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Student project 
 
Stereo vision is a passive technique that gives a sense of depth based on two (or more) 

digital images taken from different positions. The technique can be expanded upon to 

retrieve full 3D scene information. Stereo vision techniques are highly applicable in a vast 

number of fields and products; from robot navigation and simultaneous localization and 

mapping to production, security, defense, exploration and entertainment applications.   

Part 1 (Prosjektoppgave: 15 studiepoeng) 

Title: Passive depth estimation using stereo vision, a theoretical study  

Compare the performance of different stereo vision techniques for retrieving depth 

information in different range regimes, e.g. meters, tens of meters, hundreds of meters. 

Stereo refers to multiple images being taken simultaneously from two cameras. Only 

passive techniques for depth estimation using stereo cameras should be explored in this 

study.  

The text is largely based on 3D Imaging, Analysis and Applications by Pears et al. 

The basic idea behind retrieving depth information using stereo vision with two cameras 

is to automatically detect the same feature in both images and use triangulation to find 

the distance to the feature. This means that a large portion of the problem is related to 

ensuring that the features recognized in the images are actually the same feature. 

Another challenge is that a feature visible in one image may be occluded or partially 

occluded in the other image, and features based on false corners1 may mislead the 

algorithm.   

In contrast to stereo vision, Structure from Motion (SfM) refers to a single moving 

camera scenario, where the sequence of images is used to gather depth and 3D 

information about the scene. In this project, SfM will not be used with a single camera, 

but is should be explored how the motion of a stereo vision platform can be used to yield 

additional confidence in the depth estimation.  

The comparison study should be done using a MATLAB framework. The test images 

should be taken in ambient light scenarios. The comparison study should be done for 

each range regime separately. For the tests conducted in this study a suitable benchmark 

stereo image set should be used. The test stereo images should be of a static scene. 

Image series, each series of images should include a set of stereo images of the same 

scene taken at different positions, are required to test Structure from Motion (SfM) 

algorithms.   

The MATLAB program should include:  

 Functionality for calibrating single camera  

The calibration should include calibration of the cameras intrinsic parameters and 

a functionality to compensate for radial lens distortion effects. 

                                                           
1 A false corner may result from the transition point where one object overlaps with an other object at a 
different position.  



 

The appropriate functions in the camera calibration toolbox in MATLAB may be 

used.  

 

 Functionality for calibrating a stereo camera rig 

The calibration should include calibration of each of the two cameras intrinsic 

parameters and a functionality to compensate for radial lens distortion effects. 

Additionally, it should include one set of extrinsic parameters that describes the 

relative rotation and translation between the two cameras.  

 

The appropriate functions in the camera calibration toolbox in MATLAB may be 

used. 

 

 Solve the correspondence problem 

For a position x in the left image, which is the corresponding point x' in the right 

image, where x and x' are images of the same physical scene point? 

 

In this step the different techniques for finding the corresponding points in the 

two images should be tested.  

 

 Solve the reconstruction problem 

Given the two corresponding points x and x', how do we compute the 3D 

coordinates? 

 

 Analysis 

The program should include an analysis tool that can compare the different stereo 

vision techniques.  

Milestones 

1. Completing the framework from comparison tests 

2. Test stereo vision techniques for depth estimation 

a. Correlation based methods 

i. SSD (Sum of Squared Differences) 
ii. SAD (Sum of Absolute Differences) 

iii. NCC (Normalized Cross Correlation) 
b. Feature based methods 

i. Harris Corner Detector 
ii. SIFT (Scale Invariant Feature Transform) 

iii. SURF (Speeded Up Robust Feature)  
3. Test SfM techniques in combination with stereo vision techniques. The same 

algorithms that are mentioned under point 2 should be tested with images taken 

in a time series.  

  



Part 2 (Masteroppgave: 30 studiepoeng) 

Title: Passive depth estimation using stereo vision, an experimental study 

The aim of this part of the study is to test and compare the implemented algorithms from 

part 1 in a practical application. The application is a case where a stereo camera is used 

to find the position of a platform relative to the stereo camera. The platform will consist 

of periodic structures.  

The algorithms should be compared, and a subject of interest is to estimate the 

robustness of each algorithm under different conditions. The system should be tested 

under different weather conditions and under varying degrees of illumination.  

Furthermore, the algorithms should be tested for different distances between the 

cameras, i.e. baseline lengths. A consideration of an optimal baseline length for the 

application should be made.  

Milestones 

1. Create a test setup that includes: 

a. A stereo camera 

b. An alternative sensor system that can take accurate measurements of the distance 

between the test-rig and the target.  

2. Calibrate the stereo camera, by calculating the intrinsic and extrinsic parameters 

3. Create a database with test images and matching relative distance measurements 

The test set should include images taken under different weather condition and with 

varying degrees of illumination. Furthermore, different baseline lengths should be 

tested.  

4. Compare the results from the different algorithms 

5. Conclude on the best algorithm  

6. Find the best baseline length for this application 

7. Test the system in real time 

 

 

 

  



Alternative/bonus tasks  
Exploit the geometry of the environment 

Use the geometry of the platform to set up a range interval that the scene points should be found in.   

Implement the algorithms using GPU 

Graphic Processing Units (GPUs) are immensely powerful processors outperforming 

Central Processing Units (CPUs) in a variety of applications on supercomputers and PCs. 

The architecture of the GPU is highly parallel and tailored to efficiently construct images 

of 3D models. The GPUs are therefore highly suitable for implementations of stereo vision 

algorithms.  
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Abstract

This master’s thesis is an experimental study on passive stereo techniques for

retrieving 3D scene information. The stereo camera system is tested for finding

the position of a platform relative to the stereo camera where the measurements

are used for navigating an autonomous docking system installed on offshore ves-

sels.

The accuracy of passive stereo techniques depends on having precise knowl-

edge of the cameras position, orientation and internal parameters. Calibrating

these parameters is a key part of the success of the stereo camera. For a point

in the scene imaged from two different known view points, the displacement of

the point reprojection in the images are inversely proportional to depth and can

be used to compute the 3D coordinate. The problem of establishing correspon-

dences in the image pair is a difficult task and there exist several algorithms for

solving the correspondence problem.

In this thesis, we have evaluated the accuracy of the stereo camera system

for computing 3D information of the scene and proposed an optimal baseline

length to improve accuracy. Six different of algorithms have been tested for

solving the correspondence problem for this application. The algorithms con-

sidered are the correlation based methods: Sum of absolute differences, square

sum of differences and normalized cross correlation. Together with the feature

based methods: Harris corner detector, scale invariant feature transform and

speeded up robust features. The performance of each algorithm is compared

through a field experiment to conclude on the best one.

Based on the results of the experiment, the correlation based methods proves

to be best suited for this application where the sum of squared differences is

considered as the superior algorithm for solving the correspondence problem.

Keywords: Camera Calibration, Stereo Camera, Rectification, Triangulation,

Correspondence Problem, Epipolar Geometry, Correlation Based Methods, Fea-

ture Based Methods.

ii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective and Scope . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . 3

2 Photogrammetry 5

2.1 Camera Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Coordinate Transformation . . . . . . . . . . . . . . . . . 6

2.1.2 Perspective Projection . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Image Sampling . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 Projection Matrix . . . . . . . . . . . . . . . . . . . . . . 9

2.1.5 Radial Distortion . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Plane Based Calibration . . . . . . . . . . . . . . . . . . . 13

2.2.2 Homography Estimation . . . . . . . . . . . . . . . . . . . 14

2.2.3 Intrinsic Matrix . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Extrinsic Matrix . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.5 Rotation Matrix Approximation . . . . . . . . . . . . . . 19

2.2.6 Radial Distortion Coefficients Estimation . . . . . . . . . 20

2.2.7 Error Minimization . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Stereo Camera Geometry . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Calibration of a Stereo Rig . . . . . . . . . . . . . . . . . 22

2.3.2 Estimation of Rigid Transformation . . . . . . . . . . . . 22

2.3.3 The Fundamental and Essential Matrix . . . . . . . . . . 23

2.3.4 Epipolar Geometry . . . . . . . . . . . . . . . . . . . . . . 25

2.3.5 Rectification . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.6 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Approach 34

3.1 Problem Description and Challenges . . . . . . . . . . . . . . . . 34

3.2 Camera Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Template and Search Region . . . . . . . . . . . . . . . . 38

iii



3.3 Algorithms and Used Methods . . . . . . . . . . . . . . . . . . . 43

3.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1.1 Image Filtering . . . . . . . . . . . . . . . . . . . 43

3.3.1.2 Image Pyramids . . . . . . . . . . . . . . . . . . 45

3.3.2 Sub-pixel Estimation . . . . . . . . . . . . . . . . . . . . . 46

3.3.3 Correlation Based Methods . . . . . . . . . . . . . . . . . 47

3.3.3.1 Sum of Squared Differences (SSD) . . . . . . . . 49

3.3.3.2 Sum of Absolute Differences (SAD) . . . . . . . 49

3.3.3.3 Normalized Cross Correlation (NCC) . . . . . . 50

3.3.4 Feature Based Methods . . . . . . . . . . . . . . . . . . . 50

3.3.4.1 Harris Corner Detector(HCD) . . . . . . . . . . 51

3.3.4.2 Scale Invariant Feature Transform(SIFT) . . . . 53

3.3.4.3 Speeded Up Robust Features(SURF) . . . . . . . 58

3.3.4.4 Disparity Estimation . . . . . . . . . . . . . . . . 62

4 Implementation and Experimental Results 64

4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Test Setup and Measurements . . . . . . . . . . . . . . . . . . . . 65

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Conclusion 78

6 Appendix 79

6.1 Homogeneous Coordinates . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Cartesian → Homogeneous . . . . . . . . . . . . . . . . . 79

6.1.2 Homogeneous → Cartesian . . . . . . . . . . . . . . . . . 79

6.1.3 A line in homogeneous form . . . . . . . . . . . . . . . . . 79

6.1.4 Line joining points . . . . . . . . . . . . . . . . . . . . . . 79

6.1.5 Intersecting lines . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Singular Value Decomposition (SVD) . . . . . . . . . . . . . . . . 80

References 81

iv



1 Introduction

1.1 Motivation

Kongsberg Gruppen is developing new an autonomous bridge system. This

system is planned to be installed on ships or other offshore vessels with the

purpose of getting personnel safely on and off a windmill, oil rig or other offshore

installations. To be able to steer the bridge to the desired location the control

system needs a measurement of where in space the docking slot is relative to the

bridge. Stereo cameras have been widely used for autonomous robots to provide

accurate depth information of the surroundings. Kongsberg wants to see the

potential of a passive stereo camera system being used for this application and

have formulated the problem description for this thesis which partly builds on

the student project.

The problem of getting depth information from the scene with a stereo cam-

era can be divided into two main subjects, namely, photogrammetry and the

correspondence problem. Photogrammetry involves topics as projective geom-

etry and optics with the purpose of creating a camera model that can convert

corresponding image points into three-dimensional world coordinates. To be

able to find correspondences between the two images taken by the stereo camera

we need to solve the correspondence problem. By use of correlation and fea-

ture based computer vision algorithms we can be able to find matching points

between two images. Solving the correspondence problem is often difficult and

successful matching may depend on light conditions, texture of objects in the

image etc. We often get ambiguous matches and image points within regions of

homogeneous intensity is hard to match. The main focus in this thesis will be

to create a precise camera model and compare different computer vision algo-

rithms for solving the correspondence problem and look at the accuracy of the

estimated three dimensional world coordinate.

1.2 Objective and Scope

This master thesis will investigate the performance of a stereo camera rig with

the objective of supplying the control system of the bridge with accurate mea-

surements of the position of the docking slot. The following sub tasks are defined

for the thesis:

• Present necessary theory for creating a camera model and different com-
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puter vision algorithms for solving the correspondence problem and mea-

sure depth.

• Create a test setup and a database containing test images with accurate

measurements of distance between camera and target.

• Compare the performance of the different algorithms and conclude on the

best one.

• Find an optimal length for the baseline between the cameras to improve

accuracy of the world coordinate.

Some assumptions are made to simplify the problem:

• The system is not supposed to detect the docking slot. It is assumed that

a point of interest in one of the images is provided by a tracker. Only

the problem of finding the corresponding point given by the tracker in the

other image is investigated.

• The docking slot is always visible in both images.

• Noiseless measurements, i.e. no blur in the images.

• We have an estimate, not precise, of the depth to the docking slot relative

to the camera.

1.3 Contributions

The contributions of this thesis is the following:

• A review of topics in the field of photogrammetry such as the pinhole

camera model, planar camera calibration, epipolar geometry, rectification

and triangulation.

• Analysis of the different computer vision algorithms used for solving the

correspondence problem. The algorithms considered are the correlation

based methods: Sum of absolute differences(SAD), sum of squared dif-

ferences(SSD) and normalized cross correlation(NCC). Further the fea-

ture based methods: Harris corner detector(HCD), speeded up robust

features(SURF) and scale invariant feature transform(SIFT).

• Comparison of the different algorithms performance, through a field ex-

periment.

2



1.4 Outline

Chapter 2 presents the mathematical background and theory for different sub-

jects in photogrammetry. Chapter 3 presents the approach for solving the cor-

respondence problem and the theory behind each algorithm. Chapter 4 includes

a description of the field experiment and the presentation of the experimental

results followed by a discussion. Chapter 5 conclusion and proposed further

work.

1.5 Notation and Definitions

• The set of all real numbers is denoted R

• All vectors in this report are column vectors. Rn denotes the set of n× 1

real vectors. The set of real matrices with n rows and m columns are

denoted Rn×m. All vectors and matrices are given in bold font. x ∈ R is

a scalar and x ∈ Rn is a vector.

• The transpose of A ∈ Rn×m is denoted AT ∈ Rm×n.

