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Abstract
This masters thesis is written as part of a position in Revolve NTNU Team 2018, as part
of the Driverless team. The authors area of responsibility in the project is Trajectory
Following. The main objective is to design, implement and test a motion control system for
the driverless vehicle, along with any peripherals required to interface with neighbouring
systems. Additionally it is the authors responsibility to maintain and adapt the existing
driver assistance control systems and the accompanying state estimations, in the transition
to a driverless vehicle.

A simple minimum viable prototype system was implemented, consisting of a Line-Of-
Sight guidance controller for lateral control and a PI feedback controller with a quadratic
drag feedforward term for longitudinal control. This system was very robust at low speeds.

In addition, a high-performance system was implemented in software, but was never
tested on the vehicle because the upstream modules never progressed to the point where
this was a sensible course of action. This system consists of a nonlinear feedback lineariza-
tion lateral controller, and a PI longitudinal controller with feedforward terms for aerody-
namic drag and reference speed gradient. The interface to the vehicles tractive system
control system was augmented to directly accept a reference yaw rate and a longitudinal
force request, which are produced by the lateral and longitudinal controllers, respectively.
A longitudinal force controller was implemented to handle the latter.

A parameter estimation algorithm for the Magic Formula tire model, using the gradient
search method, was implemented in order to estimate the longitudinal and lateral tire-road
forces and coefficients of friction, for use in the tractive system control system. This
showed good results in simulations, but requires good estimates for the tire slip ratios,
which are not readily available on the physical vehicle.

Everything presented in this thesis is the author’s own work, unless stated otherwise.
No other party was direct involved in the development. The relevant resources at dis-
posal for the project was software licenses for MATLAB and IPG CarMaker, the tractive
system control systems already implemented by Revolve NTNU students, including the
modelling of Eld and the track used for simulations, in addition to the RC-car and the
Gazebo simulation.
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Sammendrag
Denne oppgaven er skrevet som en del av en stilling i Revolve NTNU Team 2018, som en
del av prosjektet som omhandler den førerløse bilen. Forfatterens ansvarsområde i dette
prosjektet er banefølging (Trajectory Following). Hovedoppgaven er å designe, imple-
mentere og teste et bevegelseskontrollsystem for den førerløse bilen, sammen med alle sys-
temer nødvendig for å samhandle med nørliggende systemer. Det er i tillegg forfatterens
ansvar å vedlikeholde og tilpasse de eksisterende førerassistansereguleringsystemene, og
de medfølgende tilstandsestimeringene, i overgangen til en førerløs bil.

En ”enkleste fungerende prototype” ble implementert, bestående av en ”Line-Of-Sight
Guidance controller” for lateral regulering, og en PI tilbakekoblet regulator med en
kvadratisk luftmotstandsforoverkobling for hastighetsregulering. Dette systemet var
veldig robust i lave hastigheter.

Et høyytelsessystem ble også implementert i software, men ble aldri implementert på
bil ettersom moduler tidligere i programflyten aldri nådde det nivå at dette var fornuftig
å bruke tid på. Dette systemet består av en ”Feedback linearization controller” for lateral
kontroll, og en PI tilbakekoblet regulator for hastighetsregulering, med en
foroverkoblinger for luftmotstand og gradienten i hastighetprofilen. Grensesnittet til bilens
førerassistansereguleringsystemer ble utvidet til å direkte motta en ønsket
rotasjonshastighet om bilens vertikalakse, samt en ønsket longitudinal kraft. Dette sendes
av den laterale og den longitudinale regulatoren, respektivt. En regulator for longitudinal
kraft er også implementert, for å behandle signalet.

En parameterestimeringsalgoritme for dekkmodellen ”Magic Formula”, ved bruk av
gradientsøkmetoden, er implementert for å estimere laterale og longitudinale krefter og
friksjonskoeffisienter, til bruk i bilens førerassistansereguleringsystemer. Denne algorit-
men viste gode resultater i simulering, men krever gode estimater for dekkenes ”slip ratio”,
som ikke er direkte tilgjengelig på den fysiske bilen.

Alt som presenteres i denne oppgaven er forfatterens eget arbeid, om ikke annet blir
sagt. Ingen andre har vært delaktige i utviklingen. De relevante ressursene tilgjengelig for
prosjektet er softwarelisenser for MATLAB og IPG CarMaker,
førerassistansereguleringsystemene allerede implementert av tidligere medlemmer av Re-
volve NTNU, inkludert modelleringen av Eld og banen brukt til simuleringer, i tillegg til
RC-bilen og Gazebosimuleringen.
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Chapter 1
Introduction

This master’s thesis is written as part of a position in Revolve NTNU Team 2018, as part
of the Driverless team. Revolve NTNU is Trondheim’s Formula Student team, which has
participated in Formula Student competitions every year since 2012. This year, in addition
to producing a new electric race car, Revolve NTNU will re-purpose last year’s electric
race car (Eld) to compete in the Driverless Vehicle class, which was introduced in the
2017 season at Formula Student Germany.

The driverless team will participate in competitions in Hungary and Germany at the
end of July and at the beginning of August. The team’s primary goal is to complete all the
dynamic events at both competitions. Last year, only six out of fifteen teams passed the
technical inspection required to participate in the dynamic events, and of those, only one
team finished all three events.

The team’s secondary goal is to place top five overall, which will require a high-
performing autonomous driving system, as well as good performance in the static events.

1.1 Problem definition
The author’s area of responsibility in the project is Trajectory Following. The main ob-
jective is to design, implement and test a motion control system for the driverless vehicle,
along with any peripherals required to interface with neighbouring systems. Additionally
it is the author’s responsibility to maintain and adapt the existing driver assistance control
systems and the accompanying state estimations, in the transition to a driverless vehicle.

1.2 Thesis structure
The thesis is structured as follows: In chapter 2, the background for the thesis is presented.
This includes an introduction to Formula Student Driverless, to the base vehicle, Eld, in-
cluding some pre-existing control systems. Finally, the Driverless Team 2018 project plan
is presented, and this thesis’ contribution to the project is defined. In chapter 3, the thesis

1



Chapter 1. Introduction

objectives are presented. In chapter 4, the development methodology is described, and
the mathematical modelling for each system implemented is presented. In chapter 5, the
results from simulations are presented and discussed, along with data from the trackdrive
event at Formula student Germany. In chapter 6, the thesis is concluded, and further work
is suggested.
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Chapter 2
Background

This thesis is a contribution to the Revolve NTNU Driverless project for the 2018 Formula
Student season. The basis for the project is the Formula Student competition goals and
rules [3], as well as the base vehicle, Eld, with all its hardware and software. Most notably
the tractive system control systems, which fall under the trajectory following module.

The main goal of this master’s project is to contribute towards the main goals of the
NTNU Driverless project. This sets a strict precedence for how the master’s project is
planned and executed. Tasks which are essential for the progression of the NTNU Driver-
less project, but are not of academic interest, have been prioritized over tasks that are
purely of academic interest, but which does not contribute towards the project goals. How-
ever, only work that is of academic interest is discussed in this thesis.

2.1 Formula Student Driverless

Formula Student/Formula SAE is the world’s largest engineering contest for students, with
over 600 teams from universities all over the world [4]. The objective of the competition is
to ”conceive, design, fabricate, develop and compete with small, formula style, race cars”
[3]. For each competition season, the participating teams build a completely new vehicle
in about 8 months, and compete at one or more competition sites around the world.

The competition is divided into three classes: Internal Combustion Engine Vehicle
(CV), Electrical Vehicle (EV) and Driverless Vehicle (DV). The DV class was introduced
last year at Formula Student Germany (FSG) in Hockenheim, and is this year hosted in
Hungary, UK and Italy as well. Revolve NTNU are participating in the competitions in
Germany and in Hungary.

