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Abstract
Metaheuristic optimization has received a lot of attention over the last couple
of decades. Some optimization problems are just too computationally heavy
to solve with traditional search techniques, especially when there is more than
one objective to optimize for. There have been many promising metaheuristic
algorithms for solving multi-objective problems, but algorithms have different
strengths and weaknesses, and no algorithm can be the best at solving every
problem. New metaheuristic approaches are, therefore, an interesting topic to
study. In this thesis, a structured literature review of state of the art single
and multi-objective metaheuristic algorithms was performed. A framework was
created to implement and evaluate promising algorithms. Moreover, a comparison
study of single-objective algorithms was performed, where the most suitable single-
objective algorithm was extended to handle multi-objective problems. The extended
algorithm’s performance was compared with other well-performing algorithms from
the literature. The resulting algorithm is called Multi-Objective Animal Migration
Algorithm (MOAMO) and showed competitive results when compared with eight
other algorithms on 22 test functions using three performance metrics.
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Sammendrag
Metaheuristisk optimalisering har fått stor oppmerksomhet de siste par tiårene.
Noen optimeringsproblemer er for beregningsmessige tunge å løse med tradisjonelle
søketeknikker, spesielt når det er mer enn ett mål å optimalisere for. Det har
vært mange lovende metaheuristiske algoritmer for å løse problemer med flere
mål, men algoritmer har forskjellige styrker og svakheter, og ingen algoritme
er best til å løse alle problemer. Nye metaheuristiske tilnærminger er derfor
et interessant emne å studere. I denne masteroppgaven ble det gjennomført
en strukturert litteraturgjennomgang av nåtidens mest aktuelle metaheuristiske
algoritmer for optimalisering av enten ett eller flere mål. Et rammeverk ble
laget for å implementere og evaluere lovende algoritmer. Videre ble det utført en
undersøkelse av optimaliseringsalgoritmer for problemer med ett mål, hvor den
mest hensiktsmessige av dem ble videreutviklet til å kunne håndtere problemer
med flere mål. Den videreutviklede algoritmens ytelse ble så sammenlignet med
andre vellykkede algoritmer fra litteraturen. Den endelige algoritmen kalles Multi-
Objective Animal Migration Algorithm (MOAMO) og får gode resultater når den
testes med åtte andre algoritmer på 22 testfunksjoner ved hjelp av tre måter å
måle ytelse på.
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1. Introduction

This chapter gives an introduction to this thesis. First, background and motivation
are presented, then the goal and research questions are defined. The research
method to answer research questions is outlined and lastly, the thesis structure is
presented.

1.1. Background and Motivation
Computer-aided optimization is a popular area of research for solving problems
in several fields like biology, physics, chemistry, economy, and sociology [Coello
and Lamont, 2004]. Some of the problems encountered in these fields are just
too computationally heavy to find optimal solutions by calculating all possible
solutions. However, finding optimal solutions is not always necessary. Sometimes
a close to optimal solution can be good enough. In cases like this, metaheuristic
optimization algorithms are perfect [Coello et al., 2007, p.62]. A metaheuristic is a
high-level procedure that is used to guide a search, allowing for near optimal results
with acceptable computational cost. Metaheuristics have been applied to many
interesting real-world problems. For example when NASA needed a satellite antenna
for their 2006 mission “Space Technology 5” they used a metaheuristic algorithm
to find the best possible shape of the antenna [Hornby et al., 2006]. Metaheuristics
have also been used to solve other problems like aerodynamic design [Hasenjäger
et al., 2005], treatment planning optimization in radiation therapy [Yu, 1997],
designing a mobile telecommunication network [Meunier et al., 2000], and many
more. As most real-world optimization problems have multiple objectives [Konak
et al., 2006; Coello, 2015] having good multi-objective metaheuristic algorithms
is very important. Most modern multi-objective metaheuristic algorithms use
the a posteriori approach [Mirjalili, 2016], where a set of solutions are found,
and presented after optimizing. A posteriori algorithms are often nature-inspired.
The field of nature-inspired multi-objective algorithms began in the mid-80’s with
Vector Evaluated Genetic Algorithm (VEGA), a multi-objective algorithm based
on the single-objective Genetic Algorithm (GA). Since then many approaches to
multi-objective optimization have been tried, and new algorithms are developed
all the time. However, it is hard to solve multi-objective optimization problems,

1



1. Introduction

and even today there is room for improvement. According to the No Free Lunch
theorem [Wolpert and Macready, 1997], an algorithm that can perfectly solve all
classes of optimization problems cannot exist since an improvement in solving
one class of problems will reduce the performance of other classes. Consequently,
it is worthwhile to create new multi-objective algorithms. Lately, many new
single-objective algorithms have been extended to handle multiple objectives in
hopes of creating new multi-objective algorithms with improved convergence and
diversity [Savsani and Tawhid, 2017].

1.2. Goal and Research Questions
The following goal was set for this thesis:

Goal Create a multi-objective metaheuristic algorithm based on a single-objective
algorithm from the literature.

The goal is to find an algorithm that was created for single-objective optimization
and extend this algorithm to handle multi-objective problems. The resulting
algorithm should be able to handle real value problems that are unconstrained.
It should be competitive with other state of the art multi-objective optimization
algorithms. It should be general, that is, it should able to perform well on many
different problems with different characteristics. The algorithm will be optimized
for problems with two or three objectives.

To achieve the goal three research questions (RQs) were created.

RQ1 Which single-objective algorithm has the best potential for multi-objective
extension?

Promising new single-objective algorithms are developed all the time. But just
because an algorithm performs well on single-objective problems, does not neces-
sarily mean that it will do well when extended to handle more objectives. Some
algorithms use techniques that make it hard to extend them to multi-objective
without abandoning the core concepts of the algorithm, making it less of an ex-
tension and instead just a new algorithm that uses some techniques from the old
one. The aim of this question is to find an algorithm that performs well and can
be extended to handle multiple objectives without changing the core principles of
the algorithm.

RQ2 Which multi-objective techniques are most suitable for extending the selected
algorithm to multi-objective?

2



1.3. Research Method

There are several techniques for multi-objective optimization that are used by
state of the art algorithms. As most of the current multi-objective algorithms
in the literature use the a posteriori approach, the aim of this question is to
get an overview of the most promising a posteriori techniques, learn how they
work and find out which seems to be the most suitable for extending the selected
single-objective algorithm.

RQ3 How does the proposed algorithm’s performance compare to other competitive
algorithms from the literature?

Since the final version of the algorithm should be competitive, its performance should
be compared with competitive algorithms. The algorithms should be tested on a
range of multi-objective optimization problems with different characteristics.

1.3. Research Method
To help answer the research questions related work was studied to get a better
understanding of the field. A structured literature review (SLR) [Kofod-Petersen,
2014] was performed to gather information about the state of the art. In the
literature review, the focus was on finding single-objective algorithms that are
suitable for multi-objective extension, multi-objective techniques used by the state of
the art, competitive multi-objective algorithms, and test functions and performance
metrics that are used when testing multi-objective algorithms.

A framework for metaheuristic optimization was created. This framework includes
a range of single and multi-objective test functions for testing the algorithms.
A set of commonly used multi-objective performance metrics was implemented.
Statistical measures like mean and standard deviation are implemented to assess
the performance over several runs.

Using this framework some of the more promising single-objective algorithms were
implemented and compared against each other in an experiment to answer RQ1.
Based on the results from this experiment, one of the algorithms was chosen for
multi-objective extension.

The selected algorithm was extended to handle problems with multiple objectives
using different techniques to answer RQ2. The resulting algorithms were compared
with each other in an experiment. The best performing algorithm was selected as
the final version of the algorithm.

To answer RQ3 the algorithm was compared with other competitive algorithms in
a more extensive experiment. The results of this experiment have been analyzed,
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to evaluate the quality of the final version of the algorithm.

1.4. Thesis Structure
This thesis has three experiments. Two smaller ones are part of Chapters 5 and 6,
while a larger experiment covers all of Chapter 7. They all follow the same structure:
experimental setup, results and evaluation, discussion, and conclusion.

In Chapter 2 the background theory that is necessary to understand this thesis is
explained. Chapter 3 is a structured literature review covering the state of the art
with a summary and a discussion of the related work. In Chapter 4 the framework
architecture is explained. Chapter 5 answers RQ1 with an experiment comparing
single-objective algorithms from the literature review where one algorithm is selected
for multi-objective extension and explained in detail. Chapter 6 answers RQ2
with several extensions of the selected algorithm to multi-objective using different
techniques, an experiment comparing the different versions, and the presentation of
the final version of the algorithm. Chapter 7 answers RQ3 with a multi-objective
comparison experiment where the final version of the algorithm is compared with
other competitive algorithms. Lastly, the thesis is concluded in Chapter 8.
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In this chapter the relevant background theory that is necessary to understand this
thesis is presented.

2.1. Optimization
The goal of optimization problems is to find the optimal solution(s) out of a set of
possible solutions. This is usually done by minimizing (or maximizing depending
on the problem) the output by tweaking the input variables. The optimal solution
is not known before-hand and might require exhaustive search techniques to be
found. Optimization of a minimization problem with a single objective can be
broken down to the mathematical statement in Equation (2.1) [Coello et al., 2007,
p.4].

minimize f(x), x = (x1, . . . , xn) ∈ Rn (2.1)

Here the output of the objective function f(x) is minimized for all possible solutions
x with n decision variables. The output of f(x) is referred to as the fitness of x and
the evaluation itself is referred to as a fitness evaluation in this thesis. Optimization
problems can have more than one objective (criterion) which decides the number
of output variables. Real-life optimization problems usually involves constraints
which have to be upheld for the answer to be valid. Examples of constraints are
maximum time usage or physical limitations. Problems can have equality and
inequality constraints, as seen in Equation (2.2) [Coello et al., 2007, p.6].

gi(x) = 0 for i = 1, . . . , p Equality constraints
hj(x) ≤ 0 for j = 1, . . . ,m Inequality constraints

(2.2)

For a solution to be considered valid, its decision variables x have to satisfy p
equality constraints and m inequality constraints.
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Combinatorial optimization problems are a subset of optimization problems where
the goal is to the find the optimal order of a set of items. A classic example is
the Traveling Salesman Problem (TSP) where the goal is the find the shortest
route between cities by only visiting each city once and returning to the origin
city [Schrijver, 2005]. For this example, x is the order in which the cities should
be visited and f(x) is the total distance traveled. To solve problems like this
some traditional mathematical techniques like linear programming, non-linear
programming, and dynamic programming have been used. They guarantee that
an optimal solution is found, but they all have difficulties with computationally
heavy problems, like TSP, when the search space grows. In other words, doing an
exhaustive search is impractical for many optimization problems.

Optimization problems can be broken down into classes based on their computa-
tional complexity. A class which has gotten much research is the NP-complete
class [Michael and David, 1979]. NP stands for nondeterministic polynomial time
and is a class of problems where the answer can be verified in polynomial time.
What makes NP-complete problems so interesting is that even though solutions
to these problems cannot be found in polynomial time (assuming P 6= NP ), they
are as hard as the hardest problems in NP. If one of the NP-complete problems
can be solved in polynomial time, then all NP-complete problems can too [Michael
and David, 1979]. When the search space of these problems grows, it becomes
exceptionally computationally expensive and, in some cases, impossible to solve
these problems. Good solutions to these problems can still be found using heuristic
approaches.

The term heuristic comes from the Greek verb heuriskein which means “to
find” [Blum and Roli, 2003, p.270]. Heuristic methods focus on finding solu-
tions that are not necessarily optimal, but good enough. For problems where
finding an optimal solution is impractical or not possible, a heuristic approach is a
good alternative. Mathematical functions are usually used to express optimization
problems where the goal is to either minimize or maximize the output. The function
is not known to the solver and acts as a black box where only input and output is
known. Heuristic approaches like this can reduce the computation time drastically.
Heuristics are usually problem specific meaning that a heuristic for one NP-complete
problem may not work as well on another [Stützle, 1999, p.23]. The prefix meta
means “beyond, in an upper level” [Blum and Roli, 2003, p.270]. A metaheuristic
is a high-level procedure that is used to guide other heuristics that can achieve
near optimal results on an optimization problem with acceptable computational
cost. Metaheuristics are usually non-deterministic and are not problem-specific
Blum and Roli [2003].
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2.2. Characteristics of Metaheuristics
Metaheuristics have long been an interesting field of study, and many different
approaches have been tried to create metaheuristics that perform well. The goal is
to have an algorithm that finds high-quality solutions within an acceptable time
frame. There are some common characteristics that can be seen in the vast majority
of metaheuristics.

Most metaheuristics use a combination of exploration and exploitation tech-
niques [Luke, 2009, p.22]. Exploration aims to find promising solutions far away
from each other using a form of global search. A simple form of an exploration
technique is random search which searches by selecting random solutions [Luke,
2009, p.7]. When talking about exploitation in regards to search algorithms, it
means focusing on searching for better solutions in areas where promising solutions
have been found, also known as local search. Local search techniques alone are not
suitable for most problems, as they tend to get stuck in local optima. An example
of a simple local search technique is hill climbing, which selects the best neighboring
solution to the current solution until it reaches an optimum [Luke, 2009, p.8]. The
effectiveness of exploration and exploitation depends on the optimization problem
as some problems can be solved using only exploitation techniques, while other
problems have several local optima and therefore need a degree of exploration. An
example of a metaheuristic using both exploration and exploitation is Simulated
Annealing (SA) which uses exploitation by always selecting a newly found solution
if it is better than the current, but will also sometimes select a worse solution to
promote exploration of the search space.

Metaheuristics have either a single-state or a population [Luke, 2009, p.29]. The
single-state method only uses the current solution to search and replaces this
solution when meeting a set of conditions. SA is an example of an algorithm
using this method. Population-based algorithms, on the other hand, use several
solutions to search. The initial population usually consists of randomly selected
solutions from the search space. These solutions can then explore by sharing
information to find new improved solutions. An example of such an algorithm is
Particle Swarm Optimization (PSO) [Eberhart and Kennedy, 1995] which uses a
combination of the current solution, the personally best-known solution so far, and
the globally best-known solution to guide the population as a form of exploitation
and exploration combined.
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2.3. Nature Inspired Metaheuristics
Many metaheuristic algorithms are nature inspired [Birattari et al., 2001]. In this
section, the focus is on two subsets of metaheuristic algorithms that are inspired
by different phenomena found in nature. Evolutionary algorithms are inspired by
biological evolution, while swarm intelligence algorithms are inspired by animal
movement.

2.3.1. Evolutionary Algorithms
Evolutionary Algorithms (EAs) are a subset of metaheuristic algorithms that are
inspired by Darwin’s theory of evolution. In this section, some of the operators
used by EAs are explained.

6/23/2018 twopoint_crossover.xml
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Two-Point Crossover

(a) Two-point crossover

6/23/2018 uniform_crossover
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Uniform Crossover

(b) Uniform crossover

Figure 2.1.: Two common types of crossover

Crossover

Crossover is a population-based technique inspired by inheritance of genes in the
natural world, where offspring will get some of the genes from each of their parents.
Likewise, when creating a new solution for the next generation, some of the data
from each parent will be combined into a new solution. There is no guarantee that
this new solution is as good or better than the parents, but it can help keep the
population diverse, especially if the parents are dissimilar.

Single-point crossover picks a point in the solution where the information on each
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side of this point will go to different offspring. This can be done with more than
one point. An example of two-point crossover can be seen in Figure 2.1a. Uniform
crossover is a type of crossover where each bit of information has a percentage
chance of being passed on to the offspring based on a mixing ratio. This mixing
ratio is typically 0.5, meaning that the offspring inherits approximately half from
each parent. An example of uniform crossover can be seen in Figure 2.1b.

Mutation

Mutation is a small (often random) change to a solution. Mutation is usually
applied randomly to solutions and only changes some characteristics of the solution,
for example, changing one decision variable. Mutation operators help keep diversity
within a population. This is important to make sure the algorithm does not get
stuck with a population of extremely similar or even equal solutions.

Figure 2.2.: Example of fitness proportionate selection on a maximization problem.
Fitness is shown on the labels with chance of selection in parenthesis.
The section the arrow points at after the wheel is done spinning gets
selected.

Selection Strategy

When creating a new generation in an EA, one or more solutions (parents) are
chosen to create the next generation. This can be tricky, as it is important to keep
solutions similar to the best known current solution, while also exploring other
areas of the search space. There are many ways of doing this.
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Tournament selection chooses a set of potential parents at random and holds a
tournament where the solution with the best fitness is chosen. Tournament selection
with few solutions makes it more likely that bad solutions are selected, helping with
the diversity of the population. Tournament selection with many solutions makes
it more likely that a good solution is chosen, but can lead to a lack of diversity in
the population, increasing the chance of getting stuck in a local optimum.

Another common way of selecting parents is fitness proportionate selection. This
gives every solution a probability of being chosen based on their fitness value, which
means that the best solutions have a higher chance of being chosen compared to bad
ones. This is also referred to as roulette wheel selection, as it can be visualized as
a roulette wheel where each fitness value gets a section, and the size of this section
is based on how good the fitness is compared to the rest. When the wheel spins
the larger sections have a higher chance of being chosen. An example of fitness
proportionate selection on a maximization problem can be seen in Figure 2.2.

Elitism

To avoid reducing the quality of the solutions in the population, elitism is commonly
used. Algorithms with elitism always keep some of the best solutions from the
previous generation. Although commonly associated with GA, elitism is not
something that happens naturally during evolution.

2.3.2. Swarm Intelligence
Swarm Intelligence (SI) is the collective behavior exhibited by self-organized beings
that act as one system [Parpinelli and Lopes, 2011]. While SI algorithms do not
necessarily have to be nature inspired, many of the most well-known algorithms
are inspired by how groups of animals like birds, fish, and ants move. Unlike
EA techniques the techniques used by SI algorithms vary greatly from algorithm
to algorithm. Parpinelli and Lopes [2011] have categorized the behavior of SI
algorithms into three categories which are explained with some examples.

Mechanism of Exploitation

In many SI algorithms, a leader is used to guide the search. The leader is usually a
high-quality solution from the population. Moving towards high-quality solutions
lets the population exploit areas of the search space where the most promising
solutions were found. If the leader has a too big impact on the movement of the
population, it can lead to the population converging to a local optimum. Cuckoo
Search [Yang and Deb, 2009], Flower Pollination Algorithm [Yang, 2012], and
PSO are examples of algorithms that use a global leader for exploitation. Bees
Algorithm [Pham et al., 2006] does not use a global leader, but instead, it selects
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the n best sites explored by bees for further neighborhood search.

Mechanism of Exploration

A common way for SI algorithms to explore the search space is using random
search. Artificial Bee Colony [Karaboga and Basturk, 2007] has three types of
bees where one, scout bees, visit random positions in the search space. Another
common technique is to add a random factor to the calculation of new positions as
done by Firefly Algorithm [Yang, 2010] and PSO. The random factor is commonly
based on random numbers from the uniform or Gaussian distributions.

Communication Model

The communication model dictates the way individuals in the swarm communicate
with each other. This can either be done in a broadcast-like manner where a
greater part of the population is communicated with or by directly transmitting
information from one individual to another. Ant Colony Optimization [Dorigo
et al., 1996] use a broadcast model where the whole swarm shares pheromone to
indicate where they have traveled before. While PSO broadcasts the position of
the best leader to the whole swarm. Examples of direct communication are swarm
algorithms that use mating. Marriage in Honey Bees Optimization [Abbass, 2001]
is a swarm algorithm that uses mating between the queens and several drones to
create new workers as a form of communication.

2.4. Multi-Objective Optimization
Many optimization algorithms focus on optimizing a single objective. For example,
maximizing performance. However, some problems have more than one objective
to optimize. For example, minimizing fuel usage while also maximizing engine
power. Most real-world optimization problems are more similar to multi-objective
problems than single-objective [Konak et al., 2006].

This section explains the basic concepts of multi-objective optimization and some
of the most common techniques used.

2.4.1. Multi-Objective Optimization Problem
Multi-objective optimization is more complicated than single-objective optimization.
When optimizing for one objective, a solution can be objectively compared solely
be checking if the fitness value is lower or higher than the other. With several
objectives, the comparison is more complicated as different solutions can be superior
at solving different objectives. A definition of the multi-objective optimization
problem is given in Definition 2.4.1 [Coello et al., 2007, p.8].
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Definition 2.4.1 (Multi-objective optimization problem (MOP))
Given a vector function ~f(~u) = [f1(~u), f2(~u), ..., fk(~u)] with k objectives and
its feasible search space Ω, the MOP consists of finding a vector ~u ∈ Ω that
optimizes the vector function ~f(~u). Without loss of generality we will assume only
minimization functions.

Depending on the problem, objectives in multi-objective optimization may be
independent of each other or dependent. Often objectives conflict with each
other, meaning that optimizing one objective can have adverse effects on the
other objectives. Multi-objective problems are hard to solve. In fact, finding the
global optimum of a general MOP is NP-Complete [Veldhuizen, 1999, p.2-2]. It is
therefore common to use metaheuristic algorithms on multi-objective optimization
problems.

2.4.2. Decision Making in Multi-Objective Optimization
Since there is no single optimal solution to a multi-objective problem, a solution
has to be selected based on preferences. The instance responsible for selecting
solutions is referred to as the Decision Maker in this section [Coello et al., 2007].
Multi-objective algorithms can be split into three categories based on their use of
the Decision Maker.

A Priori Preference Articulation

With the A priori approach the Decision Maker combines the objectives into
one objective, effectively making the MOP single-objective prior to running the
optimization. One example of a simple a priori technique is the linear fitness
combination seen in Equation (2.3) [Coello et al., 2007].

fitness = min
m∑
i=1

wifi(x) (2.3)

Where wi ≥ 0 and wi is the weight assigned to objective i by the Decision Maker, and
m is the number of objectives. Another technique is lexicographic ordering, where
the Decision Maker ranks the objectives in order of importance. The objectives are
then minimized in sequence to produce the solution. Due to their simplicity these,
and other a priori techniques, usually do not produce acceptable results.

Progressive Preference Articulation

Progressive preference articulation means that the Decision Maker makes decisions
while the optimization process is still ongoing. Normally this is performed by
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searching for a non-dominated solution, present it to the Decision Maker, modify
the objective preferences based on the reaction before continuing the search. This
process continues until the Decision Maker is satisfied with the result or until the
search has converged. Some examples of progressive preference articulation are
Biased Crowding Distance [Deb and Algorithms, 1999] and ε-MOEA [Laumanns
et al., 2002]. Progressive preference articulation requires that the Decision Maker
invest more time into the optimization process compared to other techniques.

A Posteriori Preference Articulation

The goal of a posteriori is to find a wide range of solutions covering all the objectives
while at the same time optimizing them all. At the end of the search, the solution
set is presented to the Decision Maker which then selects a final solution. Some
examples of a posteriori techniques are criterion selection, aggregation selection
and Pareto sampling [Coello et al., 2007]. The first implementation of a multi-
objective evolutionary algorithm (MOEA), VEGA, used criterion selection [Coello
et al., 2007]. Most of the current multi-objective algorithms in the literature are a
posteriori [Mirjalili, 2016] because the technique is the most convenient since it
requires the least amount of interaction from the Decision Maker [Branke et al.,
2001]. Some examples of Pareto techniques are presented in Section 2.4.4.

2.4.3. Pareto Definitions
To make it easier to explain some of the coming sections some definitions are
made [Veldhuizen 1999, p.2-1 - p.2-4; Santiago et al. 2014, p.455]:

Definition 2.4.2 (Pareto dominance)
A vector ~u dominates ~v (denoted ~u � ~v) if and only if fi(~u) ≤ fi(~v) for all
functions i in f and there is at least one i such that fi(~u) < fi(~v)

Definition 2.4.3 (Pareto optimality)
A vector ~u ∈ Ω is Pareto optimal if there is no ~v ∈ Ω for which ~v � ~u.

Definition 2.4.4 (Pareto set)
Given a MOP, the Pareto set P is defined as:

P = {~u ∈ S|¬∃~v ∈ S ~v � ~u}

A Pareto set P is the set of solutions that are not dominated by any other solutions
in S, where S is a subset of Ω.
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Definition 2.4.5 (Pareto front)
Given a MOP and the Pareto set P, the Pareto front PF is defined as:

PF = {~f(~u)|~u ∈ P}

In other words the Pareto front is the output from mapping the Pareto set over the
~f function.

Definition 2.4.6 (Pareto optimal set)
Given a MOP, the Pareto optimal set P∗ is defined as:

P∗ = {~u ∈ Ω|¬∃~v ∈ Ω ~v � ~u}

In other words the set of solutions that are not dominated by any other solutions in
the search space.

Definition 2.4.7 (Pareto optimal front)
Given a MOP and its Pareto optimal set P∗, the Pareto optimal front PF∗ is
defined as:

PF∗ = {~f(~u)|~u ∈ P∗}

The optimal Pareto front is the best possible answer a multi-objective problem can
have.

2.4.4. Pareto Techniques
Some common Pareto techniques used to solve a posteriori multi-objective problems
are explained in this section. All the following techniques uses Pareto sampling.
Pareto sampling works by generating a variety of solutions in a single run. Pareto
dominance is used to find the best solutions among them. A problem with multi-
objective algorithms that use Pareto concepts is that there is no efficient way to
check for non-dominance [Coello et al., 2007, p.111]. The set of solutions is usually
visualized as a trade-off curve where each dimension corresponds to an objective as
seen in Figure 2.3

Crowding Distance

Crowding distance [Deb et al., 2000] is a measurement of how close a solution is to its
nearest neighbors along a Pareto front. A solution with a low crowding distance is
close to its neighbors and vice verse. Crowding distance is calculated by individually
sorting the solution set for each objective and calculating distance between the
fitness values of the neighbors. A visualization of the crowding distance calculation
is shown in Figure 2.4, where the solution i’s crowding distance is calculated using
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Figure 2.3.: Visualization of solutions for a problem with two objectives. The
orange line represents the Pareto optimal front, the blue circles are the
best known Pareto set, and the grey circles are dominated solutions.

the two nearest neighbors. The first and last element, the objective bounds, always
have a crowding distance of infinity. Calculating the actual crowding distance for a
solution is done by summing the normalized crowding distance for each objective
as formulated in Equation (2.4).

m∑
j=1

d i
j

fmaxj − fminj

(2.4)

To normalize the crowding distance the minimum and maximum fitness of each
objective is used. This is to avoid one objective dominating the calculated crowding
distance. Crowding distance is usually used to promote a uniformly spread Pareto
front by removing solutions with low crowding distance.