• The inverse of a invertible matrix A ∈ Rn×n is denoted A−1 ∈ Rn×n

• The notation diag(x1, x2, . . . , xn) is used to denote the diagonal matrix:


x1 0 · · · 0

0 x2 · · · 0
...

...
. . .

...

0 0 · · · xn

 ∈ Rn×n (1.1)

• The determinant of a square matrix A is denoted Det(A).

• The notation Tr(A) denotes the sum of the diagonal elements of an square

matrix A ∈ Rn×n:

Tr(A) =

n∑
i=1

aii (1.2)

• The Euclidean norm of a vector x ∈ Rn is denoted ‖x‖ =
√
xTx

• The Forbenius norm of an square matrix A ∈ Rn×n is denoted ‖A‖F =√
Tr(ATA)

3



• The cross product operator S(·) is defined such that

t× x = Stx, t,x ∈ R3 (1.3)

where St is the skew-symmetric matrix

St = −STt =

 0 −t3 t2

t3 0 −t1
−t2 t1 0


• The instrinsic matrix is denoted K ∈ R3×3

• The origin of the camera center in world coordinates is denoted O ∈ R3×3

• A n× n identity matrix is denoted In and 1n is a n× 1 column vector of

ones.

• The convolution operation is denoted ∗. The convolution of two R2×2

matrices is given by:[
a b

c d

]
∗

[
1 2

3 4

]
= (d ∗ 1) + (c ∗ 2) + (b ∗ 3) + (a ∗ 4) (1.4)

4



2 Photogrammetry

This chapter covers different topics in the field of photogrammetry. First we will

define the camera model used in this thesis. The camera model describes the

mathematical relation between a three dimensional point and its projection onto

the image sensor. The unknown parameters of the camera model is estimated

by performing a camera calibration. A complete description of the planar-based

calibration method is included in this chapter. Finally we will present necessary

theory around stereo camera geometry, to be able to calculate depth and simplify

the correspondence problem.

2.1 Camera Modeling

The model used in this thesis is the pinhole camera model. Where Oc is the

position of the camera model in world coordinates, also called the center of

projection. A vector from Oc to X intersects with the image plane, where X

is a world point. For some point on the image plane, xc, the corresponding

scene point, X, must lie somewhere on the infinite ray connecting Oc and xc

as shown in figure 2.1. The theory in this chapter is based on work done by

Stephen Se & Nick Pears [15].

Figure 2.1: The pinhole camera model [12].
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2.1.1 Coordinate Transformation

A transformation from the world coordinate system to the camera coordinate

system can be described by a rigid transformation. The world coordinate of the

center of projection is denoted Oc. The rotation of the camera frame relative to

the world frame is described by R. The coordinate transformation from a point

X in world coordinates to the camera coordinate system in inhomogeneous

coordinates can be written as:

Xc = R(X −Oc) (2.1)

Xc =

Xc

Yc

Zc

 , X =

XY
Z


where Xc ∈ R3 is the representation of X in the camera coordinate system.

We can transform equation 2.1 to homogeneous coordinates follows:[
Xc

1

]
=

[
R 0

0T 1

][
I3 −Oc

0T 1

][
X

1

]
=

[
R −ROc

0T 1

][
X

1

]
(2.2)

where the rigid translation is given by:

t = −ROc (2.3)

Finally we denote Pr as the matrix representing the rigid coordinate transfor-

mation:

P r =

[
R t

0T 1

]
∈ R4×4 (2.4)

2.1.2 Perspective Projection

The perspective projection is the mapping of a point in camera coordinates, Xc,

to a point in the image plane, xc. We define the image plane axes to be parallel

to the camera coordinate system. This mapping is called an ideal perspective

projection since we assume the image plane to be flat i.e. we assume that the

lens is free from distortion. We define the image plane to lie f metric units

from Oc along the Zc-axis. Where f is usually set to be the focal length of the

camera. The origin of the image plane is called the principal point. We define
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the principal point as:

xp =

0

0

f

 (2.5)

The set of all points that lies on the image plane is given by:

{xc ∈ R3 |nT (xc − xp) = 0} (2.6)

where n =
[
0 0 1

]T
defined in the camera coordinate system is perpendicular

to the image plane. From figure 2.2 the image point xc and camera coordinate

Xc is projected onto the XcZc and YcZc plane.

Figure 2.2: Similar triangles in the XcZc and YcZc plane [4].

By the rule of similar triangles we get the perspective projection equations:

xc
f

=
Xc

Zc
,

yc
f

=
Yc
Zc
. (2.7)

We can write the similarities in linear form:

Zc

xcyc
1

 =

f 0 0 0

0 f 0 0

0 0 1 0



Xc

Yc

Zc

1

 . (2.8)

The perspective projection matrix P p is defined as:

P p =

f 0 0 0

0 f 0 0

0 0 1 0

 ∈ R3×4. (2.9)
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2.1.3 Image Sampling

The image plane is sampled by the image sensor of the camera, shown in figure

2.3. This is a mapping from
[
xc yc

]T
to the corresponding pixel position[

x y
]T

in the affine coordinate system of the cameras image sensor. The image

Figure 2.3: The mapping from the image plane to the affine image sensor [1].

sensor is usually not square so the number of pixels per unit distance may differ

in the xc and yc directions. We call these ratios mx and my. Typically for the

pixel coordinate system, the origin is placed at the top left corner of the camera

sensor. To align the coordinate systems we model the position of the principal

point in the image sensor with the pixel coordinate
[
x0 y0

]T
. To compensate

for any skew in the image sensor we include s as the skew coefficient in the

camera model and we end up with the linear mapping:xy
1

 =

mx s x0

0 my y0

0 0 1


xcyc

1

 (2.10)

The homography P c of the ideal image point on the image plane to the affine

coordinate system of the camera sensor is defined as:

P c =

mx s x0

0 my y0

0 0 1

 ∈ R3×3 (2.11)
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2.1.4 Projection Matrix

The projection matrix describes the transformation from a world point X to a

pixel position in the sensor frame. We can derive the projection matrix from

the transformation matrices defined in the previous sections.

x = P cxc, Zcxc = P pXc, Xc = P rX (2.12)

where

x =

xy
1

 , xc =

xcyc
1

 , Xc =


Xc

Yc

Zc

1

 , X =


X

Y

Z

1


By multiplying the transformation matrices in the the right order we get the

transformation from X to x, resulting in the projection matrix P .

λx = P cP pP rX = PX, 0 < λ ∈ R (2.13)

All world points on an infinite ray from the camera coordinates systems origin

maps to the the same pixel position, as mentioned in the introduction of this

chapter. We say that the projection matrix is defined up to scale since any

scaling of the projection matrix preforms the same projection.

x ∝ PX (2.14)

The scalar λ is equal to the imaged point depth in the camera coordinate system,

λ = Zc. This is a result of the perspective projection, P p. The projection matrix

P can be factored into two matrices, namely the intrinsic and the extrinsic

matrix in the following way:

P = K
[
R t

]
∈ R3×4. (2.15)

The parameters within K is called the cameras intrinsic parameters. It repre-

sents the fundamental camera characteristics and depends only on the camera.

Where
[
R t

]
describe the position and orientation of the camera in the world

frame and is termed the cameras extrinsic parameters. The intrinsic matrix K

9



is defined as:

K =

αx s x0

0 αy y0

0 0 1

 (2.16)

where

αx = fmx, αy = fmy.

The extrinsic matrix is given by:

[
R t

]
=

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

 . (2.17)

By substituting 2.15 into 2.13 we get the relation between a 3D point X and

its image projection x given by the intrinsic and extrinsic matrix:

λ

xy
1

 = K
[
R t

]

X

Y

Z

1

 . (2.18)

2.1.5 Radial Distortion

Until now we have only discussed the direct linear transformation from world

coordinates to the image sensor. There are several reasons for nonlinear errors

in the camera model, one of them is caused by misalignment of the optics in the

camera. The degree of distortion will vary throughout the image plane and will

cause an individual shift for each pixel. The distortion may in general be irreg-

ular, but the most commonly encountered distortions are radially symmetrical.

We define ∆ as the shift function of each pixel in the x and y direction. The

shift function depends on the position of the projected point X onto the image

plane and image sensor, and how the the nonlinear distortion is modeled. We

will define the shift function later in this section, for now we have:

u = x+ ∆x(x̃,k) (2.19)

v = y + ∆y(x̃,k) (2.20)

10



where x =
[
x y 1

]T
is the linear projection of the worldpoint X given by

equation 2.18. The detected point of X on the image sensor is the pixel coor-

dinate u =
[
u v 1

]T
. The mapping between the detected point u and the

projected point x can be written as:

u = A(x̃,k)x (2.21)

where

A(x̃,k) =

1 0 ∆x(x̃,k)

0 1 ∆y(x̃,k)

0 0 1


The general calibration matrix can be obtained by combining K with the map-

ping 2.21.

K(x̃,k) = A(x̃,k)K =

αx s x0 + ∆x(x̃,k)

0 αy y0 + ∆y(x̃,k)

0 0 1

 (2.22)

There are several ways to model the nonlinear errors, this report will use the

distortion model presented in [19]. It is likely that the distortion function is

dominated by radial components as mentioned earlier. The model only consider

the first two terms of radial distortion since the distortion function is dominated

by these first terms. The distortion model is given by:

u = x+ (x− x0)(k1r
2 + k2r

4) = x+ ∆x(x̃,k) (2.23)

v = y + (y − y0)(k1r
2 + k2r

4) = y + ∆y(x̃,k) (2.24)

where k1 and k2 are the radial distortion coefficients. The radial term r is the

distance from the principal point, xp =
[
0 0 f

]T
to the projection of X in

the image plane, xc =
[
xc yc f

]T
.

r = ‖xc − xp‖ =
√
x2
c + y2

c (2.25)
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x̃ =



xc

yc

x

y

x0

y0


, k =

[
k1

k2

]
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2.2 Camera Calibration

This chapter covers a general method for calibrating a single camera. The goal

is to estimate the unknown parameters in the pin hole camera model presented

in the previous chapter. First we will go through how we can estimate the linear

part of the model containing the intrinsic and extrinsic matrix. Then we will

estimate the radial distortion coefficients in the nonlinear part of the model.

Finally we will show the results of a single camera calibration. The theory in

this chapter in based on work done by Z. Zhang and Stephen Se & Nick Pears

[19, 15].

2.2.1 Plane Based Calibration

With this method the idea is to present the camera for a set of pictures of a

planar surface. Most common is to use a checkerboard as the planar surface.

It is important that either the camera or the checkerboard is fixed in space.

The camera characteristics are the same for all pictures, only the orientation

and position, R and t, of the camera are changing. By knowing the size and

structure of the 2D pattern, in this case the the checkerboard, we can define a

coordinate system on the checkerboard that describes where each corner is in

the real world. We define origin of the world coordinate system as the upper left

corner of the plane, the directions of X and Y moves right and down respectively

and Z is orthogonal to the plane. To make correspondences between the known

world points and the image points it is common to use a corner detector to

identify the corners of each square in the image and then pair each corner to

the corresponding world point. Since the origin of the world coordinates are set

to be at the top left corner of the checkerboard, the plane are fixed at Z = 0.

This means that any point on the plane have the coordinates:

λ

xy
1

 = K
[
R t

]

X

Y

0

1

 (2.26)

By looking at the columns of R =
[
r1 r2 r3

]
we can simplify 2.26
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λ

xy
1

 = K
[
r1 r2 t

]XY
1

 = H

XY
1

 (2.27)

Where H ∈ R3×3 is the planar homography that maps points on the checker-

board to the corresponding pixel points in the image.

2.2.2 Homography Estimation

The camera calibration technique relies on a homography estimation. The ho-

mography matrix is denoted H. From equation 2.27 and by writing H by its

elements, we get:

λ

xy
1

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33


XY

1

 . (2.28)

By dividing by λ we map homogeneous coordinates to inhomogeneous coordi-

nates and we end up with

x =
h11X + h12Y + h13

h31X + h32Y + h33
(2.29)

y =
h21X + h22Y + h23

h31X + h32Y + h33
(2.30)

where

λ = h31X + h32Y + h33

We want to solve for H. By rearranging equations 2.29 and 2.30 we get:

aTxh = 0 (2.31)

aTy h = 0 (2.32)

where

h =
[
h11 h12 h13 h21 h22 h23 h31 h32 h33

]T
ax =

[
−X −Y −1 0 0 0 xX xY x

]T
ay =

[
0 0 0 −X −Y −1 yX yY y

]T

14



Given a set of corresponding points we can form the following linear system of

equations:

Ah = 0, h 6= 0 (2.33)

where

A =



aTx1

aTy1

...

aTxm

aTym


, 4 ≤ m

m is the number of correspondences. The homography matrix has 8 degrees

of freedom because it is defined up to scale. Therefore we need at least 4

correspondences that results in 8 linear equations. We can solve this using

linear least squares method and properties of the singular value decomposition.

A description of the singular value decomposition can be found in the appendix

6.2. The sum of the squared error can be written as:

f(h) =
1

2
hTATAh (2.34)

df

dh
= 0 =

1

2
(ATA+ (ATA)T )h (2.35)

0 = ATAh. (2.36)

The singular value decomposition of A is given by:

A = UΣV T . (2.37)

The solution for h is given by the right singular vector of A that corresponds

to the smallest singular value.

2.2.3 Intrinsic Matrix

Now that we know the homography matrix we can continue to calculate the

intrinsic matrix K. For every camera position we have a projective transforma-

tion.

H =
K

λH

[
R t

]
(2.38)
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By writing 2.38 in column form

λHK
−1
[
h1 h2 h3

]
=
[
r1 r2 t

]
(2.39)

we get 3 equations

λHK
−1h1 = r1 (2.40)

λHK
−1h2 = r2 (2.41)

λHK
−1h3 = t (2.42)

Since R is a rotation matrix we know that the columns are unit vectors and

orthogonal to each other.