The teams compete in a series of static and dynamic events, which are designed to test
the engineering skills of the students. The winner of the competition is the team with the
highest total score from all the events. See fig. 2.1 for the distribution of available points
among the different events. The formulae for determining the scoring in each event can be
found in [3].

3



Chapter 2. Background

Figure 2.1: Competition Scoring

2.1.1 Static events
Formula student is an engineering competition, not a racing competition. Therefore, the
static events are just as important as their dynamic counterparts. For the DV class, an equal
number of points are awarded in both types of events. There are four static events for the
DV class. In the Business Plan Presentation each team must present a business model to
convince the judges, acting as potential investors, that their race car prototype is a good
investment. The event is held as a presentation, with a following discussion.

In the Cost and Manufacturing event, the teams must show their understanding of the
manufacturing processes and the cost required to build their prototype race car, as well as
a mass production version. The teams are evaluated based on three cost report documents,
and a discussion with the judges.

In the Engineering Design event, the teams are evaluated on every part of the design
process, from the specific design choices, to proper use of the relevant knowledge and
tools, and data validation. For the DV class, both the base vehicle and the autonomous
system must be covered.

2.1.2 Dynamic events
Even though the static and dynamic events are weighed equally in terms of points in the
DV class, the dynamic events are the soul and heart of Formula Student. The teams that
have prepared well enough to pass the rigorous technical inspection required to enter the
dynamic events, can finally release their car to the tarmac at the Hockenheimring or other

4



2.1 Formula Student Driverless

Figure 2.2: The Skidpad track

competition grounds. This is where the race cars are pitted against each other, to burn
rubber and push the design to its limit. This is where the hard work of a whole year is
measured in lap times and points, and for a select few, in a place on the podium.

In the DV class, the course for each dynamic event is marked by colour-coded traffic
cones: blue cones for the left hand border of the track, yellow for the right hand border,
and orange cones for the start and stop areas. A time penalty is added for each cone that is
pushed over or knocked out of place during a run.

Acceleration tests the vehicle’s longitudinal performance. The course is a 75 m
straight line, and the objective is to cross the finish line in the shortest time possible.

Skidpad tests the vehicle’s lateral performance. The course consists of two circles in a
figure eight pattern, see fig. 2.2, with an inner diameter of 15.25 meters and a track width
of 3 meters. The vehicle takes two consecutive laps of each circle, and the average time of
the final lap for each circle determines the final score.

Trackdrive is the most challenging of the dynamic events for the DV class. In FSG
2017, only one team were able to complete this event. The vehicle must complete 10 laps
on an unfamiliar closed circuit, and stop within a designated area. The length of the circuit
is between 200 and 500 meters, and the track width is slightly over 3 meters.

The Efficiency score is based on the vehicle’s power consumption during the track-
drive event.

5



Chapter 2. Background

suspension
13 inch continental fs tires
two-piece rims with aluminium center & CFRP shell
additive manufactured & topology optimized uprights
22% anti-dive
15% anti-squat

powertrain
4 motors (each 25 kW)
custom accumulator management system
planetary compound gearbox
torque vectoring algorithm

electronics
325 sensors
66 custom pcbs
CAN communication

monocoque
torsional stiffness – 2350 Nm/deg

Full CFRP sandwich structure
weight – 21 kg

custom software
C# WPF application + sciChart + syncfusion
custom analysis tools

aerodynamics
610 N downforce @ 60 km/h
DRS provides 40% drag reduction

Figure 2.3: Eld as an Electric Vehicle

2.1.3 Eld - a Formula Student race car
Eld was Revolve NTNU’s entry into the EV class in the 2017 season, see fig. 2.3, and
is being repurposed as a DV class vehicle for the 2018 season, see fig. 2.4. Eld is an
individual-wheel drive electric race car, with one motor mounted in the upright of each
wheel, which can be individually controlled. Each motor can output a maximum of 21
Nm driving torque, and 18 Nm braking torque through its kinetic energy recovery system
(KERS). The motors are connected to the Continental 13 inch tires through a compund
planetary gearbox with a gear ratio of 15.58:1. They draw power from a litium-cobolt
battery pack, which can output 80kWh.

Eld weighs in at 176 kg without a driver, much thanks to the chassis, which is made
out of a carbon fibre and aluminum honeycomb sandwich structure. The aerodynamic
package produces 610 N downforce at 60 km/h.

Eld boasts an impressive 325 sensors, most of which are used for battery, temperature
and power management. One of the more interesting sensor units for analyzing vehicle
dynamics, is the high-performance GPS-aided INS. It comes with a integrated Kalman
filter, which outputs good estimates of linear velocities and accelerations, orientation and
angular velocities. It also provides position, with a root-mean square error of 2.5 meters
[5].

Encoders measure the rotation of each motor, as well as that of the steering wheel.
Finally, the suspension includes four linear potentiometers to measure the compression of
each spring/damper. As part of the conversion to a DV class vehicle, Eld has been fitted
with electrically actuated steering and braking systems, as well as a remotely triggered
emergency brake system. Two cameras and a 360 deg lidar are used to perceive the sur-
roundings, and a DGPS is added, which gives a much higher positional accuracy than the
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2.2 Revolve NTNU team 2017 tractive system control systems

END-TO-END 

A CNN that maps raw images directly 

to steering command predictions

ML pipeline

CONE DETECTION

Detection based on LiDAR point cloud and ML cone classification 

Redundant system with stereo setup and YOLO cone detection

Detection range for cones w/colour of 30m SENSORS 

AND PROCESSING

Nvidia Drive PX2 Auto Chauffeur

Velodyne Puck 16

FLIR Blackfly

VectorNav VN200

SwiftNav Piksi Multi

SLAM

Incremental smoothing and mapping

Fusing sensors with factor graph

Fluid relinearization

TESTING

IPG CarMaker

Gazebo simulator 

Traxxas XO-1 RC car fitted with sensors and processing

MODEL PREDICTIVE 

CONTOURING CONTROL

Optimal race lines 

Based on single-track vehicle model with nonlinear Magic Formula tire model

Tire model parameters estimated on-line

Figure 2.4: Eld as a Driverless Vehicle

Vectornav GPS. An Nvidia Drive PX2 is used as the main computer unit.
In order to fit the autonomous system, and because it is deemed unnecessary at the

performance level expected for the DV class vehicle, the aerodynamic package is removed.
As a result of the higher demand for low voltage power, the high voltage battery pack has
been reduced in size to accommodate several DC-DC converters. This has reduced the
maximum power output of the battery pack to 60 kWh.

2.2 Revolve NTNU team 2017 tractive system control sys-
tems

The Revolve NTNU tractive system control systems (TSCS) consists of several driver as-
sist modules, see fig. 2.5. The purpose of these systems, apart from following the FS rules,
is to optimize utilization of the available tire-road grip to produce the highest possible ac-
celeration in the appropriate direction. In short, to help get the car around the track as fast
as possible. The control systems have been developed since the 2016 season, and have
been the subject of two master’s theses [6][7].

The two theses give an extensive description of the control systems, as well as provide
experimental data for their performance. In this sub-chapter, a brief overview of the cur-
rent control systems at the beginning of the 2018 season is presented, as it serves as the
foundation for the autonomous control systems developed in this thesis.
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Chapter 2. Background

Figure 2.5: Driver-assistance tractive control system structure

2.2.1 State estimation
The control system relies on knowledge about the tires’ interactions with the road surface,
which are not readily measurable. Some state estimation is therefore necessary.