Non-dominated Sorting

Non-dominated sorting is a technique to sort multi-objective solutions based on
ranking and crowding distance [Deb et al., 2000]. The population is first split into
fronts based on their level of non-domination. The first front, consisting of the
non-dominated solutions, is created by comparing each member in the population
against all others and only including the members that are non-dominated. The
members of the first front are then discounted. This procedure repeats until all
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Figure 2.4.: Visualization of crowding distance for solution i

solutions are assigned to fronts. A new set of solutions is formed by including fronts
until there is no space left. If the last front included is bigger than the size limit, it
is sorted based on crowding distance, from high to low, and the solutions with the
highest crowding distance are kept. A graphical example of non-dominated sorting
is shown in Figure 2.5 which shows how two populations are combined, sorted into
fronts and finally merged back by keeping the least dominated solutions with the
highest crowding distance.

Archiving

Archiving is an essential part of many metaheuristic algorithms. It is a broad term,
but in general, it means to store solutions in an archive external to the population
used in the algorithm. This external archive is then used to guide the solution search
and make sure the diversity remains high. Most archive implementations limit the
number of solutions stored, and use pruning techniques when the archive has too
many solutions. Some common pruning techniques are hypercube fitness [Coello
et al., 2004], crowding distance [Sierra and Coello, 2005], ε-dominance [Sierra and
Coello, 2005] and strength [Zitzler and Thiele, 1999]. Pruning works by removing
the worst solution until the archive’s size is no longer above the archive limit.

2.4.5. Decomposition
Decomposition decomposes the multi-objective optimization problem into smaller
scalar optimization problems. The subproblems can be optimized like single-
objective optimization problems and are therefore easier to solve. This way decom-

16



2.5. Single-Objective Algorithms

5/21/2018 Untitled Diagram.xml

1/1

F3

Old  

Population

New  

Population

F1

F5

F2

F3

F4

F1

F2

F3

Non-dominated sorting Crowding distance sorting

Rejected

Rejected

Figure 2.5.: Non-dominated sorting performed on a merged population. A new
population is created based on the non-dominated sorted population.

position can handle far more objectives than Pareto based approaches can. Some
common decomposition techniques are Tchybycheff and Penalty-based Boundary
Intersection [Zhang and Li, 2007]. The strength of decomposition is that it often
gives a more diverse set of solutions compared to non-dominated Pareto-based
approaches as techniques like crowding distance might not lead to high diversity
between all the solutions.

2.5. Single-Objective Algorithms
In this section, some tried and true single-objective algorithms from the literature are
described. These algorithms have stood the test of time and many of the techniques
used by these algorithms are used by modern single-objective algorithms.

2.5.1. Genetic Algorithm
The Genetic Algorithm [Goldberg and Holland, 1988] is one of the earliest and
most well-known metaheuristic algorithms. It is inspired by the process of natural
selection in the real world. It is an EA and uses the crossover, mutation, elitism,
and selection operators discussed in Section 2.3.1. The solution representation is
usually referred to as a chromosome.
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2.5.2. Simulated Annealing
Simulated Annealing (SA) [Kirkpatrick et al., 1983] is a single objective optimization
algorithm that takes inspiration from the controlled cooling methods used when
cooling down metals. By simulating a temperature, that slowly decreases, the
algorithm decides if the next solution should be chosen or not. If the next solution
is better than the current it is always chosen, but based on the current temperature
it might also decide to select a worse solution to improve exploration. With a low
temperature, the algorithm behaves more like a Hill Climbing as it only chooses
better solutions.

2.5.3. Particle Swarm Optimization
Particle Swarm Optimization (PSO) [Eberhart and Kennedy, 1995] is a population-
based metaheuristic algorithm. The solutions in the population are known as
particles. Every particle stores a position, velocity, and the personal best-known
solution found so far. The algorithm uses this to move the particles around by
calculating a new position based on each particle’s stored information and the
globally best-known position. The algorithm was inspired by how schools of fish
and flocks of birds move. PSO has been a popular algorithm ever since its release.
Many researchers have built upon the PSO algorithm, creating new and improved
versions of it. A multi-objective approach to PSO is covered in Section 2.6.4.

2.6. Multi-Objective Algorithms
This section gives a brief description of some tried and true a posteriori multi-
objective algorithms. Many of these algorithms introduced techniques that are still
used by many of the recently developed algorithms.

2.6.1. Non-dominated Sorting Genetic Algorithm
The original Non-dominated Sorting Genetic Algorithm (NSGA) was proposed by
Srinivas and Deb in 1994 [Srinivas and Deb, 1994]. It introduced non-dominated
sorting and combined it with a genetic algorithm to create an MOEA. It was quite
good for its time but had some shortcomings. It was computationally heavy with a
complexity of O(mn3), where m is the number of objectives and n is the population
size. It also did not utilize elitism and required a specified sharing parameter. A
new and improved version of the algorithm called NSGA-II [Deb et al., 2000] was
created that solves all these issues. Instead of naively finding the rank by checking
every solution with all other solutions NSGA-II finds the rank in two steps. In the
first step, the domination count and the set of solutions the solution dominates
is calculated for each solution. The fronts are then calculated by adding all the
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Figure 2.6.: Solutions divided into fronts based on ranks after non-dominated
sorting.

solutions that have a domination count of zero, but at the same time decrease the
domination counter for all the solutions they dominate. This way the next front is
easily found by once again adding the new non-dominated solutions which allow
the fronts to be calculated in O(mn2) time instead. A visualization of the fronts
obtained with this procedure is shown in Figure 2.6. Instead of using the sharing
function from NSGA-I a new crowding distance operator was adopted which does
not require any parameters. NSGA-II is one of the most used multi-objective
metaheuristics to this day.

2.6.2. Strength Pareto Evolutionary Algorithm
The Strength Pareto Evolutionary Algorithm (SPEA) [Zitzler and Thiele, 1999]
was one of the first stable MOEAs. The algorithm has a population and an archive
set. The non-dominated solutions from the population are stored in the archive
during each iteration. During this step, solutions that become dominated or are
equal to the new solutions will be removed from the archive. Each solution in the
archive is assigned a strength value based on how many solutions in the population
it dominates or are equal to. This strength value is also used as the solution’s
fitness value. When calculating the fitness of the solutions in the population, the
strength values of the archive solutions that dominate or have equal fitness values
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as it are summed up, and then one is added to it. Binary tournaments are used to
select parents for the next population. The parents can be chosen from the archive
or the population, but there is a higher chance that a solution from the archive
will be chosen.

A few years after SPEA was created the original authors created an improved
version called SPEA2 [Zitzler et al., 2001]. In the original SPEA solutions that
were dominated by the same archive-solutions could have the same fitness. In some
cases this could lead to the majority of the population having the same fitness,
decreasing the selection pressure. To solve this SPEA2 incorporated a new fitness
strategy, based on k-nearest neighbor method, that takes density information into
account. If there are too few non-dominated solutions to fill the archive SPEA2
adds dominated solutions to make sure the archive is always the same size. The
pruning method that was used to cut solutions when the archive had too many
solutions was changed in SPEA2 so that it would not cut boundary points. Another
change from SPEA is that it only chooses solutions from the archive during mating
selection.

2.6.3. Pareto Archived Evolution Strategy
The Pareto Archived Evolution Strategy (PAES) [Knowles and Corne, 1999] al-
gorithm is a simple and effective algorithm for solving multi-objective problems.
Unlike the majority of multi-objective optimization algorithms, it works with a
single solution at the time instead of a population. The algorithm uses local search
similar to hill climbing to generate new solutions, and stores the non-dominated
solutions in an archive. If neither the current solution nor the new candidate
solution dominates the other the archive is used to aid the selection. The solution
which belongs to the grid-location with the lowest number of solutions is selected
to promote diversity over clustered solutions. The archive has a maximum size and
if the number of non-dominated solutions in the archive goes above this limit the
archive is pruned using a d-dimensional grid, where d is the number of objectives.
The solutions are mapped to this grid and when new solutions are added, a solution
from the grid-location with the highest number of solutions is removed. It serves as
a good baseline for comparison for new algorithms [Knowles and Corne, 1999].

2.6.4. Multi-Objective Particle Swarm Optimization
PSO is one of the most used and well known single objective optimization algorithms.
Because of this, there are many multi-objective algorithms based on PSO, one of
them being Multi-Objective Particle Swarm Optimization (MOPSO). The MOPSO
version initially proposed by Coello et al. [2004] uses an archive similar to the
adaptive grid used in PAES. Instead of using a global leader, like in PSO, MOPSO
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selects a leader from the archive using hypercubes and fitness proportionate selection.
First, the archive is split into hypercubes and then fitness proportionate selection
is used to select a hypercube. This hypercube is selected using a fitness calculated
based on the number of particles inside that hypercube, favoring hypercubes with
few solutions in them. Once a hypercube is selected a random particle is then
selected from this cube, which is used as the leader. The archive is updated by
only storing the non-dominated solutions. When the archive goes over the size
limit particles are pruned by removing a random solution from the hypercube with
the worst fitness, which increases the chance that crowded areas of the archive are
selected. A random solution from the selected hypercube is then removed and this
process is repeated until the archive size is reached. In addition to the leader, PSO
also keeps track of the personal best position a particle has had. MOPSO also
does this, but since each particle has multiple fitness values domination checking is
used instead of pure value comparison. To prevent the algorithm from prematurely
converging a new mutation operator is introduced. The mutation operator is
designed to mutate aggressively in the first iterations and then decrease rapidly
during the execution. Each particle in the population has a chance for mutation
calculated based on the current iteration. If a solution is selected for mutation
only a randomly selected decision variable is mutated. The new decision variable
is calculated by using the lower and upper bound of the search together with the
mutation chance. Since the mutation chance decreases during the run the range of
the new decision variable also decreases during the run.

2.6.5. Multi-Objective Evolutionary Algorithm Based On
Decomposition

The Multi-Objective Evolutionary Algorithm Based On Decomposition (MOEA/D)
[Zhang and Li, 2007] focuses on decomposition. Decomposition is something that
has been used a lot in mathematical programming when solving multi-objective
problems but had not been utilized to the same degree for MOEAs at the time. The
authors wanted to change this and proposed an MOEA that used decomposition
as an alternative to the more common Pareto-based MOEAs. The algorithm
decomposes the multi-objective problem into many scalar optimization problems
that it can solve simultaneously. Every solution in the population is associated with
one of these subproblems, and a neighborhood relationship is created based on the
distance between the weight vectors. When optimizing a subproblem, the algorithm
only uses information from the subproblem’s neighbors, to reduce the computational
complexity. MOEA/D uses genetic operators like selection, crossover, and mutation
to produce new solutions.
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2.7. Test Functions
When testing optimization algorithms, test functions are often used. These test
functions provide a good way of finding the strengths and weaknesses of an algorithm
in a controlled setting. Test functions are implemented as mathematical functions
which are often computationally inexpensive, and the global and local optima are
known before starting. Properties like these make them ideal for testing, as it is
easier to analyze the results. However, solving real problems is more challenging
than solving test functions [Mirjalili et al., 2017]. There are test functions for both
single-objective and multi-objective algorithms. Test functions are used as black
box problems, which means that the algorithm does not know anything about the
problem beforehand and should not be guided based on knowledge about the test
function.

2.7.1. Visualization
Single-objective test functions are usually visualized with a three-dimensional plot,
using two decision variables and the fitness value. An example of this can be
seen in Figure 2.7 where the fitness is visualized using a colormap to show height
differences. Most test functions have a scalable number of decision variables, and
often 30 variables are used when testing. A large number of decision variables
makes it a lot harder to visualize the problem as only two decision variables can be
plotted at a time.

For multi-objective optimization, the Pareto front found by the algorithm is usually
visualized together with the Pareto optimal front for the test function. This can
be seen in Figure 2.3. Unlike single-objective test functions, the input of the
test functions is rarely plotted as the front represents the fitness values obtained.
The Pareto optimal front for multi-objective test functions is calculated using
high-performance parallel computers by computing every possible combination of
decision variables [Coello et al., 2007, p.179].

2.7.2. Types of Test Functions
To test different types of problems test functions emulate different problem char-
acteristics. Typical characteristics used are unimodal vs. multimodal, convex
vs. concave, and differentiable vs. non-differentiable [Coello et al., 2007, p.177].
Test functions are often combined into composite functions to test a combination
of problems. Additionally, since many single-objective test functions reaches the
optimal fitness value when all decision variables are 0, it is common to shift and
rotate the input to avoid bias.
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Figure 2.7.: The Rosenbrock test function with two decision variables. The x and y
axis represents positions in the search space. The z axis is the fitness
value

2.7.3. Test Suites
To ensure that testing is performed on a variety of test functions with different
characteristics it is common to use a set of test functions referred to as a test suite.
The suite will commonly include a mix of different characteristics to make it easier
to see what types of problems the algorithm handles well and where there is room
for improvement. The following section covers some of the most used test suites
from the literature.

ZDT

The ZDT test suite [Zitzler et al., 2000] was one of the first multi-objective test
suites. The name is based on the first letter of the last name of the creators. The
test suite has six test functions, all with two objectives. ZDT5 stands out, as it is a
binary problem, and is therefore often not included when using the test suite.
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DTLZ

DTLZ [Deb et al., 2005] is a scalable test suite. It was created when the authors
felt that MOEAs performed well enough on problems with two objectives, and
wanted to create a test suite where the number of objectives was scalable. The
three authors of ZDT were also involved in the creation of DTLZ, and it follows
the same naming pattern. The original test suite consists of 9 test functions where
DTLZ1-7 are unconstrained, while DTLZ8-9 are constrained.

UF

The UF test suite is a set of 13 test functions that was created for the IEEE
Congress on Evolutionary Computation in 2009 (CEC2009) [Zhang et al., 2008].
UF stands for Unconstrained Functions since CEC2009 also contains a set of
constrained functions. The test suite was created to resemble complicated real-life
problems. UF1-7 have two objectives, UF8-10 have three objectives and UF11-13
has five objectives.

CEC2014

The CEC2014 test suite [Liang et al., 2013] is based on a collection of well known
single-objective test functions from the literature. The test suite contains three
unimodal functions and 13 simple multimodal functions. Based on these functions
there are six hybrid functions and eight composition functions. The test functions
are sometimes rotated or shifted or both.

2.8. Multi-Objective Performance Metrics
A posteriori multi-objective algorithms produce a set of solutions. To access the
quality of these solutions, performance metrics are used. These performance metrics
give a numerical value representing the quality of the solution. This allows whole
solution sets to be compared with each other. The two essential measurements in
multi-objective optimization are convergence and diversity. Some metrics that are
used to measure convergence against the Pareto optimal front are Generational
Distance (GD), and γ (Convergence) [Deb et al., 2000]. Metrics for measuring
diversity are Spacing [Veldhuizen and Lamont, 2000] and ∆ (Spread) [Deb et al.,
2000]. Additionally, Hypervolume (HV) and Inverted Generational Distance (IGD)
measures both convergence and diversity as a single metric. Some of the most
common performance metrics are described in detail below.

24



2.8. Multi-Objective Performance Metrics

2.8.1. Generational Distance
Generational Distance (GD) [Veldhuizen and Lamont, 2000] works by measuring
the distance from all the solutions in the known Pareto front to the Pareto optimal
front. The resulting value represents how well the known Pareto front has converged.
In the literature, there are two versions of GD used. One version sums the distances
and divides by the number of solutions in the known Pareto front. The second
version, displayed in Equation (2.5), adds the distances using Euclidean norm by
summing the squared distances and then takes the square root of this sum. The
values produced by the different versions are not directly comparable.

GD(A,PF∗) =

√∑
p∈A d(p,PF∗)2

|A|
(2.5)

Where A is the Pareto front found by the algorithm and PF∗ is the Pareto optimal
front on the problem. d is the Euclidean distance between the solution in the known
Pareto front and the closest solution in the Pareto optimal front. The optimal
value of GD is 0 when all the solutions in PF∗ overlap with A. It measures how
far the known Pareto front is from the Pareto optimal front.

2.8.2. Inverted Generational Distance
Inverted Generation Distance [Coello and Sierra, 2004], as its name implies, is just
an inverted version of Generational Distance. By measuring the Euclidean distance
from the Pareto optimal front IGD also measures whether the known Pareto front
covers the whole Pareto optimal front. To obtain a measure of 0 the known Pareto
front has to be evenly spread out over the Pareto optimal front and measures in
this way both convergence and diversity. Precisely like the GD performance metric,
there are two versions of IGD as well, which affects the calculated value. The
Euclidean norm version is shown in Equation (2.6).

IGD(A,PF∗) =

√∑
p∈PF∗ d(p,A)2

|PF∗|
(2.6)
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2.8.3. Hypervolume
The hypervolume indicator [Zitzler and Thiele, 1999] measures the volume of the
subspace that is dominated by the Pareto front obtained using Equation (2.7).

HV (A) = VOL
( ⋃
p∈A

[f1(p), zr1]× . . .× [fm(p), zrm]
)

(2.7)

A reference point zr = (zr1, . . . , zrm)T , where m is the number of objectives, is
used to bound the objective space. Unlike IGD and GD hypervolume is defined
for maximization problems, but works on minimization problems if the Pareto
front is inverted prior to hypervolume calculation. VOL is the Lebesgue measure,
which is an n-dimensional volume measure. A value of one indicates that the front
dominates the entire search space. The volume obtained is bounded by the Pareto
optimal front, and a measure of 1 is unlikely to be obtained. If both the known
Pareto front and the Pareto optimal front measures the same volume the known
Pareto front is as close as possible to the Pareto optimal front.
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To help answer the research questions a structured literature review was performed.
Research questions explicitly made for the literature review search, called search
research questions, are presented. Following is a summary of the related work and
a discussion of the related work in light of the search research questions.

3.1. Structured Literature Review Protocol
A structured literature review has been performed to find the state of the art. The
review follows the structure described in Kofod-Petersen [2014]. Using a structured
literature review leads to a more thorough selection process, which results in higher
quality related work.

3.1.1. Search Research Questions
A set of research questions for guiding the literature search was created. To
differentiate between the main research questions and the research questions used
here they will be referred to as Search Research Question (SRQ). SRQ1-3 are
related to RQ1-3, while SRQ4 and SRQ5 have been created for this literature
review.

SRQ1 Which single-objective algorithms exist that are suitable for multi-objective
extension?

Promising new single-objective algorithms are created all the time. Finding several
state of the art single-objective algorithms is, therefore, necessary to make a solid
choice of an algorithm to extend. For an algorithm to be considered suitable
for multi-objective extension it should perform well on a range of optimization
problems and use techniques that allows it to be extended without changing the
core functionality of the algorithm.
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SRQ2 Which multi-objective techniques are used when extending a single-objective
algorithm?

The aim of this question is to learn more about which techniques are used when
extending algorithms to handle multiple objectives, and learn how these techniques
work. Getting an overview of these techniques is important to be able to make an
informed decision when deciding which technique(s) to use when extending the
selected single-objective algorithm.

SRQ3 Which multi-objective algorithms should be compared with when evaluating
an algorithm?

Getting an overview of the state of the art multi-objective algorithms is essential
to be able to assess the quality of the final version of the algorithm that will
be created. Details like which algorithms they compare their results with and
how the experiment is defined are important to research before determining the
experimental setup for the multi-objective comparison experiment.

SRQ4 Which test functions are used to test multi-objective algorithms?

This question aims to give an overview of which test functions are most commonly
used when running experiments with multi-objective algorithms. When running
experiments, it is important to use test functions that test the algorithms thoroughly.
Additionally, using well-known test functions can make it easier to compare results
with other articles.

SRQ5 Which performance metrics are used to measure multi-objective algorithms?

To numerically compare multi-objective algorithms performance metrics are needed.
It is therefore essential to know which performance metric or combination of
performance metrics can most accurately assess the performance of the algorithms.
It is also important to find which performance metrics are most used in the literature,
as this can allow results to be compared with other articles.

The process of finding the related work using SLR is explained in Appendix A.

3.2. Related Work
In this section, the algorithms from the 16 articles that were gathered in the SLR
are categorized and summarized.
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3.2.1. Single-Objective Algorithms
Some of the articles present new single-objective metaheuristics for solving opti-
mization problems. A summary of each algorithm is presented here.

Animal Migration Optimization

Animal Migration Optimization (AMO), is a swarm algorithm inspired by animal
migration behavior, is presented in Li et al. [2014]. It consists of two phases: the
migration phase and population updating phase. The migration phase simulates
how animals move together in groups. It is based on three rules observed in
migrating animals: they move in the same direction as their neighbors, remain
close to their neighbors and avoid collision with their neighbors. The animals are
structured in a ring topology, and during the migration phase, they move based
on the position of the animals in their neighborhood. An animal’s neighborhood
contains itself as well as the two closest neighbors on each side. The neighborhood
size is, therefore, always five. Once every animal has been moved, the fitness values
of every animal’s old and new position are compared, and the animal keeps the
position with the best fitness score.

The population updating phase simulates how animals leave and join the group
during migration. In this phase, new animals are created using the position of the
existing population. Like in the migration phase, each new animal is based on one
of the animals in the population. When creating a new animal, a probability is
used to decide if a decision variable should be copied from the animal it is based on.
Otherwise, it is created using the best solution, the animal it is based on, and two
other animals selected randomly from the population. This probability is based on
how good the original animal’s fitness is compared to the rest of the population,
giving animals with good fitness lower probability of creating new decision variables.
As in the migration phase, the new animal’s fitness is compared with the old one.
The animal with the best fitness stays in the population. For every iteration the
migration phase is ran first, followed by the population updating phase.

Dandelion Algorithm

The Dandelion Algorithm (DA) [Gong et al., 2017] is inspired by the sowing of
dandelions. The algorithm has a mother dandelion that spreads seeds in an area
around it. When calculating the radius of the seeds, the algorithm checks if the
fitness of the mother dandelion from the current generation is better than the
fitness from the previous generation. If it does not find a better solution, the radius
decreases and if it finds a better solution, the radius increases. To keep the diversity
high among the seeds the algorithm generates a small number of self-learning seeds
each generation to avoid local optima. For selection, the algorithm always keeps
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the seed with the best fitness as the mother dandelion for the next generation.
When creating a seed, DA only changes one decision variable for each seed.

Earthworm Optimization Algorithm

Earthworm Optimization Algorithm (EWA) [Wang et al., 2015] is inspired by
earthworm behavior in nature. The algorithm’s structure is similar to GA, but has
some significant changes to the reproduction method. The reproduction method is
based on two different types of reproduction used by earthworms. Reproduction
type 1 generates only one offspring by itself, while reproduction type 2 generates
one or more offspring at the same time. The paper presents nine different crossover
operators to perform reproduction type 2. A weighted summation of the offspring
is used to generate the final earthworm for the next generation. To escape from
local optima Cauchy Mutation is used. EWA uses generations with elitism by
passing on the individuals with the highest fitness.

Lion Optimization Algorithm

The Lion Optimization Algorithm (LOA) [Yazdani and Jolai, 2016] is based on
lions’ social organization into residents and nomads, and their mating patterns.
The initial population consists of randomly generated solutions referred to as lions.
A given percentage of the lions are selected as nomad lions while the remaining lions
are partitioned into subsets called prides. A given sex rate decides the percentage
of female lions in the prides, while for nomad lions it decides the percentage of
male lions. Based on lion hunting patterns opposition-based learning is utilized
to simulate hunting. Hunters use a dummy prey (center of lions) to hunt, and by
encircling the prey lions can escape local optima. The remaining female lions in
the pride move towards what is called a safe place. This safe place is selected by
performing tournament selection on the set of best solutions found by the members
of the pride. Male lions in the pride perform a local search by roaming towards a
randomly selected part of the territory. Nomad lions roam randomly in the search
space by mutating decision variables. LOA uses mating to exchange information
between lions similar to crossover in EAs. In prides a percentage of female lions
mate with one or several males in the pride, while for nomad lions the females only
mate with one male which is selected randomly. Offspring are created using linear
combination with mutation. LOA also has a mechanism to move lions in and out
of prides based on fighting between lions and migration.

Moth Search

Wang [2016] presents Moth Search (MS), an algorithm based on how moths tend
to fly closer to a light source with paths resembling spirals. The current best moth
is considered as the light source to guide the other moths closer to the current best
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solution. It also uses Lévy-flights, a class of random walk, as moths have shown to
use this pattern when flying close to the light source. By using Lévy-flights, the
algorithm performs exploration and exploitation in the search space. Elitism is
also employed to accelerate convergence.

Symbiotic Organisms Search

The article by Cheng and Prayogo [2014] describes a new single-objective algorithm
called Symbiotic Organisms Search (SOS) which simulates the symbiotic interaction
strategies adopted by organisms to survive and propagate in the ecosystem. SOS
is a population-based algorithm that uses three different symbiosis phases to guide
the population during optimization: mutualism, commensalism, and parasitism.
The first phase is the mutualism phase which selects two random individuals
from the population. The mutual vector between the individual and the helping
individual are calculated, and then the difference between the globally best-known
individual and the mutual vector is used to calculate new positions. The new
position is only used if the fitness improved, a form of exploitation. The next
phase is commensalism; this stage is similar to mutualism except that only the
first individual selected benefits from the interaction. The last stage of SOS is
parasitism in which one individual benefits from the interaction and another suffers.
By randomly selecting decision variables to mutate a parasite vector is created by
duplicating the first individual. If the new parasite vector has better fitness than
the second individual, which is also randomly selected, it is killed off and replaced
by the parasite and vice verse.

3.2.2. Non-dominated Sorting Based Algorithms
Some of the multi-objective algorithms in the literature review are based on non-
dominated sorting used by NSGA and are described in this section.

Non-dominated Sorting Invasive Weed Optimization

Nikoofard et al. [2012] present Non-dominated Sorting Invasive Weed Optimization
(NSIWO). NSIWO is based on Invasive Weed Opimization (IWO) [Mehrabian
and Lucas, 2006] which is a single-objective algorithm inspired by colonizing and
reproduction in weeds. IWO uses reproduction, spatial dispersal, and competi-
tive exclusion. Like many other nature-inspired algorithms, it is population and
generational based, and starts with a randomly generated population. A new
generation is created based on seeds from the members of the population. Each
member produces seeds relative to their fitness with the worst member producing
fewer seeds than the best member. The seeds are then scattered randomly in the
search space around the members. The newly produced seeds and their parents
are then combined into a new generation using competitive exclusion where the
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fittest members survive. NSIWSO extends IWO with concepts from NSGA-II.
Binary tournament selection is used to select candidate parents from the population
which it stores in an archive. A new population is then generated by using seed
reproduction and seed dispersal. This new population is combined with the old
population and then non-dominated sorting is performed. Like NSGA-II they also
assign crowding distance to all individuals in the combined population. Weakness,
a value opposite of fitness, for all individuals is calculated using the rank and
crowding distance which is used to eliminate the weakest individuals. This process
repeats for a set amount of iterations.