‖r1‖ = 1, (r1)Tr2 = 0 (2.43)

By using these properties of the rotation matrix we get two constraints to the

problem.

hT1 (KKT )−1h2 = 0 (2.44)

hT1 (KKT )−1h1 = hT2 (KKT )−1h2 (2.45)

We define the matrix B as

B = (KKT )−1 =

B11 B12 B13

B12 B22 B23

B13 B23 B33

 (2.46)

Note that B is symmetric, we define a 6D vector containing all elements of B.

b =
[
B11 B12 B22 B13 B23 B33

]T
(2.47)

Let the ith column of the homography matrix, H, be

hi =
[
h1i h2i h3i

]T
(2.48)

Equation 2.44 and 2.45 can be rewritten to

hTi Bhj = wT
ijb (2.49)
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hTi Bhi = hTj Bhj = wT
iib = wT

jjb (2.50)

where

wij =
[
h1ih1j h1ih2j + h2ih1j h2ih2j h3ih1j + h1ih3j h3ih2j + h2ih3j h3ih3j

]T
The two constraints can now be written as two homogeneous equations[

wT
12

wT
11 −wT

22

]
b = 0 (2.51)

Note that we have six unknowns, each homography matrix only produce two

equations so we need at least three test photos of the checkerboard. If n photos

from different positions have been taken, we can stack equations as 2.51 on top

of each other forming matrix W .

Wb = 0, W ∈ R2n×6 (2.52)

If 3 ≤ n we will in general have a unique solution for b. We solve this the same

way as for the homography matrix. It is recommended to have multiple views

3 < n and take the least square solution of

W TWb = 0 (2.53)

Where the solution to b is the right singular vector of W that corresponds to

the smallest singular value. When b is known, we can solve for K. Note that

B is estimated up to an unknown scale factor λB .

B = λB(KKT )−1 (2.54)

= λB


1
α2
x

− s
α2
xmy

y0s−x0αy
α2
xαy

− s
α2
xαy

s2

α2
xα

2
y

+ 1
α2
y

− s(y0s−x0αy)
α2
xα

2
y

− y0
α2
y

y0s−x0αy
α2
xαy

− s(y0s−x0αy)
α2
xα

2
y

− y0
α2
y

(y0s−x0αy)2

α2
xα

2
y

+
y20
α2
y

+ 1

 (2.55)
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It is possible to uniquely extract the intrinsic parameters from matrix B. Solu-

tion taken from Z. Zhang [19].

y0 =
B12B13 −B11B13

B11B22 −B2
12

(2.56)

λB = B33 −
B2

12 + y0(B12B13 −B11B23)

B11
(2.57)

αx =

√
λB
B11

(2.58)

αy =

√
λBB11

B11B22 −B2
12

(2.59)

s =
B12α

2
xαy

λB
(2.60)

x0 =
sy0

αy
− B13α

2
x

λB
(2.61)

By substituting the intrinsic parameters from equations 2.56-36 into the defini-

tion of the intrinsic matrix, 2.16, we get the numerical values for the elements

of K.

2.2.4 Extrinsic Matrix

When K is known we can compute the extrinsic parameters for each homogra-

phy H. From 3.15-17 we get

r1 = λHK
−1h1

r2 = λHK
−1h2

r3 = r1 × r2
t = λHK

−1h3

where

λH =
1

‖K−1h1‖
=

1

‖K−1h2‖

The extrinsic matrix is given by:[
R t

]
=
[
r1 r2 r3 t

]
(2.62)
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2.2.5 Rotation Matrix Approximation

The estimated r1 and r2 when calculating the extrinsic parameters are not

necessarily orthogonal because of noise in the data. Therefore we need to esti-

mate R such that it satisfy the properties of a rotation matrix. This estimation

method is taken from Z. Zhang [19]. Let

Q =
[
r1 r2 r3

]
(2.63)

We want to find the best R to approximate Q. This can be done by minimizing

the Frobenius norm of the difference R−Q.

min
R
‖R−Q‖2F subjected to RTR = I (2.64)

‖R−Q‖2F = Tr((R−Q)T (R−Q))

= Tr(RTR) + Tr(QTQ)− 2 Tr(RTQ)

= 3 + Tr(QTQ)− 2 Tr(RTQ)

The minimization problem 2.64 is equivalent to maximizing Tr(RTQ). By tak-

ing the singular value decomposition ofQ = UΣV T , where Σ = diag(σ1, σ2, σ3).

Tr(RTQ) = Tr(RTUΣV T ) = Tr(V TRTUΣ) (2.65)

Note that the manipulation done to 2.65 is allowed since the trace is invariant

under cyclic permutations. We now define the orthogonal matrix Z = V TRTU

and substitute into the 2.65.

Tr(V TRTUΣ) = Tr(ZΣ) =

3∑
i=1

ziiσi ≤
3∑
i=1

σi (2.66)

It is easy to see that the optimal solution is Z = I, then R is given by:

R = UV T (2.67)

which is the solution of 2.64.
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2.2.6 Radial Distortion Coefficients Estimation

The last step of the calibration is to estimate the radial distortion coefficients.

We start of with writing equation 2.23 and 2.24 on linear form[
u− x
v − y

]
=

[
(x− x0)r2 (x− x0)r4

(y − y0)r2 (y − y0)r4

][
k1

k2

]
(2.68)

For n test photos and m points that have a known correspondence we get 2nm

equations which we can stack together forming matrix D and vector d such that

Dk = d, D ∈ R2nm×2, d ∈ R2mn (2.69)

The linear least square solution for k is given by:

k = (DTD)−1DTd. (2.70)

2.2.7 Error Minimization

All camera parameters in the pinhole model can be estimated based on the

methods presented in the previous sub chapters. When it was solved, we used

n test photos and m correspondences in each image. We want to refine the

parameters in the model by minimizing the reprojection error. The reprojection

error is the difference between the pixel point of the detected world point X in

the image sensor and the calculated pixel point of X using the pinhole camera

model. We refine the parameters in the model by minimizing the non-linear

least squares problem:

argmin
(K,k1,k2,Ri,ti)

n∑
i=1

m∑
j=1

‖xij − x̂ij(K, k1, k2,Ri, ti,Xj)‖2 (2.71)

where xij =
[
uij vij 1

]T
is the detected point of Xj in the image sensor

from test photo i and x̂ij is the calculated image point of world point Xj using

equation 2.27 combined with 2.21.

x̂ij = A(x̃,k)K
[
Ri ti

]
Xj (2.72)

The non-linear least squares problem can be solved by using Levenberg-Marquardt

algorithm. This is an iterative procedure and it need to have an initial guess for
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the parameters to begin with. The algorithm will converge to global minimum

if the initial guess is sufficiently close to the final minimum. This is also a way

to estimate radial distortion if not done previously, simply by setting the initial

guess for k1 and k2 equal to zero. The reader is referred to [6] for more details

about the Levenberg-Marquardt algorithm.
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2.3 Stereo Camera Geometry

In this section we will look into the calibration, and some geometry of a stereo

camera rig. First we want to calibrate the stereo rig to be able to calculate

the 3D world coordinate of a point that corresponds to corresponding image

points from the two cameras. By exploiting the geometry of the stereo rig we

can simplify the correspondence problem. It is assumed that the cameras in the

stereo camera rig are individually calibrated and that distortions are corrected

for. This means that linear projections between world coordinates and pixel

points can be used.

2.3.1 Calibration of a Stereo Rig

We have two cameras mounted on the same rig, both fixed in space relative to

each other as shown in figure 2.4. It is important to mention that both cameras

must take pictures of the scene simultaneously. The whole checkerboard must

be visible for both cameras when taking pictures for the calibration. The sets

of all corresponding points for the left and right camera are defined as:

x′ij = K ′
[
R′i t′i

]
Xj , x′′ij = K ′′

[
R′′i t′′i

]
Xj i, j ∈ n,m (2.73)

where m is the number of test photos and n is the number of correspondences. ′

and ′′ denotes all the parameters and image points for the left and right camera

respectively. From figure 2.4 you can see the geometry of the stereo camera rig.

2.3.2 Estimation of Rigid Transformation

We want to find the rigid transformation,R and t, of the right camera relative to

the left camera. This information is necessary later when rectifying the images

and estimating depth of corresponding points in the images.

T (O′c) = RO′c + t = O′′c (2.74)

The rigid transformation matrices from the world coordinate system to each

camera coordinate system can be written as:

T ′i =

[
R′i t′i

0T 1

]
, T ′′i =

[
R′′i t′′i

0T 1

]
. (2.75)
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Figure 2.4: Stereo Camera Model [7].

The rigid transformation from left to right camera is then:[
R t

0T 1

]
= T ′i

−1T ′′i ∀i ∈ n. (2.76)

Equation 2.76 holds for all images taken since the cameras are fixed in space

relative to each other. The estimated rigid transformation between the cameras

may differ slightly because of noise in the data, therefore we take the average

over all camera positions to get a better estimate of the relative position of the

cameras. [
R t

0T 1

]
=

1

n

n∑
i=1

T ′i
−1T ′′i (2.77)

If R doesn’t have the properties of a rotation matrix we can approximate it as

in section 2.2.5.

2.3.3 The Fundamental and Essential Matrix

From figure 2.4 we can see that the vectors
−−−→
O′cX,

−−−→
O′′cX and

−−−→
O′cO

′′
c forms a

plane. Where O′c and O′′c is the position of the pinhole of the left and right

camera respectively. The coplanarity constraint can be written as the triple
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product of the vectors.

−−−→
O′cX · (

−−−→
O′cO

′′
c ×
−−−→
O′′cX) = 0 (2.78)

By rewriting equation 2.73 for both cameras.

x′ = K ′R′
[
I3 −O′c

]
X, since −R′O′c = t′ (2.79)

This equation is true for all images taken, and the subscript denoting the image

number is therefor excluded. We can now explicitly write the vectors that defines

the plane

−−−→
O′cX = R′TK ′−1x′ =

[
I3 −O′c

]
X

−−−→
O′′cX = R′′TK ′′−1x′′ =

[
I3 −O′′c

]
X

−−−→
O′cO

′′
c = b = O′′c −O

′
c

By substituting the definitions of the vectors into 2.78, we get a fundamental

result:

x′TK ′−TR′SbR
′′TK ′′−1x′′ = 0 (2.80)

where the matrix

F = K ′−TR′SbR
′′TK ′′−1 (2.81)

is called the fundamental matrix. The fundamental matrix contains information

about the relative orientation of two images from two uncalibrated cameras and

satisfies the equation x′TFx′′ = 0 for corresponding points. For calibrated

cameras we can obtain the directions of the vectors from the two camera centers

to the world point as:

x′K = K ′−1x′, x′′K = K ′′−1x′′. (2.82)

By substituting equation 2.82 into 2.80 we get:

x′TKR
′SbR

′′Tx′′K = 0 (2.83)

where the essential matrix is defined as:

E = R′SbR
′′T (2.84)
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The essential matrix contains the same information as the fundamental matrix,

but only for calibrated cameras. The coplanarity constraint can be simplified

for calibrated cameras:

x′TKEx
′′
K = 0 (2.85)

The reader is referred to [5, 15] for a more detailed description of the derivation

and properties of the essential and fundamental matrix. These equations forms

the basis for the theory of epipolar geometry.

2.3.4 Epipolar Geometry

Epipolar geometry describes the relation between corresponding points in the

images taken from two cameras in a stereo rig, and is therefore essential for

solving the correspondence problem. It will reduce the search space form 2D

to 1D. Lets go through some important elements of the epipolar geometry and

how they are defined, stated in [5].

Figure 2.5: An illustration of the the epipolar plane, epipoles and the epipolar
lines [15].

• The epipolar axis is the line connecting the two projection centers.

β = (O′cO
′′
c ) (2.86)

• The epipolar plane depends on the positions of the projection centers and

the world point X.

ε(X) = (O′cO
′′
cX) (2.87)

• The epipoles are the image points of the other projection centers. The
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epipoles in the left and right image plane are defined by:

e′ = (O′′c )′, e′′ = (O′c)
′′ (2.88)

where (·)′ and (·)′′ is the projection of (·) in the left and right image plane

respectively.

• The epipolar lines are the image of the line connecting the projection

center and the world point X in the other image.

l′(X) = (O′′cX)′, l′′(X) = (O′cX)′′ (2.89)

The projection centers, the epipolar lines, the world point X and the (X)′

and (X)′′ projections lies on the same epipolar plane. Say that we have the

projection (X)′ then we define the epipolar plane ε((X)′) = (O′cO
′′
c (X)′). The

intersection of the epipolar plane ε((X)′) and the right image plane is the epipo-

lar line l′′((X)′). This means that (X)′′ must lie somewhere on the epipolar

line l′′((X)′). Lets look into how we can obtain the epipolar lines. We have two

corresponding points:

x′ = P ′X, x′′ = P ′′X (2.90)

where P ′ and P ′′ is the projection matrix for the left and right camera respec-

tively. If x′ and x′′ lies on the epipolar lines l′ and l′′, respectively, the following

must hold:

x′T l′ = 0, x′′T l′′ = 0 (2.91)

The fundamental matrix F has the property for corresponding points such that:

x′TFx′′ = 0, x′′TF Tx′ = 0 (2.92)

By looking at equations 2.91 and 2.92 we can easily see that the epipolar lines

are given by:

l′ = Fx′′, l′′ = F Tx′ (2.93)

2.3.5 Rectification

From last section we describe the epipolar lines. It would be useful if the epipolar

lines are horizontal, e.g.there is no shift in the y-parallax between the image pair.