The normal tire force estimations are used in eq. (2.11) to estimate available grip,
which in turn is used to calculate the maximum torque output for each motor.

F ijz = F ijz,0 +Kij
s ∆ij

s ±K
ij
ARBφLwij (2.1)

The longitudinal tire force estimations are used to calculate the corrective yaw moment
produced by the torque allocation algorithm, which is used as a feedback term to the yaw
rate controller. It is calculated using Newton’s second law of rotation, relying on the
differentiated measurements from the wheel encoders.

F ijx =
τ ijGR− Jwω̇ij

Reff
(2.2)

The friction coefficient is assumed constant, and is guesstimated.

2.2.2 Torque vectoring
Revole NTNU built its first independent four-wheel drive vehicle in 2016. The main ad-
vantage of this type of drivetrain is that the torque output of each wheel can be individu-
ally controlled to serve a master plan. For example, by applying more torque to the outer
wheels than to the inner wheels during cornering, a moment about the z-axis is created,
which will rotate the vehicle independent of the steering angle, in the manner of a continu-
ous track vehicle. This is known as torque vectoring. Coupled with conventional steering,
torque vectoring results in very quick cornering and good utilization of available grip.

The torque vectoring algorithm consists of three modules, as seen in fig. 2.5: Yaw rate
reference generator, yaw rate controller and torque allocation.

The reference yaw rate is generated from the following equation, which is derived
from the idealized bicycle model driving in a circle of constant radius [6].

rr = tan(δ)
u

l +Kvu2
(2.3)

Kv is the vehicle’s under-steer coefficient, defined as

Kv =
m(lrCr − lfCf )

2CfCrl
. (2.4)
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2.2 Revolve NTNU team 2017 tractive system control systems

The reference yaw rate is upper bounded by the theoretical maximum yaw rate, given by

rr,max =
ay,max
u

=
µg

u
(2.5)

The yaw rate controller is implemented as a PI feedback controller with gain schedul-
ing for different velocity ranges, and anti-windup. The output of the yaw rate controller is
a corrective yaw moment, Mz , which should be produced by the torque allocation.

The torque allocation module aims to produce both the longitudinal acceleration re-
quested by the driver and the corrective yaw moment requested by the yaw rate controller.
With four independent motors, this becomes an over-actuated system. A quadratic pro-
gramming problem is formulated to calculate the optimal torque allocation:

min
τ

q(τ ) =
1

2
τ>Gτ + τ>c

s.t. Aeqτ = beq

Aineqτ ≥ bineq,

(2.6)

where τ =
[
τFL τFR τRL τRR

]>
is the torque output for each motor.

The cost function consists of three terms. The first term minimizes the error in the
generated yaw moment given by

q1(τ ) = (Mz,tot −Mz,r)
2

=

([
hFL hFR hRL hRR

]

τFL

τFR

τRL

τRR

−Mz,r

)2

,
(2.7)

whereM ij
z = hijτ

ij is the yaw moment generated by tire ij when applying a motor torque
τ ij on motor ij (see [7] for details). Formulated as a quadratic function of τ , this becomes

q1(τ ) =
1

2
τ>G1τ + τ>c, (2.8)

where

G1 =


2h2FL hFLhFR hFLhRL hFLhRR

hFRhFL 2h2FR hFRhRL hFRhRR
hRLhFL hRLhFR 2h2RL hRLhRR
hRRhFL hRRhFR hRRhRL 2h2RR

 (2.9a)

c = −2Mz,r


hFL
hFR
hRL
hRR

 (2.9b)

The term M2
z,r is omitted from the cost function because it is constant.

The second term aims to avoid tire saturation by applying torque to each wheel in
proportion to the available grip.
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Chapter 2. Background

q2(τ ) =

(
τFL

τFLsat

)2

+

(
τFR

τFRsat

)2

+

(
τRL

τRLsat

)2

+

(
τRR

τRRsat

)2

, (2.10)

where

τ ijsat =
Fz,ijRµ

GR
(2.11)

is the saturation torque for wheel ij. Formulated as a quadratic function, we get

q2(τ ) =
1

2
τ>G2τ , (2.12)

where

G1 =



(
1

τFL
sat

)2

0 0 0

0

(
1

τFR
sat

)2 0 0

0 0

(
1

τRL
sat

)2

0

0 0 0

(
1

τRR
sat

)2


(2.13)

The third term is a 4x4 identity matrix, which is added to ensure thatG is positive definite
even when one or more wheels lift from the ground, which makes the problem strictly
convex [8]. In addition, this terms helps to evenly distribute the requested torque among
the four wheels. Thus, the final cost function is given by

q(τ ) = k1q1(τ ) + k2q2(τ ) + k3q3(τ )

=
1

2
τ>
(
k1G1 + k2G2 + k3I4

)
τ + τ>k1c,

(2.14)

where the constants, ki weigh the different terms against each other.
The equality constraint, Aeqτ = beq , ensures that the total torque satisfies the torque

requested by the driver, Treq . The inequality constraint, Aineqτ ≥ bineq , ensures that
the requested torque is within the capacity of each motor, both in terms of available
grip, τsat and maximum/minimum torque output, τmax,motor, τmin,motor. Thus τ ijmax =

min(τ ijsat, τmax,motor), τ ijmin = max(−τ ijsat, τmin,motor). Both constraints are formu-
lated differently depending on whether the vehicle is accelerating or decelerating. The
matrices are:
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2.2 Revolve NTNU team 2017 tractive system control systems

Aeq =
[
1 1 1 1

]
,

beq,acc = min(Treq,
∑

τ ijmax), beq,dec = max(Treq,
∑

τ ijmin)

Aineq =



−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


,

bineq,acc =



−τFLmax
−τFRmax
−τRLmax
−τRRmax
−τFLmin
−τFRmin
−τRLmin
−τRRmin


, bineq,dec =



0
0
0
0

−τFLmin
−τFRmin
−τRLmin
−τRRmin



(2.15)

The QP problem is solved using an active set solver, which is described at length in [7].

2.2.3 Traction control

If a tire experiences excessive slip despite the efforts of the torque vectoring module, the
traction control module overrules the allocated torque request. A torque reduction is cal-
culated by a PI controller, and added to the allocated torque.

τ ijred = KP,TC S̃R
ij

+KI,TC

∫ t

0

S̃R
ij
dt, (2.16)

where S̃Racc = min(0, SR − SRmax), S̃Rdec = max(0, SR + SRmax) SRmax is a
constant obtained by adding a margin of error to the optimal slip ratio, SRopt , defined by
the peak of the tire model, see fig. 4.8. The error margin is added because the generated
tire force decrease much faster when abs(SR) < SRopt than when abs(SR) > SRopt.
Thus a controller working around the optimal slip ratio would perform worse than one
operation at a slightly higher slip. This is illustrated in fig. 2.6.

2.2.4 Power limiting

The power limiting module serves two purposes. It ensures that the tractive system does
not overload the battery pack by drawing too much power, or by producing too much
power during regenerative braking, and it ensures that the vehicle upholds Formula Student
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Chapter 2. Background

Figure 2.6: Target slip ratio for Traction control vs. optimal slip ratio.

regulation D9.4.1: ”A violation is defined as using more than the maximum power [...] or
exceeding the specified voltage, [...] after a moving average over 500 ms [...]” [3].

The power limit module is implemented in much the same way as the traction control
module. A PI controller calculates a reduction factor, Fred, based on the power violation,
P̃ . The torque request to each motor is multiplied by this factor.

Fred = KP,PLP̃ +KI,PL

∫ t

0

P̃ dt, (2.17)

where P̃acc = min(0, P − Plim) and P̃dec = min(0, PKERS − Plim,KERS).

