles.

Noise

As with any system, the radar is affected by noise. The predominant sources of radar
noise is thermal noise induced in the receiver as well as objects that produce wideband
noise, such as the Sun, the Earth or cosmic background noise. The last form of noise is
caused by the environment called clutter. Sources of clutter can be unwanted reflection
from the ground, a flock of bird or chaff1. The ability of a radar system to differentiate
a signal from background noise is given as the minimum SNR of the system.

Radar systems operating on the same frequency can also be a cause of noise. For pulsed
systems, this is usually avoided by using techniques such as staggered PRF, which
means that the pulse repetition rate changes slightly between each pulse. By integrating
the results over several pulses, other radar systems will just appear as an increased
noise floor.

2.2 Ultra-wideband Pulse-Doppler Radar

The radar hardware that is used in this thesis is the XeThru X2M200 from Novelda. It
utilizes the Novelda X2, a Ultra-Wide Band (UWB) Pulse-Doppler Radar System on a
Chip (SoC) (more on the system in section 3.1.2). This makes it worthwhile to discuss
the features and differences of a UWB Pulse-Doppler radar system. The information in
this section is based on [Skolnik 2008, Chapter 4] and [Kinzie 2011, Section 2.2].

1Small strips of metal that is spread by e.g. fighter aircraft as a radar countermeasure.
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(a) Isotropic antenna
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(b) Parabolic antenna

Figure 2.4: (a) show the radiation pattern of an isotropic (omnidirectional) antenna in
2 dimensions.
(b) show an approximation to the radiation pattern of a parabolic antenna. Both plots
are inspired by [Stutzman and Thiele 2013].

The most prominent feature of a Pulse-Doppler radar is that it is possible to differentiate
moving targets from background clutter by using the Doppler effect. When a target has
a radial velocity relative to the radar system, the carrier frequency of the reflected wave
is shifted slightly and gives rise to the phenomena known as the Doppler frequency shift.
Originally Doppler radars were CW systems, and measured the Doppler frequency shift
of the reflected waves. The disadvantage of this approach was the inability to detect
the range to a target. Later systems solved this problem by either modulating the radar
wave, such as Frequency Modulated CW (FMCW) systems, or by pulsing the radar
wave on and off, which gives us a Pulse-Doppler radar system.

2.2.1 Velocity Measurement

A target moving radially relative to the target imparts a small frequency shift on the
reflected radar wave. With fd as the Doppler shift, vr as the radial velocity, ft as the
carried frequency and c as the speed of light we have the following formula:

fd = 2ftvr
c

(2.2a)

= 2vr
λ

(2.2b)

Now, what is misleading about the name Pulse-Doppler radar is that the Doppler
frequency shift is not measured directly. As the target is moving radially, the number of
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wavelengths the signal has to travel (2R/λ) changes, and causes the phase of subsequent
reflections to change ever to slightly. The total phase change is given by the formula:

φ = 2π2R
λ

(2.3)

Here φ is the phase change, R the distance the target and λ is the wavelength of the
carrier signal. Differentiating eq. (2.3) with respect to time and inserting eq. (2.2) gives
us:

dφ
dt = 4π

λ
dR
dt (2.4a)

= 4πvr
λ

(2.4b)

= 2πfd (2.4c)

This establishes a relation between phase change and Doppler frequency shift, showing
how measuring the phase between subsequent pulses allow us to calculate the radial
velocity. Another takeaway from eq. (2.3) is that it potentially can be used to get a
better estimate of the range R.

2.2.2 Pulse Repetition Frequency and Range-gating

A Pulse-Doppler radar generates a radar wave pulse train with a specified interval
between each pulse. The size of this interval is given with the PRF. The PRF decides
what we call the Maximum Unambiguous Range (MUR) or the radar. If the PRF is
30 MHz the MUR is c/2 · 15 MHz ≈ 10 m, which is how far an object can be from the
radar for the reflection to arrive back at the radar before another pulse is sent. In this
situation, if there is a strong reflector 11 m away from the radar, the radar will not be
able to distinguish this from a reflection returned from a target 1 m away.

Staggered PRF is a technique where the PRF is slightly changed in a pseudo-random
pattern, which causes the ambiguous target to change possition between each pulse.
When averaged over several pulses the ambiguous target will become a part of the noise
floor. Another benefit staggered PRF was briefly touched upon earlier, which is that
another pulsed radar system operating at the same carried frequency will not cause
erroneous target detections as it will just disappear into the noise floor.

A technique utilized together with staggered PRF is range gating, in which the receiver
is only turned on for a brief amount of time. This segments the space in which targets
can exist, such that e.g. reflections only from the segment placed between 1 m to 2 m
away from the radar will be registered by the radar.
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2.2.3 Ultra Wide Band

For a radar system to be UWB it has to occupy a fractional bandwidth ≥ 0.2 according
to [Aerospace and Electronic Systems IEEE Society 2007]. The fractional bandwidth is
defined as follows

bf = 2fh − fl
fh + fl

(2.5)

With fh and fl begin the upper and lower frequencies at which the signal is 10 dB lower
than at the frequency with the most energy.

UWB Pulse-Doppler systems usually become UWB because the pulses are very short
in the time domain, usually on the order of a few nanoseconds, which corresponds to a
wide frequency-domain spectrum. The primary benefit of such radar systems is very
fine range resolution, increased immunity to passive interference from rain and chaff,
and increased target detection probability [Fontana 2004]. UWB is also necessary for
doing Synthetic Aperture Radar (SAR) processing, as it will increase the resolution in
range.

2.3 Radar vs. Other Technologies

While radar itself is an interesting technology, it is worth taking a qualitative evaluation
of other technologies that can perform well at obstacle detection. In this section I will
discuss some of the pros and cons of radar vs RGB-D cameras, lidars and sonars.

2.3.1 Radar

The main benefit of radar systems is that they do not depend on optical visibility of the
target, and a radar system can be used without good lighting conditions. Radars can
also have an impressive range, up to 3 km like the Echodyne MESA-DAA [Echodyne
2016] (at the cost of much lower range resolution at 3.5 m). Other radar systems have
much lower maximum range, which also comes with much finer resolution, such as the
Novelda X2 SoC used in XeThru X2M200.

Radar systems are only able to measure the distance to objects and not their direction.
It can however measure through an object, which no of the other mentioned technologies
are able to. Unless the radar in some way is steerable, either mechanically, or as a
phased array antenna, there is no way to gain information about where the obstacle
lies. Another possibility is to use several radar systems or antennas and collect data
from them, similar to what has been done in the Aerotenna µSharp [Aerotenna 2016].
Most available radars also usually have a quite wide beam, because they operate at
a relatively low frequency. Operating at higher frequencies to obtain a smaller beam
width would require the radar to output more power in order to reach the same distance,
which could cause problems with electromagnetic spectrum regulations.
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Radar systems are not very sensitive to any noise that is likely to appear in the working
environment of a multirotor. A radar is however sensitive to clutter, and if there are
several obstacles in close proximity it might be difficult to differentiate them. Some
targets are also not very visible to radars, such as some electrical cabling or Polyvinyl
Chloride (PVC) pipes, although this depends heavily on the center frequency of the
radar. Small embedded radar systems are also rather cheap, such as the X2M200
retailing at 149.00$.

2.3.2 Lidar

Lidar is essentially the same as a radar, except for using light instead of radio waves,
which we can be clued in upon by looking at the expanded name LIght Detection and
Ranging. Lidar systems use short laser pulses and measure the time until a a reflection
returns. One big benefit of lidars compared to radars is the possibility of having a very
narrow beam width, which gives the lidar a narrow field of view. By using a series of
mirrors it is possible to steer the lidar beam as to measure a series of points, along
either one or two dimensions, and create a depth map that can be used for collision
avoidance.

Lidars have mostly been used within atmospheric research, but with the advent of
autonomous vehicles they have become increasingly more common in obstacle detection.
Historically lidars have been very expensive, as they require complex moving mirrors in
order to cover a large area. However Micro-Electro-Mechanical System (MEMS) lidars
are under development and is expected to be released sometime this year (2017), which
is likely to reduce the costs quite a lot [Velodyne LiDAR 2017].

Lidar systems, such as the Velodyne Puck [Velodyne Puck VLP-16 ], provides a 30°
degree Field of View (FOV) while still covering a 360° perimeter. It has a range of up
to 100 meters, with an accuracy of ±3 cm in radial direction. This is an upper end
automotive lidar and is priced as such. Cheaper options, such as Slamtec RPLIDAR,
can only scan in the plane, in a distance up to 6 m away from the lidar. It has an
accuracy of less than 1% of the distance.

Lidars are quite sensitive with regards to lighting conditions and will often perform
poorly in broad daylight. The lidar target also needs to be reflective, as well as not
occluded, in order to be picked up by the lidar. [Lidar - Range-Resolved Optical Remote
Sensing of the Atmosphere]

2.3.3 Ultrasonic Sensors

Ultrasonic sensors operate on a similar principle as radar and lidar, except for using
ultrasound2instead of electromagnetic waves. They can be provided with a narrow and
constant beamwidth, which is needed in order to find the direction of an obstacle, as
well as the distance with millimeter precision.

2Sounds with a frequency higher than the human ear is able to pick up
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Unfortunately most ultrasonic sensors are one dimensional in that it is not possible to
discern the position of an obstacle. While a solution akin to a phased array antenna
would be possible, there does not seem to be any available. In order to know the
approximate direction of a target it would be necessary to either mechanically rotate
the sensor or to use an array of sensors pointing in different directions as was done in
[Gageik, Benz, and Montenegro 2015].

An ultrasonic sensor has an advantage in the fact that it does not require special lighting
conditions. It is however sensitive to what materials it can discover, as the material
preferably has to be stiff as to reflect the sound waves. Ultrasonic sensors can also be
acquired at a very affordable price.

2.3.4 RGB-D Cameras

Red Green Blue + Depth (RGB-D) cameras is a collective term for camera systems that
use various techniques, both active and passive, in order to add depth information to
each pixel in the picture. The added benefit of this approach is that image processing
algorithms can be used together with the depth information for more accurate extraction
of obstacles.

Passive

One example of a passive technology is Zed by StereoLabs. The Zed uses two cameras
in order to calculate the depth of a pixel. It is capable of measuring the distance to a
pixel in a range of 0.3 m to 20 m.

The benefit of a passive technology such as this is that it is quite resilient to strong
external light sources, as well as working well over long distances. However it will not
perform good on uniform surfaces, much in the same way as human eyes. [Deris et al.
2017]

Active

The active technologies usually consist of one camera and one projector. The projector
projects a pattern, either in the visible or the in Infrared (IR) spectrum, that the
camera picks up. By analyzing the distortions in the pattern it is possible to extract
information on the distance between the object and the camera. Examples of cameras
that utilize such a technology is the Microsoft Kinect, the Intel RealSense, and the
Norwegian company Zivid. Common to all systems is a rather small working range,
usually between 0.5 m to 2 m. This approach is however much more accurate than the
passive approach, with a depth resolution of up to 0.1 mm for the Zivid.

The active systems can still perform well on uniform surfaces, but will not work as well
in strong lighting as the projected pattern will be swamped out.
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2.3.5 Comparison

The different technologies presented all differ greatly in their strengths and weaknesses.
A camera and a lidar might not work in broad daylight as well as a radar and a sonar,
while it is easier to find the direction of an obstacle with the former compared to the
latter. In order to develop a more robust system it would be a good idea to consider
using more than one kind of sensor, preferably two that complement each other well,
such as a camera and a radar as was done for an automotive vehicle detection system
in [Wang et al. 2016]. This kind of sensor fusion is outside the scope of this thesis, but
it is definitely a topic worthy of further exploration. For example could a cheap laser
distance sensor be mounted with the radar to work as a poor mans lidar and increase
the directivity of the measurement.



3 | Embedded Radar System

In order to test a radar anti-collision system both a robust radar platform, as well
as suitable support software, is necessary. This chapter discusses how the embedded
radar system was built, what choices was made and why they were made, and describes
each part of the system. In addition the software controlling the multirotor, software
for communication with the multirotor and debugging software is described. A test
platform is designed to verify the capabilities of the system. A user manual of the
system is available in appendix A.
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3.1 Hardware

The hardware that was developed for the radar system is to provide a good base for
developing algorithms for object avoidance, and builds upon a prototype developed
in [Koren 2016]. This section details its development and conclusion, as well as the
different parts of the hardware, such as the multirotor and its Onboard Computer
(OBC), the characteristics of the radar system and the Printed Circuit Board (PCB)
on which the radar is mounted.

Before starting development a small set of specifications was created for the system.

1. Must be able to cover a 360° perimeter.

2. Must be able to differentiate objects on the 360° perimeter.

3. The system must be able to measure the distance to a target with good accuracy.

3.1.1 Multirotor

The radar system is supposed to be flown on a hexarotor as shown in fig. 3.1b. The
hexarotor platform is a custom setup, using a Beaglebone Black as its OBC. The
OBC runs a custom Linux distribution, GNU/Linux Uniform Environment Distribution
(GLUED), developed by Laboratório de Sistemas e Tecnologia Subaquática (LSTS), as
a minimalist distribution for embedded systems. GLUED is paired with DUNE: Unified
Navigation Environment (DUNE), which is a runtime environment for the on-board
software of unmanned systems. DUNE provides interfaces for green threads, message
passing, math libraries, and a hardware abstraction layer, and is easily extendable in
C++.