Non-dominated Sorting Moth-Flame Optimization

The algorithm extends an existing single-objective algorithm called Moth-Flame
Optimization (MFO) [Mirjalili, 2015b]. The single-objective algorithm is, like
Moth Search, inspired by moths’ spiral movement around light sources. A light
source, or flame, is one of the best solutions found so far by the moths. These
flames are continuously updated when the moths find better solutions. Moths
move by spiraling around the closest flame. During execution, the number of
flames is gradually decreased. Non-dominated Sorting Moth Flame Optimization
(NS-MFO) [Savsani and Tawhid, 2017] uses, as its name implies, non-dominated
sorting and crowding distance from NSGA-II to handle multiple objectives. First,
it generates a random population, then rank and crowding distance are assigned
to the population. NS-MFO uses MFO to create a new generation based on the
previous generation, which merges with the previous population. Non-dominated
sorting and crowding distance is again applied to the combined population, and
then the worst half of the population is killed off. This process repeats for a given
number of generations. In other words, NS-MFO is like NSGA-II except that the
GA is replaced with MFO.

3.2.3. Archive Based Algorithms
Many of the multi-objective algorithms in the literature review are based on
some kind of archive technique for handling multiple objectives. The different
implementations are described in this section.

Archived Multi-Objective Simulated Annealing

Archived Multi-Objective Simulated Annealing (AMOSA) [Bandyopadhyay et al.,
2008] is based on Simulated Annealing and extends it with an archive to solve multi-
objective optimization problems. The algorithm stores new solutions in the archive
until a set soft limit (SL) is reached and will then reduce them down to a hard limit
(HL) if they exceed the SL. The SL acts as a buffer before the population is reduced
to the HL to avoid performing excessive pruning. On initialization, the number
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of solutions created is relative to the SL. Hill climbing using domination is then
performed as a greedy optimization. Only the solutions that are non-dominated
are added to the archive. If the archive is larger than the HL, it is reduced using a
clustering technique called single linkage algorithm [Jain and Dubes, 1988]. The
acceptance of a new solution is extended from the temperature based method used
in SA. AMOSA also considers the amount of domination when calculating the
probability of accepting a new solution. Like SA, the temperature cools down during
the AMOSA process which lowers the chance of accepting suboptimal solutions. In
other words, AMOSA can, unlike many other multi-objective algorithms, select
dominated solutions to search with.

Multi-Objective Ant Lion Optimizer

Multi-Objective Ant Lion Optimizer (MOALO) [Mirjalili et al., 2017] is based
on Ant Lion Optimizer (ALO) [Mirjalili, 2015a], an algorithm that mimics the
hunting mechanics of antlions and their interaction with ants. ALO operates on
two populations: a set of ants and a set of antlions. The ALO algorithm uses
several concepts from how ants and ant lions behave in real life: random walk of
ants, entrapment in antlion pit, constructing a pit, sliding ant towards ant lions,
catching prey, and reconstructing the pit. ALO does this by pairing each ant with
an antlion which keeps track of the currently best solution found by that ant. A
pit is constructed which slides the ant towards the best-found solution. The pit is
reconstructed by the antlion when an improved solution is found. Roulette wheel
selection based on fitness is used to pair ants with antlions (pits) to mimic how
bigger ant lions produce bigger pits in nature. Additionally, an elite antlion (ant
lion with the best fitness) will always affect all ants to converge ants towards the
globally best-known solution. To extend ALO to multi-objective MOALO uses
archive maintenance and leader selection from MOPSO. It also uses niching to
measure the distribution of the solutions in the archive. Antlions are selected from
the solutions with the least populated neighborhood to encourage searching of
non-crowded areas. When the archive is full, the solutions with the most populated
neighborhood are removed from the archive.

Multi-Objective Dragonfly Algorithm

Inspired by the static and dynamic swarming behaviors of dragonflies the Dragonfly
Algorithm (DFA) [Mirjalili, 2016] was created. In the same article, the algorithm
is extended to handle multiple objectives (MODFA) and binary problems. Static
swarming is used while hunting and is performed by flying over a small area in
abrupt movements. The dragonflies create sub swarms and as a result of hunting
for prey, which are considered promising solutions, perform exploration of the
search space. Dynamic swarming, on the other hand, is a massive number of
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dragonflies whom all move in the same direction which results in exploitation. The
general behavior of dragonflies in the DFA comes from five patterns: separation,
alignment, cohesion, attraction, and distraction. These are all mathematically
modeled and are ultimately used to update the dragonfly’s position using a step
vector. The transition from exploration to exploitation is performed by increasing
the search radius proportional to the number of iterations. The neighborhood for
each dragonfly also increases, and at the end of the optimization all dragonflies will
end up in the same neighborhood which converges against the globally best-known
solution. As mitigation against local optima dragonflies use Lévy flights when there
are no neighboring solutions. To support multiple objectives a couple of changes
were needed. Finding neighbors is extended to check multiple objectives, and food
sources are selected from the least populated area of the obtained Pareto front in
the archive. Enemies are also selected from the archive, but this time from the
most populated part to discourage searching crowded areas.

Multi-Objective Grey Wolf Optimizer

The Multi-Objective Grey Wolf Optimizer (MOGWO) [Mirjalili et al., 2016] takes
a single-objective optimization algorithm named Grey Wolf Optimizer (GWO)
and extends it to handle multi-objective problems. The hunting behavior of grey
wolves inspires the GWO algorithm. The three best wolves are referred to as the
alpha, beta, and delta wolf. The rest of the candidate solutions follow these three
leaders and are referred to as the omega wolves. When searching the algorithm
simulates the encircling behavior grey wolves use around its prey. The conversion
of GWO to multi-objective was done by adding two new components. The first was
a hypercube based archive of non-dominated solutions directly based on the archive
MOPSO uses. The second component they added was a new selection strategy.
The single-objective algorithm uses the alpha, beta and delta wolf to guide the
other wolves towards promising regions of the search space. Since the three best
wolves no longer can be selected based on fitness alone when there are multiple
objectives, the algorithm chooses three solutions from the least crowded segments
of the archive using the roulette-wheel selection method.

Multi-Objective Whale Optimization Algorithm

Multi-Objective Whale Optimization Algorithm (MOWOA) [Kumawat et al.,
2017] is based on the humpback whale inspired Whale Optimization Algorithm
(WOA) [Mirjalili and Lewis, 2016]. WOA uses principles such as encircling prey,
bubble net attacking, and searching for prey. Bubble net attacking exploits the
globally best-known solution by using two phases: a shrinking encircling mechanism
and spiral updating position. Since they are just different kinds of movement to-
wards the prey, the phase is selected randomly. A sort of random walk is performed
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while searching for the prey to explore the search space. MOWOA uses these
same techniques but also uses an archive to solve multi-objective problems. Non-
dominated solutions are identified by an archive controller, and the best solutions
are stored in an archive repository. The archive is from MOPSO.

Speed-constrained Multi-objective PSO

Speed-constrained Multi-objective PSO (SMPSO) [Nebro et al., 2009a] is an im-
provement of OMOPSO, a PSO based multi-objective algorithm, by Sierra and
Coello [2005]. The main differences between OMOPSO and SMPSO are speed
constraint using a constriction coefficient, different ranges for the constants C1 and
C2, and a polynomial mutation operator instead of the novel mutation operator
in MOPSO. The polynomial mutation operator has a high chance of producing
values close to the origin position with a user-defined chance of mutating one or
more decision variables. SMPSO uses one of the two archives from OMOPSO. This
archive stores non-dominated solutions. When the archive has too many solutions,
it prunes based on crowding distance. When selecting a leader from the archive,
binary tournament selection is used based on crowding distance.

3.2.4. Other Multi-Objective Algorithms
The rest of the multi-objective algorithms based on neither non-dominated sorting
nor archive are presented here.

Modified Dual-Population Paradigm

This article modifies the Dual-population Paradigm (DPP) algorithm, creating a
new version called DPP2 [Bui et al., 2017]. The goal of the authors was to create
an algorithm that focuses both on diversity and convergence. To achieve this,
the algorithm keeps two populations, one Pareto-based for convergence and one
decomposition-based for diversity. DPP2 always chooses one parent from each
population when creating offspring to keep both diversity and convergence for the
next generation. By using Restricted Mating Selection (RMS), the two populations
can cooperate to find solutions. DPP2 introduces a new type of RMS.

Multi-Objective Evolutionary Algorithm based on Dominance and
Decomposition

The Multi-Objective Evolutionary Algorithm based on Dominance and Decom-
position (MOEA/DD) [Li et al., 2015] focuses on solving optimization problems
with many objectives. When there are a large number of objectives, the majority
of solutions within a population becomes non-dominated with each other. The
amount of non-dominated solutions makes it hard to use standard non-domination
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approaches when there are many objectives. The algorithm focuses on both de-
composition and dominance and is inspired by MOEA/D (decomposition) and
NSGA-III (dominance). Similar to MOEA/D the authors used weight vectors to
help guide the selection procedure. It also used the same neighborhood concept and
applied a scalarization function when measuring the fitness of solutions. Similar
to NSGA-III the authors divide the solution into non-domination levels based on
their Pareto dominance relation.

3.3. Discussion
In this section, the related work is discussed in light of the SRQs. Each SRQ has
its own section where relevant points are discussed before a conclusion for the SRQ
is made.

3.3.1. Single-Objective Algorithms
SRQ1 Which single-objective algorithms exist that are suitable for multi-objective
extension?

When evaluating which single-objective algorithm is the most suitable for multi-
objective extension several attributes needs to be taken into consideration. The
following list contains some of the attributes that are essential to evaluate when
considering an algorithm for extension:

• Performance: The algorithm must perform well when compared with other
state of the art algorithms. To be able to assess the quality of an algorithm it is
important that it was tested thoroughly against other competitive algorithms
on a wide variety of test functions.

• Tuning parameters: Multi-objective techniques can introduce new tuning
parameters, and if the algorithm already has many tuning parameters it
might make the algorithm hard to tune.

• Convergence: If a single objective algorithm converges rapidly it might
converge to a local optimum when solving MOPs.

Performance

To assess the performance of the algorithms all the articles use test functions that
are known from the literature. As none of the single-objective algorithms in this
literature review are directly compared with each other in any of the articles, a
“best” algorithm cannot be decided purely based on the experiment results. Some of
the algorithms are tested on the same test functions, but settings like the number
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of decision variables, upper and lower bound, and maximum function evaluations
are different from article to article. The majority of the articles compare with
some tried and true algorithms, as well as some state of the art algorithms. All
the algorithms in the literature review do well in their own experimental testing,
but there are some differences in how thoroughly the algorithms are tested. DA is
only tested on 12 different test functions. This is significantly lower than the other
articles, the second lowest being AMO with 23. The majority of the algorithms
are tested on between 25 and 30 test functions, with EWA having vastly more
than the other articles with 48. The majority of the articles use the number of
function evaluations as a stopping criterion, ranging from 50,000 to 500,000 function
evaluations.

Parameters

Looking at the algorithms in this literature review, AMO and SOS are the only
algorithms with only one parameter. They only need the population size to be
specified. To be able to still achieve good results on a wide variety of problems,
these algorithms are created to handle general problems well without changing
anything. This makes these algorithms a lot easier to use. EWA and DA are in
the middle with (3-4) tunable parameters, allowing for some tuning. MS and LOA
have a lot of tuning parameters (5-7). There are both positives and negatives with
having many parameters in an algorithm. On one hand, it allows for fine tuning for
a specific problem. This can lead to better results for this problem. On the other
hand, this kind of tuning can lead to a loss of generality, making the algorithm
require a lot of tuning work for each problem.

Having many parameters is also not ideal when extending the algorithm to multi-
objective, as this can add additional parameters to the algorithm, making the
tuning job even more complicated. A risk with having too few tuning parameters
is that the algorithm might not work as well on multi-objective problems. One can
then try to change some of the inner workings of the algorithm to perform better
on multi-objective problems, but as the algorithm was not designed to be flexible
in this way it might not perform well.

Convergence

Fast convergence towards the global optimum is a good characteristic of single-
objective algorithms, but if the algorithm converges too fast, it might prematurely
converge and end up in a local optimum. When extending an algorithm to handle
multiple objectives it might lead to a local Pareto optimal front if the convergence
speed is too high [Coello et al., 2004, p. 261].
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Most of the algorithms in the literature review have included convergence graphs,
with the exception of LOA. AMO, EWA, and DA show a fast convergence without
getting stuck in a local optimum, but MS sometimes converges prematurely. Unlike
the other algorithms, SOS only shows a convergence graph for an engineering
problem, but the convergence seems similar to the compared algorithms. It might
be necessary to introduce additional mutation to ensure exploration if an algorithm
converges to a local Pareto optimal front [Coello et al., 2004, p. 261].

Conclusion

Because none of the algorithms can be directly compared based on the results
from the articles as discussed in the performance section, there is not enough
information to conclude which algorithm is best suited for extension based on the
articles alone. Because performance is an important part of the selection process,
the most promising algorithms are implemented and evaluated in Chapter 5.

3.3.2. Multi-Objective Techniques
SRQ2 Which multi-objective techniques are used when extending a single-objective
algorithm?

When researching multi-objective techniques used for extension it is important
to look at what challenges they might present during implementation and how
they perform. The following points are considered when evaluating the different
techniques:

• Convergence: How the Pareto front obtained converges against the Pareto
optimal front.

• Diversity: How good the spread of solutions is compared to the Pareto
optimal front.

• Difficulty of implementation: A more complex algorithm increases the
chance of implementation errors and makes it harder to understand what
might have gone wrong.

• Computational and space complexity: Techniques with high complexity
will slow down as the number of objectives and the population size increase.

Non-dominated Sorting

Non-dominated sorting uses techniques that can help it achieve good convergence
as well as good diversity. Crowding distance ensures that the population remains
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diverse by preferring non-crowded solutions, while sorting into fronts based on
rank ensures that the least dominated solutions survive to encourage convergence
towards the Pareto optimal front. The implementation of non-dominated sorting
is not very complicated as it requires no specific tuning and often can be added
on top of an algorithm without any specific tweaks to it. The complexity of non-
dominated sorting depends on the implementation. Zhang et al. [2015] describe an
implementation with a best case of O(mn log n), average case of O(mn2) and space
complexity of O(1). NSGA-I and NSGA-II respectively have a best case of O(mn3)
and O(mn2). Crowding distance has a computational complexity of O(mn log n)
for assignment and O(2n log(2n)) for sorting [Deb et al., 2000].

External Archive

Common for most archives is that they are used to guide the search by selecting
different leaders for each iteration. As most archives store non-dominated solutions,
selecting leaders from this archive will help the algorithm converge. Selection
techniques are often used to help the algorithm pick solutions in the least populated
areas to encourage diversity. The most common type of external archive used in
the articles from the literature review is an archive first described by Coello et al.
[2004] and was used in MOPSO. See Section 2.6.4 for more details about MOPSO.
One of the reasons it is so popular is because it is easy to extend a single-objective
population-based algorithm with this type of archive. The algorithms from this
literature review that are based on MOPSO’s archive are MODFA, MOWOA,
MOGWO, and MOALO. This type of archive has a complexity of O(mn2) where
m is the number of objectives, and n is the archive size. It is common to limit
the archive size, mainly due to practical reasons related to scaling [Reyes-Sierra
et al., 2006, p.293]. SMPSO’s archive is one of the two archives used by OMOPSO.
This archive uses crowding distance and recalculates it every time a solution is
pruned, so removing one solution has a computational complexity of O(mn log n).
AMOSA’s archive, on the other hand, does not use the archive to guide the search.
The archive is only used to keep track of all the non-dominated solutions and
is pruned using a clustering technique called single-linkage. The complexity of
the clustering technique is O(SL2log(SL)) where SL is the soft limit used by the
archive.

Decomposition

Two of the papers in the literature review use decomposition. Unlike archives and
non-dominated sorting, decomposition is more tightly integrated into the algorithm.
DPP2 and MOEA/DD are both based on the decomposition techniques described
in MOEA/D which have a computational complexity of O(mnt) where t is the
number of neighbors considered when optimizing a subproblem, m is the number

39



3. Structured Literature Review

of objectives, and n is the number of weight vectors (population size) [Zhang and
Li, 2007]. By splitting the MOP into subproblems diversity is encouraged as each
subproblem is regarded as a solution. Convergence is handled by minimizing each
subproblem. While DPP2 uses the same decomposition method as MOEA/D,
weighted Tchebycheff, MOEA/DD uses Penalty-based Boundary Intersection. Both
the decomposition based algorithms can be modified to use any decomposition
technique used for classic multi-objective optimization.

Conclusion

Both non-dominated sorting and an external archive are techniques that can
relatively easily be added on top of the single-objective algorithm to guide the
process. Decomposition, on the other hand, is more involved and requires more
significant changes to the single-objective algorithm. The average computational
complexities of non-dominated sorting and MOPSO’s external archive are the same,
but the decomposition technique used by MOEA/D is better depending on the
population size and number of neighboring sub-problems.

3.3.3. Multi-Objective Algorithms for Comparison
SRQ3 Which multi-objective algorithms should be compared with when evaluating
an algorithm?

Getting an overview of the state of the art algorithms, and how their experiments
are carried out is important. There are too many multi-objective algorithms in
the literature to compare with them all, and therefore it is important to see which
algorithms and how many algorithms the state of the art compares with. Interesting
aspects related to the experimental comparison are:

• Performance: how well the algorithm performs compared to other algo-
rithms.

• Convergence and diversity: for multi-objective algorithms a balance
between convergence and diversity is important.

• Computational complexity: when comparing the performance of algo-
rithms it is useful to know their computational complexity to ensure a fair
comparison is performed.

• Which algorithms are used to compare results with: knowing which
algorithms are considered competitive by the community is useful for the
experiment performed later in this thesis.
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Performance

Because of the stochastic nature of multi-objective optimization results are usually
gathered over a set number of runs. Ten or more runs are common, with one paper
using as many as 100. Two common stopping criteria are running the algorithm
for a set number of fitness evaluations or iterations, where the number of function
evaluations is the most common. The number of function evaluations varies, but
most seem to use a number between 25,000 and 300,000.

It is hard to directly compare the performance of the multi-objective algorithms
in the literature review since the number of function evaluations, test functions
and comparison algorithms differ significantly. Since the typical way to present
test results is by listing the mean performance metric of the end result, comparing
results after 25,000 evaluations with results after 300,000 evaluations will most likely
not provide any useful information. In general, all the multi-objective algorithms
conclude that they are better than or competitive with the algorithms in their
experiments. However, it is interesting to compare how the obtained Pareto
fronts look when plotted with the Pareto optimal front as this clearly shows the
convergence and diversity of the obtained front. The most common test functions
plotted are the ZDT test functions. SMPSO (ZDT4), NS-MFO (ZDT1-3) and
MODFA (ZDT1-3) show good results both in convergence and diversity of the
generated fronts, while MOALO (ZDT1-2) lacks diversity and NSIWO (ZDT1-4)
lacks convergence. It should be noted that NSIWO is tested only with 25,000
function evaluations and might improve by letting it run longer like most of the
other algorithms do. MOWOA and MOGWO also plot solutions for some of the
test functions from CEC2009, and they both have problems with low diversity,
but that might be an indication that CEC2009 is harder to solve than the ZDT
functions.

Algorithms Used for Comparison

Selection of comparison algorithms and the number of algorithms selected differs
significantly between the multi-objective algorithms. Some only compare with the
algorithm they are trying to improve, while NS-MFO compares with as many as 26
other algorithms. Comparing with 2-4 other algorithms is most common. The most
common algorithms to compare with are MOEA/D, MOPSO, NSGA-II, PAES,
and SPEA. A common factor for these algorithms is that they have been used for
a while and have proven their worth.

Computational Complexity

Common for all the algorithms is that the multi-objective technique is the largest
factor in the computational complexity and therefore decide the complexity. Since
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most of the algorithms are based on either MOPSO-like archive or NSGA-II’s
non-dominated sorting their complexity is O(mn2). Outliers are AMOSA with a
complexity of O(n(m+ log n) and decomposition based algorithms with O(mnt).
m is the number of objectives, n is the archive/population size, and t is the number
of neighboring solutions considered in decomposition. Note that these are the
complexities of running a single generation of the algorithms.

Decomposition-based algorithms can handle more objectives as the computational
complexity is lower while NSGA-II and MOPSO based algorithms are usually only
used on problems with two or three objectives.

Conclusion

The experimental setup used by articles differs greatly, but a common factor is
that the comparison is performed using the mean and standard deviation of several
runs on test functions. The algorithms used for comparison of results are often
well-known algorithms from the 90s and 00s. Most of the algorithms included in
this literature review have a computational complexity of O(mn2), or comparable
complexities like decomposition with O(mnt).

3.3.4. Test Functions
SRQ4 Which test functions are used to test multi-objective algorithms?

When selecting which test functions to use it is essential to find functions that can
test for both convergence and diversity. It is also favorable if the test functions
have been used to test other state of the art algorithms, as it makes it easier to
compare the performance of the algorithm with the state of the art.

Table 3.1 shows the test functions used for testing in the multi-objective articles
that were part of the literature review. The three test suites that the majority
of articles used are the DTLZ test functions [Deb et al., 2005], the ZDT test
functions [Zitzler et al., 2000] and the UF test functions from CEC 2009 [Zhang
et al., 2008]. Additionally, WFG [Huband et al., 2005] are common test functions
for solving more than two objectives as they are designed to scale dynamically. All
the test functions mentioned have scalable decision variables, but in the literature
review, 30 decision variables are commonly used. They are also designed to cover a
variety of different search spaces and fronts.
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Table 3.1.: The test functions used by the articles covering multi-objective algo-
rithms

Algorithm Test Functions
AMOSA DTLZ 1-6
DPP2 DTLZ 1-7, UF1-10, WFG1-9, ZDT 1-4,6
MOALO ZDT 1-3
MODFA ZDT 1-3
MOEA/DD DTLZ 1-4, WFG1-9
MOGWO UF1-10
MOWOA UF1-4,6-7
NSIWO ZDT1-4,6
NS-MFO LZ, SCH, UF1-10, ZDT1-3
SMPSO DTLZ1-7, ZDT1-4,6

3.3.5. Performance Metrics
SRQ5Which performance metrics are used to measure multi-objective algorithms?

The performance metrics used by the multi-objective articles in the literature review
are displayed in Table 3.2. The most commonly used performance metrics are IGD,
GD and ∆ (Spread), but a large variety of metrics are used. MODFA is the only
algorithm that was only measured with one performance metric. While this is not
ideal, the metric used is IGD which measures both convergence and diversity. The
majority of the articles has a performance metric that measures both diversity and
convergence at the same time.

Table 3.2.: The performance metrics used by the articles covering multi-objective
algorithms

Algorithm Performance metrics
AMOSA MinimalSpacing, Purity, Spacing, γ (Convergence)
DPP2 GD, HV, IGD, IGD+
MOALO GD, IGD, Spacing, ∆ (Spread)
MODFA IGD
MOEA/DD HV, IGD
MOGWO IGD, Maximum Spread, Spacing
MOWOA GD, ∆ (Spread)
NSIWO ∆ (Spread), γ (Convergence)
NS-MFO GD, IGD, Spacing, ∆ (Spread)
SMPSO Additive Unary Epsilon indicator, HV, ∆ (Spread),
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This chapter will cover the framework that was built for implementing and testing
algorithms. Following are the reasons why building a framework was necessary.

• Gathering statistics: A framework gave a reliable way of running algo-
rithms and gathering statistics over multiple runs.

• Experimentation: Having a framework made it easier to experiment with
different techniques, as algorithms can quickly be extended with techniques
used by other algorithms implemented in the framework.

• Reuse of implemented techniques: Having all algorithms implemented
in the same framework allows for reuse of techniques that have already been
implemented. This reduces the chance of mistakes in implementation, as the
same techniques will not have to be implemented multiple times and more
time can be dedicated to checking the correctness of the implementation.

In the following section, the architectural overview is explained. Following that the
different modules of the framework are explained in greater detail.

4.1. Architectural Overview
The framework was created using the Rust programming language1. The reason
the framework is written in Rust is mostly because of its fast runtime. Rust is a
modern systems programming language similar to C and C++. However, unlike C
and C++, Rust has many zero-cost abstractions that make it easier to write safe
code without affecting the runtime. The framework is accessed using a Command
Line Interface (CLI) where the test function(s) and the algorithm are specified.
Additionally, command line parameters such as population size and the number of
iterations can be provided. Each algorithm can also have specific command line
parameters like mutation rate specified.

1The Rust programming language: https://www.rust-lang.org
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6/22/2018 Architecture for framework (1) (1) (2).xml

1/1
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Figure 4.1.: Architectural overview of the framework. The dashed arrows con-
necting the modules show how the algorithm and plotter use other
modules. The solid arrows show how the different modules commu-
nicate with each other. The gray boxes separate the plotter modules
and optimization modules.

A diagram displaying the architectural overview of the framework can be seen in
Figure 4.1. A runner is in charge of loading in all the test functions and test suites,
as well as running algorithms for a set number of rounds. The algorithm can use
generic techniques which are usually stateless functions like mutation and crossover
or they can store solutions like an external archive. While the algorithm is running
the solution sampler is called and stores the solutions for later use. To evaluate a
solution the algorithm calls a test function which is selected before starting the run.
When the algorithm has completed the solutions are collected from the solution
sampler and statistics about the run(s) are shown. If the plotter is running the
solutions stored in the solution sampler are plotted. If the test function plotted is
single-objective the plotter first plots the whole search space, using test functions
implemented in the plotter, and then the sampled solutions on top of the function
plot. Some of the modules in the framework are described in greater detail in the
following sections.

4.2. Test Functions
A range of both single and multi-objective test functions are implemented in the
framework. An algorithm can use one or more test functions in the same execution
by specifying the test functions using the CLI. It is also possible to use an entire
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test suite. The single-objective test functions have support for shifting, rotating
and scaling the input based on provided data sets. Additionally, the framework
automatically keeps track of the number of fitness evaluations (calls to the test
functions), which means that neither the algorithms nor test functions have to
implement any functionality for this. The majority of the test functions have a
scalable number of decision variables.