2.2.5 Upgrades for team 2018
Several major improvements are made to the TSCS for this season, by members of the EV
team. The normal force (F ijz ) estimation is extended to use a complete model of the sus-
pension, including the anti-roll-bar. A launch control module is added specifically for the
acceleration event, which aims to optimize the slip ratio for each wheel, thus maximizing
the longitudinal acceleration. The power-limiting module is also completely reworked.

2.3 Revolve NTNU Driverless Project plan
The project is organized with the two overall objectives in mind. The primary objective
takes precedence over the secondary, which means that until the primary objective is under
control, work on the secondary objective will not be prioritized.

The primary objective for the project is to finish all the dynamic events at the two com-
petitions. To fulfill this objective, a minimum viable prototype (MVP) of the autonomous
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2.4 Trajectory Following

Figure 2.7: The driving pipeline

software will be developed, which must be able to detect and follow an unfamiliar track
without stopping or running outside the track boundaries.

The secondary objective is to place top 5 overall at both competitions. In 2017, this
would be implied by the primary goal, as only one of the 15 attending teams managed to
complete all dynamic events. However, with several teams now having had two years to
develop their autonomous systems, this might no longer be the case. Therefore, a high-
performance version of the autonomous software will be developed, which aims to make
the vehicle complete the dynamic events as quickly as possible.

The autonomous system is organized in several modules, in what we call the driving
pipeline, see fig. 2.7. My area of responsibility is the trajectory following module, includ-
ing the interface to the path planning- and actuation modules. The remaining modules will
not be discussed further in this thesis.

The autonomous software is written in the Robotic Operating System (ROS) frame-
work [9]. ROS is an open-source software framework for robotics applications, which is
used extensively in research and industry. It was chosen primarily because a large collec-
tion of drivers, programs and libraries useful for robotics application exists for ROS, as
well as several useful tools for visualization and configuration. Each piece of software is
written as an autonomous node, and ROS handles inter-node communication and schedul-
ing. This makes it easy to make a modular and well-organized software architecture, where
subsystems can be changed or replaced without affecting the rest of the system.

On the downside, ROS is not a real-time framework, and is therefore not well-suited
for tasks with strict real-time demands, such as low- and mid-level control. These tasks
will therefore be carried out on the vehicle’s embedded microcontrollers.

2.4 Trajectory Following
The trajectory following module consists of the motion control systems required to make
the vehicle follow a feasible trajectory given by the path-planning module. This includes
the tractive system control systems described in section 2.2, in addition to the state estima-
tion required for these systems, beyond the vehicle’s position, velocity and acceleration in
6 dof.

The trajectory following module can be divided into three levels: High-level, mid-level
and low-level control systems, see fig. 2.8.

The high-level control systems are those that replace the driver, and decides, at a min-
imum, the desired steering angle and throttle input to the vehicle. Without the mechanical
interface imposed by a human driver, these systems can pass on any number of additional
control signals to the mid-level control systems, such as the yaw rate reference.

The low-level control systems are the actuator controllers: Torque control for the driv-
ing motors, position control for the steering system and velocity control for the service
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Chapter 2. Background

Figure 2.8: Modular separation of trajectory following

brake system. These are embedded in the proprietary motor controllers, and will not be
discussed in great detail.

The mid-level control systems encompass everything that happens between the high-
level and the low-level control systems, most notably the TSCS, described in section 2.2.
They provide the reference values for the low-level control systems.

It is convenient to distinguish between high- and mid level control systems in this
project for several reasons. The systems are separated in hardware, as high-level control
systems are run on the main processing unit, while the mid-level control systems are run on
the vehicle’s embedded systems. The design becomes more modular, which lets the team
use different high-level controllers on different vehicles without modification. Finally,
the mid-(and low-)level control systems for the tractive system are shared with the EV
team, where two team members are working exclusively on these systems. Therefore, by
keeping these as a separate sub-module, these systems can remain EV compatible, and any
improvements will benefit both projects.

2.4.1 Upstream interface
Two different strategies for trajectory planning will be used, which require different inter-
faces between the trajectory planning and -following modules. In the first, a global trajec-
tory will be planned based on the mapped sections of the track. The trajectory following
module must analyze its state relative to the desired trajectory, and calculate control inputs
to make the vehicle follow the planned trajectory as closely as possible. In the second strat-
egy, model predictive contouring control (MPCC) is used to calculate an optimal trajectory
on-line, using a vehicle model and finding the sequence of control inputs which maximize
the progression along the center line of the track. In order to solve for a sufficiently long
prediction horizon, the MPCC algorithm runs at a moderately low frequency and uses a
simplified vehicle model. The mid-level control systems are run at a high rate, and can be
used to support the MPCC by forcing the vehicle to follow the trajectory predicted by the
MPCC.
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Thesis Objectives

The overall objective of the thesis is to develop and implement the necessary trajectory
following systems required to fulfill the two main goals for Revolve NTNU Driverless
Team 2018 described in section 2.3: To complete all the dynamic events, and to place in
top 5 at the competitions in Germany and Hungary.

Towards the primary goal, and in accordance with the overall project plan, an MVP
high-level controller (as defined in section 2.4) must be implemented. The purpose of
the MVP high-level controller is to have a solution for trajectory following which is easy
to implement and configure and is robust against irregular state estimates and reference
trajectory. Computational efficiency and high-speed performance is not required. The
controller should be simple and intuitive to tune on-line to a decent performance, either
by a transparent design where the relation between behaviour and each tuning parameter
is apparent, or by a self-tuning controller.

The mid-level control systems for the steering system and the service brakes must also
be implemented, as well as an interface to the TSCS. However, the MVP does not need to
make use of the torque-vectoring module in the TSCS.

Towards the secondary goal, one must assume that the vehicle is required to drive at
speeds beyond the grasp of the MVP. Therefore, a high-performance high-level controller
must be implemented. The high-performance high-level controller must be able to follow
a feasible trajectory much more closely, and at higher speeds than the MVP high-level
controller. It must also be able to closely follow a feasible velocity profile. These are soft
requirements, as the performance guaranteed by the controller dictates the margin of error
used in the path-planning node, which means that a better controller can follow a quicker
trajectory. The high-performance high-level controller should also make full use of the
TSCS.

The TSCS must be modified to provide an interface tailored to the autonomous system,
in parallel with the human interface. The requirements for this interface will be determined
by the high-level control algorithm(s) implemented.

The remaining work capacity should be used to improve the TSCS, as they play a key
role in high-speed performance, both for the DV and the EV. An important aspect of the
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TSCS that is not being addressed by the members of the EV team is the tire-road force
and friction estimation. In order to fully utilize the available road grip, it is crucial to
know how much road grip is available, and how much is being utilized at a given time.
Currently, only the longitudinal force components are being estimated, and only using a
simple open-loop estimator.

This thesis contribution to the TSCS will therefore be to implement a method to esti-
mate longitudinal and lateral tire-road forces and the coefficient of friction. The longitudi-
nal force estimate should be more precise than the current version. The system should be
EV compatible, which means it should not make use of the extra sensors introduced in the
autonomous systems. It must also be run on the embedded system, meaning computing
power is limited.

To summarize, the sub-objectives of this thesis are to:

1. Implement a minimum viable prototype high-level controller.

2. Implement the necessary mid-level controllers for the steering system and the ser-
vice brakes, and provide the MVP with an interface to the TSCS.