On the hardware side, the multicopter can provide two voltages, regulated 5 V and
unregulated battery voltage. Connections made to the OBC are done with Molex
Micro-Fit connectors, which can be seen in fig. 3.1a.

3.1.2 Radar

Figure 3.2: The Novelda
X2M200

The XeThru X2M200 [see Novelda AS 2016a] is a sleep and
respiration monitor kit developed by Novelda. It is powered
by the X2 SoC also developed by Novelda. The kit utilizes
a Pulse-Doppler radar to sense the minute movements of
the chest when breathing. In addition to its use as a med-
ical sensor, it is capable of outputting preprocessed radar
measurements. This makes the X2M200 viable for use in
collision detection and avoidance.

Novelda recently launched the X4M03, explicitly for devel-
opment purposes, with a much more powerful radar SoC.
While it was released too late to be of use in this thesis,
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(a) The OBC of the multicopter, a Beagle-
bone Black. On top of the Beaglebone is
a cape with a 5 V voltage regulator and
connectors for other systems

(b) The hexarotor that the embedded radar
system was designed for.

Figure 3.1

the increased range and measurements frequency makes it better suited for further
explorations into this topic.

Further on in this section we will go into detail on the characteristics of the system as
found in [Novelda AS 2015] and [Novelda AS 2016b].

Update rate

The update rate of the X2M200 averages at 20 Hz, but experimental verificattion of this
shows some jitter in the update rate, at about ±1 Hz. The pulse repetition frequency
of the radar itself is approx. 30 MHz, and the returned pulse is averaged over several
samples in order to reduce noise and get more reliable measurements. All in all, these
effects are what leaves us with an update rate of 20 Hz.

Distance

The system is able to return a radar frame covering a distance interval of 2 m. The
interval must be positioned inside the interval [0.3 m, 4.1 m], and can be placed with a
resolution of 1 cm. The measurement interval is then split into bins of approximately
4 cm1, each associated with an amplitude and phase measurement. The X2 utilizes
range gating, with a range gate of 1 m. In order for the X2M200 to return data from
an interval of 2 m the active range gate is switched between successive measurements
performed by the X2.

1The bin size of approximately 4 cm comes from the wavelength of the center frequency.
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(a) Antenna radiation pattern in the horizontal
plane.
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(b) Antenna radiation pattern in the vertical
plane.

Figure 3.3: The antenna radiation pattern for the transmit antenna of the X2M200.
Zero degrees is orthogonal to the X2M200 hardware. The data is fetched from [Novelda
AS 2016a, pp. 18–19]

Frequency and Bandwidth

The X2M200 operates at a center frequency of 7.3 GHz with a 10 dB bandwidth of
2.3 GHz. The output pulse lasts for approximately 6 periods of the output frequency,
that is 8.2 ns. The mean PRF is set automagically by the X2 depending on the distance,
but the MUR is increased by staggered PRF. Another benefit of PRF in this context is
that is allows us to use several X2M200 in close proximity to each other, as other units
are likely to appear mostly as an increased noise-floor and not cause false positives.

Antenna

As the X2M200 is meant to be stationary and sense humans over a large area, the
receive and transmit antennas have rather wide beams. This can be seen in fig. 3.3,
which has a 10 dB beamwidth of 150° in the horizontal plane. For a system that relies
on accurately pinpointing the position of an object this can pose a problem, as an object
will be visible from many different orientations.

Communication

Communication with the X2M200 is over Universal Asynchronous Receiver/Transmitter
(UART). The message format, as well as the frame format, is explained in further detail
in [Novelda AS 2016b]. The frame structure is shown in table 3.1. The first byte is a
Start of Frame (SoF) byte, followed by the data, a checksum and an End of Frame (EoF)
byte. The first byte of the data-field specifies the message-type, sometimes followed by
a larger 4-byte word further specifying the message. Supported values are either byte,
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0 1 N-3 N-2 N-1
<Start> Data <CRC> <End>

Table 3.1: The structure of a frame received from the X2M200. The first row is the
byte number of the bytes in the second row.

byte arrays or 32-bit integers and floating point values in little-endian byte order. An
additional special byte, the escape byte, is also used by the protocol. The escape byte
is inserted before any special byte, so that the system knows that the special byte is to
be treated like a normal byte.

Checksum The checksum is a parity byte calculated by taking the Exclusive OR
(XOR) of all successive bytes, starting with the start byte and ending with the last
byte in the data-field (excluding escape bytes). This is a terribly weak approach to
verifying data integrity, as it is only able to discover if a bit within each byte has been
flipped an odd number of times. On several occasions data received from the X2M200
has been corrupted, with the only way of verifying data integrity is to analyze the
data in relation to previous data. This is especially a problem when using UART, as
acknowledged by Novelda at [XeThru Forum 2017]. A better alternative would have a
proper Cyclic Redundancy Check (CRC) checksum, either 8, 16 or 32 bit long, with a
standard polynomial.

3.1.3 Motor

In order to cover a 360° a few options were initially considered. The most robust option,
to use several radars pointing in different directions around the multirotor, was deemed
too expensive for a prototype. Another strategy, inspired by the stereotypical view
of radar systems, was to rotate the radar. The benefit of this approach is increased
resolution in the plane of rotation, at the cost of increased mechanical complexity.

In [Koren 2016] it was concluded that using a Brushless Direct Current (BLDC) motor
was the best choice for this application because of their slim profile, 360° operation, as
well as support of a slip ring. A BLDC motor consists of a permanent magnet rotor
and a stator with three separate coils. The three coils are connected in a manner as
shown in fig. 3.4 such that applying a current through them creates a magnetic field.
Controlling this magnetic field can then be used to control the position of the rotor.

In late 2016 several BLDC motor manufacturers started delivering their motors with
an optional magnetic encoder, as well as support for slip rings. The magnetic encoder
uses an array of Hall effect 2sensors, that can sense the rotation of a toroidal magnet
attached to the rotor of the motor. Two BLDC motors with magnetic encoders were
tested, their specifications listed in table 3.2. Two motors were ordered so that we
could test both motors to see which was suitable for our application, and in the end
the GBM2804H-100T won because of size and weight.

2The Hall effect appears when a magnetic field is orthogonal to a current through a conductor,
which produce a voltage difference orthogonal to both the magnetic field and the current.
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(a) (b)

Figure 3.4: (a): A simple BLDC motor with 3 coils spaced 120 degrees apart, as well as
2 poles.
(b): A gimbal BLDC motor with 12 coils and 14 poles. This is the same configuration
as the BLDC motor used for this project.
Both images are courtesy of [Homebuilt Electric Motors - Felix Niessen].

GBM2804H-100T GBM4108H-120T
Weight 41.5 g 120 g
Height 16.8 mm 25 mm
Diameter 36.8 mm 46 mm
Slots 12 12
Poles 14 14
Turns per Pole 100 120
Resistance 6.5 Ω 11.2 Ω
Voltage 7.4 V 11.1 V

Table 3.2: Comparison of the two BLDC motors that were bought.
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Magnetic encoder problems Both of the motors in table 3.2 were delivered with
an AS5048A magnetic encoder from AMS. The intent was to use the encoder to get
a better measurement of the orientation of the motor. However after some testing
it became obvious that the measurement drifts opposite to the direction of rotation,
and the rate at which the measurement drifts seems to be (nonlinearly) related to the
angular velocity of the motor. This makes it clear that the magnetic field produced in
motor interferes with the operation of the AS5048A.

An alternative method for estimating the angle was devised, using a photoreflector that
was supposed to calibrate the magnetic encoder. If the speed of the BLDC motor is
constant, the time between successive rotations can be measured and the speed can be
estimated quite precisely. This data can then be used to interpolate the pointing angle
of the radar.

3.1.4 Microcontroller

The system utilizes a Microcontroller Unit (MCU) from the STM32 -series of ARM
Cortex-M based microcontrollers from STMicroelectronics. Ease of portability to another
MCU in the same series, as well as computational power were two of the main factors
behind this decision. STMicroelectronics provides a portable peripheral library, STM32
HAL, that fascilitates switching between different MCUs. STMicroelectronics also has
a range of MCUs that makes it easy to choose a more powerful microcontroller should
that prove necessary in the future.

During the development, the Mini-M4 development kit from MikroElektronika was
used. As it is delivered in a DIP40-package, it is easy to plug into a breadboard for
prototyping, as well as attaching to a PCB. The Mini-M4 sports a STM32F415RG,
which can operate at 168 MHz, has a single precision floating point unit, as well as
support for the ARM digital signal processing instruction set [MINI-M4 Datasheet].
This is useful should the need arise for processing the radar data on the MCU instead
of retransmitting it.

3.1.5 Circuit board

A circuit board was necessary to combine all parts of the system. The circuit board
works as a mount for the motor, as well as connecting all other parts of the system. The
developed circuit board can be roughly divided into four parts; power supply, MCU,
motor control and angle sensor. The project files and full schematics available as digital
appendices.

Power Supply

There are two voltages available on the multirotor, unregulated battery voltage (12 V)
as well as regulated 5 V. However the microcontroller as well as the X2M200 need 3.3 V,
and the motor could benefit from an adjustable voltage to control power consumption.
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Therefore two power rails are provided on the PCB, one at 3.3 V and another adjustable
one.

The two power rails are regulated with two Low DropOut (LDO) regulators . The
adjustable voltage regulator was in turn connected to a potentiometer that could be
used to set the motor voltage.

Microcontroller

As the Mini-M4 comes in a DIP-40 package, the most convenient solution for attaching
it to the circuit board is to use a DIP-40 socket. The Mini-M4 also comes with a
3.3 V power supply that can power both the MCU and the X2M200 from USB during
prototyping.

LEDs The Mini-M4 comes with two integrated Light Emitting Diodes (LEDs), but
three additional LEDs were placed on the PCB in order to allow for quick visual
inspection of system status. The significance of each LED can be found in appendix A.

Programming The Mini-M4 can be programmed and debugged with an ST-LINK
debugger using the Serial Wire Debug (SWD) protocol. When debugging it is important
to keep in mind that the debugger and the MCU need to share common ground.

Motor Control

The gist of driving a BLDC motor it that the motor consist of a rotor with a permanent
magnet and a stator with three separate coils. The three coils are connected in a
manner as shown in fig. 3.4, and sending a different current through each coil produces
a magnetic field that the rotor will align to. By driving the three coils with sinusoidal
waveforms 120° degrees out of phase with each other, the motor rotates. The period of
the sinusoid decides the speed. The current, and by extension the voltage, necessary to
produce a magnetic field of sufficient strength depend on the characteristics of the motor,
such as the strength of the permanent magnets and the resistance of the coils. This is
why the motor is in need of a higher voltage than the readily available 3.3 V-rail as well
as why the MCU-circuitry needs to be protected from the motor control-circuitry.

There are two feasible solutions to create a motor driver, create it from scratch with
Metal-Oxide-Semiconductor Field-Effect-Transistor (MOSFET) drivers or use a com-
mercially available driver such as the L6234 Three-Phase Motor Driver from ST
Microelectronics. Again, in an effort to shorten development time, the L6234 was
chosen. The main drawback of this strategy is that it uses more physical space than a
MOSFET-solution, as the L6234 need support circuitry for internal voltage regulators
as specified in [STMicroelectronics 1998]. The L6234 is also slightly overkill for this
purpose as it can be used for voltages up to 52 V with an output current of 5 A. The
L6234 nonetheless was supplied with a small heat sink to dissipate heat.
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Two protection measures exist between the MCU and the L6234. When the L6234 is
not connected to the high voltage rail, the input pins, EN1-3 and IN1-3, are essentially
short circuits to ground. Applying a voltage to these pins in such an occasion can
damage the L6234. As we have no way of knowing if the MCU will be powered on
before the high voltage rail or not, 1 kΩ current limiting resistors are added to the
inputs of the L6234. In addition there are 15V zener diodes on the MCU inputs, that
aid in ElectroStatic Discharge (ESD) protection. In hindsight, these diodes can be
skipped as a cost and space saving measure.

Because the BLDC motor is an inductive load, the voltage over the motor coils are a
function of the rate of change of the current.

v(t) = L
di(t)
dt

(3.1)

Essentially this can cause a very high voltage on the outputs of the L6234 if the power is
cut abruptly, which could cause damage to the L6234. To prevent this, a 40 V Schottky
diode is added to each output.

Angle Measurement

The magnetic encoders that are delivered with the BLDC motors are connected to the
3.3 V rail on the PCB. The absolute angle of the motor can be read out from the sensor
over an Serial Peripheral Bus (SPI) bus.

Additionally the measurements from the encoder were to be calibrated with a photore-
flector. The photoreflector has a built in IR LED, which is reflected by a small rod
on the radar mount. This causes the photoreflectors built-in phototransistor to open,
which pulls the line going to the MCU to logic low. The output of the phototransistor
might bounce3, causing the MCU to register a falling edge more than once per rotation.
To prevent this behavior, a capacitor and a resistor is connected in parallel with the
phototransistor, effectively dampening the voltage such that there will be no bouncing.

Connectors

The PCB comes with three Molex Micro-Fit connectors so that it can easily connect
with the Beaglebone Black. The pinout of these connectors can be found in appendix A.