This will simplify the correspondence problem even further, the search space for

corresponding points will now be a horizontal 1D line in the image pair. If we
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have two corresponding points in pixel coordinates, x′ and x′′, assuming that

the images are rectified, the two corresponding pixel points have the following

relation:

x′ =

xy
1

 , x′′ =

x+ d

y

1

 (2.94)

where the scalar d ∈ R is the disparity. The disparity is the difference between

the corresponding points along the x-axis in the normalized image pair. Lets

look into how we can achieve this relation between image points for our stereo

camera rig. We define the origin of the stereo camera coordinate system as

the projection center of the left camera. Earlier we calculated the the rigid

transformation, R and t, of the right camera relative to the left. As a result

of this we can define the extrinsics of the two cameras in the new coordinate

system as:

R′ = I3, t′ = 0 (2.95)

R′′ = R, t′′ = t (2.96)

x′ = K ′
[
I3 0

]
X, x′′ = K ′′

[
R t

]
X (2.97)

where the left camera coordinate system are define as the world coordinate

system. The new image points in the stereo normal case are given by:

x′m = Km

[
Rm 0

]
X, x′′m = Km

[
Rm t

]
X (2.98)

where Km = diag(c, c, 1) is a common calibration matrix to ensure that the

normalized image planes are at the same distance from their respective projec-

tion center. From figure 2.6 you can see the normalized image pair shaded in

gray. The goal of this transformation is that corresponding image points have

no y-parallax. We want to apply a homography to each image that maps them

over to images that are normalized. In [5] the homography’s are defined as:

x′m = H ′mx
′, x′′m = H ′′mx

′′ (2.99)

H ′m = KmRmK
′−1, H ′′m = KmRmR

TK ′′−1.
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Figure 2.6: Normalized stereo pairs [5]

The rotation matrix Rm are defined as

Rm =

r
T
1

rT2

rT3

 (2.100)

and is chosen such that the following three conditions hold, stated in [5]:

• The direction of the x′m and x′′m axes are parallel to the baseline t. This

results in:

r1 =
t

‖t‖
(2.101)

• The new viewing directions are perpendicular to the baseline and are as

close as possible to the original viewing direction. We assume that the

viewing direction of each camera don’t differ significantly, therefor we

choose the new viewing direction with respect to the left camera only. The

original viewing direction of the left camera is d′ =
[
0 0 1

]T
direction.

r2 =
Std

′

‖Std
′‖

(2.102)

• The direction of the y′m and y′′m are orthonormal to plane generated by
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the new viewing direction and the x′m and x′′m axes.

r3 =
Sr1r2
‖Sr1

r2‖
(2.103)

The new common viewing direction for the normalized cameras is given by:

d = r3 (2.104)

By arbitrarily choosing the world coordinate system to have the same orientation

as the left normalized camera coordinate system, we can simplify the projection

matrices for both the normalized cameras since they have the same orientation

in space. Note that the origin of the world coordinate system doesn’t change

because the rectification only apply a rotation. Be rewriting equation 2.98 after

the reorientation of the world coordinate system we get:

x′m = Km

[
I3 0

]
X, x′′m = Km

[
I3 b

]
X (2.105)

where b =
[
‖t‖ 0 0

]T
. We can now prove that the epipolar lines are hori-

zontal for normalized cameras using the coplanarity constraint. The essential

matrix for the normalized stereo pair is given by:

E = R′SbR
′′T = Sb =

0 0 0

0 0 −‖t‖
0 ‖t‖ 0

 (2.106)

where R′ = R′′ = I3. We obtain the following coplanarity constraint for

corresponding points in the normalized image planes:

x′Tc

0 0 0

0 0 −‖t‖
0 ‖t‖ 0

x′′c = c‖t‖(y′′c − y′c) = 0 (2.107)

where

x′c =
[
x′c y′c c

]T
= cK−1

m x
′
m, x′′c =

[
x′′c y′′c c

]T
= cK−1

m x
′′
m.

The vectors x′c and x′′c are the mapping of image points x′m and x′′m in their

respective normalized image plane and also contain the direction from their
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respective projection center to the world point X. The result of the coplanarity

constraint in equation 2.107 prove that the normalized image pair don’t have

any shift in the yc-parallax in the image planes for corresponding points.

pyc = y′′c − y′c = 0 (2.108)

We can also show that the ym-parallax is zero for corresponding image points

x′m and x′′m by looking at the coplanarity constraint given by the fundamental

matrix F .

F = K ′−TR′SbR
′′TK ′′−1 = K−Tm SbK

−1
m (2.109)

F =


1
c 0 0

0 1
c 0

0 0 1


0 0 0

0 0 −‖t‖
0 ‖t‖ 0




1
c 0 0

0 1
c 0

0 0 1

 (2.110)

F =

0 0 0

0 0 −‖t‖c
0 ‖t‖

c 0

 (2.111)

We get the following coplanarity constraint for corresponding normalized image

points:

x′TmFx
′′
m =

‖t‖
c

(y′′m − y′m) = 0 (2.112)

where x′m =
[
x′m y′m 1

]T
and x′′m =

[
x′′m y′′m 1

]T
are the corresponding

normalized image points. The result of the constraint in equation 2.112 prove

that the ym-parallax must is zero for corresponding normalized image points.

pym = y′′m − y′m = 0 (2.113)

2.3.6 Triangulation

To solve the reconstruction problem we use triangulation to compute the 3D

coordinates of a world point based on the corresponding points. The system have

been transformed into a normalized stereo pair, this simplifies the reconstruction

problem. The detected corresponding image points of the unknown world point

X are given by equation 2.105. Since we are working with normalized image
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points, the detected image points have the relation:

x′m =

x
′
m

y′m

1

 , x′′m =

x
′
m + d

y′m

1

 (2.114)

where d ∈ R is the disparity. We will look into how we can estimate the disparity

in the next chapter. For now we assume that d is known. In figure 2.7 B is

Figure 2.7: View of the stereo normal cameras in the XZ and XY plane in
world coordinates. The world coordinate system with its origin O is identical
to the left camera coordinate system [5].

the metric distance of the baseline and px is the x-parallax in the image planes

given by:

B = ‖t‖, px = x′′c − x′c (2.115)

where

x′c =

x
′
c

y′c

c

 = cK−1
m x

′
m, x′′c =

x
′′
c

y′′c

c

 = cK−1
m x

′′
m.
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The vectors x′c and x′′c are the mapping of image points x′m and x′′m in the left

and right image plane, respectively. The scalar c is the common focal length for

the stereo normal cameras, defined in the previous sub chapter. By examining

figure 2.7, we can express the coordinates for world point X =
[
X Y Z

]T
using the rule of similar triangles. The coordinates are given by:

X = x′c
B

px
, Y =

y′c + y′′c
2

B

px
, Z = c

B

px
. (2.116)

Since y′c should be equal to y′′c in the stereo normal case, we can express the Y

coordinate as:

Y = y′c
B

px
(2.117)

We can write the equation for the inhomogeneous world coordinate X on linear

form using equations 2.116 and 2.117.

X =


B
px

0 0

0 B
px

0

0 0 B
px

x′c (2.118)

By converting to homogeneous coordinates we can use the x-parallax as input.
U

V

W

T

 =


B 0 0 0

0 B 0 0

0 0 B 0

0 0 0 1



x′c

y′c

c

px

 (2.119)

The transformation between inhomogeneous and homogeneous coordinates is

given by: XY
Z

 =
1

T

UV
W

 . (2.120)

The error of depth, derived in [5], is given by:

∆Z =
Z2

cB
∆px (2.121)

where ∆px is the expected error of the x-parallax. We can see that the error of

Z, ∆Z, is increasing by the square of Z. The error of Z is proportional to px,

we can reduce the error of the x-parallax by estimating the disparity with sub-
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pixel accuracy. We will show how we can estimate the disparity with sub-pixel

accuracy in the next chapter. The depth error can be reduced by increasing the

focal length and baseline. This also have its drawbacks, because increasing the

baseline will make the matching harder. Increasing the focal length will reduce

the field of view, as a result of equation 2.122. The horizontal and vertical field

of view is given by:

θH = 2 arctan

(
h

2f

)
, θV = 2 arctan

(
v

2f

)
(2.122)

where θH and θV are the horizontal and vertical field of view in degrees, respec-

tively. The width and height of the image sensor are given by h and v, and f

is the focal length. From 2.122 we can also see that by increasing the size of

the image sensor, we can increase the field of view. A consequence of having a

larger image sensor is that it increases the number of pixels, higher resolution

resulting in more processing time. It is important to have these relations in

mind when designing a stereo camera system. The design procedure involves a

number of performance trade-offs and are chosen according to the application

requirements of the system. Stereo camera systems will typically work within a

limited range, depending on the application, to have the best possible accuracy.
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3 Approach

In this chapter we will present a solution for solving the correspondence prob-

lem. The main goal is to accurately find the corresponding point of the docking

slot given by a tracker. When the corresponding point is found we can estimate

the disparity used for calculate the three dimensional world coordinate of the

docking slot. First we will have short description of the problem and the chal-

lenges that follows. The approach of finding the corresponding point is mostly

based on the assumptions given in the introduction and of course theory pre-

sented in subsection 2.3. A review of the different computer vision algorithms

used for finding corresponding points between the image pair are given in the

end of this chapter.

3.1 Problem Description and Challenges

Since the platform is painted grey the surface is homogeneous and texture less.

The fence poles all look the same and can give us ambiguous matches. There is

no hallmark on the docking slot and is only painted grey as you can i see in 3.1.

Figure 3.1: The platform built for experimental testing of the different algo-
rithms and is a copy of an entrance of a windmill. The docking slot is positioned
under the entrance in the center of the platform.

These two factors makes it challenging when searching for corresponding points

in the image pair. therefore we will look into how we can narrow down the search

region and how we can create a reasonable sized template to remove most of the

scene. The template and search region should contain enough texture so we can

get a accurate match between the image pair. When template and search region

is created we will apply the different computer vision algorithms on them to find
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corresponding points and estimate the disparity value. The disparity value is

key factor when calculating the three-dimensional coordinate of the docking slot

relative to the camera.

3.2 Camera Setup

For this application Kongsberg designed their own stereo camera system. It

consists of two IDS GigE uEye CP industrial cameras, [10], with a resolution of

4.19Mpix. The reason for choosing this camera is that it have a global shutter.

A global shutter turns all the pixels on and off at the same time.

Figure 3.2: The stereo camera rig.

Since the camera will move when taking photos due to the sea sate and that

the bridge will move when docking, a global shutter will not suffer from any

skew in the image. But, you would get some motion blur depending on the

exposure time. If the images suffered from skew it would be hard to match

them and the pixel positions may not be at their true position resulting in a

wrong depth measurement. From figure 3.2 you can see that the cameras are

mounted in parallel to each other. Both cameras use the same lens with a

focal length of 8[mm]. The stereo rig was calibrated in Matlab using the stereo

camera calibration app in the computer vision toolbox. The calibration app

uses a planar based calibration approach that is reviewed in 2.2. To be able

to perform the calibration, the app only need a set of image pairs containing a
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checkerboard, see figure 3.3, with known dimensions as input. Both the camera

(a) Left (b) Right

Figure 3.3: One of the image pairs containing a checker board taken by the
stereo camera rig used for the calibration.

intrinsic, K, and extrinsic matrix,
[
R t

]
, are estimated for each camera. It

also estimates the rigid transformation between the cameras. The stereo rig was

only calibrated in a range of 2 − 3[m]. The system is supposed to work in a

range of 2−20[m], to improve accuracy of the rig it is advantageous to calibrate

the rig in its operating range. The reprojection error, for each image used in

the calibration, of the stereo rig is plotted in figure 3.4.
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Figure 3.4: The reprojection error of the calibrated stereo camerea system.
The blue and yellow bars represent the error for the left and right camera,
respectively.
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The mean reprojection error is estimated to be 0.13 pixels. By rewriting equa-

tion 2.121 with the focal length in [pix], we can substitute the expected error

in the x-parallax with the expected disparity error, ∆d.

∆Z =
Z2

fB
∆d (3.1)

The estimated baseline of stereo rig is B = 265.8[mm] and the average of the

estimated focal lengths for each camera is f = 7.93[mm]. It is expected that the

estimated focal length will deviate from the focal length given in the data sheet

for the lens because of small manufacturing errors. All pixels for IDS camera is

square and have a side length of 5.5[µmpix ] and the focal length in pixels is then

f = 1441.8[pix]. If we have a perfect match between the image pair, i.e. the

disparity value is correct, a reasonable expected error for the disparity can be

set to two times the mean of the reprojection error, ∆d = 2× 0.13 = 0.26[pix].

The expected depth error, assuming a perfect match, by using the estimated

values of f , B and ∆d in equation 3.1 for Z ∈ [0, 20] is plotted in figure 3.5. If
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Z[m]
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0.05
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∆
Z
[m

]

Figure 3.5: The expected depth error at different ranges. Parameters: f =
1441.8[pix], B = 256.8[mm] and ∆d = 0.26[pix]
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we always have a perfect match the stereo rig will have good accuracy as you

can see from the plot, but we can expect that ∆d is much higher for the different

algorithms we are gonna test later. To improve accuracy we can increase the

baseline, but it is important that the docking slot is visible for both cameras in

the working area of the bridge. As mentioned earlier this system should work at

range of 2− 20[m] and also within 10 degrees to the left and right of the center

of the docking slot. If we position the center of the camera rig at 10 degrees to

the left or right from center of the slot in the horizontal direction at 2[m] depth

we can estimate the maximum baseline where the whole docking slot is visible

for both cameras at these positions. When the docking slot is visible for both

cameras at this range and angle, it also will be visible for both at longer ranges

with same angle or smaller. The field of view of the cameras in the horizontal

and vertical direction is equal because of a square image sensor and is:

θh = θv = 2 arctan

(
h

2f

)
= 2 arctan

(
11.264

2× 7.93

)
= 70.76◦.

The width of the docking slot is wslot = 1.2[m]. The maximum we can move the

left or right camera from these two positions by adjusting the baseline where

the docking slot is visible for both cameras can be described with the following

equation.