3. Implement a high-performance high-level controller.

4. Modify the mid-level tractive control systems as required by the high-performance
high-level controllers.

5. Implement an estimator for longitudinal and lateral tire forces, the coefficient of
friction.
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Chapter 4
Methodology

For each of the systems developed in this thesis, the overall development process has been:

• Mathematical modelling

• Software implementation

• Testing in one or more testing platform

• Implementation on Eld

The mathematical modelling for each system is presented in sections 4.2 to 4.5. The
two high-level controllers and several peripherals are programmed as ROS nodes in C++,
to be run on the main processing unit. The TSCS modules are programmed in MAT-
LAB/Simulink, and included in the embedded software as auto-generated C code. The
actual software implementation is not presented in this thesis, as Revolve NTNU wants to
keep its software private - it is a competition after all. The testing platforms are discussed
in section 4.1.

4.1 Testing platforms
Three main testing platforms were used to test software before implementation on Eld: An
RC-car )fig. 4.2), a Gazebo simulation (section 4.1.2) and IPG CarMaker (section 4.1.3).
The different platforms are described in the following sub-sections. The three platforms
have different properties, and have been used for different purposes at different stages
in the development process. An overview is presented in fig. 4.1. Unfortunately, due to
problems with the detection module, the project did not progress to the point where high-
performance trajectory following was necessary. As soon as this became evident, all work
on these systems was halted, apart from documentation. This was done in accordance
with the project plan described in section 2.3, in order to direct manpower towards more
pressing tasks. This is marked by orange background color in fig. 4.1.
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Figure 4.1: Use of development tools throughout the project. The section with red background
contains work that was abandoned in favour of more pressing tasks.

4.1.1 RC-car
A 1:7 scale RC-car, see fig. 4.2, is used as a prototype platform for the autonomous sensors
and software system in the early stages of development, before either the simulator or the
autonomous hardware system on Eld are functional. This allows for iterative development
and hardware-in-the-loop (HIL) testing from the very beginning of the project. The RC-car
is used for integration testing and qualitative testing of the MVPHLC.

4.1.2 Gazebo
Gazebo [10] is a 3D robot- and environment simulator, which is integrated with ROS. In
addition to a physics engine, it provides virtual sensors, which give realistic data. A vehicle

Figure 4.2: RC-car used as a prototype platform in the early stages of the project.
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model was created by one of the DV team members, fitted with a virtual LiDAR and INS,
and different race tracks were created using 3D modelled traffic cones, see section 4.1.2.
This lets us test the whole autonomous pipeline, apart from the camera detection module,
up to the high-level controllers. This simulator is used for qualitative testing and for inte-
gration testing for both HLCs, but the vehicle dynamics are not accurate enough to use it
for bench-marking of estimators or control systems.

Figure 4.3: Gazebo simulator.

4.1.3 IPG CarMaker
IPG CarMaker [11] is a commercial car simulator which is used by a lot of Formula Stu-
dent teams, and has been used to develop EV control systems and vehicle dynamics since
2016. It provides a high-fidelity vehicle model of a formula student-type race car, which
Revolve has customized to match Eld in both appearance and dynamics. It also comes with
an automated driver. Control systems and state estimation algorithms are programmed in
Simulink, and fed into the CarMaker vehicle model through CarMaker’s Simulink in-
terface. C-code is automatically generated from the Simulink code and uploaded to the
custom-made vehicle control unit (VCU), which is then HIL-tested using the same inter-
face.

IPG CarMaker is used for quantitative testing of the TSCS. The plan was to also use
IPG CarMaker to test the HPHLC as well as the interaction between the HPHLC or the
MPCC and the TSCS. However, replacing the automated driver module in IPG CarMaker
with a custom high-level controller is nontrivial, and was not prioritized when it became
evident that these systems would not be implemented on Eld this season.

A replica of the Autocross track from FSG 2006, see section 4.1.3, is used for simu-
lations for the tire-ground force and friction estimation algorithms. This track has a large
variation in bends and straights, which gives very dynamic driving and is a good represen-
tation for a Formula Student track. Each simulation makes one lap of the track.

4.2 MVP high-level controller
In the MVP implementation, trajectory planning will simply find the center-line of the
track, and set a low constant target velocity. The controller must stay within the bounds of
the track, i.e. not deviate from the center-line by more than approximately 0.7 m (minimum
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Figure 4.4: IPG CarMaker vehicle simulator.

track width - vehicle width)/2. The vehicle speed must be able to maintain a walking-pace,
between 1 and 3 m/s, but no precise speed control is required.

The trajectory provided by the MVP path-planning module is a list of densely spaced
points in 2D space, the path-tangential angle, ψt, and the reference speed, Ur, for each
point. The trajectory interpreter finds the point closest to the vehicle by calculating the
distance between the vehicle and each point on the trajectory, and selecting the nearest
one. A look-ahead point is then found by iterating forward through the list of points
until the distance between the closest point and the lookahead-point is greater than the
lookahead-distance, ∆, see fig. 4.5. The reference heading is then found by drawing a line
between the vehicle and the look-ahead point.

A PD controller is used to regulate the heading to the reference heading:

δr = KP,ψψ̃ +KD,ψ
d

dt
˙̃
ψ (4.1)

Initially, a PD controller from cross-track error directly to steering angle was used, but this
controller was discarded because it was too vulnerable to irregular values for ỹ.

The longitudinal controller is a PI feedback controller with a feed-forward term for
aerodynamic resistance, which outputs an equivalent throttle pedal position, TPPeq:

TPPeq = KP,U ŨKI,U

∫ t

0

Ũdt+KFF,UU
2
r (4.2)

The MVP has 6 tuneable parameters, of which only 3 (∆,KP,ψ and FFF,U ) are absolutely
necessary to fulfill the requirements. The outputs of the two controllers are on the same
form as that of a human driver, and the effect of each tuneable parameter is intuitively
relateable to a physical reaction. Therefore, the MVP controller can quickly and easily be
empirically tuned for a good performance.

4.3 High-performance high-level controller
The controller in this section is a feedback linearization controller built in three levels,
see fig. 4.6. The control design is based on [12], and a single-track vehicle model, see
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Figure 4.5: LOS guidance

Figure 4.6: High-performance high-level trajectory following

fig. 4.7, using a linear tire model. The controller was chosen in part because it outputs
a reference yaw rate, which can be sent directly to the torque vectoring module, taking
full advantage of the independent four-wheel drive. Additionally, a feedback linearization
controller is a good choice if the model parameters are well known. Using the on-line
parameter estimation scheme described in section 4.5, this is ensured. The controller was
developed in its basic form in [13], but is presented here for a better overview.

The trajectory passed on from the high-performance trajectory planning module con-
sists of three cubic splines which denote the x and y position as well as the target velocity
as a function of arc length. The closest point to the vehicle’s center of gravity is found
using a combination of Newton’s method and the Bisection method, solved locally from
the previous closest point.

The cross-track error, the path tangent and the signed curvature of the path are evalu-
ated at this point, in addition to the value and the gradient of the target velocity.
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Figure 4.7: Single-track vehicle model and the coordinate frames used in the controller design.

4.3.1 Controller design
The first level is a LOS guidance controller with control law given by:

χsfr = atan

(
−ysf

∆

)
(4.3)

where ∆ is a design parameter describing the path-tangential distance to the intersect point,
assuming a straight path.