3.1.6 Radar Mounting Bracket

In order to mount the X2M200 to the motor a mounting bracket was created. The
mounting bracket is made so the system has a low profile, with the radar rotating
around its horizontal center. Holes for both M2 and M3 screws have been added, so
that it can be mounted to both of the motors that were being considered. There is

3Bounce originally signifies contact bounce found in mechanical switches, where the springiness of
the metals caused the contacts to bounce against each others, rapidly turning the switch on and off
until the bounce stabilized. A similar phenomena appear in phototransistors.
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Figure 3.5: The mounting bracket for attaching the radar to the motor. All dimensions
are in millimeters.

Figure 3.6: The final embedded radar system.

also a pass-through hole for the cables coming from the slip ring and a small rod for
activating the photoreflector.

3.1.7 Final Hardware

The final hardware can be seen in fig. 3.6. The motor control circuitry is on the right
hand side, while the power supply and the microcontroller is on the left hand side. The
photoreflector is hidden by the motor.

3.2 Software

Three different types of software were developed that directly relate to the hardware;
embedded software for theMINI-M4, communication software, and a visualizing software
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for debugging and understanding. This section presents how they were built as well as
their purpose.

3.2.1 Embedded Software

The embedded software is responsible for controlling the motor, measuring the pointing
angle, as well as communicating with the X2M200 and the Beaglebone Black. The
main goal when developing the software, besides fulfilling the specifications, is that
it is easy to develop and maintain. A prototype of the software relied heavily on the
STM HAL. While this makes the code easy to port between different members of the
STM32 -family, it is neither easy to maintain, nor to add new features. Information flow
within the software was also poor, as there are no native message passing interface in
the C Standard Library nor in STM HAL.

The problems with the software developed in [Koren 2016] could best be redeemed with a
total rewrite. ChibiOS, which is a small Real Time Operating System (RTOS) combined
with peripheral libraries. An RTOS allow us to segment the application into smaller
tasks, and provides us with an interface for task synchronization and communication.
The peripheral libraries that come with ChibiOS has very good support for the STM32 -
family, which makes the code easily portable should a different chip be considered in a
future revision.

Structure

The embedded software was designed to avoid any circular dependencies, so that it will
be possible to replace the radar, motor or communication protocol without affecting
the rest of the system. A dependency graph of the program can be seen in fig. 3.7. The
different parts of the system can be described as follows:

• analyze – Responsible for collecting information from all sources and transmitting
to an external destination. Originally it was also intended to analyze the data
and decide areas of interest for which the motor would slow down, which is the
reason behind the name.

• rot_measurement – Gathering measurements from the hall effect sensor at a
predefined interval. Also interpolates between measurements. Was later given an
option to only depend of the phototransistor.

• xethru – Responsible for controlling peripherals and memory when communicat-
ing with the X2M200.

• hall – Read out angle from the hall effect encoder.

• motor – Control the motor and associated peripherals. Supports variable speed.

• xethru_protocol – Driver developed by Novelda for parsing and creating frames
for communicating with the X2M200.

• extcom – Implementation of the external communication protocol. The protocol
is explained in further detail later.
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analyze

rot_measurement xethru

hall motor xethru_protocol extcom crc

Figure 3.7: The general structure of the software developed for the Mini-M3. White
blocks are tasks, while gray blocks are drivers.The names correspond to the name of
the c source-files.

Name Length [bytes] Purpose
Start byte 1 Signifies start of frame. Value is 0x7D.
Length 4 Remaining bytes of frame
Data "Length"−5 Arbitrary data
CRC 4 Used to verify data integrity.
End byte 1 Signified end of frame. Value is 0x7F.

Table 3.3: The general frame structure used for communicating with the MCU.

• crc – Driver for utilizing the crc-peripheral on the STM32F415RG.

Communication Protocol

The external communication protocol implemented is very simple, and tailored so that
it will demand very little resources to implement. The structure of a frame is shown in
table 3.3. The main benefits of this frame structure are the "start byte", the "length"
field, as well as the "crc". The "start byte" allows a microcontroller to ignore all other
data while looking for the "start byte". After receiving the "start byte" the MCU receives
the 4-byte long length field, checks that the length is valid (typically less than 1024).
Now the MCU can start a Direct Memory Access (DMA) transaction for the remaining
bytes, and does not need to use processing power on transferring the frame. After
receiving the specified number of bytes the MCU can check the "end byte" to verify
that the data is likely to be a full frame, and calculate the CRC to verify data integrity.
The specifics of the frame format, how to calculate the crc, as well as the contents of
the "data"-field are explained in more detail in appendix A.
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Figure 3.8: A view of the live 3D view software developed for viewing the radar data
more intuitively. The peaks in the data is caused by, among others, a computer screen
and a chair.

3.2.2 Communication Software

The communication protocol for communicating with the embedded radar system was
implemented in two languages. First one python module was created. Because the
python module was developed mainly for testing the hardware and prototyping it does
not verify the crc of the received frame. Using the python module a logger that saves
the radar data to the MATLAB .mat file format was created.

The second implementation is a C++ implementation for DUNE. This implementation
verifies the crc, as well as transmitting the data to other DUNE tasks as an Intermodule
Communication (IMC) message.

3.2.3 Visualization Software

Using the python communication module, an application for a live 3D view of the radar
data was developed. The main use was to help with acquiring an intuitive understanding
of the radar data, as well as being useful for debugging purposes.

The application was built using the MayaVi python module. A screenshot of the
application running can be seen in fig. 3.8. Usage of the program is described in
appendix A.
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Figure 3.9: The test platform together with the pedestal on which the radar system
was placed.

3.3 Test Rig

A test rig was also developed for the embedded radar system, and was used in [Koren
2016] to obtain data from a prototype of the final system. The test rig consists of two
parts, a test platform and test targets.

3.3.1 Test Platform

A platform, on which to test the system, was made in cooperation with the workshop
at the Department of Engineering Cybernetics at NTNU. The platform consists of a
wooden base together with a pedestal on which to place the radar system, as shown in
fig. 3.9. The final dimensions of the base were 3.66 m by 2.44 m. It has several evenly
spaced holes in it, which work as a coordinate system for placing targets, making it
easier to repeat a test. The pedestal positioned the radar at a height of 1.04 m over
the surface of the base. This was done in order to reduce possible reflections from the
ground, as well as increasing the visibility of the targets in the vertical direction.

3.3.2 Test Targets

Targets were chosen in order to provide a diverse set of materials and shapes to test
the system with.

Cylinders Cylinders were chosen because of their simple shape, which has the same
radar cross section from all angles [Skolnik 2001]. 6 different cylinders were selected
as shown in table 3.4. Unfortunately it was difficult to obtain cylinders of the same
height, but in most test situations the top and bottom of the cylinder will be outside
the field of view for the radar. The selected cylinders are shown in fig. 3.10a
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Name Diameter[m] Height[m] Material
Cylinder Ø31 0.310m 2.400m Aluminum (ventilation pipe)
Cylinder Ø25a 0.250m 1.625m Stainless steel
Cylinder Ø25b 0.250m 1.390m Stainless steel
Cylinder Ø10.5 0.105m 1.700m Stainless steel
Cylinder Ø5.5 0.055m 1.700m Stainless steel
PVC Pipe Ø11 0.110m 1.620m Polyvinyl Chloride

Cardboard Ø11.5 0.115m 3.020m Cardboard

Table 3.4: Table with the names and dimensions of the cylinders used in the test. A
picture of the cylinders can be found in fig. 3.10a

(a)

(b) (c)

Figure 3.10: (a) show the cylinder used for testing. From left to right in same order as
table 3.4.
(b) show the aluminum-foil covered corner.
(c) show the concrete wall used for testing. The net and the vertical aluminum rods
were assumed invisible to the radar when compared to the wall.
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Corner The corner was made in order to both test the inside corner as a corner
reflector, which has a big radar cross section [Skolnik 2001], as well as to test how the
corner of a building would appear to the radar system. The corner was rotated with 45
degree increments. The corner was made in wood, which is almost transparent to a
radar operating at 7.3 GHz , and then covered in aluminum foil as shown in fig. 3.10c.
Unfortunately the aluminum foil layer was a bit crinkled, which decreases the radar
cross section slightly. The corner was 1.70m high and measured 0.61m wide from the
corner in both direction. The corner was considered to be 0 degrees relative to the
radar when it worked as a corner reflector as shown on the left hand side of fig. 3.10c.

Wall A wall was used in order to check the visibility of concrete structures, as well as
the visibility of a large flat area. Concrete itself is not very visible at 7.3 GHz [Yunqiang
and Fathy 2005], but the rebar lattice inside the concrete wall is visible. As the wall is
not movable, the pedestal was moved around in order to get closer to the wall.

Fun Two mundane objects were tested simply for the fun of it. One of the test objects
was a human, myself, the other was a stack of 6 chairs. This can be helpful for testing
out object detection, to see how it reacts to more complex targets.

3.3.3 Test Results

A test plan is available in appendix B. The results of testing all targets are available
as a digital appendix as MATLAB .mat-files. The purpose of these tests it to gather
an extensive set of data that can later be used for object recognition. The data set
was extensively analyzed in [Koren 2016], and this report is also included as a digital
appendix. [Koren 2016] concluded that the radar is able to detect the distance to an
object very well, but because an obstacle is visible for large parts of a rotations it is
difficult to pinpoint the direction of an obstacle from visual inspection. Additionally two
objects close to one another might merge into one big reflection. At last the embedded
radar system has a large noise floor close to the radar.

3.4 Improvements

During testing a few suggestions for future improvements came up. There was no time
to do a revision of the hardware with these improvements, but they are written for
future reference.

MOSFETs The first suggestion is to replace the L6234 with MOSFETs. The main
problem is that the L6234 is meant to drive BLDC motors at high speed, while a
MOSFET solution can possibly be more efficient as well reducing the slight stuttering
of the motor. Additionally it will remove the need for the support circuitry for the
L6234. I recommend the TC4452 MOSFET from Microchip.



Chapter 3. Embedded Radar System 33

Surface Mount Components Now that the hardware has been tested it would be
a good idea to try to minimize the footprint. One way to realize this would be to use
surface mount components instead of through hole components. It would cause the
soldering process to take some more time though.

Higher Amperage Regulators The voltage regulators that were chosen for the
3.3 V and the adjustable voltage rail tend to become close to overheating during
operation. Both of them can deal with 1 A, which is close to the current drawn by the
system. Replacing these with higher amperage regulators would reduce this problem,
and increase the lifetime of the regulators.

Integrated Microcontroller It would be a good idea to integrate the microcontroller
with the PCB instead of on a DIP-40 PCB. This would further reduce the footprint of
the embedded radar system.

3.5 Conclusions

The embedded radar system is a prototype of a collision avoidance radar for a multirotor.
A final system is likely to drop the rotating radar in favor of several static radars due
to the increased complexity of rotating the radar, however the system as it stands is
enough to test if a radar is sufficient for collision avoidance for a multirotor.

The system has been developed with support software that simplifies debugging, proto-
typing and actual development. The embedded software was also developed with the
intent that parts of the hardware can be replaced.
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4 | Object Detection

In this chapter we will discuss how to use the radar data in order to detect possible
objects that the multirotor can collide with. Two algorithms are considered for this,
SAR which sharpens the data, and a blob detection algorithm. The blob detection
algorithm is tested on data gathered with the test platform from section 3.3.

Last semester, in [Koren 2016], a lot of tests a prototype of the system in chapter 3
was gathered. Some of this data is tested on the blob detection algorithm, and yields
acceptable results.
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4.1 Approaches to Object Detection

The data that is received from the radar makes every obstacle smeared out in both
the direction of rotation and in range direction. In order to sharpen the information
received from the radar, so that the data can be used directly, we consider SAR as a
possible approach. We also consider a blob detection algorithm in which we can discern
the approximate location of an object.

4.1.1 Synthetic Aperture Radar

SAR uses information gathered from moving relative to a radar target to create a higher
resolution radar image, both in the radial (range) direction and in the direction of
travel (cross-range). This could then give us precise locations, and maybe an estimate
of size, of obstacles. Because SAR is a bit of a buzzword when it comes to radars, so
it is worth discussing its use in a collision avoidance radar. Unfortunately SAR is not
suitable for this purpose, and the reason for this is discussed in this section. The section
is based upon information found in [Ch.17 Skolnik 2008], [Maître 2008], and [Moreira
et al. 2013].

Why is Synthetic Aperture Radar Good?

With a conventional radar system it is necessary to have a very narrow beamwidth in
order to get a good cross-range resolution1for a moving radar system. In order to create
a narrow beamwidth, the aperture of the antenna has to increase, which also means an
increase in physical size. For a parabolic antenna, this basically means that the larger
the parabola, the more the energy can be focused. An approximation of the cross-range
resolution δcr is given by:

δcr ≈
Rλ

D
(4.1)

Here R is the range, λ is the wavelength and D is the aperture. Instead of using a large
antenna to get a big physical aperture we can move a smaller antenna through space to
achieve a synthetic aperture. The diameter of the synthetic aperture is given by 2Lsa
where Lsa is the length of the traveled path. This means the longer the path of the
antenna is, the higher resolution we have cross-range.

An explanation of why we have greater cross-range resolution with a synthetic aperture
is that as the radar moves in a line parallel to the targets, each target in cross-range
direction will have a different doppler frequency shift, as their speed in range direction
is different. Each target point will therefore contribute to several measurements at a
certain range in cross-range direction. We estimate how a point target is spread across

1Cross-range is the direction the radar system travels, it is usually perpendicular to the range
direction, i.e. the pointing direction of the radar.
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several measurements with a point spread function, whose spectrum we use later during
SAR Processing.

