
ImageCL 3D Extensions Targeting
Adaptive Mesh Refinement Proxy
Applications on GPUs

Even Olsson Rogstadkjærnet

Master of Science in Computer Science

Supervisor: Anne Cathrine Elster, IDI
Co-supervisor: Jan Christian Meyer, IDI

Department of Computer Science

Submission date: August 2018

Norwegian University of Science and Technology

Problem Description
This project will build on the ImageCL work done in the fall, extending
the ImageCL language and compiler with functionality guided by proxy
applications, i.e. mini-applications with performance characteristics of
larger applications that can be used for performance modeling. The project
will evaluate one or more of the proxy applications worked on by the
Mantevo Project and develop it/them or a new application further to take
advantage of the GPU using ImageCL.

i

Sammendrag
Mens adopsjonen av parallelle og heterogene systemer fortsetter, øker
også programmerings-kompleksiteten i disse systemene. Rammeverk som
Compute Unified Device Architecture (CUDA) og Open Computing Lan-
guage (OpenCL) gir funksjonell portabilitet på tvers av støttede enheter.
Men de er ikke i stand til å kjøre den samme koden optimalt over forskjel-
lige arkitekturer, eller gi mulighet for å porte koden enkelt og effektivt til
andre Graphics Processing Unit (GPU) arkitekturer. Denne utfordringen
er kjent som ytelses portabilitet, og er viktig siden hardware arkitekturen
for GPU-er kan variere mye mellom forskjellige enheter.

Ved å gjøre optimaliseringer om til tuning parametere som kan bli gjort au-
tomatisk av kompilatoren, kan en auto-tuner bli brukt til å velge den beste
kombinasjonen av optimaliseringer for hver arkitektur. Denne strategien
har tidligere blitt utforsket ved å bruke ImageCL språket, som abstraherer
bort mye av kompleksiteten ved å gjøre mange manuelle optimaliseringer
om til tuning parametere.

I denne oppgaven utvider vi ImageCL språket og kompilatoren for å kunne
støtte et bredere spekter av applikasjoner. Disse utvidelsene vil bli styrt av
miniAMR, en proxy applikasjon med ytelse-karakteristikken til en Adap-
tive Mesh Refinement (AMR) applikasjon. I tillegg genererer vi flere GPU
stensil-kerneler fra ImageCL kode og integrerer dem i miniAMR app-
likasjonen, og klarer å få en betydelig ytelsesforbedring (opptil 6.78x) for
kernelene i forhold til referanse-implementasjonen.

ii

Abstract
As the adoption of parallel and heterogeneous systems increases, pro-
gramming such systems also becomes increasingly complex. Frameworks
like Compute Unified Device Architecture (CUDA) and Open Comput-
ing Language (OpenCL) provides functional portability across their sup-
ported devices. However, having the same code run optimally across
multiple devices with different architectures, including being able to port
code fairly seamlessly and efficiently to other GPU device architectures,
is not provided. This challenge, known as performance portability, is sig-
nificant since Graphics Processing Unit (GPU) architectures tend to get
updated and vary even more than Central Processing Unit (CPU) architec-
tures.

By transforming optimizations into tuning parameters that can be applied
statically by the compiler, an auto-tuner can be used to pick the best combi-
nation of optimizations for each architecture. This strategy has earlier been
explored using the ImageCL language and compiler, which moves much
of the complexity away from the programmer by abstracting away many
optimizations which would normally have to be applied manually.

In this thesis, we extend the ImageCL language and compiler to sup-
port a broader range of applications. These extensions will be guided by
miniAMR, a proxy application with the performance characteristics of an
Adaptive Mesh Refinement (AMR) application. AMR is a computational
method used for adapting the accuracy within certain regions of a domain,
and is often used in scientific and engineering applications. We generate
multiple GPU stencil kernels from ImageCL code and integrate them into
the miniAMR application. We are able to show a considerable speedup (up
to 6.78x) for many of the generated stencil kernels in miniAMR compared
to the reference implementation.

iii

Acknowledgements
The work on this thesis has been done under the supervision of Dr. Anne C.
Elster and Dr. Jan Christian Meyer, which I would like to thank for the help
and guidance given during this thesis. Thanks to NTNU for supporting
the HPC-lab and providing access to GPUs, and thanks to NTNU’s HPC
Center for access to the EPIC cluster. I would also like to thank my fellow
students at the HPC Lab for making the time spent at the lab much more
enjoyable. Finally, I would like to thank my family for the support and
encouragement provided during this thesis and also throughout my years
of study. Thank you.

Even Olsson Rogstadkjærnet

iv

Table of Contents

Problem Description i

Sammendrag ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables x

List of Figures xi

List of Listings xiii

List of Abbreviations xvi

1 Introduction 1
1.1 Project Goal . 3
1.2 Contributions . 3
1.3 Structure of the Thesis . 4

2 Background 5
2.1 Parallel Computing . 5

2.1.1 Classification of Parallelism 6
2.1.2 GPU Computing . 7

2.2 The GPU Architecture . 8
2.2.1 Thread Blocks . 8

v

TABLE OF CONTENTS TABLE OF CONTENTS

2.2.2 Streaming Multiprocessors 9
2.2.3 Single Instruction Multiple Threads 10
2.2.4 The GPU Memory Hierarchy 11
2.2.5 CUDA and OpenCL 12

2.3 Performance Portability . 14
2.3.1 Auto-Tuning . 14

2.4 ImageCL . 15
2.4.1 The ImageCL Language 15
2.4.2 The ImageCL Compiler 17
2.4.3 Tuning Parameters . 18
2.4.4 Stencil Computations 20
2.4.5 The ROSE Compiler Infrastructure 21

2.5 Proxy Applications . 23
2.5.1 Co-Design of Architecture and Algorithms 24
2.5.2 The Mantevo Project 26
2.5.3 Adaptive Mesh Refinement and miniAMR 26

2.6 Related Work . 28

3 3D and Other Extensions to ImageCL 29
3.1 The Block Type . 30

3.1.1 The idz keyword . 31
3.1.2 The none Boundary Condition 32
3.1.3 Double Precision Floating Point Support 32
3.1.4 The Footprint Table . 33
3.1.5 The Offset Operator 34

3.2 Kernel Wrapper . 36
3.3 Global Memory . 37
3.4 Shared Memory . 38
3.5 Texture Memory . 40
3.6 Constant Memory . 41
3.7 Register Caching . 42

4 Applying Code Generated by ImageCL into miniAMR 43
4.1 Memory Management and Setup 43
4.2 Kernel Implementations . 45

4.2.1 Using Single Read-Write Buffer 46
4.2.2 Using Read and Write Buffers 48
4.2.3 Using 3D Read and Write Buffers 48

vi

TABLE OF CONTENTS TABLE OF CONTENTS

4.3 Generated Kernels . 49

5 Results and Discussion 51
5.1 Methodology . 51

5.1.1 Configurations . 52
5.1.2 Validation . 52

5.2 Performance Measurements 53
5.2.1 Execution Time . 53
5.2.2 Memory Usage . 54

5.3 Discussion . 60

6 Conclusion and Future Work 63
6.1 Conclusion . 63
6.2 Future Work . 64

Bibliography 65

A ImageCL Kernels 73

B MiniAMR configuration 77

C Detailed Measurements 79

vii

TABLE OF CONTENTS TABLE OF CONTENTS

viii

List of Tables

2.1 Difference between the CUDA and OpenCL API for index
and dimension queries [25, 35]. 13

2.2 Difference between the CUDA and OpenCL terminology
[35, 20]. 13

4.1 The configurations and tuning parameters used for each
generated kernel. 50

5.1 The specifications of the three systems used in the measure-
ments. 52

5.2 The default problem size in miniAMR. 52

C.1 The time (in seconds) spent inside the kernel code for the
GTX 980 system. Timed using CUDA events. This data is
illustrated in Figure 5.1(a). 80

C.2 The time (in seconds) spent inside the kernel code for the
P100 system. Timed using CUDA events. This data is illus-
trated in Figure 5.1(b). 80

C.3 The time (in seconds) spent inside the kernel code for the
Titan V system. Timed using CUDA events. This data is
illustrated in Figure 5.1(c). 81

C.4 The time (in seconds) spent executing the kernel including
local kernel setup for the GTX 980 system. Timed using
gettimeofday. This data is illustrated in Figure 5.2(a). 81

C.5 The time (in seconds) spent executing the kernel includ-
ing local kernel setup for the P100 system. Timed using
gettimeofday. This data is illustrated in Figure 5.2(b). . . . 82

ix

LIST OF TABLES LIST OF TABLES

C.6 The time (in seconds) spent executing the kernel includ-
ing local kernel setup for the Titan V system. Timed using
gettimeofday. This data is illustrated in Figure 5.2(c). 82

C.7 The total time (in seconds) spent on the GPU setup on the
GTX 980 system. Timed using gettimeofday. This data is
illustrated in Figure 5.3(a). 83

C.8 The total time (in seconds) spent on the GPU setup on the
P100 system. Timed using gettimeofday. This data is illus-
trated in Figure 5.3(b). 83

C.9 The total time (in seconds) spent on the GPU setup on the
Titan V system. Timed using gettimeofday. This data is
illustrated in Figure 5.3(c). 84

C.10 The total runtime (in seconds) of miniAMR on the GTX 980
system. This data is illustrated in Figure 5.4(a). 84

C.11 The total runtime (in seconds) of miniAMR on the P100
system. This data is illustrated in Figure 5.4(b). 85

C.12 The total runtime (in seconds) of miniAMR on the Titan V
system. This data is illustrated in Figure 5.4(c). 85

C.13 The amount of global memory allocated (in Bytes) on the
GPU. This data is illustrated in Figure 5.5. 86

C.14 The amount of memory (in Bytes) copied from host to device
and from device to host. This data is illustrated in Figure 5.6. 86

x

List of Figures

2.1 The difference in hardware on the CPU and on the GPU,
focusing on the distribution of DRAM, cache, control units,
and ALUs for each device. From CUDA C Programming
Guide [35] with permission. 9

2.2 Block layout and distribution. From CUDA C Programming
Guide [35] with permission. 10

2.3 A five-point stencil. 21
2.4 The assignment x = (5 + 3) × 2 represented in an AST. 22
2.5 The seven-point stencil used in miniAMR. 27

3.1 A 5-point stencil calculation accessing the border memory. . 33
3.2 Workflow for binding host data to a three-dimensional tex-

ture object in CUDA. 41

4.1 General flow of device initialization in miniAMR. 44

5.1 Time spent inside the kernel code for the GTX 980-, P100-,
and Titan V-system. Timed using CUDA events. 55

5.2 Kernel execution time including local kernel setup for the
GTX 980-, P100-, and Titan V-system. Timed usinggettimeofday. 56

5.3 GPU total setup time on the GTX 980-, P100-, and Titan
V-system. Timed using gettimeofday. 57

5.4 Total time of miniAMR for the GTX 980-, P100-, and Titan
V-system. 58

5.5 Amount of global memory allocated on the GPU. 59
5.6 Amount of memory copied from host to device and from

device to host. 59

xi

LIST OF FIGURES LIST OF FIGURES

xii

Listings

2.1 An implementation of the rules of Conway’s Game of Life [18]
in ImageCL. 17

2.2 The assignment x = (5 + 3) × 2 built using the ROSE API. . . 22
3.1 Using the Block type to write a seven-point stencil in ImageCL. 30
3.2 A 27-point stencil using loops in ImageCL. 34
3.3 A 27-point stencil using a single buffer to read and write

using the + operator. 35
4.1 Overview of miniAMR after integration of generated code. . 44
4.2 Pseudo code of the reference implementation of the kernel. . 46
4.3 Simplified ImageCL kernel using a single read-write buffer . 47
4.4 Simplified ImageCL kernel using a read and write buffer. . . 48
4.5 ImageCL kernel using three-dimensional read and write

buffers. 49
A.1 ImageCL kernel using a single read-write buffer. 74
A.2 ImageCL kernel using read and write buffers. 75
A.3 ImageCL kernel using 3D read and write buffers. 76

xiii

LISTINGS LISTINGS

xiv

List of Abbreviations

ALU Arithmetic Logic Unit

AMR Adaptive Mesh Refinement

API Application Programming Interface

AST Abstract Syntax Tree

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

FFT Fast Fourier Transform

FLOPS Floating Point Operations Per Second

GPU Graphics Processing Unit

HIP Heterogeneous-compute Interface for Portability

HPC High Performance Computing

ILP Instruction Level Parallelism

MIMD Multiple Instructions Multiple Data

ML Machine Learning

MPI Message Passing Interface

OpenCL Open Computing Language

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Threads

xv

LISTINGS LISTINGS

SM Streaming Multiprocessor

SPMD Single Program Multiple Data

xvi

Chapter 1

Introduction

Since the end of Dennard scaling [9] around 2006, we have seen a shift from
high frequency single-core systems to multi/many-core and heterogeneous
systems. Multi/many-core systems takes advantage of parallelism to in-
crease the performance of an application. This usually comes at the cost
of the serial performance, as each core often comes with a lower frequency
than in a single-core system [11]. Heterogeneous systems are able to pro-
vide both high single threaded performance and high parallel performance
by combining a low latency CPU with a high throughput accelerator.

Although originally targeting graphics in computer games, GPUs provide
a high level of parallelism and high memory bandwidth, which makes it
well suited for data level parallelism. The GPUs thus have become some of
the most popular accelerators used in heterogeneous systems, and can be
found in both consumer and High Performance Computing (HPC) systems
today.

The ability to get optimal performance of the same kernel across mul-
tiple devices, also known as performance portability, is a known problem
for accelerators [46, 24, 43]. Frameworks such as CUDA and OpenCL
provides functional portability across their supported devices. However,
due to the wide range of available optimizations, devices, and architec-
tural differences, these frameworks are not able to provide performance
portability.

1

CHAPTER 1. INTRODUCTION

Auto-tuning has been proposed as a solution to the performance portabil-
ity issue. This involves automatically generating multiple different imple-
mentations from the same code and evaluation the performance of each
version. The version with the greatest performance is then chosen as the
final implementation. This can either be done with exhaustive search over
the domain, which can be time-consuming, or by using a model driven
approach that takes advantage of heuristics to find a subset of the domain
to evaluate [14, 28].

ImageCL is a language designed by Falch and Elster (2016) [12], to pro-
vide performance portability and make it easier to write image and stencil
based kernels for heterogeneous hardware. ImageCL abstracts away op-
timization features that would normally be required to do manually, e.g.
the memory levels. These optimizations are instead turned into tuning pa-
rameters, which can be used to train a machine learning model that can be
used as an auto-tuning model. This model can in turn be used to generate
optimized device code based on the platform and device it compiles for
[12, 15].

The ImageCL language provides the built-in Image type, which represents
a two-dimensional grid of pixels. The Image type makes it possible to adapt
stencils and other common image processing code that works on two-
dimensional problem domains, without restructuring the code. However,
calculations that works on three-dimensional problem domains are often
found in scientific and engineering code, and these are not easily adapted
to the ImageCL language.

Earlier work on ImageCL includes a CUDA backend to ImageCL, and
was added as part of the specialization project in the fall of 2017 [44]. This
allows ImageCL to generate optimized CUDA code in addition to OpenCL
code. In this thesis we will use this CUDA backend to generate our kernels
from the ImageCL code.

2

CHAPTER 1. INTRODUCTION 1.1. PROJECT GOAL

1.1 Project Goal

In this thesis, we aim to extend the ImageCL language and its compiler
to support a broader range of applications. We have decided to target
miniAMR [51], an Adaptive Mesh Refinement (AMR) proxy application,
because it contains a stencil computation which is well suited for ImageCL
and AMR is often found in scientific and engineering applications. The
miniAMR proxy application is used to guide the extensions we elect to
make to ImageCL so that it can be use for a wider range of scientific appli-
cations. Our work will include investigating how well our code generated
by the extensions to ImageCL is able to integrate with and improve the
performance of the proxy application and its stencil kernel.

1.2 Contributions

The contributions made in this thesis includes:

• TheBlock type extension to ImageCL, for representing three-dimensional
data.

• The idz keyword extension to ImageCL, for finding the thread iden-
tity in the z-dimension.

• The none boundary condition in ImageCL, which allows for manual
boundary handling.

• Extensions to the data analysis applied by ImageCL to support three-
dimensional optimizations.

• The offset operator in ImageCL, which allows for aliasing of Image
or Block data with offset.

• The support for memory optimizations on the Block type. This
includes shared memory, constant memory, and texture memory.

• Benchmarks of multiple miniAMR stencil kernels generated by Im-
ageCL, including the ImageCL kernel code.

3

1.3. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

1.3 Structure of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2 presents the necessary background material and information,
focusing on the GPU architecture, performance portability, and proxy ap-
plications.

Chapter 3 presents the extensions added to the ImageCL language and
compiler.

Chapter 4 describes how the code generated from ImageCL has been inte-
grated into the miniAMR proxy application.

Chapter 5 presents and discusses the performance measurements of the
miniAMR kernels generated by ImageCL.

Chapter 6 concludes the thesis and suggests areas suitable for future
work.

Appendix A shows the full code of the ImageCL kernels that is used to
generate the GPU kernels.

Appendix B illustrates the miniAMR configurations used in the perfor-
mance measurements.

Appendix C presents the performance measurements in detail.

4

Chapter 2

Background

This chapter highlights some of the necessary background information in
which the rest of the chapters are built on. Part of this chapter is based on
the background chapter of the specialization project [44] of the author in
the fall of 2017, where we extended the ImageCL compiler with a CUDA
backend in addition to the register caching optimization for the CUDA
backend. Section 2.1 gives a brief overview of different types of parallel
computing, before Section 2.2 gives a detailed description of the GPU
architecture and programming model. Section 2.3 explains the concept
of performance portability and auto-tuning. Next, Section 2.4 describes
the ImageCL compiler and language used to generate optimized GPU
code from tuning parameters. Section 2.5 gives an overview of proxy
applications and their use cases. Finally, Section 2.6 will briefly discuss
earlier related work.

2.1 Parallel Computing

Present hardware is built to take advantage of parallelism. This requires
developers to build software that is able to take advantage of this paral-
lelism to achieve good performance. Traditionally, developers have used
a serial model when designing and implementing software, but as the
serial performance of hardware have stagnated, taking advantage of this

5

2.1. PARALLEL COMPUTING CHAPTER 2. BACKGROUND

parallelism have become increasingly important [11, 5, 27].