2 tan

(
θh
2

)
= 2 tan(10) +

wslot
2

+
B

2
(3.2)

The right side of equation represents the horizontal displacement of camera that

is furthest away from the left or right edge of the docking slot and must be equal

to the horizontal viewing distance of the camera at 2[m].Note that this equation

only yields correct answer when the baseline of the rig is parallel to the face of

the docking slot. Solving for the baseline we get B = 0.9275[m]. This is only

a theoretical value and should be tested, but there shouldn’t be a problem to

increase the current baseline with twice its size and increase the accuracy of the

stereo rig even further.

3.2.1 Template and Search Region

Before creating template and search region we undistort and rectify the image

pair. This will simplify the problem when searching for corresponding points,

now we know that corresponding points must lie on the same horizontal epipolar

line as discussed in the previous chapter. It is assumed that we get the pixel
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position of the center of the docking slot from a tracker. In this thesis we define

that we get this information in the left image, i.e. x′m is known. If we have some

information of how far we are from the docking slot we can estimate a disparity

range where the corresponding point should lie by using the equations from

2.3.6. We can get this information from the previous measurement produced by

this algorithm, GPS, IMU or the mathematical model of the bridge used by the

control system and we can make prediction of what the disparity range should

be. When estimating the disparity range, creating template and search region

we are only interested in the Zc-coordinate. Lets define the depth measurement

we get from some source in the system as Zest. Since the bridge most likely will

move in some direction between each image pair taken we need to make a depth

range prediction, Zc ∈ [Zmin, Zmax]. We define the limits as:

Zmin = (1− α)Zest, Zmax = (1 + α)Zest, α ∈ [0, 1]. (3.3)

The depth is inverse proportional with the disparity value, thereforee Zmax

corresponds to dmin and opposite. We can calculate these disparity values with

use of equations 2.114, 2.115 and 2.116.

pxmin =
cB

Zmax
, pxmax =

cB

Zmin
(3.4)

And we can express the disparity values that corresponds to each distance in

the image plane as:dmin0

1

 =
1

c
Km

pxmin0

c

 ,
dmax0

1

 =
1

c
Km

pxmax0

c

 . (3.5)

Hopefully will the corresponding point in the right image, x′′m, lie somewhere

on the horizontal interval:

dmin + x′m ≤ x′′m ≤ dmax + x′m. (3.6)

We have the option to tune α to create a wider or tighter disparity range. In this

thesis this parameter will be set to a static value when running the algorithms on

test photos, but it would be an idea to have α = f(Zest) because the uncertainty

of the measurement depends on depth. Now that we have established a way to

narrow down the search range we will have a look on how we can create a
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reasonable size for the template surrounding x′m. The docking slot will have

the same dimension on every windmill or platform. The size of the object is

known and we define the width and height as Xobj and Yobj respectively. With

this information we can calculated how many pixels we need to move in the

horizontal and vertical direction in the image to create a template that have

the same size as the object depending on Zmin and Zmax. By use of equations

2.114, 2.115 and 2.116 again, we can calculate how much we can move in the

horizontal and vertical direction in the image, to reach half of the size of the

objects width and height in the real world.

1

2

 Xobj

Yobj

2Zmax

 =
B

pxmin

w
′
c

h′c

c

 (3.7)

where w′c = w′c − x′0 and h′c = h′c − y′0 are the distances between the principal

point, x′0, and the two points in the image plane, w′c and h′c, that corresponds

to half the object size in the horizontal and vertical direction. Note that the

principal point have the coordinates x′0 =
[
0 0 c

]T
in the image plane. To

find the number of pixels we need to move in both direction, first we need to

find the pixel positions of w′c and h′c . By multiplying both sides of equation 3.7

with Km

c we get the pixel positions w′m and h′m.

pxmin
2cB

Km

 Xobj

Yobj

2Zmax

 =

w
′
m

h′m

1

 (3.8)

We need to find the principal point in pixel position and subtract it from[
h′m w′m 1

]T
to get the distance in pixels. The principal point in pixels

is given by: x
′
m0

y′m0

1

 =
1

c
Km

0

0

c

 . (3.9)

The distance of half the size of the objects width and height in pixels is then:[
w′m

h′m

]
−

[
x′m0

y′m0

]
=

[
w′min
h′min

]
(3.10)
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where w′min and h′min is the half size of the object in pixels given that we are at

Zmax away from the target. This can also be done for Zmin and we can calculate

w′max and h′max the same way. The template size is chosen as the average of the

maximum and minimum size.

1

2

[
w′min
h′min

]
+

1

2

[
w′max

h′max

]
=

[
w′avg

h′avg

]
(3.11)

The pixels in the left image contained in the template is given by:

T =


(x′m − w′avg, y′m − h′avg) · · · (x′m + w′avg, y

′
m − h′avg)

... (x′m, y
′
m)

...

(x′m − w′avg, y′m + h′avg) · · · (x′m + w′avg, y
′
m + h′avg)

 (3.12)

where

T ∈ Rp×q, p = 2h′avg + 1, q = 2w′avg + 1.

It is important to have a template off odd size to ensure that the point of interest

is in the center of the template. For the search region we want to have the same

height as the template. We need to extend the width by the disparity range and

center the interval from equation 3.6 in middle of the search region. The pixels

in the right image contained in the search region is defined as:

S =


(dmin + x′m − w′avg, y′m − h′avg) · · · (dmax + x′m + w′avg, y

′
m − h′avg)

...
...

(dmin + x′m − w′avg, y′m + h′avg) · · · (dmax + x′m + w′avg, y
′
m + h′avg)


(3.13)

where

S ∈ Rp×r, r = 2w′avg + dmax − dmin.

In figure 3.6 both the template and search region are drawn in the left and right

image respectively. The true depth value was used, Zest = 2.26[m], and α =

0.25. Further the object size was set to Xobj = 1.5[m] and Yobj = 0.5[m] which is

a bit larger than the real size of the docking slot. This is done with the purpose

to get some more texture in the template. The cross in the template is the point

given by the tracker and the line drawn within the search region is the disparity

range given by equation 3.6. As mentioned earlier it is important to reduce the

template and search region to remove potential ambiguous matches, but we will

also lower the computation time for the different algorithms we are going to
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Template and Search Region

Figure 3.6: Template and search region generated by the equations in section
3.2.1. Parameters used: Zest = 2.26[m], α = 0.25, Xobj = 1.5[m] and Yobj =
0.5[m]. The cross in the template is the point given by a tracker and the line
drawn in the search region is the disparity range.

use when finding the corresponding point. Also note that the template size and

disparity range depends on the depth, the template size and disparity range are

inversely proportional with depth. This will result in increasing computation

time as we approach the platform. Since we use the true depth value of the

point given by the tracker, the corresponding point will always lie somewhere

on the interval given by equation 3.6. We cannot be sure if this is the case

when we use the posterior measurement. It can be solved analyzing the depth

accuracy of the different algorithms and we can set a value for α based on the

results.
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3.3 Algorithms and Used Methods

In this section a theoretical review of the different algorithms used for solving

the correspondence problem. The theory presented for all the correlation based

methods is based on [15]. For the feature based methods, Harris corner detector,

scale invariant feature transform and speeded up robust features, the reader is

referred to [8], [11] and [3], respectively.

3.3.1 Preliminaries

Before we begin the review of the different algorithms, we will cover some basic

image processing theory. A short introduction to image filtering and image

pyramids is given to make the review of the algorithms, especially the feature-

based methods, more compact and easier to read. The theory presented in this

subsection is taken from [17]. Also a method for achieving sub pixel accuracy

for the correlation based methods is presented.

3.3.1.1 Image Filtering

Image filters perform a wide range of image transformations such as bluring,

sharpening or edge enhancements are just a few examples. An image filter is

a neighborhood operator where the output pixel value is a weighted sum of

the input pixels in a neighborhood around the pixel of interest. With different

weights we can apply different image transformations. Let g(i, j) be the output

value of pixel (i, j) and f(i, j) is the input pixel value, the weighted sum over

an area (k, l) is given by:

g(i, j) =
∑
k

∑
l

f(i− k, j − l)h(k, l). (3.14)

The weight of each pixel is given by h(k, l) and is a matrix often called kernel

or convolution matrix. The entries of the kernel depends on the filter type and

are called filter coefficients. All kernels are weighted by the absolute sum of the

filter coefficients to ensure that the intensity values, after applying a kernel, is

mapped to the same range. Equation 3.14 is the convolution between the kernel

and the image and can by written as:

g = f ∗ h (3.15)

where ∗ is the convolution operator. From figure 3.7 you can see that the output
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Figure 3.7: An illustration of the convolution of image f(x, y) with kernel
h(x, y). The area of the image in blue is convolved with the kernel and re-
sults in the output pixel value in green [17].

images shrinks depending on the size of the kernel. This can be compensated

by padding the input image, for example with zeros. There exist many padding

alternatives, but we will not go into detail on this theme. More interesting are

the different types of kernels that are used in the algorithms we are going to

review later. The Sobel operator is a discrete differentiation kernel and is used to

compute a approximation of the pixel intensity derivatives in the horizontal and

vertical direction. The Sobel operator for the horizontal and vertical direction

is defined as:

Dx =
1

8

1

2

1

[−1 0 1
]

=
1

8

−1 0 1

−2 0 2

−1 0 1

 , Dy = DT
x ∈ R3×3. (3.16)

The vector 1
2

[
−1 0 1

]
is a 1D kernel that represents the central difference

formula and 1
4

[
1 2 1

]T
is a approximation of a Gaussian. The Gaussian is

used to smooth out the pixel intensities in the vertical direction when computing

the horizontal direction and vice versa. It is important to smooth out the

image since the computation of the derivative is really sensitive to noise. The

Gaussian kernel is used in computer vision algorithms for blurring(smoothing)

or weighting an area in an image. The 2D Gaussian is given by:

G(x, y, σ) =
1

2πσ2
e
−x2+y2

2σ2 (3.17)
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and the R5×5 discrete approximation of the 2D Gaussian function with σ = 1

and zero mean results in the Gaussian kernel:

G =
1

273


1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1

 .

The degree of blurring depends on the standard deviation of the Gaussian,

larger standard deviation increases the amount of blur in the output image.

The dimension of the kernel depends also on the standard deviation of the

Gaussian because larger σ’s requires a higher dimension of the kernel in order

to approximate the Gaussian accurately.

3.3.1.2 Image Pyramids

An image pyramid is a multi-scale representation of an image and is introduced

because it is a good approach to look for features of various scales. The process

of creating an image pyramid is by repeatedly smooth and sub-sample the image,

usually by a factor of two, at each level. The smoothing and sub-sampling can

Figure 3.8: Illustration of a image pyramid with three levels [17].

be done in one operation with a decimation kernel. One of the most common

decimation kernel, is the binomial filter.

bT =
1

16

[
1 4 6 4 1

]
, B = bbT (3.18)
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Since the output image is smaller by a factor of two, r = 2, we only evaluate

the convolution between the image and kernel at every second sample.

g(i, j) =
∑
k

∑
l

f(ri− k, rj − l)h(k, l). (3.19)

A illustration of equation 3.19 with the 1D binomial kernel is given in figure

3.9.

Figure 3.9: Smoothing and sub-sampling with the binomial kernel at each level
in the pyramid. [17].

3.3.2 Sub-pixel Estimation

A problem when estimating the disparity is that we only get disparity values in

natural numbers, d ∈ N, because of the affine image sensor. A way to smooth

out these edges is to use sub-pixel estimation to get d ∈ R. The idea is to fit a

parabola on the best match position and its nearest neighbors to get a better

estimation of the disparity d, this is one of many methods presented in [2]. In

Figure 3.10: Pixel definitions [2]
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figure 3.10 p0 is the best match score from a correlation method with disparity

d. Further p− and p+ corresponds to the correlation scores at the neighbouring

pixels with disparity d− 1 and d+ 1 respectively. The parabola is defined as:

y = ax2 + bx+ c. (3.20)

By differentiating and setting the derivative to zero we find the local maximum

x.
dy

dx
= 2ax+ b = 0 =⇒ x = − b

2a
(3.21)

The values for the three known pixels can be written as:

y(−1) = p− = a− b+ c

y(0) = p0 = c

y(1) = p+ = a+ b+ c.

By substitution we can rewrite 3.21 and solve for location of the local maximum

x.

x =
p− − p+

2(p− + p+)− 4p0
(3.22)

When x is solved for we can improve the estimate of the disparity.

dest = d+ x (3.23)

Sub-pixel estimation is implemented and used for all algorithms to improve

the estimate of the location of corresponding points. When the corresponding

points locations is estimated with sub pixel accuracy the disparity value will be

calculated more precisely.

3.3.3 Correlation Based Methods

We are going to test three different correlation based methods, common for the

three methods are that they use block-matching when comparing the images.

For a given pixel in the left image we generate a window around it as done in

the previous subsection. For further calculations we define the window for pixel
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Figure 3.11: Block-matching illustration. The template is defined in the left
image and moving along the the epipolar line in the right images to find the
best match [15].

position (x′m, y
′
m) as a set of pixels in following way:

W (x′m, y
′
m) =

{
(u, v)

∣∣∣∣x′m − (q − 1)

2
≤ u ≤ x+

(q − 1)

2
,

y′m −
(p− 1)

2
≤ v ≤ y′m +

(p− 1)

2

} (3.24)

where p and q are the dimension of the template. By comparing the template

with a window, of same size, in the search region we can calculate the correlation

between them for each disparity value, d ∈ [dmin, dmax], and conclude on the

disparity value that corresponds to the highest correlation. Block-matching is a

costly operation since we calculate the correlation between all pixels in the tem-

plate with a an area of same size in the search region for each disparity value.

therefore it is important, as mentioned earlier, that we try to narrow down

search to reduce the number of calculations. The correlation based methods use

the intensity of the pixels when calculating the correlation between them. In

a colored image, each pixel contains three components of intensity such as red,

blue and green. Instead of comparing three intensity’s for each pixel we take

a average or a weighted average over the intensity components. By doing this

we convert a colored image into a greyscale image, containing only one inten-

sity component for each pixel. In this thesis we have calculated the greyscale

intensity as:

I = 0.2989R+ 0.5870G+ 0.1140B, I,R,G,B ∈ [0, 255] (3.25)
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where R, G and B are the red, green and blue components of a pixel.