SAR Processing

Data gathered from a SAR system before any processing is done is a 2 dimensional
matrix with range in one direction and cross-range in another. Each cell of the matrix
contains a complex value, the magnitude and phase of the returned data transformed
to cartesian coordinates. In the ideal case the distance to the target surface is so far
that we can assume a planar wave front, the antenna does not experience pitch or roll,
and the antenna keeps a uniform distance to the target surface. For now we consider
the ideal case, and our SAR pipeline is rather simple.

The data in our matrix has been smeared out in both dimensions. In range dimension
it is smeared out by the fact that the chirp of our radar in the spatial domain is longer
than each range bin. This causes reflections from nearby range bins to appear in each
range bin. In addition the radar wave is returned from each target several times in
cross-range direction, with a slightly different phase each time because of the doppler
shift. In order to correct for this, the matrix is brought to the Fourier domain. The
Fourier transformed matrix is convolved in range direction with the complex conjugate
of the chirp spectrum to give range compressed data. Further, in order to correct for
smearing along cross-range direction the transformed matrix is convolved with the
complex conjugate of the frequency response expected from a point target.

Implementation Considerations

Unfortunately there are several obstacles in the way for implementing SAR for the
system described in chapter 3. First and foremost, if the multirotor is standing still,
rotating the system has no use because each target will have a constant velocity in
range direction and we can not perform separation of targets in cross-range direction
(direction of rotation). Secondly, if the quadrotor is moving and the system is rotating,
measurements that are in the direction of travel are mostly useless for SAR purposes as
there is no cross-range movement (synthetic aperture), which defeats the purpose of
using it for collision avoidance. This could be somewhat fixed by offsetting the radar
from the axis of rotation, similar to what has been done in [Ali, Bauer, and Vossiek
2014].

Removing rotation from the equation and just having one radar perpendicular to
cross-range direction for imaging purposes, there are still problems that have to be
solved. Because the range of the X2M200 is so small, and the antenna has a large
beam width, we can not assume planar waves and have to mitigate for the fact that
a target can appear in several target bins during a pass. This is accounted for by an
anti-range migration algorithm such as the polar format algorithm. Errors caused by the
movement of the multirotor such as pitching and rolling of the antenna or not moving
at a constant range of the target has to be accounted for.
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Figure 4.1: Interpretation of the magnitude of received reflections, shown as a matrix
with pointing direction along x-axis and range along y axis.

4.1.2 Blob Detection

For collision avoidance we are only interested in the direction and distance to the target,
as well as an approximation of its size. Using the data gathered from a rotating radar
this is entirely feasible. Distance is an intrinsic part of radar data, a sense of direction is
gathered by the radar rotating, while a sense of size can be gathered from the strength
of the returned reflection and spread in the direction of rotation.

By looking at the matrix of received data, as shown in fig. 4.1, we see that an object
appears as a blob of 4-connected measurements of higher value than their surroundings.
Extracting the size of this blob, as well as its center gives us an estimate of the width
and location of an obstacle.

Thresholding

It is important to filter out which points are to be considered as a part of a blob. The
radar is prone to noise from clutter or multipath propagation, as well as the beam of
the radar being very wide so that an element appears long after the radar is no longer
pointing towards it. In order to ignore erroneous reflections a sufficient solution was to
ignore all measurements with a magnitude under a certain threshold. As the reflections
decrease by a power of 4 depending the range (see eq. (2.1)) the thresholding also needs
to be dynamic. The following formula was used:

t(r) = kt/r
4 (4.2)

kt is an adjustable gain, r is the range and t(r) then gives the threshold for a specific
range. All points that exceed this threshold can be considered for inclusion into a blob,
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but adding an additional based on the peak value of the blob will ensure that what we
include is more based upon the physical size rather than the radar cross section (i.e.
amount of reflected energy). The additional threshold is applied to all points that are
4-connected to a local maxima:

tblob(mpeak) = mpeak10
kdB

20 (4.3)

mpeak is the magnitude of the maxima, kdB a gain in decibel, and tblob is the threshold.

A Greedy Approach

Another benefit of blob detection is that we can develop this as a greedy, memory
conserving algorithm that is suitable for embedded devices. The data from the radar
can be viewed as a matrix, with each column representing a specific pointing direction
and each row representing a specific range. In this matrix a target will appear as a
peak value spread out in both directions, as can be seen in fig. 4.1.

As we receive data column by column, we want to be able to process the data as it
comes. This means we will conserve memory by not storing the data for a long period
of time, as well actually detecting the target as soon as the radar has swiped over it.

There might be a lot of peaks within each blob due to noise or movement of the
platform/target, so it is desirable to merge peaks that are likely to stem from the same
object into the same blob. At the same time it is a good idea to ignore all peaks below
a certain threshold value, as they are likely to be just noise.

Using this information we can develop the following algorithm:

1. Start with an array capable of holding information about each range bin, such as
a reference to a blob and if the range bin was used in the current iteration.

2. A range bin is activated when the magnitude of a reflection for that bin exceeds
the activation threshold, and a new blob is created for that bin.

3. Each new magnitude received for that bin is added to the blob if it exceeds the
activation threshold as well as a local threshold based on the registered maximum
magnitude for that blob.

4. After each column is processed, all blobs that are immediately adjacent in range-
direction are merged into a bigger blob.

5. If no data was added to a blob after a column, then it is assumed that the blob
has been found. All points that exceed the local blob threshold are included when
calculating the distance and direction of the blob, as well as an estimation of the
width of the blob. The ranges associated with the blob are cleared and marked as
inactive.

6. Repeat from point 2 with a new column.
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Figure 4.2: Test setup with one cylinder placed 0.92 m away from the radar at 0°.

With the blob extracted from the algorithm we can either create a sector segment the
multirotor has to avoid, or we can transform the direction and distance of the obstacle
to the world frame and keep away from these coordinates. The algorithm as mentioned
here is implemented and discussed a bit later in the thesis.

4.2 Testing Blob Detection

The algorithm described in section 4.1.2 was implemented in python in order to test its
viability, and the software is documented in appendix A. The test data was gathered
with the test rig from section 3.3, selecting from the data sets described in table B.1.
Some error sources in the data that are worth noting is that the alignment between the
radar 0° and the 0° of the setup was a bit off, in the range of 2° to 5°.

4.2.1 Test Results

The developed algorithm was tested on a few different scenarios aimed at testing how it
detects single targets, multiple targets, large targets, and odd targets. For each test kt
(eq. (4.2)) and kdB (eq. (4.3)) was tuned in order to maximize the accuracy of finding
the blob center point. This was done because the width of the blob is useless without
knowing the center.
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Figure 4.3: The result of the blob detection algorithm with a aluminum cylinder with a
diameter of 0.31 m placed with the closes point at position 0.92∠0◦. This is the setup
shown in fig. 4.2.

One Cylinder

In this test an aluminum cylinder, 0.31 m in diameter, was placed with a distance of
0.92 m between the radar and the surface of cylinder as shown in fig. 4.2. The cylinder
was placed at 0°. Running python script, with kt = 2 and kdB = −3, we get the results
shown in fig. 4.3. The center of the blob is quite close to the location of the point on
the cylinder closest to the radar. However there is a slight offset in the angle which
might be attributed either to a slight misalignment of the radar or that the dataset
is not completely symmetric because of the radar antennas. The size of a sector that
contains the physical cylinder can be shown to be 17°, while the calculated width is
much larger. This can be reduced by setting kdB to an even smaller value, but that
affects the accuracy of the center position.

Two Cylinders

This test is quite similar to the other one. Two identical aluminum cylinders, 0.35 m in
diameter, was placed 0.9 m away from the radar, at ±60° respectively. The script was
run with kt = 3 and kdB = −3. The result is as shown in fig. 4.4, and here it did not
work as well as in the last test. The green blob has been placed quite accurately, even
though it is still too wide. As for the orange blob, both the center and the width is
quite far off. This is reflected in the source data, which is shown shaded in blue, where
the second cylinder also occupies a significantly larger sector. The cause behind this
was not clear, but it might be a slight difference between the cylinders that caused this.
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Figure 4.4: The result of the blob detection algorithm with two aluminum cylinders
with a diameter of 0.31 m placed at positions 0.9∠± 60◦

More investigation is needed for this. The center positions are still usable if we avoid a
large enough area around them.

Concrete Wall

The radar system was placed 0.96 m away from a concrete wall, so that the closest
point on the wall was at 90°. Concrete itself is not very visible to a radar, but the rebar
and conduits inside the concrete is quite visible. This can also explain the erroneous
detections in fig. 4.5, where the python script was run with kt = 3 and kdB = −3. The
green and orange blob is likely rebar or conduits inside the wall, while the purple blob
is the wall itself. The accuracy of the center coordinates of the purple blob is still
quite good, with the inaccuracies likely to be caused by how the radar was positioned.
Increasing the threshold gain kt reduced the accuracy of the center of the purple blob,
but removes the erroneous blobs. This is not really a valuable tradeoff as it is more
useful with a good detection than to remove all false positives.

Also worth noting in fig. 4.5 is the amount of clutter close to the radar, which is likely
caused by the test setup.

Human

A human is included simply because it is rather important for a multicopter to not
hurt humans. The human (i.e. the author) placed himself at approximately 1 m and
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Figure 4.5: The result of the blob detection algorithm with a concrete wall placed at
0.96∠90◦.

0° and moved as little as possible. What is interesting about humans, compared to
earlier targets, is that humans have a rather uneven surface which causes a much larger
spread in range-direction as compared to earlier targets as seen in fig. 4.6. The python
program was here run with kt = 1 and kdB = −3. As earlier, the center position of the
blob is reasonably placed, and the width of the blob occupies a much larger section
than the actual human.

4.3 Conclusion

When approaching the radar data we have available we see that SAR is not a good
approach for detecting object to be used in collision avoidance. Instead an algorithm
that is based on detecting blobs in images is considered. The algorithm, as it was
presented in section 4.1.2, is capable of finding the center and closes point to an obstacle
to a reasonably high degree. It is however unable to estimate the size of the object,
which might also be a weakness with the radar system itself. As we are able to estimate
the center of an obstacle we can just avoid that coordinate, as well as a safety zone
around that coordinate. As we have no information on the height of an obstacle nor the
shape, the simplest model that fit them all is an infinitely tall vertical cylinder. This
forms the basis for the obstacles tested in the next chapter.

However the radar was not tested on a platform that was in motion, and it might be
that the data from such a system would not work with the algorithm, except if the
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Figure 4.6: The result of the blob detection algorithm with a human positioned at 1∠0◦.

radar system is able to update fast enough. The system also needs a update rate in
order to update the position of the obstacles in order to avoid a collision. It might
also be possible to chain data from several rotations, together with the movement of a
multicopter, in order to estimate the size of an obstacle. As a concluding remark, the
blob detection approach seems feasible for object detection on a rotating system that is
not moving. More testing is needed to verify if it works for a moving system.
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The topic of collision avoidance is getting more and more relevant to UAV research, as
systems become more and more autonomous. It is also relevant for non-autonomous
operations, as it can help the pilot avoid obstacles that is not visible to the pilot. At its
roots, collision avoidance is basically the task of altering the input to a system in order
to avoid it reaching a certain state. In this chapter we will look at one kind of collision
avoidance, Null-Space-based Behavioral Control, how to implement it, and verifying
the implementation on both a simple and a more complex simulator.
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5.1 Null-Space-based Behavioral Control

Null-Space-based Behavioral (NSB) is a type of behavioral control, that is a combination
of several simple behaviors that combined create a complex behavior. A behavior can
be generalized as either keeping away from or moving towards a specific state. NSB
was proposed in [Antonelli, Arrichiello, and Chiaverini 2005], and was a quite different
approach compared to earlier methods. In overarching terms, NSB orders behaviors
according to priority and allow higher priority behaviors to suppress parts of a lower
priority behavior that collide with it.

5.1.1 Behavioral Control

When talking about behaviors in this context we think of how the quadrotor behaves in
relation to its environment, such as keeping away from humans, avoiding obstacles, or
aiming for a particular configuration. The behavior is expressed through a function of
the system configuration, such as a cost or potential function. We call this function the
task function. The output of the task function, which is aptly named the task value, is
our measure for how well we conform to the desired behavior. When avoiding obstacles,
the task function could be the 2-norm of the vector between origin of the body frame
of the vehicle and the center point of the obstacle, i.e. the task value would be the
distance between the vehicle and the obstacle. By controlling the task value, we are
able to ensure that the vehicle conform to the expected behavior. Mathematically a
task could be represented as follows:

σ = f(q) (5.1)

with σ ∈ Rm representing the task variable we want to control, f is the task function,
and q ∈ Rn is the system configuration. The dynamics of σ can be found through
differentiation:

σ̇ = ∂f(q)
∂q

∂q
∂t

(5.2a)
= J(q)v (5.2b)

Here J(q) ∈ Rm×n represents the jacobian of the task, and v ∈ Rn is the system velocity
q̇.