4.3. Solution Sampling
The solution sampler module was created to make it easier to analyze the behavior
of the algorithm with different settings. The sampler has several purposes where
the main ones are to show statistics about the quality of the solutions, like mean
and standard deviation, and to sample solutions to plot. It has four sampling
modes: sample final generation only, sampling over time of the whole population,
sampling over time of the best solution only, and sampling all fitness calculations.
Sampling of the final generation is the default behavior and shows the final result
of the algorithm. Sampling over time shows how the algorithm converges, while
sampling all fitness evaluations for use in plotting shows how the algorithm searches.
The statistics printed behave a little different between single and multi-objective.
For single-objective problems min, max, mean, and standard deviation are shown
when more than one solution is sampled, while for multi-objective problems the
implemented performance metrics GD, HV, and IGD are shown. If the number
of runs is more than one, additional statistics of the sampled solutions are shown
using mean and standard deviation. This is useful because of the many random
elements often involved in metaheuristic algorithms.

4.4. Plotting
A plotter has been created to plot solutions. The plotter was created as a stand-
alone program. It was created using the Python programming language2. The
plotter listens for new output from the main program. When it receives new output
it will automatically display a plot of it in a new window.

The plotter can plot single objective solutions with two decision variables. The plots
are three dimensional, with the horizontal axes showing positions, and the vertical
axis showing fitness value. The area that is plotted is adjusted automatically
based on the values of the solutions that are plotted. It is possible to always plot
the bounds using a CLI parameter. An example of a plot of the test function
Rosenbrock generated using the plotter is shown in Figure 2.7. It is also possible

2The Python programming language: https://www.python.org/
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to plot multi-objective Pareto fronts. The Pareto front is plotted together with
the Pareto optimal front. Several examples of multi-objective plots are shown in
Figure 7.1. The Pareto optimal fronts for all test functions are pre-generated and
stored in the framework. These pre-generated fronts are the same files that are
used when calculating the performance metrics that rely on the Pareto optimal
front. The approximate Pareto set can also be plotted together with the Pareto
optimal set. This plot is three dimensional and can give an overview of how well
an algorithm managed to spread within the search space. Like with the Pareto
optimal fronts, the input is pre-generated and stored in the framework. The plotter
can be used to plot several Pareto fronts at the same time which makes it easier
to compare the quality of solutions generated by different algorithms. While all
plots of Pareto fronts and single-objective test functions in this thesis are generated
by this plotter, some tweaks have been made to improve the visual quality of the
plots.
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In order to answer RQ1 the single-objective algorithms from the literature review
are evaluated and an empirical experiment is performed. The selected algorithm is
presented in detail at the end of the chapter.

5.1. Evaluating Algorithms
The most promising algorithms from the literature review will be implemented and
compared with each other more thoroughly in an empirical experiment. The choice
of implementing the algorithms was for a few reasons:

• To get an even better understanding of the algorithms: When im-
plementing an algorithm it has to be thoroughly analyzed to make sure
every detail is correct. This gives a great understanding of every part of the
algorithm.

• To be able to compare the algorithms: For testing it is ideal to have all
the relevant algorithms implemented in the same framework to easily compare
results on test functions and ensure that they are tested equivalently.

• To verify the results in the articles: Unfortunately, it has been shown
that it can be hard to reproduce the results from artificial intelligence articles,
in fact only 6% of articles presented on two top AI conferences shared the
code [Hutson, 2018]. Implementing the algorithms is a decent way to confirm
the quality of the results, but inconsistent results do not necessarily mean
the algorithm is flawed as the reproduction of the algorithm can be flawed or
the article is not explained thoroughly enough.

Six single-objective algorithms were gathered from the literature review. Because
of limited time, it was not deemed feasible to implement six separate algorithms.
One of the main points of the thesis is innovation, and therefore some algorithms
were cut early and will not be a part of the experiment.
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MS will not be implemented. MS and MFO are based on many of the same
premises. Since MFO has already been extended to handle multiple objectives,
using non-dominated sorting, it was decided that extending MS was not that
innovative as it would likely consist of more or less the same work.

Additionally, SOS will not be implemented. There already exists a multi-objective
version of SOS called Multiple Objective Symbiotic Organisms Search [Tran et al.,
2016] that is based on non-dominated sorting. Since other promising single-objective
algorithms, without a multi-objective counterpart, were gathered in the literature
review it was decided that SOS would not be a part of the further process.

5.2. Implementation Summary
The following four algorithms were implemented and are part of the empirical
experiment. Details about the implementation process for each algorithm is
presented in this section.

Lion Optimization Algorithm

Lion Optimization Algorithm was by far the most complex single-objective algorithm
included in the literature review. For each iteration of the algorithm ten different
steps are performed and if one misbehaves it can ruin the rest of the search. The
resulting implementation is likely to contain errors since no existing implementation
of LOA was found and the article is somewhat vague on some implementation
details.

Dandelion Algorithm

DA was simple to implement. The pseudocode of DA in the article gave a good
overview of the implementation procedure. Because the algorithm always uses the
solution with the best fitness value as the mother dandelion for the next generation
the selection process was especially easy to implement.

Animal Migration Optimization

AMO was the most straightforward algorithm to implement. The article’s expla-
nations regarding the implementation process were detailed, and the algorithm
itself has few tunable parameters, which made it easy to detect if something was
implemented incorrectly.

Earthworm Optimization Algorithm

Implementing EWA was less complicated than LOA, but some steps described
in the article were confusing and contained conflicting information. Luckily a
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MATLAB implementation1 was found from one of the authors of the article, which
cleared up some uncertainty, but running the MATLAB code did not yield the
same results as presented in the article. Since all the results in the EWA article
are normalized, it is not possible to directly compare the results. However, by
comparing the results of the MATLAB EWA implementation with the results of
other algorithms, it became clear that EWA does not perform well.

5.3. Single-Objective Experiment
As a part of the evaluation of single-objective algorithms, an empirical experiment
was conducted. The goal of the experiment is to see how well the implemented
algorithms perform on a variety of test functions, which will make it easier to
select an algorithm to extend to handle multi-objective problems. Additionally, the
behavior of the algorithms and their strengths and weaknesses are discussed.

5.3.1. Experimental Setup
Since most algorithms can technically run forever, a stopping criterion is needed.
For this experiment, fitness evaluations were used as the stopping criterion for all
the algorithms. Alternatives would be setting the maximum number of iterations
or use CPU time, but every algorithm differs in the amount of work done in each
iteration and CPU time would need the same hardware and programming language
to replicate which makes the number of fitness evaluations the most suitable
stopping criterion. The experimental setup is based on the setup used in CEC2014.
The algorithms ran until they hit a total of 300,000 fitness evaluations on all test
functions except for High Conditioned Elliptic, Bent Cigar, and Discus. The number
of fitness evaluations was set to 150,000 for these test functions, as these are quite
simple unimodal problems, and multiple algorithms would find perfect solutions
every run with 300,000 fitness evaluations. The maximum number of iterations
was set to 10,000 to meet the fitness evaluation stopping criterion. Because all the
algorithms implemented contain stochastic operations each algorithm was run 51
times for each test functions as done in CEC2014.

Each algorithm ran on the 14 test functions described in CEC2014 [Liang et al.,
2013]. CEC2014 offers a variety of test functions to test different types of op-
timization problems, as explained in Section 2.7.3. Most test functions have a
global optimum when every decision variable is 0, which can be exploited either
intentionally or accidentally by algorithms. Using data files published for use
with CEC2014 the input to the test functions are shifted and rotated to avoid

1Earth Worm Optimization MATLAB implementation: https://se.mathworks.com/
matlabcentral/fileexchange/53479-earthworm-optimization-algorithm--ewa-
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exploitation of common test functions. Lower and upper bound was set to -100
and 100 respectively. Additionally, three test functions were added: Axis Parallel
Hyper-Ellipsoid, Moved-Axis Parallel Hyper-Ellipsoid, and Modified Easom. The
extra test functions can showcase some edge cases and make it easier to identify
misbehaving algorithms. The Hyper-Ellipsoid test functions used -500 and 500 as
bounds instead since Moved-Axis Parallel Hyper-Ellipsoid has an optimum relative
to the number of decision variables. Modified Easom is a test function that has
a single global optimum that is very hard to find, so bounds were set to -10 and
10 to accommodate this. All the test functions used 30 decision variables and are
described in Appendix D.

The parameters used for the algorithms are the same that were used in their original
article and can be seen in Table 5.1. DA does not operate using a population like
the other algorithms.

Table 5.1.: Tunable parameter settings of the algorithms
AMO DA EWA LOA
Population 50 Growth rate 1.1 Population 50 Population 50

Wither rate 0.9 Similarity factor 0.98 Percent of nomad lions 0.2
Normal seeds 100 Proportional factor 1.0 Roaming percent 0.2
Self-learning seeds 1 Cooling factor 0.9 Mutate percent 0.2

Sex rate 0.8
Mating probability 0.3
Immigrate rate 0.4
Number of prides 4

5.3.2. Results and Evaluation
The mean and standard deviation (SD) of the fitness values obtained over 51 runs
is shown in Table 5.2. LOA and EWA perform poorly on all test functions and
do not provide the best solution on any of the test functions. The inadequate
performance of LOA is likely because the implementation is incorrect. AMO has
the overall best results with the best score on 10 out of 17 test functions while DA
finds the best solution on 8 out of 17 test functions and performs reasonably well
on all test functions except for Modified Easom and Rosenbrock. Both AMO and
DA always obtain a perfect score on the Moved-Axis Parallel Hyper-Ellipsoid test
function while EWA and LOA are not even close to achieving an optimal answer.
AMO performs better than the other algorithms on the unimodal test functions
High Conditioned Elliptic, Bent Cigar, Discus, and Axis-Parallel Hyper-Ellipsoid.
None of the algorithms included in this experiment are able to find solutions very
close to the global optimum on Rosenbrock, Ackley, HappyCat, and HGBat. These
are all multi-modal test functions and many of them have a large number of local
optima which make them hard to solve. AMO is also clearly best on Griewank and
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Table 5.2.: Experiment results on the single-objective algorithms
Test function Measure AMO DA EWA LOA
High Conditioned Mean 0.00E+00 9.13E-11 3.46E+08 1.08E+09
Elliptic1 4 SD 0.00E+00 2.55E-10 1.36E+08 3.24E+08
Bent Cigar1 4 Mean 0.00E+00 9.54E-10 4.78E+10 1.08E+11

SD 0.00E+00 1.22E-09 1.49E+10 2.06E+10
Discus1 4 Mean 0.00E+00 1.55E-11 1.29E+05 6.96E+06

SD 0.00E+00 3.94E-11 6.28E+04 1.25E+07
Rosenbrock1 Mean 1.57E-01 3.41E+00 5.33E+03 5.42E+04

SD 7.82E-01 1.33E+01 2.51E+03 1.95E+04
Ackley1 Mean 2.00E+01 3.92E+00 2.11E+01 2.14E+01

SD 6.86E-03 8.02E+00 1.23E-01 6.12E-02
Weierstrass1 Mean 1.49E-02 2.23E-14 3.47E+01 4.23E+01

SD 6.41E-02 1.52E-14 1.89E+00 1.91E+00
Griewank1 Mean 0.00E+00 4.36E-02 2.54E+02 4.70E+02

SD 0.00E+00 5.98E-02 1.16E+02 9.68E+01
Rastrigin1 Mean 3.51E-01 2.23E-13 3.79E+02 5.80E+02

SD 5.20E-01 1.32E-13 3.08E+01 6.92E+01
Modified Schwefel1 Mean 1.53E+01 6.99E-01 7.46E+03 9.10E+03

SD 6.90E+00 8.86E-01 4.83E+02 5.33E+02
Katsuura1 Mean 4.01E-02 4.20E-15 2.65E+00 7.16E+00

SD 5.97E-03 2.41E-15 8.03E-01 9.01E-01
HappyCat1 Mean 2.53E-01 4.81E-01 4.65E+00 9.11E+00

SD 3.38E-02 1.23E-01 7.11E-01 1.10E+00
HGBat1 Mean 2.04E-01 3.52E-01 1.65E+02 2.91E+02

SD 2.84E-02 1.68E-01 6.60E+01 4.56E+01
Griewank Mean 3.11E+00 1.01E+00 2.00E+04 7.49E+06
+ Rosenbrock1 SD 2.69E-01 3.33E-01 1.99E+04 5.35E+06
Expanded Mean 4.50E+00 9.37E-01 1.30E+01 1.45E+01
Schaffer1 SD 3.48E-01 4.26E-01 4.10E-01 1.71E-01
Axis Parallel Mean 1.06E-87 1.61E-33 1.12E-04 2.09E+07
Hyper-Ellipsoid2 SD 1.43E-87 3.57E-33 4.42E-05 3.31E+06
Moved-Axis Parallel Mean 0.00E+00 0.00E+00 7.25E+07 3.29E+08
Hyper-Ellipsoid2 SD 0.00E+00 0.00E+00 1.47E+07 5.10E+07
Modified Easom3 Mean -1.00E+00 0.00E+00 -1.75E-87 -4.01E-139

SD 0.00E+00 0.00E+00 1.25E-86 2.86E-138
1 Shifted and rotated input using CEC2014 data files
2 Lower and upper bound set to -500 and 500
3 Lower and upper bound set to -10 and 10
4 150,000 fitness evaluations
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Modified Easom where it finds the global optimum every time. However, DA is
superior to AMO on the test functions Weierstrass, Rastrigin, and Katsuura with
results many orders of magnitude closer to to the optimal value.

5.3.3. Discussion
This section contains a discussion about some of the more interesting behaviors of
the algorithms on some test functions.
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Figure 5.1.: Fitness convergence of AMO and DA over iterations.

Fitness Convergence of AMO and DA

DA has superior performance on some test functions, and by plotting the best
fitness value for each iteration, it is easier to see how AMO and DA performs.
Figure 5.1 shows the fitness convergence on four functions. On Rosenbrock both
algorithms hit a local optimum for a while before they find a more promising region
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to explore. On Griewank DA quickly gets stuck in a local optimum, while AMO
gradually improves the fitness until it finds the optimal fitness. DA obtains a much
better fitness value than AMO on Katsuura, but ends up in a local optimum at
the end of the run. AMO converges really slowly, leading to a poor result. On
HappyCat DA converges really fast, but gets stuck in a local optimum that it never
escapes. AMO has a similar start to DA, but it escapes several local optima and
achieves a better fitness value. Overall, DA is more likely to end up in local optima
that it can not escape than AMO.

Figure 5.2.: Plot of Dandelion Algorithm after 300,000 fitness evaluations on Modi-
fied Easom using two decision variables

Limitations of Searching Using One Decision Variable with DA

The shape of several of the test functions is approximately like a uniform sphere,
with a global optimum in the center for every decision variable. Since DA only
searches using one decision variable at a time, it can usually find decent solutions
for these types of problems, as moving towards the smallest value in the decision
variable frequently moves the solution towards the global optimum. Moving like
this, however, does not work well with non-uniform test functions like Modified
Easom. The search space of Modified Easom is more or less a flat surface with a
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hole around π containing the global optimum. As seen in Figure 5.2 DA is stuck
and unable to find the optimum even when only using two decision variables. The
algorithm has to have a sound global search to find the hole in Modified Easom,
and can not rely on local search techniques. As can be seen from the results AMO
is the only algorithm that can reliably find the global optimum of -1 while the
other algorithms are unable to find the global optimum consistently.

EWA’s Convergence Against the Middle of Search Space

Plotting fitness evaluations of EWA showed that it frequently searched around the
middle of the search space. For example with lower and upper bounds set to -30
and 30 respectively EWA searches mostly around 0. Coincidentally many of the
unshifted test functions’ global optimum input is 0. This behavior is especially
noticeable when running EWA with γ, the cooling factor, set to 0.99 instead of
0.9. By shifting the upper and lower bounds to something where the middle of the
search space does not equal 0, for example -28 and 32, shows that EWA performs
worse, for no good reason other than accidentally finding decent solutions earlier.
To clearly show the effect shifting of bounds has contour plots of EWA with and
without shifted bounds on Axis Parallel Hyper-Ellipsoid is shown in Figure 5.3.
The results from running EWA with different γ values and bounds changed to
-28, 32 is shown in Table 5.3. EWA with γ = 0.99 performs excellently on test
functions where the global optimum and the search space median are equal, but once
the search space median changes a relatively small amount EWA performs poorly.
Moved Axis Parallel Hyper-Ellipsoid, a test function equal to Axis Parallel Ellipsoid
except with a decision variable optimum dependent on the decision variable number,
shows this problem on all EWA versions as it as a global optimum far away from
0. Contours plots of EWA and AMO on Moved-Axis Parallel Hyper-Ellipsoid is
shown in Figure 5.4 and it is clear that EWA searches mostly in the middle of
the search space while AMO is mostly searching near the global optimum. Other
algorithms can with ease find the global optimum. The MATLAB implementation
of EWA mentioned in Section 5.2 has the same problems, and the algorithm should,
therefore, be considered flawed.

Table 5.3.: Results on running EWA with different settings
Test function Measure EWA EWA 0.99 EWA Shifted EWA Shifted 0.99
Axis Parallel Mean 1.16E-04 0.00E+00 1.38E+03 1.02E+03
Hyper-Ellipsoid StdDev 4.93E-05 0.00E+00 1.37E+02 2.68E+02
Moved-Axis Parallel Mean 6.94E+07 7.85E+07 9.83E+07 9.52E+07
Hyper-Ellipsoid StdDev 1.07E+07 1.47E+07 1.80E+06 2.22E+06
Modified Easom Mean -8.54E-101 -3.31E-92 -2.13E-24 -7.36E-02

StdDev 3.80E-100 1.66E-91 1.06E-23 1.16E-01
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Figure 5.3.: Plots of 3,000 fitness evaluations on Axis Parallel Hyper-Ellipsoid using
two decision variables as axes.
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Figure 5.4.: Plots of 3,000 fitness evaluations on Moved-Axis Parallel Hyper-
Ellipsoid using two decision variables as axes and shifted bounds.

5.3.4. Conclusion
Two of the implemented algorithms, EWA and LOA, do not perform well enough
to be considered for selection. The implementation of EWA does not seem to
search correctly and is unable to find any decent results. LOA cannot be used as
no proper implementation of it is available, and based on the results the version
implemented does not perform well at all. AMO and DA both obtain decent results
on several test functions, but as discussed DA can quickly get stuck in local optima
depending on the problem. Converging to local optima is likely to be a more
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significant problem on multi-objective problems which makes DA less ideal than
AMO. Overall the conclusion is that AMO performs and behaves best out of the
algorithms in the experiment and is most suitable for multi-objective extension
and is therefore chosen.

5.4. Presentation of Animal Migration
Algorithm

Animal migration optimization [Li et al., 2014] has two phases: the animal migration
phase and the population updating phase. In the animal migration phase solutions
move based on the position of their neighbors. In the population updating phase
solutions are changed with a probability based on how good their fitness is. When
creating the first population, all solutions are initialized at random positions within
the search space.

The pseudocode for the algorithm is presented in Algorithm 1. P is the main
population and Q is the new population created in each phase. Pi,j refers to decision
variable j in solution i in population P . f(Pi) is the fitness value of solution i in P .
n is the population size, δ is a random number between 0 and 1 from the Gaussian
distribution, and rand is a random number between 0 and 1 from the uniform
distribution. S are the probabilities used when deciding if a decision variable should
be changed in the population updating phase.

5.4.1. Animal Migration
The animal migration phase of the algorithm can be seen from line 3 to line 16
in Algorithm 1. A ring topology is used for the solutions and a neighborhood
refers to any five solutions that are next to each other in the ring topology. The
algorithm loops over every solution, and for each decision variable, it moves the
solution towards a random solution within its neighborhood. A new solution from
the neighborhood is picked at random for each decision variable. The distance
moved is calculated by taking the difference between the neighbor and the current
position Pneighborhood,j − Pi,j, and multiplying it by δ as seen on line 6. After the
solutions have been moved, it compares the fitness of the new and old position and
keeps the one with the best fitness. This can be seen from line 12 to line 16.

5.4.2. Population Updating
The population updating phase can be seen from line 17 to 35 in Algorithm 1.
A probability Si is calculated for each solution in P and is used on line 20 when
looping over every decision variable, deciding if it should be changed or not. The
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Algorithm 1 Animal Migration Optimization
1: Initialize P with n random solutions
2: while stopping criterion is not met do
3: for i = 1 to n do . Animal migration
4: Generate δ from the Gaussian distribution
5: for j = 1 to number of decision variables do
6: Qi,j = Pi,j + δ × (Pneighborhood,j − Pi,j)
7: end for
8: end for
9: if solution is out of bounds then
10: Place solution at a random position within the search space.
11: end if
12: for i = 1 to n do
13: if f(Qi) < f(Pi) then
14: Pi = Qi

15: end if
16: end for
17: Calculate probabilities S . Population updating
18: for i = 1 to n do
19: for j = 1 to number of decision variables do
20: if rand > Si then
21: Generate two random population indices where r1 6= r2 6= i
22: Qi,j = Pr1,j + rand× (Pbest,j − Pi,j) + rand× (Pr2,j − Pi,j)
23: else
24: Qi,j = Pi,j
25: end if
26: end for
27: end for
28: if solution is out of bounds then
29: Place solution at a random position within the search space.
30: end if
31: for i = 1 to n do
32: if f(Qi) < f(Pi) then
33: Pi = Qi

34: end if
35: end for
36: end while
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probability is calculated using Equation (5.1).

Si = n−Di

n
(5.1)

Di is the number of solutions in the population with better fitness than Pi, and n
is the population size. This leads to solutions with good fitness having few or none
of their decision variables changed, while bad solutions are almost replaced entirely.
If decision variable Pi,j is selected for replacement the new decision variable is
calculated based on the position of the best-found solution Pbestj and the position
of two other solutions selected randomly from the population Pr1,j and Pr2,j as seen
on line 22. The first randomly selected solution’s position Pr1,j is used as a base
for the new position. The base position is then changed by adding the difference
between the best position and the current position Pbestj − Pi,j multiplied by a
random number rand sampled from the uniform distribution. Additionally, the
difference between the second randomly selected solution’s position and the current
position Pr2j

− Pi,j is also multiplied by another random number sampled from the
uniform distribution and added to the new position. Like in the animal migration
phase the new solutions are compared with the solution they are based on and the
solution with the best fitness is kept.

5.4.3. Out of Bounds Check
The original article does not cover how AMO handles positions that go out of
bounds. A MATLAB implementation of the algorithm created by one of the
article’s authors was found which covers this2. When any decision variable is out of
bounds, the whole solution is placed at a random position within the search space.
This check is shown on line 9-11 and 28-30.

2AMO implemented in MATLAB: https://se.mathworks.com/matlabcentral/
fileexchange/65846-animal-migration-optimizer
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6. Multi-Objective Extension

This chapter aims to answer RQ2 by extending AMO to handle multi-objective
problems using different techniques. The extended algorithms will then be evaluated
against each other to find the best fit, and the best one is selected as the final version
of the algorithm. At the end of the chapter, the selected version is presented.

6.1. Multi-Objective Techniques on the
Algorithm

Some changes were required for AMO to handle multi-objective problems. After
each phase AMO decides if a solution should be replaced with the new solution
based on which solution has the best fitness. With one objective this is quite simple,
as the comparison uses the single objective fitness value and selects the lowest value.
However, with several fitness values, there is no simple way to decide whether a
solution is better than another. Pareto dominance can be used if one solution is
dominated by the other, but if they are both non-dominated with respect to each
other then the selection has to be based on something else. Similarly, during the
population updating phase, the probability that a decision variable of a solution is
changed is based on how good the fitness value of the solution is compared with
the rest of the population, which also has to be changed. The global best-known
solution so far was used to calculate the new position, this also has to be selected
in a different way.

In the literature review, the techniques that are used when extending single-
objective algorithms to handle multi-objective problems were studied. The extension
techniques that were found to be the most common are archiving and non-dominated
sorting. These techniques can quite easily be added on top of an algorithm without
changing the core functionality of the algorithm in most cases. Two multi-objective
versions were therefore created based on these techniques. Additionally, a hybrid
version of these algorithms was created which combines archive and non-dominated
sorting. The following subsections will explain the process of extending AMO using
these techniques.
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6.1.1. Non-dominated Sorting Version
Efficient Non-dominated Sort [Zhang et al., 2015] was used to implement the
non-dominated sorting version of AMO. This technique is interchangeable with the
non-dominated sorting technique used by NSGA-II, except that is has a lower best
case complexity. The version of AMO based on non-dominated sorting required a
few changes to AMO. The selection at the end of each phase combines the old and
new population, sorts the merged population using non-dominated sorting, and
keeps the first half. During the population-updating phase, the best solution is
chosen using binary tournament selection with crowding distance on all the non-
dominated solutions in the population. The chance for replacement was unchanged
as the population could be sorted using non-dominated sorting.

6.1.2. Archive Version
Two different archives were tested on AMO. The first was the MOPSO archive
explained in Section 2.6.4. This archive was the most used archive type by the
algorithms in the literature review. It worked well when used for extending single-
objective algorithms. The second archive is from SMPSO and is explained in
explained in Section 3.2.3. This archive worked well with SMPSO, and was simple
to implement as it used crowding distance for pruning, something that had already
been implemented for non-dominated sorting. The SMPSO archive performed
slightly better and was used for the final version of archive AMO. To handle the
comparison between the new and old solution that happens at the end of both
phases a technique from MOPSO was used. A domination check is performed
on the solutions, and if one solution’s fitness values dominates the other’s fitness
values, it gets to stay in the population. If none of them dominate each other, one
is selected randomly. Selection of the best solution was performed similar to leader
selection in SMPSO using binary tournament selection with crowding distance on
the archive. The probability of replacement is calculated based on the percentage
of solutions the solution is dominated by. The archive is updated at the end of
each phase.

6.1.3. Hybrid Version
In addition to the two versions described a version using both archive and non-
dominated sorting was created. This version used the external archive to store
solutions and to select the best solution during the population updating phase.
Non-dominated sorting is used to calculate the probability for replacement like in
the non-dominated sorting version. Additionally, the population is pruned using
non-dominated sorting by combining the old and new population, sorting it and
keeping the best half.
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6.1.4. Additional Improvements
When first extending to multi-objective, the out of bounds handling from the
single-objective algorithm was used. It placed solutions that went out of bounds for
at least one decision variable at a completely random position in the search space.
This did not perform well when extended to multi-objective, and therefore other
methods were tried. Placing only the decision variable that went out of bounds at
a random position was attempted and gave slightly better results than the original
approach. Placing the decision variable at the bound where it went out of bounds
was also attempted, and the algorithms performed a lot better. This ended up
being used for every version.

To avoid prematurely converging a mutation operator was added. Two mutation
operators were tested. One from MOPSO explained in Section 2.6.4, the other from
SMPSO explained in Section 3.2.3. The MOPSO mutation performed better and
was used for every version. The mutation happens between the animal migration
and population updating phase.