3.3.3.1 Sum of Squared Differences (SSD)

The dissimilarities between the left and right block can be measured by the sum

of squared differences. The cost function for SSD is given by [15]:

min
d∈[dmin,dmax]

SSD(x′m, y
′
m, d) =

∑
(u,v)∈W (x′m,y

′
m)

(
Il(u, v)−Ir(u+d, v)

)2
(3.26)

where Il and Ir are the intensities in the left and right image. Here we want to

find the disparity d that minimizes the cost function for a given pixel position

(x, y). If two image blocks correspond to the same world object, the intensities

of the pixels should be similar, resulting in a small SSD value.

3.3.3.2 Sum of Absolute Differences (SAD)

The sum of absolute differences is a slight variation of SSD. The cost function

for SAD is given by [15]:

min
d∈[dmin,dmax]

SAD(x′m, y
′
m, d) =

∑
(u,v)∈W (x′m,y

′
m)

|Il(u, v)− Ir(u+ d, v)| (3.27)

The SAD cost is less computational expensive than SSD because of the squaring

operation, but the SSD cost function penalizes the difference of the intensities

more. Due to illumination and non-Lambertian reflections, both the SSD and

SAD may not give a low value even for correct matches. These effects can

occur even if the images are taken simultaneously and will cause variations in

the intensities. Illumination have to do with where the light source is and the

shading of the scene in the image pair can be different, depending on the position

of the light source. A shiny surface, a non-Lambertian surface, in the scene will

reflect light creating specular highlights in the images. The angle of the reflected

light depends on the direction of incoming light and the direction of the viewer.

These specular highlights cause a change in the intensities in the image pair.

In [15] they recommend to normalize the pixel intensities in the window by the

purpose of filtering out the difference in intensities caused by these effects. This

have been implemented for SSD and SAD. The normalized pixel intensities are

given by:

In =
I − I
σI

(3.28)
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where I and σI are the mean and standard deviation of the intensities within

the window. The mean and standard deviation of the intensity’s in the window

are given by:

I =
1

pq

∑
(u,v)∈W (x′m,y

′
m)

I(u, v), σI =

√√√√ 1

pq

∑
(u,v)∈W (x′m,y

′
m)

(I(u, v)− I)2.

When normalizing the pixel intensities we ensure that the they have zero-mean

and unit variance.

3.3.3.3 Normalized Cross Correlation (NCC)

The normalized cross correlation measures the similarities between the blocks-

the disparity value that generate the highest score indicates the best match.The

NCC measure is calculated as:

max
d∈[dmin,dmax]

NCC(x′m, y
′
m, d) =

1

pq

∑
(u,v)∈W (x′m,y

′
m)

(Il(u, v)− I l)(Ir(u+ d, v)− Ir)
σIlσIr

.

(3.29)

As you can see from equation 3.29 NCC uses normalized pixels and thereforee

compensates for illumination and non-lambertian effects.

3.3.4 Feature Based Methods

Instead of using block-matching we want to apply some operations to the tem-

plate and search region to extract distinct features in the two images and search

for correspondences. For each of the feature-based algorithms we can divide

this process into three main steps. First we find and select interest points at

distinctive locations in the images. The most important property of a interest

point detector is its repeatability, it should reliably find the same interest points

under different viewing conditions. The second is to create a descriptor vector,

also called feature vector, for each interest point. The descriptor vector must

be distinctive and should be robust to noise, detection errors and photometric

deformations. The third and final step is to match the descriptor vectors be-

tween the template and search region. When matching we look at the Euclidean

distance between the descriptor vectors and also use the epipolar criteria on the

matched interest points location in the image.
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3.3.4.1 Harris Corner Detector(HCD)

The Harris corner detector is an interest point detector that responds well to

image corners. The idea of the corner detector is to consider a local window

in the image and determining the average change of intensity that result from

shifting the window by a small amount in various directions, [8]. If the window

contains a corner or an isolated point, then all shifts will result in a large change.

HCD uses a weighted sum of squared differences to measure the change of the

intensities when applying a shift. By creating a window over the area (u, v) of

odd size centered at pixel (i, j) in the image and shifting it by (x, y), the change

of the weighted SSD caused by a shift is written as:

E(x, y; i, j) =
∑
u

∑
v

w(u, v)(I(u+ x, v + y)− I(u, v))2 (3.30)

where E(x, y; i, j) is the change of intensities caused by a displacement (x, y) of

the window at pixel position (i, j) and w(u, v) is the weight of the pixel (u, v)

in the window. We cover all possible shifts by performing a Taylor expansion

of I(u+ x, v + y). The first order Taylor expansion is given by:

I(u+ x, v + y) ≈ I(u, v) + Ix(u, v)x+ Iy(u, v)y (3.31)

where Ix and Iy are the partial derivatives of I. The partial derivatives for each

pixel can by approximated by filtering an image patch surrounding the pixel

with the Sobel operator. The approximation of the partial derivatives in both

directions are calculated as the convolution of the two operators with an image

patch of same size.

Ix(u, v) = Dx ∗ I(u, v), Iy(u, v) = Dy ∗ I(u, v), Ix, Iy ∈ R (3.32)

By combining equation 3.30 and 3.31 we get an approximation for the weighted

SSD.

E(x, y; i, j) ≈
∑
u

∑
v

w(u, v)(Ix(u, v)x+ Iy(u, v)y)2 (3.33)

We can write equation 3.33 in linear form:

E(x; i, j) ≈ xTM ijx (3.34)
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where M ij is the structure tensor for pixel (i, j) and x =
[
x y

]T
. The struc-

ture tensor is given by:

M ij =
∑
u

∑
v

w(u, v)

[
I2
x(u, v) Ixy(u, v)

Ixy(u, v) I2
y (u, v)

]
.

where Ixy = IxIy. To be able to calculate the structure tensor, we must define

the weight function. HCD uses a two dimensional Gaussian function with zero

mean to weight the derivatives, typically with σ = 1. We can then write the

equation for the structure tensor in following way:

M ij =

[
G ∗ I2

x(u, v) G ∗ Ixy(u, v)

G ∗ Ixy(u, v) G ∗ I2
y(u, v)

]
∈ R2×2 (3.35)

where G is the Gaussian kernel. I2
x(u, v), I2

y(u, v) and Ixy(u, v) contains all

values of I2
x(u, v), I2

y (u, v) and Ixy(u, v), respectively, in the window. When the

structure tensor is calculated for all pixels in the image we need to decide which

of them we should extract as possible feature points. Lets denote the elements

of structure tensor as:

M ij =

[
a b

b c

]
, E(x; i, j) = ax2 + 2bxy + cy2 (3.36)

If a and c are large and b = 0, we have a good minimum in E. Any shift in the

x and y direction will produce a large change in E which implies that we are at

a corner or isolated point. The only problem is if b 6= 0, then we can have a flat

surface along the diagonal in E. This can be resolved by using a rotationally

invariant description of M ij ,[8].

M ij

[
v1 v2

]
=

[
λ1 0

0 λ2

] [
v1 v2

]
M ijR = ΛR

RTM ijR = Λ (3.37)

where λ1 and λ2 are the eigenvalues of M ij and v1, v2 are the corresponding

normalized eigenvectors. By rotating the coordinate system to:

x = Rz (3.38)
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where z =

[
z1

z2

]
. By substituting equations 3.38 and 3.37 into 3.33, E takes the

form:

E(z; i, j) = zTRTM ijRz = zTΛz (3.39)

So if both eigenvalues are large we get a good minimum in E, a corner point.

If one eigenvalue is low the surface is flat along that direction, an edge. HCD

proposes a corner/edge response function to find possible feature points, also

called an interest measure.

f(Λ) = Det(Λ)− 0.06 Tr(Λ)2 (3.40)

The exact computation of the eigenvalues is expensive and in [8] they found

that it is sufficient to evaluate the determinant and trace of M ij to find interest

points and the response function 3.40 becomes:

f(M ij) = Det(M ij)− 0.06 Tr(M ij)
2. (3.41)

The interest measure is a useful indicator of which windows that can be reliably

matched. If f(M ij) > 0 we have a corner or isolated point. The corner response

function downweights edge-like features where λ2 � λ1. When the interest

measure is calculated for all points you find the local maxima above a certain

threshold and choose them as your feature points. HCD have not developed

their own descriptor for their corner features, therefore you are free to choose

any suitable descriptor. Often the keypoints are matched between the images

by creating an image patch around the keypoint and match them with other

patches by using normalized cross correlation.

3.3.4.2 Scale Invariant Feature Transform(SIFT)

When looking for interest points you usually dont know what scales good fea-

tures have. Using a fine scale may not be appropriate when an image contains of

different homogeneous regions. SIFT solves this problem by extracting features

at different scales and is achieved by searching for features at different levels in

an image pyramid and matching them at the same level. This is a suitable al-

gorithm for stereo camera systems since the images being matched won’t suffer

from large scale differences. Instead of looking for corner, the SIFT looks for

blob like features. The keypoints are found by looking for scale-space extrema
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in the difference-of-Gaussians. The scale-space of an image is defined as the

function, given in [11], as:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3.42)

where L(x, yσ) is the scale-space of the input image I(x, y) at scale σ. By

convolving the input image multiple times with Gaussians with incremental

scale, the difference-of-Gaussians D(x, y, σ) is calculated by taking the difference

of two nearby scales separated by a constant factor k.

D(x, y, σ) = L(x, y, kσ)−L(x, y, σ) = (G(x, y, kσ)−G(x, y, σ))∗ I(x, y) (3.43)

This procedure is done at each octave in an image pyramid with a down sample

rate of two. When one octave is complete the scale is set to twice the initial

value of σ for the next octave and so forth. An illustration of this process

is shown in figure 3.12. The reason for choosing the difference-of-Gaussians

Figure 3.12: On the left we have the scale space of the input image and on the
right the difference-of-Gaussians, [11].

when looking for possible feature points is because it is a close approximation of

the scale-normalized Laplacian-of-Gaussians, σ2∇2G, where ∇2 is the Laplacian

operator. The Laplacian-of-Gaussians is the first and most commonly used blob

detector. It have been shown that the normalization of the Laplacian with a

factor of σ2 is required for true scale invariance [11], this allows for detection

of interest points with their own characteristic scale. Also the maxima and
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minima of σ2∇2G produce the the most stable image features compared to

other interest functions. The relation between D(x, y, σ) and σ2∇2G can be

found by exploiting a property of the Gaussian. The Gaussian satisfy the heat

equation and is given by:
δG

δσ
= σ∇2G. (3.44)

We can approximate δG
δσ with the finite difference between two nearby scaled

Gaussians.
δG

δσ
≈ G(x, y, kσ)−G(x, y, σ)

kσ − σ
(3.45)

This is also a faster and more stable way of calculating the double derivatives

of the Gaussian, remember that the computation of derivatives is sensitive to

noise. By substituting equation 3.44 into 3.45 we get:

(k − 1)σ2∇2G ≈ G(x, y, kσ)−G(x, y, σ). (3.46)

As we can see from equation 3.46 the difference-of-Gaussians separated by a

constant factor k have the property of scale invariance and the approximation

error will go to zero as k → 1. In [11] they found that the approximation have

little impact on the stability of detection and localization of feature points for

even differences in scale and suggests using k =
√

2. When finding local maxima

and minima of D(x, y, σ) we compare each sample point with its eight neighbors

in the scale and its nine neighbors in the scale above and below shown in figure

3.13. The sample point is only selected as a keypoint candidate if its higher or

lower than all of its 26 neighbors. For all sample points that satisfy this criteria

Figure 3.13: The sample point marked with X is compared with its 26 neighbors
coloured in green, [11].

we want to fit a quadratic function of the nearby points, depending on location

55



and scale, to find the true extremum in D(x, y, σ) at each octave. The second

order Taylor expansion of D(x, y, σ) where the origin is shifted and evaluated

at the location of a keypoint candidate can be written as:

D(x) = D +
δD

δx

T

x+
1

2
xT

δ2D

δx2
x (3.47)

where the shift from this point is x =
[
x y σ

]T
. The derivatives of D can

be approximated by convolving D with the Sobel operator. By taking the

derivative of 3.47 with respect to x and setting it to zero we find the location

of the extremum, x̂.

x̂ = −δ
2D−1

δx2

δD

δx
(3.48)

If any elements contained in the offset vector x̂ is larger than 0.5 the keypoint

candidate is discarded because the extremum lies closer to another sample point,

otherwise it is kept. By adding x̂ with the discarded keypoint location we can do

the same process until we find a point that produce an offset vector that satisfy

the criteria. In [11] they suggest to check the value of D(x̂) to reject unstable

extrema with low contrast. If the intensity of |D(x̂)| < 7.65, the sample point is

rejected. This is not enough since the difference-of-Gaussian will have a strong

response along edges. By looking at the principal curvature at a keypoint we

can eliminate the edge response by looking at the ratio between the eigenvalues

of the Hessian matrix H. The Hessian is computed at the location and scale of

the keypoint and is given by:

H =

[
Dxx Dxy

Dxy Dyy

]
. (3.49)

The eigenvalues of the hessian are proportional to the principal curvature of

the surface D. If one of the eigenvalues are sufficiently larger than the other

indicates that the keypoint is located at an edge. Since SIFT only is concerned

by the ratio between the eigenvalues, they avoid calculating the eigenvalues

explicitly by borrowing the approach from HCD. The sum and product of the

eigenvalues of the Hessian is:

Tr(H) = Dxx +Dyy = λ1 + λ2, Det(H) = DxxDyy −D2
xy = λ1λ2. (3.50)
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We define that λ1 is always equal to the largest eigenvalue of H and the ratio

between them is r, resulting in λ1 = rλ2.