Now, by selecting a good v, it is possible to stabilize σ. This v can in turn be used as a
reference velocity for our system. However, imagine that there are several such tasks,
σi, i ∈ [1, n], each with their own vi. How will we ensure that two behaviors don’t
work against each other, or one behavior overrides another? Several such coordination
schemes exist, such as a cooperative scheme where a supervisor assigns each vi a weight,
αi, and then sum them all together to form a final vd, or as written as a formula:
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vd =
n∑
i=1

αivi (5.3)

Other schemes, such as a competitive subsumption architecture[Brooks 1986], give each
task a priority, such that σ1 has a higher priority than σ2. The vn of the lowest priority
is cascaded up through the tasks of increasingly higher priority, either until it reaches
a task that also wants to control vd and therefore subsumes vn in its own vi. After
passing through the last task, vd is passed to the system as a reference. NSB is a subset
of this competitive subsumption architecture.

5.1.2 How Null-Space-Based Behavioral Control Works

First the velocity vi associated with each task σi has to be calculated. A simple solution
to this problem is to use eq. (5.2) and invert it. This gives us the following:

vi = J †σ̇i (5.4)

where J † is the Moore-Penrose Pseudoinverse

J † = JT (JJT )−1 (5.5)

A shortcoming with this practice is discrete integration of the reference velocity might
cause a drift in the vehicle position. In order to solve this problem, [Antonelli, Arrichiello,
and Chiaverini 2008b] used a closed loop inverse kinematics version of the formula:

vi = J †(σ̇i + Λσ̃) (5.6)

σ̃ is the task error σ̃ = σi − σ, and Λ is a positive-definite matrix. Inserting eq. (5.6)
into eq. (5.2) gives

˙̃σ = −Λσ̃ (5.7)

Which show that the error is asymptotically stable if Λ is positive definite, and that
eq. (5.6) is a good input for eq. (5.2).

Now the clever thing about NSB is how the cascaded reference velocities are subsumed
by the higher reference tasks. What we want to avoid is for the lower priority task
to alter the completion of a higher priority task in any way. By projecting the lower
priority reference velocity onto the null space of the jacobian of the the immediate
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v3 + (I − J †
3J3)vd,in v2 + (I − J †

2J2)vd,3 v1 + (I − J †
1J1)vd,2

vd,3 vd,2vd,in vd,out

Figure 5.1: A representation of how eq. (5.9) would work if we have three tasks

higher-priority task, the conflicting components of the reference velocity is removed.
I.e. only the velocity component that causes no change in task value remains. The null
space of task σi can be defined as follows:

nulli(σ) = I − J †i Ji (5.8)

With this we can create the following recursive formula for a system with n tasks.

vd,out = vd,1 (5.9a)
vd,i = vi + (I − J †i Ji)vd,i+1 (5.9b)

vd,n+1 = vd,in (5.9c)

Here vd,in is the external velocity reference fed into NSB, vi, i ∈ [1, n] is the task desired
velocity generated by eq. (5.6), and vd, i ∈ [1, n] is the output velocity generated by
each task. The variable i is used to signify priority, with a lower i equal to higher
priority. The equations system eq. (5.9) is graphically represented in fig. 5.1. Now in
the case where Ji is of full rank, such that there is no null space, the lower priority
references will be completely filtered out. However we can guarantee that we fulfill
the highest priority task, as well as lower priority tasks that do not interfere with the
highest priority task [Antonelli, Arrichiello, and Chiaverini 2008a].

Selecting task gain Λ

[Antonelli 2008] presents a method for selecting the individual task gains that guarantee
stability for the different tasks. The conditions for stability are presented for a scenario
with three task jacobians. Each jacobian either has to be independent from all higher
priority jacobians stacked on top of each other, or it has to be the annihilator of
the jacobian of the immediate lower priority task while the remaining jacobian is
independent from both. In other words:

J12 =
[
J1
J2

]
(5.10a)

rank(J †1) + rank(J †2) = rank([J †1 J †2 ]) (5.10b)
rank(J †12) + rank(J †3) = rank([J †12 J †3 ]) (5.10c)
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or

JnJ †n+1 = 0, j = 1, 2 (5.11a)
rank(J †n) + rank(J †n+2) = rank(J †n J †n+2) (5.11b)

rank(J †n+1) + rank(J †n+2) = rank(J †n+1 J †n+2) (5.11c)
(5.11d)

The gain Λn can then be chosen as Λn = λnI, with I as the identity matrix of dimension
equal to σ. λn is chosen as

λ1 > 0 (5.12a)

λ2 > max(0, λ̄21 − ¯
λ11

¯
λ22

λ1) (5.12b)

λ3 > max(0, λ̄31 − ¯
λ11

¯
λ33

λ1,
λ̄32 − ¯

λ22

¯
λ33

λ2) (5.12c)

The values λ̄nn and
¯
λnn are the maximum and minimum eigenvalues of the matrix Pnn

that can be calculated with the following equations:

P11 = I, P22 = J2null(J1)J †2 ,
P21 = J2J

†
1 , P32 = J3null(J1)J †2 , (5.13)

P31 = J3J
†
1 , P33 = J3null(J12)J †3

By using these gains with a maximum of three tasks we ensure that the task value error
σ̃ will go to 0 if conditions in eq. (5.10) and eq. (5.11) are satisfied.

5.1.3 Task Activation

When using NSB it is not always desired that a task should be active. One such
example could be a fencing behavior, where the system is to stay within a certain
distance of a specific configuration. Typically this distance would be represented as σd.
If the task was to be active at all times it would cause the system to go towards this
boundary, while ignoring input in and opposite to the direction of the boundary. This
is obviously not desired behavior, and some care need to be put into when to activate
tasks. The topic was briefly touched upon in [Antonelli, Arrichiello, and Chiaverini
2008b], suggesting to activate a task when the task value is within a certain threshold
and the direction of the velocity vector coincides with the direction of the obstacle.
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Velocity-vector Approach

Activating when the velocity vector v, d, n+ 1 is intersecting with a boundary drawn
by the desired task value was tested in [Klausen 2013]. Here the author considers the
following task, avoiding a circle:

σ = ‖q − c‖ (5.14)

The coordinates of the center of the circle is represented by c. In order to activate the
task, he finds the length of the distance, σv, which is the vector between the center
c and the projection of c onto the velocity vector. The angle θv between the velocity
vector input to the task, and the vector from q to c is also considered. The task is
activated if

σv < σd (5.15)

‖θ‖ ∈
[
0, pi2

)
(5.16)

While this is a good and valid approach, another approach is tested out in this thesis.
Any point along the velocity vector can be calculated by the following formula:

p = q + tvd,n+1 (5.17)

This can be inserted into the equation for the task function eq. (5.1) to find how the
task function develops along the ray, i.e.:

σd = f(q + tvd,n+1) (5.18)

Solving this equation for t and concluding with t > 0 means that the velocity vector is
intersecting the boundary formed by σd. The drawback of this implementation is that
it has to be solved specifically for each kind of task function.

Here we solve it for the task function eq. (5.14). First note that the task function can
be rewritten as:

σ = (q − c) · (q − c) (5.19)

Now inserting eq. (5.17), replacing q with q+tvd,n+1, and solving for t gives the following
second degree polynomial:
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t2(vd,n+1 · vd,n+1) + t(2vd,n+1 · (q − c)) + (q − c) · (q − c)− σ2 = 0 (5.20)

By using the quadratic formula[Brahmagupta 0628] to solve for t, we get to know if the
velocity vector intersects the boundary circle. If both solutions, t1 and t2, are positive
and real, the velocity vector is in a direction that will intersect with the boundary circle.
The obvious drawback of this method is that it is not general and needs to be derived
specifically for each kind of task function. However a similar approach of finding the
intersection between the velocity vector and the boundary might work for other task
functions.

[Antonelli, Arrichiello, and Chiaverini 2008b] also talks of a maximum activation
distance, which basically defines the interval for which we bother to consider activating
the task. In the use case where an operator wants to operate close to a task limit at
low speeds we do not want the task to activate unless there is a chance of collision.
However in the scenario that the operator is not aware of the surroundings and is about
to ram into the task limit at maximum velocity, we want to activate the task as soon as
possible to slow down the vehicle. This is possible to achieve using a dynamic activation
distance, such as one based on the velocity in the direction of increased task value.

By integrating σ̈, acceleration in direction of increased task value, twice with respect to
time we get the two following equations. Note that this assumes that σ is scalar.

σ̇ = σ̈t+ σ̇0 (5.21)

σ = 1
2 σ̈t

2 + σ̇0t (5.22)

By setting σ̇ = 0, solving eq. (5.21) with regards to t and inserting in eq. (5.22).
Assuming the maximum acceleration σ̈max has a different sign than σ̇ we get the
following equation for the distance takes to break the system:

σstop = 1
2
σ̇2

σ̈max
(5.23)

This gives the final maximum activation distance

σa = σd + σstop (5.24)

This activation distance can then be calculated on every new measurement in order to
decide whether or not to check for a possible collision.

In fig. 5.2 we can see how such a system could work. The velocity vector intersects
with the circle and the craft is inside the activation distance. NSB will then remove
the component of the vector that is in radial direction so that only the tangential
component remains.
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Figure 5.2: This figure shows a craft with velocity vector v, decomposed into tangential
and radial components. The desired task value σd is shown with the red ring, while the
maximum activation distance σa is is shown with the dashed line. The center of the
circle is shown with c.

Set-based NSB

As an alternative to the activation scheme presented earlier [Moe et al. 2016] introduces
Set-based NSB tasks, where the goal of steering the task value to a certain desired
task value has been replaced with a goal of keeping the task value within a predefined
interval, σ ∈ D. When the task value is inside D, there is no need for the task to affect
the behavior of the system. This makes activation/deactivation of the task to be an
integral part of the task itself.

The interval in which the task value is valid, D = [σmin, σmax] forms the basis for
the extended tangent cone1, a key property used in the activation/deactivation of the
set-based task. The extended tangent cone to the set D is defined as

TR,D(σ) =


[0, ∞), σ ≤ σmin

R, σ ∈ (σmin, σmax)
(−∞, 0], σ ≥ σmax

(5.25)

If the derivative of the task value is inside the extended tangent cone, σ̇ ∈ TR,D, then
we can see that σ ∈ D∀t ≥ t0 if σ(t0) ∈ D as well as σ → D when t→∞ if σ(t0) /∈ D.
When σ̇ ∈ TR,D there is no need for the task to be active, and the desired velocity does
not need to be altered. However, in the case when σ̇ /∈ TR,D the task is active and the
velocity propagates through the system as in eq. (5.9), with vi defined as

1The non-extended tangent cone is identical, except for only being defined for σ ∈ D.
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vi = J †(σ̇i + Λσ̃) (5.26a)

σ̃ =
σmin − σ, σ ≤ σmin

σmax − σ, σ ≥ σmax
(5.26b)

A stability analysis of the Set-based NSB approach was perfomed in [Moe et al. 2015],
which concluded that all set based tasks would be satisfied if they had higher priority
than equality-based NSB tasks if the conditions in section 5.1.2 are fulfilled.

5.2 Implementation

An implementation of NSB was written in C++ for the DUNE runtime environment.
The possibility of both equality-based and set-based NSB tasks was considered, as well
as possibility to further extend the software should it be necessary.

5.2.1 Specification and Planning

A small list of goals that the implementation of the Set and Equality-based NSB
tasks had to conform to was made. The motivation behind the goals is to simplify
maintenance, as well as usage, of the software for a future maintainer.

1. Must have both set-based and equality-based tasks.

2. Must be possible to implement custom tasks.

3. Must be able to manage priorities.

The following text discusses how NSB was implemented in order to fullfill these require-
ments.

5.2.2 Hierarchy

In order to ease flexibility of the program it was decided to separate task management
from task functionality. Task management is responsible for organizing tasks in or-
der based on priority, as well as cascading the desired velocity through the tasks in
order. Task functionality is more based around implementation of each task function,
calculation of the jacobian, as well as calculating the velocity input.

Task Functionality

In order to implement task functionality a class hierarchy as shown in fig. 5.3 was
drawn up. The overarching idea is that main functionality, which has to be calculated
no matter what kind of task, is implemented at the top level, in NSBTask, as well as
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pure virtual function prototypes (in cursive) that has to be implemented by a subclass.
Additionally, all functions on all levels are virtual and can be overridden by a subclass
should it be necessary for a task to deviate a bit from the norm.

In fig. 5.3 we see an abbreviated version of how this would work. Null-space projection
and calculation of the task value and its derivative among others are implemented
in the base class NSBClass. The base class presents a coherent interface towards
the task management functionality, as well as presenting pure virtual functions that
are implemented by the subclasses. One such example is the cascadeInput function,
which has to be implemented differently for a set-based task vs. an equality based task.
The subclasses may also have their own virtual functions, such as the shouldBeActive-
function of EqTask which is used for implementing the Velocity-vector based approach
to task activation as described in section 5.1.3.

Task Management

Task management is implemented in the NSB class. The main idea is that each NSBTask
object is associated with an ID and a priority. The ID is used to identify the task
later, when changing priority or deleting the task. The function processInput provides
a simple interface for cascading the input through the tasks in order based on priority.

This class could be extended with more management opportunities, such as dynamic
enabling and disabling of certain tasks based on other external data.

5.2.3 Limitations

There are some limitations in the software that has been developed, I will try to list
them, as well as how to mitigate them.

Scalar Task Values Task values can only be scalar. While this limitation is inherent
to set based tasks, there are circumstances where a vector task value could be desired for
an equality-based task. The best way to mitigate this is to create several equality-based
tasks, one for each element in the vector task value, and insert them with adjacent
priorities.