Hardware and compiler architects have tried to exploit Instruction Level
Parallelism (ILP) which allows the CPU to execute multiple instructions in
parallel, while still letting the user program using a serial model. However,
it has shown to be difficult to take advance of ILP much further than we
currently are, and ILP has reached a point of diminishing returns. Instead,
more independent cores are added to the CPU that can be used to run
multiple parts of the program in parallel [21].

While multi-core systems do not have the same restrictions as ILP when it
comes to performance, it moves much of the complexity of parallelism on to
the developers. Developers now have to represent the system using a par-
allel model instead of a serial model, giving more control to the developer
at the cost of increasing the complexity of the software development.

2.1.1 Classification of Parallelism

Parallelism is often classified as either being task-level based or data-level
based. Task-level based parallelism is the simultaneous execution of indi-
vidual tasks, e.g. execution of two independent functions in parallel. This
means that separate instruction streams work on separate data streams in
parallel, also known as Multiple Instructions Multiple Data (MIMD). While
it is often easy to apply this kind of parallelism on separate tasks in the
application, it is usually hard to find a large portion of the application that
is well suited for this kind of parallelism since tasks are often dependent
on each other. MIMD can also be applied as data parallelism, e.g. letting
each thread work on on their own separate slice of an array [21].

Data level based parallelism, or data parallelism, is the simultaneous ex-
ecution of an operation on chunks of data of the same workload, e.g. by
letting each processing element work on its own part of an array. Single
Instruction Multiple Data (SIMD) is one form of data parallelism which
performs the same instruction on multiple items in parallel. The SIMD
parallelism is exposed as special instructions that works on multiple ele-
ments, and provides a simple way for the programmer to take advantage of
parallelism while still being able to use a serial model when implementing
the software. However, as all elements being operated on needs to take the

6

CHAPTER 2. BACKGROUND 2.1. PARALLEL COMPUTING

same instruction-path, the SIMD model can be limited in its functionality
[21].

Single Program Multiple Data (SPMD) is a specialization of MIMD where
the same program is executed on multiple processors with possibly dif-
ferent input data. This allows the control flow for each task to diverge,
rather than being executed in lockstep as with the SIMD model. However,
unlike SIMD, SPMD forces the programmer to use a parallel model when
building the application, which increases the complexity. Message Passing
Interface (MPI) [32, 48] is a standard that can be used to gain SPMD par-
allelism within an application. Recently, the Single Instruction Multiple
Threads (SIMT) model has become popular as it is the dominant parallel
model on the GPU. SIMT is a combination of SIMD and multithreading,
and will be explained in more details in Section 2.2.3 [21, 42].

2.1.2 GPU Computing

The GPU was first introduced as a fixed pipeline accelerator for graphics
that was meant to offload the compute heavy workload associated with
the three-dimensional graphics rendering from the CPU [42]. However,
as the GPU is particularly good at highly parallel and compute inten-
sive workloads, it has now evolved into a more general highly parallel
programmable processor. The result of this evolution is a processor like
NVIDIA’s GV100, based on the Volta architecture, with 5120 32-bits float-
ing point cores, 2560 64-bits floating point cores, and a peak tera-Floating
Point Operations Per Second (FLOPS) count of 15.7, which is a substan-
tially greater amount than any CPU is able to provide. In addition, the
Volta architecture introduces tensor cores that are designed specifically for
deep learning [29].

The GPU is designed for a particular class of applications that provides cer-
tain characteristics that the GPU is able to take advantage of. As explained
in Owens et al. (2008) [42], it needs to be an application where throughput
is more important than latency, the computational requirements are large,
and the opportunity for data-level parallelism is substantial. These require-
ments is a good fit for many scientific and high performance applications,
as well as games and other graphics intensive applications [42]. Today it

7

2.2. THE GPU ARCHITECTURE CHAPTER 2. BACKGROUND

is common to use a heterogeneous system that combines the low-latency
attribute of the CPU with the high-throughput attribute of the GPU. This
provides a high value of performance, price and power usage.

The major GPU vendors, like NVIDIA, AMD, and Intel, have seen the
potential of general purpose computing on the GPU and released vendor
specific Application Programming Interfaces (APIs) like NVIDIA’s CUDA
platform [37] and AMD’s Heterogeneous-compute Interface for Portabil-
ity (HIP) [2], or supported open standards like OpenCL [26]. OpenCL
provides functional portability to all devices that supports the OpenCL
standard. This includes the majority of CPUs and GPUs, and many other
specialized accelerators.

2.2 The GPU Architecture

This section describes the architecture of the GPU, and we will use the
CUDA terms when explaining different components found in the GPU.
However, you will find many of the same concepts in other vendors ar-
chitecture under potentially different names, and many of the differences
between CUDA and OpenCL will be explained in detail in Section 2.2.5.
NVIDIA introduced the CUDA architecture in 2007 as a parallel comput-
ing platform and programming model for general computing on the GPU
[38, 37].

Figure 2.1 illustrates the main structural difference between the CPU and
the GPU. We can see that the CPU provides large caches and more advanced
control units, while the GPU contains many simpler Arithmetic Logic Units
(ALUs). This difference in architecture is the main reason the CPU excels at
low-latency workloads, while the GPU excels at compute intensive, data-
parallel workloads [35, 27]. In the follow sections, we will go into details
of how the GPU architecture works.

2.2.1 Thread Blocks

A thread block is an abstraction which represents a grouping of primitive
threads that executes the same kernel. The number of threads within a

8

CHAPTER 2. BACKGROUND 2.2. THE GPU ARCHITECTURE

Figure 2.1: The difference in hardware on the CPU and on the GPU, focusing on
the distribution of DRAM, cache, control units, and ALUs for each device. From
CUDA C Programming Guide [35] with permission.

thread block is chosen based on the amount of resources desired by each
thread and the desired occupancy on the Streaming Multiprocessor (SM).
The threads can be organized in either a one-, two-, or three-dimensional
layout within a single thread block, and the thread blocks are then orga-
nized into a grid in either a one-, two-, or three-dimensional layout [35,
21]. This is illustrated in Figure 2.2(a) where threads in a two-dimensional
grid of two-dimensional blocks are organized.

This flexibility makes it easier to work with problems like multi-dimensional
matrices. In addition, the thread blocks are executed independently of each
other, which allows the thread blocks to be distributed across SMs differ-
ently depending on the amount of SMs available on the GPU. As illustrated
in Figure 2.2(b), the GPU can distribute the workload across all available
SMs, making the program scale across different devices.

2.2.2 Streaming Multiprocessors

The SMs are the hardware on the GPU that is able to execute the users GPU
kernels. Each SM contains their own registers, caches, warp schedulers,
and dispatch units, as well as execution cores for integers, and 32-bits and
64-bits floating point operations [36, 27]. In addition, the Volta architecture
introduced the Tensor Core, which is a mixed-precision 16-bits and 32-
bits execution core built for deep learning matrix arithmetic. The warp

9

2.2. THE GPU ARCHITECTURE CHAPTER 2. BACKGROUND

(a) A two-dimensional grid of
two-dimensional blocks.

(b) Distribution of blocks on two devices with
different amount of SMs available.

Figure 2.2: Block layout and distribution. From CUDA C Programming Guide [35]
with permission.

scheduler and dispatch unit is responsible to schedule and switch contexts
between warps, and to issue instructions to warps that are ready to execute,
respectively. The Volta GV100 GPU from NVIDIA has 80 SMs that can
execute blocks independently [29]. As seen in Figure 2.2(b), the thread
blocks are mapped to the hardware by dividing them between available
SMs. This asserts that each thread block gets the most resources available
on each SM.

2.2.3 Single Instruction Multiple Threads

The SM is able to execute hundreds of threads concurrently by taking
advantage of SIMT. SIMT is an execution model where multiple threads
are grouped together and executes the same instructions in lockstep on
different data. In CUDA, these groups are called warps and consists of 32
threads. When a SM is given a block for execution, it partitions the threads
in the block into warps that is scheduled by a warp scheduler [36].

Threads within a warp have their own instruction address counter and

10

CHAPTER 2. BACKGROUND 2.2. THE GPU ARCHITECTURE

register state which enables them to take different paths in the program.
If threads within a warp take different paths, the warp executes each path
while masking out threads not on the current path. This is called branch
divergence and while this does not affect the correctness of the program, it
causes the execution of branches to be serialized, leading to performance
decrease [36].

Volta [29] introduced Independent Thread Scheduling which allows full con-
currency between threads, regardless of warp. A Schedule Optimizer now
instead groups active threads within a warp together into SIMT units,
which enables the high throughput of earlier NVIDIA architectures in ad-
dition to increased flexibility as threads can diverge and reconverge at
sub-warp granularity [36].

2.2.4 The GPU Memory Hierarchy

There are two main groups of memory: memory located on-chip and mem-
ory located off-chip in DRAM. Memory located on-chip includes registers,
shared memory, and cache. Registers are the fastest memory on the GPU
and is local to each thread. The maximum amount of registers per thread
in Volta is 255. However, this number will be limited by the occupancy on
the SMs, and with a 100% occupancy each thread will only have access to
32 registers [29]. Shared memory is a user managed cache that is shared
between all threads in the same thread block. Shared memory is divided
into banks that can be accessed simultaneously, yielding a high memory
bandwidth as long as no bank conflict happens [34, 27].

Off-chip memory includes global memory, local memory, constant mem-
ory, and texture memory. Global memory is the largest available memory
on the GPU but is also one of the slowest, together with local and texture
memory. Local memory is local to each thread and is used when threads
does not have any available registers left or if the data is too big to fit
in registers. Texture memory is read-only memory for the device and is
cached so it only needs to be read from off-chip memory once. The texture
cache is optimized for two-dimensional spatial locality. Constant memory
is, like texture memory, read-only cached memory that can broadcast a
single value to threads in a half-warp, leading to only a single memory

11

2.2. THE GPU ARCHITECTURE CHAPTER 2. BACKGROUND

access if all threads requests data from the same memory location. This
will generate only 1

16 of the memory traffic as you would when reading
from global memory [34, 27, 47].

2.2.5 CUDA and OpenCL

The CUDA C language [37] is an extension of the C/C++ languages that
exposes the GPU architecture to the user through an API that allows the
user to create functions that can be executed on the GPU. These functions
are called kernels and are executed once per thread in parallel. The CUDA
API allows the user to decide the grid and block dimensionality when
calling the kernels. Inside each kernel, the user is exposed to additional
built-in variables and functions that interfaces with the GPU hardware.
This functionality allows the user to identify the current running thread,
both local to the thread block and globally in the grid, which allows the
user to divide the work between the threads. In addition, the CUDA API
exposes GPU specific functionality to the user, allowing optimizations not
possible through regular C/C++. The memory levels are one of these, and
the user can define what kind of memory the allocated data should be
placed in through special keywords like shared and global . The API
also provides method to allocate, deallocate, and transfer data between the
host and the device [35].

CUDA is specific to NVIDIA GPUs and is developed by the company that
also designs the hardware. This allows the CUDA API to map closely to
the underlying hardware architecture and computing characteristics of the
NVIDIA GPU. However, this also limits the amount of devices the code
can be run on. OpenCL is an open standard for accelerated computing
which provides functional portability across all devices which supports the
OpenCL standard. Since OpenCL needs to support a wide range of devices,
the OpenCL API is more general than the CUDA API. The programming
model for CUDA and OpenCL is still very similar, and while the two APIs
uses different terms, they use the same grid and thread block model for
execution on the GPU. Table 2.1 gives an overview of how the indexing
and dimensionality is queried in each of the APIs, and Table 2.2 shows the
terminology used in CUDA and OpenCL.

12

CHAPTER 2. BACKGROUND 2.2. THE GPU ARCHITECTURE

Table 2.1: Difference between the CUDA and OpenCL API for index and dimen-
sion queries [25, 35].

Description CUDA (variables)
OpenCL

(functions)
Amount of blocks in the grid gridDim get num groups
Amount of threads in the block blockDim get local size
Index of the block blockIdx get group id
Local index of the thread threadIdx get local id
Global index of the thread blockIdx * blockDim + threadIdx get global id
Amount of threads in the grid gridDim * blockDim get global size

Table 2.2: Difference between the CUDA and OpenCL terminology [35, 20].

CUDA OpenCL
Streaming multiprocessor Compute unit
Thread Work-item
Thread block Work-group
Shared memory Local memory
Local memory Private memory
Global memory Global memory
Constant memory Constant memory
Texture memory Image memory

13

2.3. PERFORMANCE PORTABILITY CHAPTER 2. BACKGROUND

2.3 Performance Portability Across GPUs

While the programming models used for CUDA and OpenCL provides
functional portability across all their supported devices, guaranteeing the
same final outcome of a computation, the performance of said computation
may vary from device to device [46, 24]. An application that is optimized
for a specific device might therefore perform worse on other devices, based
on the underlying hardware architecture and the resources available for
each device [43]. Performance portability on the GPU is often worse than
on the CPU, since the GPU architecture often changes more drastically
than on the CPU. In addition, many of the optimizations on the GPU are
more often exposed to the user, like shared memory and block dimensions,
while on the CPU they are often done in the hardware or by the compiler,
like caching and prefetching. While the block distribution, as seen in
Section 2.2.1, mitigates this problem across GPUs, it does not solve it.

2.3.1 Auto-Tuning

The responsibility of performance portability is thus on the user, which
means it is often necessary to optimize the application for each device the
application is meant to be executing on to achieve high-performance across
devices. This work is not feasible for most programmers to do manually,
as the amount of devices being targeted is often substantial. Additionally,
the process of optimizing the application for each device itself is time
consuming and prone to errors [14].

A proposed solution to the performance portability problem on the GPU
is auto-tuning. Auto-tuning is the act of automatically generating imple-
mentation candidates, measuring the performance of these candidates, and
then choosing the best one based on the measurements [14]. Auto-tuning
has seen successful use in areas like Fast Fourier Transform (FFT) with the
FFTW library [17], and linear algebra with the ATLAS library [7], among
others. Auto-tuning can be done empirically, but as the amount of possible
implementation candidates can be large it can be a time consuming and
impractical solution.

A model-driven approach for auto-tuning is often a better solution, as it

14

CHAPTER 2. BACKGROUND 2.4. IMAGECL

narrows down the search space before it evaluates the implementation can-
didates. It achieves this by introducing a performance model that applies
some heuristic or domain knowledge to find a subset of the implemen-
tation candidates that are most likely to be one of the optimal solutions.
However, the accuracy of model-driven auto-tuning is dependent on the
quality of the model, which usually requires a lot of time and high domain-
knowledge of the target architectures to implement. Machine Learning
(ML) methods have been used to train the auto-tuning model instead of
manually implementing it. This is done by generating implementation
candidates that can be used to train an ML based performance model. This
model can then be used to predict the subset of implementation candidates
that is most likely to perform well, and then evaluate these [14, 28].

The ability to use ML to train a performance model, is one of the main
driving factors for the development of ImageCL and its tuning parameters,
which will be described in Section 2.4.

2.4 ImageCL

The OpenCL and CUDA languages exposes the user to many distinct and
often complex optimization opportunities. However, while a certain com-
bination of optimizations might lead to good performance on the device
being targeted, it might lead to worse performance on another. This section
describes the ImageCL language and compiler developed by Falch and El-
ster [12, 15]. ImageCL tries to make GPU programming easier by turning
the optimization opportunities exposed in OpenCL and CUDA into tuning
parameters which can be handled by an auto-tuner instead.

2.4.1 The ImageCL Language

ImageCL is a programming language designed to simplify the process
of creating image processing kernels for heterogeneous hardware. The
language is based on the same programming model used by OpenCL and
CUDA. However, it makes some changes to the model to simplify the
process. In contrast to OpenCL and CUDA, where the programmer works

15

2.4. IMAGECL CHAPTER 2. BACKGROUND

in a two-level thread hierarchy as seen in Subsection 2.2.1, ImageCL only
defines a single flat thread space. The size and dimensionality of the thread
blocks are turned into an implementation detail instead [12].

Like in OpenCL and CUDA, the ImageCL kernel represents the work
performed by a single thread, but ImageCL defines the built-in variables
idx and idy which represents the identity of the thread in x-, and y-
direction, respectively. These built-in variables can be used to easily access
the data element, also referred to as pixels, corresponding to each thread
in the grid. This is in contrast to CUDA especially, where the user is
exposed to the local thread identity within a thread block, in addition to
the dimensionality and size of the thread blocks and the grid. This often
forces the user to do the calculations manually to get the corresponding
data element for a thread [12].

ImageCL also provides a custom datatype called Image that can be mapped
to the grid, defining the size and dimensionality of the grid to be the same
as the Image. The Image datatype allows for two-dimensional indexing,
making it easy to apply idx and idy to access the pixels in the Image. In
addition, the user is able to specify a boundary condition that enables out-
of-bounds accesses to be well defined on Images. This boundary condition
can either be set to clamped, meaning that the accesses outside the image
is set to the closest pixel within the image, or as a constant value specified
by the user.

Listing 2.1 shows an implementation of the rules of Conway’s Game of Life
[18] in ImageCL. In the example we can see how the grid is mapped to the
Image and how the boundary condition is set to a constant value, i.e 0. It
also illustrates how the built-in variables idx and idy are used to access
the Image in a stencil pattern.

As explained in Section 2.2.4, the GPU has multiple types of memory
that is exposed to the user in both CUDA and OpenCL. This makes the
memory mapping complex for the user, as each memory level can affect
the performance of the application in some way. ImageCL abstract away
these different memory levels and exposes the user to only a single flat
address space [12].

16

CHAPTER 2. BACKGROUND 2.4. IMAGECL

#pragma imcl grid(v, o)
#pragma imcl boundary_cond(v:constant)
void conway(Image<int> v, Image<int> o){

int sum = v[idx - 1][idy - 1]
+ v[idx][idy - 1]
+ v[idx + 1][idy - 1]
+ v[idx - 1][idy]
+ v[idx + 1][idy]
+ v[idx - 1][idy + 1]
+ v[idx][idy + 1]
+ v[idx + 1][idy + 1];

if (v[idx][idy] == 1) {
if (sum == 2 || sum == 3) {

o[idx][idy] = 1;
} else {

o[idx][idy] = 0;
}

} else if (sum == 3) {
o[idx][idy] = 1;

} else {
o[idx][idy] = 0;

}

}

Listing 2.1: An implementation of the rules of Conway’s Game of Life [18] in
ImageCL.