The second level is a feedback linearization course controller which controls χsf →
χsfr , with the yaw rate reference as control input. The yaw dynamics in the sf frame are
given by

χ̇sf = r + β̇ − κusf , (4.4)

where

β̇ =
d

dt

(
atan

(
v

u

))
=
v̇u− u̇v
U2

(4.5)

The reference yaw rate is chosen as

rr = χ̇sfr − β̇ + κusf +KP,rχ̃
sf (4.6)

From here, the yaw rate reference is passed down to the TV module, as well as being used
to calculate the steering angle in the third level. The yaw dynamics for the single-track
vehicle model with a linear tire model are given by
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ṙ =
1

Iz
(−By,s−tαF lf +By,s−tα

Rlr), (4.7)

where

αF = atan

(
v + rlf
u

)
− δ (4.8a)

αR = atan

(
v − rlr
u

)
(4.8b)

and the tire model parameters are found using the parameter estimation algorithm de-
scribed in section 4.5.2. Solving eq. (4.7) for δ we get

δ =
Iz

By,s−tlf
ṙ − atan

(
v + rlf
u

)
+ atan

(
v − rlr
u

)
lr
lf

(4.9)

The reference steering angle is therefore given by

δr =
Iz

By,s−tlf
ṙd − atan

(
v + rlf
u

)
+ atan

(
v − rlr
u

)
lr
lf

+KP,δ r̃ +KI,δ

∫ t

0

r̃dt

(4.10)
When the torque vectoring module is enabled, it replaces the integral.
The longitudinal controller is the same as eq. (4.2), with an added feed-forward term

to account for changes in the reference speed. In addition, the output is a reference longi-
tudinal force, instead of an equivalent throttle position, which means that the coefficients
can be found by calculation instead of trial-and-error.

Fx,r =
1

2
ρACdU

2
r +mU̇r −Kp,U Ũ −Ki,U

∫ t

0

Ũdt (4.11)

4.4 DV mid-level control systems
The autonomous system requires a different interface to the car than a human driver. At
the very least, this includes an interface to the steering system- and service brake actuators,
as well as a torque request to the tractive system.

Additional interface channels can be implemented as required by the more advanced
high-level controllers. A reference yaw rate is requested by the HPHLC as well as the
MPCC, directly supplied to the yaw rate controller, bypassing the yaw rate reference gen-
erator entirely. For longitudinal control, both controllers output a required longitudinal
force in Newtons, demanding the implementation for a longitudinal force controller in the
tractive control system.

4.4.1 Steering system
The steering system is powered by a brushless DC motor with a gear ratio of 66:1, coupled
with the steering shaft by a 1:1 spur gear transmission. The motor is position controlled
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by a proprietary control card, using an encoder on the motor shaft as feedback, and a hall-
effect sensor as redundancy. The encoder has 1000 increments per revolution. This gives a
linear mapping between the number of encoder increments away from the neutral position
and the steering wheel angle in radians. The mapping from the mean steering angle, δ, and
the steering wheel position, is found in a look-up table from [14].

encoder increments = 1000 ∗ 66/(2π) ∗ lookup steering wheel pos(δ) (4.12)

4.4.2 Service brakes
Regenerative braking has several advantages over mechanical brakes. It is easier to incor-
porate into the longitudinal force control described in section 4.4.3, gives a higher effi-
ciency score during the trackdrive event, and does not require external actuation. There-
fore, the car will rely solely on regenerative braking during a race. The service brakes are
only used to stop the car at the end of a race, and to act as redundancy to the emergency
brake system, in compliance with [3]. This makes the design process for the service brakes
much simpler, as they can simply be on/off. The service brakes will not be discussed fur-
ther in this thesis.

4.4.3 Tractive system longitudinal force controller
The Torque Allocation module uses an open-loop estimate for the longitudinal forces:

F ijx =
GRτ ijr

Rijeff
(4.13)

From section 2.2 we know that the Torque Allocation module accepts a torque request,
Tr, which is used as an equality constraint when not limited by available grip. Including
the tire force estimates in the TV optimization problem is beyond the scope of this thesis.
Instead, the requested longitudinal force is translated into a torque request using the open-
loop estimate as the feedforward, and a PI feedback controller based on the estimated
forces from section 4.5. Integral windup protection is added for the cases when the torque
requested is higher than that allocated by the torque allocation module.

Tr =
Fx,rR̄eff
GR

+KP,T F̃x −KI,T

∫ t

0

F̃xdt−KB,TTunallocated, (4.14)

where F̃x = Fx,r −
∑
ij F

ij
x .

The longitudinal force controller is tested in IPG CarMaker. A straight-line trajectory
is set, and a varying longitudinal force reference profile is defined.

4.5 Tire-ground force and friction estimation
The tires are the only medium with which a race car can generate acceleration. When a
tire moves relative to the ground, known as slip, it is deformed due to friction forces. It
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4.5 Tire-ground force and friction estimation

Figure 4.8: Tire force vs slip angle from tire test for the tires used on Eld.

coils up like a spring, creating force as it tries to regain its shape [15]. For longitudinal
movement, the relative movement is expressed by the slip ratio, given by

γ =
ωRij − uij

uij
, (4.15)

and for lateral movement, it is expressed as the slip angle

α = atan

(
vij

uij

)
. (4.16)

The force-slip curves are divided into three distinct regions, see fig. 4.8. For small slip
values, the force grows linearly with increased slip. For larger slip values, the force grows
nonlinearly, until it reaches the peak force, which defines the coefficient of friction. From
here, the force decreases with increased slip, henceforth referred to as excessive slip. Dif-
ferent tire assemblies and different conditions give different variations of this curve. No-
tice, for example, how the peak force in fig. 4.8 increases with each sweep, as the tires are
warmed up from the friction forces.

In a racing situation, it is desirable to be at peak force slip ratio, γpeak, as much of the
time as possible. However, since the force decreases as slip goes beyond γpeak, a constant
torque corresponding to peak force would result in rapidly increasing slip. Not only does
this produce less force, but it consumes more energy because P = τω.

It is therefore important to know exactly how much force the tire is exerting, and what
the maximum attainable force is. The maximum longitudinal and lateral forces are given
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Figure 4.9: Tire-road forces and friction ellipses for a four-wheel vehicle.

by the friction ellipse:

F ijx
2

(F ijz µx)2
+

F ijy
2

(F ijz µy)2
= 1, (4.17)

It is an ellipse rather than a circle, because the tire has different properties in the longitu-
dinal and the lateral direction, which results in two coefficients of friction, µx and µy . The
friction ellipses are illustrated in fig. 4.9.

For a driverless vehicle, this is doubly important, as there is no driver who can reduce
the throttle when they feel the wheels start to slip.

4.5.1 Tire-ground force and friction estimation using Kalman Filter-
ing

The first approach to tire force and friction estimation was by using Kalman filtering. The
method described in [16] and [17] was implemented in Simulink and tested in CarMaker.
Several misprint errors in the model were corrected, and the Kalman filter was adjusted to
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4.5 Tire-ground force and friction estimation

conform with [18] and [12]. Despite this, the implementation was unsuccessful.
The leading theory is that only two equations of motion affect the four lateral tire forces

in any significant way. The yaw dynamics distinguish the front forces from the rear, and
sway and roll both determine the sum of forces, making one of them obsolete. This makes
it impossible to distinguish FFL from FFR and FRL from FRR, resulting in the forces
in each pair diverging in opposite directions.

In order to rule out sources of errors, the problem was simplified by providing mea-
surements of all states which are estimated in [16], except the longitudinal and lateral tire
forces and the effective rolling radius. However, the problem remained.

[19] uses input from a tire model as a measurement in the filter. The method was
implemented using the nonlinear Magic Formula [20], which is valid for larger slip values.
This turned out to work quite well, as long as the parameters for the tire model were good.
However, since the input signals are already filtered, the Kalman filter becomes obsolete,
and the tire model can be used directly. With this method, the problem is reduced to finding
good parameters for the tire model.