6.2. Multi-Objective Extension Experiment
An experiment comparing the multi-objective versions of AMO was conducted. The
experiment used the test suites DTLZ and UF described in Section 2.7.3. The goal
of the experiment is to compare the performance of the three implemented multi-
objective versions of AMO and find out which version has the best performance. The
experiment’s setup, results, and discussion are covered in the following subsections.
Based on the experiment one of the implemented algorithm versions is selected for
further study.

6.2.1. Experimental Setup
The test functions used in this experiment were DTLZ1-7 and UF1-10. While
the DTLZ test functions have a scalable number of objectives they will all use
three objectives for this experiment. UF11-13 were not included, as they were
designed to run using five objectives and the focus of this thesis is two to three
objectives. DTLZ8-9 are also not included, as they are constrained problems. As
described in CEC2009, for UF1-7 there can be 100 solutions in the known Pareto
set produced by the algorithms. This is because these test functions have two
objectives. DTLZ1-7 and UF8-10 have three objectives and can have 150 solutions
in the known Pareto set. Each test function uses 30 decision variables and is ran 30
times by each algorithm. All the test functions used are described in Appendix E.
The parameters used by the three algorithms are listed in Table 6.1. The stopping
criterion used is the number of fitness evaluations and is set to 300,000 which is
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the most commonly used number of fitness evaluations used by the algorithms in
the literature review and is also used in CEC2009. Additionally, the number of
iterations is set to 10,000 which is necessary to ensure the mutation chance is high
and ensures that the number of fitness evaluations is met. The results from the runs
on DTLZ1-7 and UF1-10 for each of the three algorithms are measured using the
performance metrics GD, HV, and IGD, which are explained in Section 2.8.

Table 6.1.: Parameter settings of the algorithms.
Archive Non-dominated Hybrid
Population size 100 or 150 Population size 100 or 150 Population size 100 or 150
Mutation rate 0.1 Mutation rate 0.1 Mutation rate 0.1
Archive size 100 or 150 Archive size 100 or 150

6.2.2. Results and Evaluation
30 samples of the performance metrics are represented using mean and standard
deviation in Tables B.1 to B.6 in Appendix B.

GD values of the non-dominated sorting version and hybrid version are similar,
but overall the hybrid version has slightly better convergence. The archive version,
however, clearly performs worse than the other versions on every test function
except DTLZ6, UF8, and UF9. The HV values of the non-dominated sorting and
hybrid versions are quite similar. The hybrid version generally performs a bit
better, but the difference is negligible on most problems. However, on DTLZ3 and
UF10 the hybrid version clearly performs better than the non-dominated sorting
version. Non-dominated sorting version has the best mean score on DTLZ1, but
the standard deviation is high on this test function which means that the results
vary greatly from run to run which can skew the results. Again the archive version
consistently performs worst of the three algorithms when measured using HV. The
IGD scores are similar to the HV scores, with the exception that the archive version
scores best on DTLZ6 with the HV performance metric, while it is beat by the
hybrid version on the IGD performance metric. The only test functions where the
archive performs best on several performance metrics are DTLZ6 and UF8, but the
difference in scores compared to the hybrid and non-dominated sorting versions
are small.

In Figures 6.1a to 6.1d the Pareto fronts obtained by running the algorithms on UF3,
UF4, UF7, and DTLZ4 are shown. As can be seen in Figure 6.1a all multi-objective
AMO versions are unable to spread out over the Pareto optimal front and seem to
have problems converging entirely against the Pareto optimal front. The archive
version, however, clearly has worse diversity than other versions. The hybrid version
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Figure 6.1.: Pareto fronts plotted for each algorithm on three test functions along
with the Pareto optimal front.

is, in general, better at approximating the Pareto optimal front, but there is room
for improvement. The Pareto fronts in Figures 6.1b and 6.1c show a similar pattern
where the spread is decent, and the archive version is unable to converge as well as
the other versions. As seen in Figure 6.1d the non-dominated sorting and hybrid
versions are both able to find decent approximations of the Pareto optimal front,
while the archive version is unable to find a diverse front.

A Friedman test [Friedman, 1937] was performed to obtain an overall ranking of the
algorithms on all test functions. The Friedman test is a non-parametric statistical
test that uses ranks on each test function to calculate the overall ranking. As seen
in Table 6.2 the hybrid version is ranked first using HV and IGD as measurements,
while the non-dominated sorting version is ranked first using GD. The difference in
ranking between the hybrid version and the non-dominated sorting version is not
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Table 6.2.: Friedman test ranks for the algorithm versions on all test functions
GD HV IGDRank Algorithm Value Algorithm Value Algorithm Value

1 Non-dominated 1.59 Hybrid 1.35 Hybrid 1.35
2 Hybrid 1.65 Non-dominated 1.88 Non-dominated 1.76
3 Archive 2.76 Archive 2.76 Archive 2.88

large, but noticable on HV and IGD. The archive, on the other hand, is ranked
last on all metrics.

6.2.3. Discussion
One of the reasons the hybrid version can produce better solutions than the non-
dominated sorting version is that the archive is used as the final Pareto set instead
of the population. Over the course of the execution, the hybrid version can find
a more extensive range of solutions without worrying about keeping promising
solutions as they are stored in the external archive. The non-dominated sorting
version, on the other hand, has to make sure that the population does not degrade
in quality and therefore has a lower chance of exploring other solutions. Since the
archive has a higher chance of storing a diverse set of solutions leader selection is
likely better than only selecting from the non-dominated solutions in the population
like the non-dominated sorting version does.

As shown in the results the archive version is with few exceptions worse on all the
test functions used. One reason this can happen is the use of neighbors in the animal
migration phase. Since the neighborhood is indirectly sorted as a consequence
of using non-dominated sorting to combine the new and old population from the
previous iteration the ring topology will use neighbors with similar qualities. This
can act as a type of local search which might be favorable on some test functions.
At the end of each phase, the selection between old and new solutions is also
different and the method used by the archive is less extensive than using non-
dominated sorting like the hybrid and non-dominated sorting versions do. The
archive only compares two solutions at a time, while the other versions compare all
the solutions in the merged population with each other which increases the chance
of keeping decent solutions. Another reason the archive performs worse is the
probability calculation. Unlike AMO the archive does not calculate probabilities
for the population updating phase based on the population order but instead uses
the domination count to calculate the probabilities.
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6.2.4. Conclusion
Overall the hybrid version performs best out of the three algorithms. The difference
between the non-dominated sorting and hybrid versions is not huge, but noticeable,
mostly on the DTLZ test functions. The archive version, however, performs worst
on almost all problems. Therefore, based on this experiment, the hybrid version is
selected as the final version of multi-objective AMO.

6.3. Presentation of Multi-Objective Animal
Migration Optimization

The Multi-Objective Animal Migration Algorithm (MOAMO) has a similar struc-
ture to the single-objective version explained in Section 5.4. The changes that
have been made to the algorithm are presented in Section 6.1. In this section, the
algorithm is explained in detail. The pseudocode for MOAMO can be seen in Algo-
rithm 2. P is the main population, Q is the new population created in each phase
and R is the merged population that has been sorted using non-dominated sorting.
Pi,j refers to decision variable j in solution i in population P . n is the population
size, δ is a random number between 0 and 1 from the Gaussian distribution, and
rand is a random number between 0 and 1 from the uniform distribution. S are
the probabilities used when deciding if a decision variable should be changed in
the population updating phase.

6.3.1. Animal Migration
The animal migration phase can be seen from line 3 to line 14 in Algorithm 2.
This phase is similar to the single-objective version of this phase described in
Section 5.4.1. In this phase, movement happens based on a solution’s neighbors.
The movement equation can be seen on line 6. When calculating the new decision
variable Qi,j , it uses Pi,j as a starting point. The distance it will move is calculated
by first selecting a decision variable from a random solution in the neighborhood
Pneighborhood,j. A new neighbor is selected for each decision variable, but the same
neighbor can be selected more than once. It is possible for it to select its own
position from the neighborhood, leading to no change to that decision variable.
The difference between Pneighborhood,j and Pi,j is calculated and used as the base
movement distance. After the distance has been calculated, it is multiplied by δ. δ
is the same for every decision variable in a solution, but a new one is generated for
every solution. If a decision variable happens to go out of bounds as a result of the
movement, it will be placed at the edge of the search space on the side where it
went out of bounds. This can be seen on line 7-9. Because non-dominated sorting
is used when selecting which solutions will make it to the next phase, the solutions
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Algorithm 2 Multi-Objective Animal Migration Optimization
1: Initialize P with n random solutions
2: while stopping criterion is not met do
3: for i = 1 to n do . Animal migration
4: Generate δ from the Gaussian distribution
5: for j = 1 to number of decision variables do
6: Qi,j = Pi,j + δ × (Pneighborhood,j − Pi,j)
7: if Qi,j is out of bounds then
8: Place Qi,j at the edge of the search space
9: end if
10: end for
11: end for
12: R = non_dominated_sorting(P ∪Q)
13: P = R[1 : n]
14: Update the archive
15: Perform mutation operator
16: Calculate probabilities S . Population updating
17: for i = 1 to n do
18: for j = 1 to number of decision variables do
19: if rand > Si then
20: Generate two random population indices where r1 6= r2 6= i
21: Qi,j = Pr1,j + rand× (Pbest,j − Pi,j) + rand× (Pr2,j − Pi,j)
22: if Qi,j is out of bounds then
23: Place Qi,j at the edge of the search space
24: end if
25: else
26: Qi,j = Pi,j
27: end if
28: end for
29: end for
30: R = non_dominated_sorting(P ∪Q)
31: P = R[1 : n]
32: Update the archive
33: end while
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in Pneighbourhood are likely to be of similar quality as Pi.

6.3.2. Mutation
The mutation step can be seen on line 15 in the pseudocode. This mutation is
based on the mutation used by MOPSO explained in Section 2.6.4. The mutation
step happens between the animal migration and the population updating phase.
The difference between MOPSO’s mutation operator and the one used in MOAMO
is the mutation range calculation. Instead of using (1− current iteration

max iterations )5/mutation rate

the mutation range is lowered to (1− current iteration
max iterations )1/mutation rate.

6.3.3. Population Update
The population update phase can be seen from line 16 to 32 in Algorithm 2. This
phase simulates how animals leave and join groups. Similarly to AMO, at of the
start of the phase the probabilities S are calculated for the solutions in the main
population P . This is done using Equation (6.1).

Si = n−Hi

n
(6.1)

Here Hi is the number of solutions ahead of i after non-dominated sorting has
been performed and n is the population size. This lets solutions in the lower fronts
with the highest crowding distance have a lower chance of being changed. This
probability is used when looping over the decision variables of a solution. This
can be seen on line 19. The probability Si that has been calculated is the chance
that a decision variable Qi,j will be copied from Pi,j with no changes. If this is
not the case, a new decision variable will be created using the equation shown
on line 21. It uses the current decision variable Pi,j, two decision variables that
are selected randomly from the population Pr1,j and Pr2,j, and Pbest,j. Pbest,j is a
solution selected from the archive using binary tournament selection based on the
solution’s crowding distance. The new position uses Pr1,j as its starting point. This
position is then changed twice. First, it multiplies the difference between Pbest,j
and Pi,j with a random number between 0 and 1 and adds that. Then it multiplies
the difference between Pr2,j and Pi,j with a new random number between 0 and 1
and adds that as well. Like in the animal migration phase, out of bounds checking
happens just after the decision variable has been calculated, and if it is out of
bounds it is moved to the edge of the search space on the side where it went out of
bounds.
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6.3.4. End of Each Phase
At the end of each phase, non-dominated sorting and archiving are performed.
This can be seen on lines 12-14 and 30-32 in Algorithm 2. Because the end of
both phases is identical, only the pseudocode for the animal migration phase is
referenced with line numbers in this section. On line 12, the main population P
is combined with the new population Q that was created during the phase. This
merged population is then sorted using non-dominated sorting, sorting it first by
rank, and within each rank by crowding distance. The resulting population is
represented as R in the pseudocode. On line 13 R is then cut in half, keeping only
the best n solutions. This population replaces P as the new main population that
will be used for the next phase. As a side effect of using non-dominated sorting the
population always remained sorted after each phase.

Archiving happens on line 14 in the pseudocode. The archive stores all the non-
dominated solutions. If the number of non-dominated solutions is higher than the
max archive-size it removes the solutions with the lowest crowding distance. The
one change that has been made to the archive, compared to the SMPSO archive it
is based on, is that when pruning multiple solutions at once it does not recalculate
the crowding distance after a solution is pruned. The reason for this was that
recalculating crowding distance every time increased the computational complexity
while having a marginal impact on the results.

6.4. Algorithm Analysis and Discussion
In this section, some aspects of MOAMO are analyzed and discussed.

6.4.1. Few Tuning Parameters
The only tuning parameter AMO has is the population size, and the only parameters
added by the techniques used is the number of solution stored in the archive and
the mutation rate. Since the archive size determines the number of the solutions
in the known Pareto front the only parameters that can freely be changed are
the population size and mutation rate. Archive size is by default the same as
the population size. Few parameters make MOAMO easy to use on a variety of
problems, but on the other hand, might make it harder to adjust to problems types
MOAMO does not handle well.

6.4.2. Computational Complexity of MOAMO
MOAMO uses two multi-objective techniques for solving multi-objective problems
unlike many other algorithms in the literature which only use one. Non-dominated
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sorting and an external archive are both techniques that can be used alone so using
both in a combination can be considered too computationally heavy. However, the
computational complexity of both non-dominated sorting and the external archive is
O(mn2), where m is the number of objectives and n is the population size, and since
they are not used nested the overall complexity does not change. However, when
the population increases the runtime difference might be noticeable when using
MOAMO versus an algorithm like NSGA-II which only performs non-dominated
sorting.

Non-dominated sorting and updating of the archive are run at the end of each
phase. Non-dominated sorting is also used to calculate the probabilities used in
the populating updating phase, so in total non-dominated sorting is ran three
times for each iteration while the archive is updated two times. Unlike many
other algorithms, MOAMO has two phases per iteration while other algorithms
usually only have one phase. So even though MOAMO runs non-dominated sorting
three times per iteration and updates the archive twice per iteration this would
correspond to half of that in other algorithms.

6.4.3. Multi-Objective Extension of AMO
Extending AMO to handle optimizing of multiple objectives worked quite well
partly because it generates a new population after each phase which can be used
in non-dominated sorting and updating of the archive. Using non-dominated
sorting and an external archive are common ways to extend population-based
algorithms. From the literature review, several similar single-objective algorithms
were extended with success and AMO did not pose any additional problems that
were not solved by other algorithms. The algorithm itself was not radically changed
and remained more or less intact. The changes implemented did not alter the
idea behind the algorithm and were required for AMO to work on multi-objective
problems. Calculating the population update probability using non-dominated
sorting was a natural choice as the technique has been well proven and allows to
order multi-objective solutions. Selecting the best solution from the archive, during
the population updating phase, encourages the population to be more diverse in
a similar way to how AMO encourages convergence by selecting the best-known
solution. The largest difference between MOAMO and AMO is the evaluation of
the new solutions, where formerly the new solutions were evaluated only against
the solution used to create it, now the whole population is evaluated against each
other in MOAMO using non-dominated sorting.
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7. Multi-Objective Comparison
Experiment

This chapter aims to answer RQ3 by comparing MOAMO’s performance with other
competitive multi-objective algorithms in an experiment. This experiment will
follow the same structure as the previous two experiments. The experimental setup
is explained at the start of the chapter. Following this, the results are presented
and evaluated. At the end of the chapter, some interesting results are discussed in
depth, followed by a conclusion.

7.1. Experimental Setup
To generate test data jMetal1 [Durillo and Nebro, 2011] was used. jMetal is an open
source framework for multi-objective optimization written in Java. jMetal was used
because it has a wide range of algorithms and test functions along with several
common performance metrics. Additionally, using jMetal made it easier to run the
experiment with the exact setup needed which also made it easier to verify that the
comparison was valid. Since jMetal was used for all algorithms except MOAMO,
which uses the framework described in Chapter 4, it was important to verify that
every test function and performance metric implemented in the framework produced
the same output as the ones in jMetal. To verify the correctness of the test functions
30 sets of input variables were generated and used to calculate fitness values in both
jMetal and the framework. The fitness values were then compared to make sure
they were identical. This was done for every test function used in the experiment.
The performance metrics were also tested in a similar fashion. Pareto fronts were
generated with jMetal and measured using both the implemented performance
metrics and jMetal’s. By adding these tests as unit tests, it could be ensured
that there were no regressions related to performance metrics or test functions.
Additionally, all the data produced by all the algorithms running in jMetal was
verified with the test functions and performance metrics in the framework to ensures
that there were no discrepancies between the implementations and that the results

1jMetal version used:
https://github.com/jMetal/jMetal/tree/d2282523062c74d715a36a088bf7c531e0783068
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produced by MOAMO are comparable with results from jMetal’s algorithm.

The experiment is based on the setup used in CEC2009 [Zhang et al., 2008]. Each
test function uses 30 decision variables and is ran 30 times by each algorithm with
300,000 fitness evalutions as the stopping criterion.

7.1.1. Algorithms
MOAMO will be compared against eight other multi-objective algorithms which
are all implemented in jMetal. Some tried and true algorithms that will be in the
experiment are NSGA-II, PAES, and SPEA2. They are described in Section 2.6.
Two algorithms from the literature review will be in the experiment: MOEA/DD
(Section 3.2.4) and SMPSO (Section 3.2.3). Additionally, three novel algorithms
that have not been previously described were included. AbySS [Nebro et al., 2008]
is a hybrid multi-objective algorithm that combines scatter search structure with
crossover and mutation operators. It uses Pareto dominance and an archive to
store solutions. MOCell [Nebro et al., 2009b] is a cellular genetic algorithm with an
external archive for solving multi-objective problems. The archive is, like SMPSO,
using crowding distance as a metric for pruning. NSGA-III [Deb and Jain, 2014] is
based on the well known NSGA-II, but with changes to the selection operator for
diversity maintenance. NSGA-III uses a set of reference points that are updated
and maintained to be evenly spread out over the search space. By associating these
reference points with the population, it uses the number of solutions associated
with reference points to select solutions instead of using the crowding operator like
NSGA-II.

Unlike the other algorithms included in the experiment, the MOEA/DD version
in jMetal does not only use the non-dominated solutions as the final solution set.
Including dominated solutions can affect the calculation of the performance metrics
in both positive and negative ways. Calculation of GD is likely to suffer since it
keeps more solutions far away from the Pareto optimal front, while calculation of
IGD can improve as the diversity is likely to be greater. HV, on the other hand,
is unaffected as the dominated solutions are inside of the calculated volume and
therefore do not contribute to it.

7.1.2. Test Suites
The test suites that are used to test the performance of the algorithms are ZDT,
DTLZ, and UF. They are all explained in Section 2.7.3. The test functions that
are used are DTLZ1-7, UF1-10 and ZDT1-4 and 6. DTLZ8-9 and UF11-13 are
not included for the reasons explained in Section 6.2.1. ZDT5 is not included as
MOAMO does not support binary problems. The ZDT and UF1-7 test functions
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all have two objectives, while UF8-10 and DTLZ1-7 have three objectives.

7.1.3. Algorithm Parameters
The parameters used in the original articles of the algorithms were used except
for the parameter that decided the number of solutions in the final Pareto set
obtained by the algorithm. For most algorithms this is either the population size
or archive size. Like in CEC2009 the number of solutions in the final Pareto front
was set based on the number of objectives. 100 for two objectives and 150 for
three objectives. Since MOCell only supports integers for the grid size 144 (12x12)
was used instead of 150. Parameters used for all the algorithms are shown in
Table 7.1.

The MOEA/DD version in jMetal did not have the exact number of weights needed
for three objectives, so instead the closest number of weights above 150 was used
which ended up being 300. The number of solutions returned is still 150. Since the
NSGA-III version in jMetal bases the output on the number of divisions, the code
was altered to use the specified population size instead.

Table 7.1.: Parameter settings of the algorithms. DV stands for number of decision
variables.

AbYSS MOCell MOEA/DD
Population size 20 Population size 100 or 144 Population size 100 or 150
Mutation rate 1/DV Mutation rate 1/DV Mutation rate 1/DV
Crossover rate 0.9 Crossover rate 0.9 Crossover rate 1
Subranges 4 Archive size 100 or 150 Neighborhood size 20
RefSets size 10 + 10 Neighborhood selection 0.9
Archive size 100 or 150 Weights 100 or 300
NSGA-III NSGA-II PAES
Population size 100 or 150 Population size 100 or 150 Archive size 100 or 150
Mutation rate 1/DV Mutation rate 1/DV Mutation rate 1/DV
Crossover rate 0.9 Crossover rate 1 Bi sections 5
Divisions 99 or 16
SMPSO SPEA2 MOAMO
Population size 100 Population size 100 or 150 Population size 100 or 150
Mutation rate 1/DV Mutation rate 1/DV Mutation rate 0.1
Crossover rate 1 Crossover rate 1 Archive size 100 or 150
Archive size 100 or 150

7.1.4. Performance Metrics
The three performance metrics used in this experiment are generational distance
(GD), inverted generational distance (IGD) and hypervolume (HV). See Section 2.8
for more details about the performance metrics. Since measuring multi-objective
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problems using performance metrics like HV and IGD measures convergence and
diversity in one metric, there was a need for a metric that only measures one. GD
is a performance metric used solely for measuring convergence and was included
to make it easier to differentiate between poor convergence or poor diversity. For
example, a solution with poor HV and great GD will have poor diversity.

Table 7.2.: The rank of MOAMO on every test function measured with GD, HV,
and IGD.

Test function GD HV IGD
DTLZ1 8 9 9
DTLZ2 8 7 6
DTLZ3 6 7 8
DTLZ4 9 6 5
DTLZ5 6 5 6
DTLZ6 2 2 2
DTLZ7 4 4 3
UF1 4 1 1
UF2 1 1 1
UF3 6 2 2
UF4 2 1 1
UF5 5 1 1
UF6 4 2 1
UF7 2 1 2
UF8 5 4 3
UF9 4 4 3
UF10 4 6 6
ZDT1 7 7 7
ZDT2 6 8 7
ZDT3 5 4 4
ZDT4 7 8 8
ZDT6 6 6 7

7.1.5. Friedman Test Ranks
To compare the overall results non-parametric statistical tests were used. Based on
recommendations in Derrac et al. [2011] the Friedman aligned ranks test [Hodges
et al., 1962] was used for the individual test suites while the standard Friedman
test [Friedman, 1937] was used for the overall results. The Friedman (aligned ranks)
test uses the rank obtained on each test function to calculate the overall rank for a
test suite or the overall results. Additionally, to check if MOAMO has significantly
better or worse results compared to other algorithms, Holm’s post hoc test [Holm,
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1979] with a significance level of p = 0.05 was used. This comparison is useful to
see if MOAMO is generally better than some algorithms or if they are better and
worse on different test functions.

7.2. Results and Evaluation
In this section, the results are presented. The results of each test suite are presented
separately, and at the end of the section, the overall results from the experiment
are presented.

A Friedman aligned rank test is presented for every test suite in Tables 7.3 to 7.5,
and a Friedman rank test of the overall results can be seen in Table 7.6. The tables
are sorted according to the Friedman value where lower is better. The plots in this
section show the Pareto optimal front in orange, while results from other algorithms
use a predefined color. Tables showing the mean and standard deviation of 30
runs of every test function and performance metrics can be seen in Appendix C.
Additionally, MOAMO’s ranking on every test function is shown in Table 7.2.

Table 7.3.: Friedman aligned ranks on ZDT
GD HV IGDRank Algorithm Value Algorithm Value Algorithm Value

1 NSGA-III 14.00 SMPSO 13.80 SMPSO 15.80
2 MOCell 17.00 MOCell 15.80 MOCell 17.00
3 AbYSS 18.00 AbYSS 17.60 AbYSS 17.60
4 MOAMO 20.00 MOEA/DD 20.40 NSGA-III 21.20
5 MOEA/DD 20.40 NSGA-III 20.40 SPEA2 21.80
6 NSGA-II 20.80 SPEA2 23.20 MOAMO 22.80
7 SMPSO 22.60 MOAMO 24.80 NSGA-II 23.20
8 SPEA2 35.80 NSGA-II 28.00 MOEA/DD 24.60
9 PAES 38.40 PAES 43.00 PAES 43.00

7.2.1. Results on ZDT
As seen in Table 7.3 MOAMO is ranked fourth on GD, seventh on HV, and sixth
on IGD. Except for PAES, all the algorithms in the experiment performed well
on the ZDT test suite. The differences in values measured using HV and IGD are
small, but overall SMPSO is the most consistent algorithm for finding near-optimal
Pareto fronts. Except for on ZDT4, MOAMO has competitive results on all test
functions, and on ZDT4 it is not far behind. The GD values differ a bit more which
suggests that some algorithms convergences worse than others, but by looking at
the plotted Pareto fronts in Figure 7.1, it is evident that all the solutions are close
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to the Pareto optimal front. The reason PAES performs worse than the other
algorithms is that it is in many cases unable to find solutions spread out over the
whole Pareto optimal front. Using Holm’s post hoc test on the Friedman aligned
ranks on each metric shows that there are no statistically significant differences
between MOAMO and any of the other algorithms on the ZDT test suite.

7.2.2. Results on DTLZ
MOAMO performs below average on most of the DTLZ test suite, getting rank seven
on GD and HV, and eight on IGD as shown in Table 7.4. The only test function
where it performs well is DTLZ6 where it gets second best on every performance
metric. By inspecting the obtained Pareto fronts of MOAMO, a clearer view of its
performance can be seen. MOAMO’s convergence and diversity on DTLZ2 and
DTLZ4-5 are fairly good, but other algorithms usually provide better solutions.
On DTLZ1 and DTLZ3 MOAMO is unable to consistently converge close enough
to the Pareto optimal front. This is noticeable in Figure 7.1a which shows the
plotted Pareto fronts of MOAMO, MOEA/DD, and NSGA-III on DTLZ3. Here it
can be seen that while MOAMO achieves good diversity it is unable to converge as
close to the Pareto optimal front as the other algorithms. MOEA/DD performs the
best on DTLZ1-3 and the worst on DTLZ5-7. On DTLZ2, AbYSS gets a pretty
good HV value, placing rank 3. However, its IGD is pretty bad compared to the
rest, placing at rank 8. This can happen when the front has converged, but there
are areas in the front where there are no solutions. As on ZDT, no statistically
significant differences on the ranks were found using Holm’s post hoc test.