Completely Arbitrary Priorities When adding a task to an NSB-object it is not
possible to assign a task a higher priority than the number of tasks already in managed
by the object. One scenario where this might become a problem is if the object is
managing zero tasks and three tasks are to be added. If the tasks are added in order
with priorities 2, 1, and 0 they will end up with final sorting order 0, 2, and 1. This is
because the task with priority 2 gets reset to 0 when it is added, and then the task with
priority 1 gets the bottom priority. When the task with actual priority 0 is added it
gets the top priority. This is a feature of how the NSB-object is implemented. Should
it become a problem, one solution is to reset the priority of all tasks with priority lower
than the last added priority.
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�interface�
NSBTask

# lambda : float
# active : bool

+ nullProj( x : Mat& ) : Mat
+ calculateTaskValueDot( q : Mat&, q_dot : Mat& ) : float
+ cascadeInput( q : Mat&, q_dot : Mat&, q_dot_desired : Mat& ) : void
+ jacobian( q: Mat& ) : const Mat&
+ jacobianPinv( q : Mat ) : const Mat
+ taskFunction( q : Mat ) : float
+ setActive( active : bool ) : void

�interface�
EqTask

- sigma_desired : float

+ cascadeInput(...) : void
+ shouldBeActive( ... ) : bool

�interface�
SetTask

- sigma_min : float
- sigma_max : float

+ cascadeInput( ... ) : void
- inTangentCone( sigma : float,

sigma_dot : float ) : bool

GoToTask

- goToCoord : Mat

+ jacobian(...) : const Mat
+ jacobianPinv(...) : const Mat
+ taskFunction(...) : const Mat

VerticalCylinder

- center : Mat
- radius : float

+ jacobian(...) : const Mat
+ jacobianPinv(...) : const Mat
+ taskFunction(...) : const Mat

Figure 5.3: Class diagram over the NSB-software. NSBTask is an interface which
is partly implemented by EqTask and SetTask, which perform operations specific to
equality-based tasks and set-based tasks. Two kinds of tasks are shown here, a GoTo-
task which will try to pull the quadrotor towards a specific coordinate, as well as
VerticalCylinder, which is an obstacle represented as an infinitely high cylinder. The
task function and the jacobians are implemented in these classes. The diagram does
not contain all the functions in the actual implementation of the class in order to better
get the structure across.
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NSB

- task_map : map<string, NSBTask*>
- task_priority : list<NSBTask*>

+ newTask( t : NSBTask, id : String, prio : Int ) : void
+ changePriority( id : String, prio : Int ) : void
+ getPriority( id : String ) : Int
+ removeTask( id : String ) : void
+ getTask( id : String ) : NSBTask
+ processInput( q : Mat&, q_dot : Mat&, q_dot_desired : Mat& ) : Mat

Figure 5.4: Showing the structure of the class that organizes NSBTask-objects according
to their priority. Each task is associated with an ID, given as a string. A good ID could
be a description (for a persistent task) or a Universally Unique Identifier (UUID) for
short-lived tasks. The function processInput is used to cascade an input through all
tasks in order of priority and returns an input that adheres to the defined behaviors.

5.2.4 Tasks

Three different kinds of behaviors were implemented as a part of this thesis; obstacle
avoidance, ground clearance, and a go-to position behavior. The tasks where chosen as
they were each able to prove different points. A cylinder task was chosen as a generic
obstacle, as every obstacle can be covered with a cylinder that is large enough. The
go-to position behavior was chosen as it is useful for testing the obstacle avoidance.
Ground clearance was also included because it is a one-dimensional task, and it shows
of some interesting dynamics.

Go to position This is an equality-based task which aims to move the multirotor to
a fixed position. The task has the following task function:

σ(q) = ‖q − a‖2 (5.27a)
σd = 0; (5.27b)

Where q are the coordinates of the quadrotor, a are the coordinates of the desired
position and σd is the desired task value. The jacobian of this task function is

J(q) = (q − a)T
‖q − a‖2

(5.28)

Worth noting about this task is that an additional magnitude saturation step was added
on the task-specific desired velocity vi. This was added because the GoTo-coordinate
might be placed far away from the multirotor, which could cause the desired velocity to
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be very large. The alternative, which is performing a saturation on the final output of
the NSB algorithm might unfairly punish velocity components from other tasks which
have a smaller desired velocity.

Vertical Cylinder Obstacle Two different vertical cylinder tasks was implemented.
One which is a set-based NSB task, another equality-based one which is built upon
the activation algorithm from section 5.1.3. They similar in all aspects except for the
conditions at which they activate.

Now the cylinder is modelled as an infinitely tall vertical cylinder. The task function,
as well as the jacobian is identical to the goto-task, eq. (5.27) and eq. (5.28), except
for only using the two first elements of q, ignoring the down-component. The desired
task value, σd/σmin, is set to the radius of the cylinder plus the minimum safe distance
between the origo of the body frame and the cylinder wall.

Ground clearance A simple set based task, with sigmamin = −∞ and σmax equal
to the ground clearance (assuming that a d-value of 0 is the ground). The task value is
simply the d-value of the position of the multirotor, while the jacobian is a unit vector
pointing in positive d-direction.

5.3 Simulations

The software was verified by testing different scenarios on a simple point mass simulator
in DUNE. The simulator runs at 100 Hz and it reports its own position in the NED
frame once for every timestep. The simulator accepts a velocity as an input, which is
immediately set as the velocity of the point.

When designing the tests the following goals were set

1. Verify that a behavior will be followed.

2. Verify that the priority of the tasks matter.

3. Check for edge cases in which behavior is not optimal.

Testing the equality-based vs. the set-based cylinder task was not prioritized here, and
is instead a topic that is brought up later in the chapter.

5.3.1 Test 1: Following expected behavior

This test consists of two different scenarios. The setup of the first scenario is detailed
in table 5.1. The scenario consists of the simulated craft starting 10 m above ground at
the origin. A vertical cylinder is placed a bit away from the origin and the minimum
distance to the center of the cylinder is set to 4 m. A velocity vector pointing in a
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Variable Value
Start position [NED] [0, 0,−10]T
Velocity input [NED] [1, 1, 0]T

(a) Various initial values

Task λ Coordinates σmin σmax

Vertical Cylinder 1 [5, 4.9, x]T 4 m ∞
(b) Set-based tasks

Table 5.1: The setup variables for the first scenario of test 1. The start position is
the initial position of the simulator in NED-coordinates. The velocity input is the
initial input that is cascaded through the system. The obstacle is placed so that the
simulated craft will have to pass around it, keeping a distance of 4 m from the center of
the obstacle.

direction that will cause a colition with the obstacle is fed into the NSB algorithm as a
starting velocity2.

The final result of this scenario is shown in fig. 5.5, here we can see the craft behaving
similar to an object sliding off a sphere. As the velocity component to the tangent
of the constraint, i.e. in the null space of our jacobian, is very small, the craft slides
around the obstacle very slowly at initial impact with the constraint.

In the second scenario, the velocity input was replaced with a GoTo-task, which aimed
at reaching the coordinate [10, 10, 10]T . The setup for this task is shown in table 5.2.
The behavior, which is shown in fig. 5.6, is quite similar to what we saw in the previous
scenario, fig. 5.5, however we can see the interaction between the GoTo-task as well
as the Cylinder-task. Because the Cylinder-task has the highest priority, it overrides
the velocity component desired by the GoTo-task that would result in violation of the
Cylinder-task (and a potential collision with the associated obstacle). The vehicle glides
smoothly around the obstacle and ends up at the specified coordinate.

5.3.2 Test 2: Task priority

As in the previous test, this test also consist of two different scenarios. The setup
is detailed in table 5.3. In both scenarios the simulated craft starts 10 meter above
ground at origo, and has a GoTo-behavior at coordinate [10, 0,−2] as well as a ground
clearance behavior that tries to keep the task 4 meters above ground (−4 m).

In the first scenario, whose result is shown in fig. 5.7a, the ground clearance behavior
has a higher priority than the GoTo-behavior. This causes the craft to "slide" along the
Ground Clearance-task while the GoTo-task tries to minimize the distance between the

2If the velocity vector pointed directly at the center of the obstacle we would end up with a fringe
case that does not work on such a simple simulator. When the craft eventually reaches the obstacle,
the null-space projection of the velocity vector will be 0 and the craft would be stuck. Because of
measurements inaccuracies this would solve itself on an actual quadrotor.
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Figure 5.5: This is a simulation of the setup in table 5.1. The hatched circle represents
the cylinder, while the orange line is the trajectory of the simulated craft. The trajectory
has a mark every second, to give an idea of the speed of the craft.

Variable Value
Start position [NED] [0, 0,−10]T
Velocity input [NED] [0, 0, 0]T

(a) Various initial values

Task λ Coordinates σmin σmax Priority
Vertical Cylinder 1 [5, 4.9, x]T 4 m ∞ 0

(b) Set-based tasks

Task λ Coordinates σdesired Priority
GoTo 1 [10, 10,−10]T 0 1

(c) Equality-based tasks

Table 5.2: The setup variables for the second scenario of test 1. The initial velocity
from table 5.1 is replaced with a GoTo-behavior which causes the craft to aim for a
point on collision course with the vertical cylinder. .
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Figure 5.6: This is a simulation of the setup in table 5.2. The hatched circle is the
cylinder, while the orange line is the trajectory of the craft. The trajectory has a mark
for every second. The light blue dot is the coordinate of the goto task.

craft and the GoTo-location. Without the ground clearance constraint the trajectory
would have been a straight line.

In the second scenario the priority of the two behaviors have been switched around,
and the result is clearly shown in fig. 5.7b. We see that switching priorities causes the
craft to proceed to the GoTo-coordinate, and that the priority system works. We can
also see an artifact caused by the conditions of eq. (5.10) not being fulfilled. In order
to remove the violation of the ground clearance task, the task has a desired velocity
upwards. This component cannot be removed by the GoTo-task as it is not in the
null-space of the task, and it causes the craft to slow down. The λ of the GoTo-task
therefore has to be larger than the λ of the Ground Clearance-task in order to reduce
the effect of this somewhat.

5.3.3 Test 3: Unintended behavior

Testing several difference scenarios, only one ended up with what could be defined as
unintended behavior. It shows a quirk in the Set-based NSB approach. The setup is
identical to table 5.3, with the ground clearance behavior as highest priority. The only
difference is that the starting position of the craft is at [0, 0, 0]T instead of 10 meters
above the origin. The end result, as shown in fig. 5.8, is clearly not optimal as the craft
has a long period standing almost still at a height of 2 meters. This is because the craft
still has a velocity upwards when approaching 2 meters, which cause it to be inside the
extended tangent cone, and the ground clearance task does not become active until the
craft is at a standstill. This gives a case for just using the non-extended tangent cone
to activate a task, or to activate the task anyway if the violation is above a certain
threshold.
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Variable Value
Start position [NED] [0, 0,−10]T
Velocity input [NED] [0, 0, 0]T

(a) Various initial values

Task λ Coordinates σmin σmax Priority
Ground clearance 1/1 N/A −∞ −4 m 0/1

(b) Set-based tasks

Task λ Coordinates σdesired Priority
GoTo 1/1.2 [10, 0,−2]T 0 1/0

(c) Equality-based tasks

Table 5.3: The setup for the scenarios considered in test 2. The craft starts 10 meters
above ground with a destination point below the ground clearance constraint. In the
cases where there is a difference between the two scenarios, the values are separated by
a slash with scenario 1 on the left. .
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(a) Ground avoidance has highest priority.
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(b) GoTo has highest priority

Figure 5.7: These simulations of test two show north vs down as the simulated craft
does not move in the east-direction. The orange line is the trajectory of the craft, with a
mark for every second. The hatched area is the area forbidden by the ground avoidance
task, while the blue dot is the coordinate of the GoTo-task.
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Figure 5.8: This plot shows the down coordinate as a function of time. The orange line
is the trajectory of the craft, the light blue line is the height of the GoTo-task, while
the hatched area is the area forbidden by the ground avoidance task.

5.4 Software in the Loop Testing

This section is about further testing of the implemented NSB algorithm. The point
simulator from earlier is replaced with a simulated quadrotor, and a reference model is
added in order to get a acceleration output from the velocity reference from the NSB
algorithm.

5.4.1 Reference model

The multirotor controller accepts an acceleration vector in the North-East-Down (NED)
frame as a reference, but the output from the NSB algorithm is in this case a velocity
reference. The reference acceleration could be produced with a P or PI-controller, but
then the acceleration reference would be neither smooth nor could it be guaranteed to
be within the bounds of the quadrotor.

Another option is to use a reference model that consists of a low pass filter of sufficient
order, in a manner inspired by [Klausen, Fossen, and Johansen 2015, p.8]. For our
reference model we consider a third order low-pass filter

...
v + (2ζ + 1)ω0v̈ + (2ζ + 1)ω2

0 v̇ + ω3
0v = ω3

0vd (5.29)

This low-pass filter, constructed by one cascading a generic first order and a generic
second order low-pass filter, has ξ as the damping coefficient and ω0 as the cutoff
frequency. ...v, v̈, v̇, and v ∈ R3 are the reference jounce, jerk, acceleration and velocity
respectively. vd is the desired velocity.
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Variable Value
ω0 4
ζ 0.9
v̇max 2
v̈max 5

Table 5.4: The parameters used in the reference model eq. (5.29) and eq. (5.32).