Tr(H)2

Det(H)
=

(rλ2 + λ2)2

rλ2
2

=
(r + 1)2

r
(3.51)

The function in equation 3.51 only the depends on the ratio of the curvatures

and have minima when the eigenvalues are equal. SIFT only choose keypoints

that satisfy the criteria:
Tr(H)2

Det(H)
<

(r + 1)2

r
(3.52)

with r = 10 and eliminates the edge like feautures. Now we have a set of scale

invariant and reliable keypoints, the next step is to create a descriptor vector

for these keypoints. First we assign each keypoint with a consistent orientation.

By choosing the Gaussian smoothed image L that have the closest scale to the

keypoint, the gradient magnitude m(x, y) and orientation θ(x, y) for each image

sample L(x, y) is computed using pixel differences:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y)2 + (L(x, y + 1)− L(x, y − 1))2 (3.53)

θ(x, y) = tan−1((L(x, y + 1)− L(x, y − 1))/(L(x+ 1, y)− L(x− 1, y))) (3.54)

The gradient orientations in a region around each keypoint forms an orientation

histogram with 36 bins, covering the 360 degree range. The gradient orientation

of each sample point in the region is weighted by its magnitude and a Gaussian

kernel centered at the keypoint. The scale of the Gaussian is set to be 1.5

times the scale of the keypoint. The highest peak in the orientation histogram

diagram is detected and corresponds to the most dominant direction of the

local gradients. If we have other peaks within 80% of the highest peak in the

histogram, we create new keypoints assigned with their orientation. This means

that we can have multiple keypoints at the same location and scale, but with

different orientation will contribute to the stability of matching. To improve

accuracy of the orientation we fit a parabola to the closest histogram values

of each peak, using the same approach as in section 3.3.2. All keypoints have

now been assigned with an orientation and will be needed to achieve orientation

invariance. The coordinates of the descriptor and the gradient orientations is

rotated relative to the orientation of the keypoint. The discriptor is created

by first collecting the gradient magnitude and orientation of each sample point
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around a keypoint in a 16× 16 array, aligned with the keypoint orientation, in

L with closest scale to the keypoint. The array is weighted with a Gaussian,

centered at the keypoint, of scale 1.5 times the width of the descriptor. The

sample array is then divided into 16 regions of size 4 × 4 where a orientation

diagram consisting of 8 bins is calculated. This results in a 4×4 descriptor with

Figure 3.14: On the left we have a 8 × 8 sample array of gradient orientations
weighted with their magnitude and by a Gaussian. The Gaussian weight is
centered at the keypoint and is illustrated by the blue circle. The resulting
2× 2 descriptor on the right have 8 orientation bins each, [11].

8 orientation bins each and experiments done in [11] shows that the matching

stability does not improve more by having larger descriptors. The process of

creating the descriptor is illustrated in figure 3.14, only with sample array of

8× 8. A feature vector of 4× 4× 8 = 128 elements is created for each keypoint.

The feature vector is normalized to unit length to be invariant to changes in

illumination. The change in image contrast, where all pixels are multiplied by a

constant, the gradient magnitude will be proportional to this constant and will

be canceled out by the normalization. A change in brightens, where all pixels

are added by a constant, will not affect the values of the gradient since we

calculate them with pixel differences. The keypoints of same scale orientation

are matched against each other by looking at the Euclidean distance between

the feature vectors.

3.3.4.3 Speeded Up Robust Features(SURF)

This algorithm was developed after SIFT’s success with the approximation of

the Laplacian-of-Gaussians and is also a blob detector. One of the drawbacks

of SIFT is that it is slow for larger images, the creators of SURF wanted to
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speed up the process for detection, description and matching by use of simple

kernels and integral images. SURF takes the approximation of the Gaussian

second order derivatives even to reduce the computation time. SURF uses a fast

Hessian detector and only rely on the determinant of the Hessian for selecting

the location and scale of a feature, [3]. For a point x =
[
x y

]T
in the input

image I(x, y) at scale σ the Hessian matrix H(x, σ) is defined as:

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)

Lxy(x, σ) Lyy(x, σ)

]
(3.55)

where Lxx(x, σ) = δ2

δx2G(x, y, σ) ∗ I(x, y) evaluated at point x, and similarly for

Lxy(x, σ) and Lyy(x, σ) [3]. The Gaussian second order partial derivative with

scale σ = 1.2, lowest scale used by SURF, results in a 9 × 9 kernel and can be

approximated with the box filters shown in figure 3.15. A box filter is a kernel

with equal filter coefficients. The convolution of box filters with the input image

Figure 3.15: The two filters on the left is the Gaussian second order partial
derivatives in the y and xy direction and the approximation on the right where
the kernel only consist of box filters. The elements that are coloured grey equals
to zero, [3].

I(x, y) can be computed quickly by converting the image into a integral image,

IΣ(x, y).

IΣ(x, y) =
∑
i≤x

∑
j≤y

I(i, j) (3.56)

You only need to calculate the integral image once and can be used to calculate

the sum of intensities in a rectangular area in the image with constant com-

putation time independent of size. For example a 3 × 3 box filter with filter

coefficients equal to one convolved with the image evaluated at pixel
[
x y

]T
can be written in terms of the integral image in the following way:

1

9
(IΣ(x+ 1, y+ 1)− IΣ(x−1, y+ 1)− IΣ(x+ 1, y−1) + IΣ(x−1, y−1)). (3.57)
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This concept can be extended when calculating the convolution of the approx-

imated kernels in figure 3.15, that only consists of box filters, with the input

image. The 9 × 9 approximations of a Gaussian with σ = 1.2 is denoted Axx,

Axy and Ayy. To ensure that the determinant of the Hessian stays close to its

true value the expression of Det(Happrox) is weighted.

Det(Happrox) = AxxAyy − (wAxy)2 (3.58)

Where w makes the ratio of the approximated Gaussiam kernels, Axy to Axx,

the same as the Gaussian kernels, Lxy to Lxx, and is calculated in [3] as:

w =
‖Lxy(1.2)‖F ‖Axx(9)‖F
‖Lxx(1.2)‖F ‖Axy(9)‖F

= 0.912 ≈ 0.9 (3.59)

The weight depends on the scale of the Gaussian, but is kept constant since it did

not have a significant impact on the results in experiments done in [3]. Instead

of using a image pyramid, SURF applies approximation of the Gaussian second

derivatives of different scale to original image. The use of box filters and integral

images allows us to calculate the convolution of the Gaussian second order

derivative kernels of any size with the image at the same speed, as mentioned

earlier. For each octave SURF use four different scales. The first octave SURF

use the filter sizes 9 × 9, 15 × 15, 21 × 21 and 27 × 27. The scale of a 9 × 9 is

σ = 1.2 and for 27 × 27 it is σ = 3 × 1.2 = 3.6. For each new octave the filter

size increase is doubled, going from 6 to 12 to 24. Also the sampling interval

for extracting interest points can be doubled. The size of the kernels for each

octave is shown in figure 3.16. The location and scale of interest points are

Figure 3.16: The size of the kernels at each octave is plotted against the loga-
rithmic horizontal axis that represents the scale, [3].
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found by finding the maxima in a 3× 3× 3 neighborhood, in scale and location,

of each sample point. They find the local maximum in the same manner as

done in SIFT, equation 3.47 and 3.48, but SURF are looking for the location

and scale that have a maxima in the determinant of the Hessian. The local

maximums are then selected as keypoints. Each keypoint is assigned with an

orientation and is based on calculations of the Haar wavelet response. First

we calculate the Haar wavelet response, in the x and y direction in the image,

in a circular window with radius of 6 times the scale of the keypoint. The

Haar wavelet kernel for both directions is shown in figure 3.17. Note that this

kernel also only consists of box filters and can thereforee also be calculated with

integral images. The size of the Haar wavelet kernel is four times the scale of

Figure 3.17: The Haar wavelet kernels used to compute the response in the
horizontal (left) and vertical direction (right). The black and white regions
have filter coefficients of −1 and +1, respectively, [3].

the keypoint and the sampling step is equal to the scale. When all the responses

are computed they are then weighted with a Gaussian, centered at the location,

with two times the scale of the keypoint. The local orientation vector is found

by summing up the responses, in both directions separately and contained in a

vector, in each sector of 60 degrees in the circle. The dominant orientation of

the keypoint is set to be the longest local orientation vector. The descriptor is

created by first placing a square region centered around the keypoint and is also

orientated along its dominant orientation. The square is set to be 20 times the

scale. The Haar wavelet response is computed for each point in the square in

both direction relative to the orientation, with kernel size two times the scale

and weighted with a Gaussian of 3.3 times the scale. We denote the responses in

the horizontal and vertical direction as dx and dy respectively. Then the square

is divided into 4 × 4 sub-regions where the responses dx, |dx|, dy and |dy| are

summed up in each region. The procedure of creating the descriptor is shown
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Figure 3.18: The square centered is sentered at the keypoint and oriented along
the dominant orientation and divided into 4 × 4 sub regions. The 2 × 2 sub-
division in each region represents the sum of dx, |dx|, dy and |dy|. The circle
around the square illustrates the Gaussian weight, [3].

in figure 3.18. Each sub-division has descriptor vector equal to:

v =
[∑

dx
∑
|dx|

∑
dy

∑
|dy|
]T
, (3.60)

by concatenating the vectors from each sub-region we get a descriptor vector

of 4 × 4 × 4 = 64 elements for each keypoint. The Haar wavelet response is

invariant to brightness changes and by normalizing the descriptor vector into a

unit vector it also becomes invariant to contrast changes. Finally the keypoints

of same scale, orientation and sign of the Laplacian(Tr(H(x, σ))) are matched

against each other by looking at the Euclidean distance between the descriptor

vectors. The reason for dividing the points into groups depending of the sign of

the Laplacian is because it distinguishes bright blobs on dark backgrounds and

vice versa.

3.3.4.4 Disparity Estimation

The feature based methods don’t output the disparity value explicitly, they only

return a set of corresponding points between the template and search region. We

denote the location of the center of the docking slot in pixels as x′m, assumed

given by a tracker in the left image. The vectors of all corresponding points
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returned by a feature based algorithm in the left and right image is denoted:
x′f1

...

x′fn



x′′f1

...

x′′fn

 (3.61)

We want to find the location of the corresponding point x′′m. Since the images

are rectified we only need to find the horizontal coordinate x′′m. We assuming

that the relative horizontal distance between x′m and x′fi is the same as the

distance between x′′m and x′′fi for all i ∈ [1, . . . , n]. Because of wrong matches

and that the scene is viewed from two different locations this assumption will

not hold, therefore we calculate all possible locations of x′′m.
x′′m1

...

x′′mn

 = (x′m1n −


x′f1

...

x′fn

) +


x′′f1

...

x′′fn

 . (3.62)

Most of the entries in the vector,
[
x′′m1, . . . , x

′′
mn

]T
, will be a good estimate of the

location of x′′m. If we sort the vector in ascending order the good estimates will

lie in the middle. Therefore the final value of x′′m is estimated to by the median

of the sorted vector and the disparity value is then calculated as d = x′′m − x′m.
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4 Implementation and Experimental Results

The main objective with this thesis is to conclude on the best algorithm for

solving the correspondence problem and also consider the accuracy of the stereo

camera for estimating the three dimensional coordinate of the corresponding

points. All algorithms are tested on the same set of images and their perfor-

mance are compared. A description of the field experiment, i.e on how the

images were taken, conditions, measurements, etc., is included in this chapter

along with a short note on how the different algorithms were implemented. Then

the results for each algorithm of the field experiment are presented followed by

a discussion.

4.1 Implementation

All algorithms were implemented in Matlab, also the stereo rig is calibrated

in Matlab. The correlation based methods with use of block matching and

sub-pixel estimation was made from scratch. For the feature based methods,

both HCD and SURF was implemented by using their respective functions for

finding and matching interest points in the Computer System Vision Toolbox

[13]. Since SIFT doesn’t exist in Matlab, a open source library called VLFeat

[18], with SIFT implemented, was used. The outline of the program can be

summed up in four stages:

1. The image pair taken by the stereo rig is undistorted, rectified and con-

verted to grey scale.

2. Template and search region are created in the left and right image, re-

spectively, with Zest equal to the measured depth, α = 0.25, Xobj = 1.5,

Yobj = 0.5 and the location of the docking slot in left image x′m is given.

See section 3.2.1.

3. All algorithms run on the template and search region and returns their

estimate of the disparity value.

4. The 3D-coordinate of the docking slot is calculated with triangulation

relative to the left camera for each algorithm based on their disparity

estimate.

Some small necessary adjustments to the feature based methods were added.

When each algorithm have computed and matched interest points between the
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template and search region, matched corresponding points that deviates more

than 3 pixels from the epipolar line were removed. This indicates a wrong

match. The value of 3 pixels was experimentally found and is a result of a

near perfect rectification. The window size used for HCD depends on Zest and

decreases as Zest increases. With a fixed window size the HCD would only work

well in a limited range. For SIFT and SURF the number of octaves is restricted

depending on the height of the template, because we will not find features larger

than the smallest dimension of the image. The height of the template is equal

to the search region and is always smaller than the width.

4.2 Test Setup and Measurements

Images of the test platform were taken indoor in different locations in a range

of 2 − 9[m]. Since we are in a controlled environment all images were taken

under constant illumination which was measured by a lux meter to be 70[lx].