4.5.2 On-line parameter estimation of parameters for Pacejka model
The Magic Formula, [20] is an empirical tire-road contact force model which is widely
used in the automotive industry. The model gives longitudinal and lateral tire force as a
function of slip ratio and slip angle, respectively, based on a large set of variables deter-
mined by the tire used and the suspension design. Ultimately, the input is boiled down
to an expression with four non-physical coefficients, which fit a vast array of tires. The
normalized Magic Formula with constant parameters [21] is given by

F

Fz
= µsin(Ctan−1(Bs− E(Bs− tan−1(Bs)))) (4.18)

Here, s is the slip ratio when calculating Fx, and slip angle when calculating Fy . In this
section, it is assumed that the difference in the suspension design for each tire is negligible,
so that we can use one set of parameters to model the longitudinal forces, and one set to
model the lateral forces. Let the longitudinal and lateral forces on tire ij estimated by the
Magic Formula be given by

F ijx,m = F ijz µxsin(Cxtan
−1(Bxγ

ij − Ex(Bxγ
ij − tan−1(Bxγ

ij))))

F ijy,m = −F ijz µysin(Cytan
−1(Byα

ij − Ey(Byα
ij − tan−1(Byα

ij)))
(4.19)

The minus sign on the lateral force estimates is due to the coordinate systems used by
Revolve NTNU. An on-line parameter estimation estimation scheme using the gradient
approach method [8, 22], is suggested as a way of finding these parameters. The advan-
tage of this method is that it is fairly simple to implement, and does not rely on extensive
knowledge of the suspension and tires used, tire temperature measurements and road sur-
face condition, and other input required for data-driven tire modelling. The aim of the
algorithm is to find the set of parameters that minimizes the fitness functions

fx =
∣∣∣∑Fx −max

∣∣∣
fy =

∣∣∣∑Fy −may
∣∣∣ (4.20)
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over time. At each iteration, the model parameters are marginally changed to improve
eq. (4.20).

Because the fitness functions are highly nonlinear, convergence to a global optimum
can not be guaranteed. This can be remedied by selecting good initial parameters, or
by running several models in parallel, and select the one which gives the best fitness.
Eventually, a library can be built by saving a set of parameters and tagging it with the
conditions of the test, i.e. ”Dry asphalt, 18 degrees, cold slick tires in new condition”.
Once a complete library has been built this way, operators can select a set of parameters
with a tag matching the current conditions, which will be close to the optimal set. The
tire model is only valid for steady-state slip, when the tire has deformed to its steady-
state shape. This effect is significant in the lateral dynamics, but not in the longitudinal
dynamics, which are much quicker. To catch the transient behaviour of the tire, a relaxation
distance, σ, can be used [19]. The lateral forces are modelled as following:

˙̂
F ijy =

U

σ
(F ijy,m − F̂ ijy ) (4.21)

In the nonlinear tire model parameter estimation, coupled forces are taken into account.
That gives the following terms for the fitness functions, eq. (4.20):∑

Fx =FFLx,m cos(δL) + FFRx,m cos(δR)− F̂FLy sin(δL) + F̂FRy sin(δR)

+ FRLx,m + FRRx,m −
1

2
ρCdAu

2∑
Fy =F̂FLy cos(δL) + F̂FRy cos(δR) + FFLx,m sin(δL) + FFRx,m sin(δR)

+ F̂RLy + F̂RRy

(4.22)

Let p =
[
Bx Cx µx Ex By Cy µy Ey

]
be the parameter vector. The Jaco-

bian for the fitness functions with respect to the parameter vector is given by

Jm =

∂fx∂p
∂fy
∂p

 (4.23)

This is calculated offline using the MATLAB Symbolic Math Toolbox, and evaluated at
each iteration. Finally, let
Km = diag

( [
KBx

KCx
Kµx

KEx
KBy

KCy
Kµy

KEy

] )
be the diagonal

update gain matrix. The parameter update term is given by

pk+1 = pk +
[
fx fy

]
JmKm (4.24)

A method was tried in which different slip ranges were reserved for altering certain param-
eters, similar to what was done in the linear version. However, this gave, at best, similar
results to eq. (4.24).

Single-track model parameter estimation

The single-track vehicle model, see fig. 4.7, is used in the design of high-level controllers.
The high-performance high-level lateral controller described in section 4.3 uses the single-
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4.5 Tire-ground force and friction estimation

track vehicle model with a linear tire model, whereas [23] uses one with a nonlinear tire
model.

Both controllers only use the lateral tire model. This is because αFL ≈ αFR and
αRL ≈ αRR, which makes the combined lateral force for each pair of wheels roughly
fit the Magic Formula. But with four wheel independent drive, all four wheels may be
spinning at different speeds, making a similar assumption for slip ratios highly inaccurate.
Therefore, only the lateral tire model parameters are estimated.

Equation (4.8) is used to calculate the slip angles for the front and rear combined tires,
and the term used in the fitness function is∑

Fy =FFy cos(δ) + FRy , (4.25)

where

FFy = (FFLz + FFRz )µs−tsin(Cs−ttan
−1(Bs−tα

F − Es−t(Bs−tαF − tan−1(Bs−tα
F ))))

FRy = (FRLz + FRRz )µs−tsin(Cs−ttan
−1(Bs−tα

R − Es−t(Bs−tαR − tan−1(Bs−tα
R))))

(4.26)
Other than that, the methods for estimating the linear and the nonlinear tire model param-
eters are the same as for the four-wheel model.
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Chapter 5
Results and analysis

In this chapter, the testing results from the different systems implemented in this thesis are
presented and discussed. Unfurtunately, due to the reallocation of manpower towards the
main overall project goal described in section 2.3, no quantitative results were produced
for the HPHLC. Nor was the interaction between the HPHLC and the TSCS tested.

5.1 MVP Trajectory Following at FSG
Due to problems passing the rigorous mechanical and electrical technical inspections, the
team was not allowed to enter any of the dynamic events at the competition in Hungary, and
only made it to the final event in Germany, which was the trackdrive event. At this event,
the car ran smoothly for one lap, at a steady but quick walking pace, without knocking
over any cones on the way. After one lap, the car stopped due to problems with the SLAM
module, which caused the trajectory to end. The lap can be seen by scanning the barcode
in fig. 5.1 with a smartphone or using this link:

https://youtu.be/HDqbehdr0o4

The car also drove autonomously during a successful EBS test. The track for the EBS
test is 3.5 meters wide, and the car has to accelerate to a velocity exceeding 40 km/h within
20 meters. The EBS is then triggered, and the car must come to a controlled stop. The
EBS test is failed if the car knocks over any cones. The car did this in a controlled manner,
but unfortunately this was not documented.

This counts as a flawless execution by the MVP version of trajectory following, ac-
cording to the requirements set. As the requirements were of a qualitative nature, rather
than a quantitative, no quantitative analysis will be performed.

As a side note, since many other teams also had similar issues, the team placed 2nd in
Hungary and 7th in Germany due to good performance in the static events. This was the
top placement among first-year teams in both competitions, and Revolve NTNU was also
the only first-year team to complete a lap in the trackdrive event.
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Figure 5.1: Scan this QR code with a smartphone to view Eld driving the trackdrive event. Alter-
nately, this link can be used: https://youtu.be/HDqbehdr0o4

5.2 Longitudinal force control
Figure 5.2 shows the reference tracking for the longitudinal force controller for a pre-
defined force profile on a straight trajectory. The controller is able to follow the force
profile with high precision, suggesting that it can be used as an interface for the high-level
controllers.
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estimation
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Figure 5.2: Reference tracking for longitudinal force controller for a predefined force profile.