Thankfully we are in complete control of this reference model, so we can decide that
our input to the system is the jounce, ...v. In order to guarantee that the reference model
converges, i.e. v → vd, we decide on the following cascaded controller as our input

...
v = u (5.30a)
τ1 = k1(vd − v) (5.30b)
τ2 = k2(τ1 − v̇) (5.30c)
u = k3(τ2 − v̈) (5.30d)

(5.30e)

By inspection we can find the values for the gains k1, 2, 3 that guarantee that the right
hand side of eq. (5.29) equals the left hand side are:

k3 = (2ζ + 1)ω0 (5.31a)

k2 = (2ζ + 1)ω2
0

k3
(5.31b)

k1 = ω3
0

k3k2
(5.31c)

The method so far solves the problem of generating a smooth acceleration reference for
the multirotor, but we have no guarantee that constraints are not violated. We take
advantage of our cascaded controller to introduce saturation at each step:

τ1 = sat(k1(vd − v), v̇max) (5.32a)
τ2 = sat(k2(τ1 − v̇), v̈max) (5.32b)
u = k3(τ2 − v̈) (5.32c)

The reference model was simulated with the parameters from table 5.4, both with and
without saturation. As can be seen in fig. 5.9 the trajectory is clearly smoothed, and
with the saturation both v̇ and v̈ stay inside the imposed limits.



64 Chapter 5. Collision Avoidance

0 1 2 3 4 5 6 7 8 9 10 11 12

0

5

10

Time [s]

v
v̇
v̈

vsat

v̇sat

v̈sat

Figure 5.9: Reference model with and without saturation, simulated with parameters
from table 5.4.

In order to be usable for a multirotor, one reference model is run for each cardinal
direction. In addition the acceleration from the reference model is transformed into a
reference acceleration ad using the following equation.

ad = aref − kp(vref − vcurrent) (5.33)

Here kp is the gain for a controller that removes steady state error if the multirotor is
unable to keep up with the acceleration reference. vcurrent is the current velocity of the
multirotor.

5.4.2 Control Hierarchy

At the bottom of the hierarchy is a simulated quadrotor delivered by ArduPilot as
a part of its software suite. This software appears to DUNE as a quadrotor running
ArduPilot, providing new position estimates at a frequency of 100 Hz. The simulated
environment also simulates wind in NNE-direction at a speed of 1 m s−1. The simulator
receives a desired acceleration in XYZ-direction in the body frame from DUNE.

The simulator outputs the position of the quadrotor, which is sent to an Real Time
Kinematic Global Positioning System (RTKGPS) simulator, whose only job is to
transform the position data into something usable by the control system. The NSB
controller receives both a velocity reference input from an external source, as well as
the state of the system. From the NSB controller we get a final velocity reference
vdout which is sent to the reference model that outputs a reference acceleration for the
simulator. The final control hierarchy can be seen in fig. 5.10.

5.4.3 Test Results

Three different scenarios were tested, all concerning avoiding the infinitely tall vertical
cylinder. The two first scenarios test the difference between an equality-based and a
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Figure 5.10: The control hierarchy as used in the simulation.

Variable Value
Start position [NED] [0, 0,−50]T
Velocity input [NED] [0, 0, 0]T

(a) Various initial values

Task λ Coordinates σmin σmax Priority
Vertical Cylinder 1 [5, 4.9, x]T 4 m ∞ 0

(b) Set-based tasks

Task λ Coordinates σdesired Priority ‖vi,max‖2

GoTo 1 [10, 10,−50]T 0 1 1
(c) Equality-based tasks

Table 5.5: The setup variables for the SITL test of a set-based cylinder placed between
the multirotor and the GoTo-coordinate.

set-based cylinder task, while the last scenario tries to avoid an equality-based cylinder
at high speed. The reference model is set to the parameters from table 5.4.

Set-based Cylinder Task

A GoTo-task as well as a Vertical Cylinder-task, similar to what was simulated earlier
with the point mass simulator, was also simulated on the multirotor simulator. This
scenario was run with the parameters in table 5.5, and the results are shown in fig. 5.11.
The parameters were tuned to reduce the oscillatory behavior as much as possible, but
no good solution was found. It is caused by the set-based task only being active when
the system is in violation of the task (see eq. (5.25)). Because the system has inertia, in
both the reference model and the Software in the Loop (SITL)-system, it gets thrown
out by the task, but as the task is inactive it is allowed to accelerate towards the task
boundary again. In order to dampen the oscillatory behavior the craft can move very
slowly, but it is not a good solution. Instead it could possibly be solved by introducing
a form of thresholding on when to deactivate the task, similar to what was done for the
equality-based cylinder. This was not done in favor of implementing an equality-based
cylinder task, which has proven to be working well under earlier circumstances such as
[Klausen 2013].
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Figure 5.11: SITL test of the system with a set-based cylinder task. The test was ran
with parameters from table 5.5. The hatched area is the location of the obstacle and
the blue dot is the GoTo-coordinate. Along the trajectory a marker has been placed
every second as an indication of speed.

Equality-based Cylinder Task

The scenario here is based upon the previous scenarios, except that the set-based
cylinder task has been replaced with an equality-based one. The parameters had to
be changed somewhat in order to work better with an equality-based task and can be
found in table 5.6.

As can be discerned from fig. 5.12, the results are much better than what we saw in
fig. 5.11 with a set-based task. The most noteworthy aspect is the increasing separation
between the cylinder and the multirotor. This seems to be caused a steady-state offset
caused by the small λ of the cylinder task and the simulated wind in the simulator in
combination with the reference model being a bit slow. Increasing λ in order to reduce
the separation caused the initial impact with the cylinder to be more oscillatory. In
the end it was concluded that the separation is not likely to cause a big problem, as
the wind situation will be very different with an actual obstacle and that the desired
distance σd could be increased should the wind cause a collision with an obstacle.

High-speed Obstacle Avoidance

This scenario uses an equality-based task as an obstacle placed far away from the
quadcopter, with a GoTo-coordinate placed even further away. The aim is to accelerate
the multicopter to a high velocity on collision course with a cylinder. The parameters
for the test can be found in table 5.7.
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Variable Value
Start position [NED] [0, 0,−50]T
Velocity input [NED] [0, 0, 0]T

(a) Various initial values

Task λ Coordinates σdesired Priority ‖vi,max‖2 σ̈max

Vertical Cylinder 1 [5, 4.9, 0] 4 0 ∞ 0.5
GoTo 1 [10, 10,−50]T 0 1 1 ∞

(b) Equality-based tasks

Table 5.6: The setup variables for the SITL test of a equality-based cylinder placed
between the multirotor and the GoTo-coordinate.
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Figure 5.12: SITL test of the system with an equality-based cylinder task. The test was
ran with parameters from table 5.6. The hatched area is the location of the obstacle
and the blue dot is the GoTo-coordinate. Along the trajectory a marker has been placed
every second as an indication of speed.
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Variable Value
Start position [NED] [0, 0,−50]T
Velocity input [NED] [0, 0, 0]T

(a) Various initial values

Task λ Coordinates σdesired Priority ‖vi,max‖2 σ̈max

Vertical Cylinder 1 [50, 49.9, 0] 4 0 ∞ 0.5
GoTo 0.5 [100, 100,−50]T 0 1 ∞ ∞

(b) Equality-based tasks

Table 5.7: The setup variables for the SITL test of trying to collide with an equality-
based cylinder placed between the multirotor and the GoTo-coordinate at high speed.

The end result, as can be seen in fig. 5.13, is interesting. Here the task activates very
early in order to break the multirotor, which is caused by the dynamic activation
distance discussed in section 5.1.3. The multicopter breaks a bit too much, as the task
deactivates for a tiny bit, as seen around the coordinate [35, 40]. This might be removed
by lowering σ̈max, but no attempt was made at this as the result as it stands works as a
proof of concept for the system. The part of the GoTo task’s vd which is not removed
by the cylinder task is enough to move the multirotor away from the cylinder before
impact.

An effect which could barely be seen in fig. 5.12, but is much more visible here, is the
sudden acceleration away from the cylinder as the task deactivates. While the cause
behind this has not been discovered, this could possibly be reduced by having the task
deactivate in a more gentle way than a direct cutoff. Investigation into this is left for
future works.

5.5 Conclusions

As we have seen so far, NSB is suitable for collision avoidance purposes. Both set-based
NSB as described in [Moe et al. 2016] and new approach to equality-based NSB was
implemented. The algorithm was implemented in C++ for DUNE, and was shown
to work with a simple point mass simulator. During testing on a quadrotor simulator
set-based NSB proved to be unreliable for an inertial system due to its activation
conditions. However the equality-based NSB tasks worked both under high and low
velocities because of the dynamic activation range. This shows that NSB is a feasible
approach to collision avoidance for multirotors.



Chapter 5. Collision Avoidance 69

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

East [m]

N
or

th
[m

]

1

2

3

4

5

6

7

Sp
ee

d
[m

/s
]

Figure 5.13: SITL test of the system, trying to collide with an equality-based cylinder
task at high speed. The cylinder is shown as the hatched area. The speed of the
quadrotor is indicated by the color of the trajectory. The GoTo-coordinate is a blue
marker placed at [100, 100]. The simulations use the parameters from table 5.7.
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6 | Conclusion
and Closing Discussions

The goal for this thesis was to develop a radar-based collision avoidance system for
multirotors. This goal was separated into building a radar system, detecting obstacles
in the radar system and an obstacle avoidance system. Each part of the system was
tested and verified to work on its own.

First an embedded radar system was developed. A small form factor commercially
available radar system was mounted on a rotating base. The data from the radar was
then coupled with a measurement of the pointing direction of the radar before being
transmitted as serial data. Additional software libraries were developed to parse the
serial data, as well as creating a live visualization of data. Finally a test rig for the
system was developed, consisting of a base and several targets, and a data set that can
be used for testing obstacle detection was created. Due to the added complexities of
using a rotating base, it is recommended for future systems to instead use several radar
systems to cover a 360° perimeter.

Further on it is shown that Synthetic Aperture Radar is not suitable for anti-collision
purposes. Instead a novel approach to object detection was suggested, based on finding
connected blobs in the data. This approach is shown to work sufficiently well for
a stationary system using data gathered on the test rig. It is concluded that most
obstacles can be represented as vertical cylinders.

Last we develop an implementation of Null-Space-based behavioral control (NSB) which
is to be used for collision avoidance. Two different subsets of this algorithm are explored,
set-based and equality-based NSB. The equality-based NSB also contains additional
rules for when to activate a task. The developed software framework is made to be
extendable to several different kinds of obstacles, and is verified to work through testing
on a point mass simulator. The software is then tested on a quadrotor simulator, where
it is shown that set-based NSB is not suitable for inertial systems without additional
modifications. Equality-based NSB is shown to work well under both high and low
approach velocities.

The three different systems were unfortunately only tested independently and not as a
full collision avoidance system, so no conclusion can be drawn on how the system works
as a whole. However we can conclude that each system works good on its own. It is
imaginable that data from the radar can be fused with either visual data or lidar data
in order to create a better map of obstacles than can be used by the collision avoidance
software framework.
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6.1 Future Work

Substituting the rotating base with several radar systems, and developing software for
controlling them, is necessary to reduce the complexities of the system. If this happens
it is necessary to develop a new algorithm for object detection.

It could also be a good idea to try to integrate all the components and verify if they
work together. Especially test how the blob detection algorithm works with a moving
base. The blob detection algorithm also needs to be implemented in DUNE for this to
happen.

As for NSB it would be interesting to implement cubic obstacles, as it would allow for
navigating in a probabilistic 3D grid map, where the probability is the chance of there
being an obstacle in the grid element.
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This appendix is both a user manual as well as a documentation of what is delivered as
a digital appendices. The purpose of this documentation is to make it easier for future
work to pick up where I left.
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Pin No. Function Direction
1 Battery Voltage In
2 Battery Voltage In
3 Ground N/A
4 Ground N/A

Table A.1: Pinout for the 2x2 MicroFit connector used for providing battery voltage

Pin No. Function Direction
1 Battery Voltage In
2 Ground N/A

Table A.2: Pinout for the 2x1 MicroFit connector used for providing regulated 5 V.

A.1 Hardware

This section explains the part of the hardware that was not covered in chapter 3.

A.1.1 Connectors

There are four connectors on the embedded radar system; two power connectors, one
UART connector and one debug connector. The pin numbers are viewed from the front,
counting clockwise from the top left corner. The pinout of the power connectors can be
found in table A.1 and table A.2.

The pinout of the UART connector can be found in table A.3 and the debug connector
in table A.4.

A.1.2 LEDs

Status LEDs are included on the embedded radar platform. They are to be interpreted
as follows:

• Green on MINI-M4 System has power

Pin No. Function Direction
1 N/C N/A
2 UART TX Out
3 UART RX In
4 N/C N/A

Table A.3: Pinout for the 1x4 MicroFit connector used for serial (UART) data.
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Pin No. Function Direction
1 N_RST In
2 SWD In/Out
3 SWC In

Table A.4: Pinout for the 2.54 mm pin header used for debugging the system

Name Length [bytes] Purpose
Start byte 1 Signifies start of frame. Value is 0x7D.
Length 4 Remaining bytes of frame
Data "Length"−5 Arbitrary data
CRC 4 Used to verify data integrity.
End byte 1 Signified end of frame. Value is 0x7F.

Table A.5: The general frame structure used for communicating with the MCU.

• Red on MINI-M4 Blinks as a set rate as long as the system is transmitting
data. During boot is stays lit.