2.4.2 The ImageCL Compiler

The ImageCL compiler is a source-to-source compiler, or transpiler, which
currently is able to generate OpenCL and CUDA code. All the complexity
that the ImageCL language abstracts away, like the memory levels and
the thread hierarchy, are turned into tuning parameters that each corre-
sponds to one possible implementation in OpenCL or CUDA, where each
implementation will have a distinct optimization applied.

17

2.4. IMAGECL CHAPTER 2. BACKGROUND

While these tuning parameters could be given manually by the user, the
ImageCL compiler is meant to be used together with an auto-tuner that
is able to pick the best performing parameters for a given device. This
tuning phase operates together with an auto-tuner to generate multiple
implementation candidates. The source code is analyzed to find the possi-
ble parameter space, which is then fed into the auto-tuner. The auto-tuner
generates the parameter values and the ImageCL compiler creates a candi-
date implementation that is benchmarked to find the execution time. The
auto-tuner can repeat these steps multiple times until it is confident that
the best implementation candidate has been found [12, 15].

2.4.3 Tuning Parameters

This section describes the tuning parameters used in ImageCL. Since Im-
ageCL is a programming language focusing on image computation, which
includes stencil based computations, the tuning parameters will be most
specific towards the types of optimizations which benefits stencil compu-
tations and other computations found mostly in image processing. The
following tuning parameters are currently used in the ImageCL compiler
[12, 15]:

• Thread block size: The thread block size can play a decisive role in
the performance of the application. One reason is that communica-
tion between threads often happens through shared memory, which
is local to each block. So dependent on the communication pattern
in the application, the optimal thread block size might vary. Another
reason is that the number of blocks needed will vary based on the
size of the blocks, and the amount of scheduling done by the SMs
will vary based on the number of blocks used, as illustrated in Figure
2.2(b) in Section 2.2.1. The grid size however, is mapped to the data
and is therefore not a tuning parameter.

• Thread coarsening: Thread coarsening is how much work each
thread will perform. While the GPU should use thousands of threads
to fully utilize the hardware, the input data might be millions of ele-
ments long. In that case it might be better to let each thread perform
more work instead of spawning millions of threads. This is done by

18

CHAPTER 2. BACKGROUND 2.4. IMAGECL

letting each thread work on a local block of pixels. The dimension-
ality of this local block is also part of the tuning parameter, since the
access pattern of the kernel might give an performance impact based
on it.

• Thread mapping: The thread mapping describes the access pattern
used by the threads. For example, if a thread is assigned pixels in
a contiguous block of memory, the access pattern could give good
spatial locality. However, on the GPU this might give overall worse
performance as the access pattern has poor coalescing [34, 35]. By
instead using interleaved memory access it might be possible to get
a performance increase as the memory access will be coalesced into
fewer total memory accesses.

• The memory parameters: All the memory levels used as tuning pa-
rameters in ImageCL are described in Section 2.2.4 and each of them
provides their own distinct benefits and drawbacks depending on
the contexts they are used in. Additionally, not all memory types can
be used depending on the kernel, like texture and constant memory,
since they are read-only from device and can thus not be modified.
By turning them into tuning parameters, ImageCL lets the auto-tuner
predict if it is beneficial to use them instead of global memory in that
particular case.

• Loop unrolling: Loop unrolling, or loop unwinding, is an optimiza-
tion that repeats the loop body while adjusting the loop counter to
match the total amount of work done. This can lead to reduced branch
penalty from the loop, reduce the overall executed instructions, and
potentially exposes more parallelism to the compiler. However, loop
unrolling can also lead to increased program size which can poten-
tially lead to an increase in instruction cache misses, hinder function
inlining as the inlined code size would be multiplied with the degree
of loop unrolling, and possibly lead to worse branch prediction if the
iterations contained branching [33].

Since there are both significant benefits and disadvantages of apply-
ing loop unrolling, ImageCL turns it into a tuning parameter and lets
the auto-tuner decide what to do.

• Register caching: Register caching is a CUDA specific optimization

19

2.4. IMAGECL CHAPTER 2. BACKGROUND

that uses a warp-local cache built up from registers. Registers provide
both higher bandwidth and lower access latency than shared mem-
ory, but using registers as a user managed cache instead of shared
memory has historically not been an option due to their thread local
lifetimes. However, NVIDIA’s Kepler architecture introduced the
shuffle instruction which made it possible for threads within a warp
to share data without going through other memory levels, e.g. shared
memory [39].

To apply register caching as an optimization, we need an access
pattern which is well suited for manual caching, like stencil compu-
tations which provides a predictable access pattern at compile time.
Usually, shared memory has been used for this kind of memory opti-
mizations, but this is also a use-case well suited for register caching.
Register caching also performs store-and-load operations in a single
step, in contrast to shared memory, and eliminates the need for ex-
pensive thread block-wise synchronization. This provides register
caching an additional performance advantage compared to shared
memory as long as registers are not spilled into local memory [13].

2.4.4 Stencil Computations

Stencil computation is a kind of computation that involves determining
the value of an element in a grid according to a fixed access pattern, called
a stencil. Stencil computations are often found in scientific code like image
processing, discretized differential equations, and adaptive mesh refine-
ment. Stencils comes in many different variants, and Figure 2.3 shows
a five-point stencil used to determine the value of a single element in a
two-dimensional grid. Stencil computations are well suited for the GPU,
as each element in the grid can be computed independently of each other.
In addition, stencil computation uses a fixed access pattern which makes
them particularly well suited for register caching since register caching
needs to know the access pattern at compile time [13, 40].

The computing time and memory usage of stencil computations grows
linearly with the amount of elements within an array. This means that
parallel implementations of stencil computations are of high importance

20

CHAPTER 2. BACKGROUND 2.4. IMAGECL

−1, 0 1, 0

0,−1

0, 1

Figure 2.3: A five-point stencil.

in areas like scientific computing, where the working sets are usually very
large. Stencil computations are therefore one of the main targets for the
ImageCL language, and provides easy abstractions for working with these
sort of computations.

2.4.5 The ROSE Compiler Infrastructure

The ImageCL compiler is implemented using ROSE [45]. ROSE is an open
source compiler infrastructure to build source-to-source program transfor-
mation and analysis tools for large scale applications. It particularly tar-
gets custom tools for static analysis, program optimization, performance
analysis, and cybersecurity. It consists of multiple different front-ends for
different languages and currently supports C [6], C++ [16], FORTRAN [54],
UPC [50], and OpenMP [41] for C, C++, and FORTRAN applications.

The intermediate representation used in ROSE is a high level Abstract
Syntax Tree (AST) that is well suited for source-to-source transformations,
which allows the user to do analysis, optimizations, and transformations
on it. An example of a simple AST is illustrated in Figure 2.4. By mod-
ifying the AST we can insert and modify the necessary code to generate
optimized GPU code which has been abstracted away and replaced by

21

2.4. IMAGECL CHAPTER 2. BACKGROUND

=

x ×

+

5 3

2

Figure 2.4: The assignment x = (5 + 3) × 2 represented in an AST.

tuning parameters. When we have finished transforming the AST to rep-
resent valid OpenCL or CUDA code and applied the given optimizations,
ROSE is able to traverse the AST and generate the corresponding source
code. Listing 2.2 illustrates how the AST in Figure 2.4 would be built using
the ROSE API.

auto *assignment = buildAssignStatement(
buildVarRefExp("x", scope),

buildMultiplyOp(

buildAddOp(

buildIntVal(5),

buildIntVal(3)

),

buildIntVal(2)

)

);

Listing 2.2: The assignment x = (5 + 3) × 2 built using the ROSE API.

The program analysis available includes call graph analysis, control flow
analysis, data flow analysis, class hierarchy analysis, data- and system-
dependence analysis, and MPI communication pattern analysis. The opti-
mizations and translations functionality also includes partial redundancy
elimination, constant folding, inlining, outlining, OpenMP directive low-
ering, automatic parallelization and loop transformations [45].

22

CHAPTER 2. BACKGROUND 2.5. PROXY APPLICATIONS

2.5 Proxy Applications

Full-scale business, scientific, and engineering applications are often very
large and complex, some of them reaching millions of lines of code and
having dependencies of numerous third-party libraries or frameworks.
This usually leads to these applications requiring substantial systems pro-
gramming expertise, domain knowledge, and time in order to being able to
get the system up and running and do modification within the code base.
Additionally, there are many factors that determines the performance of
an application. Some of them are the hardware architecture, the runtime
environment, the algorithms used in the application and their implementa-
tion, the programming language and the compiler used, and the compiler
flags used when building the application. Because of this complexity it
can be beneficial to use smaller applications as performance proxies when
experimenting with early stage design of applications.

These smaller applications are known as proxy applications. There are
multiple types of proxy applications which are useful when doing design
studies of applications, each providing their own advantages and disad-
vantages. Some of the most common proxy applications used for perfor-
mance studies are kernels, benchmarks, compact-applications, skeleton-
applications, and mini-applications [10]:

• Kernels: Represents regions in an application which are critical for
performance, i.e. hotspots. They are usually small, between 10 and
100 lines of code, and are usually just a single function or some other
self contained region of code. While these types of proxy applications
are often easy to experiment with, their smaller size limits the scope
of which performance modeling can be performed on [10].

• Benchmarks: Proxy applications meant to provide a performance
estimation for a specified software implementation. They are usually
not meant for experimentation of application design and has more
usage restrictions than the other proxy applications. The output of
benchmarks are the runtime of the system or multiple parts of the
system, which can be used to rank different implementations based
on their performance or catch performance regression for a single
implementation [10].

23

2.5. PROXY APPLICATIONS CHAPTER 2. BACKGROUND

• Compact-applications: Simplified versions of the original applica-
tion, which usually strips away the components not required to do
the core logic of the application. These types of proxy applications
provides good opportunities for performance modeling except for
in the earliest stages of development. However, they are usually
large applications in the range of 10, 000 to 100, 000 lines of code, and
the ability to do experiments can in some cases be limited by the
complexity of these applications [10].

• Skeleton-applications: Applications with an accurate implementa-
tion of the inter-process communication while the actual computa-
tions are done synthetically. This allows experimenting with com-
munication strategies, measure the performance of the inter-process
communication, and model communication complexity while keep-
ing the code base at a manageable level [10].

• Mini-applications: A mini-application is a condensed implementa-
tion of one or multiple key performance impacting aspects found
in the original application. This implementation is written to give
the opportunity for refactoring and experimenting, while still be-
ing representative enough of the original application to be useful in
the problem domain. Mini-applications are able to capture key per-
formance issues within the original application and present it in a
simplified context which can be used to do rapid testing and experi-
mentation on. These types of proxy applications are often useful for
performance modeling throughout the whole system design phase.
The size of a mini-application is usually in the range of 1000 to 10, 000
lines of code [10].

2.5.1 Co-Design of Architecture and Algorithms

As clock speeds are increasingly constrained by power and cooling lim-
its, multi-core/many-core architectures continues to dominate high perfor-
mance computing [5]. The Sunway TaihuLight supercomputer in China
features 10, 649, 600 cores and a theoretical peak performance of 125, 435.9
TeraFLOPS [49]. However, there is a wide gap between the theoretical peak
performance of these machines and what can actually be achieved with to-

24

CHAPTER 2. BACKGROUND 2.5. PROXY APPLICATIONS

day’s algorithms. As the amount of cores on the system increases, so does
the complexity of the architecture and this gap is likely to grow even larger.
This is one of the key design challenges for supercomputer architectures
today, and one that must be overcome to reach Exascale computing (1000
TeraFLOPS).

Some of the challenges for reaching Exascale computing include the power
wall [53, 52], memory wall [55], new programming models, and algorithms
with good multithread-scaling. Reaching Exascale computing will require
new approaches to applications, algorithms, system software, and com-
puter architecture which faces these challenges. One of these approaches
is to co-design the computer architecture and the software algorithms to
create architectural-aware and highly scalable algorithms. For this to work,
tools that are able to measure the impact of architectural changes on soft-
ware is needed, to guide the development of future architectures and
identify bottlenecks in software. This is a good use case for proxy appli-
cations, especially mini-applications, as they are able to be representative
of the performance characteristics of complex full-scale applications while
still being easy to modify and experiment with [1, 22, 19].

In particular, Heroux et al. (2009) [22] claims that mini-applications can
benefit in the following situations:

• Interaction with external research communities: While the origi-
nal application might be closed source and proprietary, the mini-
applications are open source software. This allows easy interaction
with third parties which would otherwise not have access to the
software.

• Simulations: Mini-applications are well suited for use in simulation
software as they are simpler than full-scale applications while still
supporting the study of processor, memory and network architec-
tures.

• Early node architecture studies: Since nodes are often available long
before the complete system, mini-applications provide an opportu-
nity to study the performance of the node architecture early in the
design process of the system.

• Network scaling studies: Mini-applications can be configured to run
on multiple processors which allows for the scalability of the network

25

2.5. PROXY APPLICATIONS CHAPTER 2. BACKGROUND

to be studied.

• New languages and programming models: Since mini-applications
are considerably simpler than full-scale applications, they are easily
modified or rewritten into new languages and programming models.

• Compiler tuning: As mini-applications provides the performance
characteristics of a special problem domain, it can provide compiler
developers with a focused environment in which code optimizations
can be developed and tested.

2.5.2 The Mantevo Project

The Mantevo project [30] was initiated in 2006 and has since then developed
application performance proxies, or more specifically mini-applications,
for computational science and engineering applications. Each of the mini-
applications provided by the Mantevo project focuses on one or multiple
key performance characteristics of an application or a class of applica-
tions within computational science and engineering. This includes par-
tial differential equations (implicit/explicit and structured/unstructured),
molecular dynamics, hydrodynamics, circuit simulations, and adaptive
mesh refinement. These mini-applications provides developers of differ-
ent backgrounds to have a small representative code base which can be
used to understand and answer question about algorithmic implementa-
tions and architecture [10, 30].

2.5.3 Adaptive Mesh Refinement and miniAMR

Adaptive Mesh Refinement (AMR) [4, 3] is a computational method used
for adapting the accuracy within certain regions of a domain. AMR is
able to improve the accuracy of important sections of the domain while
reducing overall memory usage in the simulation, compared to using a
static domain. It is often used in science and engineering applications
together with finite difference and finite volume algorithms [51].

MiniAMR is a mini-application developed by the Mantevo project in order
to explore critical performance issues found in finite difference and finite

26

CHAPTER 2. BACKGROUND 2.5. PROXY APPLICATIONS

−1, 0, 0

1, 0, 0

0,−1, 0

0, 1, 0

0, 0,−1

0, 0, 1

Figure 2.5: The seven-point stencil used in miniAMR.

volume applications which takes advantage of AMR. The main computa-
tion found in miniAMR is a seven point stencil computation, as seen in
Figure 2.5, over the domain and yields the average value of a cell and its
neighbouring cells in the x-, y-, and z-directions. While full-scale applica-
tion within this domain uses multiple types of stencils based on the context,
miniAMR’s computation accesses all the memory associated with a block
which is usually more important than the specific stencil in use. In addi-
tion, each block of the domain used by miniAMR contains the necessary
ghost values needed for the computations, and needs to be communicated
between all blocks with portions of a face in common for each stage of the
computation. When multiple processors are used, the data is exchanged
using MPI’s non-blocking point-to-point functionality [51].

The miniAMR proxy application has been chosen as ImageCL is already
able to handle two-dimensional stencil calculations, and extending Im-
ageCL to handle the three-dimensional stencils found in miniAMR is a
natural progression of the feature set of ImageCL.

27

2.6. RELATED WORK CHAPTER 2. BACKGROUND

2.6 Related Work on Performance Portability and
Proxy Applications

In 2012, Kulkarni and Cavazos successfully applied machine learning to
train a neural network to choose the phase ordering of compiler optimiza-
tions on a function to function basis by training on features extracted from
these functions [28]. In 2016, Falch and Elster used machine learning to
build a neural network performance model to predict the runtime of imple-
mentation candidates, instead of manually deriving the model [14]. This
was done by creating parameterized benchmarks where each parameter
represents one possible implementation of the benchmark, and train the
model on the runtime of randomly chosen sets of parameters. This model
could then be used to predict the runtime of new sets of parameters, instead
of benchmarking each one.

Falch and Elster (2016) [12] developed ImageCL to improve performance
portability by generating optimized GPU code from tuning parameters,
instead of exposing them directly to the user. By combining ImageCL
with an auto-tuner to pick the best implementation, a large part of the
complexity of heterogeneous performance portability can be abstracted
away. ImageCL was able to outperform other state of the art solution in
several benchmarks.

Earlier work on the ImageCL compiler has been performed by the author
as part of the specialization project in the fall of 2017 [44]. This included
the implementation of a CUDA backend in addition to the already existing
OpenCL backend for ImageCL, and implementing the register caching
optimization for the CUDA backend.

Matthew, Simon, and Wayne [31] used TeaLeaf, a mini-application for
solving the heat conduction equation, to evaluate the performance porta-
bility of emerging parallel programming models. The programming mod-
els evaluated was Kokkos, RAJA, OpenACC, and OpenMP 4.0, which was
compared to the mature CUDA and OpenCL programming models. Karlin
et al. (2013) [23] used LULESH, a mini-application for shock hydrodynam-
ics, to evaluate four emerging programming models: Chapel, Charm++,
Liszt, and Loci, against four established programming models: OpenMP,
MPI, MPI with OpenMP, and CUDA.

28

Chapter 3

3D and Other Extensions to
ImageCL

This chapter explains the steps of extending the ImageCL compiler with
support for applying three-dimensional optimizations. The ImageCL lan-
guage originally only provided the built-in Image<T> data type which
represents a two-dimensional array of Ts, and provides index access to
data elements based on the thread identity. This is commonly applicable
for stencil computation and other image manipulation functionality.

By extending the ImageCL compiler with a new built-in Block<T> type,
representing a three-dimensional array of Ts, three-dimensional optimiza-
tions can be applied to the data and it becomes possible to adapt three-
dimensional algorithms to the ImageCL language directly.

The contributions made to the ImageCL compiler which will be discussed
in the following sections are:

• The Block type.

• Theidzkeyword, for identifying the current thread in the z-dimension.

• The ability to have none as a boundary condition, which allows for
manual handling of the memory accesses outside the boundary.