Table 7.4.: Friedman aligned ranks on DTLZ
GD HV IGDRank Algorithm Value Algorithm Value Algorithm Value

1 AbYSS 24.86 NSGA-III 24.57 MOEA/DD 25.43
2 PAES 26.00 MOEA/DD 24.86 NSGA-II 25.86
3 NSGA-II 26.43 NSGA-II 25.29 SMPSO 27.00
4 NSGA-III 27.14 AbYSS 27.43 SPEA2 27.86
5 SPEA2 30.57 SMPSO 28.29 NSGA-III 29.71
6 MOCell 33.43 SPEA2 31.43 MOCell 30.00
7 MOAMO 35.71 MOAMO 35.57 AbYSS 34.71
8 MOEA/DD 40.00 MOCell 37.43 MOAMO 35.71
9 SMPSO 43.86 PAES 53.14 PAES 51.71
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Figure 7.1.: Plotted Pareto fronts of MOAMO and the two best algorithms on
DTLZ and ZDT test functions
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Figure 7.2.: Plotted Pareto fronts of MOAMO and the two best algorithms on UF
test functions
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Table 7.5.: Friedman aligned ranks on UF
GD HV IGDRank Algorithm Value Algorithm Value Algorithm Value

1 NSGA-III 25.50 MOAMO 22.10 MOAMO 20.80
2 PAES 38.80 NSGA-III 35.10 NSGA-II 36.70
3 MOEA/DD 39.70 MOEA/DD 37.40 SPEA2 36.80
4 MOAMO 40.10 AbYSS 38.50 SMPSO 38.40
5 SPEA2 43.20 SPEA2 41.20 MOEA/DD 42.20
6 AbYSS 45.60 NSGA-II 43.90 AbYSS 47.60
7 NSGA-II 48.00 SMPSO 50.90 NSGA-III 50.90
8 MOCell 53.20 MOCell 60.90 MOCell 53.40
9 SMPSO 75.40 PAES 79.50 PAES 82.70

7.2.3. Results on UF
Overall MOAMO performs best on the UF test suite, getting rank one on HV
and IGD, and rank four on GD as shown in Table 7.5. However, as can be seen
from the plotted Pareto fronts shown in Figure 7.2 it does not find near-optimal
Pareto fronts for the majority of the test functions. The results show that finding
decent Pareto fronts on the UF test suite is much harder than both ZDT and
DTLZ. A typical pattern displayed by the algorithms included in this experiment
is that they are unable to find a diverse Pareto front, which either shows as gaps
in the Pareto front (UF1, UF2, UF7) or small areas with clustered solutions (UF3,
UF5, UF6). MOAMO shows many of the same patterns as other algorithms on
UF1-7, but it usually has better diversity. On UF8, which has three objectives,
MOEA/DD is the only algorithm able to consistently find Pareto fronts with both
great convergence and diversity. MOAMO still produces decent results on UF8
compared to the other algorithms. Using Friedman aligned ranks test with Holm’s
post hoc shows that MOAMO has statistically significantly better results than
PAES and MOCell on the UF test suite with HV and IGD metrics. Additionally,
MOAMO has statistically better GD ranking than SMPSO.

7.2.4. Overall Results
The results from the Friedman test on all the test functions in the experiment is
shown in Table 7.6. MOAMO is ranked third on the GD and HV performance
metrics and ranked second using IGD. While MOAMO does not perform the best
on any of the performance metrics overall, it is the only algorithm that ranks top
three on every performance metric.
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Table 7.6.: Overall algorithm Friedman rank on all test functions
GD HV IGDRank Algorithm Value Algorithm Value Algorithm Value

1 NSGA-III 3.27 AbYSS 3.77 SMPSO 3.45
2 AbYSS 4.05 MOEA/DD 4.18 MOAMO 4.18
3 MOAMO 4.73 MOAMO 4.32 SPEA2 4.36
4 NSGA-II 4.86 SMPSO 4.36 MOEA/DD 4.45
5 MOEA/DD 5.00 NSGA-III 4.50 AbYSS 4.59
6 MOCell 5.18 NSGA-II 4.95 NSGA-II 4.91
7 PAES 5.45 SPEA2 5.27 MOCell 5.14
8 SPEA2 5.73 MOCell 5.41 NSGA-III 5.14
9 SMPSO 6.73 PAES 8.23 PAES 8.77

7.3. Discussion
This section discusses some interesting aspects of MOAMO’s results on the test
functions used in the experiment.

7.3.1. ZDT Performance and MOAMO’s Pruning
Technique

The ZDT test suite is different from the other test suites in that it is a lot simpler
to get decent results. Most algorithms find decent Pareto fronts with a lot fewer
function evaluations than 300,000. MOAMO converges fast towards the optimal
front, using only about 25,000 fitness evaluations on ZDT1-3. On ZDT6 it uses
about 50,000 and on ZDT4 around 180,000. Knowing this, 300,000 evaluations
might seem unnecessarily high for this test suite. But this was deliberate, as the
algorithms that manage to converge quickly to the Pareto optimal front would have
a lot of fitness evaluations left to get a great spread along the front.

MOAMO does not manage to find solutions as close to the Pareto optimal front
as many of the other algorithms. It also does not manage to get as good spread
between the solutions. The reason for this is that when MOAMO is pruning
solutions from the archive, it does not recalculate crowding distance every time
it removes a solution. This was a deliberate choice made during the creation
process, as the crowding distance calculation has a complexity of O(mn log n),
where m is the number of objectives and n is the archive size, and recalculating
the crowding distance each time would give pruning a complexity of O(mn2 log n).
A comparison of calculating crowding distance one time vs calculating it each
time a solution is pruned can be seen in Table 7.7. These runs used the settings
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Table 7.7.: The left colum of every performance metric shows the normal version
of MOAMO that only calculates crowding distance once before pruning.
The right column shows a version of MOAMO that recalculates crowding
distance every time a solution is removed from the archive.

GD HV IGDTest function Measure Normal Modified Normal Modified Normal Modified
ZDT1 Mean 1.52E-04 1.44E-04 6.60E-01 6.61E-01 1.78E-04 1.44E-04

SD 2.26E-05 2.88E-05 2.51E-04 2.05E-04 1.41E-05 1.56E-06
Rank 2 1 2 1 2 1

ZDT2 Mean 8.44E-05 8.20E-05 3.27E-01 3.28E-01 1.77E-04 1.50E-04
SD 1.16E-05 1.03E-05 3.01E-04 1.82E-04 1.04E-05 1.97E-06
Rank 2 1 2 1 2 1

ZDT3 Mean 1.05E-04 1.02E-04 5.16E-01 5.16E-01 1.28E-04 1.05E-04
SD 8.50E-06 5.98E-06 6.48E-05 1.26E-05 7.96E-06 1.59E-06
Rank 2 1 2 1 2 1

ZDT4 Mean 1.06E-03 1.87E-04 6.48E-01 6.60E-01 4.45E-04 1.55E-04
SD 3.16E-03 1.19E-04 4.24E-02 1.74E-03 9.72E-04 2.66E-05
Rank 2 1 2 1 2 1

ZDT6 Mean 1.23E-03 8.04E-04 4.00E-01 4.01E-01 1.77E-04 1.43E-04
SD 5.03E-03 2.28E-03 7.01E-04 9.49E-04 1.52E-05 4.38E-06
Rank 2 1 2 1 2 1

Table 7.8.: Time MOAMO needed to complete 30 runs with 300,000 fitness evalua-
tions each on every test function in the test suites.

Test Suite Normal Modified
DTLZ 9 min 40 sec 62 min 30 sec
UF 10 min 50 sec 35 min 05 sec
ZDT 4 min 33 sec 36 min 41 sec

described in Section 7.1. The results show that recalculating crowding distance
is better according to every performance metric on all the ZDT test functions.
Additionally, the standard deviation is in almost all cases lower which means that
the results are more consistent. This suggests that recalculating improves diversity,
which makes sense as it would allow for more accurate pruning. However, the
improved accuracy comes at the cost of the added complexity as mentioned earlier.
Table 7.8 shows the time MOAMO needed to complete 30 runs with 300,000 fitness
evaluations each on all the test suites with and without the pruning change. The
time difference is massive, especially for DTLZ and ZDT. For DTLZ the archive
size is 150 which cause the pruning calculation to take more time. It has the
biggest impact on ZDT where the time usage is about nine times as long when
recalculating crowding distance every time. This is because MOAMO finds a lot
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of non-dominated solutions on ZDT and spends a lot of time pruning the archive.
The difference in results was only substantial on the ZDT test suite. This is most
likely because MOAMO does not have as much time to work really close to the
Pareto optimal front on the other test suites. Overall, the slight improvement in
results was not considered worth it, as the added computational complexity had a
massive impact on the runtime of the algorithm.

7.3.2. Convergence on DTLZ1
MOAMO performs poorly with all performance metrics on DTLZ1. According to
Deb et al. [2005] DTLZ1 is a good test function for testing convergence. DTLZ1 has
11k−1 local Pareto optimal fronts in its search space where k = decision variables−
objectives+ 1. Results from an ordinary run on DTLZ1 can be seen in Figure 7.3.
In Figure 7.3a it can be seen that it has quite good diversity, but as shown in
Figure 7.3b it has not managed to converge close to the Pareto optimal front. On
some runs MOAMO manages to converge close to the Pareto optimal front, getting
similar results to other algorithms, but it can not do this consistently with 300,000
fitness evaluations. If the number of fitness evaluations is increased, it manages
to converge close to the global Pareto optimal front consistently. This suggests
that MOAMO does not get completely stuck at a local Pareto optimal front, but
rather just converges slowly. The algorithm also performs better on this particular
problem if the animal migration phase is turned off. This happens because the
population updating phase creates new solutions with the help of non-dominated
solutions in the archive, giving it a bigger chance to move towards solutions with
better fitness values, converging faster.
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Figure 7.3.: MOAMO diversity and convergence on DTLZ1
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7.3.3. Excellent Performance on UF1-7
Using the HV and IGD performance metrics MOAMO scores either best or second
best on UF1-7. As can be seen in Figure 7.2 MOAMO is able to consistently
converge against the Pareto optimal front while maintaining a certain degree of
diversity. The difference in converge on the left side of UF2 is marginal between the
algorithms, but MOAMO is the only one able to find solutions close to the Pareto
optimal front on the right side. While MOAMO is unable to find a perfect spread
on most of the UF test functions the other algorithms included in the experiment
are even more prone to only finding small clusters of solutions here and there and,
therefore, produce worse results than MOAMO. In general, MOAMO is able to
find the outer points of the Pareto optimal front when other algorithms are unable
to. For example on UF6 MOAMO is the only algorithm that is able to reliably find
solutions close to the optimal solution on the far left of the disconnected Pareto
optimal front. Other algorithms are either unable to find solutions in this area
of the objective space or only rarely do so. By looking at the solutions found by
MOAMO while still optimizing it can be seen that it converges rapidly against
the solutions seen in the final Pareto front. This can be advantageous since fewer
fitness evaluations are spent searching less optimal parts of the search space, but
also results in worse diversity on some problems. Calculating the IGD value for
each iteration shows that most of the fitness evaluations are used to gradually
improve an already fairly decent Pareto front. On many of the UF test functions,
it is this relatively minor difference that differentiates MOAMO from the other
algorithms.

7.3.4. Poor Diversity on UF8
In most cases, MOAMO is unable to spread out over the Pareto optimal front
on UF8 properly. Figures 7.4a and 7.4b shows a plot of two pairs of objectives
of MOAMO, NSGA-III, and MOEA/DD on UF8. MOAMO is only able to find
solutions along the top edge of the Pareto optimal front (seen in Figure 7.4a) plotted
in orange. NSGA-III has a similar pattern but has no variance in the fitness values
for the second objective whereas MOAMO’s fitness ranges from 0 to 6. On the other
hand, MOEA/DD does not exhibit this pattern and is consistently able to find
solutions spread out over the sphere-like Pareto optimal front. As can be seen in
Figures 7.4c and 7.4d MOAMO is sometimes able to find some solutions along the
bottom of the Pareto optimal front, but the diversity is still fairly bad. MOEA/DD
is the only algorithm included in the experiment that is able to consistently find
decent solutions for this problem which suggest that decomposition techniques are
more fitting for this type of problem. Even if MOAMO is evaluated for 3,000,000
fitness evaluations, ten times the number used in the experiment in Section 7.2, it
is unable to find a spread like MOEA/DD on UF8 which means that MOAMO is
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not suitable for these types of problems. A similar pattern is noticeable on UF10,
but in this case, MOEA/DD is also unable to spread out over the Pareto optimal
front consistently. The Pareto optimal front of UF10 is of the same shape as UF8,
but none of the algorithms included in the experiment can find solutions with a
spread over the sphere-like Pareto optimal front and most only find solutions at
the edge of the Pareto optimal front. Despite the fact that no other algorithms can
solve this problem accurately MOAMO does not score particularly well.
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Figure 7.4.: 2D objective plots of two different runs of MOAMO on UF8 with
MOEA/DD and NSGA-III for comparison

7.4. Conclusion
Compared to the other algorithms included in the experiment MOAMO produces
competitive results on most test functions and even performs the best on five test
functions measured using the HV and IGD metric. Friedman aligned ranks show
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that MOAMO performs best overall on UF measured with IGD and HV. While
the results on the ZDT and DTLZ test suites are below average, the overall results
are decent as indicated by the overall Friedman ranking in Table 7.6. MOAMO is
ranked top three overall on all metrics, but there is still room for improvements
especially on the DTLZ test suite.
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8. Conclusion

This chapter will conclude the thesis. First the answers to the research questions
are summarized. Then the contributions that have been made are presented.
Lastly, the future work that can be done to improve upon the work in this thesis is
covered.

The goal of the thesis was to create a multi-objective metaheuristic algorithm based
on a single-objective algorithm from the literature. Following is a summary of how
the research questions were answered.

RQ1 Which single-objective algorithm has the best potential for multi-objective
extension?

Six algorithms were gathered from the structured literature review. Four of these
algorithms were implemented and compared against each other in an experiment.
Animal Migration Optimization (AMO) was evaluated to have the best potential
for multi-objective extension.

RQ2 Which multi-objective techniques are most suitable for extending the selected
algorithm to multi-objective?

In the structured literature review three multi-objective techniques were analyzed.
Two of these techniques, non-dominated sorting and archiving, were used to create
three multi-objective versions of AMO. One based on non-dominated sorting, one
based on an external archive and one hybrid using both techniques. These three
versions where compared in an experiment. A combination of non-dominated
sorting and archiving was evaluated to be the most suitable way of extending AMO
to multi-objective.

RQ3 How does the proposed algorithm’s performance compare to other competitive
algorithms from the literature?

The performance of Multi-Objective Animal Migration Optimization (MOAMO)
was compared with eight other competitive multi-objective algorithms in an experi-
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ment. MOAMO showed competitive results in the experiment.

8.1. Contributions
This thesis has three contributions that are presented in the following sections.

8.1.1. Multi-Objective Animal Migration Optimization
Algorithm

The animal migration optimization algorithm has been extended to handle multiple
objectives using both an external archive and non-dominated sorting. The multi-
objective animal migration optimization algorithm is competitive with other state
of the art multi-objective algorithms, performing well in an empirical experiment
where it was compared with eight other algorithms on 22 test functions measuring
results with three performance metrics.

8.1.2. Framework for Single- and Multi-Objective
Optimization

A framework has been created that supports both single- and multi-objective
optimization. The framework includes 21 commonly used single-objective test
functions, and the multi-objective test functions DTLZ1-7, ZDT1-4 and 6, and
UF1-10. Also implemented are the multi-objective performance metrics GD, HV,
and IGD. The framework contains several single- and multi-objective algorithms.
The single-objective algorithms included are AMO, DA, EWA, LOA, PSO, and
SA. The multi-objective algorithms included are MOAMO, archive AMO, non-
dominated sorting AMO, and MOPSO. Moreover, different solution sampling
methods have been implemented to make it easier to study the behavior of the
algorithms. The sampled solutions can be printed as statistical data or plotted.
The framework is available as an open source project1.

8.1.3. jMetal Experimental Bug
A bug was discovered in the jMetal [Durillo and Nebro, 2011] framework where
some algorithms’ state was kept between independent runs during experiments.
This caused these algorithms to start runs with the same solutions in the archive
as they had at the end of the previous run, giving different results than what they
would have gotten if the runs were independent. The developers were notified
about this problem and quickly resolved the issue.

1Metaheuristic framework: https://github.com/duvholt/rust-metaheuristic-framework
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8.2. Future Work

8.2. Future Work
Many interesting topics appeared during the development of MOAMO. Some of
these were not explored in great detail because of limited time or because it would
take the algorithm in another direction than what the goal of this thesis was. In
this section, these topics will be discussed.

8.2.1. Extend AMO Using Decomposition
When deciding which techniques to use when extending AMO to multi-objective,
non-dominated sorting, archive, and decomposition were considered as extension
techniques. While decomposition was not pursued, it is still worth exploring
a decomposition variant of AMO. Especially seeing how MOEA/DD is able to
produce significantly better Pareto fronts on some test functions like DTLZ1 and
UF8.

8.2.2. Many-Objective Optimization
Early on it was decided that this thesis was going to focus on multi-objective
optimization with few objectives. On problems with many objectives, new difficulties
might be encountered. For example, non-dominated sets usually become a lot
bigger, making it even harder to decide which solutions are worth exploring. Lately,
there has been more focus on many-objective optimization like the CEC2017
competition [Cheng et al., 2017b]. It could be interesting to see how the algorithm
performs on problems with many objectives, and look at some improvements that
will make the algorithm perform particularly well on these types of problems. The
reference points used by NSGA-III are especially interesting to investigate since
MOAMO heavily relies on non-dominated sorting.

8.2.3. Improve the Framework
The main focus of this thesis was always to create a multi-objective algorithm.
The framework was built to help us achieve this goal. Because of this some of
the implementation decisions worked very well for the scope of this thesis, but
might not be the most practical for others that wish to use the framework in the
future. Even though several of the multi-objective test functions have a scalable
number of objectives they are hard-coded to two or three in the implemented test
functions. A potential fix for this is to create a test function generator which takes
the number of decision variables and the number of objectives as input and returns
a test function based on this input. Another example of an improvement is to
define traits for techniques such as mutations, archives, and crossovers. A trait in
Rust is similar to interfaces in other programming languages. Then the algorithm
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can for example take the mutation operator as input which makes it easier to swap
out parts of the algorithm.

Another improvement that can be made is adding support for parallel computing.
Parallel computing focuses on splitting a large problem into smaller problems that
can be solved independently in parallel. For example the framework runner will
only run one algorithm on one test function at the same time, but since these are
independent runs they could all run in parallel to save time. Some of the algorithms
in the framework could also utilize parallel computing. For example during the
animal migration phase and population update phase in MOAMO. In both of these
phases a new population is created. None of the calculations done when creating a
new solution depends on the other solutions that are created during the same phase
in the same generation. Because of this, all of the new solutions created in each
phase could be created in parallel. While this does not reduce the computational
complexity, it will improve run time.

8.2.4. Testing on Other Test Suites
MOAMO has only been tested on DTLZ, UF, and ZDT. While these are well-known
test suites, it is still worthwhile to see MOAMO’s performance on other test suites
like WFG [Huband et al., 2005] and LSMOP [Cheng et al., 2017a] which are both
multi-objective test suites with a scalable number of objectives. Other test suites
can present different challenges for the algorithm, and making sure the algorithm
performs well on more problems is in line with the vision of making a general
algorithm.

8.2.5. Test MOAMO on a Real World Problem
During the development of MOAMO, it was never applied to a real-world problem.
While MOAMO has proven that it can find decent solutions on test functions,
real-world problems can be harder to solve as they usually involve uncertainties,
local solutions, and deceptive global solutions [Mirjalili et al., 2017]. While test
functions are excellent during development, the ultimate goal of any optimization
algorithm should be to solve real-world problems. Applying MOAMO to a real-
world problem would be a great way to further test the quality of the algorithm on
a problem that can present different difficulties than the test functions it has been
tested on in this thesis.
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A. Structured Literature Review
Process

This appendix explains the review process of the structured literature review used
to find the related work in Chapter 3.

A.1. Identification of Research
This section presents the steps that were required to find the related work.

A.1.1. Search Engine
The majority of articles were found using Google Scholar. Google Scholar aggregates
most of the prominent digital research literature libraries in one place, making it
ideal for this task. Additionally, some articles were identified using IEEE Xplore
since the site provides better filtering options than Google Scholar and many of
the related articles are hosted there.

A.1.2. Search Strategy
Before starting the search, a set of search terms had to be made. The search terms
are based on the search research questions from Section 3.1.1 and are grouped into
three categories: algorithm, single or multi-objective, and type of contribution.

A visualization using AND (∧) between groups and OR (∨) inside groups is shown
below:

(metaheuristic ∨ optimization algorithm ∨ evolutionary algorithm) ∧
(multi-objective ∨ single-objective) ∧
(new ∨ improved ∨ hybrid)

This search resulted in around 400 articles.
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A.2. Selection of Primary Studies
The first sizable cut of articles happened here. Because of the large amount of
articles, some were cut based on either reading the title, or a quick read of the
abstract. The biggest reasons for cutting articles in this step were:

1. Article did not focus on optimization algorithms.

2. Article covered an algorithm that was problem specific.

3. Article focused on improvement but was very old.

After this screening, there were 104 articles left.

A.3. Study Quality Assessment
To asses the quality of the literature several criteria were used. Based on the
inclusion and quality criteria it was decided whether the articles would be removed
or not.

A.3.1. Inclusion Criteria
For a article to be included in the literature review it must cover one or more of
the following criteria shown in Table A.1. The first three inclusion criteria (IC) are
the primary inclusion criteria, while the two next are secondary. At the end of the
table, the quality criteria (QC) are listed.

Table A.1.: Criteria grouped into primary inclusion criteria, secondary inclusion
criteria and quality criteria.

Criteria identification Criteria
IC 1 Presents a new algorithm
IC 2 The study’s main concern is metaheuristics
IC 3 Improves an existing algorithm
IC 4 Converts an algorithm from single-objective to multi-objective
IC 5 The study focuses on multi-objective optimization
QC 1 The study is innovative
QC 2 The algorithm design is justified and reproducible

A.3.2. Abstract Inclusion Criteria Screening
In this step, the abstracts of the remaining 104 articles were read and evaluated
based on the inclusion criteria seen in Table A.1. In certain cases where the abstract
did not give sufficient information about the article, the introduction and conclusion

96



A.3. Study Quality Assessment

of the article were skimmed. After this step, there were 64 articles left.

A.3.3. Full Text Inclusion Criteria Screening
The remaining 64 articles were read, and the majority of them were cut as they
did not meet the inclusion criteria. After this screening, there were 18 articles
left.

A.3.4. Quality Criteria Questions
The quality criteria were expanded to more specific questions. The following
questions are based on the questions provided by Kofod-Petersen [2014].

QC1: Is there a clear statement of the aim of the research?

QC2: Is the study put into context of other studies and research?

QC3: Is the study algorithm reproducible?

QC4: Are system or algorithmic design decisions justified?

QC5: Is the experimental procedure thoroughly explained and reproducible?

QC6: Is it clearly stated in the study which other algorithms the study’s algorithm(s)
have been compared with?

QC7: Is the study innovative?

QC8: Are the test results thoroughly analyzed?

QC9: Does the test evidence support the findings presented?

QC10: Is the test data set reproducible?

QC11: Are the performance metrics used in the study explained and justified?

The answers to these questions can be found in Table A.3.

A.3.5. Full Text Quality Criteria Screening
The remaining 18 articles were thoroughly read again and evaluated based on the
quality criteria questions. The evaluated articles are listed in Table A.2, where
each row contains the algorithm’s abbreviation, full title, and author name(s). The
evaluation is shown in Table A.3 using the previously mentioned abbreviation and
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a score of either 0, 0.5, or 1 for each Quality Criteria question.

Since both Dandelion Algorithm and Dragonfly Algorithm use the abbreviation
“DA” Dragonfly Algorithm is referred to as DFA and Dandelion Algorithm as DA
to avoid confusion.

The cutoff point was set at a score of 10 points which two articles did not meet.
With the exception of the articles by Yang et al. [2013] and Rao and Waghmare
[2014] all the studies from Table A.2 are part of the core articles. These remaining
16 articles are presented in Section 3.2.
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Table A.2.: The final selection of articles for the literature review.
Abbrevation Title Author(s)
AMO Animal migration optimization: an optimiza-

tion algorithm inspired by animal migration
behavior

Li et al. [2014]

DA A new dandelion algorithm and optimization
for extreme learning machine

Gong et al. [2017]

EWA Earthworm optimization algorithm: a bio-
inspired metaheuristic algorithm for global op-
timization problems

Wang et al. [2015]

LOA Lion optimization algorithm (LOA): a nature-
inspired metaheuristic algorithm

Yazdani and Jolai [2016]

MS Moth search algorithm: a bio-inspired meta-
heuristic algorithm for global optimization prob-
lems

Wang [2016]

SOS Symbiotic Organisms Search: A new meta-
heuristic optimization algorithm

Cheng and Prayogo [2014]

AMOSA A simulated annealing-based multiobjective op-
timization algorithm: AMOSA

Bandyopadhyay et al. [2008]

DPP2 A modified dual-population approach for solving
multi-objective problems

Bui et al. [2017]

MOALO Multi-objective ant lion optimizer: a multi-
objective optimization algorithm for solving en-
gineering problems

Mirjalili et al. [2017]

(MO)DFA Dragonfly algorithm: a new meta-heuristic opti-
mization technique for solving single-objective,
discrete, and multi-objective problems

Mirjalili [2016]

MOEA/DD An evolutionary many-objective optimization
algorithm based on dominance and decomposi-
tion

Li et al. [2015]

MOFPA Multi-objective Flower Algorithm for Optimiza-
tion

Yang et al. [2013]

MOGWO Multi-objective grey wolf optimizer: a novel
algorithm for multi-criterion optimization

Mirjalili et al. [2016]

MOWOA Multi-objective whale optimization Kumawat et al. [2017]
NSIWO Multiobjective invasive weed optimization: Ap-

plication to analysis of Pareto improvement
models in electricity markets

Nikoofard et al. [2012]

NS-MFO Non-dominated sorting moth flame optimiza-
tion (NS-MFO) for multi-objective problems

Savsani and Tawhid [2017]

SMPSO SMPSO: A new PSO-based metaheuristic for
multi-objective optimization

Nebro et al. [2009a]

TLBO A comparative study of a teaching–learning-
based optimization algorithm on multi-objective
unconstrained and constrained functions

Rao and Waghmare [2014]

99



A. Structured Literature Review Process

Table A.3.: Rating of each article using the quality criteria.
Article QC1 QC2 QC3 QC4 QC5 QC6 QC7 QC8 QC9 QC10 QC11 Score
AMO 1 1 1 1 1 1 0.5 1 1 1 1 10.5
DA 1 1 1 1 1 1 1 1 1 1 0.5 10.5
EWA 1 1 1 1 1 1 1 1 1 1 1 11
LOA 1 1 1 1 1 1 1 1 1 1 1 11
MS 1 1 1 1 1 1 1 1 1 1 1 11
SOS 1 1 1 1 1 1 1 1 1 1 1 11
AMOSA 1 1 1 1 1 1 0.5 1 0.5 1 1 10
DPP2 1 1 1 1 1 1 0.5 1 0.5 1 1 10
MOALO 1 1 1 1 1 1 1 1 0.5 1 1 10.5
(MO)DFA 1 1 1 1 1 1 1 1 0.5 1 1 10.5
MOEA/DD 1 1 1 1 1 1 1 1 1 1 1 11
MOFPA 1 0.5 1 1 0.5 1 0.5 0.5 1 1 1 9
MOGWO 1 1 1 1 1 1 1 1 1 1 1 11
MOWOA 1 1 1 0.5 1 1 0.5 1 1 1 1 10
NSIWO 1 1 1 1 1 1 0.5 1 0.5 1 1 10
NS-MFO 1 1 1 1 1 1 0.5 1 1 1 1 10.5
SMPSO 1 1 1 1 1 1 0.5 1 1 1 1 10.5
TLBO 1 1 0.5 1 1 1 0 1 1 1 1 9.5
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B. Multi-Objective Extension
Results

The following tables show the results of the multi-objective extension experiment
in Chapter 6. There are 6 tables in total, one for each performance metric on each
test suite. Each row has three values: mean is the mean value that the algorithm
got over 30 runs on the test function. SD is the standard deviation for the 30 runs.
Rank is how good the mean value was compared to the other algorithms on the
test function.