• Orange on MINI-M4 Stays lit during boot.

• Green Is lit when the phototransistor is active.

• Orange Stays lit while transferring radar data out.

• Red Is blinked when a radar frame has been received from the X2M200

A.1.3 Communication

The UART connection with the embedded radar system is at 115200 bits per second,
configured as 8N1, i.e. 8 databits, no parity and one stopbit.

Frame Format

The table from table 3.3 is reproduced in table A.5. The contents of the data field and
the how to calculate the CRC is explained in the next sections.

Measurement Packet Format

Currently there is only one packet format supported by the data field of table A.5. All
fields are a multiple of 4 bytes long and sent in little endian format. The format is
specified in table A.6.

The array containing the start distance of bin i can be calculated:

Distance[i] = Range offset + Bin length× i (A.1)
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Name Length Data type Purpose
Bins 4 uint32_t Number of bins
Bin length 4 float Range length of each bin
Sampling frequency 4 uint32_t Sampling frequency of the X2
Carrier frequency 4 float Carrier frequency of the X2
Range offset 4 float Range offset before first bin
Angle 4 float Angle of system when the Mini-

M4 received the measurement
Angle Sync 4 uint32_t Not 0 if the phototransistor has

been active since last measure-
ment. Used for debugging.

System time 4 uint32_t System time in 1
10000 of a second

since startup.
Amplitude 4 * Bins float[ ] Amplitude measurements, one for

each bin starting at closest range.
Phase 4 * Bins float[ ] Phase measurements, one for each

bin starting at the closest range.

Table A.6: The measurement packet format that is contained in the frames received
from the embedded radar system.

CRC

The CRC used to verify the frame data is specified by IEEE 8802-3, and is the same
32-bit CRC used for Ethernet. It uses the polynomial 0x04C11DB7.

The following algorithm in C can be used to calculate the CRC. The CRC is only
calculated on the contents of the data-field in the frame.

uint32_t crc32( const uint32_t *data , const uint32_t len ) {
static const uint32_t polynomial = 0 x04C11DB7 ;
uint32_t crc = 0 xFFFFFFFF ;
uint32_t i,j;
for ( i = 0; i < len; ++i ) {

crc ^= data[i];
for ( j = 0; j < 32; ++j ) {

crc <<= 1;
if ( crc & 0 x80000000 ) {

crc ^= polynomial ;
}

}
}
return crc;

}
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A.1.4 Programming

The embedded radar system can be programmed with an SWD debugger that supports
STM32 using the debug header detailed in table A.4. It is important to make sure that
the debugger and the embedded radar system share the same ground before commencing
programming.

A.1.5 PCB Files

The PCB was developed with Altium Designer 17. The source files are available
in the folder Hardware/PCB/Altium of the digital appendix. Manufacturing files are
available in the folder Hardware/PCB/Gerber and a PDF-documentation is available at
Hardware/PCB/PCB.pdf.

A.1.6 Radar Mounting Bracket

A .step-file of the radar mounting bracket is available at:

Hardware/Bracket/bracket.step.

A PDF blueprint is available at Hardware/Bracked/blueprint.pdf.

A.1.7 Developed Software

The embedded software is included as a digital appendix. The only requirement in
order to compile is a standard UNIX environment and a recent distribution of the GNU
ARM Embedded Toolchain. The embedded software is located in the digital appendix
at:

Software/Embedded

A.2 DUNE Software

The full source code for a DUNE distribution is included as a digital appendix. There
are three DUNE tasks that were developed for this thesis; a serial communication task,
an NSB implementation, and a reference model for generating a desired force from a
desired velocity. A tutorial on how to setup DUNE is available on www.github.com/
lsts/dune/wiki. Some sample configuration files are available in the digital appendix
at:

Software/dune/user/etc/dev/

www.github.com/lsts/dune/wiki
www.github.com/lsts/dune/wiki
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Parameter Default Value Purpose
Serial Port - Device /dev/ttyUSB0 Serial port descriptor
Serial Port - Baud Rate 460800 Serial port bit rate

Table A.7: Serial Communication Task parameters

A.2.1 Serial Communication Task

The serial communication task is located in the digital appendix at:

Software/dune/user/src/Sensors/XeThruRadar/Task.cpp

It accepts the following options that are written in table A.7. Each new measurement
is broadcast as an IMC message of type XeThruRadar.

A.2.2 NSB Control Task

The NSB Control Task is located in the digital appendix at:

Software/dune/user/src/Control/UAV/CollAvoid/Task.cpp

It accepts the parameters that are specified in table A.8. The task inherits from
BasicUAVPilot and activates when path control loop is required and it requires the
speed control loop to start up. It accepts two kinds of IMC messages, PWM from an
external radio controller, and EstimatedState from the craft. The final velocity is sent
as an DesiredLinearState message.

A.2.3 Reference Model Task

The Reference Model Task can be found in the digical appendix at:

Software/dune/user/src/Control/UAV/Velocity/Task.cpp

It accepts the parameters specified in table A.9. This task also inherits from BasicUAVPilot
and activates when the speed control loop is required. It accepts DesiredLinearState
and EstimatedState IMC-messages. The desired force is sent as a DesiredControl
message.

A.3 Python Software

All the Python software was written for Python version 3.6.

A.3.1 Serial Communication Module

There is a serial communication module located at:
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Parameter Default Value Purpose
Latitude 63.45515289 Latitude of the NED frame
Longitude 10.91983723 Longitude of the NED frame
Height 0 Height of the NED frame
External Controller False If using external radio con-

troller joystick as velocity
reference.

Max Speed - XY 3 Used to transform controller
input to speed.

Max Speed - Z 5 Used to transform the con-
troller input to speed.

Max Acceleration 1 Used for dynamic activation
range of Equality cylinder
task

Input Speed 0,0,0 Input speed in NED frame
to replace controller input.

Cylinder Position 10,0 Cylinder coordinates in the
NED frame.

Cylinder Radius 2 Radius of the cylinder
Cylinder Clearance 0 Minimum clearance to the

cylinder
Cylinder Active False If the cylinder task is active

or not
Cylinder Priority 0 Priority of the task
Cylinder Lambda 1 Task gain λ
Cylinder Type Equality Equality or Set based cylin-

der.
Ground Clearance 0.5 Ground clearance for ground

avoidance task.
Ground Active False If the task is active or not
Ground Priority 1 Priority of ground clearance

task.
Ground Lambda 1 Task gain λ
GoTo Position 20,1,-5 Coordinate in NED frame to

go to.
GoTo Active False If the task is active or not
GoTo Priority 2 Priority of the task
GoTo Lambda 1 Task gain λ
GoTo Saturation 0 Saturation on the desired ve-

locity of the task.

Table A.8: NSB Control task parameters.
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Parameter Default Value Purpose
Ref - Max Acc 6 Acceleration saturation
Ref - Max Jerk 8 Jerk saturation
Ref - Natural Frequency 1 Natural frequency ω0 of the

reference model.
Ref - Relative Damping 0.9 Relative damping ζ of the

reference model.
K_p 1 Gain in equation eq. (5.32)
Multirotor - Mass 1 Mass of the multirotor, used

to transform acceleration to
force.

Linear State Producer None Task which to receive
DesiredLinearState
messages from.

Table A.9: Reference Model Task parameters

Software/python/serial/connection.py

And it contains the class Connection. The class is instantiated with only a serial port
descriptor and the baud rate. Each new frame of data is received with the get_data-
method, which returns one packet as a dictionary. This serial communication module
does not verify the CRC of the received frames.

A.3.2 Visualization Software

The 3D visualization of live radar data is located at:

Software/python/visualizer/visualize.py.

Help for the program can be printed by running it with the -h switch.

A.3.3 Data logger

A data logger for logging data from the radar system is available at:

Software/python/logger/store_data.py

Help for the program can be printed by running it with the -h switch.

A.3.4 Blob detection

Blob detection software developed in chapter 4. As an input it requires .mat-files
generated by either MATLAB or the data logger, and it outputs the blobs as .csv
tabulated file. The program can be found at:

Software/python/BlobDetect/store_blobs.py
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Help for the program can be printed by running it with the -h switch.
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B | Test plan

A rigorous test plan for the embedded radar system was made, containing all different
situations to be tested as well as a naming system for measurements and resulting data
files as shown in table B.1. Each measurements was named in the pattern "series-no",
such that the measurement at row 2 in table B.1 was named "A-1". Each measurement
consisted of 20 rotations of the embedded radar system, and each measurement was
repeated 3 times. This was done to check the repeatability of the measurements, and
give a better data set for object recognition. Measurements without any targets were
also done in order to check the noise floor and check if there was any clutter shading
the radar. These checks were performed at a regular interval.

A few error sources that appeared under testing is a slight offset in the orientation of
the radar, such that all targets appear with a small offset in the test data. There are
also some slight inaccuracies when measuring the distance to the target, as the distance
had to be measured in air and might have been measured at an angle.

The test data is available as a digital appendix in the folder Test together with MATLAB
scripts for plotting, exporting and sanitizing the data. An analysis of the data can be
found in [Koren 2016], which is available in the digital appendix at the root directory
with the file name project_report.pdf
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Type Series Test Object 1 Object 2
Type Pos[cm∠◦] Type Pos[cm∠◦]

Noise floor 0 0

Material/Size A

1 Cylndr Ø31 92∠0
2 Cylndr Ø25a 92∠0
3 Cylndr Ø25b 92∠0
4 Cylndr Ø10.5 92∠0
5 Cylndr Ø5.5 92∠0
6 PVC Ø11 92∠0
7 Cardbrd Ø11.5 92∠0

Angular
differentiation B

1 Cylndr Ø31 90∠90 Cylndr Ø31 90∠− 90
2 Cylndr Ø31 90∠60 Cylndr Ø31 90∠− 60
3 Cylndr Ø31 90∠30 Cylndr Ø31 90∠− 30
4 Cylndr Ø31 90∠15 Cylndr Ø31 90∠− 15

Distance C

1 Cylndr Ø25a 151∠0
2 Cylndr Ø25a 156∠0
3 Cylndr Ø25a 125∠0
4 Cylndr Ø25a 96∠0
5 Cylndr Ø25a 66∠0
6 Cylndr Ø25a 36∠0

Shape
Corner D

1 Corner 0◦ 108∠0
2 Corner 45◦ 108∠0
3 Corner 90◦ 108∠0
4 Corner 135◦ 108∠0
5 Corner 180◦ 108∠0
6 Corner 225◦ 108∠0
7 Corner 270◦ 108∠0
8 Corner 315◦ 108∠0

Shape Wall E

1 Wall 226∠90
2 Wall 200∠90
3 Wall 174∠90
4 Wall 148∠90
5 Wall 122∠90
6 Wall 96∠90
7 Wall 70∠90
8 Wall 44∠90

Shading F

1 Cylndr Ø31 130∠0 Cylndr Ø31 55∠0
2 Cylndr Ø31 130∠0 PVC Ø11 55∠0
3 Cylndr Ø31 130∠0 Cylndr Ø5.5 55∠0
4 Cylndr Ø31 130∠0 Cylndr Ø5.5 55∠− 10

Fun
Human G 1 Thomas 90∠0
Fun
Chairs H 1 Stack of chairs 100∠0

Table B.1: The range of tests performed on the radar system in order to evaluate its
capabilities.
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BLDC Brushless Direct Current. 21–25, 32

CRC Cyclic Redundancy Check. 21, 28, 75, 76, 80

CW Continuous Wave. 6, 11

DMA Direct Memory Access. 28

DUNE DUNE: Unified Navigation Environment. 18, 29, 57, 64, 68, 72, 77

EoF End of Frame. 20

ESD ElectroStatic Discharge. 25

FMCW Frequency Modulated CW. 11

FOV Field of View. 14

GLUED GNU/Linux Uniform Environment Distribution. 18

IMC Intermodule Communication. 29, 78

IR Infrared. 15, 25

LDO Low DropOut. 24

LO Local Oscillator. 6

LSTS Laboratório de Sistemas e Tecnologia Subaquática. 18

MCU Microcontroller Unit. 23–25, 28, 75

MEMS Micro-Electro-Mechanical System. 14

MOSFET Metal-Oxide-Semiconductor Field-Effect-Transistor. 24, 32

MUR Maximum Unambiguous Range. 12, 20

NED North-East-Down. 62

NSB Null-Space-based Behavioral. 46–49, 51–53, 57, 60, 62, 64, 68, 72, 77
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OBC Onboard Computer. 18, 19

PCB Printed Circuit Board. 18, 23–25, 33

PRF Pulse Repetition Frequency. 6, 10, 12, 20

PVC Polyvinyl Chloride. 14

RGB-D Red Green Blue + Depth. 15

RTKGPS Real Time Kinematic Global Positioning System. 64

RTOS Real Time Operating System. 27

SAR Synthetic Aperture Radar. 13, 35–37, 43

SITL Software in the Loop. 65–69

SNR Signal to Noise Ratio. 6, 10

SoC System on a Chip. 10, 13

SoF Start of Frame. 20

SPI Serial Peripheral Bus. 25

SWD Serial Wire Debug. 24, 77

UART Universal Asynchronous Receiver/Transmitter. 20, 21, 74, 75

UAV Unmanned Aerial Vehicle. 1, 45

UUID Universally Unique Identifier. 56

UWB Ultra-Wide Band. 10, 13

XOR Exclusive OR. 21
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