• Support for double precision floating point as a datatype in an Image
or Block.

29

3.1. THE BLOCK TYPE CHAPTER 3. EXTENSIONS TO IMAGECL

• Extensions to the data analysis applied by ImageCL to support three-
dimensional optimizations.

• The offset operator, which allows us to alias other Image or Block
arrays with an offset.

• The support of memory optimizations that can be applied to the
Block type.

The ImageCL source-code can be found at github.com/acelster/ImageCL2.

3.1 The Block Type

While the Image type allows for adaptation of algorithms working on two-
dimensional problem domains, it does not work for other dimensions with-
out requiring the problem to be restructured into using a two-dimensional
access pattern. The Block type supports three-dimensional indexing and
ImageCL is able to apply the optimizations that works on individual data
objects on Block types. This makes it possible to adapt code that uses three-
dimensional access patterns without any restructuring of the code.

#pragma imcl grid(input)
#pragma imcl boundary_cond(input:constant)
void sum(Block<double> input, Block<double> output) {

output[idx][idy][idz] = input[idx - 1][idy][idz]
+ input[idx][idy - 1][idz]
+ input[idx][idy][idz - 1]
+ input[idx][idy][idz]
+ input[idx][idy][idz + 1]
+ input[idx][idy + 1][idz]
+ input[idx + 1][idy][idz];

}

Listing 3.1: Using the Block type to write a seven-point stencil in ImageCL.

Listing 3.1 illustrates a seven-point stencil access written in the ImageCL
language using the Block type. The boundary condition for the input is set

30

https://github.com/acelster/ImageCL2

CHAPTER 3. EXTENSIONS TO IMAGECL 3.1. THE BLOCK TYPE

to constant, which yields zero when access outside the boundary happens.
For the output we do not need to handle writes outside the boundary as no
offset is used with idx, idy, or idz. We also bind the grid to input, which
is used to decide the grid size based on the size of input when generating
the kernel wrapper. This will be described in Section 3.2.

3.1.1 The idz keyword

The idx and idy keywords in ImageCL provide a convenient way to get
the current thread indices in x- and y-direction, respectively. This allows
for access to the current element and its neighbours for the Image type.
In addition, these keywords are used to identify thread static memory
accesses in the AST and to calculate the offset used in the footprint table
described in Section 3.1.4. This offset is used by ImageCL to apply the
memory optimizations.

We have extended the ImageCL language with the idz keyword which
provides the same functionality as idx and idy for the z-dimension. The
thread indices in each dimension are calculated as seen in Equation 3.1,
3.2, and 3.3 when the interleaved thread mapping is used.

The threadxyz variables are the block local thread index, the blocki jk vari-
ables are the block index of the current thread, and the gridxyz and blockxyz

variables are the size of the grid and the thread block in each respective
dimension. The i, j, and k variables represents the current element being
worked on by the thread and is bound by the thread coarsening given as a
tuning parameter.

idx = threadx + blocki × blockx + gridx × blockx × i (3.1)

idy = thready + block j × blocky + gridy × blocky × j (3.2)

idz = threadz + blockk × blockz + gridz × blockz × k (3.3)

The thread indices can also be calculated using a blocking thread mapping,
making the threads work on adjacent elements, using Equation 3.4, 3.5,

31

3.1. THE BLOCK TYPE CHAPTER 3. EXTENSIONS TO IMAGECL

and 3.6. The tcx, tcy, and tcz variables represents the amount of thread
coarsening specified by the tuning parameter, e.g. how much total work
each thread will do.

idx = (threadx + blocki × blockx) × tcx + i (3.4)

idy = (thready + block j × blocky) × tcy + j (3.5)

idz = (threadz + blockk × blockz) × tcz + k (3.6)

3.1.2 The none Boundary Condition

The none boundary condition is a minor extension to the ImageCL lan-
guage. It allows the user to either manually handle the boundary access or
even ignore it, without the compiler inserting boundary checks that could
slow down the kernel. A common way to handle these kind of memory
accesses is to allocate more memory than initially needed and use that
memory as border values. This method uses more memory but does not
require boundary checks when accessing the memory, which can be es-
pecially beneficial on the GPU as thread divergence can easily become a
performance problem.

Figure 3.1 illustrates this border access where the gray blocks represents
the memory allocated for the border and the yellow blocks represents the
memory used for the result of the calculation. The value of the border
blocks can be decided by the user and is often set to a constant value.

3.1.3 Double Precision Floating Point Support

Another improvement to the ImageCL compiler is support for the double
precision floating point type. While this requires only minor additions to
the ImageCL compiler for most of the kernel versions, the texture memory
hardware does not currently support reading double precision floating
points.

32

CHAPTER 3. EXTENSIONS TO IMAGECL 3.1. THE BLOCK TYPE

Figure 3.1: A 5-point stencil calculation accessing the border memory.

However, the CUDA backend has been extended to support texture mem-
ory with double precision floating points by generating the texture code
using int2 as the underlying datatype instead of double. When fetch-
ing the int2 value from the texture in the kernel, it then casts the value
to double using the hiloint2double(int,int) function provided by
CUDA. This works as long as the texture is not configured to be read using
interpolation.

3.1.4 The Footprint Table

For certain optimizations to be applied by ImageCL, it is necessary to know
the access pattern of the target, e.g. the Image or Block variable. This access
pattern is used by optimizations that need to allocate additional buffers,
like the shared memory optimization. In addition, it is used to decide
if a boundary guard is necessary for a given access when the boundary
condition for the target is set. In the ImageCL compiler this access pattern
is called the footprint, and is stored in a table that maps the footprint to
the variable.

33

3.1. THE BLOCK TYPE CHAPTER 3. EXTENSIONS TO IMAGECL

#pragma imcl grid(input)
#pragma imcl boundary_cond(input:constant)
void sum(Block<double> input, Block<double> output) {

output[idx][idy][idz] = 0;
for (int z = -1; z <= 1; z += 1)

for (int y = -1; y <= 1; y += 1)
for (int x = -1; x <= 1; x += 1)

output[idx][idy][idz] +=
input[idx + x][idy + y][idz + z];

}

Listing 3.2: A 27-point stencil using loops in ImageCL.

In Listing 3.1 the footprint for input would be [−1, 0, 0] in the first access,
[0,−1, 0] in its second access, and so forth. The output would have [0, 0, 0]
since no offset is used when writing to it. While this example is trivial since
the offsets are represented as integer literals, deciding the footprint can be
challenging when the offset is represented as variables, as in Listing 3.2.
By taking advantage of the liveness and constant propagation analysis
features of ROSE, we can find the values of the variables used in the
access as long as they are defined statically. This footprint analysis has
been extended to include the expression used to access the block in the z-
dimension, to support the Block type in addition to the Image type.

3.1.5 The Offset Operator

The Block type enables three-dimensional access in ImageCL, but higher
dimensional input requires pre-processing before the kernel invocation.
By extending the Block and Image types to support offsetting we can
transform higher arrays input into two-dimensional Image arrays or three-
dimensional Block arrays using the + operator, as seen in Listing 3.3.

34

CHAPTER 3. EXTENSIONS TO IMAGECL 3.1. THE BLOCK TYPE

#pragma imcl grid(input)
#pragma imcl boundary_cond(input:constant)
void sum(Block<double> data,

int width,
int height,
int depth) {

Block<double> input = data;
Block<double> output = data + width * height *
depth;

output[idx][idy][idz] = 0;
for (int z = -1; z <= 1; z += 1)

for (int y = -1; y <= 1; y += 1)
for (int x = -1; x <= 1; x += 1)

output[idx][idy][idz] +=
input[idx + x][idy + y][idz + z];

}

Listing 3.3: A 27-point stencil using a single buffer to read and write using the +
operator.

This is implemented by mapping all variable declaration of Block or Image
arrays to the arrays used in the left hand expression together with the offset
expression applied to the array. When encountering the usage of a Image
or Block array later when applying optimizations, we check if this array is
an alias of another array, and apply the optimization on the original array
using the given offset instead of the aliased array, if necessary. This is used
in optimizations like shared memory and register caching, as the buffers
they use are made and initialized before the actual alias is created.

However, there are certain limitations of using this offsetting method.
Certain optimizations like constant and texture memory will not work
on the input block in Listing 3.3, since it shares the underlying buffer
with output, which is written to. In addition, if the offset is decided by
a temporary variable inside the function, e.g. a loop variable, the shared
memory and register caching optimizations will not work. This is because
when the loading of the data takes place, the variable is neither declared
or initiated yet.

35

3.2. KERNEL WRAPPER CHAPTER 3. EXTENSIONS TO IMAGECL

3.2 The Kernel Wrapper

The kernel wrapper is the function generated by ImageCL that is exposed
to the user and is responsible for the GPU setup code. This includes
allocating and freeing memory the input and output buffers on the GPU,
transferring the input to the device and output to the host, and calling
the kernel with the necessary parameters. In addition, certain tuning
parameters require special initialization of the buffers used, which is also
handled by the kernel wrapper, and will be described in more detail in the
memory sections below.

The wrapper takes in the host buffers and their respective sizes as function
parameters and uses these sizes to allocate the equivalent buffers on the
device. ImageCL is able to differentiate between input buffers and output
buffers by analyzing the kernel and deciding if an array is read-only, write-
only, or read-and-write. If the array is read-only we only need to transfer
the data from the host to the device, before calling the kernel. If the array
is write-only we only need to transfer the data from the device to the host
after the kernel have finished, and if it is being read and written to, we need
to transfer from the host to the device before calling the kernel in addition
to transfer from the device to the host after the kernel has finished.

As mentioned in Section 3.1, ImageCL can bind the grid to a Image or
Block variable which is used to define the grid dimensions based on the
size of the variable and the block size given as a tuning parameter. We can
calculate the grid size in x-, y-, and z-dimension as seen in Equation 3.7,
3.8, and 3.9.

gridx =
datax + blockx × tcx − 1

blockx × tcx
(3.7)

gridy =
datay + blocky × tcy − 1

blocky × tcy
(3.8)

gridz =
dataz + blockz × tcz − 1

blockz × tcz
(3.9)

36

CHAPTER 3. EXTENSIONS TO IMAGECL 3.3. GLOBAL MEMORY

The datax, datay, and dataz represent the size of the bound variable in x-, y-,
and z-direction, respectively. blockx, blocky, and blockz are the thread block
sizes given as tuning parameters in each direction, and tcx, tcy, and tcz are
the thread coarsening for the threads in the kernel which are also given
as tuning parameters. These equations find the smallest multiple of the
denominator greater than or equal to the size of the Image or Block that is
bound to the grid.

3.3 Global Memory

The global memory is the default memory used on the GPU, and the
ImageCL code requires only slight modifications to be valid CUDA or
OpenCL code. One of these modifications is to add the thread coarsening
given as tuning parameter. The thread coarsening is implemented by
surrounding the kernel code with one for loop for each of the dimensions,
where the loop variable has an upper bound equal to the thread coarsening
given as a tuning parameter. These loop variables are then included when
calculating the thread indices represented by the idx and idy keywords,
and the new idz keyword.

Another modification the ImageCL compiler performs is to transform the
Block variables into raw pointers. This transforms the three-dimensional
index access into a single one-dimensional access using the mapping seen
in Equation 3.10.

data[x][y][z] = data[z × datax × datay + y × datax + x] (3.10)

The datax, datay, and dataz variables are the size of the data array in each re-
spective dimension. In addition to adding the necessary CUDA or OpenCL
specific keywords to the kernel and its function parameters, these modi-
fications to the code are shared with most of the memory optimizations
below.

37

3.4. SHARED MEMORY CHAPTER 3. EXTENSIONS TO IMAGECL

3.4 Shared Memory

The shared memory optimization for the Block type only modifies the
kernel code and requires no modifications to the kernel wrapper function.
This optimization requires a separate buffer to be created, which shares
its content with all threads in the same thread block. The size in each
dimension of the shared memory buffer is found using Equations 3.11,
3.12, and 3.13.

smx = tcx × blockx + borderle f t + borderright (3.11)

smy = tcy × blocky + borderup + borderdown (3.12)

smz = tcz × blockz + border f ront + borderback (3.13)

Here, tcx, tcy, and tcz are the thread coarsening in each dimension given as
tuning parameters, and the blockx, blocky, and blockz variables are the thread
block size in each dimension which are also given as tuning parameters.
The border variables used in the equations defines how large the border
size, or halo size, of the shared memory buffer should be. This is found
using the footprint of the optimization target, as explained in Section 3.1.4,
where the biggest offset in each dimension is chosen to be used as the
border size of the buffer to assure that the memory accesses never goes
outside the boundary.

After declaring the shared memory buffer we load the data from the opti-
mization target into the buffer. A loading loop above the rest of the kernel
code maps the local thread index to the global thread index, and loads
the global data into the shared memory buffer. The mapping from the
local to the global thread index is done as seen in Equations 3.14, 3.15, and
3.16.

globalx = blocki × blockx + localx − borderle f t (3.14)

38

CHAPTER 3. EXTENSIONS TO IMAGECL 3.4. SHARED MEMORY

globaly = block j × blocky + localy − borderup (3.15)

globalz = blockk × blockz + localz − border f ront (3.16)

The blocki, block j, and blockk are the current thread block index in x-, y-, and
z-dimension, respectively. By multiplying the current thread block index
with the block size in the corresponding dimension, we get the global
thread index of the first thread in the current thread block, which can then
be added to the local thread index. In addition, the border size in the
negative direction needs to be subtracted to handle the border correctly
when reading from global memory.

After the shared memory buffer has been initialized, we replace all usages
of the original global memory buffer with the new shared memory buffer.
In addition to changing the access buffer, we also change the indexing used
to access the buffer from global scope to thread block scope. When inter-
leaved memory access is used we find the local indices using Equations
3.17, 3.18, and 3.19.

localx = threadx + blockx × i + borderle f t (3.17)

localy = thready + blocky × j + borderup (3.18)

localz = threadz + blockz × k + border f ront (3.19)

Here, the thread variables are the thread block local index of the current
thread in each dimension, and i, j, and k represents the loop variables in
the thread coarsening loops surrounding the kernel code, as mentioned in
Section 3.3. By jumping a whole block length for each data element we get
an interleaved memory access for the threads.

Blocking memory access is also supported, and the thread calculation
instead becomes as seen in Equations 3.20, 3.21, and 3.22. By only moving

39

3.5. TEXTURE MEMORY CHAPTER 3. EXTENSIONS TO IMAGECL

a single data element per iteration, the thread will instead work on data
elements adjacent to each other.

localx = threadx × tcx + i + borderle f t (3.20)

localy = thready × tcy + j + borderup (3.21)

localz = threadz × tcz + k + border f ront (3.22)

By querying the ROSE AST for all memory accesses in the kernel we replace
all occurrences of the original buffer with the shared memory buffer and
replace the original indices with the thread block local indices.

3.5 Texture Memory

Both CUDA’s texture memory and OpenCL’s image memory provide their
own memory access API that differs from the standard indexing used in the
other memory levels. Three-dimensional texture memory in CUDA is ac-
cessed using the tex3D<T> function and OpenCL provides the read image
functions for supported types. These functions allow three-dimensional
indexing directly without having to transform them into a single one-
dimensional access, and by traversing the AST looking for memory ac-
cesses of the original array, we can replace them with the provided texture
functions.

In the kernel wrapper we generate the code for binding the texture ob-
ject to the optimization target as illustrated in Figure 3.2. This setup
code for CUDA involves transferring the data to a three-dimensional
cudaArray t data type, initializing and setting up a resource description
and a texture description for the texture object, before finally binding the
texture object to the data in the cudaArray t data type. The wrapper
code for OpenCL works mostly the same as the CUDA implementation,
and we initialize a three-dimensional image t type by declaring it as an
CL MEM OBJECT IMAGE3D through the OpenCL API.

40

CHAPTER 3. EXTENSIONS TO IMAGECL 3.6. CONSTANT MEMORY

TRANSFER
DATAHOST DATA DEVICE DATA

BIND TEXTURE
OBJECT

RESOURCE
DESCRIPTION

TEXTURE
DESCRIPTION

TEXTURE
OBJECT

Figure 3.2: Workflow for binding host data to a three-dimensional texture object
in CUDA.

When binding the texture object we can decide how it should behave
when memory accesses happens outside the boundary, which allows us to
potentially avoid boundary tests inside the kernel code.

3.6 Constant Memory

Both in OpenCL and CUDA, constant memory requires only minor changes
compared to the global memory version. In OpenCL we mark the op-
timization target with a constant modifier inside the kernel, and in
the generated wrapper we initiate the device memory as read-only. The
CUDA implementation requires the constant memory to be declared us-
ing the constant modifier in global scope, instead of passing it as an
input parameter, while the kernel wrapper transfers the data to the con-
stant memory. As with the global memory, all three-dimensional accesses
are transformed into one-dimensional accesses, using the mapping from
Equation 3.10.

41

3.7. REGISTER CACHING CHAPTER 3. EXTENSIONS TO IMAGECL

In OpenCL the constant memory size is declared at runtime, which means
that we can decide the size based on the input from the caller. In CUDA
however, the constant memory size needs to be known at compile time,
and can thus not be calculated from the input at runtime. This is handled
by initializing the constant memory to the grid size if the user has specified
the size manually using the grid size attribute. Otherwise the constant
memory is initialized to zero, which yields a compilation error when build-
ing the code since zero-sized variables are not allowed in device code, and
forces the user to manually set the size.

3.7 Register Caching

As mentioned in Section 2.4.3, register caching is a CUDA specific opti-
mization that works similarly to the shared memory optimization, as it
requires a separate buffer. The buffer is only accessible between threads in
the same warp, and the buffer size needs to be the same size as the warp.
For the Image implementation of register caching, this allowed for a cache
size of 8× 4, which would have enough space for the border as well as the
calculated values.

The register caching optimization was added to the Image type for the
CUDA backend as part the authors specialization project in the fall of
2017 [44]. However, for the Block implementation of register caching, the
warp size is too small as a cache size of 4 × 4 × 2 does not leave space for
the calculated value in z-direction. This means that the register caching
optimization is currently not supported for the Block type.