101



B. Multi-Objective Extension Results

Table B.1.: Results on DTLZ measured using GD
Test function Measure Archive Hybrid Non-dominated
DTLZ1 Mean 5.66E+01 4.66E-01 5.03E-01

SD 5.95E+00 3.54E-01 5.13E-01
Rank 3 1 2

DTLZ2 Mean 2.90E-02 2.55E-03 2.60E-03
SD 2.78E-03 3.26E-04 3.97E-04
Rank 3 1 2

DTLZ3 Mean 1.11E+02 2.52E-02 3.77E-02
SD 8.91E+00 6.70E-02 5.75E-02
Rank 3 1 2

DTLZ4 Mean 2.71E-02 4.92E-03 5.13E-03
SD 7.75E-03 5.08E-04 1.29E-03
Rank 3 1 2

DTLZ5 Mean 4.25E-02 2.83E-04 3.18E-04
SD 5.24E-03 2.22E-05 2.98E-05
Rank 3 1 2

DTLZ6 Mean 4.70E-04 4.71E-04 4.69E-04
SD 1.53E-05 1.81E-05 1.74E-05
Rank 2 3 1

DTLZ7 Mean 3.61E-03 2.14E-03 2.09E-03
SD 2.47E-04 1.88E-04 2.25E-04
Rank 3 2 1
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Table B.2.: Results on DTLZ measured using HV
Test function Measure Archive Hybrid Non-dominated
DTLZ1 Mean 0.00E+00 8.34E-02 1.57E-01

SD 0.00E+00 2.27E-01 2.99E-01
Rank 3 2 1

DTLZ2 Mean 8.65E-02 3.76E-01 3.76E-01
SD 2.36E-02 3.63E-03 3.87E-03
Rank 3 1 2

DTLZ3 Mean 0.00E+00 3.11E-01 2.38E-01
SD 0.00E+00 1.42E-01 1.74E-01
Rank 3 1 2

DTLZ4 Mean 1.77E-01 3.72E-01 3.70E-01
SD 3.39E-02 2.93E-03 4.21E-03
Rank 3 1 2

DTLZ5 Mean 1.51E-02 9.37E-02 9.34E-02
SD 6.73E-03 1.60E-04 2.30E-04
Rank 3 1 2

DTLZ6 Mean 9.55E-02 9.54E-02 9.53E-02
SD 6.86E-05 8.51E-05 9.77E-05
Rank 1 2 3

DTLZ7 Mean 2.64E-01 2.94E-01 2.93E-01
SD 6.12E-03 2.96E-03 2.19E-03
Rank 3 1 2
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B. Multi-Objective Extension Results

Table B.3.: Results on DTLZ measured using IGD
Test function Measure Archive Hybrid Non-dominated
DTLZ1 Mean 2.70E+00 4.22E-02 4.01E-02

SD 3.39E-01 3.05E-02 3.27E-02
Rank 3 2 1

DTLZ2 Mean 2.57E-03 6.39E-04 6.51E-04
SD 1.96E-04 2.33E-05 2.12E-05
Rank 3 1 2

DTLZ3 Mean 5.93E+00 4.78E-03 7.34E-03
SD 6.00E-01 1.04E-02 1.06E-02
Rank 3 1 2

DTLZ4 Mean 2.38E-03 1.20E-03 1.21E-03
SD 2.79E-04 8.50E-05 9.97E-05
Rank 3 1 2

DTLZ5 Mean 4.96E-04 1.30E-05 1.42E-05
SD 6.52E-05 8.28E-07 7.49E-07
Rank 3 1 2

DTLZ6 Mean 2.93E-05 2.92E-05 3.05E-05
SD 1.88E-06 2.60E-06 2.05E-06
Rank 2 1 3

DTLZ7 Mean 2.21E-03 1.84E-03 1.84E-03
SD 1.28E-04 1.13E-04 8.12E-05
Rank 3 1 2
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Table B.4.: Results on UF measured using GD
Test function Measure Archive Hybrid Non-dominated
UF1 Mean 2.86E-03 7.28E-04 7.25E-04

SD 1.27E-03 3.30E-04 2.51E-04
Rank 3 2 1

UF2 Mean 8.35E-03 8.76E-04 9.52E-04
SD 2.58E-03 2.92E-04 2.02E-04
Rank 3 1 2

UF3 Mean 8.83E-03 2.79E-03 2.97E-03
SD 1.46E-02 1.07E-03 1.15E-03
Rank 3 1 2

UF4 Mean 7.99E-03 4.21E-03 4.39E-03
SD 3.54E-04 3.42E-05 3.27E-05
Rank 3 1 2

UF5 Mean 6.08E-02 2.65E-02 3.20E-02
SD 2.64E-02 9.10E-03 2.41E-02
Rank 3 1 2

UF6 Mean 5.49E-02 4.69E-03 2.50E-03
SD 1.21E-02 1.23E-02 4.21E-03
Rank 3 2 1

UF7 Mean 2.36E-03 5.43E-04 5.27E-04
SD 1.22E-03 1.57E-04 2.24E-04
Rank 3 2 1

UF8 Mean 1.19E-02 2.07E-01 2.00E-01
SD 3.25E-03 7.95E-02 6.64E-02
Rank 1 3 2

UF9 Mean 3.57E-02 4.68E-02 3.38E-02
SD 3.42E-02 2.55E-02 2.95E-02
Rank 2 3 1

UF10 Mean 3.69E-01 2.61E-01 2.12E-01
SD 3.74E-02 4.11E-01 3.48E-01
Rank 3 2 1
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B. Multi-Objective Extension Results

Table B.5.: Results on UF measured using HV
Test function Measure Archive Hybrid Non-dominated
UF1 Mean 5.47E-01 5.98E-01 5.99E-01

SD 2.69E-02 2.20E-02 1.84E-02
Rank 3 2 1

UF2 Mean 5.76E-01 6.50E-01 6.48E-01
SD 5.00E-03 9.04E-04 1.15E-03
Rank 3 1 2

UF3 Mean 3.53E-01 4.89E-01 4.79E-01
SD 1.02E-02 3.67E-02 4.92E-02
Rank 3 1 2

UF4 Mean 2.19E-01 2.73E-01 2.71E-01
SD 1.92E-03 6.42E-04 4.87E-04
Rank 3 1 2

UF5 Mean 6.08E-02 2.06E-01 2.03E-01
SD 4.57E-02 3.80E-02 3.51E-02
Rank 3 1 2

UF6 Mean 6.48E-02 2.54E-01 2.34E-01
SD 2.75E-02 4.50E-02 3.37E-02
Rank 3 1 2

UF7 Mean 4.13E-01 4.67E-01 4.66E-01
SD 2.57E-02 3.39E-03 3.36E-03
Rank 3 1 2

UF8 Mean 1.58E-01 1.46E-01 1.48E-01
SD 4.13E-03 5.16E-02 3.65E-02
Rank 1 3 2

UF9 Mean 1.84E-01 5.01E-01 5.30E-01
SD 2.03E-02 8.89E-02 8.83E-02
Rank 3 2 1

UF10 Mean 0.00E+00 3.33E-02 2.52E-02
SD 0.00E+00 3.86E-02 3.69E-02
Rank 3 1 2
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Table B.6.: Results on UF measured using IGD
Test function Measure Archive Hybrid Non-dominated
UF1 Mean 2.89E-03 2.00E-03 1.98E-03

SD 6.61E-04 6.17E-04 5.38E-04
Rank 3 2 1

UF2 Mean 2.89E-03 4.24E-04 4.95E-04
SD 2.27E-04 5.88E-05 7.12E-05
Rank 3 1 2

UF3 Mean 1.09E-02 5.05E-03 5.38E-03
SD 9.29E-04 1.75E-03 2.10E-03
Rank 3 1 2

UF4 Mean 2.59E-03 1.28E-03 1.34E-03
SD 7.94E-05 1.67E-05 1.48E-05
Rank 3 1 2

UF5 Mean 6.62E-02 4.14E-02 4.17E-02
SD 7.14E-03 3.40E-03 2.98E-03
Rank 3 1 2

UF6 Mean 7.71E-03 7.76E-03 6.43E-03
SD 9.96E-04 3.90E-03 3.27E-03
Rank 2 3 1

UF7 Mean 2.40E-03 1.15E-03 1.19E-03
SD 7.21E-04 1.50E-04 1.39E-04
Rank 3 1 2

UF8 Mean 3.09E-03 2.78E-03 2.85E-03
SD 1.48E-04 5.30E-04 4.36E-04
Rank 3 1 2

UF9 Mean 4.56E-03 2.30E-03 1.99E-03
SD 2.15E-04 9.13E-04 9.99E-04
Rank 3 2 1

UF10 Mean 2.12E-02 4.96E-03 4.36E-03
SD 1.04E-03 1.17E-03 1.28E-03
Rank 3 2 1
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C. Multi-Objective Comparison
Results

The following tables show the results of the multi-objective comparison experiment
in Chapter 7. There are 9 tables in total, one for each performance metric on each
test suite. Each row has three values: mean is the mean value that the algorithm
got over 30 runs on the test function. SD is the standard deviation for the 30 runs.
Rank is how good the mean value was compared to the other algorithms on the
test function.
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Table C.1.: Results on ZDT measured using GD
Test function Measure AbYSS MOCell MOEA/DD NSGA-II NSGA-III PAES SMPSO SPEA2 MOAMO
ZDT1 Mean 1.44E-04 1.47E-04 4.51E-05 1.82E-04 4.24E-05 1.15E-04 1.27E-04 2.00E-04 1.52E-04

SD 9.42E-06 6.83E-06 1.55E-06 2.90E-05 1.08E-06 6.22E-05 1.99E-05 2.72E-05 2.26E-05
Rank 5 6 2 8 1 3 4 9 7

ZDT2 Mean 4.67E-05 4.55E-05 4.45E-05 1.30E-04 4.45E-05 1.41E-04 4.71E-05 1.37E-04 8.44E-05
SD 2.28E-06 2.10E-06 2.97E-08 3.08E-05 1.01E-07 9.74E-05 2.55E-06 6.17E-05 1.16E-05
Rank 4 3 2 7 1 9 5 8 6

ZDT3 Mean 9.80E-05 9.58E-05 3.71E-03 1.18E-04 9.72E-05 1.45E-03 9.48E-05 1.29E-04 1.05E-04
SD 6.26E-06 4.90E-06 9.38E-04 1.41E-05 8.14E-06 2.40E-03 5.38E-06 2.77E-05 8.50E-06
Rank 4 2 9 6 3 8 1 7 5

ZDT4 Mean 1.89E-04 1.19E-04 1.36E-04 1.31E-04 1.04E-04 1.03E-01 6.92E-05 2.64E-02 1.06E-03
SD 5.48E-05 3.80E-05 4.23E-05 3.02E-05 2.46E-05 1.29E-01 8.06E-06 7.30E-02 3.16E-03
Rank 6 3 5 4 2 9 1 8 7

ZDT6 Mean 7.30E-05 7.34E-05 7.39E-05 7.53E-05 7.17E-05 1.41E-02 6.78E-03 6.53E-03 1.23E-03
SD 2.06E-06 3.26E-06 2.33E-06 2.76E-06 2.59E-06 1.54E-02 1.90E-02 9.07E-03 5.03E-03
Rank 2 3 4 5 1 9 8 7 6
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Table C.2.: Results on ZDT measured using HV
Test function Measure AbYSS MOCell MOEA/DD NSGA-II NSGA-III PAES SMPSO SPEA2 MOAMO
ZDT1 Mean 6.62E-01 6.62E-01 6.62E-01 6.60E-01 6.62E-01 5.45E-01 6.62E-01 6.60E-01 6.60E-01

SD 1.56E-05 9.92E-06 9.80E-06 2.67E-04 7.15E-06 9.11E-02 1.39E-05 2.21E-04 2.51E-04
Rank 1 3 4 8 5 9 2 6 7

ZDT2 Mean 3.29E-01 3.29E-01 3.28E-01 3.27E-01 3.28E-01 2.25E-01 3.29E-01 3.28E-01 3.27E-01
SD 1.76E-05 1.33E-05 1.11E-08 1.95E-04 1.99E-08 9.66E-02 1.89E-05 2.31E-04 3.01E-04
Rank 2 1 4 7 5 9 3 6 8

ZDT3 Mean 5.16E-01 5.16E-01 5.14E-01 5.15E-01 5.15E-01 4.35E-01 5.16E-01 5.14E-01 5.16E-01
SD 9.35E-06 5.14E-06 5.56E-05 8.82E-05 7.10E-05 6.02E-02 7.63E-06 5.86E-04 6.48E-05
Rank 3 1 7 5 6 9 2 8 4

ZDT4 Mean 6.60E-01 6.61E-01 6.60E-01 6.60E-01 6.60E-01 5.69E-01 6.62E-01 6.61E-01 6.48E-01
SD 8.33E-04 6.34E-04 6.07E-04 4.97E-04 3.49E-04 5.73E-02 1.81E-05 4.96E-04 4.24E-02
Rank 6 2 5 7 4 9 1 3 8

ZDT6 Mean 4.01E-01 4.01E-01 4.01E-01 3.98E-01 4.00E-01 2.88E-01 4.01E-01 4.00E-01 4.00E-01
SD 3.91E-05 5.22E-05 4.42E-05 3.92E-04 4.72E-05 1.21E-01 3.77E-05 1.56E-04 7.01E-04
Rank 2 3 4 8 5 9 1 7 6
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Table C.3.: Results on ZDT measured using IGD
Test function Measure AbYSS MOCell MOEA/DD NSGA-II NSGA-III PAES SMPSO SPEA2 MOAMO
ZDT1 Mean 1.35E-04 1.35E-04 1.65E-04 1.84E-04 1.64E-04 5.91E-03 1.34E-04 1.72E-04 1.78E-04

SD 7.10E-07 7.25E-07 1.43E-06 8.39E-06 1.14E-07 2.83E-03 6.99E-07 6.50E-06 1.41E-05
Rank 2 3 5 8 4 9 1 6 7

ZDT2 Mean 1.39E-04 1.39E-04 1.41E-04 1.87E-04 1.41E-04 8.01E-03 1.39E-04 1.71E-04 1.77E-04
SD 1.63E-06 1.09E-06 4.78E-10 1.02E-05 1.72E-09 5.40E-03 1.46E-06 7.24E-06 1.04E-05
Rank 3 2 4 8 5 9 1 6 7

ZDT3 Mean 1.00E-04 9.89E-05 2.60E-04 1.31E-04 1.35E-04 6.59E-03 9.88E-05 1.34E-04 1.28E-04
SD 1.05E-06 9.18E-07 3.58E-06 5.43E-06 3.18E-06 3.23E-03 9.41E-07 8.39E-06 7.96E-06
Rank 3 2 8 5 7 9 1 6 4

ZDT4 Mean 1.49E-04 1.40E-04 1.80E-04 1.80E-04 1.75E-04 6.56E-03 1.35E-04 1.70E-04 4.45E-04
SD 7.33E-06 3.90E-06 2.37E-06 5.22E-06 1.31E-06 3.37E-03 7.65E-07 6.05E-06 9.72E-04
Rank 3 2 7 6 5 9 1 4 8

ZDT6 Mean 1.34E-04 1.33E-04 1.41E-04 2.28E-04 1.38E-04 8.93E-03 1.33E-04 1.66E-04 1.77E-04
SD 5.44E-07 3.50E-07 1.02E-07 1.32E-05 1.24E-07 9.11E-03 9.05E-07 6.51E-06 1.52E-05
Rank 3 2 5 8 4 9 1 6 7
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Table C.4.: Results on DTLZ measured using GD
Test function Measure AbYSS MOCell MOEA/DD NSGA-II NSGA-III PAES SMPSO SPEA2 MOAMO
DTLZ1 Mean 9.98E-04 3.07E-01 7.21E-04 3.24E-02 2.96E-03 4.77E-02 6.31E-01 1.36E-01 5.78E-01

SD 5.46E-04 7.63E-01 1.57E-04 9.08E-02 1.03E-02 2.06E-01 1.13E+00 3.12E-01 4.20E-01
Rank 2 7 1 4 3 5 9 6 8

DTLZ2 Mean 5.26E-04 1.07E-03 5.04E-04 1.04E-03 5.96E-04 5.30E-04 2.50E-03 2.00E-03 2.43E-03
SD 1.99E-05 1.17E-04 1.26E-06 7.92E-05 2.82E-05 6.80E-05 2.55E-04 1.71E-04 2.04E-04
Rank 2 6 1 5 4 3 9 7 8

DTLZ3 Mean 4.13E-03 8.96E-03 1.10E-03 1.57E-02 1.68E-02 4.68E-02 3.20E+00 4.25E-02 2.36E-02
SD 1.48E-02 1.90E-02 1.75E-04 3.08E-02 8.43E-02 1.65E-01 5.81E+00 7.76E-02 4.30E-02
Rank 2 3 1 4 5 8 9 7 6

DTLZ4 Mean 3.87E-03 3.87E-03 4.21E-03 3.98E-03 4.09E-03 1.47E-04 4.49E-03 4.07E-03 5.10E-03
SD 1.29E-04 1.06E-03 1.97E-05 1.71E-04 3.64E-04 5.90E-04 2.20E-04 3.82E-04 8.42E-04
Rank 3 2 7 4 6 1 8 5 9

DTLZ5 Mean 2.06E-04 2.31E-04 1.70E-01 2.64E-04 3.10E-04 2.87E-04 2.03E-04 3.23E-04 2.96E-04
SD 8.97E-06 3.50E-05 4.29E-03 2.58E-05 6.11E-05 1.88E-04 1.08E-05 2.59E-05 2.62E-05
Rank 2 3 9 4 7 5 1 8 6

DTLZ6 Mean 2.89E-02 5.34E-02 6.56E-01 2.74E-02 3.76E-02 2.99E-03 4.66E-04 3.42E-02 4.71E-04
SD 4.05E-03 1.06E-02 1.92E-02 3.52E-03 7.96E-03 3.25E-03 8.99E-06 8.24E-03 1.60E-05
Rank 5 8 9 4 7 3 1 6 2

DTLZ7 Mean 1.32E-03 2.33E-03 2.17E-01 1.95E-03 1.31E-03 2.36E-03 3.05E-03 2.33E-03 2.14E-03
SD 4.03E-04 2.06E-04 9.58E-03 2.33E-04 1.69E-04 1.48E-03 5.76E-04 2.28E-04 1.85E-04
Rank 2 6 9 3 1 7 8 5 4
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Table C.5.: Results on DTLZ measured using HV
Test function Measure AbYSS MOCell MOEA/DD NSGA-II NSGA-III PAES SMPSO SPEA2 MOAMO
DTLZ1 Mean 7.59E-01 4.98E-01 7.92E-01 7.29E-01 7.86E-01 4.60E-01 6.93E-01 6.16E-01 2.79E-02

SD 1.38E-02 3.33E-01 2.54E-03 1.39E-01 6.63E-03 7.86E-02 1.05E-01 3.00E-01 1.18E-01
Rank 3 7 1 4 2 8 5 6 9

DTLZ2 Mean 4.00E-01 3.95E-01 4.23E-01 3.91E-01 4.25E-01 1.81E-01 3.75E-01 3.89E-01 3.76E-01
SD 4.07E-03 3.89E-03 9.72E-05 4.84E-03 1.20E-03 4.90E-02 5.55E-03 3.00E-03 4.11E-03
Rank 3 4 2 5 1 9 8 6 7

DTLZ3 Mean 3.65E-01 3.48E-01 4.10E-01 3.76E-01 4.05E-01 1.57E-01 2.70E-01 3.78E-01 2.84E-01
SD 6.98E-02 3.15E-02 5.79E-03 9.24E-03 9.06E-03 6.26E-02 1.28E-01 7.27E-02 1.53E-01
Rank 5 6 1 4 2 9 8 3 7

DTLZ4 Mean 4.02E-01 3.66E-01 4.16E-01 3.88E-01 3.54E-01 1.37E-02 3.79E-01 3.75E-01 3.73E-01
SD 3.92E-03 9.95E-02 8.16E-05 3.69E-03 1.02E-01 5.22E-02 2.80E-03 4.56E-02 3.47E-03
Rank 2 7 1 3 8 9 4 5 6

DTLZ5 Mean 9.49E-02 9.48E-02 7.65E-02 9.42E-02 9.02E-02 6.96E-02 9.48E-02 9.36E-02 9.36E-02
SD 1.13E-05 1.06E-05 3.85E-04 1.03E-04 6.89E-04 2.56E-02 1.50E-05 2.03E-04 1.62E-04
Rank 1 3 8 4 7 9 2 6 5

DTLZ6 Mean 4.51E-03 8.24E-05 2.13E-03 7.43E-03 2.39E-03 5.63E-02 9.57E-02 6.96E-03 9.54E-02
SD 4.55E-03 2.79E-04 3.38E-03 6.94E-03 2.15E-03 3.10E-02 1.40E-05 7.18E-03 9.17E-05
Rank 6 9 8 4 7 3 1 5 2

DTLZ7 Mean 2.62E-01 2.96E-01 2.73E-01 2.96E-01 3.05E-01 1.55E-01 2.90E-01 2.87E-01 2.94E-01
SD 3.06E-02 1.97E-03 1.88E-03 2.22E-03 7.56E-03 5.39E-02 3.42E-03 2.93E-03 3.04E-03
Rank 8 3 7 2 1 9 5 6 4
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Table C.6.: Results on DTLZ measured using IGD
Test function Measure AbYSS MOCell MOEA/DD NSGA-II NSGA-III PAES SMPSO SPEA2 MOAMO
DTLZ1 Mean 6.18E-04 4.11E-03 3.38E-04 9.34E-04 3.85E-04 3.46E-03 1.09E-03 2.78E-03 5.06E-02

SD 1.18E-04 7.41E-03 5.97E-06 2.01E-03 5.69E-05 7.86E-04 9.62E-04 5.61E-03 3.23E-02
Rank 3 8 1 4 2 7 5 6 9

DTLZ2 Mean 6.66E-04 6.26E-04 4.50E-04 6.31E-04 4.66E-04 4.18E-03 6.44E-04 5.44E-04 6.37E-04
SD 4.54E-05 2.42E-05 3.14E-07 2.96E-05 5.24E-06 9.83E-04 3.06E-05 1.55E-05 2.10E-05
Rank 8 4 1 5 2 9 7 3 6

DTLZ3 Mean 1.63E-03 1.25E-03 7.50E-04 1.04E-03 8.03E-04 8.16E-03 3.49E-03 1.37E-03 4.59E-03
SD 2.71E-03 4.16E-04 1.16E-05 5.23E-05 7.75E-05 2.44E-03 2.94E-03 2.88E-03 7.10E-03
Rank 6 4 1 3 2 9 7 5 8

DTLZ4 Mean 9.70E-04 1.59E-03 5.67E-04 1.07E-03 2.27E-03 9.12E-03 1.12E-03 1.24E-03 1.20E-03
SD 7.72E-05 2.12E-03 4.28E-07 9.14E-05 2.79E-03 1.02E-03 8.39E-05 1.72E-03 9.00E-05
Rank 2 7 1 3 8 9 4 6 5

DTLZ5 Mean 9.40E-06 9.88E-06 1.11E-04 1.29E-05 4.63E-05 7.05E-04 9.29E-06 1.27E-05 1.32E-05
SD 1.86E-07 2.58E-07 8.43E-07 6.34E-07 9.94E-06 4.24E-04 2.11E-07 5.54E-07 7.20E-07
Rank 2 3 8 5 7 9 1 4 6

DTLZ6 Mean 1.84E-03 2.96E-03 2.01E-03 1.67E-03 1.88E-03 2.49E-03 2.28E-05 1.75E-03 2.96E-05
SD 2.63E-04 6.02E-04 3.91E-04 2.87E-04 3.01E-04 1.11E-03 5.02E-07 3.59E-04 2.50E-06
Rank 5 9 7 3 6 8 1 4 2

DTLZ7 Mean 1.44E-02 1.86E-03 2.91E-03 1.78E-03 2.03E-03 2.13E-02 2.15E-03 1.57E-03 1.84E-03
SD 7.73E-03 7.90E-05 4.89E-05 1.07E-04 2.60E-03 2.99E-03 2.11E-04 4.60E-05 1.01E-04
Rank 8 4 7 2 5 9 6 1 3
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Table C.7.: Results on UF measured using GD
Test function Measure AbYSS MOCell MOEA/DD NSGA-II NSGA-III PAES SMPSO SPEA2 MOAMO
UF1 Mean 8.90E-04 1.37E-03 7.76E-03 5.70E-04 6.71E-04 1.20E-03 1.00E-02 3.65E-04 7.13E-04