5.3 Tire-ground force and friction estimation using non-
linear Pacejka parameter estimation

The results from a simulation run in IPG CarMaker are shown in section 5.3 and sec-
tion 5.3. IPG CarMaker uses an automated driver algorithm, which has a much less agres-
sive driving style than Revolve NTNU’s drivers. This means that the simulated vehicle
spends much less time in the high slip conditions required to get the correct shape for
the nonlinear parts of the tire model, than the physical vehicle would. It can therefore
be expected that the algorithm has better convergence on the physical vehicle than on the
simulation.

Looking at fig. 5.3 and fig. 5.4 we see that the coefficients of friction, µx and µy ,
converge to a rough estimate quite quickly. The other parameters seem to have little or
no convergence, but by looking at fig. 5.5 and fig. 5.6, we can see that the tire model
curves do indeed approach a good fit. This is probably due to the strong nonlinearity of
the tire model, which cause coupling effects between the different parameters. This way,
the curves can be quite similar even though the parameters are quite different.

Figure 5.7 and fig. 5.8 show that the fitness function does not really converge to zero,
but fluctuates in the near vicinity. This can be explained by looking at the real normalized
tire forces depicted by red o’s in fig. 5.9 and fig. 5.10. This suggests that the model is
imperfect, and is unable to account for certain dynamics. For the lateral dynamics, this is
in part because the model assumes a steady-state slip condition, which is handled by using
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- RMS error Peak error Peak value RMS error % Peak error %
of peak value of peak value

FFLx 23.71 195.25 1788.10 1.3 10.9∑
Fx 43.31 68.27 5917.95 0.7 1.2

FFLy 184.81 1417.90 2035.89 9.1 69.6∑
Fy 107.51 580.68 4673.56 2.3 12.4

Table 5.1: Error characteristics of tire force estimation

a relaxation model, eq. (4.21). This is not evident in fig. 5.10, but is more clearly shown in
fig. 5.12 in that the force estimates are much better for high-slip conditions than fig. 5.10
would suggest.

Figures fig. 5.11 and fig. 5.12 show the estimated forces vs. the real forces for each
tire. From the figures we can see that the estimate is quite good for both longitudinal
and lateral forces. From fig. 5.11 we can also clearly see that the new longitudinal force
estimate is much better than the old. This is not applicable for the lateral force estimate,
as no estimator existed before.

Table 5.1 further shows that the longitudinal force estimate is much better than the
lateral one. This makes sense when comparing the model fit fig. 5.9 and fig. 5.10. Note
that the peak value in FFLy is caused by the spike in slip angle at t=23, when the vehicle
almost swerved out of control.
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Figure 5.3: Longitudinal tire model parameters over time, with good, decent and poor starting
conditions.
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Figure 5.4: lateral tire model parameters over time, with good, decent and poor starting conditions.
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Figure 5.5: Longitudinal tire model at start and end of simulation for front left tire, with good,
decent and poor starting conditions.

Figure 5.6: Lateral tire model at start and end of simulation for front left tire, with good, decent and
poor starting conditions.
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Figure 5.7: Top: Fitness of the longitudinal tire model over time, with good, decent and poor starting
conditions. Bottom: Slip ratio over time for each tire.
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Figure 5.9: Longitudinal tire model vs. normalized tire forces.

Figure 5.10: lateral tire model vs. normalized tire forces.
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Figure 5.12: Estimated vs real (simulated) lateral tire forces for each wheel, from the tire model
with good starting parameters.
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5.3.1 Using estimated values for SR, SA and Fz
The results from section 5.3 are made using ground-truth values for SR, SA and Fz. This
is done in order to isolate the parameter estimation problem. However, on the physical
vehicle, these quantities are not readily available, and must be estimated. From figs. 5.13
to 5.15 we can see that the estimates for Fz and SA are quite good, but the estimates for SR
are not. This results in a good fit for the lateral tire model, see fig. 5.18, and good lateral
force estimates, see fig. 5.19. But the longitudinal tire model, fig. 5.16, and therefore the
longitudinal force estimates, fig. 5.17, are completely useless.
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Figure 5.13: Estimated vs real slip ratios
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Figure 5.14: Estimated vs real slip angles
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Figure 5.16: Longitudinal tire model vs. normalized tire forces using estimated input values.
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Figure 5.17: Longitudinal tire model vs. normalized tire forces using estimated input values.

Figure 5.18: Lateral tire model vs. normalized tire forces using estimated input values.
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Figure 5.19: Lateral tire model vs. normalized tire forces using estimated input values.

5.4 Pacejka tire model parameter estimation for single-
track vehicle model used in control algorithms

The algorithm for determining the parameters for the normalized Pacejka tire model for
the single-track vehicle model is the same as for the four-wheel model. Therefore, only the
final results are discussed. Figure 5.20 shows the normalized combined lateral forces for
the front and rear tires. We can clearly see that the assumption that the same tire model can
be used for both combined tires is not completely valid. Further, the normalized forces for
each of the combined tires follow a much less uniform curve than those of the individual
tires in section 5.3, which automatically makes any tire model curve a worse fit.

The algorithm finds the model that makes the best compromise in terms of the cost
function. Figure 5.21 shows that the force estimate is quite good for the combined front
tires, but not so good for the combined rear tires. Even though the graphs look pretty
closely matched, the values are often quite different at any given time. This impacts the
yaw acceleration estimate in much the same way, and we can see that, while the yaw
acceleration estimated by the single-track model follows the same general curve as the
true value, it is nowhere near perfect.

Wether of not the single-track model is sufficiently accurate to be used in the two high-
performance high-level controllers remains to be worked out, as neither controllers have
been tested in a high-fidelity simulator or on the physical car.
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Figure 5.21: Front (top) and rear (middle) combined tire forces, true vs. estimated using single-track
model. Yaw acceleration calculated from single-track model vs. real (bottom)
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Chapter 6
Conclusion and Further work

The MVP version of trajectory following, which was covered by the first two sub-objectives
for this thesis, performed flawlessly during the competition, as seen in fig. 5.1. It was, in
fact the most robust module in the autonomous driving pipeline throughout the summer.

The MVP was the only system developed in this thesis which made it onto Eld this
season. The remaining three sub-objectives were implemented in software, which counts
as a success for the thesis objectives. The author has limited control of the overall project,
and the high-performance systems were only implemented for the eventuality that the
upstream modules would be robust at higher speeds, which was not the case

The HPHLC was implemented in ROS, and qualitatively tested in Gazebo. The TSCS
was modified to accept a longitudinal force request as well as a yaw rate request, which
was the common downstream interface for the HPHLC and the MPCC module.

The Pacejka tire model parameter estimation algorithm was implemented in MAT-
LAB/Simulink. It provided quite good tire-road force and friction estimation in both the
lateral and longitudinal direction, given good values for Fz , SR and SA. The estimated
values for Fz and SA are sufficiently accurate, but the SR estimate is not, which makes the
longitudinal estimates very bad. Thus, this sub-objective was only partly successful.

6.0.1 Further work

For the next season, a good SR estimator should be implemented. This is important for
several sub-modules in the TSCS, not only the tire model parameter estimation algorithm.

When deemed sufficiently accurate, the tire-road force and friction estimates should be
used in the torque vectoring algorithm, to allow the vehicle to perform near the grip limit.
The next logical step is to make a complete data-driven tire model. This requires much
more effort, and additional sensors, than the parameter estimation algorithm, but should
give better results. The new tire model can be benchmarked against the old.

Qualitative testing of the HPHLC and the MPCC module, and/or any other high-level
controllers implemented, should be carried out in a high-fidelity simulator, in isolation as
well as in sequence with the TSCS, before being implemented on the Team 2019 driverless
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vehicle.
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