42

Chapter 4

Applying Code Generated by
ImageCL into miniAMR

This chapter describes the integration of the GPU code generated from Im-
ageCL kernels into miniAMR. The ImageCL kernels are implementations
of the seven-point stencil illustrated in Figure 2.5. Section 4.1 describes
the integration of memory management and setup of the GPU code gener-
ated as part of the kernel wrapper from ImageCL. Section 4.2 explains the
ImageCL implementations of the stencil code and Section 4.3 presents the
kernels generated by ImageCL using tuning parameters. The miniAMR
source-code can be found at github.com/acelster/miniAMR-NTNU.

4.1 Memory Management and Setup

Listing 4.1 gives an overview of the computations in miniAMR where
we have integrated code generated by ImageCL. To avoid unnecessary
memory allocations and memory transfers from host to device, the device
memory is initialized outside the innermost loop which calls the kernel
code. This is done directly after the ghost values has been communicated
between the blocks to assure that the device data is synchronized for each
stage in the calculation.

43

https://github.com/acelster/miniAMR-NTNU

4.1. MM & SETUP CHAPTER 4. MINIAMR KERNELS

WRITE DATAHOST DATA

ALLOCATE
DATA

DEVICE DATA

DEVICE
MEMORY

HOST OPTI-
MIZATIONS

Figure 4.1: General flow of device initialization in miniAMR.

for timestep in timesteps do
for stage in stages do

communicate ghost values between blocks

gpu init

for var in variables do
call stencil kernel with var

end for
gpu free

end for
end for

Listing 4.1: Overview of miniAMR after integration of generated code.

The gpu init and gpu free methods are different depending the kernel
used in the stencil calculation. However, the general flow includes allo-
cating the device memory and fill it with the data needed in the innermost
stencil loop. Host optimization can also be applied at this stage if required
by the kernel implementation. This general setup code is illustrated in
Figure 4.1. In the gpu freemethod, the data is transferred back to the host
and the resources are cleaned up.

The mesh stored in miniAMR is divided into blocks where each block has
a number of variables which again stores the three-dimensional data. This
effectively makes the domain of miniAMR a five-dimensional array where
the stencil calculation is applied multiple times on the three innermost

44

CHAPTER 4. MINIAMR KERNELS 4.1. KERNELS

levels of the array. MiniAMR stores the data using non-contiguous mem-
ory between each dimension which is not well suited for the GPU kernels
which assumes the memory is stored contiguous in memory. Therefore,
when the memory is written from host to device it is mapped from non-
contiguous to contiguous memory, and mapped back when writing back
the memory to the host.

4.2 Kernel Implementations

Listing 4.2 shows pseudo code of the reference implementation of the
stencil calculation found in miniAMR. The seven-point stencil is applied
to each value in the block and the result of the calculation is written to
a temporary buffer to avoid reading newly updated value. The values
are then written back to the original buffer in a second pass across the
block. The reference implementation avoids boundary checks by allocating
additional memory for the x-, y-, and z-dimensions that is used for the
border.

When the stencil calculation is performed on the GPU, writing to a tempo-
rary buffer as seen in the reference implementation is not enough to avoid
reading newly updated values. This is because some threads might write
back the values in the second pass before other threads have read the val-
ues in the first pass. While the GPU provides instructions to synchronize
the threads, this only works within each thread block. This thread syn-
chronization might also reduce the performance of the kernel as it might
stall threads.

We have created three versions of the reference implementation that solves
this synchronization problem in different ways, each of them providing
their own benefits and drawbacks. These versions will be described in the
following sections.

45

4.2. KERNELS CHAPTER 4. MINIAMR KERNELS

for block in blocks do
for x in 1...block_size_x do

for y in 1...block_size_y do
for z in 1...block_size_z do

tmp[x][y][z]

= block[var][x - 1][y][z]

+ block[var][x][y - 1][z]

+ block[var][x][y][z - 1]

+ block[var][x][y][z]

+ block[var][x][y][z + 1]

+ block[var][x][y + 1][z]

+ block[var][x + 1][y][z]

tmp[x][y][z] /= 7.0

end for
end for

end for
for x in 1...block_size_x do

for y in 1...block_size_y do
for z in 1...block_size_z do

block[var][x][y][z] = tmp[x][y][z]

end for
end for

end for
end for

Listing 4.2: Pseudo code of the reference implementation of the kernel.

4.2.1 Using Single Read-Write Buffer

The kernel only works on one variable each time it is called. The first
kernel implementation takes advantage of this by allocating space for one
additional variable, which can be written to using an offset different from
the one being read from. Listing 4.3 shows how this offset is used in the
ImageCL kernel using the offset operator.

46

CHAPTER 4. MINIAMR KERNELS 4.2. KERNELS

int r_offset = (block * (num_vars + 1) + (var + 1))
* width * height * depth;

int w_offset = (block * (num_vars + 1) + var)
* width * height * depth;

Block<double> read = input + r_offset;

Block<double> write = input + w_offset;
write[idz + 1][idy + 1][idx + 1]

= (read[idz][idy + 1][idx + 1]
+ read[idz + 1][idy][idx + 1]
+ read[idz + 1][idy + 1][idx]
+ read[idz + 1][idy + 1][idx + 1]
+ read[idz + 1][idy + 1][idx + 2]
+ read[idz + 1][idy + 2][idx + 1]
+ read[idz + 2][idy + 1][idx + 1]) / 7.0;

Listing 4.3: Simplified ImageCL kernel using a single read-write buffer

The write buffer is created using an offset on the input buffer that finds the
position of the variable data right before the data being read. This means
that the data being written and the data being read never overlaps and the
threads does not need to synchronize. Like the reference implementation,
we allocate extra memory for the border to avoid boundary checks. This
means we need to shift the memory accesses on the Block types by one to
start within the borders. The full implementation of the ImageCL kernel
can be found in Appendix A.

While this implementation is the most memory efficient version of the Im-
ageCL kernels, the optimizations that can be applied to it is limited. This
is because the aliased array is being read and written to, which prohibits
optimizations that requires constant data. In addition, the offset is calcu-
lated using values that are modified inside the kernel (the block variable
in Listing 4.3 is a loop counter), which makes shared memory unable to
load the data needed into its buffer.

47

4.2. KERNELS CHAPTER 4. MINIAMR KERNELS

4.2.2 Using Read and Write Buffers

The second kernel implementation uses two separate underlying buffers,
one for the input data that is being read and one for the output data. The off-
set operator is used to transform the original five-dimensional arrays into
three-dimensional Block arrays. Listing 4.4 shows a simplified version of
this kernel and the full implementation can be found in Appendix A.

int offset = (block * num_vars + var)
* width * height * depth;

Block<double> read = input + offset;
Block<double> write = output + offset;
write[idz + 1][idy + 1][idx + 1]

= (read[idz][idy + 1][idx + 1]
+ read[idz + 1][idy][idx + 1]
+ read[idz + 1][idy + 1][idx]
+ read[idz + 1][idy + 1][idx + 1]
+ read[idz + 1][idy + 1][idx + 2]
+ read[idz + 1][idy + 2][idx + 1]
+ read[idz + 2][idy + 1][idx + 1]) / 7.0;

Listing 4.4: Simplified ImageCL kernel using a read and write buffer.

By using separate underlying buffers for the read and write arrays, Im-
ageCL is able to apply the constant memory optimization to the data being
read. However, shared memory can not be applied to this version either,
since the offset is dependent on the current iteration in the loop, i.e. the
current block.

4.2.3 Using 3D Read and Write Buffers

For ImageCL to be able to apply all memory optimizations, the kernel need
to use separate read and write buffers and the buffers need to be three-
dimensional. The last kernel implementation only contains the stencil
code for a single block and variable. This requires the array parameters to
be pre-processed into three-dimensional arrays before calling the kernel,

48

CHAPTER 4. MINIAMR KERNELS 4.3. GENERATED KERNELS

and the kernel needs to be executed multiple times using different offsets.
The code for the last kernel can be seen in Listing 4.5.

output[idz + 1][idy + 1][idx + 1]
= (input[idz][idy + 1][idx + 1]
+ input[idz + 1][idy][idx + 1]
+ input[idz + 1][idy + 1][idx]
+ input[idz + 1][idy + 1][idx + 1]
+ input[idz + 1][idy + 1][idx + 2]
+ input[idz + 1][idy + 2][idx + 1]
+ input[idz + 2][idy + 1][idx + 1]) / 7.0;

Listing 4.5: ImageCL kernel using three-dimensional read and write buffers.

Some of the memory optimizations require considerable setup code on the
host side. Since the offset used in these kernels are decided by the current
block and variable being worked, we need to reapply these optimizations
each time one of those changes. This can lead to notable overhead when
using optimizations like constant memory or texture memory, as their
setup code contains memory transfers. The full implementation can be
found in Appendix A.

4.3 Generated Kernels

Using the ImageCL kernels in Section 4.2, we have generated multiple GPU
implementations from different tuning parameters. The number of poten-
tial implementations that can be generated from the tuning parameters
are too large to be reasonably able to integrate all of them into miniAMR.
We have focused on the memory optimizations and generated six CUDA
kernels using different access methods and memory optimizations. The
generated implementations can be seen in Table 4.1.

Three global memory versions have been generated (v1, v2, and v3), one
for each of the ImageCL kernels. In addition, the three-dimensional Im-
ageCL kernel have been used to generate a shared memory (v4), a constant
memory (v5), and a texture memory (v6) implementation.

49

4.3. GENERATED KERNELS CHAPTER 4. MINIAMR KERNELS

Table 4.1: The configurations and tuning parameters used for each generated
kernel.

Configuration v1 v2 v3 v4 v5 v6
ImageCL Kernel v1 v2 v3 v3 v3 v3
Thread Coarsening 1 1 1 1 1 1
Block Size 8x8x8 8x8x8 8x8x8 8x8x8 8x8x8 8x8x8
Interleaved True True True True True True
Shared Memory input
Constant Memory input
Texture Memory input
Language CUDA CUDA CUDA CUDA CUDA CUDA

The kernel wrappers generated by ImageCL can not be used directly, as
the setup required for the GPU has been moved outside the innermost
variable loop, as seen in Listing 4.1. This has been done to lower the setup
overhead by reusing memory and having fewer larger memory transfers
between the host and the device. Instead, we use the generated wrapper
as a baseline and manually adapt the setup code to fit with the miniAMR
code structure.

50

Chapter 5

Results and Discussion

In this chapter we present and discuss the performance measurements of
the kernels generated in Chapter 4. Section 5.1 describes the methodol-
ogy used to get the performance measurements. Section 5.2 presents the
performance measurements and Section 5.3 discusses the results.

5.1 Methodology

Table 5.1 shows the specifications of the three systems used to benchmark
the miniAMR versions. The miniAMR versions have been run single
threaded on the CPU, together with a single GPU. Since we generate CUDA
implementations of the kernels, only NVIDIA GPUs have been used in the
benchmarks.

The GPU kernels have been measured using the events provided by the
CUDA API, and the setup code has been timed using the gettimeofday
function provided by time.h. The performance measurements are the
arithmetic average of ten runs. The naming of the different implementa-
tions in the following sections references the kernels in Table 4.1.

51

5.1. METHODOLOGY CHAPTER 5. RESULTS AND DISCUSSION

Table 5.1: The specifications of the three systems used in the measurements.
Hardware System 1 System 2 System 3

CPU
Intel® Core™
i7-6700K
4.00 GHz

Intel® Xeon™
E5-2695 v4
2.10GHz

Intel® Core™
i7-7700K
4.20 GHz

Memory 16 GB 128 GB 32 GB

GPU
NVIDIA
GTX 980

NVIDIA
Tesla P100

NVIDIA
Titan V

OS
Ubuntu 16.04
64-bit

CentOS Linux
release 7.4.1708

Ubuntu 16.04
64-bit

Table 5.2: The default problem size in miniAMR.

Variable Value
Max number of blocks 500
Number of variables 40
X block size 10
Y block size 10
Z block size 10

5.1.1 Configurations

When measuring the performance of the kernel implementations, we use
the default configurations of miniAMR and only modify the problem size
in x-, y-, and z-dimension. Table 5.2 shows the default problem size used
in miniAMR. As we increase the block size in x-, y-, and z-dimension, the
memory usage grows fast. The largest problem size we could calculate
on all systems was when x, y, and z was 40. All the configurations values
of miniAMR used to gather the performance measurements are given in
Appendix B.

5.1.2 Validation

To assure that the generated kernels and their optimizations have been
generated correctly, we perform a validation run before running the bench-
marks. This validation run dumps the whole mesh structure in miniAMR

52

CHAPTER 5. RESULTS AND DISCUSSION 5.1. MEASUREMENTS

to file after each time step in the calculation. This is done for all the kernel
versions, including the reference version. Afterwards, the mesh dump
of the generated kernels are compared to the mesh dump of the refer-
ence version, to assure that the same results are calculated at each time
step.

5.2 Performance Measurements

This section presents the performance measurements of the miniAMR ap-
plication using the generated kernels. The generated kernels are compared
to the reference version written in the C language, and to each other. The
Dimension axis in the graphs presented below, represents the value of the
x-, y-, and z-block size in miniAMR. The Time axis represents the time
in seconds. All kernels have been tested using a uniform block dimen-
sion from 4 up to 40 (skipping odd numbers), except for constant memory
which can only fit sizes of 18 × 18 × 18 and below in its memory. The
detailed performance measurements can be found in Appendix C.

5.2.1 Execution Time

Figure 5.1 illustrates the total time spent inside the GPU kernel for the
three systems. The texture memory version (v6) has the best performance
on all the systems tested on, and shared memory (v4) starts to outperform
the other kernels on larger dimensions, except on the Titan V system.
The remaining kernel implementations performs about the same, with the
exception of constant memory (v5) which performs considerably worse on
all systems. The Titan V system has the best overall performance, with the
P100 system trailing close behind.

Figure 5.2 shows the amount of time spent calling the kernel from the C
code. While Figure 5.1 only includes the time spent inside the kernel code,
Figure 5.2 also includes the local optimizations and preprocessing that is
required before actually calling the kernels. For the GTX 980 and Titan
V systems, the GPU kernels outperforms the reference version when the
dimension is around 16 × 16 × 16. For the P100 system, the GPU kernels

53

5.2. MEASUREMENTS CHAPTER 5. RESULTS AND DISCUSSION

outperforms the reference version between 20×20×20 and 24×24×24. In the
GTX 980 and Titan V system, the time used by the reference implementation
grows fast up to 30×30×30, before dropping significantly at 32×32×32. The
reference implementation on the P100 system has a more steady growth in
time usage, without a drop at 32 × 32 × 32.

Figure 5.3 illustrates the total GPU setup time required by each of the kernel
implementations. As seen from the figure, the time spent in the setup code
is substantial compared to the time spent in the actual kernel. As expected,
the single read-write buffer implementation (v1) has a slightly lower setup
time since it allocates fewer buffers than the other implementations. The
texture memory version (v6) has the highest setup time of the kernels.

Figure 5.4 shows the total runtime of the miniAMR implementations.
While the kernel execution is improved on the GPU versions when the
problem size reaches a certain dimension, the setup time required by the
GPU is currently too large to see a performance improvement in the whole
miniAMR application. The single read-write buffer implementation (v1)
performs best out of the GPU implementations, as the timing is dominated
by the setup time.

5.2.2 Memory Usage

Figure 5.5 and Figure 5.6 illustrates the amount of memory allocated and
the amount of memory copied between the host and the device. The single
read-write buffer (v1) implementation allocates and transfers significantly
less memory than the other implementation. The amount of memory
allocated is nearly half of the other implementations, and the amount
copied is roughly 30% less than the other versions.

This reduces the amount of setup time required on the GPU for this im-
plementation, which is the main contributor to this implementation of
miniAMR being the overall fastest of the GPU implementations. The re-
maining miniAMR implementations allocates and copies roughly the same
amount.

54

CHAPTER 5. RESULTS AND DISCUSSION 5.2. MEASUREMENTS

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0.2

0.4

0.6

Dimension (N ×N ×N)

Ti
m

e
(s

)

v1
v2
v3
v4
v5
v6

(a) System 1

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0.1

0.2

0.3

0.4

0.5

Dimension (N ×N ×N)

Ti
m

e
(s

)

v1
v2
v3
v4
v5
v6

(b) System 2

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0.1

0.2

0.3

0.4

Dimension (N ×N ×N)

Ti
m

e
(s

)

v1
v2
v3
v4
v5
v6

(c) System 3

Figure 5.1: Time spent inside the kernel code for the GTX 980-, P100-, and Titan
V-system. Timed using CUDA events.

55

5.2. MEASUREMENTS CHAPTER 5. RESULTS AND DISCUSSION

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

1

2

Dimension (N ×N ×N)

Ti
m

e
(s

)
v1
v2
v3
v4
v5
v6
C

(a) System 1

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

1

2

Dimension (N ×N ×N)

Ti
m

e
(s

)

v1
v2
v3
v4
v5
v6
C

(b) System 2

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

1

2

Dimension (N ×N ×N)

Ti
m

e
(s

)

v1
v2
v3
v4
v5
v6
C

(c) System 3

Figure 5.2: Kernel execution time including local kernel setup for the GTX 980-,
P100-, and Titan V-system. Timed using gettimeofday.

56

CHAPTER 5. RESULTS AND DISCUSSION 5.2. MEASUREMENTS

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

2

4

6

Dimension (N ×N ×N)

Ti
m

e
(s

)

v1
v2
v3
v4
v5
v6

(a) System 1

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

2

4

6

8

10

Dimension (N ×N ×N)

Ti
m

e
(s

)

v1
v2
v3
v4
v5
v6

(b) System 2

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

2

4

Dimension (N ×N ×N)

Ti
m

e
(s

)

v1
v2
v3
v4
v5
v6

(c) System 3

Figure 5.3: GPU total setup time on the GTX 980-, P100-, and Titan V-system.
Timed using gettimeofday.

57

5.2. MEASUREMENTS CHAPTER 5. RESULTS AND DISCUSSION

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

5

10

Dimension (N ×N ×N)

Ti
m

e
(s

)
v1
v2
v3
v4
v5
v6
C

(a) System 1

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

5

10

Dimension (N ×N ×N)

Ti
m

e
(s

)

v1
v2
v3
v4
v5
v6
C

(b) System 2

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

2

4

6

Dimension (N ×N ×N)

Ti
m

e
(s

)

v1
v2
v3
v4
v5
v6
C

(c) System 3

Figure 5.4: Total time of miniAMR for the GTX 980-, P100-, and Titan V-system.