SD 1.25E-03 2.54E-03 1.86E-03 3.83E-04 9.10E-04 1.27E-03 1.06E-02 2.50E-04 3.31E-04
Rank 5 7 8 2 3 6 9 1 4

UF2 Mean 1.04E-03 1.75E-03 1.89E-03 1.42E-03 1.31E-03 2.98E-03 3.63E-03 1.70E-03 8.27E-04
SD 3.73E-04 2.99E-04 1.08E-03 3.08E-04 5.82E-04 1.83E-03 1.19E-03 5.35E-04 7.32E-05
Rank 2 6 7 4 3 8 9 5 1

UF3 Mean 3.29E-03 2.51E-03 1.91E-03 2.09E-03 2.26E-03 1.00E-02 1.27E-02 1.73E-03 2.82E-03
SD 2.41E-03 1.30E-03 1.90E-03 1.27E-03 1.70E-03 6.62E-03 3.90E-03 1.34E-03 1.14E-03
Rank 7 5 2 3 4 8 9 1 6

UF4 Mean 5.11E-03 5.65E-03 4.19E-03 4.80E-03 4.40E-03 1.25E-02 5.65E-03 5.11E-03 4.21E-03
SD 2.36E-04 3.67E-04 1.03E-04 5.22E-05 1.43E-04 5.38E-03 3.83E-04 6.33E-05 4.45E-05
Rank 5 8 1 4 3 9 7 6 2

UF5 Mean 7.79E-02 2.94E-02 2.01E-02 2.61E-02 2.87E-02 1.70E-02 2.52E-01 1.44E-02 2.67E-02
SD 3.97E-02 1.56E-02 1.36E-02 1.30E-02 1.44E-02 1.86E-02 1.53E-01 4.38E-03 1.00E-02
Rank 8 7 3 4 6 2 9 1 5

UF6 Mean 2.96E-02 7.66E-03 1.03E-02 1.25E-02 6.97E-03 2.97E-02 7.03E-02 6.45E-03 7.80E-03
SD 4.55E-02 7.77E-03 1.18E-02 2.21E-02 1.24E-02 4.06E-02 2.68E-02 7.35E-03 2.93E-02
Rank 7 3 5 6 2 8 9 1 4

UF7 Mean 5.29E-04 8.44E-04 5.17E-03 9.59E-04 6.48E-04 9.00E-04 2.69E-03 1.23E-03 5.48E-04
SD 8.02E-04 6.44E-04 1.58E-03 1.74E-03 8.23E-04 1.29E-03 9.64E-04 2.77E-03 2.15E-04
Rank 1 4 9 6 3 5 8 7 2

UF8 Mean 5.96E-02 2.23E-01 7.87E-02 2.24E-01 7.40E-04 2.97E-03 1.73E-01 2.31E-01 1.66E-01
SD 4.93E-02 6.22E-02 4.64E-02 5.99E-02 1.98E-04 1.41E-03 6.30E-02 2.14E-02 1.07E-01
Rank 3 7 4 8 1 2 6 9 5

UF9 Mean 1.64E-01 3.33E-01 7.32E-02 1.63E-01 1.27E-02 9.60E-03 3.70E-01 5.22E-02 5.85E-02
SD 6.46E-02 7.26E-02 2.20E-02 8.85E-02 4.35E-03 7.04E-03 1.40E-01 3.52E-02 4.24E-02
Rank 7 8 5 6 2 1 9 3 4

UF10 Mean 9.77E-02 2.88E-01 2.94E-01 2.58E-01 1.67E-02 8.91E-03 6.43E-01 3.99E-01 2.21E-01
SD 1.09E-01 8.63E-02 1.30E-01 2.26E-01 1.85E-02 5.24E-03 2.17E-01 5.08E-01 3.53E-01
Rank 3 6 7 5 2 1 9 8 4
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Table C.8.: Results on UF measured using HV
Test function Measure AbYSS MOCell MOEA/DD NSGA-II NSGA-III PAES SMPSO SPEA2 MOAMO
UF1 Mean 5.72E-01 5.53E-01 5.59E-01 5.52E-01 5.41E-01 3.95E-01 5.55E-01 5.42E-01 6.05E-01

SD 3.37E-02 3.07E-02 2.65E-02 2.26E-02 2.68E-02 8.71E-02 1.34E-02 2.17E-02 1.87E-02
Rank 2 5 3 6 8 9 4 7 1

UF2 Mean 6.37E-01 6.24E-01 6.27E-01 6.29E-01 6.26E-01 4.58E-01 6.35E-01 6.24E-01 6.49E-01
SD 7.11E-03 6.77E-03 1.50E-02 7.38E-03 8.64E-03 7.83E-02 2.39E-03 5.20E-03 8.07E-04
Rank 2 8 5 4 6 9 3 7 1

UF3 Mean 4.27E-01 4.09E-01 3.55E-01 4.18E-01 4.00E-01 2.67E-01 4.94E-01 4.25E-01 4.91E-01
SD 6.86E-02 5.63E-02 3.53E-02 4.86E-02 5.66E-02 5.79E-02 4.73E-02 4.11E-02 4.09E-02
Rank 3 6 8 5 7 9 1 4 2

UF4 Mean 2.63E-01 2.56E-01 2.72E-01 2.65E-01 2.70E-01 1.24E-01 2.56E-01 2.62E-01 2.73E-01
SD 3.07E-03 4.67E-03 1.24E-03 6.35E-04 1.79E-03 5.26E-02 4.60E-03 6.69E-04 7.33E-04
Rank 5 8 2 4 3 9 7 6 1

UF5 Mean 1.66E-01 1.56E-01 1.44E-01 1.89E-01 1.70E-01 1.09E-01 2.94E-03 1.94E-01 2.08E-01
SD 8.00E-02 7.88E-02 9.39E-02 6.71E-02 6.08E-02 6.68E-02 1.54E-02 6.47E-02 4.31E-02
Rank 5 6 7 3 4 8 9 2 1

UF6 Mean 2.03E-01 1.95E-01 1.94E-01 2.19E-01 2.18E-01 1.13E-01 4.07E-02 2.60E-01 2.46E-01
SD 7.71E-02 7.76E-02 6.72E-02 6.46E-02 7.56E-02 1.00E-01 4.60E-02 6.11E-02 4.28E-02
Rank 5 6 7 3 4 8 9 1 2

UF7 Mean 3.04E-01 3.31E-01 3.50E-01 3.70E-01 3.30E-01 1.59E-01 4.58E-01 3.42E-01 4.61E-01
SD 8.77E-02 1.13E-01 9.09E-02 9.62E-02 9.78E-02 9.27E-02 5.48E-03 1.00E-01 3.30E-02
Rank 8 6 4 3 7 9 2 5 1

UF8 Mean 2.31E-01 5.87E-02 2.56E-01 1.16E-01 2.01E-01 7.89E-02 1.44E-01 1.37E-01 1.74E-01
SD 6.23E-02 5.21E-02 4.09E-02 3.90E-02 1.92E-03 4.76E-02 3.33E-02 1.66E-02 6.61E-02
Rank 2 9 1 7 3 8 5 6 4

UF9 Mean 3.81E-01 2.34E-01 5.39E-01 3.74E-01 4.98E-01 2.09E-01 2.08E-01 5.20E-01 4.85E-01
SD 9.78E-02 7.69E-02 5.81E-02 9.94E-02 5.06E-02 6.54E-02 5.91E-02 5.59E-02 1.03E-01
Rank 5 7 1 6 3 8 9 2 4

UF10 Mean 5.87E-02 1.01E-02 9.50E-02 2.60E-02 9.63E-02 5.94E-02 5.86E-02 1.96E-02 2.81E-02
SD 3.57E-02 1.51E-02 8.72E-02 2.62E-02 7.84E-02 2.19E-02 3.79E-02 2.93E-02 3.09E-02
Rank 4 9 2 7 1 3 5 8 6
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Table C.9.: Results on UF measured using IGD
Test function Measure AbYSS MOCell MOEA/DD NSGA-II NSGA-III PAES SMPSO SPEA2 MOAMO
UF1 Mean 3.35E-03 3.55E-03 3.25E-03 3.66E-03 4.03E-03 9.11E-03 2.15E-03 3.81E-03 1.84E-03

SD 1.50E-03 9.37E-04 9.32E-04 8.62E-04 1.19E-03 2.94E-03 2.59E-04 9.90E-04 5.78E-04
Rank 4 5 3 6 8 9 2 7 1

UF2 Mean 1.91E-03 1.83E-03 2.92E-03 1.83E-03 2.19E-03 7.11E-03 9.76E-04 1.57E-03 4.60E-04
SD 9.50E-04 9.08E-04 1.87E-03 1.04E-03 1.12E-03 2.40E-03 9.09E-05 4.69E-04 4.77E-05
Rank 6 4 8 5 7 9 2 3 1

UF3 Mean 8.96E-03 8.50E-03 1.15E-02 8.75E-03 9.36E-03 1.23E-02 3.92E-03 8.56E-03 5.10E-03
SD 3.07E-03 1.65E-03 1.05E-03 1.67E-03 1.97E-03 1.68E-03 1.19E-03 1.70E-03 1.96E-03
Rank 6 3 8 5 7 9 1 4 2

UF4 Mean 1.49E-03 1.76E-03 1.30E-03 1.45E-03 1.38E-03 9.35E-03 1.65E-03 1.54E-03 1.27E-03
SD 7.49E-05 1.42E-04 1.85E-05 1.80E-05 5.04E-05 3.48E-03 9.30E-05 1.79E-05 1.66E-05
Rank 5 8 2 4 3 9 7 6 1

UF5 Mean 6.78E-02 7.44E-02 8.90E-02 7.12E-02 6.98E-02 1.20E-01 2.66E-01 5.70E-02 4.18E-02
SD 1.92E-02 2.87E-02 3.96E-02 2.66E-02 2.27E-02 2.45E-02 1.18E-01 1.24E-02 4.01E-03
Rank 3 6 7 5 4 8 9 2 1

UF6 Mean 1.50E-02 1.60E-02 1.60E-02 1.16E-02 1.46E-02 2.07E-02 1.40E-02 1.06E-02 6.38E-03
SD 4.23E-03 7.02E-03 6.61E-03 4.97E-03 7.07E-03 5.74E-03 3.30E-03 3.71E-03 3.36E-03
Rank 6 8 7 3 5 9 4 2 1

UF7 Mean 1.07E-02 8.82E-03 8.18E-03 6.61E-03 8.90E-03 1.75E-02 1.02E-03 8.05E-03 1.54E-03
SD 5.43E-03 6.77E-03 5.82E-03 6.10E-03 6.23E-03 5.37E-03 1.68E-04 6.50E-03 2.14E-03
Rank 8 6 5 3 7 9 1 4 2

UF8 Mean 2.12E-03 3.41E-03 1.60E-03 2.98E-03 5.38E-03 5.75E-03 2.89E-03 2.89E-03 2.47E-03
SD 5.48E-04 6.96E-04 7.43E-04 4.35E-04 2.27E-04 1.07E-03 2.95E-04 2.24E-04 7.28E-04
Rank 2 7 1 6 8 9 4 5 3

UF9 Mean 3.00E-03 3.88E-03 1.53E-03 2.65E-03 2.49E-03 4.66E-03 4.15E-03 1.68E-03 2.42E-03
SD 6.94E-04 7.44E-04 5.29E-04 8.71E-04 8.33E-04 6.76E-04 5.28E-04 6.30E-04 9.75E-04
Rank 6 7 1 5 4 9 8 2 3

UF10 Mean 4.80E-03 6.28E-03 3.40E-03 4.47E-03 4.14E-03 5.50E-03 3.65E-03 4.45E-03 4.64E-03
SD 8.78E-04 1.18E-03 1.60E-03 9.87E-04 8.42E-04 5.92E-04 4.13E-04 1.51E-03 9.06E-04
Rank 7 9 1 5 3 8 2 4 6
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D. Single-Objective Test
Functions

The single-objective test functions used in this thesis are listed here together with
their optimal input.

High Conditioned Elliptic
n∑
i=1

(106)
i−1
n−1x2

i

Optimal: x = [0, ..., 0], f(x) = 0

Bent Cigar

x2
1 + 106

n∑
i=2

x2
i

Optimal: x = [0, ..., 0], f(x) = 0

Discus

106x2
1 +

n∑
i=2

x2
i

Optimal: x = [0, ..., 0], f(x) = 0

Rosenbrock
n−1∑
i=1

[100(x2
i − xi+1)2 + (xi − 1)2]

Optimal: x = [1, ..., 1], f(x) = 0

119



D. Single-Objective Test Functions

Ackley

20e−0.2
√

1
n

∑n

i=1 x
2
i − e

1
n

∑n

i=1 cos(2πxi) + 20 + e

Optimal: x = [0, ..., 0], f(x) = 0

Weierstrass

a = 0.5, b = 3, kmax = 20
n∑
i=1

[
kmax∑
k=0

ak cos
(
2πbk(xi + 0.5)

)]
− n

kmax∑
k=0

ak cos(πbk)

Optimal: x = [0, ..., 0], f(x) = 0

Griewank

1
4000

n∑
i=1

x2
i −

n∏
i=1

cos
(
xi√
i

)
+ 1

Optimal: x = [0, ..., 0], f(x) = 0

Rastrigin

10n+
n∑
i=1

[
x2
i − 10 cos(2πxi)

]
Optimal: x = [0, ..., 0], f(x) = 0

Modified Schwefel

418.9828872724338n−
n∑
i=1

g(zi)

zi = xi + 4.209687462275036 · 102

g(zi) =


zi sin(|zi|1/2) if |zi| ≤ 500
(500− zi mod 500) sin(

√
|500− zi mod 500|)− (zi−500)2

10000n if zi > 500
(|zi| mod 500− 500) sin(

√
||zi| mod 500− 500|)− (zi−500)2

10000n if zi < −500

Optimal: x = [0, ..., 0], f(x) = 0
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Katsuura

10
n2

n∏
i=1

[
1 + i

32∑
k=1

|2kxi − b2kxie|
2k

] 10
n1.2

− 10
n2

Optimal: x = [0, ..., 0], f(x) = 0

HappyCat

∣∣∣∣∣
n∑
i=1

xi
2 − n

∣∣∣∣∣
1/4

+ (0.5
n∑
i=1

xi
2 +

n∑
i=1

xi)/n+ 0.5

Optimal: x = [0, ..., 0], f(x) = 0

HGBat

∣∣∣∣∣(
n∑
i=1

xi
2)2 − (

n∑
i=1

xi)2
∣∣∣∣∣
1/2

+ (0.5
n∑
i=1

xi
2 +

n∑
i=1

xi)/n+ 0.5

Optimal: x = [0, ..., 0], f(x) = 0

Expanded Griewank’s plus Rosenbrock

r(x) = rosenbrock(x), g(x) = griewank(x)
g(r(x1, x2)) + g(r(x2, x3)) + ...+ g(r(xn−1, xn)) + g(r(xn, x1))

Optimal: x = [1, ..., 1], f(x) = 0

Expanded Scaffer’s F6

Schaffer F6: s(x) = 0.5 + sin2(
√
x2 + y2)− 0.5

(1 + 0.001(x2 + y2))2

s(x1, x2) + s(x2, x3) + ...+ s(xn−1, xn) + s(xn, x1)

Optimal: x = [0, ..., 0], f(x) = 0
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D. Single-Objective Test Functions

Axis Parallel Hyper-Ellipsoid

n∑
i=1

ix2
i

Optimal: x = [0, ..., 0], f(x) = 0

Moved-Axis Parallel Hyper-Ellipsoid

n∑
i=1

i · (xi − 5 · i)
2

Optimal: x = [5, 10, ..., 5 ∗ i], f(x) = 0

Modified Easom
Modified to handle n-decision variables.

−
n∏
i=1

cos (xi) exp
( n∑
i=1

(− (xi − π)2)
)

Optimal: x = [π, ..., π], f(x) = −1
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E. Multi-Objective Test
Functions

This appendix covers the multi-objective test functions that has been used in this
thesis. n is the number of decision variables and x is the set of decision variables.
m is the number of objectives.

E.1. DTLZ
For all the DTLZ test functions xm is defined as the following:
k = n−M + 1
xm = x[n− k], ..., x[n]

DTLZ1

g(xm) = 100
(
|xm|+

∑
xi∈xm ((xi − 0.5)2 − cos(20π(xi − 0.5)))

)
F1(x) = 1

2(1 + g(xm))∏m−1
i=1 xi

F2(x) = 1
2(1 + g(xm))(1− xm−1)∏m−2

i=1 xi
...
Fm−1(x) = 1

2(1 + g(xm))(1− x2)x1
Fm(x) = 1

2(1− x1)(1 + g(xm))
x ∈ [0, 1]

DTLZ2
g(xm) = ∑

xi∈xm(xi − 0.5)2

F1(x) = (1 + g(xm))∏m−1
i=1 cos(0.5xiπ)

F2(x) = (1 + g(xm)) sin(0.5xm−1π)∏m−2
i=1 cos(0.5xiπ)

...
Fm(x) = (1 + g(xm)) sin(0.5x1π)
x ∈ [0, 1]

123



E. Multi-Objective Test Functions

DTLZ3

g(xm) = 100
(
|xm|+

∑
xi∈xm ((xi − 0.5)2 − cos(20π(xi − 0.5)))

)
F1(x) = (1 + g(xm))∏m−1

i=1 cos(0.5xiπ)
F2(x) = (1 + g(xm)) sin(0.5xm−1π)∏m−2

i=1 cos(0.5xiπ)
...
Fm(x) = (1 + g(xm)) sin(0.5x1π)
x ∈ [0, 1]

DTLZ4
α = 100
g(xm) = ∑

xi∈xm(xi − 0.5)2

F1(x) = (1 + g(xm))∏m−1
i=1 cos(0.5xαi π)

F2(x) = (1 + g(xm)) sin(0.5xαm−1π)∏m−2
i=1 cos(0.5xαi π)

...
Fm(x) = (1 + g(xm)) sin(0.5xα1π)
x ∈ [0, 1]

DTLZ5
g(xm) = ∑

xi∈xm(xi − 0.5)2

θi = π
4(1+g(xm)(1 + 2g(xm)xi) for i = 2, 3, . . . , (m - 1)

F1(x) = (1 + g(xm))∏m−1
i=1 cos(0.5θiπ)

F2(x) = (1 + g(xm)) sin(0.5θm−1π)∏m−2
i=1 cos(0.5θiπ)

...
Fm(x) = (1 + g(xm)) sin(0.5θ1π)
x ∈ [0, 1]
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E.2. UF

DTLZ6
g(xm) = ∑

xi∈xm x
0.1
i

θi = π
4(1+g(xm)(1 + 2g(xm)xi) for i = 2, 3, . . . , (m - 1)

F1(x) = (1 + g(xm))∏m−1
i=1 cos(0.5θiπ)

F2(x) = (1 + g(xm)) sin(0.5θm−1π)∏m−2
i=1 cos(0.5θiπ)

...
Fm(x) = (1 + g(xm)) sin(0.5θ1π)
x ∈ [0, 1]

DTLZ7
g(xm) = 1 + 9

|xm|
∑
xi∈xm xi

h(F1, F2, . . . , Fm−1, g) = m−∑m−1
i=1

(
Fi

1+g (1 + sin 3πFi)
)

F1(x) = x1
...
Fm−1(x) = xm−1
Fm(x) = (1 + g(xm))h(F1, F2, . . . , Fm−1, g)
x ∈ [0, 1]

E.2. UF
Many of the UF test functions are structured similarly. The decision variables x
are split into either two or three groups J based on the number of objectives.

UF1

F1 = x1 + 2
|J1|

∑
j∈J1

[
xj − sin(6πx1 + jπ

n
)
]2

F2 = 1−√x1 + 2
|J2|

∑
j∈J2

[
xj − sin(6πx1 + jπ

n
)
]2

J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}
x1 ∈ [0, 1], xi ∈ [−1, 1] , i = 2, · · · , n
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E. Multi-Objective Test Functions

UF2
F1 = x1 + 2

|J1|
∑
j∈J1 y

2
j

F2 = 1−√x1 + 2
|J2|

∑
j∈J2 y

2
j

J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}

yj =

xj −
(
0.3x2

1 cos(24πx1 + 4jπ
n

) + 0.6x1
)

cos(6πx1 + jπ
n

) for j ∈ J1

xj −
(
0.3x2

1 cos(24πx1 + 4jπ
n

) + 0.6x1
)

sin(6πx1 + jπ
n

) for j ∈ J2

x1 ∈ [0, 1], xi ∈ [−1, 1] , i = 2, . . . , n

UF3
F1 = x1 + 2

|J1|(4
∑
j∈J1 y

2
j − 2∏j∈J1 cos(20yjπ√

j
) + 2)

F2 = 1−√x1 + 2
|J2|(4

∑
j∈J2 y

2
j − 2∏j∈J2 cos(20yjπ√

j
) + 2)

J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}

yj = xj − x
0.5(1.0+ 3(j−2)

n−2
1 , j = 2, . . . , n

x ∈ [0, 1]

UF4
F1 = x1 + 2

|J1|
∑
j∈J1 h(yj)

F2 = 1− x2
1 + 2

|J2|
∑
j∈J2 h(yj)

J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}
yj = xj − sin(6πx1 + jπ

n
), j = 2, . . . , n

h(t) = |t|
1+e2|t|

x1 ∈ [0, 1], xi ∈ [−2, 2] , i = 2, . . . , n
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UF5
F1 = x1 + ( 1

2N + ε)| sin(2Nπx1)|+ 2
|J1|

∑
j∈J1 h(yj)

F2 = 1− x1 + ( 1
2N + ε)| sin(2Nπx1)|+ 2

|J2|
∑
j∈J2 h(yj)

N = 10, ε = 0.1
J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}
yj = xj − sin(6πx1 + jπ

n
), j = 2, . . . , n

h(t) = 2t2 − cos(4πt) + 1
x1 ∈ [0, 1], xi ∈ [−1, 1] , i = 2, . . . , n

UF6
F1 = x1 + max{0, 2( 1

2N + ε) sin(2Nπx1)}+ 2
|J1|(4

∑
j∈J1 y

2
j − 2∏j∈J1 cos(20yjπ√

j
) + 2)

F2 = 1−x1 +max{0, 2( 1
2N +ε) sin(2Nπx1)}+ 2

|J2|(4
∑
j∈J2 y

2
j−2∏j∈J2 cos(20yjπ√

j
)+2)

N = 2, ε = 0.1
J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}
yj = xj − sin(6πx1 + jπ

n
), j = 2, . . . , n

x1 ∈ [0, 1], xi ∈ [−1, 1] , i = 2, . . . , n

UF7
F1 = 5

√
x1 + 2

|J1|
∑
j∈J1 y

2
j

F2 = 1− 5
√
x1 + 2

|J2|
∑
j∈J2 y

2
j

J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}
yj = xj − sin(6πx1 + jπ

n
), j = 2, . . . , n

x1 ∈ [0, 1], xi ∈ [−1, 1] , i = 2, . . . , n

127



E. Multi-Objective Test Functions

UF8
F1 = cos(0.5x1π) cos(0.5x2π) + 2

|J1|
∑
j∈J1(xj − 2x2 sin(2πx1 + jπ

n
))2

F2 = cos(0.5x1π) sin(0.5x2π) + 2
|J2|

∑
j∈J2(xj − 2x2 sin(2πx1 + jπ

n
))2

F3 = sin(0.5x1π) + 2
|J3|

∑
j∈J3(xj − 2x2 sin(2πx1 + jπ

n
))2

J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3 }
J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3 }
J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3 }
x1 ∈ [0, 1], x2 ∈ [0, 1], xi ∈ [−2, 2] , i = 3, . . . , n

UF9

F1 = 0.5[max{0, (1+ε)(1−4(2x1−1)2)}+2x1]x2+ 2
|J1|

∑
j∈J1

(
xj − 2x2 sin(2πx1 + jπ

n
)
)2

F2 = 0.5[max{0, (1+ε)(1−4(2x1−1)2)}−2x1+2]x2+ 2
|J2|

∑
j∈J2

(
xj − 2x2 sin(2πx1 + jπ

n
)
)2

F3 = 1− x2 + 2
|J3|

∑
j∈J3

(
xj − 2x2 sin(2πx1 + jπ

n
)
)2

ε = 0.1
J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3 }
J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3 }
J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3 }
x1 ∈ [0, 1], x2 ∈ [0, 1], xi ∈ [−2, 2] , i = 3, . . . , n

UF10

F1 = cos(0.5x1π) cos(0.5x2π) + 2
|J1|

∑
j∈J1

(
4y2

j − cos(8πyj) + 1
)

F2 = cos(0.5x1π) sin(0.5x2π) + 2
|J2|

∑
j∈J2

(
4y2

j − cos(8πyj) + 1
)

F3 = sin(0.5x1π) + 2
|J3|

∑
j∈J3

(
4y2

j − cos(8πyj) + 1
)

J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3 }
J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3 }
J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3 }
yj = xj − 2x2 sin(2πx1 + jπ

n
), j = 3, . . . , n

x1 ∈ [0, 1], x2 ∈ [0, 1], xi ∈ [−2, 2] i = 3, . . . , n

128



E.3. ZDT

E.3. ZDT
ZDT1-4 follow a very similar structure where F1 is only dependent on the first
decision variable x1, while ZDT6 uses a more complex calculation of F1.

ZDT1
g (x) = 1 + 9 (∑n

i=2 xi) / (n− 1)
F1 (x) = x1

F2 (x) = g(x)
[
1−

√
x1/g(x)

]
x ∈ [0, 1]

ZDT2
g (x) = 1 + 9 (∑n

i=2 xi) / (n− 1)
F1 (x) = x1

F2 (x) = g(x)
[
1− (x1/g(x))2

]
x ∈ [0, 1]

ZDT3
g (x) = 1 + 9 (∑n

i=2 xi) / (n− 1)
F1 (x) = x1

F2 (x) = g(x)
[
1−

√
x1/g(x)− x1/g(x) sin(10πx1)

]
x ∈ [0, 1]

ZDT4
g (x) = 1 + 10(n− 1) +∑n

i=2 [x2
i − 10 cos (4πxi)]

F1 (x) = x1

F2 (x) = g(x)
[
1−

√
x1/g(x)

]
x1 ∈ [0, 1], xi ∈ [−5, 5] i = 2, . . . , n

ZDT6
g (x) = 1 + 9 [(∑n

i=2 xi) / (n− 1)]0.25

F1 (x) = 1− exp(−4x1) sin6(6π x1)
F2 (x) = g(x) [1− (f1(x)/g(x))2]
x ∈ [0, 1]
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