The stereo rig is stationary for each photo taken. To get acceptable images

of the scene under these conditions the exposure time for each camera was

set to 2[ms]. The stereo rig was mounted to a tripod with a rotating head

which allowed for taking images in different orientations at each location, see

figure 4.1. The head of the tripod was leveled out by adjusting the tripods

legs. The position of the left camera’s center of projection with respect to the

center of rotation of the tripod was estimated through a series of test photos.

By only measuring the 3D coordinate of the docking slot with respect to the

tripods center of rotation at each location we can easily estimate the left camera

coordinates of the docking slot for any configuration of the tripods head. The

3D coordinate of the docking slot relative to the rotation center of the tripod

was measured by laser and measuring tape. At each location we took a series

of five photos. One straight on, i.e. the baseline of the stereo rig was parallel to

the face of the docking slot, and then four images where the head of tripod was

rotated −10 and 10 degrees around the x-axis and y-axis separately. To be able

to consistently measure the pixel position of the center of the docking slot, a

second series of images was taken at the same location and configurations where

the center of the slot was marked. This also made it simple to find the true

disparity for each image pair which was found by analyzing the images manually

afterwards and should give pretty accurate estimate. We were supposed to test

the algorithms in different conditions. Images were taken outside as well with

varying degree of illumination, but it turned out to be harder than expected to
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Figure 4.1: Taking images of the platform with the stereo camera at one of
many locations.

precisely measure the coordinates of the docking slot and therefor these image

series were discarded from further analysis. A field experiment like this is time

consuming and unexpected scenarios occur. Often a few different approaches are

needed to figure out the best way to get it right. The approach described here

is a result of a couple of failed attempts. Even if every thing is going as planned

suddenly something unexpected happens. During the experiment one of the

camera houses started to unscrew itself from the lens, this was detected after

a couple of image series and all of them were discarded because the calibration

and rectification were not valid for these images. In total we ended up with 29

image pairs that were not affected by the misadventure.

4.3 Experimental Results

All the algorithms were used on the 29 image pairs taken indoors. For each

algorithm the estimate of the disparity , three dimensional coordinate of the

docking slot and computation time were stored. Also for the feature based

methods the number of corresponding points was saved. To give the reader

a view of the output of the program, a visual solution of the correspondence

problem for each algorithm for the image pair in figure 3.6 are shown in figure

4.3. The template used for this particular image pair can bee seen in figure 4.2.
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In each sub figure in 4.3 the values in the yellow boxes represents the estimate

of the left camera’s coordinate of the docking slot, the line of sight distance and

the number of corresponding points are included for the feature based methods.

Here the camera coordinate system is oriented such that the positive direction

of Xc is to the right, Yc downward and Zc inward in the image.

Figure 4.2: The template generated and used for the image pair. The point of
interest, assumed given by a tracker, is marked with a cross.
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(a) SAD (b) SSD

(c) NCC (d) HCD

(e) SIFT (f) SURF

Figure 4.3: The solution of the correspondence problem of each algorithm is
marked with a cross. The measured values of the docking slot location is Xc =
0.18[m], Yc = 0.52[m] and Zc = 2.26[m].
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For the feature based methods we have plotted the all corresponding feature

points found by each algorithm between the template and the search region in

figure 4.4. As you can see from the from the sub figures all the corresponding

points lie on the same horizontal epipolar line. For SIFT and SURF we get a

lot of matches on steel grating floor panels and the fence poles. There will most

likely occur some ambiguous matches and this is the reason why we estimate

the disparity as in 3.3.4.4.

(a) HCD

(b) SIFT

(c) SURF

Figure 4.4: Corresponding feature points between the template and search re-
gion found by the three different feature based methods.

SIFT and SURF will always find more points than HCD since they search for

features in many scales, HCD only use one window size depending on depth

for each image as mentioned earlier. The number of feature points will decay

as we move away from the platform since the template and search region gets

smaller. Because of the outline of the program the correlation based methods

will always output an estimate of the disparity, but the feature based methods

need to find at least one set of corresponding feature points to be able to estimate

the disparity. Throughout the experiment both SURF and HCD did not find
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any feature points for one image pair each. This was in the depth of 6 − 8[m].

When comparing the performance of the algorithms these images were removed,

but the failure of HCD and SIFT are taken into consideration for the final

evaluation. For the following plots in figure 4.5-4.10 we have calculated the

absolute error of the three dimensional coordinate and the disparity estimate

between the measured values for each algorithm. The errors are defined in the

following way:

∆X = |Xa −Xt|, ∆Y = |Ya − Yt|, ∆Z = |Za −Zt|, ∆d = |da − dt| (4.1)

where the subscript a and t represents the estimate of the algorithm and the true

measured value, respectively. All the errors are plotted against the measured

depth. To remove some noise from the plots the results are smoothed with a

moving average filter with a span of 5. This is reasonable since the images

are taken close to each other in depth and the evolution of the errors as the

depth increases are shown more clearly. The axis limits and aspect ratios are

equal for each error plot for the different algorithms so the results are easier to

analyze. Peaks in ∆d will cause a peak in the ∆Z at the same depth as result

of equation 3.1. For ∆X we can see that it is a peak around 3.8[m] that is

not correlated with the disparity error for most of the algorithms and clearly

indicates a measuring error, same for ∆Y at 5.8[m]. The evolution of ∆X and

∆Y should be the same since we have a square image sensor. For all the methods

the plot for ∆Y looks pretty much the same. This is natural since the estimate

of Y is mostly dictated by the vertical pixel coordinate of the interest point.
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Figure 4.5: SAD

SSD
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Figure 4.6: SSD
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NCC
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Figure 4.7: NCC

HCD
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Figure 4.8: HCD
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SIFT
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Figure 4.9: SIFT

SURF
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Figure 4.10: SURF
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In figure 4.11 we have plotted the computation time for each algorithm for

solving the correspondence problem against the measured depth where the image

pair was taken. The machine used for this experiment have an Intel Core i7

processor running at 2.85GHz. The size of the template and search region

depends on depth and we can clearly see that the computation time decreases

as we move away from the platform. For HCD the computation time is almost

constant and high because the ratio between the dimension of the window and

template is around the same for all depths. At close range, 2 − 3[m], we can

see that SURF are twice as fast than SIFT as expected when the size of the

template is large, but SIFT turns out to be faster as the depth increases. The

correlation based methods have pretty much the same computation time, where

NCC is a bit faster than the others at close range. Note that these time estimates

only consider stage 3 in the description of the program in subsection 4.1. The

total computation time for stage 2 and 3 is around 0.09[s]. For stage 1 the

computation time was around 4.5[s] and is of course not good enough when

running in real time. The results presented in [14] they computed stage 1, the

process of undistorting and rectifying a image pair of same dimensions, in 12[ms]

using a Intel Core i5 processor running at 3.3GHz. All the calculations will be

speeded up even further using data parallelism and a graphics processing unit,

so running in real time is indeed achievable.
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Figure 4.11: Computation time for each algorithm at various depths.

To summarize the performance of each algorithm for this experiment the mean

and standard deviation of ∆d in pixels and expected computation time for all

methods in seconds are calculated in table 4.1.

Alg. E[∆d] σ∆d E[t]

SAD 5.92 4.87 0.11

SSD 5.59 4.82 0.10

NCC 6.15 4.36 0.07

HCD 10.15 10.17 0.39

SIFT 8.20 5.82 0.10

SURF 9.03 13.62 0.10

Table 4.1: Mean and standard deviation of ∆d in pixels and the expected com-
putation time in seconds for each algorithm.
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4.4 Discussion

Solving for the corresponding point of the docking slot are not an easy task.

There are no known unique signs or hallmarks on the platform that are easy

to detect. As we can see from the results, especially from table 4.1, the fea-

ture based methods really struggle to solve the correspondence problem mostly

because they get a lot of ambiguous matches. HCD and SURF are neither

accurate or consistent in their disparity estimate. SIFT had the overall best

performance of the feature based methods, but cannot match the accuracy of

the correlation based methods. The biggest difference between the two groups

of algorithms are amount information they extract in the template and search

region for solving the correspondence problem. The correlation based methods

use the whole template when matching where the feature based methods only

use parts of the template where the feature points are found. This is one of the

main reasons, along with the problem of ambiguous matches, that the correla-

tion based methods outperforms the feature based methods in accuracy of the

disparity estimate. Even if the correlation based methods use block matching

they have around the same computation time as SIFT and SURF. All in all

this field experiment have shown that the feature based methods are not suited

for this particular application. When selecting the best algorithm we are only

left with the correlation based methods. They did all performe well where SSD

was the most accurate and NCC was the fastest by a small margin according

to the values in table 4.1. Since they all have around the same computation

time, and all of them can run in real time, the most important quality of the

best algorithm is its accuracy of the disparity estimate. On that premise the

SSD was the best algorithm overall for solving the correspondence problem. As

mentioned earlier this field experiment was done indoors so the algorithms are

not compared in different light conditions, but score for SAD, SSD and NCC are

calculated with normalized intensity values and should therefor be invariant to

illumination differences. The outcome may change if a new field experiment was

executed outside in different weather conditions, but we can almost be certain

that the correlation based methods will perform better than the feature based.

To improve the accuracy of the stereo rig we did come up with a optimal theo-

retical value of the baseline for this application in 3.2. By choosing SSD as the

algorithm for computing the disparity we will have a expected disparity error of

∆d = 5.59[pix]. We have again plotted the expected depth error in figure 4.12

to see the true and potential accuracy of the stereo camera rig with the original
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and theoretical value of the baseline when using SSD. As we can some from
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Figure 4.12: The expected depth error at different ranges for two different
baseline lengths B = 256.8[mm] and B = 927.5[mm] with the parameters:
f = 1441.8[pix] and ∆d = 5.59[pix].

figure 4.12 that increasing the baseline to the theoretical optimal value we get a

really good accuracy for the stereo rig for the whole range. In 3.2 we estimated

the expected disparity error to be ∆d = 0.26 for a perfect match, using SSD

the expected disparity error is more than 20 times higher and the difference in

accuracy can been seen by comparing figure 3.5 with 4.12. This program need

an estimate of depth to work, see section 3.2.1. The idea was that the previous

measurement of depth should be used as the estimate of depth for the next

iteration. Increasing the baseline allows us to use a smaller value of α because

the measurements are more accurate. This means that the disparity range we

search over for the correlation based methods gets shorter and the computation

time will decrease. Using the optimal base length we could set a reasonable

value for α to be in the interval α ∈ [0.1, 0.15]. This is only a theoretical value

ans should be tested.
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5 Conclusion

Two groups of algorithms, correlation and feature based methods, have been

tested for solving the correspondence problem. The feature based methods,

HCD, SIFT and SURF, were found not to be a suitable approach for this ap-

plication. There may be more clever and robust ways of using them, but in any

case the set of matched feature points will be influenced by ambiguous matches

and it will be difficult to accurately estimate the disparity. The correlation based

methods, SAD, SSD and NCC, proved to be the most accurate and consistent

algorithms based on the results of the field experiment. They extract more

information of the scene and will be more robust against ambiguous matches.

When deciding on the superior algorithm the accuracy of the disparity estimate

is the most important property since it dictate the accuracy of the stereo cam-

era system’s depth estimate. Sum of absolute differences, SSD, did have the

overall best accuracy in the field experiment and was concluded to be the best

algorithm for this application. The implementation is simple, but it works well

and the computation time of the whole program will be low enough to be run

in real time. To improve the accuracy of the stereo camera system even further

we have proposed a theoretical optimal length of the baseline in 3.2. The algo-

rithms were not tested in different light condition and the theoretical length for

the baseline have not been used. Some suggestion for future work:

• Evaluate the performance of the correlation based methods in different

light conditions.

• Experiment with different baseline lengths around the optimal theoretical

value.

• Run the program in real time and experiment with different values of α.
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6 Appendix

6.1 Homogeneous Coordinates

Some properties of homogeneous coordinates, also called projective coordinates

[9].

6.1.1 Cartesian → Homogeneous

P = (x, y) ∈ R2 → P̃ = (x, y, 1) ∈ P2 (6.1)

Pn := Rn+1 \ {0}

The origin is represented by
[
01 · · · 0n 1n+1

]
∈ Pn

6.1.2 Homogeneous → Cartesian

P̃ = (x̃, ỹ, z̃)→ P = (x, y) (6.2)

where

x =
x̃

z̃
, y =

ỹ

z̃

6.1.3 A line in homogeneous form

In homogeneous coordinates we can represent a line and a point as l̃ = (l1, l2, l3)

and p̃ = (x̃, ỹ, z̃), respectively. The point equation of line is given by:

l̃T p̃ = 0 (6.3)

The advantage of this is that you can form a line of any slope.

6.1.4 Line joining points

If you have two points p̃1 = (a, b, c) and p̃2 = (d, e, f) in homogeneous coordi-

nates. The homogeneous line that goes trough them is:

l̃ = p̃1 × p̃2 (6.4)
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6.1.5 Intersecting lines

The point of intersection of two arbitrary homogeneous lines, l̃1 = (a, b, c) and

l̃2 = (d, e, f) is:

p̃ = l̃1 × l̃2 (6.5)

6.2 Singular Value Decomposition (SVD)

The singular value decomposition is a factorization of a real or complex matrix

[16]. The singular value decomposition of a matrix A ∈ Rm×n is given by:

A = UΣV T (6.6)

where

• U ∈ Rm×m, the eigenvectors of AAT make up the columns of U . We say

that the columns of U are the left singular vectors of A. The matrix U

is orthogonal, UUT = Im.

• V ∈ Rn×n, the eigenvectors of ATA make up the columns of V . We say

that the the columns of V are the right singular vectors of A. The matrix

V is orthogonal, V V T = In.

• Σ ∈ Rm×n, is a rectangular diagonal matrix. The elements along the

diagonal are the square root of the eigenvalues of both ATA and AAT

in descending order. The elements along the diagonal of Σ are called the

singular values of A.
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