58

CHAPTER 5. RESULTS AND DISCUSSION 5.2. MEASUREMENTS

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

1

2
·1010

Dimension (N ×N ×N)

By
te

s

v1
v2
v3
v4
v5
v6

Figure 5.5: Amount of global memory allocated on the GPU.

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

1

2

3
·1010

Dimension (N ×N ×N)

By
te

s

v1
v2
v3
v4
v5
v6

Figure 5.6: Amount of memory copied from host to device and from device to
host.

59

5.3. DISCUSSION CHAPTER 5. RESULTS AND DISCUSSION

5.3 Discussion

The previous sections presented the performance measurements of the
various implementations of miniAMR. This section discusses the results
and the advantages and disadvantages of the different miniAMR imple-
mentations.

As illustrated by Figure 5.4, none of the GPU implementations were able to
speed up the whole applications, as the overhead of the memory allocations
and transfers are much larger than the benefits we get from a faster kernel.
The overhead of the setup code can be reduced by moving the code further
up in the miniAMR application. This would, however, require a larger
part of miniAMR to be able to run on the GPU, including the ghost value
communication between blocks, which is currently being performed using
MPI. ImageCL is currently not able to handle such general cases and this
have been outside the scope of this thesis as the goal is to investigate
how ImageCL is able to integrate with and improve the performance of
miniAMR, not to gain the best performance increase possible.

From Figure 5.3 we can see that the difference in setup time between the
systems are large, with the P100 system having a notable larger setup time
than the two other systems, even though the P100 GPU is significantly more
powerful than the the GTX 980 GPU. These results mirrors the single thread
performance of the CPU in the systems, and it is likely that this is one of
the main contributors to this performance gap between the systems.

As Figure 5.1 show, the texture memory kernel has the best performance
when not including the overhead of binding the texture object, which is
done as part of the local setup before calling the kernel. This is to be
expected, as the access pattern performed by the seven-point stencil is
well suited for texture memory. The shared memory kernel is the second
best performing implementation, especially at the larger dimensions for
the GTX 980 and P100 systems. The difference between the remaining
implementations and the shared memory implementation is much smaller
on the Titan V system. This could be the result of the enhanced L1 Data
Cache introduced in Volta [29], which narrows the gap between kernels
using shared memory and automatic cache.

When comparing the kernel execution time found with gettimeofday we

60

CHAPTER 5. RESULTS AND DISCUSSION 5.3. DISCUSSION

can see that all the GPU kernels, except for the constant memory kernel,
outperforms the reference implementation when the problem size grows
large enough. This happens when the dimension is between 16 × 16 × 16
and 24 × 24 × 24, depending on the system. At 30 × 30 × 30, System 1 and
System 3 gains a speedup of 4.46 and 6.78 for the shared memory versions
compared to the reference implementation, respectively. At 40 × 40 × 40,
System 2 is able to achieve a speedup of 5.45 for the shared memory version,
compared to the reference implementation.

Additionally, the tuning parameters used to generate the GPU kernels have
been manually selected and have a limited range. To achieve even better
performance, an auto-tuner could be applied to pick a better performing
combination of tuning parameters.

61

5.3. DISCUSSION CHAPTER 5. RESULTS AND DISCUSSION

62

Chapter 6

Conclusion and Future Work

This final chapter first concludes the work presented in this thesis and
highlights some of the results, before we will discuss and suggest possible
areas suitable for future work.

6.1 Conclusion

In this thesis we extended the ImageCL language and compiler to support
a broader range of applications. The extensions have been guided by the
miniAMR application, an Adaptive Mesh Refinement proxy application
with a seven-point stencil kernel. The extensions have focused mainly on
three-dimensional optimizations through the Block data type.

Three kernel implementations representing the miniAMR stencil kernel
were written in the ImageCL language: the single read-write buffer ver-
sion, the read and write buffer version, and the three-dimensional read and
write buffer version. These ImageCL kernels have all been written to take
advantage of the new features implemented in the ImageCL compiler.
From these ImageCL kernels, six GPU implementations were generated
from different tuning parameters, and integrated into the miniAMR ap-
plication. The kernels generated from ImageCL have focused mainly on
the different memory optimizations and the distinct methods to handle the
data buffers.

63

6.2. FUTURE WORK CHAPTER 6. CONCLUSION

The GPU setup proved to be too large for a performance improvement
of the whole application. With a more extensive refactoring of miniAMR
it should be possible to reduce this overhead significantly. However, as
ImageCL focuses mainly on stencil based image processing applications,
using ImageCL further in the miniAMR application would be problem-
atic without further improvements to the compiler. Some improvements
that could help make ImageCL work in more general cases are given in
Section 6.2.

The benchmarks shows that most of the generated GPU kernels achieves
a significant performance improvement compared to the reference imple-
mentation as the problem size grows larger. At most, the shared memory
implementation achieves a speedup of 4.46, 5.45, and 6.78 for System 1,
System 2, and System 3 compared to the reference implementation, respec-
tively.

6.2 Future Work

The work performed in this thesis presents several interesting areas for
future work:

• The ImageCL language and compiler can be further extended with
enhanced data analysis and tuning parameters to support an even
broader range of applications. This might include supporting the
shared memory optimization on aliased types, or extending Im-
ageCL’s register caching optimization capabilities to work with three
dimensional data.

• The tensor cores and independent thread scheduling introduced in
NVIDIA’s Volta architecture might open up for a whole new set of op-
timizations, which can potentially be turned into tuning parameters
in ImageCL.

• Making the ImageCL memory optimizations work on any type of
input data, not just two- and three-dimensional data, would allow
more general algorithms to be adapted to ImageCL. The offset oper-
ator allows this to an extent, but comes with certain limitations.

64

CHAPTER 6. CONCLUSION 6.2. FUTURE WORK

• Proper synchronization primitives is lacking in the ImageCL lan-
guage, and while the compiler is able to automatically insert synchro-
nization calls in certain cases, e.g. for the shared memory optimiza-
tion, having explicit synchronization primitives would be beneficial
for more general applications, where the compiler is not always able
to figure out when synchronization is needed.

• Evaluating ImageCL using other proxy applications might give in-
sight into further areas that can be improved. A noteworthy proxy
application is TeaLeaf [8], a linear heat conduction solver that uses
a five-point stencil in two-dimensions (three-dimensional support in
beta), that has earlier been used to evaluate other parallel program-
ming models [31].

65

6.2. FUTURE WORK CHAPTER 6. CONCLUSION

66

Bibliography

[1] Ken Alvin et al. “On the Path to Exascale”. In: 1 (Jan. 2010), pp. 1–22.

[2] AMD. It’s HIP to be Open. url: https://www.amd.com/Documents/
HIP-Datasheet.pdf (visited on 04/23/2018).

[3] Marsha J Berger and Joseph Oliger. “Adaptive mesh refinement for
hyperbolic partial differential equations”. In: Journal of Computational
Physics 53.3 (1984), pp. 484–512. issn: 0021-9991.

[4] M.J. Berger and P. Colella. “Local adaptive mesh refinement for shock
hydrodynamics”. In: Journal of Computational Physics 82.1 (1989),
pp. 64–84. issn: 0021-9991.

[5] Shekhar Y. Borkar et al. “Platform 2015: Intel Processor and Platform
Evolution for the Next Decade”. In: (2005).

[6] C - Approved standards. url: http://www.open-std.org/JTC1/SC22/
WG14/www/standards (visited on 07/24/2018).

[7] R Clint Whaley and Antoine Petitet. “Minimizing development and
maintenance costs in supporting persistently optimized BLAS”. In:
35 (Feb. 2005), pp. 101–121.

[8] UK Mini-App Consortium. TeaLeaf. url: http://uk-mac.github.
io/TeaLeaf/ (visited on 07/28/2018).

[9] R. H. Dennard et al. “Design of ion-implanted MOSFET’s with very
small physical dimensions”. In: IEEE Journal of Solid-State Circuits 9.5
(Oct. 1974), pp. 256–268. issn: 0018-9200.

67

https://www.amd.com/Documents/HIP-Datasheet.pdf
https://www.amd.com/Documents/HIP-Datasheet.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/standards
http://www.open-std.org/JTC1/SC22/WG14/www/standards
http://uk-mac.github.io/TeaLeaf/
http://uk-mac.github.io/TeaLeaf/

BIBLIOGRAPHY BIBLIOGRAPHY

[10] S.S. Dosanjh et al. “Exascale design space exploration and co-design”.
In: Future Generation Computer Systems 30 (2014). Special Issue on
Extreme Scale Parallel Architectures and Systems, Cryptography in
Cloud Computing and Recent Advances in Parallel and Distributed
Systems, ICPADS 2012 Selected Papers, pp. 46–58. issn: 0167-739X.

[11] H. Esmaeilzadeh et al. “Dark Silicon and the End of Multicore Scal-
ing”. In: IEEE Micro 32.3 (May 2012), pp. 122–134. issn: 0272-1732.

[12] T. L. Falch and A. C. Elster. “ImageCL: An image processing lan-
guage for performance portability on heterogeneous systems”. In:
2016 International Conference on High Performance Computing Simula-
tion (HPCS). July 2016, pp. 562–569.

[13] T. L. Falch and A. C. Elster. “Register Caching for Stencil Computa-
tions on GPUs”. In: 2014 16th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing. Sept. 2014, pp. 479–486.

[14] Thomas L. Falch and Anne C. Elster. “Machine learning-based auto-
tuning for enhanced performance portability of OpenCL applica-
tions”. In: John Wiley & Sons (2016).

[15] Thomas Løfsgaard Falch. “ImageCL and Other Techniques and Tools
for Optimizing Applications Utilizing Heterogeneous Computing”.
In: (2018). issn: 1503-8181.

[16] C++ Foundation. Standard C++. url: https://isocpp.org/ (visited
on 07/24/2018).

[17] M. Frigo and S. G. Johnson. “The Design and Implementation of
FFTW3”. In: Proceedings of the IEEE 93.2 (Feb. 2005), pp. 216–231.
issn: 0018-9219.

[18] Martin Gardner. The fantastic combinations of John Conway’s new soli-
taire game ”life”. 1970. url: https : / / web . archive . org / web /
20090603015231/http://ddi.cs.uni- potsdam.de/HyFISCH/

Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.

htm (visited on 12/11/2017).

[19] Al Geist and Sudip Dosanjh. “IESP Exascale Challenge: Co-Design
of Architectures and Algorithms”. In: The International Journal of High
Performance Computing Applications 23.4 (2009), pp. 401–402. eprint:
https://doi.org/10.1177/1094342009347766.

68

https://isocpp.org/
https://web.archive.org/web/20090603015231/http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
https://web.archive.org/web/20090603015231/http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
https://web.archive.org/web/20090603015231/http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
https://web.archive.org/web/20090603015231/http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
https://doi.org/10.1177/1094342009347766

BIBLIOGRAPHY BIBLIOGRAPHY

[20] Khronos OpenCL Working Group. The OpenCL Specification. url:
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/

OpenCL_API.pdf (visited on 07/28/2018).

[21] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth
Edition: A Quantitative Approach. 5th. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc., 2011. isbn: 012383872X, 9780123838728.

[22] Michael A. Heroux et al. “Improving Performance via Mini-applications”.
In: (Sept. 2009).

[23] I. Karlin et al. “Exploring Traditional and Emerging Parallel Pro-
gramming Models Using a Proxy Application”. In: 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing. May
2013, pp. 919–932.

[24] Christoph Kessler et al. “Programmability and Performance Porta-
bility Aspects of Heterogeneous Multi-/Manycore Systems”. In: Pro-
ceedings of the Conference on Design, Automation and Test in Europe.
DATE ’12. Dresden, Germany: EDA Consortium, 2012, pp. 1403–
1408. isbn: 978-3-9810801-8-6.

[25] Khronos. OpenCL API 1.0 Quick Reference Card. url: https://www.
khronos.org/files/opencl-quick-reference-card.pdf (visited
on 07/28/2018).

[26] Khronos. OpenCL - The open standard for parallel programming of het-
erogeneous systems. 2017. url: https://www.khronos.org/opencl/
(visited on 12/09/2017).

[27] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel
Processors. A Hands-on Approach. Morgan Kaufmann Publishers, 2010.
isbn: 978-0-12-381472-2.

[28] Sameer Kulkarni and John Cavazos. “Mitigating the Compiler Op-
timization Phase-Ordering Problem using Machine Learning”. In:
(2012).

[29] Mark Harris Luke Durant Oliver Giroux and Nick Stam. Inside Volta:
The World’s Most Advanced Data Center GPU. 2017. url: https://
devblogs.nvidia.com/parallelforall/inside-volta/ (visited
on 12/09/2017).

[30] Mantevo. Mantevo Project. url: https://mantevo.org/ (visited on
05/03/2018).

69

https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf
https://www.khronos.org/files/opencl-quick-reference-card.pdf
https://www.khronos.org/files/opencl-quick-reference-card.pdf
https://www.khronos.org/opencl/
https://devblogs.nvidia.com/parallelforall/inside-volta/
https://devblogs.nvidia.com/parallelforall/inside-volta/
https://mantevo.org/

BIBLIOGRAPHY BIBLIOGRAPHY

[31] Martineau Matthew, McIntosh-Smith Simon, and Gaudin Wayne.
“Assessing the performance portability of modern parallel program-
ming models using TeaLeaf”. In: Concurrency and Computation: Prac-
tice and Experience 29.15 (). e4117 cpe.4117, e4117. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4117.

[32] MPI. MPI Forum. 2017. url: http://mpi-forum.org/ (visited on
12/14/2017).

[33] G. S. Murthy et al. “Optimal loop unrolling for GPGPU programs”.
In: 2010 IEEE International Symposium on Parallel Distributed Processing
(IPDPS). Apr. 2010, pp. 1–11.

[34] NVIDIA. CUDA C Best Practices Guide. 2017. url: http://docs.
nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf (vis-
ited on 12/09/2017).

[35] NVIDIA. CUDA C Programming Guide. 2017. url: http://docs.
nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf (visited
on 12/09/2017).

[36] NVIDIA. CUDA C Programming Guide - Hardware Implementation.
2017. url: http://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html#hardware-implementation (visited on 12/09/2017).

[37] NVIDIA. CUDA Zone. 2017. url: https://developer.nvidia.com/
cuda-zone (visited on 12/09/2017).

[38] NVIDIA. NVIDIA CUDA Architecture. 2009.url:http://developer.
download.nvidia.com/compute/cuda/docs/CUDA_Architecture_

Overview.pdf (visited on 12/09/2017).

[39] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Ke-
pler GK110. 2012. url: https://www.nvidia.com/content/PDF/
kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

(visited on 12/12/2017).

[40] NVIDIA. Register Cache: Caching for Warp-Centric CUDA Programs.
2017. url: https : / / devblogs . nvidia . com / parallelforall /
register-cache-warp-cuda/ (visited on 12/12/2017).

[41] OpenMP. OpenMP: Enabling HPC since 1997. 2017. url: http://www.
openmp.org/ (visited on 12/14/2017).

70

https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4117
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4117
http://mpi-forum.org/
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#hardware-implementation
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#hardware-implementation
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
http://developer.download.nvidia.com/compute/cuda/docs/CUDA_Architecture_Overview.pdf
http://developer.download.nvidia.com/compute/cuda/docs/CUDA_Architecture_Overview.pdf
http://developer.download.nvidia.com/compute/cuda/docs/CUDA_Architecture_Overview.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://devblogs.nvidia.com/parallelforall/register-cache-warp-cuda/
https://devblogs.nvidia.com/parallelforall/register-cache-warp-cuda/
http://www.openmp.org/
http://www.openmp.org/

BIBLIOGRAPHY BIBLIOGRAPHY

[42] J. D. Owens et al. “GPU Computing”. In: Proceedings of the IEEE 96.5
(May 2008), pp. 879–899. issn: 0018-9219.

[43] S.J. Pennycook et al. “An investigation of the performance porta-
bility of OpenCL”. In: Journal of Parallel and Distributed Computing
73.11 (2013). Novel architectures for high-performance computing,
pp. 1439–1450. issn: 0743-7315.

[44] Even O. Rogstadkjærnet. Parameter Based Optimizations and Code Gen-
eration of CUDA for ImageCL. Tech. rep. Norwegian University of
Science and Technology, Department of Computer Science, 2018.

[45] ROSE. ROSE compiler infrastructure. 2017.url:http://rosecompiler.
org/?page_id=31 (visited on 12/12/2017).

[46] Sean Rul et al. “An experimental study on performance portability of
OpenCL kernels”. eng. In: Application Accelerators in High Performance
Computing, 2010 Symposium, Papers. Knoxville, TN, USA, 2010, p. 3.

[47] Jason Sanders and Edward Kandrot. Cuda By Example. An Introduction
to General-Purpose GPU Programming. Addison Wesley, 2011. isbn:
978-0-13-138768-3.

[48] “Special issue-mpi-a message-passing interface standard”. In: The
international journal of high performance computing applications. 8.3-4
(1994). issn: 1094-3420.

[49] Top500. Top500 List - November 2017. url: https://www.top500.org/
list/2017/11/?page=1 (visited on 05/03/2018).

[50] UPC. url: https://upc-lang.org/ (visited on 07/24/2018).

[51] C. T. Vaughan and R. F. Barrett. “Enabling Tractable Exploration
of the Performance of Adaptive Mesh Refinement”. In: 2015 IEEE
International Conference on Cluster Computing. Sept. 2015, pp. 746–
752.

[52] O. Villa et al. “Scaling the Power Wall: A Path to Exascale”. In: SC14:
International Conference for High Performance Computing, Networking,
Storage and Analysis. Nov. 2014, pp. 830–841.

[53] L. Wang and K. Skadron. “Implications of the Power Wall: Dim Cores
and Reconfigurable Logic”. In: IEEE Micro 33.5 (Sept. 2013), pp. 40–
48. issn: 0272-1732.

71

http://rosecompiler.org/?page_id=31
http://rosecompiler.org/?page_id=31
https://www.top500.org/list/2017/11/?page=1
https://www.top500.org/list/2017/11/?page=1
https://upc-lang.org/

BIBLIOGRAPHY BIBLIOGRAPHY

[54] WG5. WG5 Fortran Standards Home. 2018.url:https://wg5-fortran.
org/ (visited on 07/24/2018).

[55] Wm. A. Wulf and Sally A. McKee. “Hitting the Memory Wall: Impli-
cations of the Obvious”. In: (Dec. 1994).

72

https://wg5-fortran.org/
https://wg5-fortran.org/

Appendix A

ImageCL Kernels

This appendix shows the ImageCL kernels used to generate the GPU imple-
mentations. Listing A.1 shows the first kernel version, which uses a single
read-write buffer. Listing A.2 shows the second kernel version, which uses
two separate buffers for reading and writing. The last kernel version can
be seen in Listing A.3 where two separate buffers have been preprocessed
to become three-dimensional, before launching the kernel.

73

APPENDIX A. IMAGECL KERNELS

#pragma imcl grid(input)
#pragma imcl boundary_cond(input:none)
void kernel_v1(

int var,
int num_iter ,
int num_vars ,
Block<double> input

) {

int X = W + 2;
int Y = H + 2;
int Z = D + 2;

for (int i = 0; i < num_iter; ++i) {
int READ = (i * (num_vars + 1) + (var + 1)) *
X * Y * Z;

int WRITE = (i * (num_vars + 1) + var) * X * Y
* Z;

// 5d -> 3d

Block<double> read = input + READ;
Block<double> write = input + WRITE;
write[idz + 1][idy + 1][idx + 1] =

(read[idz][idy + 1][idx + 1]
+ read[idz + 1][idy][idx + 1]
+ read[idz + 1][idy + 1][idx]
+ read[idz + 1][idy + 1][idx + 1]
+ read[idz + 1][idy + 1][idx + 2]
+ read[idz + 1][idy + 2][idx + 1]
+ read[idz + 2][idy + 1][idx + 1]) /
7.0;

}

}

Listing A.1: ImageCL kernel using a single read-write buffer.

74

APPENDIX A. IMAGECL KERNELS

#pragma imcl grid(input)
#pragma imcl boundary_cond(input:none,output:none)
void stencil_kernel(

int var,
int num_iter ,
int num_vars ,
Block<double> input,
Block<double> output

) {

int X = W + 2;
int Y = H + 2;
int Z = D + 2;

for (int i = 0; i < num_iter; ++i) {
int OFFSET = (i * num_vars + var) * X * Y * Z;
// 5d -> 3d

Block<double> read = input + OFFSET;
Block<double> write = output + OFFSET;
write[idz + 1][idy + 1][idx + 1] =

(read[idz][idy + 1][idx + 1]
+ read[idz + 1][idy][idx + 1]
+ read[idz + 1][idy + 1][idx]
+ read[idz + 1][idy + 1][idx + 1]
+ read[idz + 1][idy + 1][idx + 2]
+ read[idz + 1][idy + 2][idx + 1]
+ read[idz + 2][idy + 1][idx + 1]) /
7.0;

}

}

Listing A.2: ImageCL kernel using read and write buffers.

75

APPENDIX A. IMAGECL KERNELS

#pragma imcl grid(input)
#pragma imcl boundary_cond(input:none,output:none)
void stencil_kernel(Block<double> input, Block<double>

output) {

output[idz + 1][idy + 1][idx + 1] =
(input[idz][idy + 1][idx + 1]
+ input[idz + 1][idy][idx + 1]
+ input[idz + 1][idy + 1][idx]
+ input[idz + 1][idy + 1][idx + 1]
+ input[idz + 1][idy + 1][idx + 2]
+ input[idz + 1][idy + 2][idx + 1]
+ input[idz + 2][idy + 1][idx + 1]) /
7.0;

}

Listing A.3: ImageCL kernel using 3D read and write buffers.

76

Appendix B

MiniAMR configuration

This appendix lists the miniAMR configurations used in all of the perfor-
mance measurements.

77

APPENDIX B. MINIAMR CONFIGURATION

Variable Value Description
max blocks 500 Maximum number of blocks per core.
target active 0 Target number of blocks per core.
target max 0 Max number of blocks per core, none if 0.
target min 0 Min number of blocks per core, none if 0.
num refine 5 Number of levels of refinement.
uniform refine 0 Says if grid is uniformly refined.
num vars 40 Number of variables.
comm vars 0 Number of variables to communicate together.
init x 1 Initial blocks in x.
init y 1 Initial blocks in y.
init z 1 Initial blocks in z.
reorder 1 Ordering of blocks.
npx 1 Number of processors in x.
npy 1 Number of processors in y.
npz 1 Number of processors in z.
inbalance 0 Percentage inbalance to trigger inbalance.
refine freq 5 Frequency of checking for refinement.
report diffusion 0 Print checksums.
error tol 8 Error tolerance.
num tstep 20 Number of timesteps.
stages per ts 20 Number of comm/calc stages per timestep.
checksum freq 5 Number of stages between checksums.
stencil 7 The 3D stencil used in the application.
report perf 12 Determines how the performance output is displayed.
num objects 0 Number of objects to cause refinement.
lb opt 1 Load balance strategy.
block change 0 Number of levels a block can change during refinement.
code 0 Decides the way communication is done.
permute 0 Permute communication directions.

78

Appendix C

Detailed Measurements

This appendix contains the raw data of the measurements presented in
Section 5.2. Only the arithmetic average of the ten runs are included,
for spatial reasons. See the miniAMR repository for the full raw data
(github.com/acelster/miniAMR-NTNU/tree/master/timings).

79

https://github.com/acelster/miniAMR-NTNU/tree/master/timings

APPENDIX C. DETAILED MEASUREMENTS

Table C.1: The time (in seconds) spent inside the kernel code for the GTX 980
system. Timed using CUDA events. This data is illustrated in Figure 5.1(a).

Dimension V1 V2 V3 V4 V5 V6
4x4x4 0.1061974 0.1108634 0.1051717 0.1210734 0.0974294 0.0838950
6x6x6 0.1218507 0.1270070 0.1202561 0.1356205 0.1406664 0.0942338
8x8x8 0.1392570 0.1477185 0.1399117 0.1507227 0.1986906 0.1047901
10x10x10 0.1386269 0.1454769 0.1360454 0.1496569 0.1990679 0.1024575
12x12x12 0.1394752 0.1489263 0.1409269 0.1498694 0.2334984 0.1036866
14x14x14 0.1456470 0.1590377 0.1504081 0.1548491 0.2670944 0.1051968
16x16x16 0.1499147 0.1651615 0.1609697 0.1608329 0.2567063 0.1078939
18x18x18 0.1728905 0.1783648 0.1683628 0.1782899 0.3047006 0.1144595
20x20x20 0.1909822 0.1956702 0.1851905 0.1840544 0.1233045
22x22x22 0.2137591 0.2230922 0.2053426 0.1991883 0.1354989
24x24x24 0.2348671 0.2443217 0.2254226 0.2109556 0.1419998
26x26x26 0.3036092 0.3040961 0.2958563 0.2931324 0.1789419
28x28x28 0.3372883 0.3391280 0.3364153 0.3204051 0.1894729
30x30x30 0.3565744 0.3609692 0.3585366 0.3443436 0.1969773
32x32x32 0.4026501 0.4041561 0.3998154 0.3810412 0.2044937
34x34x34 0.5272903 0.5337558 0.4897159 0.4609266 0.2679372
36x36x36 0.5727812 0.5777270 0.5499766 0.5003141 0.2775454
38x38x38 0.6246976 0.6291934 0.5981121 0.5406501 0.3036420
40x40x40 0.6910444 0.6902175 0.6728867 0.5803164 0.3233443

Table C.2: The time (in seconds) spent inside the kernel code for the P100 system.
Timed using CUDA events. This data is illustrated in Figure 5.1(b).

Dimension V1 V2 V3 V4 V5 V6
4x4x4 0.1166437 0.1227836 0.1150214 0.1309654 0.1379375 0.1103772
6x6x6 0.1277542 0.1307216 0.1235603 0.1363111 0.2418323 0.1173744
8x8x8 0.1420829 0.1427832 0.1348538 0.1437100 0.3538216 0.1341173
10x10x10 0.1477853 0.1466485 0.1404781 0.1444263 0.3693241 0.1320887
12x12x12 0.1435619 0.1451578 0.1362687 0.1421053 0.4447030 0.1332779
14x14x14 0.1601354 0.1630178 0.1569736 0.1462247 0.4740064 0.1331279
16x16x16 0.1483892 0.1468794 0.1398344 0.1450868 0.4677716 0.1365028
18x18x18 0.1543039 0.1606053 0.1542430 0.1519983 0.4019007 0.1333985
20x20x20 0.1480257 0.1531520 0.1455478 0.1513628 0.1338726
22x22x22 0.1626224 0.1636581 0.1554278 0.1536130 0.1319988
24x24x24 0.1546301 0.1545855 0.1477293 0.1527811 0.1330630
26x26x26 0.1735204 0.1744864 0.1675933 0.1726117 0.1445608
28x28x28 0.1752554 0.1750622 0.1684807 0.1746800 0.1502477
30x30x30 0.2111156 0.2119427 0.2028306 0.1844332 0.1593006
32x32x32 0.1982069 0.2014424 0.1979672 0.1853100 0.1697543
34x34x34 0.2391220 0.2423729 0.2326834 0.2127113 0.1954952
36x36x36 0.2318688 0.2414904 0.2322636 0.2146593 0.1966274
38x38x38 0.2545041 0.2575003 0.2534143 0.2253803 0.2065210
40x40x40 0.2598647 0.2688978 0.2662055 0.2322329 0.2147521

80

APPENDIX C. DETAILED MEASUREMENTS

Table C.3: The time (in seconds) spent inside the kernel code for the Titan V
system. Timed using CUDA events. This data is illustrated in Figure 5.1(c).

Dimension V1 V2 V3 V4 V5 V6
4x4x4 0.0908810 0.0885952 0.0872567 0.0966920 0.1037951 0.0870584
6x6x6 0.1054009 0.1038311 0.1030711 0.1080627 0.1758340 0.0969641
8x8x8 0.1114681 0.1088039 0.1089164 0.1124034 0.3057212 0.1174013
10x10x10 0.1260615 0.1237923 0.1238774 0.1171562 0.3115122 0.1191019
12x12x12 0.1164151 0.1143616 0.1127612 0.1141005 0.3648112 0.1178188
14x14x14 0.1490839 0.1461536 0.1460513 0.1204987 0.4116916 0.1188200
16x16x16 0.1161462 0.1143656 0.1135985 0.1147032 0.3817482 0.1194535
18x18x18 0.1262849 0.1263914 0.1265314 0.1234341 0.3383555 0.1169401
20x20x20 0.1162607 0.1180996 0.1178136 0.1207130 0.1175696
22x22x22 0.1289404 0.1316057 0.1317002 0.1250653 0.1167402
24x24x24 0.1222692 0.1205330 0.1211075 0.1228009 0.1168292
26x26x26 0.1479583 0.1444754 0.1473139 0.1435783 0.1274650
28x28x28 0.1389086 0.1369609 0.1367504 0.1418159 0.1263544
30x30x30 0.1687065 0.1664265 0.1658333 0.1492498 0.1279490
32x32x32 0.1457430 0.1442082 0.1438383 0.1472749 0.1262304
34x34x34 0.1780226 0.1770515 0.1773054 0.1791588 0.1717657
36x36x36 0.1748233 0.1739698 0.1731763 0.1779531 0.1700728
38x38x38 0.1958229 0.1912567 0.1934327 0.1906930 0.1756694
40x40x40 0.1954816 0.1942714 0.1936103 0.1972794 0.1779412

Table C.4: The time (in seconds) spent executing the kernel including local kernel
setup for the GTX 980 system. Timed using gettimeofday. This data is illustrated
in Figure 5.2(a).

Dimension C V1 V2 V3 V4 V5 V6
4x4x4 0.0073703 0.2081242 0.2118660 0.2068463 0.2238996 0.2820727 0.3328470
6x6x6 0.0210109 0.2270257 0.2353711 0.2291369 0.2436944 0.3310593 0.3462568
8x8x8 0.0480917 0.2494613 0.2593109 0.2491805 0.2625594 0.3943532 0.3634994
10x10x10 0.0905686 0.2559133 0.2668641 0.2575423 0.2717111 0.4041998 0.3692608
12x12x12 0.1572666 0.2669049 0.2785173 0.2708491 0.2807038 0.4486343 0.3797861
14x14x14 0.2457970 0.2822001 0.3004972 0.2937104 0.2983973 0.4984256 0.3972800
16x16x16 0.3753409 0.2859605 0.3121996 0.3082497 0.3081389 0.4972803 0.4078935
18x18x18 0.5315191 0.3083200 0.3275739 0.3172493 0.3291450 0.5480275 0.4146855
20x20x20 0.7224314 0.3255647 0.3499914 0.3403879 0.3386635 0.4292981
22x22x22 0.9650161 0.3479582 0.3799752 0.3621813 0.3571752 0.4454437
24x24x24 1.2519179 0.3704891 0.4058625 0.3866663 0.3740132 0.4587729
26x26x26 1.6174835 0.4583664 0.4869680 0.4795645 0.4800933 0.5254990
28x28x28 2.0127618 0.4977551 0.5385713 0.5365091 0.5187654 0.5604016
30x30x30 2.4692618 0.5116715 0.5684372 0.5664110 0.5530204 0.5810851
32x32x32 0.9086122 0.5683215 0.6291159 0.6248752 0.6048406 0.6129396
34x34x34 1.1976246 0.6771368 0.7556059 0.7124933 0.6810675 0.6826539
36x36x36 1.4837581 0.7479053 0.8249452 0.7980594 0.7573599 0.7288652
38x38x38 1.6446018 0.8001740 0.8925623 0.8624114 0.8126679 0.7761413
40x40x40 2.0072713 0.8585216 0.9631206 0.9440207 0.8619408 0.8451177

81

APPENDIX C. DETAILED MEASUREMENTS

Table C.5: The time (in seconds) spent executing the kernel including local kernel
setup for the P100 system. Timed using gettimeofday. This data is illustrated in
Figure 5.2(b).

Dimension C V1 V2 V3 V4 V5 V6
4x4x4 0.0071456 0.2671025 0.2727811 0.2642829 0.2809989 0.3865605 0.4823210
6x6x6 0.0139907 0.2798548 0.2816424 0.2736362 0.2871442 0.4909853 0.4876631
8x8x8 0.0270585 0.2989224 0.3003437 0.2930993 0.3026662 0.6072225 0.5088120
10x10x10 0.0462193 0.3139148 0.3116046 0.3057042 0.3105854 0.6303127 0.5137467
12x12x12 0.0809359 0.3195933 0.3225343 0.3127105 0.3181598 0.7177167 0.5272990
14x14x14 0.1280987 0.3408385 0.3453213 0.3406622 0.3248881 0.7564628 0.5305763
16x16x16 0.1832504 0.3344715 0.3308681 0.3249262 0.3277785 0.7531809 0.5398625
18x18x18 0.2441697 0.3384162 0.3481105 0.3405690 0.3337716 0.6955128 0.5358365
20x20x20 0.3246280 0.3311530 0.3382487 0.3307332 0.3303348 0.5371471
22x22x22 0.4269684 0.3451077 0.3536196 0.3445110 0.3349421 0.5347858
24x24x24 0.5588275 0.3379662 0.3435629 0.3368790 0.3359506 0.5413256
26x26x26 0.7226737 0.3578006 0.3709305 0.3639207 0.3605558 0.5606690
28x28x28 0.9078824 0.3572905 0.3693994 0.3638510 0.3576767 0.5665889
30x30x30 1.1005116 0.3932410 0.4125518 0.4037597 0.3681672 0.5884762
32x32x32 1.3168181 0.3809139 0.4053562 0.4022619 0.3684446 0.5974746
34x34x34 1.5161530 0.4249544 0.4491026 0.4398970 0.4083485 0.6247036
36x36x36 1.7730238 0.4137065 0.4506969 0.4429883 0.4151867 0.6318488
38x38x38 2.0799294 0.4382242 0.4699428 0.4666812 0.4371312 0.6461939
40x40x40 2.4213505 0.4445710 0.4880144 0.4843347 0.4435121 0.6610986

Table C.6: The time (in seconds) spent executing the kernel including local kernel
setup for the Titan V system. Timed using gettimeofday. This data is illustrated
in Figure 5.2(c).

Dimension C V1 V2 V3 V4 V5 V6
4x4x4 0.0071469 0.2064748 0.2034880 0.2023367 0.2123279 0.2979234 0.3303050
6x6x6 0.0183271 0.2239098 0.2245836 0.2219888 0.2277155 0.3726914 0.3444294
8x8x8 0.0420576 0.2338515 0.2344040 0.2341491 0.2380183 0.5091398 0.3685883
10x10x10 0.0783598 0.2562999 0.2556642 0.2566696 0.2509261 0.5207345 0.3797446
12x12x12 0.1358254 0.2572223 0.2563438 0.2539629 0.2581794 0.5848671 0.3908121
14x14x14 0.2134536 0.2972661 0.2970061 0.2970354 0.2712796 0.6391701 0.3998630
16x16x16 0.3265693 0.2656060 0.2638690 0.2644658 0.2653630 0.6097080 0.4011998
18x18x18 0.4617963 0.2704283 0.2745919 0.2738092 0.2722839 0.5676539 0.3952386
20x20x20 0.6260329 0.2611140 0.2691931 0.2697901 0.2705818 0.4007618
22x22x22 0.8418971 0.2728631 0.2842027 0.2836327 0.2752356 0.4014337
24x24x24 1.0826010 0.2652754 0.2728533 0.2738014 0.2751054 0.4040582
26x26x26 1.3765596 0.2898726 0.2976837 0.2989621 0.2937024 0.4192808
28x28x28 1.7108144 0.2823528 0.2939268 0.2939667 0.2968198 0.4231993
30x30x30 2.0950463 0.3133921 0.3273391 0.3266779 0.3086467 0.4311947
32x32x32 0.7466317 0.2896276 0.3076126 0.3075373 0.3091314 0.4373822
34x34x34 0.9582400 0.3208619 0.3460146 0.3458825 0.3469605 0.4889652
36x36x36 1.0886971 0.3196867 0.3404915 0.3409132 0.3489927 0.4967387
38x38x38 1.2723567 0.3430800 0.3639252 0.3671757 0.3662318 0.5118298
40x40x40 1.4644969 0.3410479 0.3712090 0.3739654 0.3774949 0.5213330

82

APPENDIX C. DETAILED MEASUREMENTS

Table C.7: The total time (in seconds) spent on the GPU setup on the GTX 980
system. Timed using gettimeofday. This data is illustrated in Figure 5.3(a).

Dimension C V1 V2 V3 V4 V5 V6
4x4x4 0.0073703 0.2302281 0.2324934 0.2333764 0.2356438 0.3167083 0.4764558
6x6x6 0.0210109 0.2462970 0.2529744 0.2540843 0.2531504 0.3357991 0.4900289
8x8x8 0.0480917 0.2762884 0.2812823 0.2785908 0.2827151 0.3651879 0.5174810
10x10x10 0.0905686 0.3191121 0.4037814 0.4034254 0.4055604 0.4896621 0.6326700
12x12x12 0.1572666 0.3800141 0.4607580 0.4641017 0.4654644 0.5458656 0.6856358
14x14x14 0.2457970 0.4618743 0.5500196 0.5490368 0.5590005 0.6419319 0.7834983
16x16x16 0.3753409 0.5559618 0.6671284 0.6691950 0.6716441 0.7634433 0.9190428
18x18x18 0.5315191 0.6791231 0.8058579 0.8051728 0.8201209 0.9286292 1.0729010
20x20x20 0.7224314 0.8355320 0.9887194 0.9881465 0.9970952 1.2680958
22x22x22 0.9650161 1.0271266 1.2085781 1.2068704 1.2195026 1.5194769
24x24x24 1.2519179 1.2643665 1.4648295 1.4607497 1.4847478 1.8042998
26x26x26 1.6174835 1.5746065 1.8177953 1.8178682 1.8438357 2.2001473
28x28x28 2.0127618 1.9238926 2.2128598 2.2248059 2.2515476 2.6615578
30x30x30 2.4692618 2.2740041 2.6234000 2.6278242 2.6599501 3.1139864
32x32x32 0.9086122 2.7185443 3.1203432 3.1186156 3.1605476 3.6654812
34x34x34 1.1976246 3.1691453 3.6357149 3.6312770 3.6888896 4.2487024
36x36x36 1.4837581 3.7660000 4.3013449 4.2983524 4.3731541 4.9798939
38x38x38 1.6446018 4.3334171 4.9559952 4.9528446 5.0317539 5.7270977
40x40x40 2.0072713 4.9761028 5.6960418 5.6922564 5.7887588 6.5845832

Table C.8: The total time (in seconds) spent on the GPU setup on the P100 system.
Timed using gettimeofday. This data is illustrated in Figure 5.3(b).

Dimension C V1 V2 V3 V4 V5 V6
4x4x4 0.0071456 1.8264522 1.8340605 1.8213003 1.8299755 1.9317001 2.1630334
6x6x6 0.0139907 1.8695537 1.8768538 1.8762138 1.8838337 1.9781816 2.2160599
8x8x8 0.0270585 1.9311443 1.9291361 1.9345039 1.9526346 2.0228075 2.2619151
10x10x10 0.0462193 2.0277928 2.0033878 2.0148305 2.0258435 2.1113110 2.3342285
12x12x12 0.0809359 2.1249402 2.1310169 2.1310399 2.1406825 2.2277862 2.4548227
14x14x14 0.1280987 2.2608963 2.3743276 2.3850733 2.3834985 2.4801978 2.7031890
16x16x16 0.1832504 2.4475711 2.5444849 2.5459366 2.5668912 2.6536040 2.8932909
18x18x18 0.2441697 2.6706853 2.7940799 2.8014384 2.8132317 2.9055764 3.1555878
20x20x20 0.3246280 2.7422016 2.8578604 2.8499536 2.8886802 3.2290779
22x22x22 0.4269684 3.0338654 3.1793754 3.1879540 3.2175860 3.5758111
24x24x24 0.5588275 3.2836618 3.4440185 3.4368664 3.4397675 3.7862310
26x26x26 0.7226737 3.5645745 3.7058958 3.7607043 3.7372167 4.1422065
28x28x28 0.9078824 3.8057568 4.0206701 4.0109330 4.1202450 4.5245502
30x30x30 1.1005116 4.3052786 4.4807026 4.4667491 4.5942738 4.9477346
32x32x32 1.3168181 4.7854149 4.9769931 4.9559154 5.1206666 5.4364093
34x34x34 1.5161530 5.2498894 5.6827381 5.6198085 5.7138347 6.2233648
36x36x36 1.7730238 6.0837066 6.4510372 6.3354010 6.5953072 6.9304145
38x38x38 2.0799294 7.2209625 7.5475852 7.5704792 7.6699239 8.0947063
40x40x40 2.4213505 8.4141759 8.8534643 8.8954579 8.9236302 9.5720951

83

APPENDIX C. DETAILED MEASUREMENTS

Table C.9: The total time (in seconds) spent on the GPU setup on the Titan V
system. Timed using gettimeofday. This data is illustrated in Figure 5.3(c).

Dimension C V1 V2 V3 V4 V5 V6
4x4x4 0.0071469 0.3429077 0.3465342 0.3482060 0.3483514 0.4275089 0.5678922
6x6x6 0.0183271 0.3588242 0.3696713 0.3642248 0.3643409 0.4430144 0.5849208
8x8x8 0.0420576 0.3836883 0.3918675 0.3916831 0.3936455 0.4729691 0.6092271
10x10x10 0.0783598 0.4238001 0.4301665 0.4321546 0.4328987 0.5070485 0.6494425
12x12x12 0.1358254 0.4803811 0.4844067 0.4844861 0.4880177 0.5664367 0.7070891
14x14x14 0.2134536 0.5503432 0.6436904 0.6448545 0.6465440 0.7225932 0.8605801
16x16x16 0.3265693 0.6380166 0.7265569 0.7308560 0.7314997 0.8082942 0.9470014
18x18x18 0.4617963 0.7453130 0.8417395 0.8386361 0.8468661 0.9223022 1.0540252
20x20x20 0.6260329 0.8903324 0.9822825 0.9879142 0.9890780 1.1992608
22x22x22 0.8418971 1.0757827 1.1668479 1.1678145 1.1737764 1.3863890
24x24x24 1.0826010 1.2809139 1.3711645 1.3757898 1.3849594 1.6003110
26x26x26 1.3765596 1.5273060 1.6193900 1.6190686 1.6378478 1.8491346
28x28x28 1.7108144 1.8267236 1.9240256 1.9231333 1.9424857 2.1516878
30x30x30 2.0950463 2.1593729 2.2451233 2.2538738 2.2842046 2.4815136
32x32x32 0.7466317 2.5397175 2.6311318 2.6304901 2.6625194 2.8744011
34x34x34 0.9582400 2.9679766 3.0681203 3.0640880 3.1007073 3.3017180
36x36x36 1.0886971 3.4593233 3.5573029 3.5659821 3.6047801 3.7960155
38x38x38 1.2723567 3.9838573 4.0852571 4.0847859 4.1299290 4.3261018
40x40x40 1.4644969 4.5647094 4.6760043 4.6856599 4.7208786 4.9091783

Table C.10: The total runtime (in seconds) of miniAMR on the GTX 980 system.
This data is illustrated in Figure 5.4(a).

Dimension C V1 V2 V3 V4 V5 V6
4x4x4 0.0115466 0.8809360 0.8877901 0.8829867 0.9018547 0.9616443 1.1116599
6x6x6 0.0280079 0.9135751 0.9267997 0.9226547 0.9358241 1.0263999 1.1388767
8x8x8 0.0601873 0.9659280 0.9793556 0.9697811 0.9848341 1.1170720 1.1812254
10x10x10 0.1096739 1.0142223 1.1077178 1.0971735 1.1123914 1.2488504 1.2990810
12x12x12 0.1887775 1.0870050 1.1787078 1.1737684 1.1843035 1.3502967 1.3616407
14x14x14 0.2839608 1.1867059 1.2845783 1.2740608 1.2939284 1.4877002 1.4725979
16x16x16 0.4262380 1.2939114 1.4222687 1.4213814 1.4219597 1.6138709 1.6237927
18x18x18 0.5968940 1.4528371 1.5852639 1.5748496 1.5986660 1.8363633 1.7980156
20x20x20 0.8047155 1.6434175 1.8031413 1.7912749 1.7978799 2.0172456
22x22x22 1.0659039 1.8739608 2.0686227 2.0492610 2.0567041 2.2984840
24x24x24 1.3842287 2.1919513 2.3907771 2.3658683 2.3792461 2.6257732
26x26x26 1.8476188 2.7200299 2.9464744 2.9406240 2.9665632 3.2431100
28x28x28 2.4802116 3.4656056 3.7256778 3.7540565 3.7599670 4.0949349
30x30x30 3.0355162 3.7528277 4.0972699 4.1009219 4.1120702 4.4567685
32x32x32 1.7320281 4.4491659 4.8377148 4.8303393 4.8466614 5.1806820
34x34x34 2.2318266 5.2194276 5.6732964 5.6030986 5.6464389 5.9447277
36x36x36 2.5990858 5.8766445 6.3858879 6.3523581 6.3994400 6.8747380
38x38x38 3.2553698 6.9494708 7.5106133 7.5118852 7.5236900 7.9940844
40x40x40 3.9985497 8.1721890 8.8654142 8.8394337 8.8614475 9.1838864

84

APPENDIX C. DETAILED MEASUREMENTS

Table C.11: The total runtime (in seconds) of miniAMR on the P100 system. This
data is illustrated in Figure 5.4(b).

Dimension C V1 V2 V3 V4 V5 V6
4x4x4 0.0137187 2.8538679 2.8672723 2.8460864 2.8735801 2.9871273 3.1990792
6x6x6 0.0233139 2.9053674 2.9210799 2.9090219 2.9329020 3.1368121 3.2588918
8x8x8 0.0451448 3.0116815 3.0171176 3.0099348 3.0389741 3.3277094 3.3580152
10x10x10 0.0757326 3.1226693 3.1004552 3.1062549 3.1273533 3.4407385 3.4342894
12x12x12 0.1236834 3.2302327 3.2451650 3.2327101 3.2498966 3.6437935 3.5673112
14x14x14 0.1854915 3.3946576 3.5186486 3.5239024 3.5087113 3.9423544 3.8325205
16x16x16 0.2612625 3.5928783 3.6937810 3.6883062 3.7127674 4.1249460 4.0468318
18x18x18 0.3411147 3.8365915 3.9689185 3.9673453 3.9810339 4.3313064 4.3179383
20x20x20 0.4439659 3.9146631 4.0482505 4.0275878 4.0751294 4.4097545
22x22x22 0.5703615 4.2416092 4.3941064 4.3993445 4.4190167 4.7746103
24x24x24 0.7387762 4.5115255 4.6837094 4.6649969 4.6756842 5.0144987
26x26x26 0.9508214 4.8512405 4.9895207 5.0409950 5.0268265 5.4185730
28x28x28 1.2112336 5.1382681 5.3658590 5.3492476 5.4607481 5.8578979
30x30x30 1.4586768 5.7366072 5.9067809 5.8937979 6.0094413 6.3496273
32x32x32 1.8008305 6.3065687 6.5116732 6.4652791 6.6211515 6.9361873
34x34x34 2.1002008 6.8840438 7.3229657 7.2702101 7.3573114 7.8550899
36x36x36 2.3261354 7.6871534 8.0757734 7.9344467 8.1656047 8.4778313
38x38x38 2.8393832 9.0778750 9.4489300 9.3957293 9.4734748 9.8732639
40x40x40 3.5083451 10.6808974 11.1469674 11.1330907 11.1843673 11.7061869

Table C.12: The total runtime (in seconds) of miniAMR on the Titan V system.
This data is illustrated in Figure 5.4(c).

Dimension C V1 V2 V3 V4 V5 V6
4x4x4 0.0110675 1.2388721 1.2417507 1.2434177 1.2495652 1.3422574 1.4681908
6x6x6 0.0244418 1.2746815 1.2866132 1.2766235 1.2814750 1.4283106 1.4975939
8x8x8 0.0528259 1.3062737 1.3144569 1.3130359 1.3191511 1.5983748 1.5459501
10x10x10 0.0951413 1.3654608 1.3737046 1.3763364 1.3701578 1.6376006 1.5912190
12x12x12 0.1623947 1.4229887 1.4241089 1.4212723 1.4246324 1.7647519 1.6563760
14x14x14 0.2470833 1.5284096 1.6203695 1.6227533 1.5972804 1.9802296 1.8258640
16x16x16 0.3714735 1.5939305 1.6785775 1.6870288 1.6867810 2.0435098 1.9240505
18x18x18 0.5196708 1.7231039 1.8210592 1.8154370 1.8221838 2.1265288 2.0387402
20x20x20 0.6981318 1.8707184 1.9665439 1.9785511 1.9767652 2.1971636
22x22x22 0.9303132 2.0960418 2.1925547 2.1928230 2.1916443 2.4009678
24x24x24 1.1985078 2.3229040 2.4136581 2.4262948 2.4318572 2.6451698
26x26x26 1.5779913 2.6626630 2.7544365 2.7578091 2.7713012 2.9803280
28x28x28 2.1293158 3.2782083 3.3729332 3.3660702 3.4034369 3.6407455
30x30x30 2.5857135 3.5276467 3.6154670 3.6178339 3.6404916 3.8574884
32x32x32 1.4926106 4.0405521 4.1450303 4.1393341 4.1723999 4.3923506
34x34x34 1.9062272 4.6456335 4.8268387 4.8259430 4.8480370 4.9878480
36x36x36 2.0860162 5.1586028 5.2506851 5.2680255 5.3200812 5.5980418
38x38x38 2.6940155 6.0179444 6.1350766 6.1375471 6.1859674 6.3938252
40x40x40 3.1714338 6.9754667 7.0533002 7.1277742 7.1530160 7.2315641

85

APPENDIX C. DETAILED MEASUREMENTS

Table C.13: The amount of global memory allocated (in Bytes) on the GPU. This
data is illustrated in Figure 5.5.

Dimension V1 V2 V3 V4 V5 V6
4x4x4 28364800 55321600 55321600 56704000 55321600 55408000
6x6x6 67200000 131097600 131097600 134374400 131097600 131302400
8x8x8 131225600 256025600 256025600 262425600 256025600 256425600
10x10x10 226918400 442572800 442572800 453632000 442572800 443264000
12x12x12 360217600 702668800 702668800 720230400 702668800 703766400
14x14x14 537600000 1048780800 1048780800 1074995200 1048780800 1050419200
16x16x16 765363200 1493196800 1493196800 1530521600 1493196800 1495529600
18x18x18 1050291200 2048691200 2048691200 2099891200 2048691200 2051891200
20x20x20 1397708800 2726579200 2726579200 2794726400 2730838400
22x22x22 1814400000 3539635200 3539635200 3628108800 3545164800
24x24x24 2306662400 4500147200 4500147200 4612633600 4507177600
26x26x26 2881740800 5621350400 5621350400 5761843200 5630131200
28x28x28 3544038400 6913638400 6913638400 7086438400 6924438400
30x30x30 4300800000 8390246400 8390246400 8599961600 8403353600
32x32x32 5158323200 10063462400 10063462400 10315008000 10079184000
34x34x34 6124467200 11947136000 11947136000 12245734400 11965798400
36x36x36 7202406400 14050432000 14050432000 14401612800 14072380800
38x38x38 8400000000 16387200000 16387200000 16796800000 16412800000
40x40x40 9723545600 18969728000 18969728000 19443891200 18999363200

Table C.14: The amount of memory (in Bytes) copied from host to device and
from device to host. This data is illustrated in Figure 5.6.

Dimension V1 V2 V3 V4 V5 V6
4x4x4 56704000 82969600 82969600 85043200 110617600 86425600
6x6x6 134374400 196633600 196633600 201548800 262169600 204825600
8x8x8 262425600 384025600 384025600 393625600 512025600 400025600
10x10x10 453632000 663756800 663756800 680345600 884940800 691404800
12x12x12 720230400 1053900800 1053900800 1080243200 1405132800 1097804800
14x14x14 1074995200 1573068800 1573068800 1612390400 2097356800 1638604800
16x16x16 1530521600 2239692800 2239692800 2295680000 2986188800 2333004800
18x18x18 2099891200 3072691200 3072691200 3149491200 4096691200 3200691200
20x20x20 2794726400 4089523200 4089523200 4191744000 4259891200
22x22x22 3628108800 5309107200 5309107200 5441817600 5530291200
24x24x24 4612633600 6749875200 6749875200 6918604800 7031091200
26x26x26 5761843200 8431206400 8431206400 8641945600 8782438400
28x28x28 7086438400 10369638400 10369638400 10628838400 10801638400
30x30x30 8599961600 12584550400 12584550400 12899123200 13108838400
32x32x32 10315008000 15094374400 15094374400 15471692800 15723238400
34x34x34 12245734400 17919104000 17919104000 18367001600 18665600000
36x36x36 14401612800 21074048000 21074048000 21600819200 21952000000
38x38x38 16796800000 24579200000 24579200000 25193600000 25603200000
40x40x40 19443891200 28452992000 28452992000 29164236800 29638400000

86

	Problem Description
	Sammendrag
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Project Goal
	Contributions
	Structure of the Thesis

	Background
	Parallel Computing
	Classification of Parallelism
	GPU Computing

	The GPU Architecture
	Thread Blocks
	Streaming Multiprocessors
	Single Instruction Multiple Threads
	The GPU Memory Hierarchy
	CUDA and OpenCL

	Performance Portability
	Auto-Tuning

	ImageCL
	The ImageCL Language
	The ImageCL Compiler
	Tuning Parameters
	Stencil Computations
	The ROSE Compiler Infrastructure

	Proxy Applications
	Co-Design of Architecture and Algorithms
	The Mantevo Project
	Adaptive Mesh Refinement and miniAMR

	Related Work

	3D and Other Extensions to ImageCL
	The Block Type
	The idz keyword
	The none Boundary Condition
	Double Precision Floating Point Support
	The Footprint Table
	The Offset Operator

	Kernel Wrapper
	Global Memory
	Shared Memory
	Texture Memory
	Constant Memory
	Register Caching

	Applying Code Generated by ImageCL into miniAMR
	Memory Management and Setup
	Kernel Implementations
	Using Single Read-Write Buffer
	Using Read and Write Buffers
	Using 3D Read and Write Buffers

	Generated Kernels

	Results and Discussion
	Methodology
	Configurations
	Validation

	Performance Measurements
	Execution Time
	Memory Usage

	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	ImageCL Kernels
	MiniAMR configuration
	Detailed Measurements

